WO2021203216A1 - 紫外光固化装置 - Google Patents

紫外光固化装置 Download PDF

Info

Publication number
WO2021203216A1
WO2021203216A1 PCT/CN2020/000261 CN2020000261W WO2021203216A1 WO 2021203216 A1 WO2021203216 A1 WO 2021203216A1 CN 2020000261 W CN2020000261 W CN 2020000261W WO 2021203216 A1 WO2021203216 A1 WO 2021203216A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
module
ultraviolet curing
curing device
ultraviolet
Prior art date
Application number
PCT/CN2020/000261
Other languages
English (en)
French (fr)
Inventor
谢宏兴
王楚恒
Original Assignee
正扬科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 正扬科技有限公司 filed Critical 正扬科技有限公司
Publication of WO2021203216A1 publication Critical patent/WO2021203216A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F23/00Devices for treating the surfaces of sheets, webs, or other articles in connection with printing
    • B41F23/04Devices for treating the surfaces of sheets, webs, or other articles in connection with printing by heat drying, by cooling, by applying powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0466Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases the gas being a non-reacting gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating

Definitions

  • the present disclosure relates to a curing device, particularly an ultraviolet light curing device.
  • UV-LEDs ultraviolet light emitting diodes
  • UV-LEDs ultraviolet light emitting diodes
  • Another option is to suppress oxygen by injecting gas (for example, nitrogen, helium, argon, carbon dioxide, etc.). Similarly, inserting gas in the entire work space will greatly increase the cost, and it is not cost-effective.
  • gas for example, nitrogen, helium, argon, carbon dioxide, etc.
  • the purpose of this disclosure is to provide an effective solution to overcome the problem of oxygen suppression under the premise of controlling costs, and to improve the quality of UV curing.
  • An embodiment of the present disclosure provides an ultraviolet light curing device, which includes an air jet module, a flow adjustment module, an ultraviolet light curing module, and a first gas channel.
  • the jet module includes an upper panel, a lower panel and a frame; the upper panel is arranged on the upper side of the frame, and the lower panel is arranged on the lower side of the frame and includes a gas outlet; a gas chamber is formed between the upper panel, the lower panel and the frame.
  • the first gas channel is connected with the jet module and injects gas into the gas chamber.
  • the flow adjustment module is connected to the first gas channel and adjusts the flow of the gas.
  • the ultraviolet curing module includes an ultraviolet light source, and the ultraviolet curing module is arranged on the air jet module and connected with the air jet module. Wherein, the ultraviolet light emitted by the ultraviolet light source is irradiated in the first direction through the upper panel and the lower panel, and the gas is ejected in the first direction from the gas outlet.
  • the UV light source is in contact with the upper panel
  • the UV curing module further includes a coolant channel for cooling the UV light source
  • the first gas channel is provided on the upper panel to communicate with the gas chamber connect.
  • the upper panel includes an opening, and the ultraviolet curing module is connected to the opening, so that the gas chamber is formed between the ultraviolet curing module, the upper panel, the lower panel, and the frame, and the ultraviolet light source Located in the gas chamber.
  • the ultraviolet curing module further comprises a casing.
  • the first gas channel extends from the top surface of the casing to the bottom surface of the casing, so that the The inlet is exposed from the top surface of the shell, and the outlet of the first gas channel is exposed from the bottom surface of the shell and connected to the gas chamber.
  • the second gas channel passes through the shell from one side of the shell. The inside extends to the other side of the casing and is connected with the first gas channel.
  • the upper panel and the lower panel are flat mirrors, concave mirrors, convex mirrors, spherical mirrors or aspherical mirrors.
  • an ultraviolet light curing device which includes an air jet module, an ultraviolet light curing module, and a flow control module.
  • the air jet module includes a panel and a frame.
  • the panel is arranged on the lower side of the frame and includes a gas outlet.
  • the ultraviolet curing module includes an ultraviolet light source and a first gas channel.
  • the ultraviolet curing module is arranged on the upper side of the frame, so that a gas chamber is formed between the ultraviolet curing module, the panel, and the frame.
  • the first gas channel is connected to the gas chamber and injects gas into the gas chamber.
  • the flow adjustment module is connected to the first gas channel and adjusts the flow of the gas.
  • the ultraviolet light emitted by the ultraviolet light source is irradiated in the first direction through the panel, and the gas is ejected in the first direction from the gas outlet.
  • the UV curing module further includes a second gas passage
  • the first gas passage extends from the top surface of the casing to the bottom surface of the casing, so that the inlet of the first gas passage is It is exposed from the top surface of the casing, and the outlet of the first gas passage is exposed from the bottom surface of the casing and connected to the gas chamber.
  • the second gas passage extends from one side of the casing to the bottom of the casing. Inside and connected with the first gas channel.
  • the UV curing module further includes a first coolant channel for cooling the UV light source, the first coolant channel extends to the inside of the housing, and the inlet and outlet of the first coolant channel are provided On the top surface of the housing.
  • the ultraviolet light curing module further includes a second coolant passage extending from one side of the casing to the inside of the casing to be connected to the first coolant passage.
  • the panel is a flat mirror, a concave mirror, a convex mirror, a spherical mirror or an aspheric mirror.
  • the present disclosure provides an effective solution to overcome the problem of oxygen suppression under the premise of controlling costs, and to improve the quality of UV curing.
  • FIG. 1 is a front view of the ultraviolet curing device according to the first embodiment of the disclosure.
  • FIG. 2 is a side view of the ultraviolet curing device according to the first embodiment of the disclosure.
  • FIG. 3A and FIG. 3B Please refer to FIG. 3A and FIG. 3B for the structural diagrams of the lower panel of the jet module of the ultraviolet curing device according to the first embodiment of the disclosure.
  • FIG. 4 is a schematic diagram of the operating state of the ultraviolet curing device according to the first embodiment of the disclosure.
  • FIG. 5 is a front view of the ultraviolet curing device according to the second embodiment of the disclosure.
  • FIG. 6 is a side view of the ultraviolet curing device according to the second embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of the operating state of the ultraviolet curing device according to the second embodiment of the disclosure.
  • FIG. 8 is a front view of the ultraviolet curing device according to the third embodiment of the disclosure.
  • FIG. 9 is a side view of the ultraviolet curing device according to the third embodiment of the disclosure.
  • FIG. 1 and FIG. 2 are a front view and a side view of the ultraviolet curing device according to the first embodiment of the disclosure.
  • the ultraviolet curing device 1 includes an air jet module 11, a flow adjustment module 12 and an ultraviolet curing module 13.
  • the ultraviolet curing module 13 includes a housing 131, a plurality of ultraviolet light sources 132 and a coolant channel 133.
  • the plurality of ultraviolet light sources 132 are arranged at the bottom of the casing 131 and can be arranged in a straight line.
  • the plurality of ultraviolet light sources 132 may be ultraviolet light emitting diode arrays; in another embodiment, the plurality of ultraviolet light sources 132 may also be ultraviolet mercury lamps or other similar light sources.
  • the number of the above-mentioned components can be adjusted according to actual requirements; in another embodiment, the ultraviolet curing module 33 may also have only one ultraviolet light source 332 or several coolant channels 133.
  • the coolant channel 133 is arranged inside the ultraviolet curing module 13; the coolant T flows in from the inlet of the coolant channel 133 and then flows out from the outlet of the coolant channel 133 to cool the ultraviolet curing module 13.
  • the plurality of ultraviolet light sources 132 and other components generate a large amount of heat energy, and the coolant channel 133 can effectively cool the plurality of ultraviolet light sources 132 and other components, so that the ultraviolet curing module 13 can operate normally.
  • the coolant T can be a liquid coolant; in another embodiment, the coolant T can also be a gas coolant.
  • the air injection module 11 is a hollow and flat container, which includes an upper panel 111, a lower panel 112, and a frame 113; in another embodiment, the air injection module 11 may also be a container with different shapes.
  • the upper panel 111 and the lower panel 112 can be made of glass, such as quartz glass; in another embodiment, the upper panel 111 and the lower panel 112 can also be penetrated by other suitable transparent materials or ultraviolet light ( UVpass) material.
  • the upper panel 111 is disposed on the upper side of the frame 113, and the lower panel 112 is disposed on the lower side of the frame 113, so that a gas chamber C is formed between the upper panel 111, the lower panel 112, and the frame 113.
  • the upper panel 111 and the lower panel 112 can be flat mirrors; in another embodiment, the upper panel 111 and the lower panel 112 can also be concave mirrors, convex mirrors, and other various spherical or aspherical mirrors.
