WO2021206109A1 - 回転角検出装置及び電動パワーステアリング装置 - Google Patents

回転角検出装置及び電動パワーステアリング装置 Download PDF

Info

Publication number
WO2021206109A1
WO2021206109A1 PCT/JP2021/014710 JP2021014710W WO2021206109A1 WO 2021206109 A1 WO2021206109 A1 WO 2021206109A1 JP 2021014710 W JP2021014710 W JP 2021014710W WO 2021206109 A1 WO2021206109 A1 WO 2021206109A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
power supply
rotation
unit
signal
Prior art date
Application number
PCT/JP2021/014710
Other languages
English (en)
French (fr)
Inventor
敬幸 小林
鈴木 大
紳 熊谷
秀隆 中村
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to EP21783136.1A priority Critical patent/EP3995386B1/en
Priority to JP2022514101A priority patent/JP7334853B2/ja
Priority to CN202180004886.5A priority patent/CN114206708B/zh
Priority to US17/634,629 priority patent/US20220297757A1/en
Publication of WO2021206109A1 publication Critical patent/WO2021206109A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/024Other means for determination of steering angle without directly measuring it, e.g. deriving from wheel speeds on different sides of the car
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0235Determination of steering angle by measuring or deriving directly at the electric power steering motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/104Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving permanent magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/22Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers
    • G01L5/221Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers to steering wheels, e.g. for power assisted steering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3287Power saving characterised by the action undertaken by switching off individual functional units in the computer system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0245Means or methods for determination of the central position of the steering system, e.g. straight ahead position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/049Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting sensor failures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/20Detecting rotary movement
    • G01D2205/26Details of encoders or position sensors specially adapted to detect rotation beyond a full turn of 360°, e.g. multi-rotation

