WO2021200716A1 - ポリエステル、フィルムおよび接着剤組成物、ならびに接着シート、積層体およびプリント配線板 - Google Patents
ポリエステル、フィルムおよび接着剤組成物、ならびに接着シート、積層体およびプリント配線板 Download PDFInfo
- Publication number
- WO2021200716A1 WO2021200716A1 PCT/JP2021/013042 JP2021013042W WO2021200716A1 WO 2021200716 A1 WO2021200716 A1 WO 2021200716A1 JP 2021013042 W JP2021013042 W JP 2021013042W WO 2021200716 A1 WO2021200716 A1 WO 2021200716A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyester
- adhesive
- less
- adhesive composition
- mass
- Prior art date
Links
- 229920000728 polyester Polymers 0.000 title claims abstract description 98
- 239000000853 adhesive Substances 0.000 title claims abstract description 84
- 230000001070 adhesive effect Effects 0.000 title claims abstract description 84
- 239000000203 mixture Substances 0.000 title claims abstract description 43
- 230000009477 glass transition Effects 0.000 claims abstract description 13
- 125000004185 ester group Chemical group 0.000 claims abstract description 8
- 239000000178 monomer Substances 0.000 claims description 39
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 27
- 150000005846 sugar alcohols Polymers 0.000 claims description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 11
- 239000000470 constituent Substances 0.000 claims description 11
- 125000003367 polycyclic group Chemical group 0.000 claims description 7
- 239000002904 solvent Substances 0.000 abstract description 13
- 239000010408 film Substances 0.000 description 47
- 239000000463 material Substances 0.000 description 47
- 239000010410 layer Substances 0.000 description 31
- 229920005989 resin Polymers 0.000 description 31
- 239000011347 resin Substances 0.000 description 31
- -1 copper Chemical class 0.000 description 30
- 239000002253 acid Substances 0.000 description 28
- 239000012790 adhesive layer Substances 0.000 description 27
- 239000011265 semifinished product Substances 0.000 description 27
- 229910052751 metal Inorganic materials 0.000 description 26
- 239000002184 metal Substances 0.000 description 25
- 238000000034 method Methods 0.000 description 23
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 21
- 229920000647 polyepoxide Polymers 0.000 description 20
- 239000003822 epoxy resin Substances 0.000 description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 17
- 239000003795 chemical substances by application Substances 0.000 description 16
- 239000013039 cover film Substances 0.000 description 15
- 239000011888 foil Substances 0.000 description 15
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical group OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 12
- 239000000539 dimer Substances 0.000 description 12
- 238000001035 drying Methods 0.000 description 12
- 229920001721 polyimide Polymers 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 11
- 239000011889 copper foil Substances 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 10
- 229920000106 Liquid crystal polymer Polymers 0.000 description 9
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 125000002723 alicyclic group Chemical group 0.000 description 8
- 239000003063 flame retardant Substances 0.000 description 8
- 239000012948 isocyanate Substances 0.000 description 8
- 239000000123 paper Substances 0.000 description 8
- 239000005056 polyisocyanate Substances 0.000 description 8
- 229920001228 polyisocyanate Polymers 0.000 description 8
- 239000000377 silicon dioxide Substances 0.000 description 8
- 229910000679 solder Inorganic materials 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 7
- 239000006087 Silane Coupling Agent Substances 0.000 description 7
- 229920010524 Syndiotactic polystyrene Polymers 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 125000003118 aryl group Chemical group 0.000 description 6
- 239000004962 Polyamide-imide Substances 0.000 description 5
- 239000004642 Polyimide Substances 0.000 description 5
- 239000004734 Polyphenylene sulfide Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 229920002312 polyamide-imide Polymers 0.000 description 5
- 238000006068 polycondensation reaction Methods 0.000 description 5
- 229920005672 polyolefin resin Polymers 0.000 description 5
- 229920000069 polyphenylene sulfide Polymers 0.000 description 5
- 239000012779 reinforcing material Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical group C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- 239000005062 Polybutadiene Substances 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 4
- 125000003700 epoxy group Chemical group 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 239000003208 petroleum Substances 0.000 description 4
- 229920002857 polybutadiene Polymers 0.000 description 4
- 229920001225 polyester resin Polymers 0.000 description 4
- 239000004645 polyester resin Substances 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 125000003158 alcohol group Chemical group 0.000 description 3
- 229920000180 alkyd Polymers 0.000 description 3
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 3
- VPKDCDLSJZCGKE-UHFFFAOYSA-N carbodiimide group Chemical group N=C=N VPKDCDLSJZCGKE-UHFFFAOYSA-N 0.000 description 3
- 125000002843 carboxylic acid group Chemical group 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 150000002009 diols Chemical class 0.000 description 3
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229920003986 novolac Polymers 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229920006122 polyamide resin Polymers 0.000 description 3
- 229920005906 polyester polyol Polymers 0.000 description 3
- 239000009719 polyimide resin Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000013557 residual solvent Substances 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical group C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- 230000004580 weight loss Effects 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- RSWGJHLUYNHPMX-UHFFFAOYSA-N 1,4a-dimethyl-7-propan-2-yl-2,3,4,4b,5,6,10,10a-octahydrophenanthrene-1-carboxylic acid Chemical compound C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 2
- PLIKAWJENQZMHA-UHFFFAOYSA-N 4-aminophenol Chemical compound NC1=CC=C(O)C=C1 PLIKAWJENQZMHA-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 2
- 239000002313 adhesive film Substances 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical group C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- NMJJFJNHVMGPGM-UHFFFAOYSA-N butyl formate Chemical compound CCCCOC=O NMJJFJNHVMGPGM-UHFFFAOYSA-N 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- IIEWJVIFRVWJOD-UHFFFAOYSA-N ethylcyclohexane Chemical compound CCC1CCCCC1 IIEWJVIFRVWJOD-UHFFFAOYSA-N 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000011086 glassine Substances 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- PQNFLJBBNBOBRQ-UHFFFAOYSA-N indane Chemical group C1=CC=C2CCCC2=C1 PQNFLJBBNBOBRQ-UHFFFAOYSA-N 0.000 description 2
- 239000000976 ink Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 239000002655 kraft paper Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 2
- 239000006082 mold release agent Substances 0.000 description 2
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical class C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 2
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Chemical group 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 235000013772 propylene glycol Nutrition 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- 239000013638 trimer Substances 0.000 description 2
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 2
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 2
- 239000002966 varnish Substances 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- MUTGBJKUEZFXGO-OLQVQODUSA-N (3as,7ar)-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1CCC[C@@H]2C(=O)OC(=O)[C@@H]21 MUTGBJKUEZFXGO-OLQVQODUSA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- KMOUUZVZFBCRAM-UHFFFAOYSA-N 1,2,3,6-tetrahydrophthalic anhydride Chemical compound C1C=CCC2C(=O)OC(=O)C21 KMOUUZVZFBCRAM-UHFFFAOYSA-N 0.000 description 1
- FKTHNVSLHLHISI-UHFFFAOYSA-N 1,2-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC=C1CN=C=O FKTHNVSLHLHISI-UHFFFAOYSA-N 0.000 description 1
- BNIWTJAVDJYTIJ-UHFFFAOYSA-N 1,3-dimethylnaphthalene-2,6-dicarboxylic acid Chemical compound OC(=O)C1=CC=C2C(C)=C(C(O)=O)C(C)=CC2=C1 BNIWTJAVDJYTIJ-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- 229940035437 1,3-propanediol Drugs 0.000 description 1