  • the ultraviolet curing device 1 further includes a plurality of first gas channels A1 in ; the plurality of first gas channels A1 in are arranged on the upper panel 111 to be connected to the gas chamber C.
  • the lower panel 112 includes a plurality of gas outlets A out ; the plurality of gas outlets A out are evenly distributed on the lower panel 112.
  • the ultraviolet curing module 13 is disposed on the air jet module 11, and the plurality of ultraviolet light sources 132 of the ultraviolet curing module 13 are in contact with the upper panel 111.
  • the ultraviolet curing device 1 may also have only one first gas channel A1 in and one gas outlet A out , and the number of components can be adjusted according to actual requirements.
  • the flow adjustment module 12 is connected to a gas storage tank (not shown in the figure) and the plurality of first gas passages A1 in .
  • the gas storage tank inputs the gas N into the plurality of first gas passages A1 in , and the flow adjustment module 12 adjusts the flow of the gas N entering the gas chamber C.
  • the gas N can be nitrogen; in another embodiment, the gas N can also be carbon dioxide or other inert gas; in another embodiment, the gas N can also be an inert gas, such as helium, Argon etc.
  • the ultraviolet curing device 1 may further include a worktable 14 which is arranged under the air jet module 1.
  • the user can set the target K on the workbench 14 to perform the UV curing process.
  • the workbench 14 may have a conveyor belt or other similar mechanism to move the target K.
  • the target K may be paper with ink (or varnish).
  • FIGS. 3A and 3B are structural diagrams of the lower panel of the air jet module of the ultraviolet curing device according to the first embodiment of the disclosure (FIGS. 3A and 3B are not drawn to scale).
  • the plurality of gas outlets A out of the lower panel 112 may be holes.
  • the plurality of gas outlets A out of the lower panel 112 may also be grooves.
  • the structure of the lower panel 112 can also be changed according to actual requirements.
  • FIG. 4 is a schematic diagram of the operating state of the ultraviolet curing device according to the first embodiment of the disclosure.
  • the worktable 14 can move the target K in the direction of the arrow F.
  • the gas N is ejected from the plurality of gas outlets A out of the lower panel 112 of the air injection module 11 to the surface of the target K in the first direction D1 to remove the air on the surface of the target K; at the same time, UV curing
  • the ultraviolet light U emitted by the plurality of ultraviolet light sources 132 of the module 13 is irradiated in the first direction D1 through the upper panel 111 and the lower panel 112.
  • the above-mentioned mechanism causes the ultraviolet light U emitted by the plurality of ultraviolet light sources 132 to irradiate the surface of the target K, the gas N ejected from the plurality of gas outlets A out has eliminated the air on the surface of the target K, so that The ink on the surface of the target K will not be affected by oxygen in the air during the curing process, so the UV curing quality can be greatly improved.
  • the user can appropriately adjust the flow of the gas N through the flow adjustment module 12, so that the UV curing device 1 can achieve the best UV curing quality.
  • the upper panel 111 and the lower panel 112 can also be concave mirrors, convex mirrors, and various other spherical or aspherical mirrors. Therefore, the upper panel 111 and the lower panel 112 may also provide light gathering, astigmatism or other functions to appropriately adjust the ultraviolet light U emitted by the plurality of ultraviolet light sources 132 to meet the requirements of various applications.
  • the UV curing device 1 integrates the jet module 11 and the UV curing module 13 with a special structural design, so it can effectively inhibit oxygen during the UV curing process, and the UV curing quality can be greatly improved.
  • the jet module 11 of the ultraviolet curing device 1 is a hollow and flat container, which can use the gas N in a highly efficient manner. Therefore, the ultraviolet curing device 1 does not require a vacuum environment and can use a small amount of gas N to effectively inhibit oxygen in the ultraviolet curing process, so that the cost can be effectively reduced, and it is cost-effective.
  • the UV curing device 1 can be applied not only in the printing industry, but also in other different industries, and can effectively improve the quality of UV curing under the premise of being cost-effective, and has a wider range of applications.
  • the existing UV curing device cannot provide an effective solution to overcome the problem of oxygen inhibition, which causes the quality of UV curing to be significantly affected.
  • the UV curing device integrates the air jet module and the UV curing module with a special structure design, so that oxygen can be effectively suppressed during the UV curing process, so that the quality of UV curing can be greatly improved.
  • the UV curing device integrates the jet module and the UV curing module with a special structure design, and sprays inert gas or inert gas directly to the surface of the target through the jet module to eliminate the target object.
  • the air on the surface does not need to create a vacuum environment, so that the UV curing device can effectively reduce the cost and is cost-effective.
  • the UV curing device integrates the jet module and the UV curing module with a special structural design, and provides inert gas or inert gas for suppressing oxygen through the jet module, so the inert gas can be greatly reduced. Or the consumption of inactive gas, so that the UV curing device can effectively reduce the cost, and is cost-effective.
  • the ultraviolet curing device can be applied to many different industries, and can effectively improve the quality of the ultraviolet curing under the premise of being cost-effective, and has a wider range of applications. It can be seen from the above that the present disclosure can indeed achieve unexpected effects.
  • FIGS. 5 and 6 are the front view and the side view of the ultraviolet curing device according to the second embodiment of the disclosure.
  • the ultraviolet curing device 2 includes an air jet module 21, a flow adjustment module 22 and an ultraviolet curing module 23.
  • the ultraviolet curing module 23 includes a housing 231, a plurality of ultraviolet light sources 232, a coolant channel 233, a plurality of first gas channels A1 in and a plurality of second gas channels A2 in .
  • the number of the above-mentioned components can be adjusted according to actual needs; in another embodiment, the ultraviolet curing module 23 may also have only one ultraviolet light source 232, a first gas channel A1 in and a second gas channel A2 in , or have more A coolant channel 233.
  • the plurality of ultraviolet light sources 232 are arranged at the bottom of the casing 231 and can be arranged in a straight line.
  • the coolant channel 233 is arranged inside the ultraviolet curing module 23; the coolant T flows in from the inlet of the coolant channel 233 and then flows out from the outlet of the coolant channel 233 to cool the ultraviolet curing module 23.
  • Each first gas channel A1 in extends from the top surface of the housing 231 to the bottom surface of the housing 231, so that the inlet of each first gas channel A1 in is exposed from the top surface of the housing 231, and each first gas channel A1 in The outlet is exposed from the bottom surface of the housing 231.
  • Each second gas passage A2 in extends from one side of the housing 231 through the interior of the housing 231 to the other side of the housing 231, and is connected to one or more first gas passages A1 in , so that the The gas N input by the second gas channel A2 in can be discharged from the outlets of the plurality of first gas channels A1 in.
  • the air injection module 21 is a hollow and flat container, which includes an upper panel 211, a lower panel 212, and a frame 213; in another embodiment, the air injection module 21 can also be a container with a different shape.
  • the upper panel 211 is disposed on the upper side of the frame 213 and includes an opening Op
  • the lower panel 212 is disposed on the lower side of the frame 213.
  • the lower panel 212 includes a plurality of gas outlets A out ; the plurality of gas outlets A out are evenly distributed on the lower panel 212.
  • the ultraviolet curing device 2 may also have only one gas outlet A out , and the number of the gas outlets A out can be adjusted according to actual needs.
  • UV curing module 23 is provided on the jet module 21, and is connected with the opening O p, such that the gas chamber is formed between the UV-curable C module 23, the upper panel 211 and lower panel 212 and the frame 213, the plurality The outlet of the first gas channel A1 in is connected to the gas chamber C.
  • the bottom surface of the UV-curable module 23 may be connected to the opening O p, the plurality of gas passage A1 in the first outlet and the plurality of ultraviolet light sources 232 positioned within the opening O p.
  • the upper panel 211 and the lower panel 212 may be flat mirrors; in another embodiment, the upper panel 211 and the lower panel 212 may also be concave mirrors, convex mirrors, and other various spherical or aspherical mirrors.
  • the flow adjustment module 22 is connected to a gas storage tank (not shown in the figure) and the plurality of first gas passages A1 in and the plurality of second gas passages A2 in .
  • the gas storage tank inputs the gas N into the plurality of gas channels A1 in , and the flow adjustment module 22 adjusts the flow of the gas N entering the gas chamber C.
  • the ultraviolet curing device 2 may further include a workbench 24, and the workbench 24 is arranged under the air jet module 2.
  • the user can set the target K on the workbench 24 to perform the UV curing process.
  • the workbench 24 may have a conveyor belt or other similar mechanism to move the target K.
  • the target K may be paper with ink (or varnish).