Definitions

  • the present invention relates to a rotation angle detection device and an electric power steering device.
  • a technique has been proposed in which a plurality of sensors for detecting the rotation angle of a motor rotation shaft are provided to make them redundant. Further, a technique for monitoring the rotation speed of the rotation shaft of the motor while the power switch is off has been proposed.
  • the steering shaft may be rotated by an external force even while the ignition key (main power supply), which is a power switch, is turned off and the assist function is stopped. Therefore, even while the ignition key is off, the rotation speed of the rotation shaft of the motor connected to the steering shaft is monitored by the circuit backed up by the battery.
  • Patent Document 1 two MR (Magnetic Resistance) sensors that detect the angular position of an electric steering motor and two counting units that process the output signals are provided to make the motor redundant, and a power switch is used.
  • a technique is described in which two counting units count the number of revolutions of an electric steering motor based on a sine signal and a cosine signal output by two MR sensors, respectively, while an ignition key is off.
  • Patent Document 1 since power is supplied to both the redundant sensor and the redundant counting unit while the ignition key is off, the dark current (leakage current) is increased. rice field.
  • the present invention has been made in view of such a problem, and is consumed during a period when the power switch is off in a rotation angle detection device including at least two sensors that output a signal corresponding to the rotation of the motor rotation shaft. The purpose is to reduce power consumption.
  • the rotation angle detection device is a first sensor and a second sensor that output a first sensor signal and a second sensor signal according to the rotation of the motor rotation shaft of the motor, respectively.
  • the angle position calculation unit that calculates the angle position information that represents the angular position of the motor rotation shaft based on the first sensor signal, and the rotation that detects the rotation speed of the motor rotation shaft based on the second sensor signal and represents the rotation speed.
  • the rotation number detection unit that outputs numerical information
  • the rotation angle calculation unit that calculates the rotation angle information that represents the rotation angle of the motor rotation shaft based on the angle position information and the rotation number information, and the power switch when the power switch is on
  • Power is supplied to the 1st sensor, the 2nd sensor, the angle position calculation unit, the rotation speed detection unit and the rotation angle calculation unit, and when the power switch is off, the power is supplied to the 1st sensor, the angle position calculation unit and the rotation angle calculation unit. It is provided with a power supply unit that stops power supply and supplies power to the second sensor and the rotation speed detection unit.
  • the electric power steering device applies steering torque applied to the steering shaft based on the twist angle between the input shaft and the output shaft connected via a torsion bar provided on the steering shaft of the vehicle.
  • the torque sensor to be detected, a motor for applying a steering assist force to the steering mechanism of the vehicle, and a rotation angle detection device according to any one of claims 1 to 5 for calculating rotation angle information of the motor rotation shaft of the motor.
  • a motor control unit that drives and controls the motor based on the steering torque
  • a steering angle calculation unit that calculates the steering angle of the input shaft based on the torsion angle, the reduction ratio of the reduction gear, and the rotation angle information. Be prepared.
  • a rotation angle detection device including at least two sensors that output a signal corresponding to the rotation of the motor rotation shaft, it is possible to reduce the power consumption during the period when the power switch is off.
  • (A) is a diagram showing the first sine signal SIN1 and the first cosine signal COS1
  • (b) is a diagram showing an example of the angle position information ⁇ 1
  • (c) is a diagram showing the motor rotation speed Nr.
  • (D) is a diagram showing rotation angle information ⁇ m. It is a block diagram of an example of the functional structure of an assist control unit.
  • (A) is a diagram showing the second sine signal SIN2 and the second cosine signal COS2
  • (b) is a diagram showing an example of the sine count value CNTs and the cosine count value CNTc when there is an error in the threshold voltage Vr of the comparator.
  • (C) is a diagram showing an example of the total count value CNT.
  • (A) is an explanatory diagram of an error that can occur in the motor rotation speed Nr when there is no rotation speed information correction unit, and (b) is an explanatory diagram of an error that can occur in the rotation speed information ⁇ m.
  • It is a block diagram of an example of the functional structure of the rotation speed information correction part.
  • (A) is a diagram showing an example of the first quadrant signal Q1 and the second quadrant signal Q2, and (b) is a diagram showing the difference between the first quadrant signal Q1 and the second quadrant signal Q2.
  • c) is a diagram showing an example of the corrected total count value CNTa
  • (d) is a diagram showing the motor rotation speed Nr calculated from the corrected total count value CNTa.
  • (A) is a diagram showing an example waveform of the second sensor power supply Vs2 that is intermittently output while the ignition key is off
  • (b) is a diagram showing one time of the second sensor power supply Vs2 of (a).
  • It is a block diagram which shows the outline of an example of the electric power steering apparatus of a modification.
  • the column shafts (steering shafts) 2i and 2o of the steering handle 1 are connected to the tie rod 6 of the steering wheel via the reduction gear 3, the universal joints 4A and 4B, and the pinion rack mechanism 5.
  • the input shaft 2i and the output shaft 2o of the column shaft are connected by a torsion bar (not shown) twisted by a deviation of the rotation angle between the input shaft 2i and the output shaft 2o.
  • the torque sensor 10 electromagnetically measures the helix angle of the torsion bar as the steering torque Th of the steering handle 1. Further, a motor 20 that assists the steering force of the steering handle 1 is connected to the output shaft 2o of the column shaft via a reduction gear 3.
  • the controller 40 is an electronic control unit (ECU) that drives and controls the motor 20.
  • the battery power supply Vbat is supplied to the controller 40 from the battery 14 which is the power supply, and the ignition key signal IG is input from the ignition key 11 which is the power switch.
  • the controller 40 calculates the steering assist command value of the assist command using an assist map or the like based on the steering torque Th detected by the torque sensor 10 and the vehicle speed Vh detected by the vehicle speed sensor 12, and the calculation is performed.
  • the drive current I is supplied to the motor 20 based on the steering assist command value.
  • the sensor unit 30 includes two sensors that output sensor signals according to the rotation of the motor rotation shaft of the motor 20.
  • the voltages Voff1 and Voff2 are offset voltages (that is, DC components of the first sine signal sin1, the first cosine signal cos1, the second sine signal sin2, and the second cosine signal cos2).
  • FIG. 2 shows an example of the first sine signal sin1, the first cosine signal cos1, the second sine signal sin2, and the second cosine signal cos2.
  • the controller 40 calculates the rotation angle ⁇ m of the motor rotation axis of the motor 20 based on the first sine signal sin1, the first cosine signal cos1, the second sine signal sin2, and the second cosine signal cos2.
  • the controller 40 calculates the rotation angle ⁇ o of the output shaft 2o of the column shaft based on the rotation angle ⁇ m of the motor rotation shaft of the motor 20 and the gear ratio Rg of the reduction gear 3.
  • the controller 40 calculates the rotation angle ⁇ i of the input shaft 2i of the column shaft, that is, the steering angle ⁇ s of the steering handle 1 based on the rotation angle ⁇ o and the steering torque Th.
  • the torque sensor 10 detects the steering torque Th by the driver's steering wheel operation transmitted from the steering wheel 1, and the steering assist calculated based on the steering torque th and the vehicle speed Vh.
  • the motor 20 is driven and controlled by the command value, and is applied to the steering system as an auxiliary force (steering assist force) for the driver's steering wheel operation.
  • FIG. 3 is an exploded view showing an outline of an example of the sensor unit 30.
  • the sensor unit 30 includes a magnet 31 and a circuit board 32.
  • the magnet 31 is fixed to an end 24 opposite to the output end 22 of the motor rotating shaft 21 of the motor 20 and has different magnetic poles (S pole and N pole) arranged along the circumferential direction of the motor rotating shaft 21. doing.
  • the circuit board 32 has a first sensor 33 and a second sensor 33 that output a first sensor signal and a second sensor signal corresponding to the rotation of the motor rotation shaft 21 of the motor 20 by detecting the magnetic flux generated from the magnet 31.
  • a sensor 34 is provided.
  • the first sensor signal output from the first sensor 33 includes a first sine signal sin1 and a first cosine signal cos1.
  • the second sensor signal output from the second sensor 34 includes the second sine signal sin2 and the second cosine signal cos2.
  • the first sensor 33 and the second sensor 34 may be, for example, an MR sensor (for example, a TMR (Tunnel Magneto Resistance) sensor) that detects magnetic flux.
  • the first sensor 33 and the second sensor 34 are arranged close to the magnet 31 that rotates together with the motor rotating shaft 21, and by detecting the magnetic flux generated from the magnet 31, the first sensor 33 and the second sensor 34 correspond to the rotation of the motor rotating shaft 21.
  • the sine signal sin1 and the first cosine signal cos1, and the second sine signal sin2 and the second cosine signal cos2 are generated, respectively.
  • the sensor unit 30 is formed as a unit separate from the controller 40, and is connected to the controller 40 by a harness 35.
  • the controller 40 supplies the first sensor power supply Vs1 and the second sensor power supply Vs2 for driving the first sensor 33 and the second sensor 34 to the sensor unit 30 via the harness 35, respectively.
  • the sensor unit 30 outputs the first sensor signal and the second sensor signal to the controller 40 after passing through the harness 35.
  • the length of the harness 35 may be, for example, about 10 cm.
  • the sensor unit 30 and the controller 40 may be formed as an integral unit. In this case, the first sensor 33 and the second sensor 34 may be built directly into the controller 40, and the controller 40 may be mounted on the side opposite to the output end 22 of the motor 20.
  • the configuration of the sensor unit 30 is not limited to the configuration shown in FIG.
  • the first sensor 33 and the second sensor 34 of the sensor unit 30 may be sensors of a type other than the MR sensor.
  • the first sensor 33 may be a sensor that outputs a signal corresponding to the rotation of the motor rotation shaft 21.
  • the second sensor 34 may be a sensor that outputs a sine signal and a cosine signal according to the rotation of the motor rotation shaft 21.
  • the controller 40 includes a power management unit 50 and a microprocessor (MPU: Micro-Processing Unit) 60.
  • the power management unit 50 receives the supply of the battery power supply Vbat from the battery 14 and manages the power supply of the sensor unit 30 and the controller 40.
  • the power management unit 50 may be mounted as a single integrated circuit (IC) chip.
  • the power management unit 50 may be, for example, a power management IC (Power Management Integrated Circuit).
  • the power management unit 50 uses the power supplied from the battery 14 to drive the first sensor power supply Vs1 for driving the first sensor 33 and the second sensor for driving the second sensor 34.
  • a power source Vs2 and a power source Vm for driving other components of the MPU 60 and the controller 40 (hereinafter, may be referred to as “MPU60 or the like”) are generated.
  • the voltages of the first sensor power supply Vs1, the second sensor power supply Vs2, and the power supply Vm may be, for example, a common power supply voltage Vcc1 (not shown).
  • the power supply voltage Vcc1 may be, for example, 5 [V].
  • the power management unit 50 supplies the first sensor power supply Vs1, the second sensor power supply Vs2, and the power supply Vm to the first sensor 33, the second sensor 34, the MPU 60, and the like, respectively, while the ignition key 11 is on.
  • the power management unit 50 stops the supply of the first sensor power supply Vs1 and the power supply Vm to the first sensor 33, the MPU 60, and the like while the ignition key 11 is off.
  • the second sensor power supply Vs2 is intermittently supplied to the second sensor 34 at a predetermined cycle T.
  • the voltage of the second sensor power supply Vs2 supplied while the ignition key 11 is off may be lower than the voltage Vcc1 while the ignition key 11 is on.
  • the power supply management unit 50 detects the rotation speed of the motor rotation shaft 21 based on the second sine signal sin2 and the second cosine signal cos2, and generates rotation speed information indicating the rotation speed.
  • the rotation speed information includes a sine count value CNTs that counts changes in the sign of the second cosine signal sin2 and a cosine count value CNTc that counts changes in the sign of the second cosine signal cos2.
  • the sine count value CNTs and the cosine count value CNTc change depending on the combination of the sign of the second sine signal sin2 and the sign of the second cosine signal cos2. Details of the power management unit 50 will be described later.
  • the MPU 60 calculates the rotation angle information ⁇ m representing the rotation angle of the motor rotation shaft 21 based on the rotation number information (sine count value CNTs and cosine count value CNTc) generated by the power supply management unit 50 and the angle position information ⁇ 1.
  • the rotation angle information ⁇ m represents the rotation angle in the multi-turn angle range of one rotation or more of the motor rotation shaft 21.
  • the MPU 60 reads the rotation speed information from the power supply management unit 50 and calculates the rotation speed information ⁇ m based on the rotation speed information and the angle position information ⁇ 1. While the ignition key 11 is on, the MPU 60 calculates the angle change of the angle position information ⁇ 1 after the time when the ignition key 11 is turned from off to on, and the rotation angle calculated when the ignition key 11 is turned from off to on. Accumulating on the information ⁇ m, the rotation angle information ⁇ m after the time when the ignition key 11 is turned from off to on is calculated.
  • the MPU 60 calculates the rotation angle ⁇ o of the output shaft 2o of the column shaft by multiplying the rotation angle information ⁇ m by the gear ratio Rg of the reduction gear 3. Further, based on the steering torque Th detected by the torque sensor 10, the twist angle ⁇ t of the torsion bar provided on the column shaft is calculated, and the twist angle ⁇ t is added to the rotation angle ⁇ o of the output shaft 2o to input the column shaft. The rotation angle ⁇ i of the shaft 2i (steering angle ⁇ s of the steering handle 1) is calculated.
  • the controller 40 may control the steering assist force applied to the output shaft 2o by the motor 20 based on the rotation angle information of the rotation angle ⁇ o of the output shaft 2o and the rotation angle ⁇ i of the input shaft 2i. For example, the controller 40 may determine whether or not the column shaft is in the end contact state based on the rotation angle information. When the column shaft is in the end contact state, the controller 40 may limit the drive current I of the motor 20 and make corrections so as to reduce the steering assist force. Further, the controller 40 may use the rotation angle information of the rotation angle ⁇ i of the input shaft 2i to determine whether or not the input shaft 2i is in the neutral position.
  • the controller 40 may determine whether the steering handle 1 is in the turning state or the turning back state based on the rotation angle information. For example, the controller 40 may determine whether it is in the cut-back state or the cut-back state based on the rotation angle of the column shaft and the changing direction thereof. Further, the controller 40 may determine whether it is in the additional cutting state or the turning back state based on the rotation angle of the column shaft and the steering torque Th.
  • the controller 40 increases and corrects the drive current I to increase the steering assist force when it is in the cut-back state, and decreases and corrects the drive current I to decrease the steering assist force when it is in the turn-back state. May be good. Details of the MPU 60 will be described later.
  • the power management unit 50 includes a regulator 51, a first power supply unit 52, a second power supply unit 53, a third power supply unit 54, a power control unit 56, and a rotation speed detection unit 58.
  • the regulator 51, the first power supply unit 52, the second power supply unit 53, the third power supply unit 54, and the power control unit 56 are examples of the “power supply unit” described in the claims.
  • the regulator 51 generates a regulator power supply VR having a predetermined voltage from the battery power supply Vbat.
  • the voltage of the regulator power supply VR is, for example, 6V.
  • the first power supply unit 52, the second power supply unit 53, and the third power supply unit 54 generate the power supply Vm, the first sensor power supply Vs1 and the second sensor power supply Vs2 from the regulator power supply VR, respectively.
  • the power supply Vm and the first sensor power supply Vs1 may be shared, and the first power supply unit 52 and the second power supply unit 53 may be a single power supply unit. That is, the first sensor 33, the MPU 60, and the like may be supplied with power from one or more power supply units.
  • the power supply control unit 56 outputs control signals Sc1, Sc2 and Sc3 to the first power supply unit 52, the second power supply unit 53 and the third power supply unit 54, respectively, based on the ignition key signal IG, and first It controls the power supply unit 52, the second power supply unit 53, and the third power supply unit 54. While the ignition key 11 is on, the power control unit 56 tells the first power supply unit 52, the second power supply unit 53, and the third power supply unit 54 the power supply Vm, the first sensor power supply Vs1, and the second sensor power supply. Vs2 is generated respectively.
  • the first power supply unit 52 continuously supplies the power supply Vm to the MPU 60 and the like.
  • the second power supply unit 53 continuously supplies the first sensor power supply Vs1 to the first sensor 33.
  • the third power supply unit 54 continuously supplies the second sensor power supply Vs2 to the second sensor 34 and the rotation speed detection unit 58. Therefore, the first sensor 33, the second sensor 34, and the rotation speed detection unit 58, such as the MPU 60, operate continuously.
  • the power supply control unit 56 stops the first power supply unit 52 and the second power supply unit 53. That is, the generation of the power supply Vm and the first sensor power supply Vs1 is stopped. As a result, the supply of the first sensor power supply Vs1 to the first sensor 33 and the supply of the power supply Vm to the MPU 60 and the like are stopped, and the operations of the first sensor 33 and the MPU 60 and the like are stopped.
  • the power supply control unit 56 intermittently generates the second sensor power supply Vs2 in the third power supply unit 54 at a predetermined cycle T. As a result, the second sensor power supply Vs2 is intermittently supplied to the second sensor 34 and the rotation speed detection unit 58. The second sensor 34 and the rotation speed detection unit 58 operate intermittently in a predetermined period T.
  • the power supply control unit 56 may set the voltage of the second sensor power supply Vs2 while the ignition key 11 is off to be lower than that while the ignition key 11 is on.
  • the rotation speed detection unit 58 detects the rotation speed of the motor rotation shaft 21 based on the second sine signal sin2 and the second cosine signal cos2, and the rotation speed information representing the rotation speed (that is, the sine count value CNTs and the cosine count value). CNTc) is generated.
  • the rotation speed detection unit 58 includes a first comparator 58a, a second comparator 58b, a sine counter 58c, and a cosine counter 58d.
  • the first comparator 58a compares the second sinusoidal signal sin2 with the threshold voltage Vr to generate a code signal Cs indicating a positive or negative sign of the second sinusoidal signal sin2.
  • the code signal Cs has a value "1" when the second sine signal sin2 is equal to or higher than the threshold voltage Vr, and has a value "0" when the second sine signal sin2 is less than the threshold voltage Vr.
  • the second comparator 58b compares the second cosine signal cos2 with the threshold voltage Vr to generate a code signal Cc indicating a positive or negative sign of the second cosine signal cos2.
  • the code signal Cc has a value "1" when the second chord signal cos2 is equal to or higher than the threshold voltage Vr, and has a value "0" when the second chord signal cos2 is less than the threshold voltage Vr. Since the second sinusoidal signal sin2 and the second cosine signal cos2 have a DC offset component Voff2, for example, the threshold voltage Vr may be set to the offset voltage Voff2.
  • the waveform of the broken line in FIG. 6A shows an example of the second sinusoidal signal sin2, and the waveform of the solid line shows an example of the second cosine signal cos2.
  • the amplitude A of the second sine signal sin2 and the second cosine signal cos2 of the embodiment is half the voltage of the second sensor power supply Vs2 (that is, Vs2 / 2), and the DC component is the voltage of the second sensor power supply Vs2. It is offset by half of the voltage and changes in the range from 0 [V] to the voltage of the second sensor power supply Vs2 (that is, Vs2). Therefore, the threshold voltage Vr is set to half the voltage of the second sensor power supply Vs2 (that is, Vs2 / 2).
  • the code signal Cs of the second sinusoidal signal sin2 output from the first comparator 58a has a value "1" in the range where the angular position of the motor rotation shaft 21 is from 0 [deg] to 180 [deg], and is 180 [. It has a value "0" in the range from [deg] to 360 [deg].
  • the code signal Cc of the second cosine signal cos2 output from the second comparator 58b has an angular position of the motor rotation shaft 21 in the range of 0 [deg] to 90 [deg] and 270 [deg] to 360 [deg].
  • the sine counter 58c and the cosine counter 58d change the combination of the codes of the second sine signal sin2 and the second cosine signal cos2 based on the code signal Cs of the second sine signal sin2 and the code signal Cc of the second cosine signal cos2.
  • the sine counter 58c calculates the sine count value CNTs that counts the number of times the sign of the second sine signal sin2 changes, and the cosine counter 58d counts the number of times the sign of the second cosine signal cos2 changes. Is calculated.
  • the sine counter 58c and the cosine counter 58d store the calculated sine count value CNTs and cosine count value CNTs in, for example, a non-volatile memory (not shown).
  • the sine counter 58c the value of the code signal Cs of the second sine signal sin2 changes from “0” to “1” while the code signal Cc of the second cosine signal cos2 has a value "1". Then, the sine count value CNTs is increased by one, and when the value of the code signal Cs of the second sine signal sin2 changes from “1” to "0", the sine count value CNTs is decreased by one. Further, the sine counter 58c is sine when the value of the code signal Cs of the second sine signal sin2 changes from "1" to "0" while the code signal Cc of the second cosine signal cos2 has a value "0". When the count value CNTs is increased by one and the value of the sign signal Cs of the second sine signal sin2 changes from "0" to "1", the sine count value CNTs is decreased by one.
  • the cosine counter 58d is a cosine count value when the value of the sign signal Cc of the second cosine signal cos2 changes from “0" to “1” while the sign signal Cs of the second sine signal sin2 has a value "0".
  • the cosine count value CNTc is decreased by one.
  • the cosine counter 58d is a cosine counter when the value of the sign signal Cc of the second cosine signal cos2 changes from "1" to "0” while the sign signal Cs of the second cosine signal sin2 has a value "1".
  • the cosine count value CNTc is decreased by one.
  • count total value CNT the sum of the sine count value CNTs and the cosine count value CNTc (hereinafter, may be referred to as "count total value CNT") is calculated every time the motor rotation shaft 21 makes one rotation, as shown in FIG. 6 (e). Increases or decreases by 4 depending on the direction of rotation. Therefore, the combination of the sine count value CNTs and the cosine count value CNTc and the total count value CNT represent the number of rotations in a quarter rotation unit.
  • the combination of the sine count value CNTs and the cosine count value CNTc and the total count value CNT indicate which of the four quadrants the rotational range of the motor rotating shaft 21 belongs to.
  • the sine count value CNTs and the cosine count value CNTc of the present embodiment are examples, and the rotation speed information of the present invention is not limited to the sine count value CNTs and the cosine count value CNTc.
  • the rotation speed information may be any rotation speed information representing the rotation speed in units of one-nth rotation, where n is a natural number of 2 or more.
  • the MPU 60 includes an angle position calculation unit 61, a count total unit 62, a rotation speed information correction unit 63, a rotation speed calculation unit 64, a twist angle calculation unit 65, a rotation angle information calculation unit 66, and a diagnosis unit 67.
  • Assist control unit 68 is provided.
  • the functions of the angle position calculation unit 61, the count total unit 62, the rotation number information correction unit 63, the rotation number calculation unit 64, the helix angle calculation unit 65, the rotation angle information calculation unit 66, the diagnosis unit 67, and the assist control unit 68 are This is realized by the MPU 60 executing a program stored in a storage device (for example, a non-volatile memory) included in the MPU 60 or the controller 40.
  • the rotation angle information calculation unit 66 is an example of the “rotation angle calculation unit” and the “steering angle calculation unit” described in the claims.
  • the assist control unit 68 is an example of the “motor control unit” described in the claims.
  • the angle position calculation unit 61 inputs the first sine signal sin1 and the first cosine signal cos1 and compensates for errors (offset, amplitude difference, phase difference, etc.) included in these signals.
  • FIG. 8A shows an example of the first sine signal sin1 and the first cosine signal cos1.
  • An example of the angle position information ⁇ 1 is shown in FIG. 8 (b).
  • the count total unit 62 counts sine from the sine counter 58c and the cosine counter 58d of the power management unit 50 when the supply of the power supply Vm to the MPU 60 starts (that is, when the ignition key 11 is turned from off to on). Read the value CNTs and the cosine count value CNTc. The total count unit 62 adds the sine count value CNTs and the cosine count value CNTc to calculate the total count value CNT as shown in FIG. 6 (e).
  • an error may occur in the sine count value CNTs and the cosine count value CNTc due to an error included in the second sine signal sin2 and the second cosine signal cos2 or an error in the threshold voltage Vr of the comparator.
  • an error may occur in the total count value CNT. See FIG. 7.
  • the rotation speed information correction unit 63 corrects the total count value CNT based on the angle position information ⁇ 1 to compensate for the error generated in the total count value CNT.
  • the rotation speed information correction unit 63 outputs the corrected total value CNTa in which the error is compensated. The details of the rotation speed information correction unit 63 will be described later.
  • the rotation speed calculation unit 64 calculates the quotient obtained by dividing the corrected total count value CNTa by the natural number n as the rotation speed Nr of the motor rotation shaft 21.
  • the natural number n is the increase / decrease number of the total count value CNT per rotation of the motor rotation shaft 21, and the natural number n is “4” in the present embodiment.
  • An example of the rotation speed Nr is shown in FIG. 8 (c).
  • the helix angle calculation unit 65 calculates the helix angle ⁇ t of the torsion bar provided on the column shaft based on the steering torque Th detected by the torque sensor 10.
  • the rotation angle information calculation unit 66 changes the angle of the angle position information ⁇ 1 from the time when the ignition key 11 is turned off to on, and the ignition key 11 is changed from off to on. Accumulates on the rotation angle information ⁇ m calculated at the time when the ignition key 11 is turned on, the rotation angle information ⁇ m after the time when the ignition key 11 is turned on is calculated.
  • the multiplier 66c calculates the rotation angle ⁇ o of the output shaft 2o of the column shaft by multiplying the rotation angle information ⁇ m by the gear ratio Rg of the reduction gear 3.
  • the adder 66d adds the torsion angle ⁇ t of the torsion bar to the rotation angle ⁇ o to calculate the rotation angle ⁇ i (steering angle ⁇ s of the steering handle 1) of the input shaft 2i of the column shaft.
  • the rotation angle information calculation unit 66 outputs rotation angle information of the rotation angle ⁇ o and the rotation angle ⁇ i.
  • the rotation angle information of the rotation angle ⁇ o of the output shaft 2o and the rotation angle ⁇ i of the input shaft 2i is a state in which the controller 40 determines whether or not the column shaft is in the end contact state and the steering handle 1 is in the additional state. It can be used to determine whether it is in the switchback state. The controller 40 may control the steering assist force applied to the output shaft 2o by the motor 20 based on these determination results. Further, the rotation angle information of the rotation angle ⁇ i of the input shaft 2i may be used for determining whether or not the input shaft 2i is in the neutral position.
  • the diagnostic unit 67 compares the angle position information ⁇ 1 calculated based on the first sine signal sin1 and the first cosine signal cos1 with the angle position information ⁇ 2 calculated based on the second sine signal sin2 and the second cosine signal cos2. Then, the abnormality that has occurred in the first sensor 33 or the second sensor 34 is determined. For example, when the difference between the angle position information ⁇ 1 and the angle position information ⁇ 2 is equal to or greater than the threshold value, it is determined that an abnormality has occurred in the first sensor 33 or the second sensor 34. Further, the diagnostic unit 67 determines an abnormality that has occurred in the second sensor 34 or the rotation speed detection unit 58 based on the difference between the sine count value CNTs and the cosine count value CNTc.
  • the diagnosis unit 67 outputs a diagnosis signal Sd indicating a determination result to the assist control unit 68.
  • the assist control unit 68 controls the drive current I of the motor 20 based on the steering torque Th detected by the torque sensor 10 and the vehicle speed Vh detected by the vehicle speed sensor 12.
  • FIG. 9 shows an example of the functional configuration of the assist control unit 68.
  • the steering torque Th detected by the torque sensor 10 and the vehicle speed Vh detected by the vehicle speed sensor 12 are input to the current command value calculation unit 71 that calculates the current command value Iref1.
  • the current command value calculation unit 71 calculates the current command value Iref1, which is the control target value of the current supplied to the motor 20, by using the assist map or the like based on the input steering torque Th and vehicle speed Vh.
  • the voltage control command value Vref whose characteristics have been improved by the PI control unit 75 is input to the PWM control unit 76, and the motor 20 is PWM-driven via the inverter 77 as a drive unit.
  • the current value Im of the motor 20 is detected by the motor current detector 78 and fed back to the subtraction unit 72B.
  • the compensation signal CM from the compensation signal generation unit 74 is added to the addition unit 72A, and the characteristics of the steering system system are compensated by adding the compensation signal CM to improve the astringency, inertial characteristics, and the like. ..
  • the compensation signal generation unit 74 adds the self-aligning torque (SAT) 74-3 and the inertia 74-2 by the addition unit 74-4, and further adds the convergence 74-1 by the addition unit 74-5 to the addition result. Then, the addition result of the addition unit 74-5 is used as the compensation signal CM. See FIG. 7.
  • the assist control unit 68 detects the occurrence of an abnormality based on the diagnosis signal Sd output from the diagnosis unit 67, the assist control unit 68 performs predetermined abnormality response processing such as driving stop of the motor 20 and alarm output.
  • the rotation speed information correction unit 63 will be described.
  • an error may occur in the total count value CNT output from the rotation speed calculation unit 64 due to an error included in the second sine signal sin2 and the second cosine signal cos2 or an error in the threshold voltage Vr of the comparator.
  • an error caused by the total count value CNT will be described by exemplifying a case where the threshold voltage Vr of the comparator has an error.
  • FIG. 10A shows an example of the second sinusoidal signal sin2 and the second cosine signal cos2, and the threshold voltage Vr of the first comparator 58a and the second comparator 58b.
  • the dashed line indicates the second sine signal sin2
  • the solid line indicates the second chord signal cos2
  • the alternate long and short dash line indicates the threshold voltage Vr compared with the second sine signal sin2 by the first comparator 58a
  • the alternate long and short dash line indicates the second sine signal sin2.
  • the threshold voltage Vr to be compared with the second chord signal cos2 by the comparator 58b is shown.
  • the threshold voltage Vr (two-dot chain line) compared with the second sinusoidal signal sin2 is lower than the design value (ideal value).
  • the sine count value CNTs and the cosine count value CNTc are as shown in FIG. 10 (b).
  • the broken line indicates the sine count value CNTs
  • the solid line indicates the cosine count value CNTc.
  • the rising (falling) timing of the total count value CNT also deviates.
  • the rising (falling) timing of the total count value CNT that should occur when the motor rotation angle is 180, 360, 540, 720, 900, 1080, ... [Deg] is deviated. ..
  • the error included in the second sine signal sin2 and the second cosine signal cos2 and the error of the threshold voltage Vr of the comparator are in the form of a deviation in the rising (falling) timing of the total count value CNT, and the total count value CNT. causes an error.
  • the rise timing (fall) of the motor rotation speed Nr calculated by the rotation speed calculation unit 64 deviates from the original timing. ..
  • the rotation angle information ⁇ m is calculated using this motor rotation speed Nr, as shown in FIG. 11B, the rotation speed is erroneous at the portion surrounded by the alternate long and short dash line, and an error occurs in the rotation angle information ⁇ m. It ends up.
  • the rotation speed information correction unit 63 corrects the deviation of the rising (falling) timing of the total count value CNT shown in FIG. 10 (c). See FIG.
  • the rotation speed information correction unit 63 includes a first quadrant information calculation unit 63a, a second quadrant information calculation unit 63b, a quadrant comparison unit 63c, and a correction unit 63d.
  • the first quadrant information calculation unit 63a indicates which of the above-mentioned quadrants in which the rotation range of the motor rotation shaft 21 is divided by the natural number n belongs to the angle position of the motor rotation shaft 21 based on the angle position information ⁇ 1.
  • the second quadrant information calculation unit 63b indicates the second quadrant information Q2 indicating which of the above-mentioned quadrants divided by the natural number n belongs to the angular position of the motor rotation shaft 21 based on the total count value CNT which is the rotation speed information. Is calculated.
  • the natural number n is the increase / decrease number of the total count value CNT per rotation of the motor rotation shaft 21, and the natural number n is “4” in the present embodiment.
  • the first quadrant information Q1 and the second quadrant information Q2 indicate which of the first quadrant, the second quadrant, the third quadrant, and the fourth quadrant belongs to the angular position of the motor rotation shaft 21.
  • the first quadrant information calculation unit 63a may calculate the first quadrant information Q1 by determining whether the angle position information ⁇ 1 belongs to any of the angle ranges of the first quadrant to the nth quadrant.
  • the second quadrant information calculation unit 63b may calculate the remainder (modulo: CNT mod n) when the total count value CNT is divided by the natural number n as the second quadrant information Q2.
  • FIG. 13A shows an example of the first quadrant information Q1 and the second quadrant information Q2.
  • the solid line indicates the first quadrant information Q1, and the broken line indicates the second quadrant information Q2. Due to the deviation of the rising (falling) timing of the total count value CNT shown in FIG. 10 (c), there is a difference between the first quadrant information Q1 and the second quadrant information Q2 at the portion surrounded by the alternate long and short dash line. ..
  • the quadrant comparison unit 63c outputs a quadrant difference indicating a comparison result of comparing the first quadrant information Q1 and the second quadrant information Q2.
  • the quadrant comparison unit 63c may calculate the difference obtained by subtracting the number of the first quadrant information Q1 representing the quadrant from the number of the second quadrant information Q2 representing the quadrant as the quadrant difference as shown in the following equation (1).
  • Quadrant difference Q2-Q1 ... (1)
  • the sum of the subtraction result plus 4 that is, the natural number n
  • the difference obtained by subtracting 4 that is, the natural number n
  • the difference obtained by subtracting 4 that is, the natural number n
  • the difference obtained by subtracting 4 that is, the natural number n
  • FIG. 13B shows an example of the quadrant difference.
  • the quadrant difference has a value of "1", "0", or "-1" according to the first quadrant information Q1 and the second quadrant information Q2 in FIG. 13 (a).
  • the correction unit 63d corrects the total count value CNT according to the quadrant difference output by the quadrant comparison unit 63c, and calculates the corrected total count value CNTa. For example, the correction unit 63d calculates the difference obtained by subtracting the quadrant difference from the total count value CNT as the corrected total count value CNTa.