- PXGZQGDTEZPERC-UHFFFAOYSA-N 1,4-cyclohexanedicarboxylic acid Chemical group OC(=O)C1CCC(C(O)=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-N 0.000 description 1
- OVBFMUAFNIIQAL-UHFFFAOYSA-N 1,4-diisocyanatobutane Chemical compound O=C=NCCCCN=C=O OVBFMUAFNIIQAL-UHFFFAOYSA-N 0.000 description 1
- VDSSCEGRDWUQAP-UHFFFAOYSA-N 2,2-dipropylpropane-1,3-diol Chemical compound CCCC(CO)(CO)CCC VDSSCEGRDWUQAP-UHFFFAOYSA-N 0.000 description 1
- OJRJDENLRJHEJO-UHFFFAOYSA-N 2,4-diethylpentane-1,5-diol Chemical compound CCC(CO)CC(CC)CO OJRJDENLRJHEJO-UHFFFAOYSA-N 0.000 description 1
- KQSMCAVKSJWMSI-UHFFFAOYSA-N 2,4-dimethyl-1-n,1-n,3-n,3-n-tetrakis(oxiran-2-ylmethyl)benzene-1,3-diamine Chemical compound CC1=C(N(CC2OC2)CC2OC2)C(C)=CC=C1N(CC1OC1)CC1CO1 KQSMCAVKSJWMSI-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- HHAPGMVKBLELOE-UHFFFAOYSA-N 2-(2-methylpropoxy)ethanol Chemical compound CC(C)COCCO HHAPGMVKBLELOE-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- RWLALWYNXFYRGW-UHFFFAOYSA-N 2-Ethyl-1,3-hexanediol Chemical compound CCCC(O)C(CC)CO RWLALWYNXFYRGW-UHFFFAOYSA-N 0.000 description 1
- QQZOPKMRPOGIEB-UHFFFAOYSA-N 2-Oxohexane Chemical compound CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 1
- BDLXTDLGTWNUFM-UHFFFAOYSA-N 2-[(2-methylpropan-2-yl)oxy]ethanol Chemical compound CC(C)(C)OCCO BDLXTDLGTWNUFM-UHFFFAOYSA-N 0.000 description 1
- COBPKKZHLDDMTB-UHFFFAOYSA-N 2-[2-(2-butoxyethoxy)ethoxy]ethanol Chemical compound CCCCOCCOCCOCCO COBPKKZHLDDMTB-UHFFFAOYSA-N 0.000 description 1
- YJTIFIMHZHDNQZ-UHFFFAOYSA-N 2-[2-(2-methylpropoxy)ethoxy]ethanol Chemical compound CC(C)COCCOCCO YJTIFIMHZHDNQZ-UHFFFAOYSA-N 0.000 description 1
- MXVMODFDROLTFD-UHFFFAOYSA-N 2-[2-[2-(2-butoxyethoxy)ethoxy]ethoxy]ethanol Chemical compound CCCCOCCOCCOCCOCCO MXVMODFDROLTFD-UHFFFAOYSA-N 0.000 description 1
- NQXNYVAALXGLQT-UHFFFAOYSA-N 2-[4-[9-[4-(2-hydroxyethoxy)phenyl]fluoren-9-yl]phenoxy]ethanol Chemical compound C1=CC(OCCO)=CC=C1C1(C=2C=CC(OCCO)=CC=2)C2=CC=CC=C2C2=CC=CC=C21 NQXNYVAALXGLQT-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- DSKYSDCYIODJPC-UHFFFAOYSA-N 2-butyl-2-ethylpropane-1,3-diol Chemical compound CCCCC(CC)(CO)CO DSKYSDCYIODJPC-UHFFFAOYSA-N 0.000 description 1
- VNAWKNVDKFZFSU-UHFFFAOYSA-N 2-ethyl-2-methylpropane-1,3-diol Chemical compound CCC(C)(CO)CO VNAWKNVDKFZFSU-UHFFFAOYSA-N 0.000 description 1
- QPIAAQDLOJNQMP-UHFFFAOYSA-N 2-ethyl-2-propylpropane-1,3-diol Chemical compound CCCC(CC)(CO)CO QPIAAQDLOJNQMP-UHFFFAOYSA-N 0.000 description 1
- ODGCZQFTJDEYNI-UHFFFAOYSA-N 2-methylcyclohex-3-ene-1,2-dicarboxylic acid Chemical compound OC(=O)C1(C)C=CCCC1C(O)=O ODGCZQFTJDEYNI-UHFFFAOYSA-N 0.000 description 1
- QWGRWMMWNDWRQN-UHFFFAOYSA-N 2-methylpropane-1,3-diol Chemical compound OCC(C)CO QWGRWMMWNDWRQN-UHFFFAOYSA-N 0.000 description 1
- SXFJDZNJHVPHPH-UHFFFAOYSA-N 3-methylpentane-1,5-diol Chemical compound OCCC(C)CCO SXFJDZNJHVPHPH-UHFFFAOYSA-N 0.000 description 1
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- UITKHKNFVCYWNG-UHFFFAOYSA-N 4-(3,4-dicarboxybenzoyl)phthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1C(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 UITKHKNFVCYWNG-UHFFFAOYSA-N 0.000 description 1
- NEQFBGHQPUXOFH-UHFFFAOYSA-N 4-(4-carboxyphenyl)benzoic acid Chemical group C1=CC(C(=O)O)=CC=C1C1=CC=C(C(O)=O)C=C1 NEQFBGHQPUXOFH-UHFFFAOYSA-N 0.000 description 1
- NUDSREQIJYWLRA-UHFFFAOYSA-N 4-[9-(4-hydroxy-3-methylphenyl)fluoren-9-yl]-2-methylphenol Chemical compound C1=C(O)C(C)=CC(C2(C3=CC=CC=C3C3=CC=CC=C32)C=2C=C(C)C(O)=CC=2)=C1 NUDSREQIJYWLRA-UHFFFAOYSA-N 0.000 description 1
- FVCSARBUZVPSQF-UHFFFAOYSA-N 5-(2,4-dioxooxolan-3-yl)-7-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C(C(OC2=O)=O)C2C(C)=CC1C1C(=O)COC1=O FVCSARBUZVPSQF-UHFFFAOYSA-N 0.000 description 1
- CSHJJWDAZSZQBT-UHFFFAOYSA-N 7a-methyl-4,5-dihydro-3ah-2-benzofuran-1,3-dione Chemical compound C1=CCCC2C(=O)OC(=O)C21C CSHJJWDAZSZQBT-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- KYXHKHDZJSDWEF-LHLOQNFPSA-N CCCCCCC1=C(CCCCCC)C(\C=C\CCCCCCCC(O)=O)C(CCCCCCCC(O)=O)CC1 Chemical compound CCCCCCC1=C(CCCCCC)C(\C=C\CCCCCCCC(O)=O)C(CCCCCCCC(O)=O)CC1 KYXHKHDZJSDWEF-LHLOQNFPSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000005058 Isophorone diisocyanate Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- SXSVTGQIXJXKJR-UHFFFAOYSA-N [Mg].[Ti] Chemical compound [Mg].[Ti] SXSVTGQIXJXKJR-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000005456 alcohol based solvent Substances 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- ZJKCITHLCNCAHA-UHFFFAOYSA-K aluminum dioxidophosphanium Chemical compound [Al+3].[O-][PH2]=O.[O-][PH2]=O.[O-][PH2]=O ZJKCITHLCNCAHA-UHFFFAOYSA-K 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 description 1
- GGAUUQHSCNMCAU-UHFFFAOYSA-N butane-1,2,3,4-tetracarboxylic acid Chemical compound OC(=O)CC(C(O)=O)C(C(O)=O)CC(O)=O GGAUUQHSCNMCAU-UHFFFAOYSA-N 0.000 description 1
- BMRWNKZVCUKKSR-UHFFFAOYSA-N butane-1,2-diol Chemical compound CCC(O)CO BMRWNKZVCUKKSR-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- 150000001845 chromium compounds Chemical class 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000012787 coverlay film Substances 0.000 description 1
- IFDVQVHZEKPUSC-UHFFFAOYSA-N cyclohex-3-ene-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCC=CC1C(O)=O IFDVQVHZEKPUSC-UHFFFAOYSA-N 0.000 description 1
- XBZSBBLNHFMTEB-UHFFFAOYSA-N cyclohexane-1,3-dicarboxylic acid Chemical compound OC(=O)C1CCCC(C(O)=O)C1 XBZSBBLNHFMTEB-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 230000000447 dimerizing effect Effects 0.000 description 1
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 150000002291 germanium compounds Chemical class 0.000 description 1
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 150000004678 hydrides Chemical group 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 150000002483 hydrogen compounds Chemical class 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- 239000005453 ketone based solvent Substances 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229940043265 methyl isobutyl ketone Drugs 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- GKTNLYAAZKKMTQ-UHFFFAOYSA-N n-[bis(dimethylamino)phosphinimyl]-n-methylmethanamine Chemical compound CN(C)P(=N)(N(C)C)N(C)C GKTNLYAAZKKMTQ-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- UMRZSTCPUPJPOJ-KNVOCYPGSA-N norbornane Chemical compound C1C[C@H]2CC[C@@H]1C2 UMRZSTCPUPJPOJ-KNVOCYPGSA-N 0.000 description 1
- OTLDLKLSNZMTTA-UHFFFAOYSA-N octahydro-1h-4,7-methanoindene-1,5-diyldimethanol Chemical compound C1C2C3C(CO)CCC3C1C(CO)C2 OTLDLKLSNZMTTA-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- OEIJHBUUFURJLI-UHFFFAOYSA-N octane-1,8-diol Chemical compound OCCCCCCCCO OEIJHBUUFURJLI-UHFFFAOYSA-N 0.000 description 1
- FPLYNRPOIZEADP-UHFFFAOYSA-N octylsilane Chemical compound CCCCCCCC[SiH3] FPLYNRPOIZEADP-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 description 1
- IGALFTFNPPBUDN-UHFFFAOYSA-N phenyl-[2,3,4,5-tetrakis(oxiran-2-ylmethyl)phenyl]methanediamine Chemical compound C=1C(CC2OC2)=C(CC2OC2)C(CC2OC2)=C(CC2OC2)C=1C(N)(N)C1=CC=CC=C1 IGALFTFNPPBUDN-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 150000003097 polyterpenes Chemical class 0.000 description 1
- 229920000909 polytetrahydrofuran Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- XRVCFZPJAHWYTB-UHFFFAOYSA-N prenderol Chemical compound CCC(CC)(CO)CO XRVCFZPJAHWYTB-UHFFFAOYSA-N 0.000 description 1
- 229950006800 prenderol Drugs 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- ULWHHBHJGPPBCO-UHFFFAOYSA-N propane-1,1-diol Chemical compound CCC(O)O ULWHHBHJGPPBCO-UHFFFAOYSA-N 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Chemical group 0.000 description 1
- 239000011593 sulfur Chemical group 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- YFIAVMMGSRDLLG-UHFFFAOYSA-N tert-butyl 3-benzylpiperazine-1-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCNC1CC1=CC=CC=C1 YFIAVMMGSRDLLG-UHFFFAOYSA-N 0.000 description 1
- WXYNMTGBLWPTNQ-UHFFFAOYSA-N tetrabutoxygermane Chemical compound CCCCO[Ge](OCCCC)(OCCCC)OCCCC WXYNMTGBLWPTNQ-UHFFFAOYSA-N 0.000 description 1
