WO2021221020A1 - 多孔質フィルムおよび多孔質フィルムの製造方法 - Google Patents

多孔質フィルムおよび多孔質フィルムの製造方法 Download PDF

Info

Publication number
WO2021221020A1
WO2021221020A1 PCT/JP2021/016666 JP2021016666W WO2021221020A1 WO 2021221020 A1 WO2021221020 A1 WO 2021221020A1 JP 2021016666 W JP2021016666 W JP 2021016666W WO 2021221020 A1 WO2021221020 A1 WO 2021221020A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous film
producing
cellulose
coating
porous
Prior art date
Application number
PCT/JP2021/016666
Other languages
English (en)
French (fr)
Inventor
亮 石黒
諭 中村
右典 九軒
圭樹 伊藤
洋介 後居
恭輝 齊藤
Original Assignee
株式会社日本製鋼所
第一工業製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本製鋼所, 第一工業製薬株式会社 filed Critical 株式会社日本製鋼所
Priority to CN202180023465.7A priority Critical patent/CN115348919A/zh
Priority to JP2022518059A priority patent/JPWO2021221020A1/ja
Publication of WO2021221020A1 publication Critical patent/WO2021221020A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention can be suitably used for a porous film used for a battery separator and the like and a method for producing a porous film.
  • a positive electrode material and a negative electrode material are separated by a porous film (porous insulator, porous resin molded body) called a separator.
  • the separator has, for example, a plurality of fine pores through which lithium ions pass, and the lithium ions move between the positive electrode material and the negative electrode material through the pores, so that charging and discharging can be repeated. In this way, the separator has a role of separating the positive electrode material and the negative electrode material to prevent a short circuit.
  • shutdown function a function that closes the movement of lithium ions and stopping the battery function.
  • the separator plays the role of a battery safety device, and in order to improve safety, it is indispensable to improve the mechanical strength and heat resistance of the separator.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2016-183209 discloses a technique for forming a coating layer containing inorganic particles and a binder resin composition on at least one surface of a polyolefin resin porous film.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2017-068900 describes a technique of applying a coating liquid containing a filler and a resin binder on a polyolefin-based resin porous film and then drying to form a coating layer. It is disclosed.
  • the present inventor is engaged in research and development on a porous film used for a battery separator, etc., and is diligently studying a porous film having good characteristics.
  • a coating technique for the porous film we have found a coating technique for the porous film.
  • the porous film disclosed in the present application is a porous film having a porous base material and a coating film provided on the surface of the porous base material, and the coating film has a primary hydroxyl group. It has a cellulose oxide having a structure oxidized to a carboxyl group and a filler, and has a thermal deformation of 5% or less. Examples of cellulose oxide having a structure in which a primary hydroxyl group is oxidized to a carboxyl group include the following cellulose oxides.
  • n indicating the average number of repetitions is a number of 1 or more, preferably 10 to 10000, and more preferably 50 to 2000.
  • the method for producing a porous film disclosed in the present application includes (a) a step of preparing cellulose oxide having a structure in which a primary hydroxyl group is oxidized to a carboxyl group, and (b) the above-mentioned cellulose oxide, an inorganic filler, and a solvent. It has a step of forming a coating liquid by mixing, and (c) a step of applying the coating liquid to the surface of a porous base material to form a coating film.
  • the characteristics of the porous film can be improved.
  • a porous film having good characteristics can be produced.
  • FIG. It is sectional drawing which shows typically the structure of the porous film of Embodiment 1.
  • FIG. It is a figure which shows typically an example of the structure of the lithium ion battery using the porous film of Embodiment 1.
  • FIG. It is sectional drawing which shows typically the structure of the porous film of the comparative example. It is a figure which showed typically the structure of the oxide cellulose which has a structure in which a primary hydroxyl group is oxidized to a carboxyl group.
  • It is a figure (photograph) which shows the state of a sample before and after heating. It is an SEM photograph which shows the state of the sample before and after heating of Example 1 and Comparative Example 2. It is a graph which shows the heat shrinkage rate of a sample after heating.
  • the porous film of the present embodiment can be used as a so-called battery separator.
  • the porous film of the present embodiment has a base material (porous base material) S and a coating film (coating film) CF formed on the surface of the base material S.
  • FIG. 1 is a cross-sectional view schematically showing the structure of the porous film of the present embodiment.
  • FIG. 2 is a diagram schematically showing an example of the configuration of a lithium ion battery using the porous film of the present embodiment.
  • the cylindrical battery has a can 6, and the can 6 contains a group of electrodes in which a strip-shaped positive electrode material 1 and a negative electrode material 3 are wound via a separator 5.
  • the positive electrode current collecting tab on the upper end surface of the electrode group is joined to the positive electrode cap.
  • the negative electrode current collecting tab on the lower end surface of the electrode group is joined to the bottom of the can 6.
  • An insulating coating (not shown) is provided on the outer peripheral surface of the can 6. Further, an electrolytic solution (not shown) is injected into the can 6.
  • the cylindrical battery has been described here, the configuration of the battery is not limited, and for example, a laminated battery can be used.
  • the lithium ion battery has a positive electrode material 1, a negative electrode material 3, a separator 5, and an electrolytic solution, and the separator 5 is arranged between the positive electrode material 1 and the negative electrode material 3.
  • the separator 5 has a large number of micropores.
  • the lithium ions inserted in the positive electrode active material are desorbed and released into the electrolytic solution. Will be done. Lithium ions released into the electrolytic solution move in the electrolytic solution, pass through the micropores of the separator, and reach the negative electrode. The lithium ions that reach the negative electrode are inserted into the negative electrode active material that constitutes the negative electrode.
  • lithium ions move back and forth between the positive electrode material and the negative electrode material through the micropores (not shown) provided in the base material S shown in FIG. 1, so that charging and discharging can be repeated.
  • a coating film CF is provided on the surface of the base material S provided with a large number of micropores.
  • the base material S used here is not particularly limited and can be used.
  • As the base material S a base material usually used for a porous film for a lithium ion battery is preferable.
  • the coating film CF is composed of a first filler (cellulose oxide having a structure in which a primary hydroxyl group is oxidized to a carboxyl group) and a second filler (inorganic filler).
  • FIG. 1 illustrates a case where TEMPO-treated cellulose (sometimes referred to as TCe) as the first filler and alumina (Al 2 O 3 ) as the second filler are illustrated. I will explain along.
  • the mechanical strength and heat resistance of the porous film (separator) can be improved.
  • the coating film CF is not formed so as to cover all the fine pores of the base material S, and the galley value (air permeability, air permeability) of the base material S (porous film, separator) on which the coating film CF is formed is formed. [sec / 100cc]) is 10 or more and 3000 or less, and air permeability is ensured.
  • the thermal deformation can be reduced to 5% or less, as will be described later.
  • the thermal deformation of the porous film is the heat shrinkage rate calculated by the formula specified in (Equation 1) described later before and after the heat treatment of the porous film at 140 ° C. for 1 hour. Further, this thermal deformation condition is preferably satisfied when the treatment temperature is 160 ° C., more preferably 180 ° C., and even more preferably 200 ° C.
  • FIG. 3 is a cross-sectional view schematically showing the structure of the porous film of the comparative example.
  • the TEMPO-treated cellulose as in the present embodiment, the alumina and the cellulose are compounded, and the heat resistance can be improved. Further, by adding the TEMPO-treated cellulose, a gap between the alumina and the base material S can be secured, and the movement of Li ions in the battery is not suppressed, while maintaining the characteristics of the battery. The heat resistance can be improved.
  • the manufacturing process of the porous film of the present embodiment has the following steps.
  • the base material S As the base material S, a microporous membrane can be used. For example, a commercially available polyethylene microporous membrane can be used. Further, the base material (microporous film) S may be formed by the following steps. Regarding the manufacturing process of the base material (microporous membrane) S, the second embodiment (FIG. 11) is also referred to.
  • a polyolefin (resin) and a plasticizer are melt-kneaded using a kneader, extruded into a sheet using an extruder, and then the kneaded product is stretched using a press or a stretching machine to form a film (thin film). ) Is formed.
  • polyolefin one that can be processed by ordinary extrusion, injection, inflation, blow molding, etc. is used.
  • polyolefin one that can be processed by ordinary extrusion, injection, inflation, blow molding, etc.
  • homopolymers and copolymers such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, and 1-octene, copolymers, and multistage polymers can be used.
  • polyolefins selected from the group of these homopolymers, copolymers, and multistage polymers can be used alone or in combination.
  • Typical examples of the polymer are low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, ultra high molecular weight polyethylene, isotactic polypropylene, atactic polypropylene, ethylene-propylene random copolymer, polybutene. , Polyethylene propylene rubber and the like.
  • the base material S it is particularly preferable to use a resin containing polyethylene as a main component because of its high melting point and high strength required performance. Further, from the viewpoint of shutdown property and the like, it is preferable that polyethylene occupies 50% by mass or more of the resin component. Further, when an ultra-high molecular weight polyolefin having a molecular weight of 1 million or more is used, it becomes difficult to uniformly knead the ultra-high molecular weight polyolefin in an amount of more than 50 parts by mass with respect to 100 parts by mass of the kneaded product (resin and dispersion). Therefore, it is preferably 50 parts by mass or less.
  • the plasticizer improves flexibility and weather resistance in addition to the thermoplastic resin. Further, in the present embodiment, holes can be provided in the resin molded body (membrane) by removing the plasticizer by the degreasing step described later.
  • an organic solvent having a molecular weight of 100 to 1500 and a boiling point of 50 ° C. to 300 ° C. can be used.
  • one or a mixture of liquid phthalates can be used.
  • NMP N-methyl-2-pyrrolidone
  • dimethylacetamide ketones such as acetone and methyl ethyl ketone
  • esters such as ethyl acetate and butyl acetate.
  • the polyolefin and the plasticizer are in a phase-separated state.
  • the plasticizer has a nano-sized island shape.
  • the island-shaped plasticizer portion becomes pores and a porous thin film is formed.
  • the process of forming a separator that forms a large number of fine holes in the resin molded product by the process of removing the plasticizer is called a "wet method".
  • the plasticizer in the film is extracted into the organic solvent and removed from the film (thin film).
