WO2021200540A1 - N-置換マレイミド系重合体、及びその製造方法 - Google Patents

N-置換マレイミド系重合体、及びその製造方法 Download PDF

Info

Publication number
WO2021200540A1
WO2021200540A1 PCT/JP2021/012544 JP2021012544W WO2021200540A1 WO 2021200540 A1 WO2021200540 A1 WO 2021200540A1 JP 2021012544 W JP2021012544 W JP 2021012544W WO 2021200540 A1 WO2021200540 A1 WO 2021200540A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted maleimide
meth
acrylate
based polymer
group
Prior art date
Application number
PCT/JP2021/012544
Other languages
English (en)
French (fr)
Inventor
山口 稔
加原 浩二
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to KR1020227028911A priority Critical patent/KR20220131537A/ko
Priority to CN202180017130.4A priority patent/CN115210271B/zh
Priority to JP2022512067A priority patent/JPWO2021200540A1/ja
Publication of WO2021200540A1 publication Critical patent/WO2021200540A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/36Amides or imides
    • C08F222/40Imides, e.g. cyclic imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F267/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated polycarboxylic acids or derivatives thereof as defined in group C08F22/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/14Esterification

Definitions

  • the present invention relates to a method for producing an N-substituted maleimide-based polymer and an N-substituted maleimide-based polymer obtained by the above-mentioned production method. More specifically, the present invention relates to an N-substituted maleimide-based polymer capable of suppressing heat coloring of a cured product, and a method for producing the same.
  • the N-substituted maleimide-based polymer is a polymer obtained by polymerizing a monomer component containing an N-substituted maleimide monomer such as N-benzylmaleimide or N-phenylmaleimide.
  • Such maleimide-based polymers are generally widely used as optical materials, electric / electronic materials, and the like because they have a high glass transition temperature and excellent heat resistance.
  • Such a polymer having a polymerizable double bond in the side chain can be obtained by, for example, polymerizing a monomer component containing a monomer having an acid group to obtain a base polymer, and the polymer can be used as a base polymer.
  • a method of introducing a polymerizable double bond into a polymer by subjecting an epoxy group to a compound having a polymerizable double bond, or a monomer component containing a compound having a polymerizable double bond to an epoxy group can be used.
  • glycidyl (meth) acrylate (glycidyl acrylate and / or) is used as one of the compounds having a polymerizable double bond with the epoxy group.
  • glycidyl methacrylate is used.
  • Patent Document 1 describes a photosensitive resin composition for a color filter containing a carboxyl group-containing radically polymerizable copolymer having an ethylenically unsaturated double bond, and obtains the above radically polymerizable copolymer.
  • an N-substituted maleimide compound and an unsaturated carboxylic acid compound such as (meth) acrylic acid (acrylic acid and / or methacrylic acid) as a monomer component are added to a copolymer obtained as an epoxy group-containing ethylenically non-ethyleney polymer.
  • a method of reacting a saturated polymer is described.
  • the polymer obtained by using glycidyl (meth) acrylate has a problem that it is easily colored by heat depending on its composition.
  • glycidyl (meth) acrylate and a polymer containing an N-substituted maleimide-based monomer or a structural unit derived from an N-substituted maleimide-based monomer are mixed and heated, the heat of the cured product obtained is obtained.
  • coloring due to (heat coloring) became remarkable.
  • Such coloring becomes a big problem when it is desired to use the N-substituted maleimide-based polymer in the production of a light-colored or transparent product.
  • the present invention can obtain a polymer in which thermal coloring is remarkably suppressed when a polymer is produced using an N-substituted maleimide monomer and glycidyl (meth) acrylate. It is an object of the present invention to provide a method for producing an N-substituted maleimide-based polymer which can be produced.
  • the present inventor has studied various methods for producing a polymer using glycidyl (meth) acrylate and an N-substituted maleimide-based monomer, and found that glycidyl (meth) acrylate was used. Found that chlorine is contained as an impurity, and that chlorine promotes the thermal oxidation of maleimide groups, resulting in thermal coloring of the resulting polymer. Then, the present inventor uses glycidyl (meth) acrylate having a predetermined range of chlorine content, for example, glycidyl (meth) acrylate adjusted so that the chlorine content is within a predetermined range. By doing so, it was found that an N-substituted maleimide-based polymer having a double bond in the side chain, in which thermal coloring was remarkably suppressed, could be obtained, and the present invention was completed.