- UFDHBDMSHIXOKF-UHFFFAOYSA-N tetrahydrophthalic acid Natural products OC(=O)C1=C(C(O)=O)CCCC1 UFDHBDMSHIXOKF-UHFFFAOYSA-N 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- YGBFTDQFAKDXBZ-UHFFFAOYSA-N tributyl stiborite Chemical compound [Sb+3].CCCC[O-].CCCC[O-].CCCC[O-] YGBFTDQFAKDXBZ-UHFFFAOYSA-N 0.000 description 1
- UDUKMRHNZZLJRB-UHFFFAOYSA-N triethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OCC)(OCC)OCC)CCC2OC21 UDUKMRHNZZLJRB-UHFFFAOYSA-N 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 1
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 1
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/027—Thermal properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/181—Acids containing aromatic rings
- C08G63/185—Acids containing aromatic rings containing two or more aromatic rings
- C08G63/187—Acids containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings
- C08G63/189—Acids containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings containing a naphthalene ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J167/00—Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/30—Adhesives in the form of films or foils characterised by the adhesive composition
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/08—PCBs, i.e. printed circuit boards
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
Definitions
- the present invention relates to polyester. More specifically, the present invention relates to polyesters, films and adhesive compositions having excellent dielectric properties, and adhesive sheets, laminates and printed wiring boards having layers formed thereby.
- Polyester is widely used as a raw material for resin compositions used in coating agents, inks, adhesives, etc., and is generally composed of a polyvalent carboxylic acid and a polyhydric alcohol. It is widely used in various applications such as coating agents and adhesives because it has flexibility by selecting and combining polyvalent carboxylic acid and polyhydric alcohol and can freely control the high and low molecular weight.
- polyester has excellent adhesiveness to metals including copper, and has been used as an adhesive such as FPC by blending a curing agent such as epoxy resin.
- FPC adhesive such as epoxy resin
- FPC Since FPC has excellent flexibility, it can be used for multi-functionality and miniaturization of personal computers (PCs) and smartphones, and is therefore often used for incorporating electronic circuit boards into narrow and complicated interiors. There is. In recent years, electronic devices have become smaller, lighter, higher in density, and have higher output, and due to these trends, the demand for the performance of wiring boards (electronic circuit boards) has become more and more sophisticated. In particular, as the speed of transmission signals in FPCs increases, the frequency of signals is increasing. Along with this, there is an increasing demand for FPCs having low dielectric properties (low dielectric constant, low dielectric loss tangent) in the high frequency region.
- the base material used for FPC not only the conventional polyimide (PI) and polyethylene terephthalate (PET), but also the base film such as liquid crystal polymer (LCP) and syndiotactic polystyrene (SPS) having low dielectric properties.
- PI polyimide
- PET polyethylene terephthalate
- SPS syndiotactic polystyrene
- the polyester resin described in Patent Document 1 has a high relative permittivity and dielectric loss tangent, does not have the above-mentioned low dielectric properties, and is unsuitable for FPC in a high frequency region. Further, it cannot be said that the adhesive described in Patent Document 2 is excellent in heat resistance of the adhesive used for the reinforcing plate and the layers.
- an object of the present invention is a polyester, film and adhesive composition having excellent solvent solubility, heat resistance, adhesive strength, low relative permittivity and dielectric loss tangent, and excellent dielectric properties, and a layer formed thereby. Is to provide an adhesive sheet, a laminate and a printed wiring board having the above.
- the present invention has the following configuration.
- the polyester preferably has a relative permittivity ( ⁇ c) of 3.0 or less and a dielectric loss tangent (tan ⁇ ) of 0.008 or less at 10 GHz.
- a film containing the polyester is a film containing the polyester.
- Adhesive composition containing the polyester Adhesive composition containing the polyester.
- An adhesive sheet having a layer formed by the adhesive composition.
- a laminate having a layer formed by the adhesive composition having a layer formed by the adhesive composition.
- a printed wiring board that includes the laminate as a component.
- the polyester of the present invention has excellent solvent solubility, heat resistance, adhesive strength, and excellent dielectric properties. Therefore, it is suitable for a base film for FPC and an adhesive for FPC in a high frequency region, and an adhesive sheet, a laminate, and a printed wiring board.
- the polyester of the present invention has a chemical structure that can be obtained by a polycondensate of a polyvalent carboxylic acid component and a polyhydric alcohol component, and the polyvalent carboxylic acid component and the polyhydric alcohol component are one or more, respectively. It consists of selected ingredients of.
- the polyester of the present invention has an ester group concentration of 5000 eq / 10 6 g or less. When the ester group concentration is low, the polarity of the polymer is lowered, so that low dielectric properties are exhibited.
- the ester group concentration is preferably 4500 eq / 10 6 g or less, more preferably 4000 eq / 10 6 g or less, and particularly preferably 3500 eq / 10 6 g or less.
- the dielectric loss tangent of the polyester of the present invention at 10 GHz is preferably 0.008 or less, more preferably 0.005 or less.
- the relative permittivity of the polyester of the present invention at 10 GHz is preferably 3.0 or less, more preferably 2.6 or less.
- the glass transition temperature of polyester in the present invention is ⁇ 30 ° C. or higher. More preferably, it is ⁇ 20 ° C. or higher. By setting the glass transition temperature in the range of ⁇ 30 ° C. or higher, good dielectric properties are exhibited, and the tackiness (adhesiveness) of the resin surface tends to be suppressed, so that the handleability of the resin is improved.
- the glass transition temperature is preferably 100 ° C. or lower. By setting the glass transition temperature to 100 ° C. or lower, laminating can be performed even at a low temperature of about 80 ° C. Further, the lower the glass transition temperature, the better the adhesive strength tends to be.
- the polyester of the present invention preferably contains the following monomer (A) and / or monomer (B) as constituent components.
- the monomer (A) is a polyvalent carboxylic acid component and / or a polyhydric alcohol component having a polycyclic structure.
- the polycyclic structure refers to a structure in which a plurality of ring structures mainly composed of carbon are bonded, for example, an aromatic skeleton such as naphthalene, anthracene, indane, and tetralin, and an alicyclic structure such as decalin, norbornane, and tricyclodecane. Examples include structures having a skeleton.
- the free volume of polyester is increased and low dielectric properties are exhibited.
- Examples of the monomer (A) which is a polyvalent carboxylic acid component or a polyhydric alcohol component having a polycyclic structure include 2,6-naphthalenedicarboxylic acid, tricyclodecanedimethanol, pentacyclodecanedimethanol, and bisphenolfluorene. Examples thereof include bisphenoxyethanol fluorene, bisphenoxymethanolfluorene, biscresol fluorene, spiroglycol, and hydrogenated naphthalenedicarboxylic acid.
- the polyester of the present invention preferably contains 25 mol% or more of the monomer (A) when the total amount of all the constituent components constituting the polyester is 100 mol%. It is more preferably 40 mol% or more, further preferably 50 mol% or more, and particularly preferably 60 mol% or more.
- the monomer (A) in excess of the above value, the low dielectric property is improved. Especially, the effect on dielectric loss tangent is great.
- the monomer (B) is a polyvalent carboxylic acid component and / or a polyhydric alcohol component having 10 or more carbon chains in succession.