  • methylene chloride hexane, octane, cyclohexane and the like can be used. Above all, it is preferable to use methylene chloride from the viewpoint of productivity.
  • the organic solvent on the surface of the film (thin film) is volatilized and heat-treated (heat-fixed) as necessary to obtain the base material (microporous film) S.
  • TEMPO-treated cellulose A) Preparation of oxidized cellulose (first filler) having a structure in which a primary hydroxyl group is oxidized to a carboxyl group
  • TEMPO treatment TEMPO oxidation treatment
  • TEMPO oxidation treatment is a treatment by an oxidation reaction using TEMPO (2,2,6,6-tetramethylpiperidine1-oxyl) as a catalyst. be. Therefore, the TEMPO-treated cellulose may be referred to as "TEMPO-oxidized cellulose".
  • Cellulose is a carbohydrate represented by (C 12 H 20 O 10) n.
  • n is a number of 1 or more, preferably 10 to 10000, and more preferably 50 to 2000.
  • -OH which is the primary hydroxyl group of cellulose
  • C6-aldehyde group which is further treated with alkali.
  • an alkali treatment is performed with a salt of a C6-carboxyl group (carboxylic acid salt), for example, a sodium hydroxide solution
  • the salt is converted to a Na salt of a C6-carboxyl group as follows.
  • n indicating the average number of repetitions is a number of 1 or more, preferably 10 to 10000, and more preferably 50 to 2000.
  • a Na salt of a C6-carboxyl group is arranged and ionized in water, so that a repulsive force (electrostatic repulsive force, osmotic pressure) acts. Therefore, if the Na salt is arranged at a high density, it can be dispersed in a very fine state.
  • a repulsive force electrostatic repulsive force, osmotic pressure
  • both glucose residues have a structure in which the primary hydroxyl group is oxidized to a carboxyl group, or both glucose residues have a primary hydroxyl group as a carboxyl group. If it does not have an oxidized structure, it is also included. As the whole of cellulose oxide, it is sufficient that a part of the primary hydroxyl group has a structure oxidized to a carboxyl group. Further, it is not necessary that all of the carboxyl groups are Na salts, and some of them are Na salts.
  • FIG. 4 is a diagram schematically showing the composition of TEMPO oxidized cellulose.
  • TEMPO-oxidized cellulose has, for example, a width (minor diameter, shorter length) W of 1000 nm or less and a length L of 500 ⁇ m or less, more preferably a width W of 500 nm or less and a length L. However, it becomes fine cellulose of 3 ⁇ m or less. It has also been confirmed that the width W is about 4 nm and the length L is about 2 ⁇ m.
  • a carboxyl group into the hydroxyl group of a cellulose-based material for example, TEMPO or sodium bromide is used as a catalyst, and hypochlorous acid is used as an oxidizing agent, and the reaction is carried out in water.
  • a neutralizing agent capable of maintaining an arbitrary pH for example, sodium hydroxide is added and reacted to obtain cellulose subjected to TEMPO oxidation treatment.
  • the neutralization rate is 100% when the carboxyl groups on the surface of the cellulose are completely neutralized
  • the neutralization rate of TEMPO-oxidized cellulose for the coating liquid is high from the viewpoint of defibration by repulsive force.
  • the lower value tends to be preferable, and the lower value tends to be preferable from the viewpoint of the influence on the battery performance.
  • TEMPO-oxidized cellulose As described above, by using TEMPO-oxidized cellulose, a dense network is formed in the coating layer, so that peeling of alumina particles, which is important for maintaining heat resistance, can be suppressed. Further, the heat resistance of the binder (resin) can be enhanced by combining the binder (resin) used for adhering the coating layer and the film with cellulose.
  • the Na salt of the C6-carboxyl group has been exemplified, but the following compounds having other counterions (X + ) may be used as the cellulose.
  • the counterion is preferably an alkali metal ion, and examples thereof include K + and the like.
  • n indicating the average number of repetitions is a number of 1 or more, preferably 10 to 10000, and more preferably 50 to 2000.
  • hydrophobicized cellulose SAized Ce
  • SAized Ce hydrophobicized cellulose
  • an additive eg, succinic anhydride
  • some of the hydroxyl groups of cellulose (C 12 H 20 O 10 ) n are converted into hydrophobic groups (eg, -CH 2 OH-like-. It can be made hydrophobic by substituting with R-OH (R represents a divalent hydrocarbon group).
  • raw material of cellulose those derived from plant fibers such as pulp and those derived from animal fibers such as sea squirts may be used.
  • TEMPO-oxidized cellulose is supplied in a powder state, and it is preferable to use this powder in a finer state.
  • a milling method can be applied to TEMPO-oxidized cellulose by using a stone mill method, a counter-collision method, a ball mill method, or the like.
  • the TEMPO-treated cellulose may be defibrated (refined), or the cellulose may be defibrated (refined) and then TEMPO-treated.
  • the defibration treatment miniaturization treatment
  • the above-mentioned TEMPO-oxidized cellulose having a width W and a length L can be obtained.
  • a coating liquid is prepared by mixing the above-mentioned TEMPO oxidized cellulose, an inorganic filler (second filler) and a solvent (dispersion medium).
  • the TEMPO oxidized cellulose is preferably 0.3% by mass or more and 5% by mass or less, and more preferably 0.5% by mass or more and 2% by mass or less, based on the total amount of solid components of the coating liquid. ..
  • the coating liquid is prepared by mixing TEMPO-oxidized cellulose, an inorganic filler and a solvent and then stirring.
  • stirring method for example, a method of rotating the blades attached to the shaft by a motor or the like, a vibration method using ultrasonic waves, or the like can be used.
  • the coating liquid may be prepared (mixing, stirring) under reduced pressure.
  • the inorganic filler (second filler) is not particularly limited.
  • alumina, nanosilica, carbon nanotubes, talc, glass fiber and the like can be used.
  • alumina from the viewpoint that a chemical reaction with the electrolytic solution is unlikely to occur and the physical properties and manufacturing technology are stable.
  • the particle shape of alumina is not limited, and for example, a spherical or flat shape can be used.
  • the average particle size (diameter) of alumina is preferably 500 nm or more and 1000 nm or less. The average particle size can be determined by the laser diffraction / scattering method.
  • the alumina it is preferable to use an alumina having an average particle size larger than the average pore size of the microporous film used for the base material S. Further, alumina having different average particle sizes may be mixed and used. Further, the alumina may contain impurity elements (for example, Si, Fe, Na, Mg, Cu), but Si is 400 ppm or less, Fe is 300 ppm or less, Na is 200 ppm or less, and Mg is 100 ppm or less. Cu is preferably 100 ppm or less.
  • impurity elements for example, Si, Fe, Na, Mg, Cu
  • the solvent is not particularly limited, but considering drying after coating on the base material, it is preferable to use water, ethanol, methanol or the like having a boiling point of 100 ° C. or lower.
  • a thickener for example, carboxymethyl cellulose
  • a binder for example, an acrylic resin, an acrylic binder
  • a dispersant for example, a surfactant
  • Carboxymethyl cellulose is a water-soluble cellulose, and when added to the coating liquid, the viscosity increases and the coating property improves. Further, by adding the acrylic resin, the adhesiveness of the material in the coating liquid is improved.
  • the wettability to the base material S is improved.
  • a base material made of polyethylene or polypropylene is used, the free energy is large, and it is preferable to add a surfactant.
  • the amount of the surfactant added is preferably 0.001% by mass or more and 5% by mass or less of the solid components of the coating liquid.
  • the solid component of the coating liquid described above is the total amount of the TEMPO-oxidized cellulose, the inorganic filler (second filler), the thickener, the binder, and the dispersant contained in the coating liquid. ..
  • the coating liquid is applied to the surface of the base material S described in the coating process on the base material (a: preparation step of the base material (porous film before coating)).
  • the coating method is not limited, but for example, a bar coater, a lip coater, a gravure coater, or the like can be used. By drying the coating liquid after coating, a coating film can be formed on the surface of the base material S.
  • the heat resistance of the porous film can be improved by adding TEMPO-oxidized cellulose to the coating liquid. Further, by using a porous film on which a coating film containing TEMPO oxide cellulose is formed as a separator, the battery characteristics can be improved.
  • Example A Formation process of base material (porous film before coating) Ultra high molecular weight polyethylene (Mitsui Hi-Zex Million 030S (manufactured by Mitsui Chemicals)) 30 parts by mass, liquid paraffin (P-350P (manufactured by Moresco)) 70 mass The part was melted and kneaded in a kneader (tabletop twin-screw kneader), and then extruded into a sheet from a T-die. The kneading temperature was 180 ° C. and the kneading time was 12 minutes.
  • the kneader (desktop twin-screw kneader) is a device for kneading the charged raw materials with a shaft having two screws that mesh with each other, and the rotation speed of the shaft (screw) is 80 rpm.
  • simultaneous biaxial stretching means stretching in the first direction (longitudinal direction, MD direction) and in the second direction (horizontal direction, TD direction) intersecting the first direction at the same time.
  • the stretching conditions in the first direction (longitudinal direction, MD direction) are a stretching temperature of 110 ° C.
  • the stretching ratio is 6 times
  • the stretching speed is 3000 mm / min
  • the stretching conditions in the second direction (horizontal direction, TD direction) are a stretching temperature of 110.
  • the temperature was set to 7 times, a stretching ratio of 7 times, and a stretching speed of 3000 mm / min.
  • the liquid paraffin was degreased by immersing this film in methylene chloride. Further, this film was re-stretched with a transverse stretching device to obtain a base material having micropores (a porous film made of PE before coating). The thickness of the base material was about 16 ⁇ m.
  • TEMPO oxidized cellulose (Na salt) was prepared.
  • This TEMPO-oxidized cellulose is in the form of a powder having an average particle size of about 10 ⁇ m, and is produced using pulp derived from coniferous trees as a raw material.
  • SA succinic anhydride
  • TEMPO oxide cellulose powder 40g defibrated by adding 2 parts by mass to water and passing it through a defibration treatment device (Mascoroider, manufactured by Masuko Sangyo Co., Ltd.) 10 times. A dispersion was obtained. A dispersion was prepared in the same manner for the hydrophobized cellulose. By this defibration treatment, cellulose becomes finer (nano). Therefore, the defibrated TEMPO-oxidized cellulose can be said to be TEMPO-oxidized cellulose nanofibers. Hydrophobicized cellulose was also defibrated in the same manner.
  • the coating liquid was prepared with a solvent (water) so that the proportion of solid components (cellulose, CMC, binder, surfactant, alumina) was 40% by mass.
  • a coating liquid ⁇ 3> was prepared in the same manner for the dispersion liquid of the defibrated hydrophobicized cellulose.
  • a coating liquid ⁇ 1> consisting of high-purity alumina, carboxymethyl cellulose, acrylic resin, surfactant and water without adding a dispersion liquid of cellulose was prepared.
  • This coating liquid ⁇ 1> has the same composition as a commercially available coating liquid. Table 1 shows the solid component ratio of each coating liquid.
  • the proportion of solid components (cellulose, CMC, binder, surfactant, alumina) was set to 40% by mass, but this proportion should be adjusted in the range of 20% by mass to 45% by mass. Can be done.
  • the obtained porous film (separator) was left to stand in a drying oven (Azuwan, AVO-250NB) heated to 100 to 200 ° C. for 1 hour, and the following (The heat shrinkage rate (thermal deformation) was calculated based on the formula 1).