  • FIG. 13 (c) shows the corrected total count value CNT calculated by subtracting the quadrant difference of FIG. 13 (b) from the total count value CNT of FIG. 10 (c).
  • the power control unit 56 of the power management unit 50 stops the first power supply unit 52 and the second power supply unit 53, and operates only the third power supply unit 54. At this time, the power supply control unit 56 intermittently generates the second sensor power supply Vs2 in the third power supply unit 54 at a predetermined cycle T.
  • the second sensor power supply Vs2 is intermittently supplied to the second sensor 34 and the rotation speed detection unit 58.
  • the second sensor 34 and the rotation speed detection unit 58 operate intermittently in a predetermined period T.
  • the sine counter 58c increments or decrements the sine count value CNTs according to the output of the first comparator 58a.
  • the cosine counter 58d increments or decrements the cosine count value CNTc according to the output of the second comparator 58b.
  • the power supply control unit 56 starts the operations of the first power supply unit 52 and the second power supply unit 53. Further, the power supply control unit 56 continuously generates a power supply Vm, a first sensor power supply Vs1, and a second sensor power supply Vs2 in the first power supply unit 52, the second power supply unit 53, and the third power supply unit 54. ..
  • the power supply Vm, the first sensor power supply Vs1, and the second sensor power supply Vs2 start to be continuously supplied to the first sensor 33, the second sensor 34, and the rotation speed detection unit 58 such as the MPU60.
  • the first sensor 33, the second sensor 34, and the rotation speed detection unit 58 such as the MPU 60 operate continuously.
  • the count total unit 62 of the MPU 60 reads the sine count value CNTs and the cosine count value CNTc from the sine counter 58c and the cosine counter 58d, respectively, and calculates the total count value CNT. do.
  • the rotation speed information correction unit 63 corrects the total count value CNT and outputs the corrected total count value CNT, and the rotation speed calculation unit 64 calculates the rotation speed Nr of the motor rotation shaft 21 from the corrected total count value CNTa. calculate.
  • the angle position calculation unit 61 calculates the angle position information ⁇ 1, and the rotation angle information calculation unit 66 calculates the rotation angle information ⁇ m of the motor rotation shaft 21 based on the rotation number Nr and the angle position information ⁇ 1.
  • the power supply control unit 56 operates the first power supply unit 52, the second power supply unit 53, and the third power supply unit 54, and operates the power supply Vm, the first sensor power supply Vs1, and the second.
  • the sensor power supply Vs2 is continuously generated.
  • the first sensor 33, the second sensor 34, and the rotation speed detection unit 58, such as the MPU 60, operate continuously.
  • the rotation speed detection unit 58 periodically measures the outputs of the first comparator 58a and the second comparator 58b, and increments or decrements the sine count value CNTs and the cosine count value CNTc to increment or decrement the sine count value CNTs and the cosine count value CNTs and the cosine count.
  • the value CNTc (that is, the current value of the motor speed) is maintained.
  • the angle position calculation unit 61 calculates the angle position information ⁇ 1.
  • the rotation angle information calculation unit 66 accumulates the angle change of the angle position information ⁇ 1 after the time when the ignition key 11 is turned from off to on in the rotation angle information ⁇ m calculated when the ignition key 11 is turned from off to on. Then, the rotation angle information ⁇ m after the time when the ignition key 11 is turned from off to on is calculated.
  • the rotation angle information calculation unit 66 rotates the rotation angle ⁇ o of the output shaft 2o of the column shaft and the rotation of the input shaft 2i based on the rotation angle information ⁇ m, the gear ratio Rg of the reduction gear 3, and the twist angle ⁇ t of the torsion bar. Calculate the angle ⁇ i.
  • the assist control unit 68 controls the drive current I of the motor 20 based on the steering torque Th detected by the torque sensor 10 and the vehicle speed Vh detected by the vehicle speed sensor 12.
  • the diagnosis unit 67 compares the angle position information ⁇ 1 with the angle position information ⁇ 2, and determines an abnormality that has occurred in the first sensor 33 or the second sensor 34. Further, the diagnostic unit 67 determines an abnormality that has occurred in the second sensor 34 or the rotation speed detection unit 58 based on the difference between the sine count value CNTs and the cosine count value CNTc.
  • the assist control unit 68 detects the occurrence of an abnormality based on the diagnosis signal Sd output from the diagnosis unit 67, the assist control unit 68 performs predetermined abnormality response processing such as driving stop of the motor 20 and alarm output.
  • the first sensor 33 and the second sensor 34 output the first sensor signal and the second sensor signal corresponding to the rotation of the motor rotation shaft 21 of the motor 20, respectively.
  • the angle position calculation unit 61 calculates the angle position information representing the angle position of the motor rotation shaft 21 based on the first sensor signal.
  • the rotation speed detection unit 58 detects the rotation speed of the motor rotation shaft 21 based on the second sensor signal and outputs the rotation speed information indicating the rotation speed.
  • the rotation angle information calculation unit 66 calculates rotation angle information representing the rotation angle of the motor rotation shaft 21 based on the angle position information and the rotation number information.
  • the regulator 51, the first power supply unit 52, the second power supply unit 53, the third power supply unit 54, and the power control unit 56 are the first sensor 33, the second sensor 34, and the angular positions when the power switch is on. Power is supplied to the calculation unit 61, the rotation speed detection unit 58, and the rotation angle information calculation unit 66, and when the power switch is off, the power supply to the first sensor 33, the angle position calculation unit 61, and the rotation angle information calculation unit 66. The supply is stopped, and power is supplied to the second sensor 34 and the rotation speed detection unit 58.
  • the power consumption of the first sensor 33, the angle position calculation unit 61 for processing the output signal thereof, and the rotation angle information calculation unit 66 can be stopped. Therefore, the power consumption during the period when the power switch is off can be reduced.
  • the rotation speed detection unit 58 may continue to detect the rotation speed of the motor rotation shaft 21 while the power switch is off.
  • the rotation angle information calculation unit 66 is based on the rotation speed information output by the rotation speed detection unit 58 when the power switch is turned on and the angle position information calculated by the angle position calculation unit 61. May be calculated. As a result, even if the motor rotation shaft 21 is rotated by an external force or the like while the power switch is off, the rotation angle of the motor rotation shaft 21 in the multi-turn angle range when the power switch is turned on from off. Can be calculated.
  • the first quadrant information calculation unit 63a indicates, based on the angular position information, which quadrant in which the rotation range of the motor rotating shaft 21 is divided into n belongs to the angular position of the motor rotating shaft 21. Is calculated (n is a natural number of 2 or more).
  • the second quadrant information calculation unit 63b sets the angular position of the motor rotation shaft 21 in any of the quadrants in which the rotation range of the motor rotation shaft 21 is divided into n based on the rotation speed information representing the rotation speed in units of one-nth rotation.
  • the second quadrant information indicating whether or not it belongs is calculated.
  • the correction unit 63d corrects the rotation speed information according to the comparison result between the first quadrant information and the second quadrant information.
  • the correction unit 63d may correct the rotation speed information by subtracting the difference obtained by subtracting the first quadrant information from the second quadrant information from the rotation speed information. As a result, even if an error occurs in the rotation speed information calculated based on the second sensor signal, the error in the rotation speed information can be corrected based on the angle position information calculated based on the first sensor signal. As a result, the accuracy of the rotation angle information can be improved.
  • the natural number n is 4, the second sensor signal is the second sine signal sin2 and the second cosine signal cos2 according to the rotation of the motor rotation shaft 21, and the rotation speed detection unit 58 is the second sine.
  • the rotation speed may be detected based on the change in the combination of the codes of the signal sin2 and the second cosine signal cos2. Thereby, the rotation speed representing the rotation speed in a quarter rotation unit can be detected by using the sensor that outputs the sine signal and the cosine signal according to the rotation of the motor rotation shaft 21.
  • the electric power steering device of the embodiment has a steering torque applied to the steering shaft based on the twist angle between the input shaft 2i and the output shaft 2o connected via a torsion bar provided on the steering shaft of the vehicle.
  • Torque sensor 10 that detects A unit 66 and an assist control unit 68 that drives and controls the motor 20 based on the steering torque are provided.
  • the rotation angle information calculation unit 66 calculates the steering angle of the input shaft 2i based on the twist angle, the reduction ratio of the reduction gear 3, and the rotation angle information.
  • the steering angle of the steering shaft can be detected by using the rotation angle information of the motor rotation shaft 21 of the motor 20 without providing an angle sensor for detecting the steering angle of the steering shaft.
  • the steering assist force applied to the steering shaft by the motor 20 may be controlled based on the steering angle calculated by the rotation angle information calculation unit 66.
  • the power supply management unit 50 of the second embodiment has an internal power supply Vp for driving a digital logic circuit inside the power supply management unit 50 in addition to the first sensor power supply Vs1, the second sensor power supply Vs2, and the power supply Vm (FIG. 14) is generated from the power supplied from the battery 14 based on the ignition key signal IG. While the ignition key 11 is on, the power supply management unit 50 supplies the power supply Vm to the MPU 60 and the like as in the first embodiment.
  • the power supply management unit 50 supplies the first sensor power supply Vs1 and the second sensor power supply Vs2 to the first sensor 33 and the second sensor 34, respectively.
  • the power supply management unit 50 continuously supplies the internal power supply Vp to the logic circuit inside the power supply management unit 50 regardless of whether the ignition key 11 is on or off.
  • the power management unit 50 stops the supply of the first sensor power supply Vs1 and the power supply Vm to the first sensor 33, the MPU 60, and the like while the ignition key 11 is off.
  • the second sensor power supply Vs2 is intermittently supplied to the second sensor 34.
  • the voltage of the second sensor power supply Vs2 intermittently supplied while the ignition key 11 is off may be a power supply voltage Vcc2 lower than the power supply voltage Vcc1.
  • the power supply voltage Vcc2 may be 3.3 [V].
  • the threshold voltage Vr is set to half the voltage of the second sensor power supply Vs2 (that is, Vs2 / 2). Therefore, for example, when the ignition key 11 is on and the second sensor power supply Vs2 is 5 [V], the threshold voltage Vr is set to 2.5 [V], the ignition key 11 is off, and the second sensor power supply. When Vs2 is 3.3 [V], the threshold voltage Vr may be set to 1.65 [V].
  • FIG. 14 is a block diagram of an example of the functional configuration of the power supply management unit 50 of the second embodiment.
  • the same reference numerals are given to the same components as the components of the power supply management unit 50 of the first embodiment.
  • the power supply management unit 50 of the second embodiment includes an internal power supply generation unit 55 and a sensor power supply determination unit 57.
  • the third power supply unit 54 is an example of the “sensor power supply unit”.
  • the first power supply unit 52, the second power supply unit 53, and the internal power generation unit 55 are examples of the “power supply unit” described in the claims.
  • the power supply control unit 56 generates an operation switching signal Sigma based on the ignition key signal IG and outputs the operation switching signal Sigma to the regulator 51, the first power supply unit 52, the second power supply unit 53, and the third power supply unit 54.
  • the operation switching signal Sigma has a different value depending on whether the ignition key 11 is on or off.
  • the operation switching signal Sigma indicates whether the ignition key 11 is on or off.
  • the value indicating that the ignition key 11 is on may be "1"
  • the value indicating that the ignition key 11 is off may be "0”.
  • the power supply control unit 56 generates a drive interval instruction signal Si and outputs it to the third power supply unit 54.
  • the drive interval instruction signal Si is a signal that indicates an interval for intermittently supplying power to the second sensor while the ignition key 11 is off, that is, an interval for instructing the drive interval for driving the second sensor 34. Details of the power supply control unit 56 will be described later.
  • the regulator 51 generates a regulator power supply VR having a predetermined voltage from the battery power supply Vbat.
  • the first power supply unit 52, the second power supply unit 53, the third power supply unit 54, and the internal power generation unit 55 are connected to the power supply Vm, the first sensor power supply Vs1, the second sensor power supply Vs2, and the inside from the regulator power supply VR. Power supply Vp is generated respectively.
  • the regulator 51 switches the voltage of the regulator power supply VR according to the operation switching signal Sigma.
  • the voltage of the regulator power supply VR may be 6 [V] while the operation switching signal Sigma has a value of "1" (that is, while the ignition key 11 is on), and the operation switching signal Sigma has a value of "0". (That is, while the ignition key 11 is off), the voltage of the regulator power supply VR may be 4 [V].
  • the first power supply unit 52 continuously supplies the power supply Vm to the MPU 60 or the like while the operation switching signal Sigma has a value of “1”. Further, while the operation switching signal Sig is the value "1", the second power supply unit 53 continuously supplies the first sensor power supply Vs1 to the first sensor 33, and the third power supply unit 54 secondly supplies the first sensor power supply Vs1.
  • the sensor power supply Vs2 is continuously supplied to the second sensor 34. As a result, while the ignition key 11 is on, the first sensor 33 and the second sensor 34, such as the MPU60, operate continuously.
  • the voltage of the first sensor power supply Vs1 and the second sensor power supply Vs2 at this time is the power supply voltage Vcc1.
  • the first power supply unit 52 and the second power supply unit 53 hold the power supply Vm and the first sensor power supply Vs1. Stops the generation of. As a result, the supply of the first sensor power supply Vs1 to the first sensor 33 and the supply of the power supply Vm to the MPU 60 and the like are stopped, and the operations of the first sensor 33 and the MPU 60 and the like are stopped.
  • the third power supply unit 54 generates the second sensor power supply Vs2 having a power supply voltage Vcc2 lower than the power supply voltage Vcc1 while the operation switching signal Sig is a value “0”.
  • the third power supply unit 54 intermittently generates the second sensor power supply Vs2 at the drive interval instructed by the drive interval instruction signal Si while the operation switching signal Sig is the value “0”.
  • the second sensor power supply Vs2 having a power supply voltage Vcc2 lower than the power supply voltage Vcc1 is intermittently supplied to the second sensor 34, and the second sensor 34 operates intermittently.
  • the internal power generation unit 55 is a rotation speed detection unit regardless of whether the operation switching signal Sigma has a value of “1” or “0” (regardless of whether the ignition key 11 is on or off).
  • the internal power supply Vp is supplied to 58.
  • the sensor power supply determination unit 57 determines whether or not the second sensor power supply Vs2 is supplied to the second sensor 34 during the period when the ignition key 11 is off (that is, the period during which the second sensor power supply Vs2 is intermittently generated). To judge.
  • the sensor power supply determination unit 57 generates an activation signal Sr for operating the rotation speed detection unit 58 at the timing when the second sensor power supply Vs2 is supplied to the second sensor 34.
  • the value of the start signal Sr becomes "1" intermittently during the period when the second sensor power supply Vs2 is supplied, and becomes "0" during the period when the second sensor power supply Vs2 is not supplied.
  • the rotation speed detection unit 58 operates continuously while the ignition key 11 is on, and while the ignition key 11 is off, the rotation speed detection unit 58 starts from the sensor power supply determination unit 57. It operates when the value of the start signal Sr of is "1" (that is, when the second sensor power supply Vs2 is supplied to the second sensor 34). That is, the rotation speed detection unit 58 operates intermittently.
  • the first comparator 58a and the second comparator 58b of the rotation speed detection unit 58 operate intermittently while the ignition key 11 is off, and the second sine signal sin2 and the second chord signal cos2 and the threshold voltage Vr
  • the code signals Cs and Cc are changed according to the comparison result.
  • the output of the code signals Cs and Cc is maintained by the internal power supply Vp.
  • the sine counter 58c and the cosine counter 58d operate using the internal power supply Vp as a power source, and calculate the sine count value CNTs and the cosine count value CNTc, respectively.
  • the power supply control unit 56 generates the operation switching signal Sigma and the drive interval instruction signal Si to generate the regulator 51, the first power supply unit 52, the second power supply unit 53, and the third power supply.
  • the supply unit 54 and the control unit 54 are controlled.
  • the power supply control unit 56 includes an operation switching unit 56a and a drive interval changing unit 56b.
  • the operation switching unit 56a generates an operation switching signal Sigma based on the ignition key signal IG.
  • the drive interval changing unit 56b generates a drive interval instruction signal Si based on whether or not the rotation of the motor rotation shaft 21 is detected. As described above, the drive interval instruction signal Si indicates the drive interval for intermittently driving the second sensor 34.
  • the drive interval changing unit 56b expands and contracts the drive interval indicated by the drive interval instruction signal Si depending on whether or not the rotation of the motor rotation shaft 21 is detected. Specifically, when the rotation of the motor rotation shaft 21 is detected, the drive interval changing unit 56b shortens the drive interval indicated by the drive interval instruction signal Si from the predetermined maximum interval x, and then the motor rotation shaft. When the rotation of 21 is no longer detected, the drive interval is extended to the maximum interval x.
  • the maximum interval x is an example of the "first time interval". In this way, by shortening the drive interval for intermittently driving the second sensor 34 when the rotation of the motor rotation shaft 21 is detected, it is possible to prevent the count omission of the sine count value CNTs and the cosine count value CNTc.
  • the drive interval changing unit 56b may generate the drive interval instruction signal Si depending on whether or not changes in the second sine signal sin2 and the second cosine signal cos2 are detected. Specifically, the drive interval changing unit 56b changes the code signal Cs of the second sine signal sin2, which is the output of the first comparator 58a, and the code signal Cc of the second chord signal cos2, which is the output of the second comparator 58b. Based on this, the drive interval instruction signal Si is generated. That is, when the code signals Cs and Cc change, the drive interval changing unit 56b shortens the drive interval indicated by the drive interval instruction signal Si from the maximum interval x.
  • the drive interval changing unit 56b extends the drive interval indicated by the drive interval instruction signal Si to the maximum interval x. For example, the drive interval changing unit 56b starts to extend the drive interval when the second sensor 34 is intermittently supplied with power a predetermined number of times but does not detect any change in the code signals Cs and Cc. May be good.
  • the drive interval changing unit 56b detects a change in one of the code signals Cs and Cc and subsequently detects a change in the other signal among the code signals Cs and Cc, the drive interval instruction signal Si is generated.
  • the indicated drive interval may be shortened stepwise. For example, when a change in one of the code signals Cs and Cc is detected, the drive interval changing unit 56b shortens the drive interval by a predetermined length T1, and then when a change in the other signal is detected, the drive interval change unit 56b drives by a predetermined length T1. Save time even more. That is, the amount of shortening changes stepwise as T1, (2 ⁇ T1). By gradually shortening the drive interval in this way, it is possible to prevent the count omission of the sine count value CNTs and the cosine count value CNTc while suppressing an increase in power consumption due to the shortened drive interval.
  • FIG. 15A shows an example in which the predetermined length T1 is 2.2 [milliseconds].
  • the initial drive interval is the maximum interval x, and when the code signal Cs changes from "0" to "1" as shown by reference numeral 100, the maximum interval x is shortened to (x-2.2) [milliseconds].
  • NS the code signal Cs changes from "0" to "1" as shown by reference numeral 100, the maximum interval x is shortened to (x-2.2) [milliseconds].
  • the drive interval changing unit 56b sets the drive interval to a value shorter than the minimum interval even if it detects a change in the code signals Cs and Cc. Prohibit shortening.
  • the minimum interval may be (x-4.4) [milliseconds]. In the example of FIG. 15A, if the maximum interval x is 6.6 [milliseconds], the minimum interval is 2.2 [milliseconds].
  • the time width w of the period during which the second sensor power supply Vs2 is supplied to the second sensor 34 may be fixed.
  • the time width w may be, for example, 220 [ ⁇ sec].
  • the duty ratio of the drive period of the second sensor 34 when the drive interval is the maximum interval of 6.6 [milliseconds] is when the minimum interval is 2.2 [milliseconds]. Compared to 1/3. Further, when the time width w is 220 [ ⁇ sec] and the drive interval is the minimum interval of 2.2 [milliseconds], the duty ratio is 10%.
  • Such a phenomenon occurs, for example, after the motor rotation shaft 21 rotates and one of the code signals Cs and Cc changes, the motor rotation shaft 21 does not rotate 90 degrees or more in the same rotation direction, and is reversed. Occurs when rotating in a direction. In such a case, since the motor rotation shaft 21 is not rotating fast, there is little possibility that the sine count value CNTs and the cosine count value CNTc will be missed even if the drive interval is not significantly shortened.
  • the drive interval changing unit 56b again changes the code signals Cs and Cc after one of the code signals Cs and Cc changes and then before the other signal of the code signals Cs and Cc changes. Even if one of the signals changes, the drive interval indicated by the drive interval instruction signal Si may not be shortened. For example, when the change in the code signal Cs is detected, the drive interval changing unit 56b stores the change history of the code signal Cs indicating that the code signal Cs has changed.
  • the drive interval changing unit 56b Even if a change in the code signal Cs is detected while the change history of the code signal Cs is stored, the drive interval changing unit 56b does not gradually shorten the drive interval. On the contrary, when the change of the code signal Cs is detected in the state where the change history of the code signal Cs is not stored, the drive interval changing unit 56b shortens the drive interval and stores the change history of the code signal Cs.
  • the drive interval changing unit 56b shortens the drive interval and stores the change history of the code signal Cc. At this time, the drive interval changing unit 56b resets the change history to a state in which the change of the code signal Cs is not stored. Even if a change in the code signal Cc is detected while the change history of the code signal Cc is stored, the drive interval changing unit 56b does not gradually shorten the drive interval.
  • the drive interval changing unit 56b shortens the drive interval and stores the change history of the code signal Cc.
  • the drive interval changing unit 56b shortens the drive interval and stores the change history of the code signal Cs. Further, the change history is reset to a state in which the change of the code signal Cc is not stored.
  • the change history of the code signals Cs and Cc may be stored by, for example, a flip-flop circuit or the like when the drive interval changing unit 56b is realized by hardware by a logic circuit or the like.
  • the change history of the code signals Cs and Cc may be stored by a flag variable or the like.
  • the drive interval changing unit 56b is driven by the drive interval indicator signal Si when the code signals Cs and Cc do not change after the drive interval indicated by the drive interval indicator signal Si is shortened. Extend the interval to the maximum interval x.
  • the drive interval changing unit 56b is the power supply count CNTr, which is the number of times the power is intermittently supplied to the second sensor 34 since the change of the code signal Cs or Cc is finally detected. To count.
  • the drive interval changing unit 56b increases the power supply count CNTr by 1 each time power is intermittently supplied to the second sensor 34, and a change in either the code signal Cs or Cc is detected. Then, the power supply count CNTr is reset to 0.
  • the drive interval changing unit 56b determines whether or not the power supply count CNTr is equal to or greater than a predetermined count threshold value Cth. When the power supply count CNTr is equal to or higher than the predetermined count threshold value Cth, the drive interval changing unit 56b extends the drive interval indicated by the drive interval instruction signal Si by a predetermined length T2 each time the power supply count CNTr increases by one. do.
  • the predetermined length T2 may be shorter than the predetermined length T1 described above, or may be the same as the predetermined length T1. Further, at this time, the drive interval changing unit 56b resets the change history to a state in which the changes of the code signals Cs and Cc are not stored. The drive interval changing unit 56b continues to extend the drive interval until the drive interval reaches the maximum interval x, and stops the extension of the drive interval when the drive interval reaches the maximum interval x.
  • FIGS. 16A to 16D an example of controlling the drive interval of the second sensor 34 when the rotation of the motor rotation shaft 21 is not detected while the ignition key 11 is off will be described. ..
  • the count threshold value Cth is 4, and the predetermined length T2 is 1.1 [milliseconds].
  • the drive interval indicated by the drive interval instruction signal Si is initially shortened to (x-4.4) [milliseconds].
  • the drive interval changing unit 56b When the code signal Cs changes as shown by reference numeral 102, the drive interval changing unit 56b resets the power supply count CNTr to 0. After that, if no change in any of the code signals Cs or Cc is detected, the drive interval changing unit 56b increases the power supply count CNTr by one each time power is intermittently supplied to the second sensor 34. do. The drive interval changing unit 56b determines whether or not the power supply count CNTr is 4 or more, which is the count threshold value Cth.
  • the drive interval changing unit 56b extends the drive interval indicated by the drive interval instruction signal Si by 1.1 [milliseconds], which is a predetermined length T2. As a result, the drive interval is extended from (x-4.4) [milliseconds] to (x-3.3) [milliseconds]. After that, the drive interval changing unit 56b extends the drive interval by 1.1 [milliseconds] each time the power supply count CNTr increases by one.
  • the drive interval changing unit 56b stops the extension of the drive interval.
  • the numerical examples of the predetermined lengths T1 and T2, the maximum interval x and the minimum interval of the drive interval, and the count threshold value Cth are merely examples, and the present invention is not limited to the above numerical examples.
  • the values of the predetermined length T1, the maximum interval x, and the minimum interval may be appropriately set according to the actual device configuration.
  • the drive interval changing unit 56b reduces the drive interval. It may be shorter than the predetermined length T1.
  • the extension amount of the drive interval is longer than the predetermined length T2. You can shorten it.
  • the drive interval is (x-3) during the extension of the drive interval. .3) It is assumed that a change in the code signal Cs or Cc is detected at a timing of [milliseconds]. At this time, if the drive interval is shortened by the predetermined length T1, the drive interval becomes (x-5.5) [milliseconds], which is shorter than the minimum interval (x-4.4) [milliseconds].
  • step S1 the sensor power supply determination unit 57 determines whether or not a voltage rise of the second sensor power supply Vs2 has been detected.
  • step S1: Y the process proceeds to step S2.
  • step S1: N the rise in voltage of the second sensor power supply Vs2 is not detected. In this case, the drive interval does not change.
  • step S2 the sensor power supply determination unit 57 generates an activation signal Sr and outputs it to the rotation speed detection unit 58.
  • the first comparator 58a and the second comparator 58b output the code signal Cs of the second sine signal sin2 and the code signal Cc of the second chord signal cos2.
  • the drive interval changing unit 56b executes the rotation detection process and determines whether or not the rotation of the motor rotation shaft 21 is detected based on the code signals Cs and Cc.
  • step S20 the drive interval changing unit 56b determines whether or not the code signal Cs has changed.
  • step S21 the code signal Cs changes (step S20: Y)
  • step S21 the code signal Cs does not change (step S20: N)
  • step S25 the drive interval changing unit 56b determines whether or not there is a change history of the code signal Cs indicating that the code signal Cs has changed. If there is a change history (step S21: Y), the process proceeds to step S24. If there is no change history (step S21: N), the process proceeds to step S22.
  • step S22 the drive interval changing unit 56b stores the change history of the code signal Cs indicating that the code signal Cs has changed. Further, the change history indicating that the code signal Cc has changed is reset to a state in which the change in the code signal Cc is not stored.
  • step S23 the drive interval changing unit 56b determines that the rotation of the motor rotation shaft 21 has been detected, and ends the rotation detection process.
  • step S21 determines in step S24 that the rotation of the motor rotation shaft 21 is not detected, and ends the rotation detection process. do.
  • step S20: N the drive interval changing unit 56b determines whether or not the code signal Cc has changed in step S25.
  • step S25: Y When the code signal Cc changes (step S25: Y), the process proceeds to step S26.
  • step S25: N the process proceeds to step S24.
  • the drive interval changing unit 56b determines that the rotation of the motor rotation shaft 21 is not detected, and ends the rotation detection process.
  • step S26 the drive interval changing unit 56b determines whether or not there is a change history of the code signal Cs indicating that the code signal Cc has changed.
  • step S26: Y If there is a change history (step S26: Y), the process proceeds to step S24. In this case, the drive interval changing unit 56b determines that the rotation of the motor rotation shaft 21 is not detected, and ends the rotation detection process. If there is no change history of the code signal Cs (step S26: N), the process proceeds to step S27.
  • step S27 the drive interval changing unit 56b stores the change history of the code signal Cc indicating that the code signal Cc has changed. Further, the change history indicating that the code signal Cs has changed is reset to a state in which the change in the code signal Cs is not stored.
  • step S28 the drive interval changing unit 56b determines that the rotation of the motor rotation shaft 21 has been detected, and ends the rotation detection process.
  • step S3: Y When the rotation of the motor rotation shaft 21 is detected (step S3: Y), the process proceeds to step S4. If the rotation of the motor rotation shaft 21 is not detected (step S3: N), the process proceeds to step S7. In step S4, the drive interval changing unit 56b resets the power supply count CNTr that counts the number of times that power is intermittently supplied to the second sensor 34.
  • step S5 the drive interval changing unit 56b determines whether or not the drive interval indicated by the drive interval instruction signal Si is already the minimum interval. The process ends when the drive interval is the minimum interval (step S5: Y). In this case, the drive interval does not change. If the drive interval is not the minimum interval (step S5: N), the process proceeds to step S6. In step S6, the drive interval changing unit 56b shortens the drive interval indicated by the drive interval instruction signal Si. After that, the process ends.
  • step S3: N the drive interval changing unit 56b determines whether or not the drive interval indicated by the drive interval instruction signal Si is the maximum interval x in step S7. Is determined. The process ends when the drive interval is the maximum interval x (step S7: Y). In this case, the drive interval does not change.
  • step S8 the drive interval changing unit 56b determines whether or not the power supply count CNTr is equal to or greater than the count threshold value Cth.
  • step S8: Y When the power supply count CNTr is equal to or greater than the count threshold Cth (step S8: Y), the process proceeds to step S10. If the power supply count CNTr is not equal to or greater than the count threshold Cth (step S8: N), the process proceeds to step S9. In this case, the drive interval does not change. In step S9, the drive interval changing unit 56b increases the power supply count CNTr by one. After that, the process ends.
  • step S8 When the power supply count CNTr is equal to or higher than the count threshold value Cth in step S8 (step S8: Y), the drive interval changing unit 56b extends the drive interval indicated by the drive interval instruction signal Si in step S10. In step S11, the drive interval changing unit 56b resets the change history to a state in which changes in the code signals Cs and Cc are not stored. After that, the process ends through step S9.
  • the second sensor 34 outputs a second sensor signal including a sine signal and a cosine signal corresponding to the rotation of the motor rotation shaft 21 of the motor 20.
  • the third power supply unit 54 supplies the second sensor power supply Vs2 to the second sensor 34.
  • the power supply control unit 56 continuously supplies the second sensor power supply Vs2 to the second sensor 34 when the ignition key 11 is on, and intermittently supplies the second sensor 34 to the second sensor 34 when the ignition key 11 is off.
  • the third power supply unit 54 is controlled so as to supply the two-sensor power supply Vs2.
  • the first comparator 58a and the second comparator 58b detect a change in the sine signal and a change in the cosine signal.
  • the power supply control unit 56 intermittently supplies the second sensor power supply Vs2 to the second sensor 34 to drive the second sensor 34, and the drive interval is set when neither the sine signal nor the cosine signal is detected.
  • Set to the first time interval and when a change in only one of the sine signal and the cosine signal is detected, set the second time interval shorter than the first time interval, and set either the sine signal or the cosine signal.
  • the third time interval is set shorter than the second time interval.
  • the second sensor 34 is intermittently driven when the ignition key 11 is off, the power consumption during the period when the ignition key 11 which is the power switch is off can be reduced. Further, since the drive interval of the second sensor 34 is shortened according to the change of the output signal of the second sensor 34, it is possible to prevent the detection omission of the rotation of the motor rotation shaft 21. Further, since the drive interval is gradually shortened according to the change of the output signal of the second sensor 34, it is possible to prevent the detection omission of the rotation of the motor rotating shaft 21 while suppressing the increase in power consumption.
  • the power supply control unit 56 intermittently supplies the second sensor power supply Vs2 a predetermined number of times or more during a period in which the drive interval is set shorter than the first time interval, but the sine signal and the cosine signal If none of the changes is detected, the drive interval may be extended stepwise to the first time interval. When the sine signal and the cosine signal are not detected in this way, the drive interval is extended, so that the power consumption can be reduced. Further, since the drive interval is extended stepwise, it is possible to prevent the detection omission of the rotation of the motor rotating shaft 21 while suppressing the increase in power consumption.
  • the power supply control unit 56 may increase the duty ratio during the period in which the second sensor power supply Vs2 is supplied to the second sensor 34 by shortening the drive interval.
  • the duty ratio when the drive interval is the third time interval may be 10%.
  • the duty ratio when the drive interval is the first time interval may be 1/3 of the duty ratio when the drive interval is the third time interval.
  • the power supply control unit 56 may lower the voltage of the second sensor power supply Vs2 supplied to the sensor when the ignition key 11 is off than when the ignition key 11 is on.
  • the voltage of the second sensor power supply Vs2 when the ignition key 11 is off may be 3.3V
  • the voltage of the second sensor power supply Vs2 when the ignition key 11 is on may be 5V.
  • the first sensor 33 outputs a first sensor signal corresponding to the rotation of the motor rotation shaft 21 of the motor 20.