- the carbon chain is a structure having a continuous carbon-carbon bond, and the monomer (B) is a polyvalent carboxylic acid component and / or a polyhydric alcohol component, but the carboxylic acid groups or the alcohol groups are used.
- the carbon chain may have a ring structure, but the carboxylic acid groups or the alcohol groups must be separated by at least 10 carbon atoms. Further, from the viewpoint of low dielectric property, it is preferable that the carbon chain does not contain heteroatoms such as nitrogen, oxygen and sulfur in addition to the carboxylic acid group or the alcohol group, and the carbon chain is entirely composed of hydrocarbons. Is preferable.
- Examples of the monomer (B) which is a polyvalent carboxylic acid component or a polyhydric alcohol component having 10 or more carbon chains in succession include dimer acid, dimer diol, dimer acid ester (polyester polyol derived from dimer acid), and hydroxyl group. Examples thereof include terminal polybutadiene, hydroxyl group terminal hydride polybutadiene, hydroxyl group terminal polyisoprene, and hydroxyl group terminal polyolefin.
- the dimer acid refers to a polymer fatty acid having 20 to 48 carbon atoms obtained by dimerizing an unsaturated fatty acid of C10 to 24. It also contains saturated dimer acids obtained by hydrogenating those unsaturated groups. Dimerdiol can be obtained by reducing the carboxyl group of the dimer acid. Vegetable oil may be used as a raw material for dimer acid and dimer diol. Further, the dimer diol may contain a trimmer which is a trimer of an unsaturated fatty acid of C10 to 24 or a saturated trimmer obtained by hydrogenating the trimmer.
- the number average molecular weight of the monomer (B) is preferably 300 or more. It is more preferably 400 or more, still more preferably 500 or more. The larger the molecular weight, the lower the concentration of polar groups, and thus the low dielectric property is improved.
- the polyester of the present invention preferably contains 10 mol% or more of the monomer (B) when the total amount of all the constituent components constituting the polyester is 100 mol%. It is more preferably 15 mol% or more, further preferably 20 mol% or more, and particularly preferably 25 mol% or more. By containing the monomer (B) in excess of the above value, the low dielectric property is improved. It also has excellent solvent solubility of polyester.
- the polyester of the present invention preferably contains 60 mol% or more of the total of the monomers (A) and the monomers (B) when the total amount of all the constituent components constituting the polyester is 100 mol%. It is more preferably 70 mol% or more, further preferably 80 mol% or more, particularly preferably 85 mol% or more, and most preferably 90 mol% or more. It may be 100 mol%.
- the total amount of the monomer (A) and the monomer (B) is extremely high. It is possible to obtain a polyester that exhibits excellent low dielectric properties and has a good balance of various physical properties such as solvent solubility and glass transition temperature.
- the polyester of the present invention can contain a polyvalent carboxylic acid component and a polyhydric alcohol component other than the monomer (A) and the monomer (B).
- the polyvalent carboxylic acid component other than the monomer (A) and the monomer (B) is not particularly limited, but the polyvalent carboxylic acid component is an aromatic polyvalent carboxylic acid component or an alicyclic polyvalent carboxylic acid component. It is more preferable, and it is more preferable that it is an aromatic dicarboxylic acid component or an alicyclic dicarboxylic acid component.
- the aromatic dicarboxylic acid component is not particularly limited, but terephthalic acid, isophthalic acid, orthophthalic acid, 4,4'-dicarboxybiphenyl, 5-sodium sulfoisophthalic acid and the like can be used.
- the alicyclic dicarboxylic acid component is not particularly limited, but is 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid, tetrahydrophthalic acid anhydride, methyltetrahydrophthalic acid anhydride. Things can be used.
- the polyhydric alcohol component other than the monomer (A) and the monomer (B) is not particularly limited, but is ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3.
- the polyester in the present invention can also be copolymerized with a trivalent or higher polyvalent carboxylic acid component and / or a trivalent or higher polyhydric alcohol component.
- the trivalent or higher valent carboxylic acid component include aromatic carboxylic acids such as trimellitic acid, pyromellitic acid, benzophenone tetracarboxylic acid, trimesic acid, trimellitic anhydride (TMA), and pyromellitic anhydride (PMDA). , 1, 2, 3, 4-Butantetracarboxylic acid and other aliphatic carboxylic acids, and one or more of these can be used.
- trihydric or higher polyhydric alcohol component examples include glycerin, trimethylolpropane, trimethylolethane, pentaerythritol, ⁇ -methylglucose, mannitol, and sorbitol, and one or more of these may be used. It is possible. However, if the amount of copolymerization of the trivalent or higher-valent polycarboxylic acid component and / or the trivalent or higher-valent polyhydric alcohol component is large, the dielectric properties of the polyester may deteriorate, which is not preferable.
- a polyhydric carboxylic acid and a polyhydric alcohol are heated in the presence of a known catalyst, subjected to a dehydration esterification step, and then depolyhydric alcohol / heavy.
- Method of performing condensation reaction 2) Method of heating alcohol ester of polyvalent carboxylic acid and polyhydric alcohol in the presence of a known catalyst, transesterification reaction, and then performing depolyhydric alcohol / polycondensation reaction 3) Solution
- a method of performing polymerization and the like There is a method of performing polymerization and the like.
- a part or all of the acid component may be replaced with an acid anhydride.
- polymerization catalysts such as titanium compounds such as tetra-n-butyl titanate, tetraisopropyl titanate and titaniumoxyacetylcetonate, antimony trioxide, antimony such as tributoxyantimony and the like.
- titanium compounds such as tetra-n-butyl titanate, tetraisopropyl titanate and titaniumoxyacetylcetonate
- antimony trioxide antimony such as tributoxyantimony and the like.
- Compounds, germanium compounds such as germanium oxide and tetra-n-butoxygermanium, and acetates such as magnesium, iron, zinc, manganese, cobalt, and aluminum can be used.
- These catalysts may be used alone or in combination of two or more.
- the number average molecular weight of the polyester in the present invention is preferably 5000 or more, and more preferably 10000 or more. Further, it is preferably 100,000 or less, more preferably 50,000 or less, and further preferably 30,000 or less. When it is within the above range, it is preferable because it is easy to handle when dissolved in a solvent, the adhesive strength is good, and the dielectric property is excellent.
- the acid value of the polyester in the present invention is not particularly limited, but it can be appropriately designed depending on the curing agent used in combination.
- isocyanate curing is preferably from 200 eq / 10 6 g, more preferably at most 100 eq / 10 6 g, more preferably at most 50 eq / 10 6 g, the following 40 eq / 10 6 g It is particularly preferable that the amount is 30 eq / 10 6 g or less.
- For epoxy curing is preferably not less than 20 eq / 10 6 g, more preferably not less than 50 eq / 10 6 g, and most preferably 100 eq / 10 6 g or more. By keeping the resin acid value within the above range, good pot life, substrate adhesion, and crosslinkability can be expected to be improved. From the viewpoint of low dielectric properties, an isocyanate curing system is preferable.
- a method for increasing the acid value of the polyester in the present invention for example, (1) after completion of the polycondensation reaction, a trivalent or higher polyvalent carboxylic acid and / or a trivalent or higher anhydrous polycarboxylic acid is added and reacted.
- a trivalent or higher polyvalent carboxylic acid and / or a trivalent or higher anhydrous polycarboxylic acid is added and reacted.
- methods (acid addition) and (2) methods such as (2) allowing heat, oxygen, water, etc. to act during the polycondensation reaction to intentionally alter the resin, and these can be performed arbitrarily.
- the polyvalent carboxylic acid anhydride used for acid addition in the acid addition method is not particularly limited, but for example, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3, 3, 4, 4 -Benzophenone tetracarboxylic acid dianhydride, 3,3,4,4-biphenyltetracarboxylic acid dianhydride, ethylene glycol bisuanhydrotrimeritate, etc. can be mentioned, and one or more of these can be used. It is possible. It is preferably trimellitic anhydride.
- the polyester of the present invention can be used as a film.
- the polyester of the present invention may be processed into a film as it is, or a film in which various fillers such as glass fiber and silica are dispersed may be processed into a film. You can also.
- the thickness and shape of the film of the present invention are not particularly limited, and include a form often referred to as a sheet. Since the film of the present invention has excellent dielectric properties, it is suitable as a rigid substrate for high-speed transmission and a CCL base film for FPC.
- the polyester of the present invention can be used as an adhesive.
- the polyester of the present invention since the polyester of the present invention has excellent dielectric properties, it is suitable as an adhesive for FPC in a high frequency region.
- the polyester of the present invention when used as an adhesive, it can further contain a curing agent to form an adhesive composition.