  • the change in the porous film before and after heating was examined by appearance observation and SEM. Further, the heat shrinkage rate (thermal deformation) was calculated based on the following (Equation 1) from the dimensional change of the porous film before and after drying.
  • the heat shrinkage rate (thermal deformation) was calculated based on the change in the length of each sample shown in FIG. 5 in the vertical direction (MD direction).
  • Example 1 A sample (porous film, separator) was formed and evaluated by double-sided coating on the base material using the coating liquid ⁇ 2>.
  • the coating thickness was 4 ⁇ m on one side (8 ⁇ m on both sides).
  • Example 2 A sample (porous film, separator) was formed and evaluated by applying a single-sided coating to the base material using the coating liquid ⁇ 2>.
  • the coating thickness was only 4 ⁇ m on one side.
  • Comparative Example 2 A sample (porous film, separator) was formed and evaluated by double-sided coating on the base material using the coating liquid ⁇ 1>.
  • the coating thickness was 4 ⁇ m on one side (8 ⁇ m on both sides).
  • Example 3 A sample (porous film, separator) was formed and evaluated by double-sided coating on the base material using the coating liquid ⁇ 3>.
  • the coating thickness was 4 ⁇ m on one side (8 ⁇ m on both sides).
  • FIG. 5 is a diagram (photograph) showing the state of the sample before and after heating. In each Example and each Comparative Example, the photograph after the initial state (the unheated state), the heating at 160 degreeC, and the heating at 200 degreeC is shown.
  • the sample was melted by heating at 160 ° C. and heating at 200 ° C., and the remaining film component was small.
  • Comparative Example 3 using the coating liquid ⁇ 3> to which hydrophobicized cellulose was added, although the thermal deformation due to heating was improved as compared with Comparative Example 2, tearing was confirmed by heating at 200 ° C. ..
  • Example 1 using the coating liquid ⁇ 2> to which TEMPO oxidized cellulose was added, almost no thermal deformation due to heating was observed, and it was found that the heat resistance was high.
  • Example 2 when the coating liquid ⁇ 2> to which TEMPO-oxidized cellulose is added is used, even if only one side is coated, it does not dissolve as in Comparative Example 1, and the heat resistance is improved. It turned out to be improving.
  • FIG. 6 is an SEM photograph showing the state of the sample before and after heating in Example 1 and Comparative Example 2.
  • Example 1 and Comparative Example 2 SEM photographs of the initial state (unheated state) and after heating at 200 ° C. are shown. Observation was performed using an SEM (Carl Zeiss, SUPER 55VP) at an acceleration voltage of 3 kV and 10000 times.
  • Example 2 alumina was buried after heating at 200 ° C., whereas in Example 1, alumina particles could still be confirmed.
  • FIG. 7 is a graph showing the heat shrinkage rate of the sample after heating.
  • the heat shrinkage rate after heating at 120 ° C., heating at 140 ° C., heating at 160 ° C., heating at 180 ° C., and heating at 200 ° C. is shown.
  • the horizontal axis of the graph is the heating temperature
  • the vertical axis is the heat shrinkage rate [%].
  • graphs are arranged in the order of Example 1, Example 2, Comparative Example 1, Comparative Example 2, and Comparative Example 3 from the left side.
  • the heat shrinkage rate is MaX (20%), it means that the heat shrinkage rate is 20% or more.
  • Example 1 As shown in FIG. 7, it was found that in Example 1, the heat shrinkage rate was smaller than that in Comparative Examples 1 to 3, and the thermal deformation was 5% or less.
  • FIG. 8 is a graph showing the galley value of each sample.
  • the galley value (air permeability, [sec / 100cc]) of the base material (Comparative Example 1) without the coating layer is about 260, and in Examples 1 and 2, The Gale value was equivalent to this. From this, it was found that the coating layer using the coating liquid ⁇ 2> to which TEMPO-oxidized cellulose was added had pores and did not inhibit the movement of Li ions.
  • the galley value of the coating layer (Comparative Example 2) using the coating liquid ⁇ 1> to which cellulose was not added deteriorated.
  • Example 1 improvement in heat resistance was confirmed. It is considered that this is due to the above-mentioned composite of alumina and cellulose. Further, in Example 1, it was confirmed that the gelle value was about the same as that of the base material before coating, which was caused by the addition of the TEMPO-treated cellulose between the alumina and the base material S. It is probable that a gap was secured. As a result, as shown in Example B described later, it is considered that the heat resistance can be improved while maintaining the characteristics of the battery without suppressing the movement of Li ions in the battery.
  • Example B Step of forming a base material (porous film before coating) In the same manner as in Example A, a base material having micropores (porous film made of PE before coating) was formed. The thickness of the base material was about 20 ⁇ m.
  • Coating liquids a to e were prepared in the same manner as in Example A.
  • Table 3 shows the solid component ratio of the coating liquid.
  • the coating liquid was prepared with a solvent (water) so that the proportion of solid components (cellulose, CMC, binder, surfactant, alumina) was 40% by mass.
  • a surfactant is added to the coating liquid.
  • Triton X nonionic surfactant manufactured by Nacalai Tesque Co., Ltd. was used.
  • Example 3 Coating process on the base material
  • the above coating liquids a to c are coated on both sides of the base material (porous film made of PE) with a bar coater, and 80 It was dried at ° C. for 1 hour to form a sample (porous film, separator).
  • the coat thickness (total thickness on both sides) and the coat amount (mg / cm 2 ) are as shown in Table 4.
  • the sample using the coating liquid a is shown as coating a
  • the sample using the coating liquid b is shown as coating b
  • the sample using the coating liquid c is shown as coating c.
  • a base material (Uncoat) on which a coating layer was not formed was prepared.
  • the wettability of the coating liquids a to e to the base material was examined.
  • the coating liquids a, b, and c had good wettability to the base material.
  • the coating liquids d and e did not have good wettability to the base material.
  • test batteries were prepared using the coats a to c, and their characteristics were evaluated.
  • a laminate in which a positive electrode, a separator, and a negative electrode are sequentially laminated is housed in a case, and after injecting an electrolyte into the case, the case is sealed with a part of the electrodes exposed, and a test battery (lithium ion secondary) is used. Batteries) were manufactured.
  • a positive electrode mixture containing LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM111) was applied to a positive electrode plate (Al foil) and dried.
  • a negative electrode plate (Cu foil) coated with a negative electrode mixture containing graphite and dried was used.
  • lithium hexafluorophosphate LiPF6
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • VC vinyl carbonate
  • the above test battery was charged to 4.2 V under the condition of CV 1 h at 30 ° C., and then discharged to -2.8 V by repeating a cycle (cycle) 50 times, and the battery capacity of each charge / discharge count was evaluated. Further, in order to compare the performance difference of each coating sample with a short number of cycles, charging and discharging were performed with a C rate of 1 to 20 cycles of 0.1 to 5C.
  • 9 and 10 are graphs showing the electric capacity at the time of high rate discharge. The vertical axis represents the battery capacity, and the horizontal axis represents the cycle. The vertical axis on the right side indicates C-rate.
  • FIG. 9 shows the measurement result on the positive electrode surface
  • FIG. 10 shows the measurement result on the negative electrode surface.
  • the coatings a to c using the coating liquids a, b, and c showed battery characteristics comparable to those of only the base material (Uncoat) on which the coating layer was not formed. ..
  • the battery capacity is larger in the order of coat c, coat a, Uncoat, and coat b
  • the battery capacity is larger. It was found that the battery capacity was larger in the order of coat c, Uncoat, coat a, and coat b. From this, it was found that among the coats a to c, the coat b is the most useful as a separator.
  • TEMPO-oxidized cellulose (TCe) was 0.93% by mass with respect to the total amount of solid components and 1% by mass with respect to alumina.
  • the TEMPO oxidized cellulose (TCe) is preferably 0.5% by mass or more and 1.5% by mass or less, and more preferably 0.7% by mass or more and 1.3% by mass or less with respect to alumina.
  • the ratio of carboxymethyl cellulose (CMC) to TEMPO oxidized cellulose (TCe) is 3: 1.
  • a is preferably less than 1, and a is 0.2 or more and 0.4 or less. Is more preferable.
  • Example C In this example, TEMPO-oxidized cellulose having different neutralization rates was prepared, and "B) defibration treatment” and “C) stirring treatment were performed in the same manner as in Example A, and the substrate was coated. ..
  • sodium hydroxide was used as a neutralizing agent, and TEMPO-oxidized cellulose having a neutralization rate of 100% and a neutralization rate of 50% was prepared.
  • the neutralization rate was 100%.
  • the one having a heat shrinkage rate of 4% and the one having a neutralization rate of 50% had a heat shrinkage rate of 5%.
  • the higher the neutralization rate the smaller the heat shrinkage rate and the higher the heat resistance.
  • the neutralization rate is 50%, the heat shrinkage rate is about 5%, and a comprehensive judgment including the results of Examples A and B described above shows that the one with a neutralization rate of 50% also has sufficient heat resistance. It has properties and is considered to be effective when used as a coating liquid for separators.
  • FIG. 11 is a schematic view showing the configuration of the manufacturing apparatus (system) of the present embodiment. In the present embodiment, the manufacturing process of the separator using the manufacturing apparatus (system) will be described.
  • a plasticizer liquid paraffin
  • a polyolefin for example, polyethylene
  • S1 twin-screw kneading extruder
  • the kneading conditions are, for example, 180 ° C. for 12 minutes, and the rotation speed of the shaft is 100 rpm.
  • the kneaded product (molten resin) is conveyed from the discharge portion to the T-die S2, and the molten resin is cooled in the raw fabric cooling device S3 while being extruded from the slit of the T-die S2 to form a thin-film resin molded body. ..
  • the thin-film resin molded body is stretched in the vertical direction by the first longitudinal stretching device S4, and further stretched in the horizontal direction by the first transverse stretching device S5.
  • the stretched thin film is immersed in an organic solvent (for example, methylene chloride) in the extraction tank S6.
  • an organic solvent for example, methylene chloride
  • the polyolefin for example, polyethylene
  • the plasticizer paraffin
  • the plasticizer (paraffin) becomes nano-sized islands.
  • This nano-sized plasticizer (paraffin) is removed (defatted) with an organic solvent (for example, methylene chloride) in the extraction tank S6. This makes it possible to form a porous thin film.
  • the second transverse stretching device S7 further stretches the thin film in the lateral direction, dries the thin film, heat-fixes it, and relaxes the internal stress during stretching.
  • the take-up device S8 winds up the thin film conveyed from the second transverse stretching device S7.
  • FIG. 12 is a cross-sectional view schematically showing the configuration of the gravure coating apparatus.
  • This gravure coating device has two gravure rolls R.
  • This gravure roll R has, for example, a plurality of diagonal recesses, and a part of the gravure roll R is arranged so as to be immersed in the coating liquid CL, and by rotating the gravure roll R, the coating liquid is held in the diagonal recesses. In this state, the coating liquid CL is applied to the base material S.
  • a coating film can be formed on both sides of the base material. If necessary, a coating liquid drying device or the like can be incorporated as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Cell Separators (AREA)