  • FIG. 7 is a schematic diagram of the operating state of the ultraviolet curing device according to the second embodiment of the disclosure.
  • the worktable 24 can move the target K in the direction of the arrow F.
  • the gas N is ejected from the plurality of gas outlets A out of the lower panel 212 of the air jet module 21 to the surface of the target K in the first direction D1 to remove the air on the surface of the target K; at the same time, UV curing
  • the ultraviolet light emitted by the plurality of ultraviolet light sources 232 of the module 23 is irradiated in the first direction D1 through the upper panel 211 and the lower panel 212.
  • the above-mentioned mechanism causes the ultraviolet light U emitted by the plurality of ultraviolet light sources 232 to irradiate the surface of the target K, and the gas N ejected from the plurality of gas outlets A out has eliminated the surface of the target K.
  • the air prevents the ink on the surface of the target K from being affected by oxygen in the air during the curing process, so the UV curing quality can be greatly improved.
  • the upper panel 211 and lower panel 212 can also be concave mirrors, convex mirrors, and other various spherical or aspherical mirrors. Therefore, the upper panel 211 and the lower panel 212 may also provide light gathering, astigmatism or other functions to appropriately adjust the ultraviolet light U emitted by the plurality of ultraviolet light sources 232 to meet the requirements of various applications.
  • the UV curing device 1 integrates the jet module 21 and the UV curing module 23 with another structural design, which can also effectively inhibit oxygen in the UV curing process, so that the quality of UV curing can be greatly improved.
  • FIG. 8 and FIG. 9 are a front view and a side view of the ultraviolet curing device according to the third embodiment of the disclosure.
  • the ultraviolet curing device 3 includes an air jet module 31, a flow adjustment module 32 and an ultraviolet curing module 33.
  • the ultraviolet curing module 33 includes a housing 331, a plurality of ultraviolet light sources 332, a first coolant channel 333-1, a plurality of second coolant channels 333-2, a plurality of first gas channels A1 in, and a plurality of second gases Channel A2 in .
  • the number of the above-mentioned components can be adjusted according to actual needs; in another embodiment, the ultraviolet curing module 33 may also have only an ultraviolet light source 332, a second coolant channel 333-2, a first gas channel A1 in and one
  • the second gas passage A2 in may have a plurality of first coolant passages 333-1.
  • the plurality of ultraviolet light sources 332 are arranged at the bottom of the housing 331 and may be arranged in a straight line; in this embodiment, the plurality of ultraviolet light sources 332 may be an array of ultraviolet light emitting diodes.
  • the first coolant channel 333-1 is disposed inside the ultraviolet curing module 33.
  • the inlet and outlet of the first coolant passage 333-1 are arranged on the top surface of the casing 331; wherein, one end of the first coolant passage 333-1 extends from the top surface of the casing 331 to the inside of the casing 331, and the first coolant passage 333-1
  • the other end of a coolant channel 333-1 exposes the top surface of the housing 331.
  • the plurality of second coolant channels 333-2 are arranged inside the ultraviolet curing module 33; wherein, the plurality of second coolant channels 333-2 are formed by two sides (adjacent two sides or opposite sides) of the housing 331.
  • the two sides extend to the inside of the housing 331 to be connected to the first coolant passage 333-1 to serve as the inlet or outlet of the coolant T.
  • the ultraviolet light curing module 33 can be effectively cooled by injecting the coolant T into the first coolant passage 333-1 and the plurality of second coolant passages 333-2.
  • the plurality of ultraviolet light sources 332 and other components generate a large amount of heat energy, and the coolant channel 333 can effectively cool the plurality of ultraviolet light sources 32 and other components, so that the ultraviolet curing module 33 can operate normally.
  • Each first gas channel A1 in extends from the top surface of the housing 331 to the bottom surface of the housing 331, so that the inlet of each first gas channel A1 in is exposed from the top surface of the housing 331, and the first gas channel A1 in The outlet is exposed from the bottom surface of the housing 331.
  • the plurality of second gas passages A2 in extend from two sides (adjacent two sides or opposite sides) of the housing 231 to the inside of the housing 231, and are connected to one or more first gas passages A1 in , So that the gas N input by the plurality of second gas channels A2 in can be discharged from the outlet of the plurality of first gas channels A1 in.
  • the jet module 31 includes a panel 310 and a frame 313.
  • the panel 310 is disposed on the lower side of the frame 313, and the panel 310 includes a plurality of gas outlets A out ; the plurality of gas outlets A out are evenly distributed on the panel 310.
  • the ultraviolet curing device 3 may also have only one gas outlet A out , and the number of the gas outlets A out can be adjusted according to actual requirements.
  • the ultraviolet curing module 33 is disposed on the upper side of the frame 313, so that a gas chamber C is formed between the ultraviolet curing module 23, the panel 310, and the frame 313.
  • the outlets of the plurality of first gas channels A1 in are connected to the gas chamber C, and the ultraviolet light source 332 is located in the gas chamber C.
  • the panel 310 can be made of glass, such as quartz glass or other suitable transparent materials or UV pass materials.
  • the panel 310 can be a flat mirror; in another embodiment, the panel 310 can also be a concave mirror, a convex mirror, and other various spherical or aspherical mirrors.
  • the flow adjustment module 32 is connected to a gas storage tank (not shown in the figure) and the plurality of first gas passages A1 in and the plurality of second gas passages A2 in .
  • the gas storage tank inputs the gas N into the plurality of gas passages A1 in , and the flow adjustment module 32 adjusts the flow of the gas N entering the gas chamber C.
  • the ultraviolet curing device 3 When the ultraviolet curing device 3 is activated. Then, the gas N is ejected from the plurality of gas outlets A out of the panel 310 of the air jet module 31 to the surface of the target K in the first direction D1 to remove the air on the surface of the target K; at the same time, the UV curing module
  • the ultraviolet light U emitted by the plurality of ultraviolet light sources 332 of 33 is irradiated in the first direction D1 through the upper panel 311 and the panel 310.
  • the above mechanism causes the ultraviolet light U emitted by the plurality of ultraviolet light sources 332 to irradiate the surface of the target K, the gas N ejected from the plurality of gas outlets A out has eliminated the air on the surface of the target K, so that The ink on the surface of the target K will not be affected by oxygen in the air during the curing process, so the UV curing quality can be greatly improved.
  • the panel 310 can also be a concave mirror, a convex mirror, and various other spherical or aspherical mirrors. Therefore, the panel 310 may also provide light gathering, light scattering or other functions to appropriately adjust the ultraviolet light U emitted by the plurality of ultraviolet light sources 332 to meet the requirements of various applications.
  • the UV curing device 3 adopts a more compact structure design, making it a miniature device, so that the UV curing device 3 can be used in many small working spaces, and can effectively improve the quality of UV curing.
  • the ultraviolet curing device of each embodiment of the present disclosure can be applied to various industries; for example, printing industry (ink and varnish (varnish)), optical communication industry (adhesive), electronic industry (adhesive, printed circuit board) The solder mask) and the furniture industry (varnish), etc., are more widely used.
  • the UV curing device integrates the air jet module and the UV curing module with a special structural design, so it can effectively inhibit oxygen during the UV curing process and greatly improve the quality of UV curing. .
  • the UV curing device integrates the jet module and the UV curing module with a special structural design, and sprays inert gas or inert gas directly to the surface of the target through the jet module to eliminate the problem of the target.
  • the air on the surface does not need to create a vacuum environment, so that the UV curing device can effectively reduce the cost and is cost-effective.
  • the UV curing device integrates the jet module and the UV curing module with a special structural design, and provides inert gas or inert gas for suppressing oxygen through the jet module, so the inert gas can be greatly reduced. Or the consumption of inactive gas, so that the UV curing device can effectively reduce the cost, and is cost-effective.
  • the ultraviolet curing device integrates the ultraviolet light source and the first gas channel for inputting inert gas or inert gas into the same module through a special structural design, so that the volume of the ultraviolet curing device can be greatly reduced. , So it can be applied to some tiny working spaces.
  • the ultraviolet curing device can be applied to many different industries, and can effectively improve the quality of the ultraviolet curing under the premise of being cost-effective, and has a wider range of applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Coating Apparatus (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种紫外光固化装置(1),其包含喷气模块(11)、流量调节模块(12)、紫外光固化模块(13)及第一气体通道(A1 in)。喷气模块(11)包含上面板(111)、下面板(112)及边框(113);上面板(111)设置于边框(113)的上侧,下面板(112)设置于边框(113)的下侧并包含一个或以上的气体出口(A out);在上面板(111)、下面板(112)及边框(113)之间形成气体容室(C)。第一气体通道(A1 in)与喷气模块(11)连接。流量调节模块(12)与第一气体通道(A1 in)连接,并调节由第一气体通道(A1 in)进入气体容室(C)的气体的流量。紫外光固化模块(13)包含紫外光源(332),紫外光固化模块(13)设置于喷气模块(11)上,并与喷气模块(11)连接。