- an epoxy resin, polyisocyanate, polycarbodiimide or the like can be used as the curing agent. By cross-linking with these curing agents, the cohesive force of the resin can be increased and the heat resistance can be improved. Of these, polyisocyanate is preferable because it has little effect on heat resistance and dielectric properties.
- the epoxy resin used in the present invention is not particularly limited as long as it has an epoxy group in the molecule, but is preferably one having two or more epoxy groups in the molecule.
- it is a biphenyl type epoxy resin, a novolak type epoxy resin, a dicyclopentadiene type epoxy resin or an epoxy-modified polybutadiene. More preferably, it is a dicyclopentadiene type epoxy resin or a novolac type epoxy resin.
- the content of the epoxy resin is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, still more preferably 0.5 part by mass or more, based on 100 parts by mass of polyester. Is 1 part by mass or more, and particularly preferably 2 parts by mass or more.
- the value is preferably 60 parts by mass or less, more preferably 50 parts by mass or less, further preferably 40 parts by mass or less, and particularly preferably 35 parts by mass or less.
- the pot life property and the low dielectric property are improved. That is, within the above range, an adhesive composition having excellent low dielectric properties in addition to adhesiveness, solder heat resistance and pot life property can be obtained.
- the polycarbodiimide used in the present invention is not particularly limited as long as it has a carbodiimide group in the molecule. It is preferably a polycarbodiimide having two or more carbodiimide groups in the molecule.
- the carboxyl group of the polyester and the carbodiimide group react with each other to enhance the interaction between the adhesive composition and the base material, and the adhesiveness can be improved.
- the content of polycarbodiimide is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, still more preferably 0.5 part by mass or more, based on 100 parts by mass of polyester. Is 1 part by mass or more, and particularly preferably 2 parts by mass or more.
- it is preferably 30 parts by mass or less, more preferably 25 parts by mass or less, further preferably 20 parts by mass or less, still more preferably 15 parts by mass or less, and particularly preferably 10 parts by mass or less. Is.
- excellent pot life and low dielectric properties can be exhibited. That is, within the above range, an adhesive composition having excellent low dielectric properties in addition to adhesiveness, solder heat resistance and pot life property can be obtained.
- the polyisocyanate used in the present invention is not particularly limited as long as it is an isocyanate compound that reacts with polyester and cures.
- polyisocyanate examples include aromatic or aliphatic diisocyanate compounds and trivalent or higher valent polyisocyanate compounds. These isocyanate compounds may be either low molecular weight compounds or high molecular weight compounds.
- aliphatic diisocyanates such as tetramethylene diisocyanate and hexamethylene diisocyanate
- aromatic diisocyanates such as toluene diisocyanate, diphenylmethane diisocyanate and xylylene diisocyanate
- fats such as hydride diphenylmethane diisocyanate, hydride xylylene diisocyanate, dimerate diisocyanate and isophorone diisocyanate.
- Examples thereof include cyclic diisocyanates and trimerics of these isocyanate compounds.
- a terminal isocyanate group obtained by reacting an excess amount of the isocyanate compound with a low molecular weight active hydrogen compound such as ethylene glycol, propylene glycol, trimethylolpropane, glycerin, sorbitol, ethylenediamine, monoethanolamine, diethanolamine and triethanolamine. Examples include contained compounds.
- examples thereof include terminal isocyanate group-containing compounds obtained by reacting an excess amount of the isocyanate compound with various polyester polyols, polyether polyols, high molecular weight active hydrogen compounds of polyamides and the like. These isocyanate compounds can be used alone or in combination of two or more. Of these, a trimer of a hexamethylene diisocyanate compound is particularly preferable.
- the content of polyisocyanate is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, still more preferably 0.5 part by mass or more, based on 100 parts by mass of polyester. Is 1 part by mass or more, and particularly preferably 2 parts by mass or more.
- it is preferably 30 parts by mass or less, more preferably 25 parts by mass or less, further preferably 20 parts by mass or less, still more preferably 15 parts by mass or less, and particularly preferably 10 parts by mass or less. Is.
- excellent pot life and low dielectric properties can be exhibited. That is, within the above range, an adhesive composition having particularly excellent low dielectric properties in addition to adhesiveness, solder heat resistance and pot life property can be obtained.
- the adhesive composition of the present invention can further contain an organic solvent.
- the organic solvent used in the present invention is not particularly limited as long as it dissolves polyester and a curing agent. Specifically, for example, aromatic hydrocarbons such as benzene, toluene and xylene, aliphatic hydrocarbons such as hexane, heptane, octane and decane, and alicyclic hydrocarbons such as cyclohexane, cyclohexene, methylcyclohexane and ethylcyclohexane.
- Halogenized hydrocarbons such as hydrogen, trichloroethylene, dichloroethylene, chlorobenzene and chloroform
- alcohol solvents such as methanol, ethanol, isopropyl alcohol, butanol, pentanol, hexanol, propanediol and phenol, acetone, methylisobutylketone, Ketone solvents such as methyl ethyl ketone, pentanone, hexanone, cyclohexanone, isophorone, acetophenone
- cell solves such as methyl cellsolve and ethyl cell solve
- ester solvents such as methyl acetate, ethyl acetate, butyl acetate, methyl propionate, butyl formate, etc.
- Ethylene glycol mono n-butyl ether ethylene glycol mono iso-butyl ether, ethylene glycol mono tert-butyl ether, diethylene glycol mono n-butyl ether, diethylene glycol mono iso-butyl ether, triethylene glycol mono n-butyl ether, tetraethylene glycol mono n-butyl ether, etc.
- a glycol ether solvent or the like can be used, and one or more of these can be used in combination.
- Methylcyclohexane and toluene are particularly preferable because of their work environment and dryness.
- the organic solvent is preferably in the range of 100 to 1000 parts by mass with respect to 100 parts by mass of polyester.
- the liquid and pot life properties are improved. Further, setting the value to the upper limit or less is advantageous in terms of manufacturing cost and transportation cost.
- the adhesive composition of the present invention may further contain other components as required.
- specific examples of such components include flame retardants, tackifiers, fillers, and silane coupling agents.
- a flame retardant may be added to the adhesive composition of the present invention, if necessary.
- the flame retardant include bromine-based, phosphorus-based, nitrogen-based, and metal hydroxide compounds.
- a phosphorus-based flame retardant is preferable, and a known phosphorus-based flame retardant such as a phosphate ester such as trimethyl phosphate, triphenyl phosphate, tricresyl phosphate or the like, a phosphate such as aluminum phosphinate, or phosphazene can be used. .. These may be used alone or in any combination of two or more.
- the flame retardant is preferably contained in the range of 1 to 200 parts by mass, more preferably 5 to 150 parts by mass, based on 100 parts by mass of the total of the polyester and the curing agent component.
- the range of 100 parts by mass is most preferable. Within the above range, flame retardancy can be exhibited while maintaining adhesiveness, solder heat resistance and electrical characteristics.
- a tackifier may be added to the adhesive composition of the present invention, if necessary.
- the tackifier include polyterpene resin, rosin resin, aliphatic petroleum resin, alicyclic petroleum resin, copolymer petroleum resin, styrene resin and hydrogenated petroleum resin, and the purpose is to improve the adhesive strength. Used in. These may be used alone or in any combination of two or more.
- the tackifier is contained, it is preferably contained in the range of 1 to 200 parts by mass, more preferably 5 to 150 parts by mass, and 10 to 100 parts by mass with respect to 100 parts by mass of the total of the polyester and the curing agent component. The range of parts is most preferable. Within the above range, the effect of the tackifier can be exhibited while maintaining the adhesiveness, solder heat resistance and electrical characteristics.
- a filler may be added to the adhesive composition of the present invention.
- the organic filler include powders of heat-resistant resins such as polyimide and polyamide-imide.
- the inorganic filler include silica (SiO 2 ), alumina (Al 2 O 3 ), titania (TIO 2 ), tantalum oxide (Ta 2 O 5 ), zirconia (ZrO 2 ), and barium sulfate (Si 3 N).
- silica is preferable because of the ease of dispersion and the effect of improving heat resistance.
- Hydrophobic silica and hydrophilic silica are generally known as silica, but here, hydrophobic silica treated with dimethyldichlorosilane, hexamethyldisilazane, octylsilane, etc.
- the blending amount is preferably 0.05 to 30 parts by mass with respect to 100 parts by mass in total of the polyester and the curing agent component. Further heat resistance can be exhibited by setting it to the above lower limit value or more. Further, by setting the value to the upper limit or less, it is possible to prevent poor dispersion of silica and excessively high solution viscosity, and workability is improved.
- a silane coupling agent may be added to the adhesive composition of the present invention, if necessary. It is very preferable to add a silane coupling agent because the properties of adhesion to metal and heat resistance are improved.