Abstract

多孔質フィルムの特性を向上させる。 本発明の多孔質フィルムは、多孔質の基材Sとこの基材Sの表面に設けられた塗工膜CFとを有する多孔質フィルムであって、塗工膜CFは、第1級水酸基がカルボキシル基に酸化された構造を有する酸化セルロースと、フィラーとを有し、熱変形が5%以下である。このように、基材Sの表面に上記塗工膜CFを設けることで、多孔質フィルム(セパレータ)の機械的強度や耐熱性を向上させることができる。即ち、このように酸化処理されたセルロースを添加することで、アルミナとセルロースとが複合化し、耐熱性を向上させることができる。また、酸化処理されたセルロースの添加により、アルミナと基材Sとの間の隙間を確保することででき、電池中のLiイオンの移動が抑制されることなく、電池の特性を維持しつつ、上記耐熱性を向上させることができる。

Description

多孔質フィルムおよび多孔質フィルムの製造方法
 本発明は、電池のセパレータなどに用いられる多孔質フィルムおよび多孔質フィルムの製造方法に好適に利用できるものである。
 近年、自動車用やインフラ用としてリチウムイオン電池などの電池の利用が盛んである。そして、リチウムイオン電池の高容量化・高出力化に伴い、より一層の安全性の向上が求められている。リチウムイオン電池などの電池は、正極材と負極材との間がセパレータと呼ばれる多孔質フィルム(多孔質の絶縁体、多孔質樹脂成形体)で分離されている。セパレータは、例えば、リチウムイオンが通る程度の微細孔を複数有し、この孔を通ってリチウムイオンが正極材と負極材の間を移動することで、充電と放電を繰り返すことができる。このように、セパレータは、正極材と負極材を分離させて、短絡を防ぐ役割を有する。
 また、電池の内部が何らかの原因で高温となった場合には、セパレータの微細孔が閉じることで、リチウムイオンの移動を停止し、電池機能を停止させる。このような機能を“シャットダウン機能”という。
 このようにセパレータは、電池の安全装置の役割を担っており、安全性を向上するためには、セパレータの機械的強度や耐熱性を向上することが不可欠である。
 例えば、特許文献1(特開2016-183209号公報)には、ポリオレフィン樹脂多孔フィルムの少なくとも片面に、無機粒子及びバインダ樹脂組成物を含む被覆層を形成する技術が開示されている。
 また、特許文献2(特開2017-068900号公報)には、ポリオレフィン系樹脂多孔フィルム上にフィラー及び樹脂バインダを含んでなる塗工液を塗布した後、乾燥して被覆層を形成する技術が開示されている。
特開2016-183209号公報 特開2017-068900号公報
 本発明者は、電池のセパレータなどに用いられる多孔質フィルムについての研究開発に従事しており、特性の良好な多孔質フィルムについて鋭意検討している。特に、多孔質フィルムの機械的強度や耐熱性の向上を図るべく、多孔質フィルムの塗工技術を見出すに至った。
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 本願において開示される多孔質フィルムは、多孔質基材と前記多孔質基材の表面に設けられた塗工膜とを有する多孔質フィルムであって、前記塗工膜は、第1級水酸基がカルボキシル基に酸化された構造を有する酸化セルロースと、フィラーとを有し、熱変形が5%以下である。第1級水酸基がカルボキシル基に酸化された構造を有する酸化セルロースとしては、例えば、以下に示す酸化セルロースが挙げられる。ここで、平均繰返し数を示すnは1以上の数であり、好ましくは10~10000、より好ましくは50~2000である。
Figure JPOXMLDOC01-appb-C000002
 本願において開示される多孔質フィルムの製造方法は、(a)第1級水酸基がカルボキシル基に酸化された構造を有する酸化セルロースを準備する工程、(b)前記酸化セルロースと無機フィラーと溶媒とを混合することにより塗工液を形成する工程、(c)前記塗工液を多孔質基材の表面に塗布し、塗工膜を形成する工程、を有する。
 本願において開示される多孔質フィルムによれば、多孔質フィルムの特性を向上させることができる。
 本願において開示される多孔質フィルムの製造方法によれば、特性の良好な多孔質フィルムを製造することができる。
実施の形態1の多孔質フィルムの構成を模式的に示す断面図である。 実施の形態1の多孔質フィルムを用いたリチウムイオン電池の構成の一例を模式的に示す図である。 比較例の多孔質フィルムの構成を模式的に示す断面図である。 第1級水酸基がカルボキシル基に酸化された構造を有する酸化セルロースの構成を模式的に示した図である。 加熱前後のサンプルの状態を示す図(写真)である。 実施例1および比較例2の加熱前後のサンプルの状態を示すSEM写真である。 加熱後のサンプルの熱収縮率を示すグラフである。 各サンプルのガーレ値を示すグラフである。 高率放電時の電気容量を示すグラフである。 高率放電時の電気容量を示すグラフである。 実施の形態2の製造装置(システム)の構成を示す模式図である。 グラビア塗工装置の構成を模式的に示す断面図である。
 以下、実施の形態を実施例や図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。
 (実施の形態1)
 以下に、本実施の形態の多孔質フィルムおよびその製造方法について説明する。本実施の形態の多孔質フィルムは、いわゆる電池のセパレータとして用いることができる。
 [構造説明]
 本実施の形態の多孔質フィルムは、基材(多孔質基材)Sと基材Sの表面に形成された塗工膜(被覆膜)CFとを有する。
 図1は、本実施の形態の多孔質フィルムの構成を模式的に示す断面図である。また、図2は、本実施の形態の多孔質フィルムを用いたリチウムイオン電池の構成の一例を模式的に示す図である。
 図2に示すように、円筒形の電池は、缶6を有しており、この缶6には、帯状の正極材1および負極材3がセパレータ5を介して捲回された電極群が収容されている。電極群の上端面の正極集電タブは、正極キャップに接合されている。電極群の下端面の負極集電タブは、缶6の底部に接合されている。なお、缶6の外周面には、絶縁被覆(図示せず)が設けられている。また、缶6内には、電解液(図示せず)が注液されている。なお、ここでは、円筒形の電池を説明したが、電池の構成に制限はなく、例えば、ラミネート型の電池とすることができる。
 このように、リチウムイオン電池は、正極材1、負極材3、セパレータ5および電解液を有しており、正極材1と負極材3との間にセパレータ5が配置されている。セパレータ5は、微細孔を多数有する。例えば、充電時、即ち、正極(正極キャップ)と負極(缶6の底部)との間に充電器を接続すると、正極活物質内に挿入されているリチウムイオンが脱離し、電解液中に放出される。電解液中に放出されたリチウムイオンは、電解液中を移動し、セパレータの微細孔を通過して、負極に到達する。この負極に到達したリチウムイオンは、負極を構成する負極活物質内に挿入される。
 このように、図1に示す基材Sに設けられた微細孔(図示せず)を介してリチウムイオンが正極材と負極材の間を行き来することで、充電と放電をくりかえすことができる。
 ここで、本実施の形態の多孔質フィルムは、図1に示すように、微細孔が多数設けられた基材Sの表面に塗工膜CFが設けられている。ここで用いられる基材Sは、特に限定されずに使用できる。基材Sとしては、特に、通常、リチウムイオン電池用の多孔質フィルムに用いられる基材が好ましい。この塗工膜CFは、第1フィラー(第1級水酸基がカルボキシル基に酸化された構造を有する酸化セルロース)と第2フィラー(無機フィラー)とを有して構成される。この図1では、第1フィラーとしてTEMPO処理されたセルロース(TCeと示す場合がある)と、第2フィラーとしてアルミナ(Al)とを有する場合を例示しており、以下、この例示に沿って説明する。
 このように、本実施の形態においては、基材Sの表面に上記塗工膜を設けることで、多孔質フィルム(セパレータ)の機械的強度や耐熱性を向上させることができる。塗工膜CFは、基材Sの微細孔をすべて覆うようには形成されておらず、塗工膜CFが形成された基材S(多孔質フィルム、セパレータ)のガーレ値(透気度、[sec/100cc])は、10以上、3000以下であり、通気性は確保されている。また、本実施の形態の多孔質フィルム(セパレータ)によれば、後述するように、熱変形を5%以下とすることができる。多孔質フィルムの熱変形は、多孔質フィルムを140℃で、1時間加熱処理したとき、その処理前後における、後述する(式1)で規定される計算式で算出される熱収縮率である。さらに、この熱変形の条件を、処理温度を160℃としたときに満たすことが好ましく、180℃としたときに満たすことがより好ましく、200℃にしたときに満たすことがさらに好ましい。
 一方、塗工膜にTEMPO処理されたセルロースを添加していない場合には、基材Sの表面をアルミナで覆うことができるものの、耐熱性は充分ではない(後述の比較例1参照)。図3は、比較例の多孔質フィルムの構成を模式的に示す断面図である。これに対し、本実施の形態のように、TEMPO処理されたセルロースを添加することで、アルミナとセルロースとが複合化し、耐熱性を向上させることができる。また、TEMPO処理されたセルロースの添加により、アルミナと基材Sとの間の隙間を確保することができ、電池中のLiイオンの移動が抑制されることなく、電池の特性を維持しつつ、上記耐熱性を向上させることができる。
 [製法説明]
 以下に本実施の形態の多孔質フィルムの製造工程を説明するとともに、多孔質フィルムや塗工膜の構成をより明確にする。
 本実施の形態の多孔質フィルムの製造工程は、以下の工程を有する。
 (a:基材(塗工前の多孔質フィルム)の準備工程)
 基材Sとしては、微多孔質膜を用いることができる。例えば、市販のポリエチレン製微多孔質膜を用いることができる。また、以下の工程により、基材(微多孔質膜)Sを形成してもよい。なお、基材(微多孔質膜)Sの製造工程については、実施の形態2(図11)も参考となる。
 例えば、ポリオレフィン(樹脂)と可塑剤とを混練機を用いて溶融混練し、押出機を用いてシート状に押出した後、混練物をプレス機や延伸機を用いて延伸することにより膜(薄膜)を形成する。