Description

紫外光固化装置 技术领域
本揭露有关于一种固化装置,特别是一种紫外光固化装置。
背景技术
近年来,紫外光发光二极管(UV-LED)已经商业化;由于紫外光发光二极管有较低的功耗,故己能用于替代了许多紫外光固化装置的紫外光汞灯。虽然采用紫外光发光二极管的紫外光固化装置能达到较低的功耗,但仍然需要克服氧气抑制的问题,导致紫外光固化质量受到明显影响。然而,现有的紫外光固化装置并无法提供有效的解决方案。
由于目标物一直在移动,故空气可以沿着目标物的移动路径进入在紫外光固化装置与目标物之间的空间;因此,在紫外光固化程序中无法创建密闭环境。除非整个工作空间均处于真空环境下,否则不可能创造真空环境。另外,形成真空环境将会大幅提升成本,并不符合成本效益。
另一种选择是通过注入气体来抑制氧气(例如,氮气、氦气、氩气及二氧化碳等)。同样的,在整个工作空间中插入气体将会大幅提升成本,也不符合成本效益。
发明内容
本揭露的目的在于,提供有效的解决方案,在控制成本的前提下,克服氧气抑制的问题,并且,提高紫外光固化质量。
本揭露的一实施例提出一种紫外光固化装置,其包含喷气模块、流量调节模块、紫外光固化模块及第一气体通道。喷气模块包含上面板、下面板及边框;上面板设置于边框的上侧,下面板设置于边框的下侧并包含气体出口;在上面板、下面板及边框之间形成气体容室。第一气体通道与喷气模块连接,并将气体注入气体容室。流量调节模块与该第一气体通道连接,并调节气体的流量。紫外光固化模块包含紫外光源,紫外光固化模块设置于喷气模块上,并与喷气模块连接。其中,紫外光源发出的紫外光通过上面板及下面板向第一方向照射,而气体由气体出口向第一方向喷出。
优选地,该紫外光源与该上面板接触,该紫外光固化模块更包含用以冷却该紫 外光源的一冷却剂通道,而该第一气体通道设置于该上面板上,以与该气体容室连接。
优选地,该上面板包含一开口,该紫外光固化模块与该开口连接,使得在该紫外光固化模块、该上面板、该下面板及该边框之间形成该气体容室,且该紫外光源位于该气体容室中。
优选地,更包含一第二气体通道,而该紫外光固化模块更包含一壳体,该第一气体通道由该壳体的顶面延伸至该壳体的底面,使该第一气体通道的入口由该壳体的顶面露出,且该第一气体通道的出口由该壳体的底面露出并连接至该气体容室,该第二气体通道由该壳体的一侧经过该壳体的内部延伸至该壳体的另一侧,并与该第一气体通道连接。
优选地,该上面板及该下面板为平面镜、凹面镜、凸面镜、球面镜或非球面镜。
本揭露的另一实施例提出一种紫外光固化装置,其包含喷气模块、紫外光固化模块及流量调节模块。喷气模块包含面板及边框,面板设置于边框的下侧,并包含气体出口。紫外光固化模块包含紫外光源及第一气体通道,紫外光固化模块设置于边框的上侧,使得在紫外光固化模块、面板及边框之间形成气体容室。第一气体通道与气体容室连接,并将气体注入气体容室。流量调节模块与第一气体通道连接,并调节气体的流量。其中,紫外光源发出的紫外光通过面板向第一方向照射,而气体由气体出口向第一方向喷出。
优选地,更包含一第二气体通道,该紫外光固化模块更包含一壳体,该第一气体通道由该壳体的顶面延伸至该壳体的底面,使该第一气体通道的入口由该壳体的顶面露出,且该第一气体通道的出口由该壳体的底面露出并连接至该气体容室,该第二气体通道由该壳体的一侧延伸至该壳体的内部,并与该第一气体通道连接。
优选地,该紫外光固化模块更包含用以冷却该紫外光源的一第一冷却剂通道,该第一冷却剂通道延伸至该壳体的内部,且该第一冷却剂通道的入口及出口设置于该壳体的顶面。
优选地,该紫外光固化模块更包含一第二冷却剂通道,该第二冷却剂通道由该壳体的一侧延伸至该壳体的内部以连接至该第一冷却剂通道。
优选地,该面板为平面镜、凹面镜、凸面镜、球面镜或非球面镜。
由此,本揭露提供了有效的解决方案,在控制成本的前提下,克服氧气抑制的问题,并且,提高紫外光固化质量。
附图说明
图1为本揭露的第一实施例的紫外光固化装置的前视图。
图2为本揭露的第一实施例的紫外光固化装置的侧视图。
请参阅图3A及图3B为本揭露的第一实施例的紫外光固化装置的喷气模块的下面板的结构图。
图4为本揭露的第一实施例的紫外光固化装置的运作状态的示意图。
图5为本揭露的第二实施例的紫外光固化装置的前视图。
图6为本揭露的第二实施例的紫外光固化装置的侧视图。
图7为本揭露的第二实施例的紫外光固化装置的运作状态的示意图。
图8为本揭露的第三实施例的紫外光固化装置的前视图。
图9为本揭露的第三实施例的紫外光固化装置的侧视图。
附图标记列表:1-紫外光固化装置;11-喷气模块;111-上面板;112-下面板;113-边框;12-流量调节模块;13-紫外光固化模块;131-壳体;132-紫外光源;133-冷却剂通道;14-工作台;2-紫外光固化装置;21-喷气模块;211-上面板;212-下面板;213-边框;22-流量调节模块;23-紫外光固化模块;231-壳体;232-紫外光源;233-冷却剂通道;24-工作台;3-紫外光固化装置;31-喷气模块;310-面板;313-边框;32-流量调节模块;33-紫外光固化模块;331-壳体;332-紫外光源;333-1-第一冷却剂通道;333-2-第二冷却剂通道;C-气体容室;A1 in-第一气体通道;A2 in-第二气体通道;A out-气体出口;N-气体;T-冷却剂;K-目标物;U-紫外光;O p-开口;D1-第一方向。
具体实施方式
以下将参照相关图式,说明依本揭露的紫外光固化装置的实施例,为了清楚与方便图式说明之故,图式中的各部件在尺寸与比例上可能会被夸大或缩小地呈现。在以下描述及/或申请专利范围中,当提及元件「连接」或「耦合」至另一元件时,其可直接连接或耦合至该另一元件或可存在介入元件;而当提及元件「直接连接」或「直接耦合」至另一元件时,不存在介入元件,用于描述元件或层之间的关系的其他字词应以相同方式解释。为使便于理解,下述实施例中的相同元件以相同的符号标示来说明。
请参阅图1及图2,其为本揭露的第一实施例的紫外光固化装置的前视图及 侧视图。如图所示,紫外光固化装置1包含喷气模块11、流量调节模块12及紫外光固化模块13。
紫外光固化模块13包含壳体131、多个紫外光源132及冷却剂通道133。所述多个紫外光源132设置于壳体131的底部,并可呈直线排列。在本实施例中,所述多个紫外光源132可为紫外光发光二极管阵列;在另一实施例中,所述多个紫外光源132也可为紫外光汞灯或其它类似的光源。上述各元件的数量可依实际需求调整;在另一实施例中,紫外光固化模块33也可只有一紫外光源332或具有数个冷却剂通道133。冷却剂通道133设置于紫外光固化模块13内部;冷却剂T由冷却剂通道133的入口流入,再由冷却剂通道133的出口流出,以冷却紫外光固化模块13。所述多个紫外光源132及其它元件会产生大量的热能,而通过冷却剂通道133则可有效地冷却所述多个紫外光源132及其它元件,使紫外光固化模块13能正常运作。在本实施例中,冷却剂T可为液体冷却剂;在另一实施例中,冷却剂T也可为气体冷却剂。
在本实施例中,喷气模块11为中空且扁平的容器,其包含上面板111、下面板112及边框113;在另一实施例中,喷气模块11也可为具有不同的形状的容器。在本实施例中,上面板111及下面板112可为玻璃制成,如石英玻璃;在另一实施例中,上面板111及下面板112也可由其它适当的透明材料或紫外光穿透(UVpass)材料制成。上面板111设置于边框113的上侧,而下面板112设置于边框113的下侧,使得在上面板111、下面板112及边框113之间形成气体容室C。在本实施例中,上面板111及下面板112可为平面镜;在另一实施例中,上面板111及下面板112也可为凹面镜、凸面镜及其它各种球面镜或非球面镜。