  • the angle position calculation unit 61 calculates the angle position information representing the angle position of the motor rotation shaft 21 based on the first sensor signal.
  • the rotation speed detection unit 58 detects the rotation speed of the motor rotation shaft 21 based on the second sensor signal and outputs the rotation speed information indicating the rotation speed.
  • the rotation angle information calculation unit 66 calculates rotation angle information representing the rotation angle of the motor rotation shaft 21 based on the angle position information and the rotation number information.
  • the second power supply unit 53, the first power supply unit 52, and the internal power generation unit 55 supply power to the first sensor 33, the angle position calculation unit 61, the rotation speed detection unit 58, and the rotation angle information calculation unit 66.
  • the power control unit 56 supplies power to the first sensor 33, the angle position calculation unit 61, and the rotation angle information calculation unit 66 when the ignition key 11 is on, and the first sensor 33 when the ignition key 11 is off.
  • the second power supply unit 53 and the first power supply unit 52 may be controlled so as to stop the power supply to the angle position calculation unit 61 and the rotation angle information calculation unit 66.
  • the power consumption of the first sensor 33, the angle position calculation unit 61 for processing the output signal thereof, and the rotation angle information calculation unit 66 can be stopped. Therefore, the power consumption during the period when the power switch is off can be reduced.
  • the power supply management unit 50 of the third embodiment Similar to the second embodiment, the power supply management unit 50 supplies the power supply Vm to the MPU 60 and the like while the ignition key 11 is on. Further, the power supply management unit 50 supplies the first sensor power supply Vs1 and the second sensor power supply Vs2 to the first sensor 33 and the second sensor 34, respectively. While the ignition key 11 is on, the power management unit 50 supplies continuous power as the first sensor power supply Vs1 and the second sensor power supply Vs2.
  • the power supply management unit 50 supplies the internal power supply Vp, which is continuous power, to the digital logic circuit inside the power supply management unit 50.
  • the voltage of the internal power supply Vp while the ignition key 11 is on may be the common power supply voltage Vcc1. That is, the voltage of the internal power supply Vp may be the same as the voltage of the second sensor power supply Vs2.
  • the continuous power supplied as the second sensor power supply Vs2 and the internal power supply Vp while the ignition key 11 is on is an example of the “first power”.
  • the power management unit 50 stops the supply of the first sensor power supply Vs1 to the first sensor 33 and the supply of the power supply Vm to the MPU 60 and the like. Further, while the ignition key 11 is off, the power supply management unit 50 supplies intermittent power to the second sensor 34 as the second sensor power supply Vs2.
  • the voltage of the second sensor power supply Vs2 intermittently supplied while the ignition key 11 is off may be a power supply voltage Vcc2 lower than the power supply voltage Vcc1.
  • the power supply voltage Vcc2 may be 3.3 [V].
  • the intermittent power supplied as the second sensor power supply Vs2 while the ignition key 11 is off is an example of the “second power”.
  • FIG. 19A shows an example waveform of the second sensor power supply Vs2 that is intermittently output while the ignition key 11 is off.
  • the voltage of the second sensor power supply Vs2 becomes the power supply voltage Vcc2 in the intermittent output period of the time width Wt that arrives in the output cycle T, and becomes "0" in the period other than the intermittent output period.
  • the power supply management unit 50 may dynamically change the output cycle T.
  • the output period T may be, for example, 2.2 ms to 6.6 ms.
  • FIG. 19B is a diagram showing a waveform of one intermittent output of the second sensor power supply Vs2.
  • the time width Wt of one output period in which the second sensor power supply Vs2 is intermittently output is the sum of the standby period Pw, the idle period Pi, and the sampling period Ps.
  • the standby period Pw is a period during which sampling of the second sensor signal is prohibited in order to avoid the influence of the voltage fluctuation generated immediately after the start of the intermittent output of the second sensor power supply Vs2 on the second sensor signal of the second sensor 34. Is.
  • the standby period Pw may be, for example, a fixed value or an arbitrary value programmable to the power management unit 50.
  • the period lengths of the idle period Pi and the sampling period Ps are arbitrary values programmable to the power management unit 50.
  • the sampling period Ps is designated as a period during which the power supply management unit 50 samples the second sensor signal of the second sensor 34 when the ignition key 11 is off.
  • the period length of the idle period Pi can be programmed to specify the start time of the sampling period Ps, and the period length of the sampling period Ps can be programmed to specify the end time of the intermittent output of the second sensor power supply Vs2.
  • the length of the time width Wt of the intermittent output of the second sensor power supply Vs2 affects the dark current flowing through the sensor unit 30 and the controller 40 while the ignition key 11 is off. That is, it affects the power consumption of the sensor unit 30 and the controller 40 while the ignition key 11 is off.
  • the idle period Pi and the sampling period Ps are shortened, it becomes difficult to accurately sample the second sensor signal output from the second sensor 34 that is intermittently driven.
  • the voltage of the second sensor signal received by the controller 40 from the second sensor 34 is from "0" to a value corresponding to the magnetic flux applied to the second sensor 34.
  • Changes with a certain time constant is determined, for example, by the electrical characteristics of the second sensor 34 itself, the impedance of the harness 35, the input circuit, and the like. Therefore, if the idle period Pi is too small, a signal smaller than the original second sensor signal may be sampled.
  • the time width Wt of one intermittent output of the second sensor power supply Vs2 is set according to the current consumption (dark current) allowed for the sensor unit 30 and the controller 40 while the ignition key 11 is off. Is desirable.
  • the time width Wt of one intermittent output of the second sensor power supply Vs2 may be 220 microseconds or less.
  • the time width Wt of one intermittent output of the second sensor power supply Vs2 is the time constant of the second sensor signal when the intermittent supply of the second sensor power supply Vs2 is started while the ignition key 11 is off. It is desirable to set according to. For example, the second sensor signal when the second sensor power supply Vs2 is continuously supplied so that the second sensor signal becomes sufficiently large 100 microseconds after the output of the second sensor power supply Vs2 is started (for example, the second sensor power supply Vs2 is continuously supplied). It is practically possible to design it so that it rises to about 99 percent of its size. Therefore, for example, the time width Wt of one intermittent output of the second sensor power supply Vs2 may be 100 microseconds or more.
  • the power management unit 50 supplies continuous power as the internal power supply Vp. That is, the power management unit 50 supplies continuous power as the internal power supply Vp regardless of whether the ignition key 11 is on or off. However, while the ignition key 11 is off, the power management unit 50 supplies an internal power supply Vp having a voltage lower than the voltage while the ignition key 11 is on.
  • the voltage of the internal power supply Vp while the ignition key 11 is off may be equal to the power supply voltage Vcc2 which is the voltage of the second sensor power supply Vs2 while the ignition key 11 is off.
  • the continuous power supplied as the internal power supply Vp while the ignition key 11 is off is an example of the "third power".
  • the power supply control unit 56 generates an operation switching signal Sigma based on the ignition key signal IG and outputs the operation switching signal Sigma to the regulator 51, the first power supply unit 52, the second power supply unit 53, and the third power supply unit 54. Further, while the ignition key 11 is off, the power supply control unit 56 transmits the timing signal St of the cycle T indicating the start time of the intermittent output period of the second sensor power supply Vs2 to the third power supply unit 54 and the rotation speed detection unit. Output to 58.
  • the regulator 51 generates a regulator power supply VR having a predetermined voltage from the battery power supply Vbat.
  • the first power supply unit 52 and the second power supply unit 53 generate the power supply Vm and the first sensor power supply Vs1 from the regulator power supply VR.
  • the third power supply unit 54 generates the second sensor power supply Vs2 and the internal power supply Vp from the regulator power supply VR.
  • the regulator 51 switches the voltage of the regulator power supply VR according to the operation switching signal Sigma.
  • the voltage of the regulator power supply VR while the operation switching signal Sigma is the value "0" (that is, while the ignition key 11 is off) is set to the voltage while the operation switching signal Sigma is the value "1" (that is, the ignition key 11 is off). It may be lower than the voltage of the regulator power supply VR (while is on). As a result, the voltages of the second sensor power supply Vs2 and the internal power supply Vp while the ignition key 11 is off can be lowered to be lower than the voltage while the ignition key 11 is on.
  • the voltage of the regulator power supply VR while the operation switching signal Sigma is the value "1” may be 6 [V]
  • the voltage of the regulator power supply VR while the operation switching signal Sigma is the value "0" is 4. It may be [V].
  • the first power supply unit 52 supplies continuous power as the power supply Vm to the MPU 60 and the like while the operation switching signal Sig is the value “1”, and the second power supply unit 53 continuously serves as the first sensor power supply Vs1. Power is supplied to the first sensor 33. Further, while the operation switching signal Sig is a value "1", the third power supply unit 54 supplies continuous power as the second sensor power supply Vs2 to the second sensor 34 and the rotation speed detection unit 58, and causes an internal power supply. Continuous power is supplied to the rotation speed detection unit 58 as Vp. As a result, while the ignition key 11 is on, the first sensor 33 and the second sensor 34, such as the MPU60, operate continuously. Further, the voltages of the first sensor power supply Vs1, the second sensor power supply Vs2, and the internal power supply Vp at this time are the power supply voltage Vcc1.
  • the first power supply unit 52 and the second power supply unit 53 hold the power supply Vm and the first sensor power supply Vs1. Stops the generation of. As a result, the supply of the first sensor power supply Vs1 to the first sensor 33 and the supply of the power supply Vm to the MPU 60 and the like are stopped, and the operations of the first sensor 33 and the MPU 60 and the like are stopped.
  • the third power supply unit 54 outputs intermittent power having a power supply voltage Vcc2 as the second sensor power supply Vs2 while the operation switching signal Sig is a value “0”.
  • the second sensor power supply Vs2 having a power supply voltage Vcc2 lower than the power supply voltage Vcc1 is intermittently supplied to the second sensor 34, and the second sensor 34 operates intermittently.
  • the third power supply unit 54 intermittently outputs the second sensor power supply Vs2 at a timing based on the timing signal St output from the power supply control unit 56.
  • the third power supply unit 54 has a time width Wt of one intermittent output of the second sensor power supply Vs2 according to the standby period Pw, the idle period Pi programmed in the power management unit 50 in advance, and the sampling period Ps. To set.
  • the third power supply unit 54 generates continuous power having a power supply voltage Vcc2 as an internal power supply Vp while the operation switching signal Sig is a value "0".
  • the third power supply unit 54 generates continuous common power having a power supply voltage Vcc2 from the regulator power supply VR, outputs the common power as it is as the internal power supply Vp, and switches the common power to the second.
  • the sensor power supply Vs2 may be generated.
  • the rotation speed detection unit 58 While the ignition key 11 is on, the rotation speed detection unit 58 generates rotation speed information in a predetermined sampling cycle shorter than the intermittent output cycle T of the second sensor power supply Vs2. While the ignition key 11 is off, the rotation speed detection unit 58 intermittently generates rotation speed information when the second sensor power supply Vs2 is supplied to the second sensor 34 in the intermittent output cycle T.
  • the first comparator 58a operates using the second sensor power supply Vs2 as a power source, compares the second sine signal sin2 with the threshold voltage Vr, and generates a code signal Cs indicating a positive or negative code of the second sine signal sin2.
  • the code signal Cs has a logical value "1" when the second sine signal sin2 is equal to or higher than the threshold voltage Vr, and has a logical value "0" when the second sine signal sin2 is less than the threshold voltage Vr.
  • the threshold voltage Vr may be set based on the voltage of the second sensor power supply Vs2.
  • the rotation speed detection unit 58 may include a voltage dividing resistor that divides the voltage of the second sensor power supply Vs2 or the regulator power supply VR to generate a threshold voltage Vr.
  • the threshold voltage Vr when the ignition key 11 is on and the second sensor power supply Vs2 is 5 [V], the threshold voltage Vr is set to 2.5 [V], the ignition key 11 is off, and the second sensor power supply Vs2 is. When it is 3.3 [V], the threshold voltage Vr may be set to 1.65 [V].
  • the second comparator 58b operates using the second sensor power supply Vs2 as a power source, compares the second cosine signal cos2 with the threshold voltage Vr, and generates a code signal Cc indicating a positive or negative code of the second cosine signal cos2.
  • the code signal Cc has a logical value "1" when the second chord signal cos2 is equal to or higher than the threshold voltage Vr, and has a logical value "0" when the second cosine signal cos2 is less than the threshold voltage Vr.
  • the first comparator 58a and the second comparator 58b output the second sine signal sin2 and the second cosine signal cos2 as timing signals of period T output from the power supply control unit 56. It is acquired within the sampling period Ps starting from the start time determined based on St, the standby period Pw, and the idle period Pi pre-programmed in the power management unit 50. As a result, the first comparator 58a and the second comparator 58b operate intermittently while the ignition key 11 is off, and the comparison result between the second sine signal sin2 and the second cosine signal cos2 and the threshold voltage Vr is obtained. The code signals Cs and Cc are changed accordingly. The sine counter 58c and the cosine counter 58d operate using the internal power supply Vp as a power source, and calculate the sine count value CNTs and the cosine count value CNTc, respectively.
  • the power management unit 50 may dynamically change the intermittent output cycle T of the second sensor power supply Vs2 while the ignition key 11 is off, as in the second embodiment. For example, if the motor rotation shaft 21 rotates while the ignition key 11 is off, the motor rotation shaft 21 rotates even faster after that, and the rotation speed detection unit 58 cannot correctly detect the rotation of the motor rotation shaft 21. There is a risk. On the other hand, while the motor rotating shaft 21 continues to stop, the power consumption can be reduced by lengthening the intermittent output cycle T. Therefore, for example, the power supply management unit 50 may shorten the intermittent output cycle T when it detects a change in either the second sine signal sin2 or the second cosine signal cos2. Further, the power supply management unit 50 may extend the intermittent output cycle T when the invariant period of the second sinusoidal signal sin2 and the second cosine signal cos2 continues.
  • the configuration example of the power supply management unit 50 described with reference to FIGS. 19A, 19B, and 20 includes a first power supply unit 52 that supplies power Vm to the MPU 60 and the like, and a first sensor.
  • the 33 is provided with a second power supply unit 53 that supplies the first sensor power supply Vs1, but the present invention is not limited to such a configuration.
  • the power supply Vm and the first sensor power supply Vs1 may be supplied when the ignition key 11 is on, and may be supplied from a component other than the power supply management unit 50 if the supply is stopped when the ignition key 11 is off. ..
  • the rotation angle detection device of the third embodiment is supplied with power when the ignition key 11 is on, outputs a first sensor signal corresponding to the rotation of the motor rotation shaft 21 of the motor 20, and also outputs an ignition.
  • the angle position calculation unit 61 which stops the power supply when the ignition key 11 is off, and the second sensor signal including the sinusoidal signal and the cosine signal according to the rotation of the motor rotation shaft 21 are used.
  • the output second sensor 34 and the continuous first power are supplied to the second sensor 34 when the ignition key 11 is on, and have a voltage smaller than the first power when the ignition key 11 is off.
  • the power supply management unit 50 which supplies intermittent second power to the second sensor 34 and outputs rotation speed information indicating the rotation speed of the motor rotation shaft based on the second sensor signal, and the ignition key 11 are on.
  • the rotation angle that represents the rotation angle of the motor rotation shaft 21 is calculated based on the angle position information and the rotation speed information, and the power supply is stopped when the ignition key 11 is off.
  • the information calculation unit 66 is provided.
  • the power management unit 50 operates by using the third power supply unit 54 that generates the first power and the second power and the first power supplied from the third power supply unit 54 when the ignition key 11 is on as the power source. Then, the first reference voltage based on the voltage of the first electric power is compared with the second sensor signal, and when the ignition key 11 is off, the second electric power supplied from the third electric power supply unit 54 is used as the power source.
  • the counters 58a and 58b that compare the second reference voltage based on the voltage of the second power and the second sensor signal, and the counters 58c that detect the rotation speed of the motor rotation shaft by counting the outputs of the comparators 58a and 58b. It is equipped with 58d.
  • the second sensor 34 and the comparators 58a and 58b are intermittently driven and their power supply voltages are lowered, so that the power consumption during the period when the ignition key 11 is off is reduced. Can be reduced. Further, by providing the comparators 58a and 58b that acquire the second sensor signal of the second sensor 34 that is intermittently driven in the power supply management unit 50 that intermittently outputs the power supply of the second sensor 34, the comparator 58a, The operation of 58b can be easily synchronized with the intermittent drive of the second sensor 34.
  • the ignition key 11 can be used. Even if the power supply voltage to the second sensor 34 is switched as the second sensor 34 is turned on and off, the normal outputs of the comparators 58a and 58b can be obtained.
  • the third power supply unit 54 supplies the first power as a power source to the counters 58c and 58d when the ignition key 11 is on, and supplies a voltage equal to the second power when the ignition key 11 is off.
  • a third electric power which is a continuous electric power having the electric power, may be generated and supplied to the counters 58c and 58d as a power source. Since the power supply voltages of the counters 58c and 58d are lowered when the ignition key 11 is off, the power consumption during the period when the ignition key 11 is off can be reduced.
  • the power management unit 50 When the ignition key 11 is on, the power management unit 50 generates a fourth electric power which is a continuous electric power having a first regulator voltage from an external power source, and when the ignition key 11 is off.
  • a regulator 51 for generating a fifth electric power which is a continuous electric power having a second regulator voltage lower than the first regulator voltage, is provided from an external power source, and the third power supply unit 54 generates the first electric power from the fourth electric power. Then, the second power and the third power may be generated from the fifth power.
  • the output voltage of the third power supply unit 54 can be switched by switching the output voltage from the regulator 51.
  • the comparators 58a and 58b and the third power supply unit 54 may be provided in a single integrated circuit chip. As a result, the operations of the comparators 58a and 58b can be easily synchronized with the intermittent drive of the second sensor 34.
  • the time width Wt of one intermittent output of the second power may be set according to the current consumption allowed in the rotation angle detection device when the ignition key 11 is off. As a result, the power consumption during the period when the ignition key 11 is off can be reduced.
  • the time width Wt of one intermittent output of the second power may be set according to the time constant of the second sensor signal when the intermittent second power is supplied. As a result, it is possible to prevent sampling of a signal smaller than the original second sensor signal because the time width Wt is too small.
  • the time width of one intermittent output of the second power may be, for example, 220 microseconds or less. As a result, the power consumption during the period when the ignition key 11 is off can be reduced.
  • the power management unit 50 supplies intermittent power to the second sensor 34 as the second sensor power supply Vs2 while the ignition key 11 is off, but the sensor unit 30 is formed as a unit separate from the controller 40.
  • the second sensor power supply Vs2 intermittently supplied to the second sensor 34 via the harness 35, a transient current flows immediately after the rise, the power supply voltage becomes unstable, or it becomes a source of electromagnetic noise. There is. Therefore, the second sensor signal obtained from the second sensor 34 may become unstable while the ignition key 11 is off.
  • a bypass capacitor and a decoupling capacitor are provided in the power supply line of the second sensor power supply Vs2.
  • the bypass capacitor mainly functions to release the noise component of a relatively high frequency to the ground, and the decoupling capacitor mainly plays a role of absorbing the voltage fluctuation of a relatively low frequency and stabilizing the power supply system.
  • the same capacitor may perform both functions.
  • FIG. 21 is a block diagram showing an outline of an example of the circuit configuration of the sensor unit 30 of the fourth embodiment.
  • the sensor unit 30 includes a first sensor 33, a second sensor 34, a first amplifier 36, a second amplifier 37, a first offset voltage output circuit 38, a second offset voltage output circuit 39, and a voltage dividing resistor. Rd11, Rd12, Rd21 and Rd22 are provided.
  • the first sensor power supply line VL1 of the first sensor power supply Vs1 on the sensor unit 30 side and the second sensor power supply line VL2 of the second sensor power supply Vs2 are the first sensor power supply line VL1 and the second sensor power supply line VL2 on the harness 35 side.
  • first sensor power supply Vs1 and the second sensor power supply Vs2 are supplied from the controller 40, respectively. Further, the first sensor grounding line GND1 and the second sensor grounding line GND2 on the sensor unit 30 side are connected to the grounding line (not shown) on the controller 40 side via the grounding line GND on the harness 35 side.
  • the second sensor 34 includes a bridge circuit 34a of the reluctance elements Rs21, Rs22, Rs23 and Rs24, and a bridge circuit 34b of the reluctance elements Rc21, Rc22, Rc23 and Rc24.
  • the magnetization direction of the pin layers of the reluctance elements Rs21, Rs22, Rs23 and Rs24 and the magnetization direction of the pin layers of the reluctance elements Rc21, Rc22, Rc23 and Rc24 are deviated by 90 °.
  • the differential sine signal Ss2p representing the sine component corresponding to the rotation of the motor rotation shaft 21 is transmitted from the output terminals SIN2P and SIN2N connected to the midpoint potential point. And Ss2n are output.
  • the second sensor power supply Vs2 is supplied between the connection point of Rc24 and the output terminals COS2P and COS2N connected to the midpoint potential point, a differential cosine representing a sine component corresponding to the rotation of the motor rotation shaft 21.
  • the signals Sc2p and Sc2n are output.
  • the first sensor 33 has the same configuration as the second sensor 34, the power supply terminals V1SIN and V1COS correspond to the power supply terminals V2SIN and V2COS, respectively, and the ground terminals G1SIN and G1COS correspond to the ground terminals G2SIN and G2COS, respectively.
  • the output terminals SIN1N, SIN1P, COS1N and COS1P correspond to the output terminals SIN2N, SIN2P, COS2N and COS2P, respectively, and the differential sine signals Ss1p and Ss1n correspond to the differential sine signals Ss2p and Ss2n, respectively.
  • the moving cosine signals Sc1p and Sc1n correspond to the differential cosine signals Sc2p and Sc2n, respectively.
  • the second amplifier 37 amplifies the differential sine signals Ss2p and Ss2n and applies the offset voltage Voff2 output from the second offset voltage output circuit 39 to output the second sine signal sin2. Further, the second cosine signal cos2 is output by amplifying the differential cosine signals Sc2p and Sc2n and applying the offset voltage Voff2.
  • the second amplifier 37 has a differential amplifier 37a in which differential sine signals Ss2p and Ss2n are input to the non-inverting input terminal and the inverting input terminal, and differential cosine signals Sc2p and Sc2n are input to the non-inverting input terminal and the inverting input terminal, respectively.
  • a differential amplifier 37b for each input is provided.
  • the second offset voltage output circuit 39 applies an offset voltage Voff2 to the non-inverting input terminals of the differential amplifiers 37a and 37b.
  • the second offset voltage output circuit 39 is, for example, a voltage follower circuit having an amplifier 39a in which the voltage dividing voltage obtained by dividing the second sensor power supply Vs2 by the voltage dividing resistors Rd21 and Rd22 is input to the non-inverting input terminal. It may be there.
  • the resistance values of the voltage dividing resistors Rd21 and Rd22 may be equalized, and the voltage dividing of the second sensor power supply Vs2 may be 1: 1.
  • the offset voltage Voff2 is half the voltage of the second sensor power supply Vs2 (Vs2 / 2).
  • the first amplifier 36 and the first offset voltage circuit 38 have the same configuration as the second amplifier 37 and the second offset voltage circuit 39.
  • the first amplifier 36 amplifies the differential sine signals Ss1p and Ss1n and applies the offset voltage Voff1 output from the first offset voltage output circuit 38 to output the first sine signal sin1.
  • the first cosine signal cos1 is output by amplifying the differential cosine signals Sc1p and Sc1n and applying the offset voltage Voff1.
  • the first offset voltage output circuit 38 may be, for example, a voltage follower circuit in which a voltage dividing voltage obtained by dividing the first sensor power supply Vs1 by voltage dividing resistors Rd11 and Rd12 is input.
  • the offset voltage Voff1 may be, for example, one half (Vs1 / 2) of the voltage of the first sensor power supply Vs1.
  • the first sine signal sin1, the first cosine signal cos1, the second sine signal sin2, and the second cosine signal cos2 are transmitted to the controller 40 via the harness 35.
  • both when the ignition key 11 to which the second sensor power supply Vs2 is continuously supplied is on and when the ignition key 11 to which the second sensor power supply Vs2 is intermittently supplied is off ( 1) power supply stability on the 2nd sensor 34 side, (2) good EMC (Electromagnetic Compatibility) characteristics, and (3) reduction of dark current when the ignition key 11 is off are required. From the viewpoint of power supply stability, a decoupling capacitor with a large capacity is desired. On the other hand, when the ignition key 11 to which the second sensor power supply Vs2 is intermittently supplied is off, a bypass capacitor having a small capacitance is desired from the viewpoint of high-speed signal rise and reduction of dark current. From the viewpoint of EMC characteristics, a bypass capacitor that functions in the high frequency region is desired.
  • a stable second sensor signal can be obtained by providing bypass capacitors and decoupling capacitors at the following three locations (1) to (3).
  • (1) Input terminal of the second offset voltage output circuit 39 Connect the input terminal of the second offset voltage output circuit 39 and the second sensor grounding line GND2 (that is, the connection points of the voltage dividing resistors Rd21 and Rd22 and the second).
  • the decoupling capacitor C12 to connect to the sensor grounding line GND2
  • the second sensor power supply Vs2 is intermittently supplied, even if the second sensor power supply Vs2 is switched, it depends on the transient current.
  • the voltage fluctuation of the power supply is blocked by the low-pass filter formed by the voltage dividing resistor Rd21 and the decoupling capacitor C12, and the fluctuation of the DC component of the second sensor signal is suppressed. As a result, the stability of the second sensor signal can be improved.
  • a bypass capacitor or a decoupling capacitor may be provided in the first sensor power supply line VL1 of the first sensor power supply Vs1.
  • a decoupling capacitor C11 (see FIG. 21) for connecting the input terminal of the first offset voltage output circuit 38 and the first sensor grounding line GND1 is provided.
  • bypass capacitors C21 and C22 for connecting the first sensor power supply line VL1 and the first sensor grounding line GND1 are provided at positions close to the first sensor 33.
  • a decoupling capacitor C31 (see FIG. 22) for connecting the first sensor power supply line VL1 of the harness 35 and the ground line GND is provided at a position close to the power supply management unit 50.
  • a bypass capacitor Ce1 for electrostatic discharge surge (ESD) countermeasures which connects the first sensor power supply line VL1 and the first sensor grounding line GND1 on the sensor unit 30 side at a position close to the connector with the harness 35
  • a bypass capacitor Ce2 for ESD countermeasures may be provided to connect the second sensor power supply line VL2 on the sensor unit 30 side and the second sensor grounding line GND2.
  • the rotation angle detection device of the embodiment includes a first sensor signal including a sine signal and a cosine signal corresponding to the rotation of the motor rotation shaft 21 of the motor 20, a sine signal corresponding to the rotation of the motor rotation shaft 21, and a sine signal.
  • the sensor unit 30 is driven by the first sensor power supply Vs1 supplied from the controller 40 via the harness 35, and outputs a sine signal and a cosine signal according to the rotation of the motor rotation shaft 21, and a first sensor 33 and a first sensor unit 30.
  • the rotation of the motor rotation shaft 21 is driven by the first amplifier 36 that amplifies the output signal of the sensor 33 and outputs it as the first sensor signal, and the second sensor power supply Vs2 supplied from the controller 40 via the harness 35 as the power supply.
  • a second sensor 34 that outputs a sine signal and a cosine signal according to the above, a second amplifier 37 that amplifies the output signal of the second sensor 34 and outputs it as a second sensor signal, and a harness 35 that supplies the voltage from the controller 40.
  • a decoupling capacitor C12 for connecting the input terminal of the offset voltage output circuit 39 and the ground is provided.
  • the controller 40 supplies continuous power as the first sensor power supply Vs1 and the second sensor power supply Vs2 when the power switch is on, and stops the supply of the first sensor power supply Vs1 when the power switch is off.
  • a power supply management unit 50 that intermittently supplies electric power as the second sensor power supply Vs2 is provided.
  • the sensor unit 30 may include bypass capacitors C23 and C24 that connect the power supply line of the second sensor power supply Vs2 and the ground at a position close to the second sensor 34.
  • bypass capacitors C23 and C24 By providing such bypass capacitors C23 and C24, the influence of the electromagnetic noise generated by the switching of the second sensor power supply Vs2 on the second sensor 34 is suppressed, and as a result, the stability of the second sensor signal is improved. can.
  • the controller 40 may include a decoupling capacitor C32 that connects the power supply line of the second sensor power supply Vs2 of the harness 35 and the ground at a position close to the power supply management unit 50.
  • a decoupling capacitor C32 By providing such a decoupling capacitor C32, the voltage fluctuation of the power supply generated when the second sensor power supply Vs2 is switched is suppressed from entering the harness 35, and the power supply supplied by the harness 35 is stabilized. Can be converted. In addition, noise generated from the harness 35 can be reduced.
  • the sensor unit 30 may include bypass capacitors C21 and C22 that connect the power supply line of the first sensor power supply Vs1 and the ground at a position close to the first sensor 33.
  • bypass capacitors C22 and C22 By providing such bypass capacitors C22 and C22, the influence of the electromagnetic noise generated by the switching of the first sensor power supply Vs1 on the first sensor 33 is suppressed, and as a result, the stability of the first sensor signal is improved. can.
  • the power supply control unit 56 of the power supply management unit 50 of the third embodiment may change the drive interval for driving the second sensor 34 in the same configuration and method as the power supply control unit 56 of the second embodiment. ..
  • the comparators 58a and 58b of the second embodiment provide continuous second sensor power supply Vs2 supplied from the third power supply unit 54 when the ignition key 11 is turned on, as in the third embodiment. It operates as a power source, compares the threshold voltage Vr based on the voltage of the second sensor power source Vs2 with the second sensor signal, and intermittently supplies power from the third power supply unit 54 when the ignition key 11 is off.
  • the two-sensor power supply Vs2 is used as a power source to compare the threshold voltage Vr based on the voltage of the second sensor power supply Vs2 with the second sensor signal. good.
  • the sensor unit 30 and the controller 40 of the first to third embodiments may be provided with the same bypass capacitors as those of the fourth embodiment.
  • the rotation angle detection device of the present invention is a so-called downstream assist method. It may be applied to the electric power steering device of.
  • the downstream assist type electric power steering device a configuration example in which the rotation angle detection device of the present invention is applied to the single pinion assist method, the rack assist method, and the dual pinion assist type electric power steering device will be described.
  • the motor 20, the sensor unit 30, and the controller 40 are not separate bodies for waterproofing measures, but as an integrated MCU (Motor Control Unit) as shown by the broken lines in FIGS. 23 to 25. good.
  • the sensor ICs serving as the first sensor 33 and the second sensor 34 may be built in the circuit board of the controller 40.
  • FIG. 23 shows a configuration example in which the rotation angle detection device of the present invention is applied to the single pinion assist type electric power steering device.
  • a column shaft 2 is provided in place of the column shafts 2i and 2o and the torsion bar (not shown) connecting them.
  • the steering handle 1 is connected to one of the universal joints 4A of the intermediate shaft via the column shaft 2. Further, an input side shaft 4C of a torsion bar (not shown) is connected to the other universal joint 4B.
  • the pinion rack mechanism 5 includes a pinion shaft 5A, a pinion gear 5B, and a rack bar 5C.
  • the input side shaft 4C and the pinion rack mechanism 5 are connected by a torsion bar (not shown) twisted by a deviation in the rotation angle between the input side shaft 4C and the pinion rack mechanism 5.
  • the torque sensor 10 electromagnetically measures the helix angle of the torsion bar as the steering torque Th of the steering handle 1.
  • a motor 20 that assists the steering force of the steering handle 1 is connected to the pinion shaft 5A via a reduction gear 3, and the sensor unit 30 is the rotation angle of the motor rotation shaft of the motor 20 as in the above embodiment. Calculate the information.
  • FIG. 24 shows a configuration example in which the rotation angle detection device of the present invention is applied to the rack assist type electric power steering device.
  • a spiral groove (not shown) is formed on the outer peripheral surface of the rack bar 5C, and a spiral groove (not shown) similar to this is also formed on the inner peripheral surface of the nut 7A.
  • a ball screw is formed by arranging a plurality of rolling elements in the rolling path formed by these spiral grooves.
  • a belt 7D is wound around the drive pulley 7B connected to the rotating shaft 20a of the motor 20 that assists the steering force of the steering handle 1 and the driven pulley 7C connected to the nut 7A, and the rotational movement of the rotating shaft 20a is racked. It is converted into the straight motion of the bar 5C.
  • the sensor unit 30 calculates the rotation angle information of the motor rotation shaft of the motor 20 in the same manner as in the above embodiment.
  • FIG. 25 shows a configuration example in which the rotation angle detection device of the present invention is applied to the dual pinion assist type electric power steering device.
  • the dual pinion assist type electric power steering device has a second pinion shaft 8A and a second pinion gear 8B in addition to the pinion shaft 5A and the pinion gear 5B, and the rack bar 5C is the first that meshes with the pinion gear 5B. It has a rack tooth (not shown) and a second rack tooth (not shown) that meshes with the second pinion gear 8B.
  • a motor 20 that assists the steering force of the steering handle 1 is connected to the second pinion shaft 8A via a reduction gear 3, and the sensor unit 30 is a motor rotating shaft of the motor 20 as in the above embodiment. Calculate the rotation angle information.
  • Rotation number calculation unit 65 ... Angle calculation unit, 66 ... Rotation angle information calculation unit, 66a, 66c ... Multiplier, 66b, 66d ... Adder , 67 ... Diagnosis unit, 68 ... Assist control unit, C11, C12, C31, C32 ... Decoupling capacitor, C21 to C24, Ce1, Ce2 ... Bypass capacitor