 ポリオレフィンとしては、通常の押出、射出、インフレーション、及びブロー成形等により加工可能なものを用いる。例えば、ポリオレフィンとして、エチレン、プロピレン、1-ブテン、4-メチル―1-ペンテン、1-ヘキセン、及び1-オクテン等のホモ重合体及び共重合体、多段重合体等を使用することができる。また、これらのホモ重合体及び共重合体、多段重合体の群から選んだポリオレフィンを単独、もしくは混合して使用することもできる。前記重合体の代表例としては、低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン、アイソタクティックポリプロピレン、アタクティックポリプロピレン、エチレン-プロピレンランダム共重合体、ポリブテン、エチレンプロピレンラバー等が挙げられる。
 なお、基材Sとしては、高融点であり、かつ高強度の要求性能から、特に、ポリエチレンを主成分とする樹脂を使用することが好ましい。また、シャットダウン性等の点から、樹脂成分の50質量%以上をポリエチレンが占めることが好ましい。また、分子量が100万以上の超高分子量ポリオレフィンを用いる場合、混練物(樹脂および分散液)100質量部に対し、超高分子量ポリオレフィンが50質量部を超すと均一に混練することが困難となることから50質量部以下であることが好ましい。
 可塑剤は、熱可塑性樹脂に加えて柔軟性や耐候性を改良するものである。さらに、本実施の形態においては、後述する脱脂工程により、可塑剤を除去することにより、樹脂成形体(膜)に孔を設けることができる。
 可塑剤としては、分子量100~1500、沸点が50℃から300℃の有機溶剤を用いることができる。具体的には、流動パラフィン、ノナン、デカン、デカリン、パラキシレン、ウンデカン、ドデカンの鎖状又は環式の脂肪族炭化水素、及び沸点がこれらに対応する鉱油留分、並びにジブチルフタレート、ジオクチルフタレートの室温では液状のフタル酸エステルのうち一種類又は数種類の混合物を用いることができる。また、エタノールやメタノールなどのアルコール類、NMP(N-メチル-2-ピロリドン)やジメチルアセトアミドなどの窒素系有機溶剤、アセトンやメチルエチルケトンなどのケトン類、酢酸エチルや酢酸ブチルなどのエステル類のうち、一種類又は数種類の混合物を用いることができる。
 前述したシート状の混練物を延伸した膜(薄膜)においては、ポリオレフィンと可塑剤が相分離した状態となる。具体的には、可塑剤がナノサイズの島状となる。このナノサイズの可塑剤を後述する有機溶剤処理工程において除去することにより、島状の可塑剤部が孔となり、多孔質の薄膜が形成される。可塑剤の除去工程により樹脂成形体に微細な孔を多数形成するセパレータの形成工程は、“湿式法”と呼ばれる。
 例えば、上記延伸工程で形成された膜(薄膜)を有機溶剤に浸漬することにより、膜中の可塑剤を有機溶剤中に抽出し、膜(薄膜)中から除去する。
 有機溶剤としては、塩化メチレン、ヘキサン、オクタン、シクロヘキサンなどを用いることができる。中でも、生産性の観点から、塩化メチレンを用いることが好ましい。
 この後、膜(薄膜)表面の有機溶剤を揮発させ、必要に応じて熱処理(熱固定)することにより、基材(微多孔質膜)Sを得ることができる。
 (b:塗工液の調製工程)
 A)第1級水酸基がカルボキシル基に酸化された構造を有する酸化セルロース(第1フィラー)の準備
 本実施の形態においては、例えば、TEMPO処理されたセルロースを用いる。TEMPO処理(TEMPO酸化処理)とは、TEMPO(2,2,6,6-テトラメチルピペリジン1-オキシル(2,2,6,6-tetramethylpiperidine1-oxyl))を触媒として用いた酸化反応による処理である。このため、TEMPO処理されたセルロースを“TEMPO酸化セルロース”という場合がある。
 セルロース(cellulose、Cell-OH)は、(C122010)nで表される炭水化物である。例えば、以下の化学構造式(化2)で示される。この化学構造式中、平均繰返し数を示すnは1以上の数であり、好ましくは10~10000、より好ましくは50~2000である。
Figure JPOXMLDOC01-appb-C000003
 セルロースにTEMPO処理を施した場合、セルロースの第1級水酸基である-OHが位置選択的に酸化されてC6-アルデヒド基を経て、C6-カルボキシル基まで酸化され、さらに、アルカリ処理されることでC6-カルボキシル基の塩(カルボン酸塩)、例えば、水酸化ナトリウム溶液でアルカリ処理をした場合、以下のようにC6-カルボキシル基のNa塩、に変換される。ここで、平均繰返し数を示すnは1以上の数であり、好ましくは10~10000、より好ましくは50~2000である。
Figure JPOXMLDOC01-appb-C000004
 このようにTEMPO処理されたセルロース(TEMPO酸化セルロース、TCe)は、C6-カルボキシル基のNa塩が配置され、水中において電離するため、斥力(静電的な斥力、浸透圧)が働く。そのため、Na塩が高密度で配置されていると、非常に微細な状態で分散させることができる。なお、上記化学構造式では、C6位の炭素原子の置換基について、2つのグルコース残基のうち左側のみをCOONa基として示している。これは、一部がカルボキシル基に酸化された構造を有していることを表す一例であり、この構造単位のみからなることを意味しているわけではない。すなわち、上記化学構造式において、両方のグルコース残基が、第1級水酸基がカルボキシル基に酸化された構造を有している場合や、両方のグルコース残基が、第1級水酸基がカルボキシル基に酸化された構造を有していない場合、も含まれる。酸化セルロース全体として、第1級水酸基の一部が、カルボキシル基に酸化された構造を有していればよい。さらに、カルボキシル基においても、全てがNa塩となっている必要はなく、その一部がNa塩となる場合も含まれる。
 図4は、TEMPO酸化セルロースの構成を模式的に示した図である。TEMPO酸化セルロースは、液体中において、例えば、幅(短径、短い方の長さ)Wが、1000nm以下、長さLが、500μm以下、より好ましくは、幅Wが、500nm以下、長さLが、3μm以下の微細なセルロースとなる。なお、幅Wが、4nm程度、長さLが、2μm程度のものも確認されている。
 セルロース系材料の水酸基にカルボキシル基を導入する工程(酸化工程)では、例えば触媒としてTEMPOや臭化ナトリウム、酸化剤として次亜塩素酸を使用して、水中で反応させる。反応中は、任意のpHを維持することが可能な量の中和剤、たとえば水酸化ナトリウムを添加して、反応させることで、TEMPO酸化処理を施したセルロースを得ることができる。セルロース表面のカルボキシル基を完全に中和した状態を中和率100%とすると、塗工液用のTEMPO酸化セルロースの中和率は、斥力による解繊性の観点からは、中和率が高い方が好ましく、電池性能に及ぼす影響の観点から、低い方が好ましい傾向にある。
 上記のように、TEMPO酸化セルロースを用いることで、塗工層内で緻密なネットワークが形成されるため、耐熱性を維持するために重要なアルミナ粒子の剥離を抑制することができる。また、塗工層とフィルムを接着するために使用しているバインダ(樹脂)とセルロースが複合化することで、バインダ(樹脂)の耐熱性を高めることができる。
 なお、上記においては、C6-カルボキシル基のNa塩を例示したが、以下のような他の対イオン(X)を有する化合物をセルロースとして用いてもよい。この対イオンとしては、アルカリ金属イオンが好ましく、例えば、K等が挙げられる。ここで、平均繰返し数を示すnは1以上の数であり、好ましくは10~10000、より好ましくは50~2000である。
Figure JPOXMLDOC01-appb-C000005
 なお、後述の比較例においては、疎水化処理を施したセルロース(疎水化セルロース、SA化Ce)を用いた。例えば、セルロースと添加剤(例えば、無水コハク酸)とのエステル化反応により、セルロース(C122010の水酸基の一部を、疎水基(例えば、-CHOHのような-R-OH(Rは2価の炭化水素基を表す))と置換し、疎水化することができる。
 また、セルロースの原料としては、パルプのような植物繊維由来のものや、ホヤなどの動物繊維由来のものを用いてもよい。
 B)解繊処理
 上記TEMPO酸化セルロースは、粉末状態で供給されており、この粉末をさらに微細化して用いることが好ましい。例えば、TEMPO酸化セルロースに対し、石臼方式、対向衝突方式、ボールミル方式などを使用し、機械処理方法を施すことができる。
 なお、TEMPO処理したセルロースを、解繊処理(微細化処理)してもよく、セルロースを解繊処理(微細化処理)した後にTEMPO処理してもよい。解繊処理(微細化処理)により、上記した幅W、長さLのTEMPO酸化セルロースを得ることができる。
 C)混合工程(攪拌処理工程)
 前述したTEMPO酸化セルロース、無機フィラー(第2フィラー)および溶媒(分散媒)を混合することにより、塗工液を調製する。TEMPO酸化セルロースは、塗工液の固形成分総量に対して、0.3質量%以上、5質量%以下とすることが好ましく、0.5質量%以上、2質量%以下とすることがより好ましい。
 塗工液の調製方法に制限はないが、セルロースを凝集させず、均一に混合させるため、TEMPO酸化セルロース、無機フィラーおよび溶媒を混合した後、撹拌することにより塗工液を調製する。撹拌方式としては、例えば、モーターなどで軸に取り付けた羽を回転する方式、超音波などを用いた振動方式などを用いることができる。なお、塗工液中への気泡の巻き込みを低減するため、塗工液の調製(混合、攪拌)を減圧下で行ってもよい。
 無機フィラー(第2フィラー)としては、特に限定されるものではない。たとえば、アルミナ、ナノシリカ、カーボンナノチューブ、タルク、ガラス繊維などを用いることができる。特に、電解液との化学反応が生じにくく、物性面や製造技術が安定しているという観点からアルミナを用いることが好ましい。アルミナの粒子形状に制限はなく、例えば、球体や扁平形状のものを用いることができる。アルミナの平均粒径(直径)としては、500nm以上1000nm以下のものを用いることが好ましい。平均粒径は、レーザ回折散乱法により求めることができる。また、アルミナとしては、基材Sに用いられる微多孔質膜の平均細孔径より大きな平均粒径を有するものを用いることが好ましい。また、異なる平均粒径のアルミナを混合して用いてもよい。また、アルミナ中には、不純物元素(例えば、Si、Fe、Na、Mg、Cu)が含まれる場合があるが、Siは400ppm以下、Feは300ppm以下、Naは200ppm以下、Mgは100ppm以下、Cuは100ppm以下とすることが好ましい。