紫外光固化装置1更包含包含多个第一气体通道A1 in;所述多个第一气体通道A1 in设置于上面板111上,以与气体容室C连接。下面板112则包含多个气体出口A out;所述多个气体出口A out平均分布于下面板112。紫外光固化模块13则设置于喷气模块11上,且紫外光固化模块13的所述多个紫外光源132与上面板111接触。在另一实施例中,紫外光固化装置1也可只有一个第一气体通道A1 in及一个气体出口A out,各元件的数量均可依实际需求调整。
流量调节模块12与气体储存槽(未绘于图中)及所述多个第一气体通道A1 in连接。气体储存槽将气体N输入至所述多个第一气体通道A1 in,流量调节模块12则调节进入气体容室C的气体N的流量。在本实施例中,气体N可为氮气;在另一实施例中,气体N也可为二氧化碳或其它非活性气体;在又一实施例中,气体 N也可为惰性气体,例如氦气、氩气等。
紫外光固化装置1还可包含工作台14,工作台14设置于喷气模块1下。使用者可将目标物K设置于工作台14上,以进行紫外光固化程序。其中,工作台14可具有传送带或其它类似的机构,以移动目标物K。在本实施例中,目标物K可为带有墨水(或清漆)的纸张。
请参阅图3A及图3B,其为本揭露的第一实施例的紫外光固化装置的喷气模块的下面板的结构图(图3A及图3B未按比例绘制)。如图3A所示,下面板112的所述多个气体出口A out可为孔洞。如图3B所示,下面板112的所述多个气体出口A out也可为沟槽。在另一实施例中,下面板112的结构也可依实际需求变化。
请参阅图4,其为本揭露的第一实施例的紫外光固化装置的运作状态的示意图。如图所示,当紫外光固化装置1启动时,工作台14可沿箭头F的方向移动目标物K。然后,气体N由喷气模块11的下面板112的所述多个气体出口A out向第一方向D1喷出至目标物K的表面,以排除目标物K的表面的空气;同时,紫外光固化模块13的所述多个紫外光源132发出的紫外光U通过上面板111及下面板112向第一方向D1照射。
上述的机制使所述多个紫外光源132发出的紫外光U照射至目标物K的表面的瞬间,所述多个气体出口A out喷出的气体N已排除目标物K的表面的空气,使目标物K表面的墨水在固化的过程中不会受到空气中氧气的影响,故紫外光固化质量能够大幅提升。使用者能适当的通过流量调节模块12调整气体N的流量,使紫外光固化装置1能达到最佳的紫外光固化质量。
另外,如前述上面板111及下面板112也可为凹面镜、凸面镜及其它各种球面镜或非球面镜。因此,上面板111及下面板112也可以提供聚光、散光或其它功能以适当地调整所述多个紫外光源132发出的紫外光U,以符合各种不同应用的需求。
由上述可知,紫外光固化装置1以特殊的结构设计整合喷气模块11及紫外光固化模块13,故可以有效地在紫外光固化程序中有效地抑制氧气,使紫外光固化质量能够大幅提升。
另外,紫外光固化装置1的喷气模块11为中空且扁平的容器,其能够以高效率的方式运用气体N。因此,紫外光固化装置1不需真空环境也可以用少量的气体N有效地在紫外光固化程序中有效地抑制氧气,故能有效地降低成本,且符合成本效益。
此外,紫外光固化装置1不但可应用于印刷业,更可应用于其它不同的行业,且能在符合成本效益的前提下有效地提升紫外光固化质量,应用上更为广泛。
上述仅为举例,紫外光固化装置1的各元件及其协同关系均可依实际需求变化,本揭露并不以此为限。
值得一提的是,现有的紫外光固化装置并无法提供有效的解决方案以克服氧气抑制的问题,导致紫外光固化质量受到明显影响。相反的,根据本揭露的实施例,紫外光固化装置以特殊的结构设计整合喷气模块及紫外光固化模块,故可以有效地在紫外光固化程序中抑制氧气,使紫外光固化质量能够大幅提升。
另外,根据本揭露的实施例,紫外光固化装置以特殊的结构设计整合喷气模块及紫外光固化模块,并通过喷气模块将惰性气体或非活性气体直接喷发至目标物的表面以排除目标物的表面的空气,故不需要创造真空环境,使紫外光固化装置能有效地降低成本,且符合成本效益。
此外,根据本揭露的实施例,紫外光固化装置以特殊的结构设计整合喷气模块及紫外光固化模块,并通过喷气模块提供抑制氧气用的惰性气体或非活性气体,故能大幅地降低惰性气体或非活性气体的消耗量,使紫外光固化装置能有效地降低成本,且符合成本效益。
再者,根据本揭露的实施例,紫外光固化装置可应用于许多不同的行业,且能在符合成本效益的前提下有效地提升紫外光固化质量,应用上更为广泛。由上述可知,本揭露确实可以达到无法预期的功效。
请参阅图5及图6,其为本揭露的第二实施例的紫外光固化装置的前视图及侧视图。如图所示,紫外光固化装置2包含喷气模块21、流量调节模块22及紫外光固化模块23。
紫外光固化模块23包含壳体231、多个紫外光源232、冷却剂通道233、多个第一气体通道A1 in及多个第二气体通道A2 in。上述各元件的数量可依实际需求调整;在另一实施例中,紫外光固化模块23也可仅有一紫外光源232、一第一气体通道A1 in及一个第二气体通道A2 in,或具有多个冷却剂通道233。所述多个紫外光源232设置于壳体231的底部,并可呈直线排列。冷却剂通道233设置于紫外光固化模块23内部;冷却剂T由冷却剂通道233的入口流入,再由冷却剂通道233的出口流出,以冷却紫外光固化模块23。各个第一气体通道A1 in由壳体231的顶面延伸至壳体231的底面,使各个第一气体通道A1 in的入口由壳体231的顶面露出,且各个第一气体通道A1 in的出口由壳体231的底面露出。各个第二气体通道A2 in 由壳体231的一侧经过壳体231的内部延伸至壳体231的另一侧,并与一个或多个第一气体通道A1 in连接,使由所述多个第二气体通道A2 in输入的气体N能由所述多个第一气体通道A1 in的出口排出。
在本实施例中,喷气模块21为中空且扁平的容器,其包含上面板211、下面板212及边框213;在另一实施例中,喷气模块21也可为具有不同的形状的容器。上面板211设置于边框213的上侧并包含开口O p,而下面板212设置于边框213的下侧。下面板212则包含多个气体出口A out;所述多个气体出口A out平均分布于下面板212。在另一实施例中,紫外光固化装置2也可只有一个气体出口A out,气体出口A out的数量均可依实际需求调整。紫外光固化模块23则设置于喷气模块21上,并与开口O p连接,使得在紫外光固化模块23、上面板211、下面板212及边框213之间形成气体容室C,使所述多个第一气体通道A1 in的出口与气体容室C连接。其中,紫外光固化模块23的底面可与开口O p连接,使所述多个第一气体通道A1 in的出口及所述多个紫外光源232位于开口O p内。在本实施例中,上面板211及下面板212可为平面镜;在另一实施例中,上面板211及下面板212也可为凹面镜、凸面镜及其它各种球面镜或非球面镜。
流量调节模块22与气体储存槽(未绘于图中)及所述多个第一气体通道A1 in及所述多个第二气体通道A2 in连接。气体储存槽将气体N输入至所述多个气体通道A1 in,流量调节模块22则调节进入气体容室C的气体N的流量。