- the silane coupling agent is not particularly limited, and examples thereof include those having an unsaturated group, those having an epoxy group, and those having an amino group. Of these, epoxys such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and ⁇ - (3,4-epoxycyclohexyl) ethyltriethoxysilane from the viewpoint of heat resistance.
- a silane coupling agent having a group is more preferable.
- the blending amount is preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the total of the polyester and the curing agent component. Within the above range, solder heat resistance and adhesiveness can be improved.
- the laminate of the present invention is one in which an adhesive composition is laminated on a base material (a two-layer laminate of a base material / adhesive layer), or one in which a base material is further bonded (base material / adhesive layer / It is a three-layer laminate of a base material).
- the adhesive layer refers to a layer of the adhesive composition after the adhesive composition of the present invention is applied to a base material and dried.
- the laminate of the present invention can be obtained by applying and drying the adhesive composition of the present invention to various substrates according to a conventional method, and further laminating other substrates.
- the base material is not particularly limited as long as the adhesive composition of the present invention can be applied and dried to form an adhesive layer, but the base material is a resin base material such as a film-like resin, or a metal. Examples include metal substrates such as plates and metal foils, papers, and the like.
- the resin base material examples include polyester resin, polyamide resin, polyimide resin, polyamide-imide resin, liquid crystal polymer, polyphenylene sulfide, syndiotactic polystyrene, polyolefin resin, and fluorine resin.
- a film-like resin hereinafter, also referred to as a base film layer is preferable.
- any conventionally known conductive material that can be used for the circuit board can be used.
- the material include various metals such as SUS, copper, aluminum, iron, steel, zinc, and nickel, as well as alloys, plated products, and metals treated with other metals such as zinc and chromium compounds.
- a metal leaf is preferable, and a copper foil is more preferable.
- the thickness of the metal foil is not particularly limited, but is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, and further preferably 10 ⁇ m or more. Further, it is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, and further preferably 20 ⁇ m or less.
- the metal leaf is usually provided in roll form.
- the form of the metal foil used in manufacturing the printed wiring board of the present invention is not particularly limited. When a ribbon-shaped metal foil is used, its length is not particularly limited. The width thereof is also not particularly limited, but is preferably about 250 to 500 cm.
- the surface roughness of the base material is not particularly limited, but is preferably 3 ⁇ m or less, more preferably 2 ⁇ m or less, and further preferably 1.5 ⁇ m or less. Further, it is practically preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more, and further preferably 0.7 ⁇ m or more.
- Examples of papers include high-quality paper, kraft paper, roll paper, glassine paper, and the like. Further, as the composite material, glass epoxy or the like can be exemplified.
- polyester resin polyamide resin, polyimide resin, polyamide-imide resin, liquid crystal polymer, polyphenylene sulfide, syndiotactic polystyrene, polyolefin resin, fluorine resin, etc.
- SUS steel plate, copper foil, aluminum foil, or glass epoxy is preferable.
- the adhesive sheet is a laminate of the laminate and a release base material via an adhesive composition.
- Specific configuration embodiments include a laminate / adhesive layer / release base material, or a release base material / adhesive layer / laminate / adhesive layer / release base material.
- the release base material By laminating the release base material, it functions as a protective layer of the base material. Further, by using the release base material, the release base material can be released from the adhesive sheet and the adhesive layer can be transferred to another base material.
- the adhesive sheet of the present invention can be obtained by applying the adhesive composition of the present invention to various laminates and drying them according to a conventional method.
- a release base material is attached to the adhesive layer after drying, it can be wound up without causing set-off to the base material, which is excellent in operability and protects the adhesive layer for storage stability. It is excellent and easy to use.
- the release base material is coated and dried, and then another release base material is attached as needed, the adhesive layer itself can be transferred to another base material.
- the release base material is not particularly limited, but for example, a coating layer of a sealant such as clay, polyethylene, or polypropylene is applied to both sides of paper such as high-quality paper, kraft paper, roll paper, and glassine paper. Examples thereof include those in which a silicone-based, fluorine-based, or alkyd-based mold release agent is coated on each of the coating layers.
- various olefin films such as polyethylene, polypropylene, ethylene- ⁇ -olefin copolymer, and propylene- ⁇ -olefin copolymer alone, and those obtained by applying the above-mentioned release agent on a film such as polyethylene terephthalate can also be mentioned.
- polypropylene sealing treatment is applied to both sides of high-quality paper, and an alkyd-based release agent is used on top of it.
- an alkyd-based mold release agent on polyethylene terephthalate.
- the method for coating the adhesive composition on the substrate in the present invention is not particularly limited, and examples thereof include a comma coater and a reverse roll coater.
- the adhesive layer may be provided directly or by a transfer method on the rolled copper foil or the polyimide film which is the constituent material of the printed wiring board.
- the thickness of the adhesive layer after drying is appropriately changed as needed, but is preferably in the range of 5 to 200 ⁇ m. Sufficient adhesive strength can be obtained by setting the adhesive film thickness to 5 ⁇ m or more. Further, when the thickness is 200 ⁇ m or less, it becomes easy to control the amount of residual solvent in the drying process, and blister is less likely to occur during pressing for manufacturing a printed wiring board.
- the drying conditions are not particularly limited, but the residual solvent ratio after drying is preferably 1% by mass or less. By setting the content to 1% by mass or less, foaming of the residual solvent during pressing of the printed wiring board is suppressed, and blistering is less likely to occur.
- the printed wiring board in the present invention includes a laminate formed of a metal foil forming a conductor circuit and a resin base material as a constituent element.
- the printed wiring board is manufactured by a conventionally known method such as a subtractive method using a metal-clad laminate, for example.
- the printed wiring board of the present invention can have an arbitrary laminated structure that can be adopted as a printed wiring board.
- it can be a printed wiring board composed of four layers, a base film layer, a metal foil layer, an adhesive layer, and a cover film layer.
- it can be a printed wiring board composed of five layers of a base film layer, an adhesive layer, a metal foil layer, an adhesive layer, and a cover film layer.
- two or three or more of the above-mentioned printed wiring boards may be laminated.
- the adhesive composition of the present invention can be suitably used for each adhesive layer of the printed wiring board.
- the adhesive composition of the present invention when used as an adhesive, it has high adhesiveness not only to the conventional polyimide, polyester film, and copper foil constituting the printed wiring board, but also to a low-polarity resin base material such as LCP. , Solder reflow resistance can be obtained, and the adhesive layer itself has excellent low dielectric properties. Therefore, it is suitable as an adhesive composition used for coverlay films, laminated boards, copper foils with resins, and bonding sheets.
- any resin film conventionally used as the base material of the printed wiring board can be used as the base film.
- the resin of the base film include polyester resin, polyamide resin, polyimide resin, polyamide-imide resin, liquid crystal polymer, polyphenylene sulfide, syndiotactic polystyrene, polyolefin resin, and fluorine resin.
- it has excellent adhesiveness to low-polarity substrates such as liquid crystal polymers, polyphenylene sulfide, syndiotactic polystyrene, and polyolefin resins.
- any conventionally known insulating film as an insulating film for a printed wiring board can be used.
- films made from various polymers such as polyimide, polyester, polyphenylene sulfide, polyether sulfone, polyether ether ketone, aramid, polycarbonate, polyarylate, polyamideimide, liquid crystal polymer, syndiotactic polystyrene, and polyolefin resin are used. It is possible. More preferably, it is a polyimide film or a liquid crystal polymer film.
- the printed wiring board of the present invention can be manufactured by any conventionally known process other than using the materials of the above-mentioned layers.
- a semi-finished product in which an adhesive layer is laminated on a cover film layer (hereinafter, referred to as "cover film side semi-finished product") is manufactured.
- a semi-finished product (hereinafter referred to as “base film side two-layer semi-finished product”) in which a metal foil layer is laminated on a base film layer to form a desired circuit pattern, or an adhesive layer is laminated on a base film layer.
- a semi-finished product (hereinafter referred to as “base film side three-layer semi-finished product”) in which a metal foil layer is laminated on the metal foil layer to form a desired circuit pattern (hereinafter referred to as a base film-side two-layer semi-finished product).
- base film side semi-finished product By laminating the cover film side semi-finished product thus obtained and the base film side semi-finished product, a 4-layer or 5-layer printed wiring board can be obtained.
- the base film side semi-finished product is, for example, (A) a step of applying a resin solution to be a base film to the metal foil and initially drying the coating film, and (B) the metal foil obtained in (A). It is obtained by a production method including a step of heat-treating and drying the laminate with the initial dry coating film (hereinafter, referred to as "heat treatment / solvent removal step").
- a conventionally known method can be used for forming the circuit in the metal foil layer.
- the additive method may be used, or the subtractive method may be used.
- the subtractive method is preferable.
- the obtained base film side semi-finished product may be used as it is for bonding with the cover film side semi-finished product, or for bonding with the cover film side semi-finished product after the release film is bonded and stored. You may use it.