 溶媒としては、特に限定されるものではないが、基材への塗工後の乾燥を考慮すると、沸点が100℃以下の水、エタノール、メタノールなどを用いることが好ましい。
 その他の添加物として、増粘剤(例えば、カルボキシメチルセルロース)、結着剤(例えば、アクリル樹脂、アクリル系バインダ)、分散剤(例えば、界面活性剤)などを添加してもよい。
 カルボキシメチルセルロースは、水溶性セルロースであり、塗工液に添加することで、粘性が高まり、塗工性が良くなる。また、アクリル樹脂を添加することで、塗工液中の材料の接着性が良くなる。
 界面活性剤を添加することで、基材Sに対する濡れ性が良くなる。特に、ポリエチレンやポリプロピレン製の基材を用いる場合には、自由エネルギーが大きく、界面活性剤を添加することが好ましい。界面活性剤の添加量は、塗工液の固形成分のうちの0.001質量%以上5質量%以下とすることが好ましい。
 ここで、前述した塗工液の固形成分とは、塗工液中に含まれる、上記TEMPO酸化セルロース、無機フィラー(第2フィラー)、増粘剤、結着剤、分散剤の合計量である。
 D)基材への塗工工程
 (a:基材(塗工前の多孔質フィルム)の準備工程)で説明した基材Sの表面に、上記塗工液を塗工する。塗工方法に制限はないが、例えば、バーコーター、リップコーター、グラビアコーターなどを用いることができる。塗工後、塗工液を乾燥させることにより、基材Sの表面に塗工膜を形成することができる。
 以上のように、本実施の形態によれば、TEMPO酸化セルロースを塗工液に添加することで、多孔質フィルムの耐熱性を向上することができる。また、TEMPO酸化セルロース含有の塗工膜を形成した多孔質フィルムをセパレータとして用いることで、電池特性を向上させることができる。
 (実施例)
 以下に、本実施の形態の多孔質フィルム(セパレータ)およびこれを用いた電池の実施例について説明する。
 [実施例A]
 1:基材(塗工前の多孔質フィルム)の形成工程
 超高分子量ポリエチレン(三井ハイゼックスミリオン030S(三井化学社製))30質量部、流動パラフィン(P-350P(モレスコ社製))70質量部をニーダ(卓上二軸混練機)内で溶融・混練後、Tダイよりシート状に押出した。混練温度は、180℃、混練時間は、12分とした。なお、ニーダ(卓上二軸混練機)は、投入された原料を2本の互いに噛み合うスクリュを有する軸により混練する装置であり、軸(スクリュ)の回転数は、80rpmとした。
 次いで、混練物をプレス機により加工し、延伸機により、プレスシートの端部をピン(クリップ)に把持させ、同時二軸延伸することでフィルム化した。膜厚は、25μm程度であった。ここで、同時二軸延伸とは、同時に第1方向(縦方向、MD方向)、第1方向と交差する第2方向(横方向、TD方向)に引き延ばすことを意味する。第1方向(縦方向、MD方向)の延伸条件として、延伸温度110℃、延伸倍率6倍、延伸速度3000mm/minとし、第2方向(横方向、TD方向)の延伸条件として、延伸温度110℃、延伸倍率7倍、延伸速度3000mm/minとした。
 次いで、このフィルムを塩化メチレンに浸漬することにより流動パラフィンを脱脂した。さらに、このフィルムを横延伸装置で、再延伸することで、微細孔を有する基材(塗工前のPE製多孔質フィルム)を得た。基材の厚さは、16μm程度であった。
 2:塗工液の調製工程
 A)セルロース(第1フィラー)の準備
 TEMPO酸化セルロース(Na塩)を準備した。このTEMPO酸化セルロースは、平均粒径10μm程度の粉状であり、原材料として針葉樹由来のパルプを用いて製造されたものである。
 なお、比較例用のセルロースとして、疎水化セルロース(SA化セルロース)を形成した。具体的には、平均粒子径50μmのセオラスFD101(旭化成ケミカルズ(株)製)に、添加剤として無水コハク酸(SA)を、CeNF:無水コハク酸(SA)=86.5:13.5の質量比で、ニーダ(卓上二軸混練機)に投入し、130℃で15分間混練した。この混練物中には、未反応の無水コハク酸(SA)が残存するため、アセトンを用いて洗浄し、乾燥させることで、疎水化セルロースを形成した。
 B)解繊処理
 TEMPO酸化セルロースの粉末(40g)を水に2質量部投入し、解繊処理装置(マスコロイダー、増幸産業社製)に10回通過させることにより、解繊したTEMPO酸化セルロースの分散液を得た。疎水化セルロースについても同様に分散液を調製した。この解繊処理により、セルロースが微細化(ナノ化)する。よって、解繊したTEMPO酸化セルロースは、TEMPO酸化セルロースナノファイバーとも言える。疎水化セルロースについても同様に解繊した。
 C)攪拌処理
 解繊したTEMPO酸化セルロースの分散液、カルボキシメチルセルロース(CMC)、アクリル樹脂(バインダ)、界面活性剤としてオクチルフェノールエトキシレート(0.1質量%)および水を混合し、さらに高純度アルミナ(住友化学社製)を投入した。この混合物を攪拌機(シンキー社製、ARE310)で、1000~2000rpmで、1~60min攪拌して、塗工液<2>を得た。塗工液においては、固形成分(セルロース、CMC、バインダ、界面活性剤、アルミナ)の割合が40質量%となるように溶媒(水)で調製した。解繊した疎水化セルロースの分散液についても同様にして塗工液<3>を調製した。また、セルロースの分散液を添加していない、高純度アルミナ、カルボキシメチルセルロース、アクリル樹脂、界面活性剤および水よりなる塗工液<1>を調製した。この塗工液<1>は、市販塗工液と同様の組成となる。表1に、各塗工液の固形成分比率を示す。
Figure JPOXMLDOC01-appb-T000006
 なお、本実施例においては、固形成分(セルロース、CMC、バインダ、界面活性剤、アルミナ)の割合を40質量%としたが、この割合は、20質量%~45質量%の範囲で調製することができる。
 3:基材への塗工工程
 「1.基材(塗工前の多孔質フィルム)の形成工程」で説明した基材(PE製多孔質フィルム)の表面に、上記塗工液(塗工液<1><2><3>のいずれか)をバーコーターで片面または両面に塗工し、80℃で1時間乾燥した。なお、塗工厚みは片面4μm(両面で8μm)とした。このようにして、塗工層が形成された多孔質フィルム(セパレータ)を形成した。表2に用いた塗工液と塗工状況(両面または片面)の組み合わせを示す。なお、比較例として、塗工層を形成していない基材のみを準備した。
Figure JPOXMLDOC01-appb-T000007
 4:評価
 得られた多孔質フィルム(セパレータ)をMD方向およびTD方向に対して、それぞれ直角となるように50mm×50mm角に切り出した。
 また、得られた多孔質フィルム(セパレータ)を100~200℃に加熱した乾燥炉(アズワン、AVO-250NB)内で1時間放置して、加熱前後の多孔質フィルムの寸法変化より、以下の(式1)に基づいて熱収縮率(熱変形)を算出した。加熱前後の多孔質フィルムの変化を、外観観察およびSEMにより調べた。また、乾燥前後の多孔質フィルムの寸法変化から、以下の(式1)に基づいて熱収縮率(熱変形)を算出した。
 また、得られた多孔質フィルム(セパレータ)のガーレ値を測定した。
Figure JPOXMLDOC01-appb-M000008
 なお、ここでは、寸法として、図5に示す各サンプルの縦方向(MD方向)の長さの変化に基づき熱収縮率(熱変形)を算出した。
 (実施例1)
 塗工液<2>を用い、基材に両面塗工することで、サンプル(多孔質フィルム、セパレータ)を形成し、評価した。塗工厚みは片面に4μm(両面で8μm)とした。
 (実施例2)
 塗工液<2>を用い、基材に片面塗工することで、サンプル(多孔質フィルム、セパレータ)を形成し、評価した。塗工厚みは片面4μmのみとした。
 (比較例1)
 「1.基材(塗工前の多孔質フィルム)の形成工程」で説明した基材を塗工せずに、評価した。
 (比較例2)
 塗工液<1>を用い、基材に両面塗工することで、サンプル(多孔質フィルム、セパレータ)を形成し、評価した。塗工厚みは片面に4μm(両面で8μm)とした。
 (比較例3)
 塗工液<3>を用い、基材に両面塗工することで、サンプル(多孔質フィルム、セパレータ)を形成し、評価した。塗工厚みは片面に4μm(両面で8μm)とした。
 5:結果
 図5は、加熱前後のサンプルの状態を示す図(写真)である。各実施例および各比較例において、初期状態(未加熱の状態)、160℃での加熱、200℃での加熱後の写真を示す。
 未塗工の比較例1においては、160℃での加熱、200℃での加熱によりサンプルが溶けて、残存する膜成分が僅かであった。
 高純度アルミナ、カルボキシメチルセルロース、アクリル樹脂、界面活性剤および水よりなる塗工液<1>を用いた比較例2においては、160℃での加熱、200℃での加熱により熱変形が見られた。
 疎水化セルロースを添加した塗工液<3>を用いた比較例3においては、加熱による熱変形が、比較例2よりは改善しているものの、200℃での加熱において、破れが確認された。
 これに対し、TEMPO酸化セルロースを添加した塗工液<2>を用いた実施例1においては、加熱による熱変形がほとんど見られず、耐熱性が高いことが判明した。
 また、実施例2に示すように、TEMPO酸化セルロースを添加した塗工液<2>を用いた場合においては、片面のみの塗工でも、比較例1のように溶けることはなく、耐熱性が向上していることが判明した。
 図6は、実施例1および比較例2の加熱前後のサンプルの状態を示すSEM写真である。実施例1および比較例2において、初期状態(未加熱の状態)および200℃での加熱後のSEM写真を示す。SEM(カール・ツァイス社製、SUPER 55VP)を用い、加速電圧3kV、10000倍で観察した。
 比較例2においては、200℃の加熱後にアルミナが埋没しているのに対し、実施例1においては、未だアルミナ粒子が確認できる。