紫外光固化装置2还可包含工作台24,工作台24设置于喷气模块2下。使用者可将目标物K设置于工作台24上,以进行紫外光固化程序。其中,工作台24可具有传送带或其它类似的机构,以移动目标物K。在本实施例中,目标物K可为带有墨水(或清漆)的纸张。
请参阅图7,其为本揭露的第二实施例的紫外光固化装置的运作状态的示意图。如图所示,当紫外光固化装置2启动时,工作台24可沿箭头F的方向移动目标物K。然后,气体N由喷气模块21的下面板212的所述多个气体出口A out向第一方向D1喷出至目标物K的表面,以排除目标物K的表面的空气;同时,紫外光固化模块23的所述多个紫外光源232发出的紫外光通过上面板211及下面板212向第一方向D1照射。
同样的,上述的机制使所述多个紫外光源232发出的紫外光U照射至目标物K的表面的瞬间,所述多个气体出口A out喷出的气体N已排除目标物K的表面的空气,使目标物K表面的墨水在固化的过程中不会受到空气中氧气的影响,故紫外 光固化质量能够大幅提升。
同样的,如前述上面板211及下面板212也可为凹面镜、凸面镜及其它各种球面镜或非球面镜。因此,上面板211及下面板212也可以提供聚光、散光或其它功能,以适当地调整所述多个紫外光源232发出的紫外光U,以符合各种不同应用的需求。
由上述可知,紫外光固化装置1以另一种结构设计整合喷气模块21及紫外光固化模块23,其同样可以有效地在紫外光固化程序中有效地抑制氧气,使紫外光固化质量能够大幅提升。
上述仅为举例,紫外光固化装置2的各元件及其协同关系均可依实际需求变化,本揭露并不以此为限。
请参阅图8及图9,其为本揭露的第三实施例的紫外光固化装置的前视图及侧视图。如图所示,紫外光固化装置3包含喷气模块31、流量调节模块32及紫外光固化模块33。
紫外光固化模块33包含壳体331、多个紫外光源332、第一冷却剂通道333-1、多个第二冷却剂通道333-2、多个第一气体通道A1 in及多个第二气体通道A2 in。上述各元件的数量可依实际需求调整;在另一实施例中,紫外光固化模块33也可仅有一紫外光源332、一第二冷却剂通道333-2、一第一气体通道A1 in及一个第二气体通道A2 in,或具有多个第一冷却剂通道333-1。
所述多个紫外光源332设置于壳体331的底部,并可呈直线排列;在本实施例中,所述多个紫外光源332可为紫外光发光二极管阵列。
第一冷却剂通道333-1设置于紫外光固化模块33内部。第一冷却剂通道333-1的入口及出口设置于壳体331的顶面;其中,第一冷却剂通道333-1的一端由壳体331的顶面延伸至壳体331的内部,而第一冷却剂通道333-1的另一端则露出壳体331的顶面。所述多个第二冷却剂通道333-2设置于紫外光固化模块33内部;其中,所述多个第二冷却剂通道333-2由壳体331的两侧(相邻的两侧或相对的两侧)延伸至壳体331的内部以连接至第一冷却剂通道333-1,以做为冷却剂T的入口或出口。通过将冷却剂T注入至第一冷却剂通道333-1及所述多个第二冷却剂通道333-2能有效地冷却紫外光固化模块33。所述多个紫外光源332及其它元件会产生大量的热能,而通过冷却剂通道333则可有效地冷却所述多个紫外光源32及其它元件,使紫外光固化模块33能正常运作。
各个第一气体通道A1 in由壳体331的顶面延伸至壳体331的底面,使各个第一 气体通道A1 in的入口由壳体331的顶面露出,且各个第一气体通道A1 in的出口由壳体331的底面露出。所述多个第二气体通道A2 in由壳体231的两侧(相邻的两侧或相对的两侧)延伸至壳体231的内部,并与一个或多个第一气体通道A1 in连接,使由所述多个第二气体通道A2 in输入的气体N能由所述多个第一气体通道A1 in的出口排出。
喷气模块31包含面板310及边框313。面板310设置于边框313的下侧,且面板310包含多个气体出口A out;所述多个气体出口A out平均分布于面板310。在另一实施例中,紫外光固化装置3也可只有一个气体出口A out,气体出口A out的数量均可依实际需求调整。紫外光固化模块33则设置边框313的上侧,使得在紫外光固化模块23、面板310及边框313之间形成气体容室C。所述多个第一气体通道A1 in的出口与气体容室C连接,且紫外光源332位于气体容室C中。同样的,面板310可为玻璃制成,如石英玻璃或其它适当的透明材料或紫外光穿透(UV pass)材料制成。在本实施例中,面板310可为平面镜;在另一实施例中,面板310也可为凹面镜、凸面镜及其它各种球面镜或非球面镜。
流量调节模块32与气体储存槽(未绘于图中)及所述多个第一气体通道A1 in及所述多个第二气体通道A2 in连接。气体储存槽将气体N输入至所述多个气体通道A1 in,流量调节模块32则调节进入气体容室C的气体N的流量。
当紫外光固化装置3启动时。然后,气体N由喷气模块31的面板310的所述多个气体出口A out向第一方向D1喷出至目标物K的表面,以排除目标物K的表面的空气;同时,紫外光固化模块33的所述多个紫外光源332发出的紫外光U通过上面板311及面板310向第一方向D1照射。
上述的机制使所述多个紫外光源332发出的紫外光U照射至目标物K的表面的瞬间,所述多个气体出口A out喷出的气体N已排除目标物K的表面的空气,使目标物K表面的墨水在固化的过程中不会受到空气中氧气的影响,故紫外光固化质量能够大幅提升。
同样的,面板310也可为凹面镜、凸面镜及其它各种球面镜或非球面镜。因此,面板310也可以提供聚光、散光或其它功能,以适当地调整所述多个紫外光源332发出的紫外光U,以符合各种不同应用的需求。
由上述可知,紫外光固化装置3采用更紧凑的结构设计,使其可以成为一个微型装置,使紫外光固化装置3能够应用于许多小的工作空间,且能有效提升紫外光固化质量。
上述仅为举例,紫外光固化装置3的各元件及其协同关系均可依实际需求变化,本揭露并不以此为限。
本揭露各实施例的紫外光固化装置可应用于各种不同的行业;例如,印刷业(墨水及清漆(光油))、光通信业(黏着剂)、电子业(黏着剂、印刷电路板的防焊膜)及家具业(清漆)等,应用上更为广泛。
综上所述,根据本揭露的实施例,紫外光固化装置以特殊的结构设计整合喷气模块及紫外光固化模块,故可以有效地在紫外光固化程序中抑制氧气,使紫外光固化质量大幅提升。
又,根据本揭露的实施例,紫外光固化装置以特殊的结构设计整合喷气模块及紫外光固化模块,并通过喷气模块将惰性气体或非活性气体直接喷发至目标物的表面以排除目标物的表面的空气,故不需要创造真空环境,使紫外光固化装置能有效地降低成本,且符合成本效益。
此外,根据本揭露的实施例,紫外光固化装置以特殊的结构设计整合喷气模块及紫外光固化模块,并通过喷气模块提供抑制氧气用的惰性气体或非活性气体,故能大幅地降低惰性气体或非活性气体的消耗量,使紫外光固化装置能有效地降低成本,且符合成本效益。
另外,根据本揭露的实施例,紫外光固化装置通过特殊的结构设计将紫外光源及输入惰性气体或非活性气体用的第一气体通道整合于同一模块,使紫外光固化装置的体积能够大幅缩小,故能应用于一些微小的工作空间。
再者,根据本揭露的实施例,紫外光固化装置可应用于许多不同的行业,且能在符合成本效益的前提下有效地提升紫外光固化质量,应用上更为广泛。
以上所述仅为举例性,而非为限制性者。其它任何未脱离本揭露之精神与范畴,而对其进行之等效修改或变更,均应该包含于申请专利范围中。