- the cover film side semi-finished product is manufactured by applying an adhesive to the cover film, for example. If necessary, a cross-linking reaction can be carried out on the applied adhesive. In a preferred embodiment, the adhesive layer is semi-cured.
- the obtained cover film side semi-finished product may be used as it is for bonding with the base film side semi-finished product, or may be bonded to the base film side semi-finished product after the release film is bonded and stored. May be used for.
- the base film side semi-finished product and the cover film side semi-finished product are, for example, stored in the form of rolls and then bonded together to manufacture a printed wiring board. Any method can be used as the bonding method, and for example, the bonding can be performed using a press or a roll. It is also possible to bond the two together while heating by a method such as using a heating press or a heating roll device.
- the reinforcing material side semi-finished product is preferably manufactured by applying an adhesive to the reinforcing material.
- an adhesive to the reinforcing material.
- the adhesive previously applied to the release base material is transferred and applied. It is preferable to be manufactured. Further, if necessary, a cross-linking reaction can be carried out in the applied adhesive.
- the adhesive layer is semi-cured.
- the obtained reinforcing material side semi-finished product may be used as it is for bonding with the back surface of the printed wiring board, or may be used for bonding with the base film side semi-finished product after the release film is bonded and stored. You may.
- the base film side semi-finished product, the cover film side semi-finished product, and the reinforcing material side semi-finished product are all laminates for the printed wiring board in the present invention.
- a simple part means a mass part.
- the acid component and the glycolate ester group concentration - was calculated 2 ⁇ 10 6 times the reciprocal of the average molecular weight of the units produced from Le component as an ester group concentration.
- the average molecular weight of the production unit is 750 g / mol, so the ester group concentration is calculated to be 2667 eq / 10 6 g.
- Measurement of glass transition temperature Measurement was performed using a differential scanning calorimeter (SII, DSC-200). 5 mg of the sample (polyester) was placed in an aluminum holding lid type container, sealed, and cooled to ⁇ 50 ° C. using liquid nitrogen. Next, the temperature is raised to 150 ° C. at a heating rate of 20 ° C./min, and in the heat absorption curve obtained in the temperature rise process, an extension of the baseline before the heat absorption peak appears (below the glass transition temperature) and the heat absorption peak. The temperature of the intersection with the tangent line toward (the tangent line indicating the maximum inclination from the rising portion of the peak to the peak of the peak) was defined as the glass transition temperature (Tg, unit: ° C.).
- a polyester sample was dissolved and / or diluted with tetrahydrofuran so that the resin concentration was about 0.5% by weight, and filtered through a polytetrafluoride ethylene membrane filter having a pore size of 0.5 ⁇ m. It was used as a measurement sample.
- the molecular weight was measured by gel permeation chromatography (GPC) using tetrahydrofuran as the mobile phase and a differential refractometer as a detector. The flow rate was 1 mL / min and the column temperature was 30 ° C. Showa Denko's KF-802, 804L, and 806L were used as columns. Monodisperse polystyrene was used as the molecular weight standard.
- Polyester dissolved in toluene so as to have a solid content concentration of 30% was applied to a Teflon (registered trademark) sheet having a thickness of 100 ⁇ m so as to have a thickness after drying of 25 ⁇ m, and dried at 130 ° C. for 3 minutes. Then, the Teflon (registered trademark) sheet was peeled off to obtain a resin sheet for testing. After that, the obtained test resin sheet was cut into strips of 8 cm ⁇ 3 mm to obtain a test sample.
- the relative permittivity ( ⁇ c ) and the dielectric loss tangent (tan ⁇ ) were measured by a cavity resonator perturbation method using a network analyzer (manufactured by Anritsu) under the conditions of a temperature of 23 ° C. and a frequency of 10 GHz.
- Tackiness A polyester varnish dissolved in toluene so that the solid content concentration is 30% is applied to a polyester film (Toyobo E5101, thickness 50 ⁇ m, corona-treated surface) so that the thickness after drying is 25 ⁇ m, and the temperature is 130 ° C. It was dried for 3 minutes. At room temperature (23 ° C.), the dried adhesive sheet is cut to a width of 25 mm and a length of 200 mm, and the adhesive layer surface is attached to a rolled copper foil base material (manufactured by JX Metal Co., Ltd., BHY series), and 2 kg from the top. The adhesive sheet was crimped by reciprocating twice at a speed of 20 mm / sec with the rubber roller of.
- Solvent solubility The solubility of polyester dissolved in toluene with stirring at 80 ° C. for 6 hours so that the solid content concentration was 60% by mass or 50% by mass was evaluated according to the following criteria. ⁇ Evaluation criteria for solvent solubility> ⁇ : Completely dissolved without undissolved residue at a solid content concentration of 60% by mass ⁇ : Completely dissolved without undissolved residue at a solid content concentration of 50 mass% ⁇ : There is undissolved resin at a solid content concentration of 50 mass%
- a curing agent was blended with the polyester of the present invention to prepare an adhesive composition, and an adhesiveness evaluation was carried out.
- B1 Polyisocyanate (Sumijour N3300 (manufactured by Sumika Cobestro Urethane))
- B2 Epoxy resin (Epiclon HP-7200H (manufactured by DIC Corporation))
- Toluene varnish having a solid content concentration of 30% by mass prepared by dissolving polyester with toluene was blended with a curing agent at a ratio (parts by mass) shown in Table 1 to 100 parts of polyester to prepare an adhesive composition. ..
- the adhesive composition was applied to a polyimide film having a thickness of 12.5 ⁇ m (manufactured by Kaneka Corporation, Apical (registered trademark)) so as to have a thickness of 25 ⁇ m after drying, and dried at 130 ° C. for 3 minutes.
- the adhesive film (B stage product) thus obtained was bonded to a rolled copper foil (manufactured by JX Nippon Mining & Metals Co., Ltd., BHY series) having a thickness of 18 ⁇ m.
- the bonding was performed by pressing the rolled copper foil under pressure of 2 MPa at 160 ° C. for 30 seconds so that the glossy surface of the rolled copper foil was in contact with the adhesive layer to bond the rolled copper foil.
- Example 1 Example of production of polyester (a1) 326 parts of dimethyl 2,6-naphthalenedicarboxylic acid, 1520 parts of dimerdiol (Croda, Pripol 2033) in a reaction vessel equipped with a stirrer, condenser, and thermometer, and tetrabutyl orthotitanate as a catalyst is total acid. 0.03 mol% was charged with respect to the components, the temperature was raised from 160 ° C. to 220 ° C. over 4 hours, and the esterification reaction was carried out through a dehydration step. Next, in the polycondensation reaction step, the pressure inside the system was reduced to 5 mmHg over 20 minutes, and the temperature was further raised to 250 ° C.
- the glass transition temperature was -17 ° C.
- the obtained polyester (a1) was evaluated for solvent solubility, tackiness, heat resistance, relative permittivity, dielectric loss tangent and adhesiveness. The evaluation results are shown in Table 1.
- Polyesters (a2) to (a15) were synthesized by changing the types of raw materials and the blending ratios according to the production examples of polyesters (a1). After the polymerization reaction was completed, 8 parts by mass of trimellitic anhydride was further added to the polyester (a9), and the polyester (a9) was reacted at 230 ° C. for 30 minutes to carry out post-acid addition.
- the physical characteristics and evaluation results are shown in Table 1.
- PTMG1000 is polytetramethylene ether glycol (average molecular weight 1000).