 図7は、加熱後のサンプルの熱収縮率を示すグラフである。各実施例および各比較例において、120℃での加熱、140℃での加熱、160℃での加熱、180℃での加熱、200℃での加熱後の熱収縮率を示す。グラフの横軸は、加熱温度、縦軸は、熱収縮率[%]である。なお、横軸の各温度において、左側から、実施例1、実施例2、比較例1、比較例2、比較例3の順にグラフが並んでいる。但し、120℃においては、比較例のみのデータを示してある。また、熱収縮率がMaX(20%)のものについては、熱収縮率が20%以上であることを意味する。
 図7に示すように、実施例1においては、比較例1~3より熱収縮率が小さく、熱変形が5%以下であることが判明した。
 図8は、各サンプルのガーレ値を示すグラフである。図8に示すように、塗工層を設けていない基材(比較例1)のガーレ値(透気度、[sec/100cc])は、260程度であり、実施例1、2においては、これと同等のガーレ値であった。これより、TEMPO酸化セルロースを添加した塗工液<2>を用いた塗工層は、孔を有しており、Liイオンの移動を阻害させないことが判明した。なお、セルロースを添加していない塗工液<1>を用いた塗工層(比較例2)は、ガーレ値が悪化した。
 このように、実施例1においては、耐熱性の向上が確認できた。これは、前述したアルミナとセルロースとの複合化によるものと考えられる。また、実施例1においては、塗工前の基材と同程度のガーレ値を有することが確認できており、これは、TEMPO処理されたセルロースの添加により、アルミナと基材Sとの間の隙間が確保されたものと考えられる。これにより、後述の実施例Bに示すように、電池中のLiイオンの移動が抑制されることなく、電池の特性を維持しつつ、上記耐熱性を向上させることができるものと思われる。
 [実施例B]
 1:基材(塗工前の多孔質フィルム)の形成工程
 実施例Aの場合と同様にして、微細孔を有する基材(塗工前のPE製多孔質フィルム)を形成した。基材の厚さは、20μm程度であった。
 2:塗工液の調製工程
 実施例Aの場合と同様にして、塗工液a~eを調製した。塗工液の固形成分比率を表3に示す。ここでも、塗工液においては、固形成分(セルロース、CMC、バインダ、界面活性剤、アルミナ)の割合が40質量%となるように溶媒(水)で調製した。この実施例Bにおいては、塗工液中に、界面活性剤が添加されている。界面活性剤としては、ナカライテスク株式会社製のトリトンX(ノニオン界面活性剤)を使用した。
Figure JPOXMLDOC01-appb-T000009
 3:基材への塗工工程
 実施例Aの場合と同様にして、基材(PE製多孔質フィルム)の表面に、上記塗工液a~cをバーコーターで両面に塗工し、80℃で1時間乾燥し、サンプル(多孔質フィルム、セパレータ)を形成した。コート厚み(両面の総厚)、コート量(mg/cm)で表4に示すとおりである。ここでは、塗工液aを用いたサンプルをコートa、塗工液bを用いたサンプルをコートb、塗工液cを用いたサンプルをコートcと示してある。なお、比較例として、塗工層を形成していない基材のみ(Uncoat)を準備した。
Figure JPOXMLDOC01-appb-T000010
 4:評価
 得られたサンプル(多孔質フィルム、セパレータ)のガーレ値を測定した。その結果を、表4に示す。
 また、塗工液a~eについて、基材への濡れ性を調べた。塗工液a、b、cについては、基材への濡れ性が良好であった。また、塗工液d、eについては、基材への濡れ性が良くなかった。
 また、コートa~cを用いて試験電池を作製し、その特性を評価した。正極、セパレータ、負極を順次積層した積層体を、ケースに収納し、内部に電解質を注入した後、ケースを、電極の一部を露出させた状態で封止し、試験電池(リチウムイオン二次電池)を作製した。正極としては、正極板(Al箔)に、LiNi1/3Co1/3Mn1/3(NCM111)を含む正極合剤を塗布、乾燥したものを用いた。また、負極としては、負極板(Cu箔)に、グラファイトを含む負極合剤を塗布、乾燥したものを用いた。電解質としては、EC(エチレンカーボネート)とDEC(ジエチルカーボネート)とを体積比1:1の割合で混合した混合溶媒に、ヘキサフルオロリン酸リチウム(LiPF6)を1.0mol/Lの濃度で溶解させ、添加剤としてVC(ビニレンカーボネート)を1質量%添加したものを用いた。電池の容量は、約2mAh/cellであった。
 上記試験電池を、30℃でCV1hの条件で4.2Vまで充電し、その後-2.8Vまで放電するサイクル(cycle)を50回繰り返し、各充放電回数の電池容量を評価した。また、各塗工サンプルの性能差を短いサイクル数で比較するために、1~20サイクルまでのCレートを0.1~5Cとして充放電を行った。図9および図10は、高率放電時の電気容量を示すグラフである。縦軸は、電池容量を、横軸は、サイクル(cycle)を示す。なお、右側の縦軸は、C-rateを示す。図9は、正極面での測定結果であり、図10は、負極面での測定結果である。
 図9および図10に示すように、塗工液a、b、cを用いたコートa~cは、塗工層を形成していない基材のみ(Uncoat)と遜色のない電池特性を示した。
 また、結果を詳しく解析すると、正極面での測定結果(図9)において、電池容量は、コートc、コートa、Uncoat、コートbの順に大きく、負極面での測定結果(図10)において、電池容量は、コートc、Uncoat、コートa、コートbの順に大きいことが判明した。これにより、コートa~cの中でも、コートbがセパレータとして最も有用であることが判明した。
 このコートbに用いた塗工液bにおいては、TEMPO酸化セルロース(TCe)が、固形成分の総量に対し0.93質量%であり、アルミナに対し1質量%である。このように、TEMPO酸化セルロース(TCe)は、アルミナに対し0.5質量%以上1.5質量%以下が好ましく、0.7質量%以上1.3質量%以下がより好ましい。
 また、塗工液bにおいては、カルボキシメチルセルロース(CMC)とTEMPO酸化セルロース(TCe)との比が、3:1である。このように、カルボキシメチルセルロース(CMC)とTEMPO酸化セルロース(TCe)との比を1:aとした場合、aを1未満とすることが好ましく、aを0.2以上0.4以下とすることがより好ましい。
 [実施例C]
 本実施例においては、中和率の異なるTEMPO酸化セルロースを準備し、実施例Aの場合と同様に、「B)解繊処理」、「C)攪拌処理」を行い、基材へ塗工した。
 ここでは、中和剤として水酸化ナトリウムを用い、中和率100%、中和率50%のTEMPO酸化セルロースを準備した。
 中和率の異なるTEMPO酸化セルロースを用いた塗工液をそれぞれ塗布した基材について、実施例Aの場合と同様にして、熱収縮率(熱変形)を算出したところ、中和率100%のものについては、熱収縮率4%、中和率50%のものについては、熱収縮率5%であった。これにより、中和率が高い方が、熱収縮率が小さく、耐熱性が高くなる傾向が見られた。但し、中和率50%のものにおいても、熱収縮率は5%程度であり、上記実施例A、Bの結果を含め総合的に判断して、中和率50%のものも十分な耐熱性を有し、セパレータの塗工液として使用して有効であると考察される。
 (実施の形態2)
 図11は、本実施の形態の製造装置(システム)の構成を示す模式図である。本実施の形態においては、上記製造装置(システム)を用いたセパレータの製造工程について説明する。
 例えば、図11の二軸混練押出機(S1)の原料供給部に可塑剤(流動パラフィン)とポリオレフィン(例えば、ポリエチレン)を投入し、混練部において上記可塑剤とポリオレフィンとを混練する。混練条件は、例えば、180℃、12分間であり、軸の回転数は100rpmである。
 混練物(溶融樹脂)を、吐出部からTダイS2へ搬送し、溶融樹脂をTダイS2のスリットから押し出しつつ、原反冷却装置S3において冷却することで、薄膜状の樹脂成型体を形成する。
 次いで、上記薄膜状の樹脂成型体を第1縦延伸装置S4により縦方向に引き延ばし、さらに、第1横延伸装置S5により横方向に引き延ばす。
 次いで、引き延ばされた薄膜を抽出槽S6において有機溶剤(例えば、塩化メチレン)に浸漬する。引き延ばされた薄膜においては、ポリオレフィン(例えば、ポリエチレン)と可塑剤(パラフィン)が相分離した状態となる。具体的には、可塑剤(パラフィン)がナノサイズの島状となる。このナノサイズの可塑剤(パラフィン)を抽出槽S6の有機溶剤(例えば、塩化メチレン)により除去する(脱脂する)。これにより、多孔質の薄膜を形成することができる。
 この後、さらに、第2横延伸装置S7で、横方向に引き延ばしつつ、薄膜を乾燥させ、熱固定を行い、延伸時の内部応力を緩和する。次いで、巻取り装置S8により、第2横延伸装置S7から搬送された薄膜を巻き取る。
 このようにして、多孔質の薄膜(実施の形態1の基材)を製造することができる。ここで、例えば、第2横延伸装置S7および巻取り装置S8の間に、図12に示すグラビア塗工装置(S7’)を組み込む。図12は、グラビア塗工装置の構成を模式的に示す断面図である。このグラビア塗工装置は、2つのグラビアロールRを有する。このグラビアロールRは、例えば、複数の斜線状凹部を有しており、その一部が塗工液CLに浸漬するように配置され、回転させることにより、斜線状凹部に塗工液を保持した状態で、基材Sに塗工液CLを塗工する。
 この塗工液CLとして実施の形態1において説明した塗工液CLを用いることで、基材の両面に塗工膜を形成することができる。なお、必要に応じて塗工液の乾燥装置などを適宜組み込むことができる。
 このように、図11、図12に示す装置を用いて高性能のセパレータを効率良く製造することができる。
 以上、本発明者によってなされた発明を実施の形態および実施例に基づき具体的に説明したが、本発明は上記実施の形態または実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
1 正極材
3 負極材
5 多孔質フィルム(セパレータ)
6 缶
CF 塗工膜
CL 塗工液
R グラビアロール
S 基材
S1 二軸混練押出機
S2 Tダイ
S3 原反冷却装置(CAST装置)
S4 縦延伸装置(MD装置)
S5 第1横延伸装置(第1TD装置)
S6 抽出槽
S7 第2横延伸装置(第2TD装置)
S7’ グラビア塗工装置
S8 巻取り装置