Claims (20)

  1. 一种紫外光固化装置,其特征在于,包含:
    一喷气模块,包含一上面板、一下面板及一边框,该上面板设置于该边框的上侧,该下面板设置于该边框的下侧并包含一气体出口;在该上面板、该下面板及该边框之间形成一气体容室;
    一第一气体通道,与该喷气模块连接,并将一气体注入该气体容室;
    一流量调节模块,与该第一气体通道连接,并调节该气体的流量;以及
    一紫外光固化模块,包含一紫外光源,该紫外光固化模块设置于该喷气模块上,并与该喷气模块连接;
    其中,该紫外光源发出的紫外光通过该上面板及该下面板向一第一方向照射,而该气体由该气体出口向该第一方向喷出。
  2. 根据权利要求1所述的紫外光固化装置,其特征在于,该紫外光源与该上面板接触。
  3. 根据权利要求1所述的紫外光固化装置,其特征在于,该上面板包含一开口,该紫外光固化模块与该开口连接,使得在该紫外光固化模块、该上面板、该下面板及该边框之间形成该气体容室,且该紫外光源位于该气体容室中。
  4. 根据权利要求1所述的紫外光固化装置,其特征在于,该第一气体通道设置于该上面板上,以与该气体容室连接。
  5. 根据权利要求1所述的紫外光固化装置,其特征在于,该紫外光固化模块更包含一壳体,该第一气体通道由该壳体的顶面延伸至该壳体的底面,使该第一气体通道的入口由该壳体的顶面露出,且该第一气体通道的出口由该壳体的底面露出并连接至该气体容室。
  6. 根据权利要求5所述的紫外光固化装置,其特征在于,更包含一第二气体通道,该第二气体通道由该壳体的一侧经过该壳体的内部延伸至该壳体的另一侧,并与该第一气体通道连接。
  7. 根据权利要求1所述的紫外光固化装置,其特征在于,该气体出口为沟槽或孔洞。
  8. 根据权利要求1所述的紫外光固化装置,其特征在于,该紫外光固化模块更包含用以冷却该紫外光源的一冷却剂通道。
  9. 根据权利要求1所述的紫外光固化装置,其特征在于,该上面板及该下面 板为透明材料或紫外光穿透材料制成。
  10. 根据权利要求1所述的紫外光固化装置,其特征在于,该气体为一惰性气体或一非活性气体。
  11. 根据权利要求1所述的紫外光固化装置,其特征在于,该上面板及该下面板为平面镜、凹面镜、凸面镜、球面镜或非球面镜。
  12. 一种紫外光固化装置,其特征在于,包含:
    一喷气模块,包含一面板及一边框,该面板设置于该边框的下侧,并包含一气体出口;
    一紫外光固化模块,包含一紫外光源及一第一气体通道,该紫外光固化模块设置于该边框的上侧,使得在该紫外光固化模块、该面板及该边框之间形成一气体容室,该第一气体通道与该气体容室连接,并将一气体注入该气体容室;以及
    一流量调节模块,与该第一气体通道连接,并调节该气体的流量;
    其中,该紫外光源发出的紫外光通过该面板向一第一方向照射,而该气体由该气体出口向该第一方向喷出。
  13. 根据权利要求12所述的紫外光固化装置,其特征在于,该紫外光源位于该气体容室中。
  14. 根据权利要求12所述的紫外光固化装置,其特征在于,该紫外光固化模块更包含一壳体,该第一气体通道由该壳体的顶面延伸至该壳体的底面,使该第一气体通道的入口由该壳体的顶面露出,且该第一气体通道的出口由该壳体的底面露出并连接至该气体容室。
  15. 根据权利要求14所述的紫外光固化装置,其特征在于,更包含一第二气体通道,该第二气体通道由该壳体的一侧延伸至该壳体的内部,并与该第一气体通道连接。
  16. 根据权利要求12所述的紫外光固化装置,其特征在于,该气体出口为沟槽或孔洞。
  17. 根据权利要求14所述的紫外光固化装置,其特征在于,该紫外光固化模块更包含用以冷却该紫外光源的一第一冷却剂通道,该第一冷却剂通道延伸至该壳体的内部,且该第一冷却剂通道的入口及出口设置于该壳体的顶面。
  18. 根据权利要求17所述的紫外光固化装置,其特征在于,该紫外光固化模块更包含一第二冷却剂通道,该第二冷却剂通道由该壳体的一侧延伸至该壳体的内部以连接至该第一冷却剂通道。
  19. 根据权利要求12所述的紫外光固化装置,其特征在于,该气体为一惰性气体或一非活性气体。
  20. 根据权利要求12所述的紫外光固化装置,其特征在于,该面板为平面镜、凹面镜、凸面镜、球面镜或非球面镜。
PCT/CN2020/000261 2020-04-06 2020-10-22 紫外光固化装置 WO2021203216A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202063005530P 2020-04-06 2020-04-06
US63/005,530 2020-04-06
CN202010810202.8A CN113492576B (zh) 2020-04-06 2020-08-13 紫外光固化装置
CN202010810202.8 2020-08-13