- the monomer (B) used in the examples is as follows. Dimeric acid: Croda, Pripol 1013 (number average molecular weight 565) Dimerdiol: Croda, Pripol 2033 (number average molecular weight about 560) Dimer acid ester: Croda, Priplast 3197 (number average molecular weight about 2000, polyester polyol derived from dimer acid)
- polyester of the present invention is excellent in solvent solubility, heat resistance, adhesive strength, and particularly excellent low dielectric property, it is useful as an adhesive for FPC in a high frequency region, a base film, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Adhesive Tapes (AREA)
- Polyesters Or Polycarbonates (AREA)
- Laminated Bodies (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021538822A JP7024923B1 (ja) | 2020-03-30 | 2021-03-26 | ポリエステル、フィルムおよび接着剤組成物、ならびに接着シート、積層体およびプリント配線板 |
CN202180023258.1A CN115298245A (zh) | 2020-03-30 | 2021-03-26 | 聚酯、膜及粘接剂组合物、以及粘接片材、层叠体及印刷线路板 |
KR1020227033572A KR20220161320A (ko) | 2020-03-30 | 2021-03-26 | 폴리에스테르, 필름 및 접착제 조성물, 및 접착 시트, 적층체 및 프린트 배선판 |
JP2022017945A JP2022068240A (ja) | 2020-03-30 | 2022-02-08 | ポリエステル、フィルムおよび接着剤組成物、ならびに接着シート、積層体およびプリント配線板 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020060693 | 2020-03-30 | ||
JP2020-060693 | 2020-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021200716A1 true WO2021200716A1 (ja) | 2021-10-07 |
Family
ID=77929984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/013042 WO2021200716A1 (ja) | 2020-03-30 | 2021-03-26 | ポリエステル、フィルムおよび接着剤組成物、ならびに接着シート、積層体およびプリント配線板 |
Country Status (5)
Country | Link |
---|---|
JP (2) | JP7024923B1 (enrdf_load_stackoverflow) |
KR (1) | KR20220161320A (enrdf_load_stackoverflow) |
CN (1) | CN115298245A (enrdf_load_stackoverflow) |
TW (1) | TW202144454A (enrdf_load_stackoverflow) |
WO (1) | WO2021200716A1 (enrdf_load_stackoverflow) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114276614A (zh) * | 2021-12-24 | 2022-04-05 | 易宝(福建)高分子材料股份公司 | 用于epdm-pp发泡材料的接枝交联剂及其制备方法、应用 |
JP2022053533A (ja) * | 2020-09-24 | 2022-04-05 | 三菱ケミカル株式会社 | 粘着剤組成物、粘着剤及び粘着剤層 |
WO2023145600A1 (ja) * | 2022-01-31 | 2023-08-03 | 日東電工株式会社 | 粘着剤組成物、粘着剤層、および粘着シート |
WO2023145601A1 (ja) * | 2022-01-31 | 2023-08-03 | 日東電工株式会社 | 粘着剤組成物、粘着剤層、および粘着シート |
WO2023145602A1 (ja) * | 2022-01-31 | 2023-08-03 | 日東電工株式会社 | 光学積層体 |
WO2025018340A1 (ja) * | 2023-07-20 | 2025-01-23 | 東洋紡エムシー株式会社 | 接着剤組成物、並びにこれを含有する接着シート、積層体およびプリント配線板 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW202346527A (zh) * | 2022-03-03 | 2023-12-01 | 日商東洋紡Mc股份有限公司 | 黏接劑組成物、以及含有其之黏接片、疊層體及印刷配線板 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01221469A (ja) * | 1988-02-29 | 1989-09-04 | Nippon Paint Co Ltd | 粉体塗料用樹脂組成物 |
JPH06128363A (ja) * | 1992-10-16 | 1994-05-10 | Toyobo Co Ltd | 熱可塑性ポリエステルエラストマー |
JP2011046771A (ja) * | 2009-08-25 | 2011-03-10 | Teijin Fibers Ltd | ポリエステル樹脂組成物およびその製造方法ならびに成形体 |
JP2011048926A (ja) * | 2009-08-25 | 2011-03-10 | Teijin Fibers Ltd | 電線被覆材 |
JP2011102387A (ja) * | 2009-10-14 | 2011-05-26 | Mitsui Chemicals Inc | ラミネート用接着剤 |
JP2012207207A (ja) * | 2011-03-16 | 2012-10-25 | Toyobo Co Ltd | バイオマスプラスチック塗料 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06104813A (ja) | 1992-09-18 | 1994-04-15 | Canon Inc | 無線電話機 |
JP4815060B2 (ja) * | 2001-03-22 | 2011-11-16 | 日本精化株式会社 | 油剤及びこれを含有する化粧料及び外用剤 |
US10471682B2 (en) | 2014-09-24 | 2019-11-12 | Toagosei Co., Ltd. | Adhesive composition and laminate with adhesive layer using same |
CN110891621B (zh) * | 2017-05-30 | 2022-07-08 | 赢创加拿大公司 | 具有改性表面的血管移植物 |
WO2018218348A1 (en) * | 2017-05-30 | 2018-12-06 | Interface Biologics, Inc. | Prosthetic valves having a modified surface |
JP7211403B2 (ja) * | 2019-10-23 | 2023-01-24 | 三菱ケミカル株式会社 | 接着剤組成物及び接着剤 |
-
2021
- 2021-03-26 KR KR1020227033572A patent/KR20220161320A/ko active Pending
- 2021-03-26 CN CN202180023258.1A patent/CN115298245A/zh active Pending
- 2021-03-26 WO PCT/JP2021/013042 patent/WO2021200716A1/ja active Application Filing
- 2021-03-26 JP JP2021538822A patent/JP7024923B1/ja active Active
- 2021-03-29 TW TW110111340A patent/TW202144454A/zh unknown
-
2022
- 2022-02-08 JP JP2022017945A patent/JP2022068240A/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01221469A (ja) * | 1988-02-29 | 1989-09-04 | Nippon Paint Co Ltd | 粉体塗料用樹脂組成物 |
JPH06128363A (ja) * | 1992-10-16 | 1994-05-10 | Toyobo Co Ltd | 熱可塑性ポリエステルエラストマー |
JP2011046771A (ja) * | 2009-08-25 | 2011-03-10 | Teijin Fibers Ltd | ポリエステル樹脂組成物およびその製造方法ならびに成形体 |
JP2011048926A (ja) * | 2009-08-25 | 2011-03-10 | Teijin Fibers Ltd | 電線被覆材 |
JP2011102387A (ja) * | 2009-10-14 | 2011-05-26 | Mitsui Chemicals Inc | ラミネート用接着剤 |
JP2012207207A (ja) * | 2011-03-16 | 2012-10-25 | Toyobo Co Ltd | バイオマスプラスチック塗料 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022053533A (ja) * | 2020-09-24 | 2022-04-05 | 三菱ケミカル株式会社 | 粘着剤組成物、粘着剤及び粘着剤層 |
JP7173252B2 (ja) | 2020-09-24 | 2022-11-16 | 三菱ケミカル株式会社 | 粘着剤組成物、粘着剤及び粘着剤層 |
CN114276614A (zh) * | 2021-12-24 | 2022-04-05 | 易宝(福建)高分子材料股份公司 | 用于epdm-pp发泡材料的接枝交联剂及其制备方法、应用 |
WO2023145600A1 (ja) * | 2022-01-31 | 2023-08-03 | 日東電工株式会社 | 粘着剤組成物、粘着剤層、および粘着シート |
WO2023145601A1 (ja) * | 2022-01-31 | 2023-08-03 | 日東電工株式会社 | 粘着剤組成物、粘着剤層、および粘着シート |
WO2023145602A1 (ja) * | 2022-01-31 | 2023-08-03 | 日東電工株式会社 | 光学積層体 |
WO2025018340A1 (ja) * | 2023-07-20 | 2025-01-23 | 東洋紡エムシー株式会社 | 接着剤組成物、並びにこれを含有する接着シート、積層体およびプリント配線板 |
Also Published As
Publication number | Publication date |
---|---|
CN115298245A (zh) | 2022-11-04 |
JPWO2021200716A1 (enrdf_load_stackoverflow) | 2021-10-07 |
KR20220161320A (ko) | 2022-12-06 |
TW202144454A (zh) | 2021-12-01 |
JP7024923B1 (ja) | 2022-02-24 |
JP2022068240A (ja) | 2022-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7024923B1 (ja) | ポリエステル、フィルムおよび接着剤組成物、ならびに接着シート、積層体およびプリント配線板 | |
JP6981581B1 (ja) | 接着剤組成物、ならびに接着シート、積層体およびプリント配線板 | |
JP7405298B2 (ja) | ポリエステル、フィルムおよび接着剤組成物、ならびに接着シート、積層体およびプリント配線板 | |
JP6981583B1 (ja) | 接着剤組成物ならびに接着シート、積層体およびプリント配線板 | |
JP7120498B1 (ja) | 接着剤組成物、ならびにこれを含有する接着シート、積層体およびプリント配線板 | |
JP7318838B2 (ja) | 接着剤組成物、接着シート、積層体およびプリント配線板 | |
TWI885109B (zh) | 聚酯、薄膜、黏接劑組成物、黏接片、疊層體、以及印刷配線板 | |
JP7127757B1 (ja) | 接着剤組成物、ならびにこれを含有する接着シート、積層体およびプリント配線板 | |
TWI885242B (zh) | 黏接劑組成物、及含有此組成物之黏接片、疊層體以及印刷配線板 | |
TW202248392A (zh) | 黏接劑組成物、及含有此黏接劑之黏接片、疊層體及印刷配線板 | |
WO2025094503A1 (ja) | 接着剤組成物、並びにこれを含有する接着シート、積層体およびプリント配線板 | |
WO2025018340A1 (ja) | 接着剤組成物、並びにこれを含有する接着シート、積層体およびプリント配線板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021538822 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21780682 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21780682 Country of ref document: EP Kind code of ref document: A1 |