Abstract

回転角検出装置は、第1センサ(33)の第1センサ信号に基づいてモータ回転軸の角度位置を表す角度位置情報を算出する角度位置算出部(61)と、第2センサ(34)の第2センサ信号に基づいてモータ回転軸の回転数を検出し回転数を表す回転数情報を出力する回転数検出部(58)と、角度位置情報と回転数情報に基づいてモータ回転軸の回転角を表す回転角情報を算出する回転角算出部(66)と、電源スイッチ(11)がオフの場合に、第1センサ、角度位置算出部及び回転角算出部への電源供給を停止し、第2センサ及び回転数検出部へ電源を供給する電源供給部(51~56)を備える。

Description

回転角検出装置及び電動パワーステアリング装置
 本発明は、回転角検出装置及び電動パワーステアリング装置に関する。
 従来より、モータ回転軸の回転角を検出するセンサを複数設けて冗長化させる技術が提案されている。
 また、電源スイッチがオフである間のモータの回転軸の回転数を監視する技術が提案されている。例えば、電動パワーステアリングシステムにおいては、電源スイッチであるイグニションキー(主電源)がオフされてアシスト機能が停止している間にも、外力によりステアリングシャフトが回されることが有りうる。このため、イグニションキーがオフである間も、バッテリによりバックアップされた回路によって、ステアリングシャフトに連結したモータの回転軸の回転数を監視する。
 例えば、下記特許文献1には、電動ステアリングモータの角度位置を検出するMR(磁気抵抗:Magnetic Resistance)センサとその出力信号を処理する計数ユニットとをそれぞれ2個ずつ備えて冗長化し、電源スイッチであるイグニションキーがオフである間に、2つのMRセンサが各々出力する正弦信号及び余弦信号に基づいて、2つの計数ユニットによって電動ステアリングモータの回転数をカウントする技術が記載されている。
欧州特許第2050658号明細書
 特許文献1の技術では、イグニションキーがオフである間、冗長化されたセンサの両方と冗長化された計数ユニットの両方とに電源を供給するため、暗電流(リーク電流)の増加を招いていた。
 本発明は、このような問題に鑑みてなされたものであり、モータ回転軸の回転に応じた信号を出力する少なくとも2つのセンサを備える回転角検出装置において、電源スイッチがオフである期間の消費電力を低減することを目的とする。
 上記目的を達成するために、本発明の一態様による回転角検出装置は、モータのモータ回転軸の回転に応じた第1センサ信号及び第2センサ信号をそれぞれ出力する第1センサ及び第2センサと、第1センサ信号に基づいてモータ回転軸の角度位置を表す角度位置情報を算出する角度位置算出部と、第2センサ信号に基づいてモータ回転軸の回転数を検出し回転数を表す回転数情報を出力する回転数検出部と、角度位置情報と回転数情報に基づいてモータ回転軸の回転角を表す回転角情報を算出する回転角算出部と、電源スイッチがオンの場合に、第1センサ、第2センサ、角度位置算出部、回転数検出部及び回転角算出部へ電源を供給し、電源スイッチがオフの場合に、第1センサ、角度位置算出部及び回転角算出部への電源供給を停止し、第2センサ及び回転数検出部へ電源を供給する電源供給部と、を備える。
 また、本発明の他の態様による電動パワーステアリング装置は、車両の操舵軸に設けられたトーションバーを介して連結された入力軸と出力軸との捩れ角に基づいて操舵軸に加わる操舵トルクを検出するトルクセンサと、車両の操舵機構に操舵補助力を付与するモータと、モータのモータ回転軸の回転角情報を算出する請求項1~5のいずれか一項に記載の回転角検出装置と、操舵トルクに基づいてモータを駆動制御するモータ制御部と、捩れ角と、減速ギアの減速比と、回転角情報とに基づいて、入力軸の操舵角を算出する操舵角算出部と、を備える。
 本発明によれば、モータ回転軸の回転に応じた信号を出力する少なくとも2つのセンサを備える回転角検出装置において、電源スイッチがオフである期間の消費電力を低減できる。
実施形態の電動パワーステアリング装置の一例の概要を示す構成図である。 第1正弦信号、第1余弦信号、第2正弦信号及び第2余弦信号の一例を示す図である。 センサユニットの一例の概略を示す分解図である。 コントローラの構成例を示す図である。 第1実施形態の電源管理部の機能構成の一例のブロック図である。 (a)~(d)は回転数検出部の動作の一例の説明図であり、(e)は回転数情報の一例の説明図である。 マイクロプロセッサの機能構成の一例のブロック図である。 (a)は第1正弦信号SIN1及び第1余弦信号COS1を示す図であり、(b)は角度位置情報θ1の一例を示す図であり、(c)はモータ回転数Nrを示す図であり、(d)は回転角情報θmを示す図である。 アシスト制御部の機能構成の一例のブロック図である。 (a)は第2正弦信号SIN2及び第2余弦信号COS2を示す図であり、(b)はコンパレータの閾値電圧Vrに誤差がある場合の正弦カウント値CNTs及び余弦カウント値CNTcの一例を示す図であり、(c)はカウント合計値CNTの一例を示す図である。 (a)は回転数情報補正部がない場合にモータ回転数Nrに生じうる誤差の説明図であり、(b)は回転角情報θmに生じうる誤差の説明図である。 回転数情報補正部の機能構成の一例のブロック図である。 (a)は第1象限信号Q1及び第2象限信号Q2の一例を示す図であり、(b)は第1象限信号Q1と第2象限信号Q2との間の差分を示す図であり、(c)は補正済カウント合計値CNTaの一例を示す図であり、(d)は補正済カウント合計値CNTaから算出したモータ回転数Nrを示す図である。 第2実施形態の電源管理部の機能構成の一例のブロック図である。 イグニションキーがオフである間にモータ回転軸の回転を検出した場合の第2センサの駆動間隔の制御の一例の説明図である。 イグニションキーがオフである間にモータ回転軸の回転を検出しない場合の第2センサの駆動間隔の制御の一例の説明図である。 駆動間隔指示信号が指示する駆動間隔の設定方法の一例のフローチャートである。 図17の回転検出処理の一例のフローチャートである。 (a)はイグニションキーがオフである間に間欠的に出力される第2センサ電源Vs2の一例の波形を示す図であり、(b)は(a)の第2センサ電源Vs2の1回の間欠出力の波形を示す図である。 第3実施形態の電源管理部の機能構成の一例のブロック図である。 第4実施形態のセンサユニットの回路構成の一例の概略を示すブロック図である。 第4実施形態のコントローラの構成例を示す図である。 変形例の電動パワーステアリング装置の一例の概要を示す構成図である。 変形例の電動パワーステアリング装置の一例の概要を示す構成図である。 変形例の電動パワーステアリング装置の一例の概要を示す構成図である。
 本発明の実施形態を、図面を参照しながら詳細に説明する。なお、以下に示す本発明の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の構成、配置等を下記のものに特定するものではない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
 (第1実施形態)
 (構成)
 以下、実施形態の回転角検出装置を、車両のステアリング機構にモータの回転力で操舵補助力(アシスト力)を付与する電動パワーステアリング装置(EPS:Electric Power Steering)に適用した場合の構成例を説明する。ただし本発明は、電動パワーステアリング装置に適用される回転角検出装置に限定されず、モータ回転軸の回転に応じた信号を出力する少なくとも2つのセンサを備える回転角検出装置に広く適用可能である。
 図1を参照する。操向ハンドル1のコラム軸(操舵軸)2i及び2oは、減速ギア3、ユニバーサルジョイント4A及び4B、ピニオンラック機構5を経て操向車輪のタイロッド6に連結されている。コラム軸の入力軸2iと出力軸2oとは、入力軸2iと出力軸2oとの間の回転角のずれによってねじれるトーションバー(図示せず)によって連結されている。
 トルクセンサ10は、トーションバーのねじれ角を、操向ハンドル1の操舵トルクThとして電磁気的に測定する。
 また、コラム軸の出力軸2oには、操向ハンドル1の操舵力を補助するモータ20が減速ギア3を介して連結されている。
 コントローラ40は、モータ20を駆動制御する電子制御ユニット(ECU:Electronic Control Unit)である。コントローラ40には、電源であるバッテリ14からバッテリ電源Vbatが供給されると共に、電源スイッチであるイグニションキー11からイグニションキー信号IGが入力される。
 コントローラ40は、トルクセンサ10で検出された操舵トルクThと車速センサ12で検出された車速Vhとに基づいて、アシストマップ等を用いてアシスト指令の操舵補助指令値の演算を行い、演算された操舵補助指令値に基づいてモータ20に駆動電流Iを供給する。
 センサユニット30は、モータ20のモータ回転軸の回転に応じたセンサ信号を各々出力する2つのセンサを備える。
 センサユニット30の2つのセンサは、各々独立してモータ回転軸の角度位置θ(θ=0~360[deg])を検出し、一方のセンサからは振幅Aの第1正弦信号sin1=A×sinθ+Voff1及び第1余弦信号cos1=A×cosθ+Voff1を、他方のセンサからは振幅Aの第2正弦信号sin2=A×sinθ+Voff2及び第2余弦信号cos2=A×cosθ+Voff2を、各々コントローラ40へ出力する。電圧Voff1及びVoff2は、オフセット電圧(すなわち、第1正弦信号sin1、第1余弦信号cos1、第2正弦信号sin2及び第2余弦信号cos2の直流成分)である。第1正弦信号sin1、第1余弦信号cos1、第2正弦信号sin2及び第2余弦信号cos2の一例を図2に示す。
 コントローラ40は、第1正弦信号sin1、第1余弦信号cos1、第2正弦信号sin2及び第2余弦信号cos2に基づいてモータ20のモータ回転軸の回転角θmを演算する。
 コントローラ40は、モータ20のモータ回転軸の回転角θmと減速ギア3のギア比Rgとに基づいて、コラム軸の出力軸2oの回転角θoを演算する。コントローラ40は、回転角θoと操舵トルクThに基づいて、コラム軸の入力軸2iの回転角θi、すなわち操向ハンドル1の操舵角θsを演算する。
 このような構成の電動パワーステアリング装置において、操向ハンドル1から伝達された運転手のハンドル操作による操舵トルクThをトルクセンサ10で検出し、操舵トルクth及び車速Vhに基づいて算出される操舵補助指令値によってモータ20は駆動制御され、運転手のハンドル操作の補助力(操舵補助力)として操舵系に付与される。
 図3は、センサユニット30の一例の概略を示す分解図である。センサユニット30は、磁石31と、回路基板32とを備える。
 磁石31は、モータ20のモータ回転軸21の出力端22と反対側の端部24に固定され、モータ回転軸21の周方向に沿って配列された異なる磁極(S極及びN極)を有している。
 回路基板32には、磁石31から生じた磁束を検出することにより、モータ20のモータ回転軸21の回転に応じた第1センサ信号及び第2センサ信号をそれぞれ出力する第1センサ33と第2センサ34を備える。
 第1センサ33から出力される第1センサ信号は、第1正弦信号sin1及び第1余弦信号cos1を含む。第2センサ34から出力される第2センサ信号は、第2正弦信号sin2及び第2余弦信号cos2を含む。
 第1センサ33と第2センサ34は、例えば、磁束を検出するMRセンサ(例えばTMR(Tunnel Magneto Resistance)センサ)であってよい。
 第1センサ33及び第2センサ34は、モータ回転軸21とともに回転する磁石31に近接して配置され、磁石31から発生する磁束を検出することにより、モータ回転軸21の回転に応じた第1正弦信号sin1及び第1余弦信号cos1、並びに第2正弦信号sin2及び第2余弦信号cos2をそれぞれ生成する。
 センサユニット30は、コントローラ40とは別体のユニットとして形成され、ハーネス35によりコントローラ40に接続される。コントローラ40は、第1センサ33及び第2センサ34をそれぞれ駆動する第1センサ電源Vs1及び第2センサ電源Vs2を、ハーネス35を経由してセンサユニット30へ供給する。センサユニット30は、第1センサ信号及び第2センサ信号を、ハーネス35を経由してからコントローラ40へ出力する。ハーネス35の長さは例えば約10cmであってよい。
 なお、センサユニット30とコントローラ40とを一体のユニットとして形成してもよい。この場合、第1センサ33及び第2センサ34をコントローラ40に直接内蔵し、コントローラ40をモータ20の出力端22と反対側に装着してもよい。
 なお、センサユニット30の構成は、図3に示す構成に限定されるものではない。センサユニット30の第1センサ33及び第2センサ34は、MRセンサ以外の種類のセンサであってもよい。第1センサ33は、モータ回転軸21の回転に応じた信号を出力するセンサであれば足りる。第2センサ34は、モータ回転軸21の回転に応じた正弦信号及び余弦信号を出力するセンサであれば足りる。
 図4を参照して、コントローラ40の構成例を説明する。コントローラ40は、電源管理部50と、マイクロプロセッサ(MPU:Micro-Processing Unit)60を備える。
 電源管理部50は、バッテリ14からバッテリ電源Vbatの供給を受けて、センサユニット30及びコントローラ40の電源管理を行う。電源管理部50は、単一の集積回路(IC:Integrated Circuit)チップとして実装されてよい。電源管理部50は、例えばパワーマネージメントIC(Power Management Integrated Circuit)であってよい。
 電源管理部50は、イグニションキー信号IGに基づいて、バッテリ14からの供給電力から、第1センサ33を駆動するための第1センサ電源Vs1と、第2センサ34を駆動するための第2センサ電源Vs2と、MPU60やコントローラ40のその他の構成部品(以下「MPU60等」と表記することがある)を駆動するための電源Vmと、を生成する。
 第1センサ電源Vs1、第2センサ電源Vs2及び電源Vmの電圧は、例えば共通の電源電圧Vcc1(図示せず)であってよい。電源電圧Vcc1は、例えば5[V]であってよい。
 電源管理部50は、イグニションキー11がオンである間には第1センサ電源Vs1、第2センサ電源Vs2及び電源Vmを、それぞれ第1センサ33、第2センサ34及びMPU60等に供給する。
 一方で、電源管理部50は、イグニションキー11がオフである間には、第1センサ33及びMPU60等への第1センサ電源Vs1及び電源Vmの供給を停止する。第2センサ34には所定周期Tで間欠的に第2センサ電源Vs2を供給する。イグニションキー11がオフである間に供給する第2センサ電源Vs2の電圧は、イグニションキー11がオンである間の電圧Vcc1より低くしてもよい。
 また、電源管理部50は、第2正弦信号sin2及び第2余弦信号cos2に基づいてモータ回転軸21の回転数を検出し、回転数を表す回転数情報を生成する。回転数情報は、第2正弦信号sin2の符号の変化を計数した正弦カウント値CNTsと、第2余弦信号cos2の符号の変化を計数した余弦カウント値CNTcを含む。正弦カウント値CNTsと余弦カウント値CNTcは、第2正弦信号sin2の符号と第2余弦信号cos2の符号の組合せによって変化する。電源管理部50の詳細は後述する。
 MPU60は、トルクセンサ10で検出された操舵トルクThと車速センサ12で検出された車速Vhとに基づいて、アシストマップ等を用いてアシスト指令の操舵補助指令値の演算を行い、モータ20の駆動電流Iを制御する。
 また、MPU60は、第1正弦信号sin1及び第1余弦信号cos1に基づいて、モータ回転軸21の角度位置を表す角度位置情報θ1を算出する。角度位置情報θ1は、モータ回転軸21の1回転の角度範囲内における角度位置を表す(θ1=0~360[deg])。
 MPU60は、電源管理部50が生成した回転数情報(正弦カウント値CNTs及び余弦カウント値CNTc)と角度位置情報θ1に基づいて、モータ回転軸21の回転角を表す回転角情報θmを算出する。回転角情報θmは、モータ回転軸21の1回転以上のマルチターンの角度範囲における回転角を表す。
 具体的には、イグニションキー11がオフである間、MPU60への電源Vmの供給が停止するので、MPU60は動作を停止する。
 イグニションキー11がオフからオンになった時点で、MPU60は、電源管理部50から回転数情報を読み出し、回転数情報と角度位置情報θ1に基づいて回転角情報θmを算出する。
 イグニションキー11がオンである間、MPU60は、イグニションキー11がオフからオンになった時点以降の角度位置情報θ1の角度変化を、イグニションキー11がオフからオンになった時点に算出した回転角情報θmに累積して、イグニションキー11がオフからオンになった時点以降の回転角情報θmを算出する。
 MPU60は、回転角情報θmに減速ギア3のギア比Rgを乗じて、コラム軸の出力軸2oの回転角θoを算出する。また、トルクセンサ10が検出した操舵トルクThに基づいて、コラム軸に設けられたトーションバーのねじれ角θtを算出し、出力軸2oの回転角θoにねじれ角θtを加算してコラム軸の入力軸2iの回転角θi(操向ハンドル1の操舵角θs)を算出する。
 コントローラ40は、出力軸2oの回転角θoや入力軸2iの回転角θiの回転角情報に基づいて、モータ20により出力軸2oに付与する操舵補助力を制御してもよい。例えば、コントローラ40は、回転角情報に基づいてコラム軸が端当て状態であるか否かを判定してよい。コラム軸が端当て状態である場合には、コントローラ40は、モータ20の駆動電流Iを制限して、操舵補助力を低減するように補正してもよい。また、コントローラ40は、入力軸2iの回転角θiの回転角情報を、入力軸2iが中立位置であるか否かの判定に用いてもよい。
 また例えば、コントローラ40は、回転角情報に基づいて操向ハンドル1が切り増し状態であるか切り戻し状態であるかを判定してもよい。例えばコントローラ40は、コラム軸の回転角とその変化方向に基づいて、切り増し状態であるか切り戻し状態であるかを判定してもよい。またコントローラ40は、コラム軸の回転角と操舵トルクThにもとづいて、切り増し状態であるか切り戻し状態であるかを判定してもよい。
 コントローラ40は、切り増し状態である場合には駆動電流Iを増加補正して操舵補助力を増大させ、切り戻し状態である場合には駆動電流Iを減少補正して操舵補助力を減少させてもよい。MPU60の詳細は、さらに後述する。
 次に、図5を参照して電源管理部50の機能構成の一例を説明する。電源管理部50は、レギュレータ51と、第1電源供給部52と、第2電源供給部53と、第3電源供給部54と、電源制御部56と、回転数検出部58を備える。
 レギュレータ51、第1電源供給部52、第2電源供給部53、第3電源供給部54及び電源制御部56は、特許請求の範囲に記載の「電源供給部」の一例である。
 レギュレータ51は、バッテリ電源Vbatから所定電圧のレギュレータ電源VRを発生させる。レギュレータ電源VRの電圧は例えば6Vである。第1電源供給部52、第2電源供給部53及び第3電源供給部54は、レギュレータ電源VRから電源Vm、第1センサ電源Vs1及び第2センサ電源Vs2をそれぞれ発生させる。
 電源Vm及び第1センサ電源Vs1を共通化して、第1電源供給部52及び第2電源供給部53を単一の電源供給部としてもよい。すなわち、第1センサ33とMPU60等は、1つ又は複数の電源供給部から電源を供給されてもよい。
 電源制御部56は、イグニションキー信号IGに基づいて、第1電源供給部52、第2電源供給部53及び第3電源供給部54へ、それぞれ制御信号Sc1、Sc2及びSc3を出力し、第1電源供給部52、第2電源供給部53及び第3電源供給部54を制御する。
 イグニションキー11がオンである間、電源制御部56は、第1電源供給部52、第2電源供給部53及び第3電源供給部54に、電源Vm、第1センサ電源Vs1及び第2センサ電源Vs2をそれぞれ発生させる。第1電源供給部52は、連続的に電源VmをMPU60等に供給する。第2電源供給部53は、連続的に第1センサ電源Vs1を第1センサ33に供給する。第3電源供給部54は、連続的に第2センサ電源Vs2を第2センサ34及び回転数検出部58に供給する。したがって、MPU60等、第1センサ33、第2センサ34及び回転数検出部58は連続して動作する。
 イグニションキー11がオフである間、電源制御部56は、第1電源供給部52及び第2電源供給部53を停止する。すなわち、電源Vm及び第1センサ電源Vs1の発生を停止させる。これにより、第1センサ33への第1センサ電源Vs1の供給と、MPU60等への電源Vmの供給が止まり、第1センサ33及びMPU60等の動作が停止する。
 一方で、電源制御部56は、第3電源供給部54に、所定周期Tで第2センサ電源Vs2を間欠的に発生させる。これにより、第2センサ電源Vs2が間欠的に第2センサ34及び回転数検出部58に供給される。第2センサ34及び回転数検出部58は所定周期Tで間欠的に動作する。電源制御部56は、イグニションキー11がオフである間の第2センサ電源Vs2の電圧を、イグニションキー11がオンである間よりも低くなるように設定してもよい。
 回転数検出部58は、第2正弦信号sin2及び第2余弦信号cos2に基づいて、モータ回転軸21の回転数を検出し、回転数を表す回転数情報(すなわち正弦カウント値CNTs及び余弦カウント値CNTc)を生成する。
 回転数検出部58は、第1コンパレータ58aと、第2コンパレータ58bと、正弦カウンタ58cと余弦カウンタ58dを備える。
 第1コンパレータ58aは、第2正弦信号sin2と閾値電圧Vrとを比較して、第2正弦信号sin2の正負の符号を示す符号信号Csを生成する。符号信号Csは、第2正弦信号sin2が閾値電圧Vr以上である場合に値「1」を有し、第2正弦信号sin2が閾値電圧Vr未満である場合に値「0」を有する。
 第2コンパレータ58bは、第2余弦信号cos2と閾値電圧Vrとを比較して、第2余弦信号cos2の正負の符号を示す符号信号Ccを生成する。符号信号Ccは、第2余弦信号cos2が閾値電圧Vr以上である場合に値「1」を有し、第2余弦信号cos2が閾値電圧Vr未満である場合に値「0」を有する。
 第2正弦信号sin2と第2余弦信号cos2は、直流オフセット成分Voff2を有するので、例えば、閾値電圧Vrをオフセット電圧Voff2に設定してよい。
 これら符号信号Cs及びCcは、正弦カウンタ58c及び余弦カウンタ58dに入力される。
 図6(a)及び図6(b)を参照する。図6(a)の破線の波形は第2正弦信号sin2を、実線の波形は第2余弦信号cos2の例を示す。
 実施形態の第2正弦信号sin2及び第2余弦信号cos2の振幅Aは、第2センサ電源Vs2の電圧の2分の1(すなわちVs2/2)であり、直流成分が第2センサ電源Vs2の電圧の2分の1だけオフセットされ、0[V]~第2センサ電源Vs2の電圧(すなわちVs2)までの範囲で変化する。したがって、閾値電圧Vrを第2センサ電源Vs2の電圧の2分の1(すなわちVs2/2)に設定する。
 第1コンパレータ58aから出力される第2正弦信号sin2の符号信号Csは、モータ回転軸21の角度位置が0[deg]から180[deg]までの範囲で値「1」を有し、180[deg]から360[deg]までの範囲で値「0」を有する。
 第2コンパレータ58bから出力される第2余弦信号cos2の符号信号Ccは、モータ回転軸21の角度位置が0[deg]から90[deg]まで及び270[deg]~360[deg]までの範囲で値「1」を有し、90[deg]から270[deg]までの範囲で値「0」を有する。
 図5を参照する。正弦カウンタ58c及び余弦カウンタ58dは、第2正弦信号sin2の符号信号Csと第2余弦信号cos2の符号信号Ccに基づいて、第2正弦信号sin2及び第2余弦信号cos2の符号の組み合わせの変化を計数し、正弦カウント値CNTsと余弦カウント値CNTcをそれぞれ算出する。
 図6(c)及び図6(d)を参照する。正弦カウンタ58cは、第2正弦信号sin2の符号が変化する回数を計数した正弦カウント値CNTsを算出し、余弦カウンタ58dは、第2余弦信号cos2の符号が変化する回数を計数した余弦カウント値CNTcを算出する。正弦カウンタ58c及び余弦カウンタ58dは、算出した正弦カウント値CNTsと余弦カウント値CNTcを、例えば不揮発性メモリ(図示せず)に記憶する。
 具体的には、正弦カウンタ58cは、第2余弦信号cos2の符号信号Ccが値「1」を有する間に、第2正弦信号sin2の符号信号Csの値が「0」から「1」に変化すると、正弦カウント値CNTsを1つ増加させ、第2正弦信号sin2の符号信号Csの値が「1」から「0」に変化すると、正弦カウント値CNTsを1つ減少させる。
 また、正弦カウンタ58cは、第2余弦信号cos2の符号信号Ccが値「0」を有する間に、第2正弦信号sin2の符号信号Csの値が「1」から「0」に変化すると、正弦カウント値CNTsを1つ増加させ、第2正弦信号sin2の符号信号Csの値が「0」から「1」に変化すると、正弦カウント値CNTsを1つ減少させる。
 余弦カウンタ58dは、第2正弦信号sin2の符号信号Csが値「0」を有する間に、第2余弦信号cos2の符号信号Ccの値が「0」から「1」に変化すると、余弦カウント値CNTcを1つ増加させ、第2余弦信号cos2の符号信号Ccの値が「1」から「0」に変化すると、余弦カウント値CNTcを1つ減少させる。
 また、余弦カウンタ58dは、第2正弦信号sin2の符号信号Csが値「1」を有する間に、第2余弦信号cos2の符号信号Ccの値が「1」から「0」に変化すると、余弦カウント値CNTcを1つ増加させ、第2余弦信号cos2の符号信号Ccの値が「0」から「1」に変化すると、余弦カウント値CNTcを1つ減少させる。
 これにより、モータ回転軸21が1回転すると正弦カウント値CNTs及び余弦カウント値CNTcは、回転方向に応じて各々2つ増減する。このため、正弦カウント値CNTs及び余弦カウント値CNTcの和(以下「カウント合計値CNT」と表記することがある)は、図6(e)に示すように、モータ回転軸21が1回転する度に回転方向に応じて4つ増減する。したがって正弦カウント値CNTs及び余弦カウント値CNTcの組合せやカウント合計値CNTは、4分の1回転単位の回転数を表す。このため正弦カウント値CNTs及び余弦カウント値CNTcの組合せやカウント合計値CNTは、モータ回転軸21の角度位置が、モータ回転軸21の回転範囲を4分割した4象限のいずれに属するかを示す。
 なお、本実施形態の正弦カウント値CNTs及び余弦カウント値CNTcは例示であり、本発明の回転数情報は、正弦カウント値CNTs及び余弦カウント値CNTcに限定されない。回転数情報は、nを2以上の自然数としてn分の1回転単位の回転数を表す回転数情報であればよい。
 次に、図7を参照してMPU60の機能構成の一例を説明する。MPU60は、角度位置算出部61と、カウント合計部62と、回転数情報補正部63と、回転数算出部64と、ねじれ角算出部65と、回転角情報算出部66と、診断部67と、アシスト制御部68を備える。
 角度位置算出部61、カウント合計部62、回転数情報補正部63、回転数算出部64、ねじれ角算出部65、回転角情報算出部66、診断部67、及びアシスト制御部68の機能は、MPU60やコントローラ40が有する記憶装置(例えば不揮発性メモリなど)に格納されたプログラムをMPU60が実行することによって実現される。
 回転角情報算出部66は、特許請求の範囲に記載の「回転角算出部」及び「操舵角算出部」の一例である。アシスト制御部68は、特許請求の範囲に記載の「モータ制御部」の一例である。
 角度位置算出部61は、第1正弦信号sin1及び第1余弦信号cos1を入力し、これらの信号に含まれる誤差(オフセット、振幅差、位相差など)を補償する。図8(a)は、第1正弦信号sin1及び第1余弦信号cos1の一例を示す。角度位置算出部61は、誤差を補償した後の第1正弦信号sin1及び第1余弦信号cos1に基づいて、モータ回転軸21の1回転の角度範囲内における角度位置を表す角度位置情報θ1を算出する(θ1=0~360[deg])。角度位置情報θ1の一例を図8(b)に示す。
 例えば角度位置算出部61は、第1正弦信号sin1及び第1余弦信号cos1の和(cos1+sin1)と差(cos1-sin1)とに基づいて、角度位置情報θ1を算出してよい。
 同様に、角度位置算出部61は、第2正弦信号sin2及び第2余弦信号cos2を入力し、誤差を補償して、モータ回転軸21の1回転の角度範囲内における角度位置を表す角度位置情報θ2を算出する(θ2=0~360[deg])。
 図7を参照する。カウント合計部62は、MPU60への電源Vmの供給が開始した時点(すなわちイグニションキー11がオフからオンになった時点)で、電源管理部50の正弦カウンタ58c及び余弦カウンタ58dから、それぞれ正弦カウント値CNTs及び余弦カウント値CNTcを読み出す。カウント合計部62は、正弦カウント値CNTs及び余弦カウント値CNTcを加算して、図6(e)に示すようなカウント合計値CNTを算出する。
 ここで、第2正弦信号sin2及び第2余弦信号cos2に含まれる誤差や、コンパレータの閾値電圧Vrの誤差により、正弦カウント値CNTs及び余弦カウント値CNTcに誤差が生じることがある。この結果、カウント合計値CNTにも誤差が生じることがある。
 図7を参照する。回転数情報補正部63は、角度位置情報θ1に基づいてカウント合計値CNTを補正して、カウント合計値CNTに生じた誤差を補償する。回転数情報補正部63は、誤差が補償された補正済カウント合計値CNTaを出力する。回転数情報補正部63の詳細は後述する。
 回転数算出部64は、補正済カウント合計値CNTaを、自然数nで除算した商をモータ回転軸21の回転数Nrとして算出する。自然数nは、モータ回転軸21の1回転当たりのカウント合計値CNTの増減数であり、本実施形態では自然数nは「4」である。回転数Nrの一例を図8(c)に示す。
 ねじれ角算出部65は、トルクセンサ10が検出した操舵トルクThに基づいて、コラム軸に設けられたトーションバーのねじれ角θtを算出する。
 図7を参照する。回転角情報算出部66は、MPU60への電源Vmの供給が開始した時点(すなわちイグニションキー11がオフからオンになった時点)で、回転数算出部64が算出した回転数Nrと、角度位置算出部61が算出した角度位置情報θ1に基づいて、モータ回転軸21の1回転以上のマルチターンの角度範囲における回転角情報θmを算出する。
 回転角情報算出部66は、乗算器66a及び加算器66bにより回転角情報θm=(360[deg]×回転数Nr)+角度位置情報θ1を算出する。回転角情報θmの一例を図8(d)に示す。
 その後、イグニションキー11がオンである間、回転角情報算出部66は、イグニションキー11がオフからオンになった時点以降の角度位置情報θ1の角度変化を、イグニションキー11がオフからオンになった時点に算出した回転角情報θmに累積して、イグニションキー11がオフからオンになった時点以降の回転角情報θmを算出する。
 図7を参照する。乗算器66cは、回転角情報θmに減速ギア3のギア比Rgを乗じて、コラム軸の出力軸2oの回転角θoを算出する。加算器66dは、回転角θoにトーションバーのねじれ角θtを加算してコラム軸の入力軸2iの回転角θi(操向ハンドル1の操舵角θs)を算出する。回転角情報算出部66は、回転角θo及び回転角θiの回転角情報を出力する。
 出力軸2oの回転角θoや入力軸2iの回転角θiの回転角情報は、コントローラ40において、コラム軸が端当て状態であるか否かの判定や、操向ハンドル1が切り増し状態であるか切り戻し状態であるかの判定に用いることができる。コントローラ40は、これらの判定結果に基づいて、モータ20により出力軸2oに付与する操舵補助力を制御してもよい。また、入力軸2iの回転角θiの回転角情報は、入力軸2iが中立位置であるか否かの判定に用いてもよい。
 診断部67は、第1正弦信号sin1及び第1余弦信号cos1に基づいて算出した角度位置情報θ1と、第2正弦信号sin2及び第2余弦信号cos2に基づいて算出した角度位置情報θ2とを比較して、第1センサ33又は第2センサ34に生じた異常を判定する。例えば、角度位置情報θ1と角度位置情報θ2との差分が閾値以上である場合に、第1センサ33又は第2センサ34に異常が生じたと判定する。
 また、診断部67は、正弦カウント値CNTsと余弦カウント値CNTcとの差に基づいて、第2センサ34又は回転数検出部58に生じた異常を判定する。例えば、正弦カウント値CNTsと余弦カウント値CNTcとの差が2以上である場合に、第2センサ34又は回転数検出部58に異常が生じたと判定する。
 診断部67は、判定結果を示す診断信号Sdをアシスト制御部68に出力する。
 アシスト制御部68は、トルクセンサ10で検出された操舵トルクThと車速センサ12で検出された車速Vhとに基づいてモータ20の駆動電流Iを制御する。
 図9に、アシスト制御部68の機能構成の一例を示す。トルクセンサ10で検出された操舵トルクTh及び車速センサ12で検出された車速Vhは、電流指令値Iref1を演算する電流指令値演算部71に入力される。電流指令値演算部71は、入力された操舵トルクTh及び車速Vhに基づいてアシストマップ等を用いて、モータ20に供給する電流の制御目標値である電流指令値Iref1を演算する。
 電流指令値Iref1は加算部72Aを経て電流制限部73に入力され、最大電流を制限された電流指令値Irefmが減算部72Bに入力され、フィードバックされているモータ電流値Imとの偏差ΔI(=Irefm-Im)が演算され、その偏差ΔIが操舵動作の特性改善のためのPI(比例積分)制御部75に入力される。PI制御部75で特性改善された電圧制御指令値VrefがPWM制御部76に入力され、更に駆動部としてのインバータ77を介してモータ20がPWM駆動される。モータ20の電流値Imはモータ電流検出器78で検出され、減算部72Bにフィードバックされる。
 加算部72Aには補償信号生成部74からの補償信号CMが加算されており、補償信号CMの加算によって操舵システム系の特性補償を行い、収れん性や慣性特性等を改善するようになっている。補償信号生成部74は、セルフアライニングトルク(SAT)74-3と慣性74-2を加算部74-4で加算し、その加算結果に更に収れん性74-1を加算部74-5で加算し、加算部74-5の加算結果を補償信号CMとしている。
 図7を参照する。アシスト制御部68は、診断部67から出力された診断信号Sdに基づいて異常の発生を検出した場合に、モータ20の駆動停止や警報出力などの所定の異常対応処理を行う。
 次に、回転数情報補正部63について説明する。上述のとおり、第2正弦信号sin2及び第2余弦信号cos2に含まれる誤差やコンパレータの閾値電圧Vrの誤差によって、回転数算出部64から出力されるカウント合計値CNTに誤差を生じることがある。
 以下、コンパレータの閾値電圧Vrに誤差がある場合を例示して、カウント合計値CNTにより生じる誤差を説明する。
 図10(a)に、第2正弦信号sin2及び第2余弦信号cos2と、第1コンパレータ58a及び第2コンパレータ58bの閾値電圧Vrの例を示す。破線が第2正弦信号sin2を示し、実線が第2余弦信号cos2を示し、2点鎖線が第1コンパレータ58aで第2正弦信号sin2と比較される閾値電圧Vrを示し、1点鎖線が第2コンパレータ58bで第2余弦信号cos2と比較される閾値電圧Vrを示す。
 この例では、第2正弦信号sin2と比較される閾値電圧Vr(2点鎖線)が設計値(理想値)よりも低くなっている。
 この結果、正弦カウント値CNTs及び余弦カウント値CNTcは、図10(b)に示すようになる。破線が正弦カウント値CNTsを示し、実線が余弦カウント値CNTcを示す。
 図示するとおり、モータ回転角度が180、360、540、720、900、1080、…[deg]の時に生じるべき正弦カウント値CNTsの立ち上がり(立ち下がり)タイミングにずれが発生している。
 この結果、図10(c)に示すようにカウント合計値CNTの立ち上がり(立ち下がり)タイミングにもずれが生じる。1点鎖線の囲み線で示すように、モータ回転角度が180、360、540、720、900、1080、…[deg]の時に生じるべきカウント合計値CNTの立ち上がり(立ち下がり)タイミングがずれている。
 このように、第2正弦信号sin2及び第2余弦信号cos2に含まれる誤差やコンパレータの閾値電圧Vrの誤差は、カウント合計値CNTの立ち上がり(立ち下がり)タイミングのずれという形で、カウント合計値CNTに誤差を生じる。
 カウント合計値CNTの立ち上がり(立ち下がり)タイミングがずれると、図11(a)に示すように、回転数算出部64が算出するモータ回転数Nrの立ち上がりタイミング(立ち下がり)が本来のタイミングからずれる。
 このモータ回転数Nrを用いて回転角情報θmを算出すると、図11(b)に示すように、1点鎖線で囲まれた箇所において回転数を誤ってしまい、回転角情報θmに誤差を生じてしまう。
 そこで、回転数情報補正部63は、図10(c)に示したカウント合計値CNTの立ち上がり(立ち下がり)タイミングのずれを補正する。
 図12を参照する。回転数情報補正部63は、第1象限情報算出部63aと、第2象限情報算出部63bと、象限比較部63cと、補正部63dを備える。
 第1象限情報算出部63aは、角度位置情報θ1に基づいて、モータ回転軸21の回転範囲を、上記の自然数nで分割した象限のいずれに、モータ回転軸21の角度位置が属するかを示す第1象限情報Q1を算出する。
 第2象限情報算出部63bは、回転数情報であるカウント合計値CNTに基づいて、上記の自然数nで分割した象限のいずれにモータ回転軸21の角度位置が属するかを示す第2象限情報Q2を算出する。
 上述の通り、自然数nは、モータ回転軸21の1回転当たりのカウント合計値CNTの増減数であり、本実施形態では自然数nは「4」である。第1象限情報Q1及び第2象限情報Q2は、第1象限、第2象限、第3象限及び第4象限のいずれにモータ回転軸21の角度位置が属するかを示す。
 第1象限情報算出部63aは、角度位置情報θ1が第1象限~第n象限の各々の角度範囲の何れかに属するかを閾値判定することによって、第1象限情報Q1を算出してよい。
 第2象限情報算出部63bは、カウント合計値CNTを自然数nで除算したときの剰余(モジュロ:CNT mod n)を、第2象限情報Q2として算出してよい。
 図13(a)に第1象限情報Q1及び第2象限情報Q2の一例を示す。実線は第1象限情報Q1を示し、破線は第2象限情報Q2を示す。図10(c)に示すカウント合計値CNTの上がり(立ち下がり)タイミングのずれにより、1点鎖線で囲まれた箇所において、第1象限情報Q1と第2象限情報Q2に差が発生している。
 図12を参照する。象限比較部63cは、第1象限情報Q1と第2象限情報Q2とを比較した比較結果を示す象限差を出力する。
 例えば象限比較部63cは、次式(1)のとおり第2象限情報Q2が象限を表す数から、第1象限情報Q1が象限を表す数を減算した差を象限差として算出してよい。
 象限差=Q2-Q1  …(1)