Publications (1)

Publication Number Publication Date
WO2021203216A1 true WO2021203216A1 (zh) 2021-10-14

Family

ID=77994967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/000261 WO2021203216A1 (zh) 2020-04-06 2020-10-22 紫外光固化装置

Country Status (3)

Country Link
CN (1) CN113492576B (zh)
TW (1) TWI756761B (zh)
WO (1) WO2021203216A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2178630A (en) * 1985-07-15 1987-02-11 Citizen Watch Co Ltd Ultraviolet irradiation bonding apparatus
CN1638932A (zh) * 2002-02-28 2005-07-13 亨凯尔公司 使用可光固化树脂生产助听器壳的光固化设备和方法
CN108081597A (zh) * 2016-11-22 2018-05-29 湖南华曙高科技有限责任公司 消除氧气对光固化影响的方法、系统、装置及光固化设备
CN110694872A (zh) * 2019-11-14 2020-01-17 中山易必固新材料科技有限公司 一种用于板材紫外固化的气体保护装置以及充气系统
CN210010146U (zh) * 2019-05-16 2020-02-04 福建成和光电科技有限公司 一种uv胶紫外线固化装置
CN110813671A (zh) * 2019-10-31 2020-02-21 中山市优绿智得数码科技有限公司 一种新型eb固化氮气保护装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW260806B (zh) * 1993-11-26 1995-10-21 Ushio Electric Inc
JP4218192B2 (ja) * 1999-08-05 2009-02-04 株式会社日立ハイテクノロジーズ 基板処理装置及び処理方法
JP2001113163A (ja) * 1999-10-20 2001-04-24 Hoya Schott Kk 紫外光照射装置及び方法
JP2003224117A (ja) * 2002-01-31 2003-08-08 Advanced Lcd Technologies Development Center Co Ltd 絶縁膜の製造装置
EP1900005A1 (en) * 2005-06-22 2008-03-19 Axcelis Technologies, Inc. Apparatus and process for treating dielectric materials
US7964858B2 (en) * 2008-10-21 2011-06-21 Applied Materials, Inc. Ultraviolet reflector with coolant gas holes and method
CN201432469Y (zh) * 2009-04-27 2010-03-31 刘洪生 一种紫外线干燥箱
JP2011005726A (ja) * 2009-06-25 2011-01-13 Ushio Inc 光照射装置
CN102518971A (zh) * 2011-12-30 2012-06-27 深圳市润天智数字设备股份有限公司 一种紫外线发光二极管光源
US9496157B2 (en) * 2013-11-14 2016-11-15 Taiwan Semiconductor Manufacturing Co., Ltd. Ultraviolet curing apparatus having top liner and bottom liner made of low-coefficient of thermal expansion material
CN206416675U (zh) * 2016-06-14 2017-08-18 广州巍泰机电有限公司 光固化防阻聚的印刷装置
CN106585085B (zh) * 2016-12-28 2019-12-20 谢宽睿 一种防氧阻聚uv光固机及其uv光固化工艺流程
CN109203666A (zh) * 2017-07-03 2019-01-15 深圳市益华节能环保科技有限公司 Uvled固化模组
CN108528026A (zh) * 2018-03-09 2018-09-14 卢振华 一种供电可编程、氮气阻氧的紫外led固化装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2178630A (en) * 1985-07-15 1987-02-11 Citizen Watch Co Ltd Ultraviolet irradiation bonding apparatus
CN1638932A (zh) * 2002-02-28 2005-07-13 亨凯尔公司 使用可光固化树脂生产助听器壳的光固化设备和方法
CN108081597A (zh) * 2016-11-22 2018-05-29 湖南华曙高科技有限责任公司 消除氧气对光固化影响的方法、系统、装置及光固化设备
CN210010146U (zh) * 2019-05-16 2020-02-04 福建成和光电科技有限公司 一种uv胶紫外线固化装置
CN110813671A (zh) * 2019-10-31 2020-02-21 中山市优绿智得数码科技有限公司 一种新型eb固化氮气保护装置
CN110694872A (zh) * 2019-11-14 2020-01-17 中山易必固新材料科技有限公司 一种用于板材紫外固化的气体保护装置以及充气系统

Also Published As

Publication number Publication date
TWI756761B (zh) 2022-03-01
TW202138922A (zh) 2021-10-16
CN113492576A (zh) 2021-10-12
CN113492576B (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
JP4878295B2 (ja) 光源装置
CN109723982B (zh) 光照射装置
CN1597087A (zh) 紫外线照射装置
CN111347773B (zh) 光照射装置
WO2021203216A1 (zh) 紫外光固化装置
CN112384369B (zh) 光照射装置以及印刷装置
US11696964B2 (en) Ultraviolet device
WO2020067158A1 (ja) 光照射装置および印刷装置
EP1518699B1 (en) Ink-jet recording apparatus
WO2018113152A1 (zh) 一种油墨固化装置及喷墨打印机的字车机构
JP6666512B1 (ja) 光照射装置および印刷装置
US8823249B2 (en) Irradiation device and irradiation method
WO2021187242A1 (ja) 光照射装置
JP4788321B2 (ja) 液滴吐出装置および電気光学装置の製造方法
JP2013103427A (ja) 照射装置、及び照射方法
WO2022153575A1 (ja) 活性エネルギ照射装置及び活性エネルギ照射システム
WO2022137595A1 (ja) 活性エネルギ照射装置
JP5857654B2 (ja) 照射装置
CN113037974B (zh) 一种集成式成像装置
JP2021150041A (ja) 光照射装置
WO2019021651A1 (ja) 露光装置
JP2018155982A (ja) 光照射装置及びこれを備えた露光装置
JP2013154263A (ja) 紫外線照射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930180

Country of ref document: EP

Kind code of ref document: A1