Claims (22)

  1.  多孔質基材と前記多孔質基材の表面に設けられた塗工膜とを有する多孔質フィルムであって、
     前記塗工膜は、第1級水酸基がカルボキシル基に酸化された構造を有する酸化セルロースと、無機フィラーとを有し、
     熱変形が5%以下である、多孔質フィルム。
  2.  請求項1記載の多孔質フィルムにおいて、
     前記無機フィラーは、ナノシリカ、カーボンナノチューブ、タルク、アルミナおよびガラス繊維から選択される材料を有する、多孔質フィルム。
  3.  請求項1記載の多孔質フィルムにおいて、
     前記無機フィラーは、アルミナである、多孔質フィルム。
  4.  請求項3記載の多孔質フィルムにおいて、
     前記酸化セルロースの添加量は、前記アルミナに対して0.5質量%以上1.5質量%以下である、多孔質フィルム。
  5.  請求項1記載の多孔質フィルムにおいて、
     前記多孔質基材は、ポリエチレンを50質量%以上含有するポリオレフィンである、多孔質フィルム。
  6.  請求項3記載の多孔質フィルムにおいて、
     前記塗工膜は、カルボキシメチルセルロースを含む、多孔質フィルム。
  7.  請求項6記載の多孔質フィルムにおいて、
     前記カルボキシメチルセルロースと前記酸化セルロースとの比率は、1:aであり、aは、0.2以上0.4以下である、多孔質フィルム。
  8.  請求項7記載の多孔質フィルムにおいて、
     前記塗工膜は、バインダとして樹脂を含む、多孔質フィルム。
  9.  請求項8記載の多孔質フィルムにおいて、
     前記塗工膜は、界面活性剤を含む、多孔質フィルム。
  10.  請求項7記載の多孔質フィルムにおいて、
     前記酸化セルロースは、幅が1000nm以下である、多孔質フィルム。
  11.  (a)第1級水酸基がカルボキシル基に酸化された構造を有する酸化セルロースを準備する工程、
     (b)前記酸化セルロースと無機フィラーと溶媒とを混合することにより塗工液を形成する工程、
     (c)前記塗工液を多孔質基材の表面に塗布し、塗工膜を形成する工程、
    を有する、多孔質フィルムの製造方法。
  12.  請求項11記載の多孔質フィルムの製造方法において、
     前記酸化セルロースは、以下の化合物である、多孔質フィルムの製造方法。
    Figure JPOXMLDOC01-appb-C000001
  13.  請求項12記載の多孔質フィルムの製造方法において、
     前記無機フィラーは、ナノシリカ、カーボンナノチューブ、タルク、アルミナおよびガラス繊維から選択される材料を有する、多孔質フィルムの製造方法。
  14.  請求項12記載の多孔質フィルムの製造方法において、
     前記多孔質フィルムの熱変形が5%以下である、多孔質フィルムの製造方法。
  15.  請求項12記載の多孔質フィルムの製造方法において、
     前記無機フィラーは、アルミナである、多孔質フィルムの製造方法。
  16.  請求項15記載の多孔質フィルムの製造方法において、
     前記酸化セルロースの添加量は、前記アルミナに対して0.5質量%以上1.5質量%以下である、多孔質フィルムの製造方法。
  17.  請求項11記載の多孔質フィルムの製造方法において、
     前記多孔質基材は、ポリエチレンを50質量%以上含有するポリオレフィンである、多孔質フィルムの製造方法。
  18.  請求項15記載の多孔質フィルムの製造方法において、
     前記塗工液は、カルボキシメチルセルロースを含む、多孔質フィルムの製造方法。
  19.  請求項18記載の多孔質フィルムの製造方法において、
     前記カルボキシメチルセルロースと前記酸化セルロースとの比率は、1:aであり、aは、0.2以上0.4以下である、多孔質フィルムの製造方法。
  20.  請求項19記載の多孔質フィルムの製造方法において、
     前記塗工液は、バインダとして樹脂を含む、多孔質フィルムの製造方法。
  21.  請求項20記載の多孔質フィルムの製造方法において、
     前記塗工液は、界面活性剤を含む、多孔質フィルムの製造方法。
  22.  請求項11記載の多孔質フィルムの製造方法において、
     前記酸化セルロースは、幅が1000nm以下である、多孔質フィルムの製造方法。
PCT/JP2021/016666 2020-04-28 2021-04-26 多孔質フィルムおよび多孔質フィルムの製造方法 WO2021221020A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180023465.7A CN115348919A (zh) 2020-04-28 2021-04-26 多孔质膜及多孔质膜的制造方法
JP2022518059A JPWO2021221020A1 (ja) 2020-04-28 2021-04-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-078987 2020-04-28
JP2020078987 2020-04-28

Publications (1)

Publication Number Publication Date
WO2021221020A1 true WO2021221020A1 (ja) 2021-11-04

Family

ID=78373237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016666 WO2021221020A1 (ja) 2020-04-28 2021-04-26 多孔質フィルムおよび多孔質フィルムの製造方法

Country Status (4)

Country Link
JP (1) JPWO2021221020A1 (ja)
CN (1) CN115348919A (ja)
TW (1) TW202146550A (ja)
WO (1) WO2021221020A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251236A (ja) * 2012-06-04 2013-12-12 Dai Ichi Kogyo Seiyaku Co Ltd 電気化学素子用セパレータ
JP2014175232A (ja) * 2013-03-12 2014-09-22 Mitsubishi Paper Mills Ltd 電池用セパレータ
JP2016183209A (ja) * 2015-03-25 2016-10-20 三菱樹脂株式会社 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP2017141394A (ja) * 2016-02-12 2017-08-17 凸版印刷株式会社 樹脂組成物、ならびに樹脂成形体及びその製造方法
JP2018063924A (ja) * 2016-10-14 2018-04-19 王子ホールディングス株式会社 電池用セパレータ塗液及び電池用セパレータ
JP2018106865A (ja) * 2016-12-26 2018-07-05 王子ホールディングス株式会社 電池用セパレータ塗液、電池用セパレータ及び電池
JP2020145008A (ja) * 2019-03-04 2020-09-10 旭化成株式会社 リチウムイオン二次電池用セパレータ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251236A (ja) * 2012-06-04 2013-12-12 Dai Ichi Kogyo Seiyaku Co Ltd 電気化学素子用セパレータ
JP2014175232A (ja) * 2013-03-12 2014-09-22 Mitsubishi Paper Mills Ltd 電池用セパレータ
JP2016183209A (ja) * 2015-03-25 2016-10-20 三菱樹脂株式会社 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP2017141394A (ja) * 2016-02-12 2017-08-17 凸版印刷株式会社 樹脂組成物、ならびに樹脂成形体及びその製造方法
JP2018063924A (ja) * 2016-10-14 2018-04-19 王子ホールディングス株式会社 電池用セパレータ塗液及び電池用セパレータ
JP2018106865A (ja) * 2016-12-26 2018-07-05 王子ホールディングス株式会社 電池用セパレータ塗液、電池用セパレータ及び電池
JP2020145008A (ja) * 2019-03-04 2020-09-10 旭化成株式会社 リチウムイオン二次電池用セパレータ

Also Published As

Publication number Publication date
JPWO2021221020A1 (ja) 2021-11-04
TW202146550A (zh) 2021-12-16
CN115348919A (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
KR101361400B1 (ko) 다층다공막
JP4789274B2 (ja) 多層多孔膜
TWI524993B (zh) 非水系電解液電池用分隔件及非水電解液電池
DE112013005887T5 (de) &#34;Poröser Separator mit wasserbasierter organischer/anorganischer komplexen Beschichtung, Verfahren zum Herstellen desselben und denselben verwendende elektrochemische Vorrichtung&#34;
WO2006038532A1 (ja) ポリオレフィン微多孔膜
JP2008186721A (ja) 高耐熱性と高透過性を兼ね備えた多孔膜およびその製法
JPWO2008035674A1 (ja) ポリオレフィン微多孔膜及び非水電解液電池用セパレータ
JP2010240936A (ja) 多層多孔膜
JP7042338B2 (ja) 多層セパレータ
EP3232494A1 (en) Separator for secondary cell, method for manufacturing separator for secondary cell, and secondary cell
JP7461381B2 (ja) 無機塗工層架橋セパレータ
JPWO2020004205A1 (ja) 微細パタンを有するセパレータ、捲回体および非水電解質電池
JP5645342B2 (ja) 高耐熱性と高透過性を兼ね備えた多孔膜およびその製法
JP7329915B2 (ja) 多孔質フィルムの製造方法および多孔質フィルム
JP2015088478A (ja) 固体電解質層積層多孔性フィルム及び電池用セパレータ、二次電池
KR20220053922A (ko) 리튬 이차 전지용 분리막 및 이의 제조방법 및 이에 의해 제조된 분리막
JP2019102126A (ja) 電池用セパレータ及び非水電解液二次電池
WO2021221020A1 (ja) 多孔質フィルムおよび多孔質フィルムの製造方法
WO2020218583A1 (ja) 耐熱性ポリオレフィン系微多孔膜及びその製造方法
JP6988880B2 (ja) ポリオレフィン微多孔膜
TWI813152B (zh) 蓄電裝置用分隔件、及包含此之蓄電裝置
JP5491137B2 (ja) ポリオレフィン微多孔膜、蓄電デバイス用セパレータ及び蓄電デバイス
TW202245325A (zh) 蓄電裝置用分隔件及蓄電裝置
WO2022079985A1 (ja) 塗工液、多孔質フィルム、およびリチウムイオン電池
JP2023040759A (ja) 塗工液、多孔質フィルム、リチウムイオン電池、塗工液の製造方法、多孔質フィルムの製造方法およびリチウムイオン電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797255

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022518059

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21797255

Country of ref document: EP

Kind code of ref document: A1