 但し、第2象限情報Q2が第1象限を示し且つ第1象限情報Q1が第4象限を示す場合には、次式(2)のとおり減算結果に4(すなわち自然数n)を加えた和を象限差として算出する。
 象限差=Q2-Q1+4, 但しQ1=第4象限、Q2=第1象限 …(2)
 また、第2象限情報Q2が第4象限を示し且つ第1象限情報Q1が第1象限を示す場合には、次式(3)のとおり減算結果から4(すなわち自然数n)を減じた差を象限差として算出する。
 象限差=Q2-Q1-4, 但しQ1=第1象限、Q2=第4象限 …(3)
 図13(b)に、象限差の一例を示す。図13(a)の第1象限情報Q1と第2象限情報Q2に応じて、象限差は「1」、「0」、「-1」のいずれかの値を有する。
 図12を参照する。補正部63dは、象限比較部63cが出力した象限差に応じて、カウント合計値CNTを補正し、補正済カウント合計値CNTaを算出する。
 例えば補正部63dは、カウント合計値CNTから象限差を減算した差を、補正済カウント合計値CNTaとして算出する。
 図13(c)は、図10(c)のカウント合計値CNTから図13(b)の象限差を減じて算出した補正済カウント合計値CNTaを示す。
 図10(c)と図13(c)を比較すると、モータ回転角度が180、360、540、720、900、1080、…[deg]の時の立ち上がり(立ち下がり)タイミングのずれが補正されている。
 補正済カウント合計値CNTaに基づいてモータ回転数Nrを算出すると、図13(d)に示すようになる。図13(d)のモータ回転数Nrは、図8(c)のモータ回転数Nrと同様の結果となり、誤差が補正されていることが分かる。
 (動作)
 次に、実施形態のモータ制御装置の動作について説明する。
 (1)イグニションキーがオフの期間
 電源管理部50の電源制御部56は、第1電源供給部52及び第2電源供給部53を停止し、第3電源供給部54のみを動作させる。この際に電源制御部56は、第3電源供給部54に、所定周期Tで第2センサ電源Vs2を間欠的に発生させる。
 第2センサ電源Vs2が間欠的に第2センサ34及び回転数検出部58に供給される。第2センサ34及び回転数検出部58は所定周期Tで間欠的に動作する。
 回転数検出部58が動作する期間に、正弦カウンタ58cは、第1コンパレータ58aの出力に応じて正弦カウント値CNTsをインクリメント又はデクリメントする。余弦カウンタ58dは、第2コンパレータ58bの出力に応じて余弦カウント値CNTcをインクリメント又はデクリメントする。
 このように、イグニションキー11がオフの期間では、電源管理部50と第2センサ34のみが動作を継続し、その他のMPU60等や第1センサ33は動作を停止している。
 (2)イグニションキーがオフからオンになった時点
 電源制御部56は、第1電源供給部52及び第2電源供給部53の動作を開始する。また、電源制御部56は、第1電源供給部52、第2電源供給部53及び第3電源供給部54に、電源Vm、第1センサ電源Vs1、第2センサ電源Vs2を連続的に発生させる。電源Vm、第1センサ電源Vs1、第2センサ電源Vs2は、MPU60等、第1センサ33、第2センサ34及び回転数検出部58に連続して供給され始める。これにより、イグニションキー11がオンである期間、MPU60等、第1センサ33、第2センサ34及び回転数検出部58は連続して動作する。
 MPU60のカウント合計部62は、イグニションキー11がオフからオンになった時点で、正弦カウンタ58c及び余弦カウンタ58dから、それぞれ正弦カウント値CNTs及び余弦カウント値CNTcを読み出して、カウント合計値CNTを算出する。
 回転数情報補正部63は、カウント合計値CNTを補正して補正済カウント合計値CNTaを出力し、回転数算出部64は、補正済カウント合計値CNTaから、モータ回転軸21の回転数Nrを算出する。
 角度位置算出部61は角度位置情報θ1を算出し、回転角情報算出部66は、回転数Nrと角度位置情報θ1に基づいて、モータ回転軸21の回転角情報θmを算出する。
 (3)イグニションキーがオンの期間
 電源制御部56は、第1電源供給部52、第2電源供給部53及び第3電源供給部54を動作させ、電源Vm、第1センサ電源Vs1、第2センサ電源Vs2を連続的に発生させる。MPU60等、第1センサ33、第2センサ34及び回転数検出部58は連続して動作する。
 回転数検出部58は、第1コンパレータ58a及び第2コンパレータ58bの出力を定期的に計測して、正弦カウント値CNTs及び余弦カウント値CNTcをインクリメント又はデクリメントすることにより、正弦カウント値CNTs及び余弦カウント値CNTc(すなわちモータ回転数の現在値)を保持し続ける。
 角度位置算出部61は角度位置情報θ1を算出する。回転角情報算出部66は、イグニションキー11がオフからオンになった時点以降の角度位置情報θ1の角度変化を、イグニションキー11がオフからオンになった時点に算出した回転角情報θmに累積して、イグニションキー11がオフからオンになった時点以降の回転角情報θmを算出する。
 回転角情報算出部66は、回転角情報θmと、減速ギア3のギア比Rgと、トーションバーのねじれ角θtに基づいて、コラム軸の出力軸2oの回転角θoと、入力軸2iの回転角θiを算出する。
 アシスト制御部68は、トルクセンサ10で検出された操舵トルクThと車速センサ12で検出された車速Vhとに基づいてモータ20の駆動電流Iを制御する。
 診断部67は、角度位置情報θ1と角度位置情報θ2とを比較して、第1センサ33又は第2センサ34に生じた異常を判定する。
 また、診断部67は、正弦カウント値CNTsと余弦カウント値CNTcとの差に基づいて、第2センサ34又は回転数検出部58に生じた異常を判定する。
 アシスト制御部68は、診断部67から出力された診断信号Sdに基づいて異常の発生を検出した場合に、モータ20の駆動停止や警報出力などの所定の異常対応処理を行う。
 (第1実施形態の効果)
 (1)第1センサ33及び第2センサ34は、モータ20のモータ回転軸21の回転に応じた第1センサ信号及び第2センサ信号をそれぞれ出力する。角度位置算出部61は、第1センサ信号に基づいてモータ回転軸21の角度位置を表す角度位置情報を算出する。回転数検出部58は、第2センサ信号に基づいてモータ回転軸21の回転数を検出し回転数を表す回転数情報を出力する。回転角情報算出部66は、角度位置情報と回転数情報に基づいてモータ回転軸21の回転角を表す回転角情報を算出する。
 レギュレータ51、第1電源供給部52、第2電源供給部53、第3電源供給部54及び電源制御部56は、電源スイッチがオンの場合に、第1センサ33、第2センサ34、角度位置算出部61、回転数検出部58及び回転角情報算出部66へ電源を供給し、電源スイッチがオフの場合に、第1センサ33、角度位置算出部61及び回転角情報算出部66への電源供給を停止し、第2センサ34及び回転数検出部58へ電源を供給する。
 これにより、電源スイッチがオフの期間において、第1センサ33、及びその出力信号を処理する角度位置算出部61及び回転角情報算出部66における電力消費を停止することができる。このため、電源スイッチがオフである期間の消費電力を低減できる。
 (2)回転数検出部58は、電源スイッチがオフである間にモータ回転軸21の回転数の検出を継続してよい。回転角情報算出部66は、電源スイッチがオフからオンになった時点で回転数検出部58が出力する回転数情報と角度位置算出部61が算出する角度位置情報とに基づいて、回転角情報を算出してよい。
 これにより、電源スイッチがオフである期間に、外力等によりモータ回転軸21が回されても、電源スイッチがオフからオンになった時点で、マルチターンの角度範囲におけるモータ回転軸21の回転角を算出できる。
 (3)第1象限情報算出部63aは、角度位置情報に基づいて、モータ回転軸21の回転範囲をn分割した象限のいずれにモータ回転軸21の角度位置が属するかを示す第1象限情報を算出する(nは2以上の自然数)。第2象限情報算出部63bは、n分の1回転単位の回転数を表す回転数情報に基づいて、モータ回転軸21の回転範囲をn分割した象限のいずれにモータ回転軸21の角度位置が属するかを示す第2象限情報を算出する。補正部63dは、第1象限情報と第2象限情報との比較結果に応じて回転数情報を補正する。
 補正部63dは、第2象限情報から第1象限情報を減じた差分を回転数情報から減じることにより回転数情報を補正してよい。
 これにより、第2センサ信号に基づいて算出した回転数情報に誤差が発生しても、第1センサ信号に基づいて算出した角度位置情報に基づいて、回転数情報の誤差を補正できる。その結果、回転角情報の精度を向上できる。
 (4)上記自然数nは4であり、第2センサ信号は、モータ回転軸21の回転に応じた第2正弦信号sin2及び第2余弦信号cos2であり、回転数検出部58は、第2正弦信号sin2及び第2余弦信号cos2の符号の組み合わせの変化に基づいて回転数を検出してよい。
 これにより、モータ回転軸21の回転に応じた正弦信号及び余弦信号を出力するセンサを用いて、4分の1回転単位の回転数を表す回転数を検出できる。
 (5)また、実施形態の電動パワーステアリング装置は、車両の操舵軸に設けられたトーションバーを介して連結された入力軸2iと出力軸2oとの捩れ角に基づいて操舵軸に加わる操舵トルクを検出するトルクセンサ10、出力軸2oに減速ギア3を介して連結され操舵軸に操舵補助力を付与するモータ20と、モータ20のモータ回転軸21の回転角情報を算出する回転角情報算出部66と、操舵トルクに基づいてモータ20を駆動制御するアシスト制御部68を備える。回転角情報算出部66は、捩れ角と、減速ギア3の減速比と、回転角情報とに基づいて入力軸2iの操舵角を算出する。
 これにより、操舵軸の操舵角を検出する角度センサを設けることなく、モータ20のモータ回転軸21の回転角情報を用いて、操舵軸の操舵角を検出できる。例えば、モータ20により操舵軸に付与する操舵補助力を、回転角情報算出部66が算出した操舵角に基づいて制御してもよい。
 (第2実施形態)
 次に、第2実施形態の電源管理部50を説明する。第2実施形態の電源管理部50は、第1センサ電源Vs1、第2センサ電源Vs2と、及び電源Vmに加えて、電源管理部50内部のディジタル論理回路を駆動するための内部電源Vp(図14参照)を、イグニションキー信号IGに基づいて、バッテリ14からの供給電力から生成する。
 イグニションキー11がオンである間、電源管理部50は、第1実施形態と同様に電源VmをMPU60等に供給する。
 また、イグニションキー11がオンである間に電源管理部50は、第1センサ電源Vs1及び第2センサ電源Vs2を第1センサ33及び第2センサ34にそれぞれ供給する。イグニションキー11がオンである間の第1センサ電源Vs1及び第2センサ電源Vs2の電圧は、例えば共通の電源電圧Vcc1(例えばVcc1=5[V])であってよい。
 また、電源管理部50は、イグニションキー11がオンであるかオフであるかに関わらず、電源管理部50内部の論理回路に連続的に内部電源Vpを供給する。
 一方で、電源管理部50は、イグニションキー11がオフである間には、第1センサ33及びMPU60等への第1センサ電源Vs1及び電源Vmの供給を停止する。第2センサ34には間欠的に第2センサ電源Vs2を供給する。
 例えば、イグニションキー11がオフである間に間欠的に供給される第2センサ電源Vs2の電圧は、電源電圧Vcc1より低い電源電圧Vcc2であってよい。例えば電源電圧Vcc2は3.3[V]であってよい。
 図6(a)及び図6(b)を参照する。上記のとおり、閾値電圧Vrは第2センサ電源Vs2の電圧の2分の1(すなわちVs2/2)に設定されている。したがって、例えば、イグニションキー11がオンであり第2センサ電源Vs2が5[V]である場合に閾値電圧Vrは2.5[V]に設定され、イグニションキー11がオフであり第2センサ電源Vs2が3.3[V]である場合に閾値電圧Vrは1.65[V]に設定されてよい。
 図14は、第2実施形態の電源管理部50の機能構成の一例のブロック図である。第1実施形態の電源管理部50の構成要素と同様の構成要素には同一の参照符号を付する。第2実施形態の電源管理部50は、内部電源生成部55とセンサ電源判定部57を備える。
 第3電源供給部54は、「センサ電源供給部」の一例である。第1電源供給部52と、第2電源供給部53と、内部電源生成部55は、特許請求の範囲に記載の「電源供給部」の一例である。
 電源制御部56は、イグニションキー信号IGに基づいて動作切替信号Sigを生成して、レギュレータ51、第1電源供給部52、第2電源供給部53及び第3電源供給部54へ出力する。
 動作切替信号Sigは、イグニションキー11がオンであるかオフであるかに応じて異なる値を有する。
 すなわち動作切替信号Sigは、イグニションキー11がオンであるかオフであるかを示す。例えば、イグニションキー11がオンであることを示す値は「1」であってよく、イグニションキー11がオフであることを示す値は「0」であってよい。
 また、電源制御部56は、駆動間隔指示信号Siを生成して第3電源供給部54へ出力する。駆動間隔指示信号Siは、イグニションキー11がオフである間に第2センサに間欠的に電源を供給する間隔、すなわち第2センサ34を駆動する駆動間隔を指示する信号である。電源制御部56の詳細は後述する。
 レギュレータ51は、バッテリ電源Vbatから所定電圧のレギュレータ電源VRを発生させる。第1電源供給部52、第2電源供給部53、第3電源供給部54及び内部電源生成部55は、このレギュレータ電源VRから、電源Vm、第1センサ電源Vs1、第2センサ電源Vs2、内部電源Vpをそれぞれ発生させる。
 レギュレータ51は、動作切替信号Sigに応じてレギュレータ電源VRの電圧を切り替える。例えば、動作切替信号Sigが値「1」である間(すなわちイグニションキー11がオンである間)のレギュレータ電源VRの電圧は6[V]であってよく、動作切替信号Sigが値「0」である間(すなわちイグニションキー11がオフである間)のレギュレータ電源VRの電圧は4[V]であってよい。
 第1電源供給部52は、動作切替信号Sigが値「1」である間、連続的に電源VmをMPU60等に供給する。
 また、動作切替信号Sigが値「1」である間、第2電源供給部53は、連続的に第1センサ電源Vs1を第1センサ33に供給し、第3電源供給部54は、第2センサ電源Vs2を連続的に第2センサ34に供給する。
 この結果、イグニションキー11がオンである間、MPU60等、第1センサ33、第2センサ34は連続して動作する。また、このときの第1センサ電源Vs1及び第2センサ電源Vs2の電圧は、電源電圧Vcc1である。
 一方で、動作切替信号Sigが値「0」である間(すなわちイグニションキー11がオフである間)、第1電源供給部52及び第2電源供給部53は、電源Vm及び第1センサ電源Vs1の生成を停止する。これにより、第1センサ33への第1センサ電源Vs1の供給と、MPU60等への電源Vmの供給が止まり、第1センサ33及びMPU60等の動作が停止する。
 第3電源供給部54は、動作切替信号Sigが値「0」である間、電源電圧Vcc1よりも低い電源電圧Vcc2の第2センサ電源Vs2を生成する。また、第3電源供給部54は、動作切替信号Sigが値「0」である間、駆動間隔指示信号Siにより指示された駆動間隔で第2センサ電源Vs2を間欠的に生成する。
 この結果、電源電圧Vcc1よりも低い電源電圧Vcc2の第2センサ電源Vs2が間欠的に第2センサ34に供給され、第2センサ34が間欠的に動作する。
 内部電源生成部55は、動作切替信号Sigが値「1」であるか「0」であるかに関わらず(イグニションキー11がオンであるかオフであるかに関わらず)、回転数検出部58に内部電源Vpを供給する。
 センサ電源判定部57は、イグニションキー11がオフである期間(すなわち第2センサ電源Vs2が間欠的に生成される期間)に、第2センサ電源Vs2が第2センサ34に供給されているか否かを判定する。センサ電源判定部57は、回転数検出部58を、第2センサ電源Vs2が第2センサ34に供給されたタイミングで作動させるための起動信号Srを生成する。起動信号Srの値は、例えば、第2センサ電源Vs2が供給されている期間に間欠的に「1」となり、第2センサ電源Vs2が供給されていない期間に「0」となる。
 回転数検出部58は、イグニションキー11がオンである間、回転数検出部58は連続的に動作し、イグニションキー11がオフである間、回転数検出部58は、センサ電源判定部57からの起動信号Srの値が「1」であるとき(すなわち第2センサ電源Vs2が第2センサ34に供給されたとき)に動作する。すなわち、回転数検出部58は間欠的に動作する。
 回転数検出部58の第1コンパレータ58a及び第2コンパレータ58bは、イグニションキー11がオフである間、間欠的に動作して、第2正弦信号sin2及び第2余弦信号cos2と閾値電圧Vrとの比較結果に応じて符号信号Cs及びCcを変化させる。第2センサ電源Vs2が第2センサ34に供給されていない期間では、内部電源Vpによって符号信号Cs及びCcの出力を維持する。正弦カウンタ58c及び余弦カウンタ58dは、内部電源Vpを電源として動作し、正弦カウント値CNTsと余弦カウント値CNTcをそれぞれ算出する。
 次に、電源制御部56についてさらに説明する。上述のとおり、電源制御部56は、動作切替信号Sigと駆動間隔指示信号Siとを生成することにより、レギュレータ51と、第1電源供給部52と、第2電源供給部53と、第3電源供給部54と、を制御する。電源制御部56は、作動切替部56aと、駆動間隔変更部56bを備える。
 作動切替部56aは、イグニションキー信号IGに基づいて動作切替信号Sigを生成する。
 駆動間隔変更部56bは、モータ回転軸21の回転が検出されたか否かに基づいて駆動間隔指示信号Siを生成する。上記のとおり、駆動間隔指示信号Siは第2センサ34を間欠的に駆動する駆動間隔を指示する。
 駆動間隔変更部56bは、モータ回転軸21の回転が検出されたか否かに応じて駆動間隔指示信号Siが指示する駆動間隔を伸縮する。
 具体的には、モータ回転軸21の回転が検出されたときに、駆動間隔変更部56bは、駆動間隔指示信号Siが指示する駆動間隔を所定の最大間隔xから短縮し、その後にモータ回転軸21の回転が検出されなくなったときに、駆動間隔を最大間隔xまで延長する。最大間隔xは「第1時間間隔」の一例である。
 このように、モータ回転軸21の回転が検出されたときに第2センサ34を間欠的に駆動する駆動間隔を短縮することで、正弦カウント値CNTs及び余弦カウント値CNTcのカウント漏れを防止できる。
 例えば、駆動間隔変更部56bは、第2正弦信号sin2及び第2余弦信号cos2の変化が検出されたか否かに応じて、駆動間隔指示信号Siを生成してよい。
 具体的には、駆動間隔変更部56bは、第1コンパレータ58aの出力である第2正弦信号sin2の符号信号Csと第2コンパレータ58bの出力である第2余弦信号cos2の符号信号Ccの変化に基づいて駆動間隔指示信号Siを生成する。
 すなわち、駆動間隔変更部56bは、符号信号CsとCcとに変化が生じたときは、駆動間隔指示信号Siが指示する駆動間隔を最大間隔xから短縮する。
 その後、符号信号CsとCcに変化が生じなくなったときは、駆動間隔変更部56bは、駆動間隔指示信号Siが指示する駆動間隔を最大間隔xまで延長する。
 例えば、駆動間隔変更部56bは、第2センサ34に所定の複数回数、間欠的に電源が供給されても、符号信号Cs及びCcのいずれの変化も検出しない場合に、駆動間隔を延長し始めてもよい。
 駆動間隔変更部56bは、符号信号Cs及びCcのうちの一方の信号の変化を検出し、その後に符号信号Cs及びCcのうちの他方の信号の変化を検出したとき、駆動間隔指示信号Siが指示する駆動間隔を段階的に短縮してもよい。
 例えば、符号信号Cs及びCcのうちの一方の変化を検出したとき、駆動間隔変更部56bは所定長T1だけ駆動間隔を短縮し、その後に他方の信号の変化を検出したとき所定長T1だけ駆動時間をさらに短縮する。すなわち短縮量は、T1、(2×T1)と段階的に変化する。
 このように段階的に駆動間隔を短縮することによって、駆動間隔が短くなることによる消費電力の増加を抑制しつつ、正弦カウント値CNTs及び余弦カウント値CNTcのカウント漏れを防止できる。
 図15(a)~図15(c)を参照して、イグニションキー11がオフである間にモータ回転軸21の回転が検出された場合の第2センサ34の駆動間隔の制御の一例を説明する。図15(a)は所定長T1が2.2[ミリ秒]である例を示している。
 当初の駆動間隔は最大間隔xであり、参照符号100で示すように符号信号Csが「0」から「1」に変化すると最大間隔xから(x-2.2)[ミリ秒]に短縮される。
 その後に、参照符号101で示すように符号信号Ccが「0」から「1」に変化すると、(x-2.2)[ミリ秒]から(x-4.4)[ミリ秒]に短縮される。
 例えば、最大間隔xを6.6[ミリ秒]とすると、駆動間隔指示信号Siが指示する駆動間隔は6.6[ミリ秒]から、4.4[ミリ秒]、2.2[ミリ秒]へと段階的に短縮される。
 駆動間隔変更部56bは、駆動間隔指示信号Siが指示する駆動間隔が所定の最小間隔まで短縮されると、符号信号Cs及びCcの変化を検出しても、駆動間隔を最小間隔より短い値に短縮することを禁止する。例えば、図15(a)の例では最小間隔は(x-4.4)[ミリ秒]であってよい。図15(a)の例では、最大間隔xが6.6[ミリ秒]であれば最小間隔は2.2[ミリ秒]となる。
 また、第2センサ34に第2センサ電源Vs2が供給される期間(すなわち第2センサ34が駆動される期間)の時間幅wは固定されていてよい。時間幅wは、例えば220[μ秒]であってよい。
 時間幅wが固定である場合、駆動間隔が最大間隔6.6[ミリ秒]であるときの第2センサ34の駆動期間のデューティ比は、最小間隔2.2[ミリ秒]であるときに比べて1/3となる。
 また、時間幅wが220[μ秒]であり駆動間隔が最小間隔2.2[ミリ秒]である場合のデューティ比は10%となる。
 なお、符号信号Cs及びCcのうちの一方の信号が変化した後、その後に符号信号Cs及びCcのうちの他方の信号が変化する前に、再び符号信号Cs及びCcのうちの一方の信号が変化することがある。
 図15(b)及び図15(c)の例では、参照符号100で示すように符号信号Csが「0」から「1」に変化した後に、符号信号Ccが「0」から「1」に変化せずに、再び符号信号Csが「1」から「0」に戻ることがある。
 このような現象は、例えば、モータ回転軸21が回転して符号信号Cs及びCcのうちの一方の信号が変化した後に、同じ回転方向にモータ回転軸21が90度以上回転せずに、逆方向に回転した場合に発生する。
 このような場合には、モータ回転軸21が速く回転していないため、駆動間隔を大きく短縮しなくても正弦カウント値CNTs及び余弦カウント値CNTcのカウント漏れの虞は少ない。
 そこで、駆動間隔変更部56bは、符号信号Cs及びCcのうちの一方の信号が変化した後、その後に符号信号Cs及びCcのうちの他方の信号が変化する前に、再び符号信号Cs及びCcのうちの一方の信号が変化しても、駆動間隔指示信号Siが指示する駆動間隔を短縮しないように構成してもよい。
 例えば、駆動間隔変更部56bは、符号信号Csの変化が検出されると、符号信号Csが変化したことを示す符号信号Csの変化履歴を記憶する。
 符号信号Csの変化履歴が記憶されている状態で、符号信号Csの変化が検出されても、駆動間隔変更部56bは駆動間隔を段階的に短縮しない。反対に、符号信号Csの変化履歴が記憶されていない状態で、符号信号Csの変化が検出されると、駆動間隔変更部56bは駆動間隔を短縮し、符号信号Csの変化履歴を記憶する。
 また、符号信号Csの変化履歴が記憶されている状態で、符号信号Ccの変化が検出されると、駆動間隔変更部56bは駆動間隔を短縮し、符号信号Ccの変化履歴を記憶する。このとき駆動間隔変更部56bは、符号信号Csの変化が記憶されていない状態に変化履歴をリセットする。
 符号信号Ccの変化履歴が記憶されている状態で、符号信号Ccの変化が検出されても、駆動間隔変更部56bは駆動間隔を段階的に短縮しない。
 反対に、符号信号Ccの変化履歴が記憶されていない状態で、符号信号Ccの変化が検出されると、駆動間隔変更部56bは駆動間隔を短縮し、符号信号Ccの変化履歴を記憶する。
 符号信号Ccの変化履歴が記憶されている状態で、符号信号Csの変化が検出されると、駆動間隔変更部56bは駆動間隔を短縮し、符号信号Csの変化履歴を記憶する。また、符号信号Ccの変化が記憶されていない状態に変化履歴をリセットする。
 符号信号Cs及びCcの変化履歴は、例えば駆動間隔変更部56bが論理回路等によってハードウエア的に実現されている場合には、フリップフロップ回路等によって記憶してよい。
 駆動間隔変更部56bがソフトウエア的に実現されている場合には、符号信号Cs及びCcの変化履歴を、フラグ変数等によって記憶してもよい。
 次に、イグニションキー11がオフである間にモータ回転軸21の回転が検出されない場合の駆動間隔変更部56bの動作について説明する。
 上述のとおり、駆動間隔変更部56bは、駆動間隔指示信号Siが指示する駆動間隔が短縮された後に、符号信号CsとCcに変化が生じなくなったときは、駆動間隔指示信号Siが指示する駆動間隔を最大間隔xまで延長する。
 具体的には、所定の複数回数、第2センサ34に間欠的に電源供給されても符号信号Cs及びCcのいずれの変化も検出しない場合に、駆動間隔指示信号Siが指示する駆動間隔を最大間隔xまで延長する。
 このため、駆動間隔変更部56bは、符号信号Cs又はCcのいずれかの信号の変化が最後に検出されてから、第2センサ34に間欠的に電源が供給された回数である電源供給カウントCNTrを計数する。
 すなわち、駆動間隔変更部56bは、第2センサ34に間欠的に電源が供給される度に電源供給カウントCNTrを1ずつ増加し、符号信号Cs又はCcのいずれかの信号の変化が検出されると、電源供給カウントCNTrを0にリセットする。
 駆動間隔変更部56bは、電源供給カウントCNTrが所定のカウント閾値Cth以上であるか否かを判定する。電源供給カウントCNTrが所定のカウント閾値Cth以上である場合に駆動間隔変更部56bは、電源供給カウントCNTrが1つ増加する度に、駆動間隔指示信号Siが指示する駆動間隔を所定長T2だけ延長する。所定長T2は上記の所定長T1よりも短くてもよく、所定長T1と同じでもよい。
 また、このとき駆動間隔変更部56bは、符号信号Cs、Ccの変化が記憶されていない状態に変化履歴をリセットする。
 駆動間隔変更部56bは、駆動間隔が最大間隔xに至るまで駆動間隔の延長を続け、駆動間隔が最大間隔xに至ると駆動間隔の延長を停止する。
 図16(a)~図16(d)を参照して、イグニションキー11がオフである間にモータ回転軸21の回転が検出されない場合の第2センサ34の駆動間隔の制御の一例を説明する。図16(a)~図16(d)の例では、カウント閾値Cthは4であり、所定長T2は1.1[ミリ秒]である。
 いま、図16(a)に示すように、当初、駆動間隔指示信号Siが指示する駆動間隔が(x-4.4)[ミリ秒]まで短縮されている場合を想定する。
 参照符号102で示すように符号信号Csが変化すると、駆動間隔変更部56bは、電源供給カウントCNTrを0にリセットする。その後、符号信号Cs又はCcのいずれの信号の変化も検出されないと、駆動間隔変更部56bは、第2センサ34に間欠的に電源が供給される度に、電源供給カウントCNTrを1つずつ増加する。
 駆動間隔変更部56bは、電源供給カウントCNTrがカウント閾値Cthである4以上であるか否かを判定する。
 電源供給カウントCNTrが4に到達すると、駆動間隔変更部56bは、駆動間隔指示信号Siが指示する駆動間隔を、所定長T2である1.1[ミリ秒]だけ延長する。これにより駆動間隔は(x-4.4)[ミリ秒]から(x-3.3)[ミリ秒]へ延長する。
 その後に、駆動間隔変更部56bは、電源供給カウントCNTrが1つ増加する毎に、駆動間隔を1.1[ミリ秒]ずつ延長する。
 その後、駆動間隔指示信号Siが指示する駆動間隔が最大間隔xまで延長されると、駆動間隔変更部56bは、駆動間隔の延長を停止する。
 なお、上記の所定長T1、T2、駆動間隔の最大間隔x及び最小間隔、並びにカウント閾値Cthの数値例はあくまでも例示であり、本発明は上記の数値例に限定されない。所定長T1、最大間隔x及び最小間隔の値は、実際の装置構成に応じて適宜設定してよい。
 また、符号信号Cs又はCcの変化を検出した際に、駆動間隔を所定長T1だけ短縮すると駆動間隔が最小間隔よりも短くなる場合には、駆動間隔変更部56bは、駆動間隔の短縮量を所定長T1よりも短くしてよい。同様に、符号信号Cs又はCcの変化を検出しない場合に、駆動間隔を所定長T2だけ延長すると駆動間隔が最大間隔xよりも長くなる場合には、駆動間隔の延長量を所定長T2よりも短くしてよい。
 例えば上記のように所定長T1が2.2[ミリ秒]であり最小間隔が(x-4.4)[ミリ秒]である場合に、駆動間隔の延長途中で駆動間隔が(x-3.3)[ミリ秒]であるタイミングで符号信号Cs又はCcの変化を検出した場合を想定する。
 このとき駆動間隔を所定長T1だけ短縮すると、駆動間隔は(x-5.5)[ミリ秒]となり、最小間隔(x-4.4)[ミリ秒]よりも短くなる。したがって、駆動間隔変更部56bは、所定長T1=2.2[ミリ秒]よりも短い1.1[ミリ秒]だけ駆動間隔を短縮して、駆動間隔を最小間隔(x-4.4)[ミリ秒]に設定する。
 図17を参照して、駆動間隔指示信号Siが指示する駆動間隔の設定方法の一例を説明する。
 ステップS1においてセンサ電源判定部57は、第2センサ電源Vs2の電圧の立ち上がりを検出したか否かを判定する。第2センサ電源Vs2の電圧の立ち上がりを検出した場合(ステップS1:Y)に処理はステップS2へ進む。第2センサ電源Vs2の電圧の立ち上がりを検出しない場合(ステップS1:N)に処理は終了する。この場合に駆動間隔は変化しない。
 ステップS2においてセンサ電源判定部57は、起動信号Srを生成して回転数検出部58に出力する。起動信号Srによって起動した回転数検出部58内では、第1コンパレータ58a及び第2コンパレータ58bが、第2正弦信号sin2の符号信号Cs及び第2余弦信号cos2の符号信号Ccを出力する。
 駆動間隔変更部56bは、回転検出処理を実行して、符号信号Cs及びCcに基づいてモータ回転軸21の回転が検出されたか否かを判定する。
 図18を参照して、ステップS2における回転検出処理の一例を説明する。
 ステップS20において駆動間隔変更部56bは、符号信号Csが変化したか否かを判定する。符号信号Csが変化した場合(ステップS20:Y)に処理はステップS21へ進む。符号信号Csが変化しない場合(ステップS20:N)に処理はステップS25へ進む。
 ステップS21において駆動間隔変更部56bは、符号信号Csが変化したことを示す符号信号Csの変化履歴があるか否かを判定する。変化履歴がある場合(ステップS21:Y)に処理はステップS24へ進む。変化履歴がない場合(ステップS21:N)に処理はステップS22へ進む。
 ステップS22において駆動間隔変更部56bは、符号信号Csが変化したことを示す符号信号Csの変化履歴を記憶する。また、符号信号Ccが変化したことを示す変化履歴を、符号信号Ccの変化が記憶されていない状態にリセットする。
 ステップS23において駆動間隔変更部56bは、モータ回転軸21の回転が検出されたと判定して回転検出処理を終了する。
 一方で、ステップS21において変化履歴がないと判定された場合(ステップS21:N)に駆動間隔変更部56bは、ステップS24においてモータ回転軸21の回転が検出されないと判定して回転検出処理を終了する。
 ステップS20において符号信号Csが変化しない場合(ステップS20:N)に駆動間隔変更部56bは、ステップS25において符号信号Ccが変化したか否かを判定する。
 符号信号Ccが変化した場合(ステップS25:Y)に処理はステップS26へ進む。符号信号Ccが変化ない場合(ステップS25:N)に処理はステップS24へ進む。この場合に駆動間隔変更部56bは、モータ回転軸21の回転が検出されないと判定して回転検出処理を終了する。
 ステップS26において駆動間隔変更部56bは、符号信号Ccが変化したことを示す符号信号Csの変化履歴があるか否かを判定する。
 変化履歴がある場合(ステップS26:Y)に処理はステップS24へ進む。この場合に駆動間隔変更部56bは、モータ回転軸21の回転が検出されないと判定して回転検出処理を終了する。
 符号信号Csの変化履歴がない場合(ステップS26:N)に処理はステップS27へ進む。
 ステップS27において駆動間隔変更部56bは、符号信号Ccが変化したことを示す符号信号Ccの変化履歴を記憶する。また、符号信号Csが変化したことを示す変化履歴を、符号信号Csの変化が記憶されていない状態にリセットする。
 ステップS28において駆動間隔変更部56bは、モータ回転軸21の回転が検出されたと判定して回転検出処理を終了する。
 図17を参照する。モータ回転軸21の回転が検出された場合(ステップS3:Y)に処理はステップS4へ進む。モータ回転軸21の回転が検出されない場合(ステップS3:N)に処理はステップS7へ進む。
 ステップS4において駆動間隔変更部56bは、第2センサ34に間欠的に電源が供給された回数を計数する電源供給カウントCNTrをリセットする。
 ステップS5において駆動間隔変更部56bは、駆動間隔指示信号Siが指示する駆動間隔が既に最小間隔であるか否かを判定する。駆動間隔が最小間隔である場合(ステップS5:Y)に処理は終了する。この場合に駆動間隔は変化しない。
 駆動間隔が最小間隔でない場合(ステップS5:N)に処理はステップS6へ進む。
 ステップS6において駆動間隔変更部56bは、駆動間隔指示信号Siが指示する駆動間隔を短縮する。その後に処理は終了する。
 ステップS3にてモータ回転軸21の回転が検出されない場合(ステップS3:N)に駆動間隔変更部56bは、ステップS7において、駆動間隔指示信号Siが指示する駆動間隔が最大間隔xであるか否かを判定する。駆動間隔が最大間隔xである場合(ステップS7:Y)に処理は終了する。この場合に駆動間隔は変化しない。
 駆動間隔が最大間隔xでない場合(ステップS7:N)に処理はステップS8へ進む。
 ステップS8において駆動間隔変更部56bは、電源供給カウントCNTrがカウント閾値Cth以上であるか否かを判定する。
 電源供給カウントCNTrがカウント閾値Cth以上である場合(ステップS8:Y)に処理はステップS10へ進む。電源供給カウントCNTrがカウント閾値Cth以上でない場合(ステップS8:N)に処理はステップS9へ進む。この場合に駆動間隔は変化しない。
 ステップS9において駆動間隔変更部56bは、電源供給カウントCNTrを1つ増加する。その後に処理は終了する。
 ステップS8にて電源供給カウントCNTrがカウント閾値Cth以上である場合(ステップS8:Y)に駆動間隔変更部56bは、ステップS10において駆動間隔指示信号Siが指示する駆動間隔を延長する。
 ステップS11において駆動間隔変更部56bは、符号信号Cs、Ccの変化が記憶されていない状態に変化履歴をリセットする。その後に、ステップS9を経て処理は終了する。
 (第2実施形態の効果)
 (1)第2センサ34は、モータ20のモータ回転軸21の回転に応じた正弦信号及び余弦信号を含んだ第2センサ信号を出力する。第3電源供給部54は、第2センサ34に第2センサ電源Vs2を供給する。電源制御部56は、イグニションキー11がオンである場合に第2センサ34に連続的に第2センサ電源Vs2を供給し、イグニションキー11がオフである場合に第2センサ34に間欠的に第2センサ電源Vs2を供給するように第3電源供給部54を制御する。第1コンパレータ58a及び第2コンパレータ58bは、正弦信号の変化及び余弦信号の変化を検出する。
 電源制御部56は、第2センサ34に間欠的に第2センサ電源Vs2を供給して第2センサ34を駆動する駆動間隔を、正弦信号及び余弦信号の何れの信号の変化も検出されない場合に第1時間間隔に設定し、正弦信号及び余弦信号の何れか一方の信号のみの変化を検出した場合に第1時間間隔より短い第2時間間隔に設定し、正弦信号及び余弦信号の何れか一方の信号の変化を検出した後に他方の信号の変化を検出した場合には第2時間間隔より短い第3時間間隔に設定する。
 このように、イグニションキー11がオフである場合に第2センサ34を間欠的に駆動するため、電源スイッチであるイグニションキー11がオフである期間の消費電力を低減できる。
 さらに、第2センサ34の出力信号の変化に応じて第2センサ34の駆動間隔を短縮するので、モータ回転軸21の回転の検出漏れを防止できる。
 さらに、第2センサ34の出力信号の変化に応じて駆動間隔を段階的に短縮するので、消費電力の増加を抑制しつつモータ回転軸21の回転の検出漏れを防止できる。
 (2)電源制御部56は、駆動間隔が第1時間間隔よりも短く設定されている期間中に、第2センサ電源Vs2を所定の複数回以上間欠的に供給しても正弦信号及び余弦信号のいずれの変化も検出しない場合に、駆動間隔を第1時間間隔まで段階的に延長してよい。
 このように正弦信号及び余弦信号の検出しない場合に駆動間隔を延長するので消費電力を低減できる。
 また段階的に駆動間隔を延長するので、消費電力の増加を抑制しつつモータ回転軸21の回転の検出漏れを防止できる。
 (3)電源制御部56は、駆動間隔を短縮することにより、第2センサ34に第2センサ電源Vs2が供給される期間のデューティ比を大きくしてもよい。
 例えば、駆動間隔が第3時間間隔であるときのデューティ比は10%であってよい。
 また、例えば駆動間隔が第1時間間隔であるときのデューティ比は、駆動間隔が第3時間間隔であるときのデューティ比の1/3であってもよい。
 これにより、イグニションキー11がオフである期間の消費電力を低減できる。
 (4)電源制御部56は、イグニションキー11がオフである場合にセンサに供給される第2センサ電源Vs2の電圧を、イグニションキー11がオンである場合よりも下げてもよい。
 例えば、イグニションキー11がオフである場合の第2センサ電源Vs2の電圧は3.3Vであり、イグニションキー11がオンである場合の第2センサ電源Vs2の電圧は5Vであってよい。
 これにより、イグニションキー11がオフである期間の消費電力を低減できる。
 (5)第1センサ33は、モータ20のモータ回転軸21の回転に応じた第1センサ信号を出力する。角度位置算出部61は、第1センサ信号に基づいてモータ回転軸21の角度位置を表す角度位置情報を算出する。回転数検出部58は、第2センサ信号に基づいてモータ回転軸21の回転数を検出し回転数を表す回転数情報を出力する。回転角情報算出部66は、角度位置情報と回転数情報に基づいてモータ回転軸21の回転角を表す回転角情報を算出する。
 第2電源供給部53、第1電源供給部52及び内部電源生成部55は、第1センサ33、角度位置算出部61、回転数検出部58及び回転角情報算出部66へ電源を供給する。電源制御部56は、イグニションキー11がオンである場合に第1センサ33、角度位置算出部61及び回転角情報算出部66へ電源を供給し、イグニションキー11がオフの場合に第1センサ33、角度位置算出部61及び回転角情報算出部66への電源を停止するように第2電源供給部53及び第1電源供給部52を制御してよい。
 これにより、イグニションキー11がオフの期間において、第1センサ33、及びその出力信号を処理する角度位置算出部61及び回転角情報算出部66における電力消費を停止することができる。このため、電源スイッチがオフである期間の消費電力を低減できる。
 (第3実施形態)
 次に、第3実施形態の電源管理部50を説明する。第2実施形態と同様に電源管理部50は、イグニションキー11がオンである間には、電源VmをMPU60等に供給する。
 また、電源管理部50は、第1センサ33及び第2センサ34へ第1センサ電源Vs1及び第2センサ電源Vs2をそれぞれ供給する。イグニションキー11がオンである間に、電源管理部50は、第1センサ電源Vs1及び第2センサ電源Vs2として連続的な電力を供給する。イグニションキー11がオンである間の第1センサ電源Vs1及び第2センサ電源Vs2の電圧は、例えば共通の電源電圧Vcc1(例えばVcc1=5[V])であってよい。
 また、イグニションキー11がオンである間、電源管理部50は、電源管理部50内部のディジタル論理回路に対して、連続的な電力である内部電源Vpを供給する。例えば、イグニションキー11がオンである間の内部電源Vpの電圧は、共通の電源電圧Vcc1であってよい。すなわち内部電源Vpの電圧は、第2センサ電源Vs2と等しい電圧であってよい。
 イグニションキー11がオンである間に第2センサ電源Vs2及び内部電源Vpとして供給される連続的な電力は「第1電力」の一例である。
 一方で、イグニションキー11がオフである間には、電源管理部50は、第1センサ33への第1センサ電源Vs1の供給及びMPU60等への電源Vmの供給を停止する。
 また、イグニションキー11がオフである間には、電源管理部50は、第2センサ電源Vs2として間欠的な電力を第2センサ34へ供給する。
 例えば、イグニションキー11がオフである間に間欠的に供給される第2センサ電源Vs2の電圧は、電源電圧Vcc1より低い電源電圧Vcc2であってよい。例えば電源電圧Vcc2は3.3[V]であってよい。
 イグニションキー11がオフである間に第2センサ電源Vs2として供給される間欠的な電力は「第2電力」の一例である。
 図19(a)は、イグニションキー11がオフである間に間欠的に出力される第2センサ電源Vs2の一例の波形を示す。
 イグニションキー11がオフである場合、第2センサ電源Vs2の電圧は、出力周期Tで到来する時間幅Wtの間欠出力期間で電源電圧Vcc2となり、間欠出力期間以外の期間では「0」となる。第2実施形態と同様に、電源管理部50は出力周期Tを動的に変更してよい。出力周期Tは、例えば2.2ミリ秒~6.6ミリ秒であってよい。
 図19(b)は、第2センサ電源Vs2の1回の間欠出力の波形を示す図である。第2センサ電源Vs2が欠的に出力される1回の出力期間の時間幅Wtは、待機期間Pwとアイドル期間Piとサンプリング期間Psの合計である。
 待機期間Pwは、第2センサ電源Vs2の間欠出力の開始直後に発生する電圧変動が第2センサ34の第2センサ信号に与える影響を避けるために、第2センサ信号のサンプリングが禁止される期間である。待機期間Pwは、例えば固定値であってもよく、電源管理部50にプログラム可能な任意の値であってもよい。
 アイドル期間Pi及びサンプリング期間Psの期間長は、電源管理部50にプログラム可能な任意の値である。サンプリング期間Psは、イグニションキー11がオフである場合に電源管理部50が、第2センサ34の第2センサ信号のサンプリングを行う期間として指定される。
 アイドル期間Piの期間長は、サンプリング期間Psの開始時期を指定するためにプログラムでき、サンプリング期間Psの期間長は、第2センサ電源Vs2の間欠出力の終了時期を指定するためにプログラムできる。
 第2センサ電源Vs2の間欠出力の時間幅Wtの長さは、イグニションキー11がオフである間にセンサユニット30及びコントローラ40に流れる暗電流に影響する。すなわちイグニションキー11がオフである間のセンサユニット30及びコントローラ40の消費電力に影響する。時間幅Wtが長いほど暗電流及び消費電力が大きくなり、時間幅Wtが短いほど暗電流及び消費電力を節約する。
 一方で、アイドル期間Pi及びサンプリング期間Psを短くすると、間欠的に駆動される第2センサ34から出力される第2センサ信号を精度よくサンプリングすることが難しくなる。
 例えば、第2センサ電源Vs2の供給が開始すると、コントローラ40が第2センサ34から受信する第2センサ信号の電圧は、「0」から第2センサ34に印加されている磁束に応じた値まで、ある時定数で変化する。第2センサ信号の時定数は、例えば、第2センサ34自体の電気的特性やハーネス35や入力回路のインピーダンス等によって定まる。このため、アイドル期間Piが過小であると本来の第2センサ信号よりも小さな信号をサンプリングしてしまうおそれがある。
 したがって、第2センサ電源Vs2の1回の間欠出力の時間幅Wtは、イグニションキー11がオフである間のセンサユニット30及びコントローラ40に許容される消費電流(暗電流)に応じて設定されることが望ましい。例えば、第2センサ電源Vs2の1回の間欠出力の時間幅Wtは220マイクロ秒以下であってよい。
 また、第2センサ電源Vs2の1回の間欠出力の時間幅Wtは、イグニションキー11がオフである間に間欠的な第2センサ電源Vs2の供給が開始したときの第2センサ信号の時定数に応じて設定されることが望ましい。
 例えば、第2センサ電源Vs2の出力を開始後100マイクロ秒が経過時に第2センサ信号が十分に大きくなるように(例えば、第2センサ電源Vs2が連続して供給される場合の第2センサ信号の99パーセント程度の大きさまで上昇するように)設計することは現実的に可能である。したがって、例えば第2センサ電源Vs2の1回の間欠出力の時間幅Wtは、100マイクロ秒以上であってよい。
 イグニションキー11がオフである間も、電源管理部50は、内部電源Vpとして連続的な電力を供給する。すなわち、電源管理部50は、イグニションキー11がオンであるかオフであるかにかかわらず連続的な電力を内部電源Vpとして供給する。
 ただし、イグニションキー11がオフである間には、電源管理部50は、イグニションキー11がオンである間の電圧よりも低い電圧を有する内部電源Vpを供給する。
 例えば、イグニションキー11がオフである間の内部電源Vpの電圧は、イグニションキー11がオフである間の第2センサ電源Vs2の電圧である電源電圧Vcc2と等しくてもよい。
 イグニションキー11がオフである間に内部電源Vpとして供給される連続的な電力は「第3電力」の一例である。
 次に、図20を参照して電源管理部50の機能構成の一例を説明する。第1実施形態の電源管理部50の構成要素と同様の構成要素には同一の参照符号を付する。
 電源制御部56は、イグニションキー信号IGに基づいて動作切替信号Sigを生成して、レギュレータ51、第1電源供給部52、第2電源供給部53及び第3電源供給部54へ出力する。
 また、電源制御部56は、イグニションキー11がオフである間、第2センサ電源Vs2の間欠出力期間の開始時期を示す周期Tのタイミング信号Stを、第3電源供給部54と回転数検出部58に出力する。
 レギュレータ51は、バッテリ電源Vbatから所定電圧のレギュレータ電源VRを発生させる。第1電源供給部52及び第2電源供給部53は、このレギュレータ電源VRから、電源Vm及び第1センサ電源Vs1を発生させる。また、第3電源供給部54は、レギュレータ電源VRから、第2センサ電源Vs2及び内部電源Vpを発生させる。
 レギュレータ51は、動作切替信号Sigに応じてレギュレータ電源VRの電圧を切り替える。
 例えば、動作切替信号Sigが値「0」である間(すなわちイグニションキー11がオフである間)のレギュレータ電源VRの電圧を、動作切替信号Sigが値「1」である間(すなわちイグニションキー11がオンである間)のレギュレータ電源VRの電圧よりも下げてもよい。これにより、イグニションキー11がオフである間の第2センサ電源Vs2及び内部電源Vpの電圧を、イグニションキー11がオンである間の電圧よりも下げることができる。
 例えば、動作切替信号Sigが値「1」である間のレギュレータ電源VRの電圧は6[V]であってよく、動作切替信号Sigが値「0」である間のレギュレータ電源VRの電圧は4[V]であってよい。
 第1電源供給部52は、動作切替信号Sigが値「1」である間、電源Vmとして連続的な電力をMPU60等に供給し、第2電源供給部53は、第1センサ電源Vs1として連続的な電力を第1センサ33に供給する。
 また、動作切替信号Sigが値「1」である間、第3電源供給部54は、第2センサ電源Vs2として連続的な電力を第2センサ34と回転数検出部58に供給し、内部電源Vpとして連続的な電力を回転数検出部58に供給する。
 この結果、イグニションキー11がオンである間、MPU60等、第1センサ33、第2センサ34は連続して動作する。また、このときの第1センサ電源Vs1、第2センサ電源Vs2及び内部電源Vpの電圧は、電源電圧Vcc1である。
 一方で、動作切替信号Sigが値「0」である間(すなわちイグニションキー11がオフである間)、第1電源供給部52及び第2電源供給部53は、電源Vm及び第1センサ電源Vs1の生成を停止する。これにより、第1センサ33への第1センサ電源Vs1の供給と、MPU60等への電源Vmの供給が止まり、第1センサ33及びMPU60等の動作が停止する。
 第3電源供給部54は、動作切替信号Sigが値「0」である間、電源電圧Vcc2を有する間欠的な電力を第2センサ電源Vs2として出力する。
 この結果、電源電圧Vcc1よりも低い電源電圧Vcc2の第2センサ電源Vs2が間欠的に第2センサ34に供給され、第2センサ34が間欠的に動作する。
 第3電源供給部54は、電源制御部56から出力されるタイミング信号Stに基づくタイミングで、間欠的に第2センサ電源Vs2を出力する。また、第3電源供給部54は、待機期間Pwと、電源管理部50に予めプログラムされたアイドル期間Piとサンプリング期間Psに応じて、第2センサ電源Vs2の1回の間欠出力の時間幅Wtを設定する。
 また、第3電源供給部54は、動作切替信号Sigが値「0」である間、電源電圧Vcc2を有する連続的な電力を内部電源Vpとして生成する。例えば、第3電源供給部54は、電源電圧Vcc2を有する連続的な共通電力をレギュレータ電源VRから生成して、共通電力をそのまま内部電源Vpとして出力する一方で、共通電力をスイッチングして第2センサ電源Vs2を生成してもよい。
 イグニションキー11がオンである間、回転数検出部58は、第2センサ電源Vs2の間欠出力周期Tよりも短い所定のサンプリング周期で回転数情報を生成する。イグニションキー11がオフである間、回転数検出部58は、間欠出力周期Tで第2センサ電源Vs2が第2センサ34に供給されたときに、間欠的に回転数情報を生成する。
 第1コンパレータ58aは、第2センサ電源Vs2を電源として動作し、第2正弦信号sin2と閾値電圧Vrとを比較して、第2正弦信号sin2の正負の符号を示す符号信号Csを生成する。符号信号Csは、第2正弦信号sin2が閾値電圧Vr以上である場合に論理値「1」を有し、第2正弦信号sin2が閾値電圧Vr未満である場合に論理値「0」を有する。
 閾値電圧Vrは、第2センサ電源Vs2の電圧に基づいて設定してよい。例えば、回転数検出部58は、第2センサ電源Vs2やレギュレータ電源VRの電圧を分圧して閾値電圧Vrを生成する分圧抵抗を備えてもよい。
 例えば、イグニションキー11がオンであり第2センサ電源Vs2が5[V]である場合に閾値電圧Vrは2.5[V]に設定され、イグニションキー11がオフであり第2センサ電源Vs2が3.3[V]である場合に閾値電圧Vrは1.65[V]に設定されてよい。
 第2コンパレータ58bは、第2センサ電源Vs2を電源として動作し、第2余弦信号cos2と閾値電圧Vrとを比較して、第2余弦信号cos2の正負の符号を示す符号信号Ccを生成する。符号信号Ccは、第2余弦信号cos2が閾値電圧Vr以上である場合に論理値「1」を有し、第2余弦信号cos2が閾値電圧Vr未満である場合に論理値「0」を有する。
 また、イグニションキー11がオフである間には、第1コンパレータ58a及び第2コンパレータ58bは、第2正弦信号sin2及び第2余弦信号cos2を、電源制御部56から出力される周期Tのタイミング信号Stと、待機期間Pwと、電源管理部50に予めプログラムされたアイドル期間Piと基づき定まる開始時期から始まるサンプリング期間Ps内において取得する。これにより、第1コンパレータ58a及び第2コンパレータ58bは、イグニションキー11がオフである間、間欠的に動作して、第2正弦信号sin2及び第2余弦信号cos2と閾値電圧Vrとの比較結果に応じて符号信号Cs及びCcを変化させる。
 正弦カウンタ58c及び余弦カウンタ58dは、内部電源Vpを電源として動作し、正弦カウント値CNTsと余弦カウント値CNTcをそれぞれ算出する。
 電源管理部50は、第2実施形態と同様に、イグニションキー11がオフである間の第2センサ電源Vs2の間欠出力周期Tを動的に変更してよい。例えば、イグニションキー11がオフである間にモータ回転軸21が回転した場合、その後にモータ回転軸21がさらに速く回転して、回転数検出部58がモータ回転軸21の回転を正しく検出できなくなるおそれがある。一方で、モータ回転軸21が停止し続けている間は、間欠出力周期Tを長くすることによって消費電力を低減できる。
 このため、例えば電源管理部50は、第2正弦信号sin2又は第2余弦信号cos2のいずれか一方の変化を検出した場合に、間欠出力周期Tを短縮してよい。また電源管理部50は、第2正弦信号sin2及び第2余弦信号cos2の不変期間が継続する場合に間欠出力周期Tを延長してよい。
 なお、図19(a)、図19(b)及び図20を参照して説明した電源管理部50の構成例は、MPU60等に電源Vmを供給する第1電源供給部52と、第1センサ33に第1センサ電源Vs1を供給する第2電源供給部53とを備えるが、本発明は、このような構成に限定されない。電源Vmと第1センサ電源Vs1は、イグニションキー11がオンである場合に供給され、イグニションキー11がオフの場合に供給が停止すれば、電源管理部50以外の構成要素から供給されてもよい。
 (第3実施形態の効果)
 (1)第3実施形態の回転角検出装置は、イグニションキー11がオンの場合に電源が供給されて、モータ20のモータ回転軸21の回転に応じた第1センサ信号を出力するとともに、イグニションキー11がオフの場合に電源の供給が停止する第1センサ33と、イグニションキー11がオンの場合に電源が供給されて、第1センサ信号に基づいてモータ回転軸21の角度位置を表す角度位置情報を算出するとともに、イグニションキー11がオフの場合に電源の供給が停止する角度位置算出部61と、モータ回転軸21の回転に応じた正弦信号及び余弦信号を含んだ第2センサ信号を出力する第2センサ34と、イグニションキー11がオンである場合に連続的な第1電力を第2センサ34に供給し、イグニションキー11がオフである場合に第1電力よりも小さな電圧を有する間欠的な第2電力を第2センサ34に供給するとともに、第2センサ信号に基づいてモータ回転軸の回転数を表す回転数情報を出力する電源管理部50と、イグニションキー11がオンの場合に電源が供給されて、角度位置情報と回転数情報に基づいてモータ回転軸21の回転角を表す回転角情報を算出するとともに、イグニションキー11がオフの場合に電源の供給が停止する回転角情報算出部66を備える。
 電源管理部50は、第1電力及び第2電力を生成する第3電源供給部54と、イグニションキー11がオンである場合に第3電源供給部54から供給される第1電力を電源として動作して第1電力の電圧に基づく第1基準電圧と第2センサ信号とを比較し、イグニションキー11がオフである場合に第3電源供給部54から供給される第2電力を電源として動作して第2電力の電圧に基づく第2基準電圧と第2センサ信号とを比較するコンパレータ58a、58bと、コンパレータ58a、58bの出力をカウントすることによりモータ回転軸の回転数を検出するカウンタ58c、58dを備える。
 このように、イグニションキー11がオフである場合に第2センサ34とコンパレータ58a、58bとを間欠的に駆動するとともにこれらの電源電圧を下げるため、イグニションキー11がオフである期間の消費電力を低減できる。
 さらに、間欠的に駆動される第2センサ34の第2センサ信号を取得するコンパレータ58a、58bを、第2センサ34の電源を間欠的に出力する電源管理部50に設けることで、コンパレータ58a、58bの動作を、第2センサ34の間欠駆動に同期させ易くなる。
 また、コンパレータ58a、58bと第2センサ34とを同じ電源で駆動し、第2センサ信号と比較する基準電圧を、第2センサ34の電源の電圧に基づいて設定することで、イグニションキー11のオンオフに伴って第2センサ34への電源電圧が切り替わっても、コンパレータ58a、58bの正常な出力を取得できる。
 (2)第3電源供給部54は、イグニションキー11がオンである場合に第1電力を電源としてカウンタ58c、58dに供給し、イグニションキー11がオフである場合に第2電力と等しい電圧を有する連続的な電力である第3電力を生成して電源としてカウンタ58c、58dに供給してよい。
 イグニションキー11がオフである場合にカウンタ58c、58dの電源電圧を下げるため、イグニションキー11がオフである期間の消費電力を低減できる。
 (3)電源管理部50は、イグニションキー11がオンである場合に第1レギュレータ電圧を有する連続的な電力である第4電力を外部電源から生成するとともに、イグニションキー11がオフである場合に第1レギュレータ電圧よりも低い第2レギュレータ電圧を有する連続的な電力である第5電力を外部電源から生成するレギュレータ51を備え、第3電源供給部54は、第4電力から第1電力を生成し、第5電力から第2電力及び第3電力を生成してよい。
 これにより、レギュレータ51からの出力電圧を切り替えることで、第3電源供給部54の出力電圧を切り替えることができる。
 (4)コンパレータ58a、58bと第3電源供給部54とを、単一の集積回路チップ内に設けてもよい。
 これにより、コンパレータ58a、58bの動作を、第2センサ34の間欠駆動に同期させ易くなる。
 (5)第2電力の1回の間欠出力の時間幅Wtは、イグニションキー11がオフである場合に回転角検出装置に許容される消費電流に応じて設定してもよい。これにより、イグニションキー11がオフである期間の消費電力を低減できる。
 (6)第2電力の1回の間欠出力の時間幅Wtは、間欠的な第2電力が供給されたときの第2センサ信号の時定数に応じて設定してもよい。これにより、時間幅Wtが過小であるために本来の第2センサ信号よりも小さな信号をサンプリングするのを防止できる。
 (7)第2電力の1回の間欠出力の時間幅は、例えば220マイクロ秒以下であってよい。これにより、イグニションキー11がオフである期間の消費電力を低減できる。
 (第4実施形態)
 次に、第4実施形態のセンサユニット30及びコントローラ40を説明する。電源管理部50は、イグニションキー11がオフである間に、第2センサ電源Vs2として間欠的な電力を第2センサ34へ供給するが、センサユニット30がコントローラ40と別体のユニットとして形成され、ハーネス35を介して間欠的な第2センサ電源Vs2が第2センサ34へ供給されると、立ち上がり直後に過渡電流が流れて電源電圧が不安定になったり、電磁ノイズの発生源となることがある。このため、イグニションキー11がオフである間に、第2センサ34から得られる第2センサ信号が不安定となるおそれがある。
 そこで、第4実施形態のセンサユニット30とコントローラ40には、第2センサ電源Vs2の電源ラインに、バイパスコンデンサやデカップリングコンデンサを設ける。バイパスコンデンサは、主に比較的高い周波数のノイズ成分をグラウンドに逃がす機能を果たし、デカップリングコンデンサは、主に比較的低い周波数の電圧変動を吸収して電源系を安定化させる役割を果たすが、同一のコンデンサで両方の機能を果たす場合もある。
 図21は、第4実施形態のセンサユニット30の回路構成の一例の概略を示すブロック図である。センサユニット30は、第1センサ33と、第2センサ34と、第1増幅器36と、第2増幅器37と、第1オフセット電圧出力回路38と、第2オフセット電圧出力回路39と、分圧抵抗Rd11、Rd12、Rd21及びRd22と、を備える。
 センサユニット30側の第1センサ電源Vs1の第1センサ電源ラインVL1と第2センサ電源Vs2の第2センサ電源ラインVL2は、ハーネス35側の第1センサ電源ラインVL1と第2センサ電源ラインVL2と接続されており、コントローラ40から、それぞれ第1センサ電源Vs1及び第2センサ電源Vs2が供給される。また、センサユニット30側の第1センサ接地ラインGND1と第2センサ接地ラインGND2は、ハーネス35側の接地ラインGNDを介して、コントローラ40側の接地ライン(図示せず)に接続されている。
 第2センサ34は、磁気抵抗素子Rs21、Rs22、Rs23及びRs24のブリッジ回路34aと、磁気抵抗素子Rc21、Rc22、Rc23及びRc24のブリッジ回路34bを備える。
 磁気抵抗素子Rs21、Rs22、Rs23及びRs24のピン層の磁化方向と、磁気抵抗素子Rc21、Rc22、Rc23及びRc24のピン層の磁化方向とは、90°ずれている。
 電源端子V2SINを介して第2センサ電源ラインVL2に接続された磁気抵抗素子Rs21及びRs22の接続点と、グラウンド端子G2SINを介して第2センサ接地ラインGND2に接続された磁気抵抗素子Rs23及びRs24の接続点と、の間に第2センサ電源Vs2を供給すると、中点電位点に接続された出力端子SIN2P及びSIN2Nからは、モータ回転軸21の回転に応じた正弦成分を表す差動正弦信号Ss2p及びSs2nが出力される。
 また、電源端子V2COSを介して第2センサ電源ラインVL2に接続された磁気抵抗素子Rc21及びRc22の接続点と、グラウンド端子G2COSを介して第2センサ接地ラインGND2に接続された磁気抵抗素子Rc23及びRc24の接続点と、の間に第2センサ電源Vs2を供給すると、中点電位点に接続された出力端子COS2P及びCOS2Nからは、モータ回転軸21の回転に応じた正弦成分を表す差動余弦信号Sc2p及びSc2nが出力される。
 第1センサ33は、第2センサ34と同一の構成を有しており、電源端子V1SIN及びV1COSが、電源端子V2SIN及びV2COSにそれぞれ対応し、グラウンド端子G1SIN及びG1COSが、グラウンド端子G2SIN及びG2COSにそれぞれ対応し、出力端子SIN1N、SIN1P、COS1N及びCOS1Pが、出力端子SIN2N、SIN2P、COS2N及びCOS2Pにそれぞれ対応し、差動正弦信号Ss1p及びSs1nが差動正弦信号Ss2p及びSs2nにそれぞれ対応し、差動余弦信号Sc1p及びSc1nが差動余弦信号Sc2p及びSc2nにそれぞれ対応する。
 第2増幅器37は、差動正弦信号Ss2p及びSs2nを増幅して、第2オフセット電圧出力回路39から出力されたオフセット電圧Voff2を付与することにより、第2正弦信号sin2を出力する。また、差動余弦信号Sc2p及びSc2nを増幅して、オフセット電圧Voff2を付与することにより、第2余弦信号cos2を出力する。第2増幅器37は、非反転入力端子と反転入力端子に差動正弦信号Ss2p及びSs2nがそれぞれ入力される差動増幅器37aと、非反転入力端子と反転入力端子に差動余弦信号Sc2p及びSc2nがそれぞれ入力される差動増幅器37bを備える。
 第2オフセット電圧出力回路39は、オフセット電圧Voff2をこれら差動増幅器37a及び37bの非反転入力端子に付与する。
 第2オフセット電圧出力回路39は、例えば、分圧抵抗Rd21及びRd22によって第2センサ電源Vs2を分圧して得られた分圧電圧が非反転入力端子に入力される増幅器39aを有するボルテージフォロワ回路であってよい。例えば、分圧抵抗Rd21及びRd22の抵抗値を等しくし、第2センサ電源Vs2を1対1に分圧してよい。この場合、オフセット電圧Voff2は、第2センサ電源Vs2の電圧の2分の1(Vs2/2)となる。
 第1増幅器36及び第1オフセット電圧回路38は、第2増幅器37及び第2オフセット電圧回路39と同一の構成を有する。
 第1増幅器36は、差動正弦信号Ss1p及びSs1nを増幅して、第1オフセット電圧出力回路38から出力されたオフセット電圧Voff1を付与することにより、第1正弦信号sin1を出力する。また、差動余弦信号Sc1p及びSc1nを増幅して、オフセット電圧Voff1を付与することにより、第1余弦信号cos1を出力する。
 第1オフセット電圧出力回路38は、例えば、分圧抵抗Rd11及びRd12によって第1センサ電源Vs1を分圧して得られた分圧電圧が入力されるボルテージフォロワ回路であってよい。オフセット電圧Voff1は、例えば、第1センサ電源Vs1の電圧の2分の1(Vs1/2)であってよい。
 第1正弦信号sin1、第1余弦信号cos1、第2正弦信号sin2、第2余弦信号cos2は、ハーネス35を介してコントローラ40へ伝送される。
 本発明では、第2センサ電源Vs2が連続的に供給されるイグニションキー11がオンの場合と、第2センサ電源Vs2が間欠的に供給されるイグニションキー11がオフの場合との両方で、(1)第2センサ34側の電源安定性と、(2)良好なEMC(Electromagnetic Compatibility)特性と、(3)イグニションキー11がオフの時の暗電流の低減が求められる。
 電源安定性の観点からは、大きな容量のデカップリングコンデンサが望まれる。一方で、第2センサ電源Vs2が間欠的に供給されるイグニションキー11がオフの場合では、高速な信号の立ち上がりと暗電流低減の観点から小さい容量のバイパスコンデンサが望まれる。またEMC特性の観点からは、高周波領域で機能するバイパスコンデンサが望まれる。
 発明者らは、シミュレーションを繰り返すことにより、次の3箇所(1)~(3)にバイパスコンデンサやデカップリングコンデンサを設けることにより、安定的な第2センサ信号が得られることを発見した。
 (1)第2オフセット電圧出力回路39の入力端子
 第2オフセット電圧出力回路39の入力端子と第2センサ接地ラインGND2とを接続するように(すなわち分圧抵抗Rd21、Rd22の接続点と第2センサ接地ラインGND2とを接続するように)デカップリングコンデンサC12を設けることにより、第2センサ電源Vs2が間欠的に供給される場合に、第2センサ電源Vs2がスイッチングされても、その過渡電流による電源の電圧変動は、分圧抵抗Rd21とデカップリングコンデンサC12により形成されるローパスフィルタによって遮断され、第2センサ信号の直流成分の変動が抑制される。この結果、第2センサ信号の安定性を向上できる。
 (2)第2センサ34に近接する位置
 第2センサ34と近接する位置において第2センサ電源ラインVL2と第2センサ接地ラインGND2とを接続するバイパスコンデンサC23及びC24を設けることにより、第2センサ電源Vs2のスイッチングにより生じた電磁ノイズが、第2センサ34に与える影響を抑制し、この結果、第2センサ信号の安定性を向上できる。
 (3)電源管理部50に近接する位置
 電源管理部50と近接する位置においてハーネス35の第2センサ電源ラインVL2と接地ラインGNDとを接続するデカップリングコンデンサC32(図22参照)を設けることにより、第2センサ電源Vs2がスイッチングされたときに発生する電源の電圧変動が、ハーネス35へ進入することを抑制し、ハーネス35により供給される電源を安定化できる。また、ハーネス35から生じるノイズを低減できる。
 なお、イグニションキー11がオンの場合(すなわち第2センサ電源Vs2が連続的に供給されていている場合)においても、上記の3箇所(1)~(3)にバイパスコンデンサやデカップリングコンデンサを接続することにより、外部からのノイズが第2センサ34へ及ぼす影響を抑制できるので、第2センサ信号の安定性を向上できる。
 第2センサ電源Vs2の第2センサ電源ラインVL2と同様に、第1センサ電源Vs1の第1センサ電源ラインVL1に、バイパスコンデンサやデカップリングコンデンサを設けてもよい。本実施形態では、第1オフセット電圧出力回路38の入力端子と第1センサ接地ラインGND1とを接続するデカップリングコンデンサC11(図21参照)を設ける。
 また、第1センサ33と近接する位置において第1センサ電源ラインVL1と第1センサ接地ラインGND1とを接続するバイパスコンデンサC21及びC22を設ける。
 また、電源管理部50と近接する位置においてハーネス35の第1センサ電源ラインVL1と接地ラインGNDとを接続するデカップリングコンデンサC31(図22参照)を設ける。
 さらに、ハーネス35とのコネクタに近接する位置において、センサユニット30側の第1センサ電源ラインVL1と第1センサ接地ラインGND1とを接続する、静電気放電サージ(ESD)対策用のバイパスコンデンサCe1と、センサユニット30側の第2センサ電源ラインVL2と第2センサ接地ラインGND2とを接続する、ESD対策用のバイパスコンデンサCe2を設けてもよい。
 (第4実施形態の効果)
 (1)実施形態の回転角検出装置は、モータ20のモータ回転軸21の回転に応じた正弦信号及び余弦信号を含んだ第1センサ信号と、モータ回転軸21の回転に応じた正弦信号及び余弦信号を含んだ第2センサ信号とを出力するセンサユニット30と、センサユニット30に電源を供給するとともに第1センサ信号及び第2センサ信号に基づいてモータ回転軸21の回転角を表す回転角情報を算出するコントローラ40と、コントローラ40及びセンサユニット30を接続し、コントローラ40からセンサユニット30へ電源を伝送し、センサユニット30からコントローラ40へ第1センサ信号及び第2センサ信号を伝送するハーネス35と、を備える。
 センサユニット30は、ハーネス35を介してコントローラ40から供給された第1センサ電源Vs1により駆動されてモータ回転軸21の回転に応じた正弦信号及び余弦信号を出力する第1センサ33と、第1センサ33の出力信号を増幅して第1センサ信号として出力する第1増幅器36と、電源としてハーネス35を介してコントローラ40から供給された第2センサ電源Vs2により駆動されてモータ回転軸21の回転に応じた正弦信号及び余弦信号を出力する第2センサ34と、第2センサ34の出力信号を増幅して第2センサ信号として出力する第2増幅器37と、ハーネス35を介してコントローラ40から供給された第1センサ電源Vs1及び第2センサ電源Vs2の電圧をそれぞれ分圧する第1分圧抵抗Rd11及びRd12並びに第2分圧抵抗Rd21及びRd22と、第1分圧抵抗Rd11及びRd12並びに第2分圧抵抗Rd21及びRd22の接続点からそれぞれ分圧電圧が入力され第1増幅器36及び第2増幅器37にオフセット電圧を付与する第1オフセット電圧出力回路38及び第2オフセット電圧出力回路39と、第2オフセット電圧出力回路39の入力端子とグラウンドとを接続するデカップリングコンデンサC12と、を備える。
 コントローラ40は、電源スイッチがオンである場合に第1センサ電源Vs1及び第2センサ電源Vs2として連続的な電力を供給し、電源スイッチがオフである場合に第1センサ電源Vs1の供給を停止するとともに第2センサ電源Vs2として間欠的な電力を供給する電源管理部50を備える。
 このようなデカップリングコンデンサC12を設けることにより、第2センサ電源Vs2が間欠的に供給される場合に、第2センサ電源Vs2がスイッチングされても、その過渡電流による電源の電圧変動は、分圧抵抗Rd21とデカップリングコンデンサC12により形成されるローパスフィルタによって遮断され、第2センサ信号の直流成分の変動が抑制される。この結果、第2センサ信号の安定性を向上できる。
 (2)センサユニット30は、第2センサ34と近接する位置において第2センサ電源Vs2の電源ラインとグラウンドとを接続するバイパスコンデンサC23及びC24を備えてもよい。
 このようなバイパスコンデンサC23及びC24を設けることにより、第2センサ電源Vs2のスイッチングにより生じた電磁ノイズが、第2センサ34に与える影響を抑制し、この結果、第2センサ信号の安定性を向上できる。
 (3)コントローラ40は、電源管理部50と近接する位置においてハーネス35の第2センサ電源Vs2の電源ラインとグラウンドとを接続するデカップリングコンデンサC32を備えてもよい。
 このようなデカップリングコンデンサC32を設けることにより、第2センサ電源Vs2がスイッチングされたときに発生する電源の電圧変動が、ハーネス35へ進入することを抑制し、ハーネス35により供給される電源を安定化できる。また、ハーネス35から生じるノイズを低減できる。
 (4)センサユニット30は、第1センサ33と近接する位置において第1センサ電源Vs1の電源ラインとグラウンドとを接続するバイパスコンデンサC21及びC22を備えてもよい。
 このようなバイパスコンデンサC22及びC22を設けることにより、第1センサ電源Vs1のスイッチングにより生じた電磁ノイズが、第1センサ33に与える影響を抑制し、この結果、第1センサ信号の安定性を向上できる。
 なお、上述した第1実施形態~第4実施形態の構成を、適宜組み合わせてもよい。例えば、第3実施形態の電源管理部50の電源制御部56は、第2実施形態の電源制御部56と同様の構成及び方法で、第2センサ34を駆動する駆動間隔を変更してもよい。
 また、例えば第2実施形態のコンパレータ58a、58bは、第3実施形態と同様に、イグニションキー11がオンである場合に第3電源供給部54から供給される連続的な第2センサ電源Vs2を電源として動作して第2センサ電源Vs2の電圧に基づく閾値電圧Vrと第2センサ信号とを比較し、イグニションキー11がオフである場合に第3電源供給部54から供給される間欠的な第2センサ電源Vs2を電源として動作して第2センサ電源Vs2の電圧に基づく閾値電圧Vrと第2センサ信号とを比較し、正弦カウンタ58c及び余弦カウンタ58dは、内部電源Vpを電源として動作してよい。
 また、例えば第1実施形態~第3実施形態のセンサユニット30及びコントローラ40に、第4実施形態と同様のバイパスコンデンサを設けてもよい。
 (変形例)
 以上の説明では、本発明の回転角検出装置を、いわゆる上流アシスト方式と呼ばれるコラムアシスト方式の電動パワーステアリング装置に適用する例について記載したが、本発明の回転角検出装置は、いわゆる下流アシスト方式の電動パワーステアリング装置に適用してもよい。以下、下流アシスト方式の電動パワーステアリング装置の例として、シングルピニオンアシスト方式、ラックアシスト方式、デュアルピニオンアシスト方式の電動パワーステアリング装置に、本発明の回転角検出装置を適用する構成例を説明する。
 なお、下流アシスト方式の場合には、防水対策のためモータ20、センサユニット30、コントローラ40は別体ではなく、図23~図25の破線で示すように一体構造のMCU(Motor Control Unit)としてよい。この場合、上記の第1センサ33と第2センサ34となるセンサICは、コントローラ40の回路基板に内蔵してよい。
 図23は、シングルピニオンアシスト方式の電動パワーステアリング装置に、本発明の回転角検出装置を適用する構成例を示す。コラム軸2i及び2o並びにこれらを連結するトーションバー(図示せず)に代えてコラム軸2を備える。操向ハンドル1は、コラム軸2を経て、インターミディエイトシャフトの一方のユニバーサルジョイント4Aと連結されている。また、他方のユニバーサルジョイント4Bには、トーションバー(図示せず)の入力側シャフト4Cが連結されている。
 ピニオンラック機構5は、ピニオン軸5A、ピニオンギア5B及びラックバー5Cを備える。入力側シャフト4Cとピニオンラック機構5とは、入力側シャフト4Cとピニオンラック機構5との間の回転角のずれによってねじれるトーションバー(図示せず)によって連結されている。トルクセンサ10は、トーションバーのねじれ角を、操向ハンドル1の操舵トルクThとして電磁気的に測定する。
 ピニオン軸5Aには、操向ハンドル1の操舵力を補助するモータ20が減速ギア3を介して連結されており、センサユニット30は、上記実施形態と同様にモータ20のモータ回転軸の回転角情報を算出する。
 図24は、ラックアシスト方式の電動パワーステアリング装置に、本発明の回転角検出装置を適用する構成例を示す。ラックバー5Cの外周面には螺旋溝(図示せず)が形成され、これと同様のリードの螺旋溝(図示せず)がナット7Aの内周面にも形成されている。これら螺旋溝によって形成される転動路に複数の転動体が配置されることによりボールネジが形成されている。
 操向ハンドル1の操舵力を補助するモータ20の回転軸20aに連結する駆動プーリ7Bとナット7Aに連結する従動プーリ7Cにはベルト7Dが巻きかけられており、回転軸20aの回転運動がラックバー5Cの直進運動に変換される。センサユニット30は、上記実施形態と同様にモータ20のモータ回転軸の回転角情報を算出する。
 図25は、デュアルピニオンアシスト方式の電動パワーステアリング装置に、本発明の回転角検出装置を適用する構成例を示す。デュアルピニオンアシスト方式の電動パワーステアリング装置は、ピニオン軸5A、ピニオンギア5Bに加えて、第2ピニオン軸8A、第2ピニオンギア8Bを有し、ラックバー5Cは、ピニオンギア5Bと噛合する第1ラック歯(図示せず)と、第2ピニオンギア8Bと噛合する第2ラック歯(図示せず)を有する。
 第2ピニオン軸8Aには、操向ハンドル1の操舵力を補助するモータ20が減速ギア3を介して連結されており、センサユニット30は、上記実施形態と同様にモータ20のモータ回転軸の回転角情報を算出する。
 1…操向ハンドル、2i…コラム軸(入力軸)、2o…コラム軸(出力軸)、3…減速ギア、4A、4B…ユニバーサルジョイント、5…ピニオンラック機構、6…タイロッド、10…トルクセンサ、11…イグニションキー(電源スイッチ)、12…車速センサ、14…バッテリ、20…モータ、30…センサユニット、33…第1センサ、34…第2センサ、35…ハーネス、36…第1増幅器、37…第2増幅器、38…第1オフセット電圧出力回路、39…第2オフセット電圧出力回路、40…コントローラ、50…電源管理部、51…レギュレータ、52…第1電源供給部、53…第2電源供給部、54…第3電源供給部、55…内部電源生成部、56…電源制御部、57…センサ電源判定部、58…回転数検出部、58a…第1コンパレータ、58b…第2コンパレータ、58c…正弦カウンタ、58d…余弦カウンタ、60…マイクロプロセッサ、61…角度位置算出部、62…カウント合計部、63…回転数情報補正部、63a…第1象限情報算出部、63b…第2象限情報算出部、63c…象限比較部、63d…補正部、64…回転数算出部、65…角算出部、66…回転角情報算出部、66a、66c…乗算器、66b、66d…加算器、67…診断部、68…アシスト制御部、C11、C12、C31、C32…デカップリングコンデンサ、C21~C24、Ce1、Ce2…バイパスコンデンサ

Claims (6)

  1.  モータのモータ回転軸の回転に応じた第1センサ信号及び第2センサ信号をそれぞれ出力する第1センサ及び第2センサと、
     前記第1センサ信号に基づいて前記モータ回転軸の角度位置を表す角度位置情報を算出する角度位置算出部と、
     前記第2センサ信号に基づいて前記モータ回転軸の回転数を検出し前記回転数を表す回転数情報を出力する回転数検出部と、
     前記角度位置情報と前記回転数情報に基づいて前記モータ回転軸の回転角を表す回転角情報を算出する回転角算出部と、
     電源スイッチがオンの場合に、前記第1センサ、前記第2センサ、前記角度位置算出部、前記回転数検出部及び前記回転角算出部へ電源を供給し、前記電源スイッチがオフの場合に、前記第1センサ、前記角度位置算出部及び前記回転角算出部への電源供給を停止し、前記第2センサ及び前記回転数検出部へ電源を供給する電源供給部と、
     を備えることを特徴とする回転角検出装置。
  2.  前記回転数検出部は、前記電源スイッチがオフである間に前記モータ回転軸の回転数の検出を継続し、
     前記回転角算出部は、前記電源スイッチがオフからオンになった時点で前記回転数検出部が出力する前記回転数情報と前記角度位置算出部が算出する前記角度位置情報とに基づいて、前記回転角情報を算出することを特徴とする請求項1に記載の回転角検出装置。
  3.  前記角度位置情報に基づいて、前記モータ回転軸の回転範囲を複数分割した象限のいずれに前記モータ回転軸の角度位置が属するかを示す第1象限情報を算出する第1象限情報算出部と、
     前記複数分の1回転単位の回転数を表す前記回転数情報に基づいて、前記象限のいずれに前記モータ回転軸の角度位置が属するかを示す第2象限情報を算出する第2象限情報算出部と、
     前記第1象限情報と前記第2象限情報との比較結果に応じて、前記回転数情報を補正する補正部と、
     を備えることを特徴とする請求項1又は2に記載の回転角検出装置。
  4.  前記補正部は、前記第2象限情報から前記第1象限情報を減じた差分を前記回転数情報から減じることにより前記回転数情報を補正することを特徴とする請求項3に記載の回転角検出装置。
  5.  前記複数は4であり、
     前記第2センサ信号は、前記モータ回転軸の回転に応じた正弦信号と余弦信号であり、
     前記回転数検出部は、前記正弦信号および前記余弦信号の符号の組み合わせの変化に基づいて前記回転数を検出することを特徴とする請求項3又は4に回転角検出装置。
  6.  車両の操舵軸に設けられたトーションバーを介して連結された入力軸と出力軸との捩れ角に基づいて操舵軸に加わる操舵トルクを検出するトルクセンサと、
     前記車両の操舵機構に操舵補助力を付与するモータと、
     前記モータのモータ回転軸の回転角情報を算出する請求項1~5のいずれか一項に記載の回転角検出装置と、
     前記操舵トルクに基づいて前記モータを駆動制御するモータ制御部と、
     前記捩れ角と、前記減速ギアの減速比と、前記回転角情報とに基づいて、前記入力軸の操舵角を算出する操舵角算出部と、
     を備えることを特徴とする電動パワーステアリング装置。
PCT/JP2021/014710 2020-04-08 2021-04-07 回転角検出装置及び電動パワーステアリング装置 WO2021206109A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21783136.1A EP3995386B1 (en) 2020-04-08 2021-04-07 Rotation angle detection device and electric power steering device
JP2022514101A JP7334853B2 (ja) 2020-04-08 2021-04-07 回転角検出装置及び電動パワーステアリング装置
CN202180004886.5A CN114206708B (zh) 2020-04-08 2021-04-07 旋转角检测装置以及电动助力转向装置
US17/634,629 US20220297757A1 (en) 2020-04-08 2021-04-07 Rotation angle detection device and electric power steering device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020069997 2020-04-08
JP2020-069997 2020-04-08
JP2020-114168 2020-07-01
JP2020114168 2020-07-01
JP2021-016704 2021-02-04
JP2021016704 2021-02-04

Publications (1)

Publication Number Publication Date
WO2021206109A1 true WO2021206109A1 (ja) 2021-10-14

Family

ID=77666465

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2021/014710 WO2021206109A1 (ja) 2020-04-08 2021-04-07 回転角検出装置及び電動パワーステアリング装置
PCT/JP2021/014712 WO2021206111A1 (ja) 2020-04-08 2021-04-07 回転角検出装置、電動パワーステアリング装置及び電動パワーステアリング装置の制御方法
PCT/JP2021/014711 WO2021206110A1 (ja) 2020-04-08 2021-04-07 回転角検出装置、電動パワーステアリング装置及び電動パワーステアリング装置の制御方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/014712 WO2021206111A1 (ja) 2020-04-08 2021-04-07 回転角検出装置、電動パワーステアリング装置及び電動パワーステアリング装置の制御方法
PCT/JP2021/014711 WO2021206110A1 (ja) 2020-04-08 2021-04-07 回転角検出装置、電動パワーステアリング装置及び電動パワーステアリング装置の制御方法

Country Status (5)

Country Link
US (3) US20220297757A1 (ja)
EP (3) EP3995386B1 (ja)
JP (3) JP7010414B1 (ja)
CN (3) CN114270133A (ja)
WO (3) WO2021206109A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3995386B1 (en) 2020-04-08 2024-04-17 NSK Ltd. Rotation angle detection device and electric power steering device
CN116648598A (zh) * 2020-12-11 2023-08-25 马渊马达株式会社 旋转检测器的控制装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271372A (ja) * 2006-03-30 2007-10-18 Furukawa Electric Co Ltd:The 回転センサ
JP2008180698A (ja) * 2006-12-28 2008-08-07 Harmonic Drive Syst Ind Co Ltd 磁気式アブソリュートエンコーダ
EP2050658A1 (de) 2007-10-17 2009-04-22 Continental Automotive GmbH Lenksystem
WO2010082086A1 (en) * 2009-01-13 2010-07-22 Aktiebolaget Skf Absolute rotation angle sensing device, electric power assisted steering system comprising such a rotation angle sensing device and method for sensing an absolute angle
JP2012046047A (ja) * 2010-08-26 2012-03-08 Mitsubishi Electric Corp 電動パワーステアリングの制御装置
US20130205917A1 (en) * 2010-05-14 2013-08-15 Trw Automotive Gmbh Sensor Assembly for Motor Vehicle Steering Systems
JP2016179760A (ja) * 2015-03-24 2016-10-13 株式会社ショーワ 電動パワーステアリング装置、操舵角算出方法
WO2017026261A1 (ja) * 2015-08-11 2017-02-16 日本精工株式会社 モータ制御装置、電動パワーステアリング装置及び車両
JP2017195991A (ja) * 2016-04-25 2017-11-02 株式会社ニューギン 遊技機
JP2018510353A (ja) * 2015-03-31 2018-04-12 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft 回転角度測定装置および回転角度測定方法
JP2018132353A (ja) * 2017-02-14 2018-08-23 日本電産サンキョー株式会社 ロータリエンコーダ及びその絶対角度位置検出方法

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04353711A (ja) * 1991-05-31 1992-12-08 Mitsubishi Electric Corp 位置検出装置
JP3601405B2 (ja) * 2000-03-16 2004-12-15 株式会社デンソー 回転センサ信号処理ic
JP2004239737A (ja) * 2003-02-05 2004-08-26 Tokai Rika Co Ltd 回転角度検出装置及び回転角度検出方法
DE10334869B3 (de) * 2003-07-29 2004-09-16 Tech3 E.K. Drehwinkelsensor
JP4342914B2 (ja) 2003-11-10 2009-10-14 ヤマハ発動機株式会社 位置検出装置および同装置を備えた単軸ロボット、表面実装機、部品試験装置、スカラ型ロボット
JP2006335252A (ja) * 2005-06-02 2006-12-14 Jtekt Corp 電動パワーステアリング装置
DE112008003576T5 (de) * 2008-01-04 2011-01-20 Allegro Microsystems, Inc., Worcester Verfahren und Vorrichtung für einen Winkelsensor
JP5125521B2 (ja) * 2008-01-10 2013-01-23 日本精工株式会社 回転角検出装置
US8224529B2 (en) 2008-06-20 2012-07-17 Ford Global Technologies Self powered steering wheel angle sensor
TWI471531B (zh) * 2008-08-26 2015-02-01 尼康股份有限公司 Encoder system, signal processing method
JP5339094B2 (ja) * 2010-11-10 2013-11-13 日本精工株式会社 電動パワーステアリング装置
JP5389101B2 (ja) 2011-04-26 2014-01-15 三菱電機株式会社 モータ制御装置
US9475520B2 (en) * 2011-11-24 2016-10-25 Toyota Jidosha Kabushiki Kaisha Rotational-angle detection device and electric power-steering device provided with rotational-angle detection device
JP5739825B2 (ja) * 2012-01-04 2015-06-24 日立オートモティブシステムズ株式会社 Rd変換器の診断装置、ステアリングシステム、パワートレインシステム
JP5958572B2 (ja) * 2014-02-27 2016-08-02 株式会社デンソー 回転角検出装置、および、これを用いた電動パワーステアリング装置
EP2924870B1 (en) 2014-03-24 2021-10-13 maxon international ag Method for determining the position of a rotor of a polyphase motor
US11125768B2 (en) 2014-06-17 2021-09-21 Infineon Technologies Ag Angle based speed sensor device
JP6460927B2 (ja) * 2015-06-29 2019-01-30 日立オートモティブシステムズ株式会社 電動パワーステアリング装置の制御装置及び電動パワーステアリング装置
EP3163256B1 (en) * 2015-10-26 2019-12-04 TE Connectivity Germany GmbH Magnetic angle sensor comprising two concentric rings of coprime magnetic spiral portions
JP6481630B2 (ja) 2016-01-28 2019-03-13 株式会社デンソー 電流調整回路
US10328972B2 (en) * 2016-04-06 2019-06-25 Denso Corporation Rotation detecting apparatus and electric power steering apparatus using the same
JP6672993B2 (ja) 2016-04-26 2020-03-25 株式会社ジェイテクト 操舵制御装置
WO2017195601A1 (ja) * 2016-05-13 2017-11-16 日本精工株式会社 モータ駆動制御装置、電動パワーステアリング装置及び車両
JP6688166B2 (ja) 2016-06-14 2020-04-28 オークマ株式会社 位置検出装置
CN110383672A (zh) * 2017-03-03 2019-10-25 日本电产株式会社 马达控制方法、马达控制系统以及电动助力转向系统
JP6555289B2 (ja) 2017-03-13 2019-08-07 株式会社デンソー 回転センサ
JP2018155545A (ja) * 2017-03-16 2018-10-04 アズビル株式会社 検出装置及び検出方法
US11114969B2 (en) 2017-03-29 2021-09-07 Nidec Corporation Power converter, motor driving unit, and electric power steering device
JP2018179644A (ja) * 2017-04-07 2018-11-15 日本精工株式会社 電動パワーステアリング装置用の回転角度検出器、トルクアングルセンサ、トルクセンサ及びモータ駆動制御装置、電動パワーステアリング装置並びに車両
JP6885171B2 (ja) * 2017-04-13 2021-06-09 株式会社ジェイテクト 車両制御装置
JP6747367B2 (ja) * 2017-04-18 2020-08-26 株式会社デンソー 舵角検出装置、および、これを用いた電動パワーステアリング装置
EP3476434A1 (en) 2017-10-26 2019-05-01 Koninklijke Philips N.V. Brachytherapy afterloader device
US11365985B2 (en) * 2017-11-17 2022-06-21 Mitsubishi Electric Cornoration Rotation detection device
JP7005341B2 (ja) * 2017-12-27 2022-01-21 株式会社Soken トルク検出装置
US20190346287A1 (en) * 2018-05-09 2019-11-14 Jtekt Corporation Angle computing device and computing device
JP7458144B2 (ja) * 2018-06-08 2024-03-29 株式会社ジェイテクト 角度演算装置
JP2019196971A (ja) 2018-05-09 2019-11-14 株式会社ジェイテクト 角度演算装置
JP7225567B2 (ja) * 2018-05-22 2023-02-21 株式会社ジェイテクト 角度演算装置
JP2019209722A (ja) * 2018-05-31 2019-12-12 株式会社ジェイテクト ステアリング装置の制御装置
US11767053B2 (en) 2018-12-27 2023-09-26 Hitachi Astemo, Ltd. Electronic control device and electric power steering device
EP3916361B1 (en) 2019-01-22 2023-05-10 Mitsubishi Electric Corporation Rotation angle detection device, and electric power steering device including same rotation angle detection device
EP3995386B1 (en) 2020-04-08 2024-04-17 NSK Ltd. Rotation angle detection device and electric power steering device
JP7468214B2 (ja) 2020-07-21 2024-04-16 株式会社デンソー 回転電機のロータ

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271372A (ja) * 2006-03-30 2007-10-18 Furukawa Electric Co Ltd:The 回転センサ
JP2008180698A (ja) * 2006-12-28 2008-08-07 Harmonic Drive Syst Ind Co Ltd 磁気式アブソリュートエンコーダ
EP2050658A1 (de) 2007-10-17 2009-04-22 Continental Automotive GmbH Lenksystem
WO2010082086A1 (en) * 2009-01-13 2010-07-22 Aktiebolaget Skf Absolute rotation angle sensing device, electric power assisted steering system comprising such a rotation angle sensing device and method for sensing an absolute angle
US20130205917A1 (en) * 2010-05-14 2013-08-15 Trw Automotive Gmbh Sensor Assembly for Motor Vehicle Steering Systems
JP2012046047A (ja) * 2010-08-26 2012-03-08 Mitsubishi Electric Corp 電動パワーステアリングの制御装置
JP2016179760A (ja) * 2015-03-24 2016-10-13 株式会社ショーワ 電動パワーステアリング装置、操舵角算出方法
JP2018510353A (ja) * 2015-03-31 2018-04-12 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft 回転角度測定装置および回転角度測定方法
WO2017026261A1 (ja) * 2015-08-11 2017-02-16 日本精工株式会社 モータ制御装置、電動パワーステアリング装置及び車両
JP2017195991A (ja) * 2016-04-25 2017-11-02 株式会社ニューギン 遊技機
JP2018132353A (ja) * 2017-02-14 2018-08-23 日本電産サンキョー株式会社 ロータリエンコーダ及びその絶対角度位置検出方法

Also Published As

Publication number Publication date
JP7010414B1 (ja) 2022-01-26
EP3919871A4 (en) 2022-04-13
EP3919871B1 (en) 2023-01-11
JPWO2021206109A1 (ja) 2021-10-14
JP7334853B2 (ja) 2023-08-29
WO2021206110A1 (ja) 2021-10-14
JPWO2021206110A1 (ja) 2021-10-14
JP6954507B1 (ja) 2021-10-27
EP3995386A4 (en) 2023-01-11
EP3919356A1 (en) 2021-12-08
CN114206708A (zh) 2022-03-18
US11597436B2 (en) 2023-03-07
EP3995386A1 (en) 2022-05-11
EP3919356A4 (en) 2022-04-13
US11511803B2 (en) 2022-11-29
CN114269633A (zh) 2022-04-01
US20220297757A1 (en) 2022-09-22
US20220089216A1 (en) 2022-03-24
US20220041215A1 (en) 2022-02-10
CN114206708B (zh) 2024-01-05
EP3919356B1 (en) 2023-01-04
JPWO2021206111A1 (ja) 2021-10-14
CN114270133A (zh) 2022-04-01
EP3919871A1 (en) 2021-12-08
EP3995386B1 (en) 2024-04-17
WO2021206111A1 (ja) 2021-10-14

Similar Documents

Publication Publication Date Title
JP5789911B2 (ja) 回転角検出装置及び電動パワーステアリング装置
JP6954507B1 (ja) 回転角検出装置、電動パワーステアリング装置及び電動パワーステアリング装置の制御方法
JP6455111B2 (ja) 回転角検出装置
US20190346287A1 (en) Angle computing device and computing device
KR20060124577A (ko) 전동식 파워 스티어링 장치용 제어 장치
US10970147B2 (en) Electronic control device and operation control method therefor
US7122983B2 (en) Rotating angle detecting apparatus and electric power steering apparatus
JP2017052448A (ja) 操舵制御装置
JP7081386B2 (ja) 回転検出装置、および、これを用いた電動パワーステアリング装置
WO2021065761A1 (ja) 回転電機制御装置
JP2018177005A (ja) 車両制御装置
CN110553672A (zh) 旋转检测装置
JP2022160776A (ja) 回転角検出装置
JP2019144056A (ja) 回転角検出装置、モータ制御装置、電動パワーステアリング装置、及び回転角検出方法
JP6149271B2 (ja) 角度センサ、トルクセンサおよびパワーステアリング装置
EP2743647A1 (en) Rotation angle detection device
JP2019207203A (ja) 回転検出装置、および、これを用いた電動パワーステアリング装置
JPH1137865A (ja) トルクセンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21783136

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022514101

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021783136

Country of ref document: EP

Effective date: 20220207

NENP Non-entry into the national phase

Ref country code: DE