  • the present invention is a step (I-2) of polymerizing a monomer component containing an N-substituted maleimide monomer (a) and an unsaturated carboxylic acid monomer (b) to obtain a base polymer.
  • An N-substituted maleimide-based polymer having a double bond in the side chain by reacting the base polymer with glycidyl (meth) acrylate having a chlorine content adjusted to 0.01 to 0.3% by mass.
  • This is a method for producing an N-substituted maleimide-based polymer, which comprises the step (I-3) of obtaining the above.
  • the amount of chlorine contained in glycidyl (meth) acrylate is 0.01 to 0.3% by mass before the step (I-2). It is preferable to further include the step (I-1) of purifying glycidyl acrylate.
  • the present invention also polymerizes a monomer component containing an N-substituted maleimide monomer (a) and glycidyl (meth) acrylate having a chlorine content adjusted to 0.01 to 0.3% by mass.
  • a monomer component containing an N-substituted maleimide monomer (a) and glycidyl (meth) acrylate having a chlorine content adjusted to 0.01 to 0.3% by mass In the step of obtaining the base polymer (II-2) and reacting the base polymer with the unsaturated carboxylic acid monomer (b) to obtain an N-substituted maleimide-based polymer having a double bond in the side chain. It is a method for producing an N-substituted maleimide-based polymer, which comprises the step (II-3) of obtaining the polymer.
  • the chlorine content in glycidyl (meth) acrylate is 0.01 to 0.3% by mass before the step (II-2). It is preferable to further include the step (II-1) of purifying glycidyl acrylate.
  • a polybasic acid or a polybasic acid is further added to the N-substituted maleimide polymer having a double bond in the side chain. It is preferable to have a step (II-4) of reacting the anhydride.
  • the amount of residual chlorine in the N-substituted maleimide-based polymer is the total amount of the N-substituted maleimide monomer (a) and glycidyl (meth) acrylate used. On the other hand, it is preferably 100 to 2000 ppm.
  • the present invention also has an N-substituted structural unit (A) derived from an N-substituted maleimide monomer and a structural unit (B) represented by the following general formulas (B1), (B2) or (B3).
  • the structural unit (B) of the maleimide-based polymer includes a structure derived from glycidyl (meth) acrylate, and the amount of residual chlorine in the N-substituted maleimide-based polymer is the polymer raw material.
  • N-substituted maleimide system characterized in that it is 100 to 2000 ppm with respect to the total mass of the N-substituted maleimide monomer giving the structural unit (A) and the glycidyl (meth) acrylate giving the structural unit (B). It is a polymer.
  • R 1 and R 3 represent the same or different hydrogen atom or methyl group.
  • R 2 represents a divalent bonding group.
  • A is 0 or 1.
  • R 4 represents a hydrogen atom or a methyl group.
  • R 5 represents an ethylenically unsaturated bond-containing group.
  • R 6 represents a hydrogen atom or a methyl group.
  • R 7 represents an ethylenically unsaturated bond-containing group.
  • X represents a divalent hydrocarbon group.
  • the N-substituted maleimide-based polymer preferably has an acid value of 20 to 200 mgKOH / g.
  • the N-substituted maleimide-based polymer preferably has a double bond equivalent of 300 to 3000 g / equivalent.
  • the present invention is also a curable resin composition comprising the above-mentioned N-substituted maleimide-based polymer and a polymerizable compound.
  • N-substituted maleimide-based polymer having a double bond in the side chain in which thermal coloring is remarkably suppressed.
  • the N-substituted maleimide-based polymer of the present invention can be suitably used as an optical material, an electric / electronic material, or the like.
  • (meth) acrylic acid means “acrylic acid” and “methacrylic acid”
  • (meth) acrylate means “acrylate” and "methacrylate”.
  • a monomer component containing an N-substituted maleimide monomer (a) and an unsaturated carboxylic acid monomer (b) is polymerized to obtain a base polymer.
  • the step (I-2) for obtaining and the above base polymer were reacted with glycidyl (meth) acrylate having a chlorine content adjusted to 0.01 to 0.3% by mass to form a double bond in the side chain.
  • It is a method (I) for producing an N-substituted maleimide-based polymer which comprises a step (I-3) for obtaining an N-substituted maleimide-based polymer having the same.
  • the present invention polymerizes a monomer component containing an N-substituted maleimide monomer (a) and glycidyl (meth) acrylate having a chlorine content adjusted to 0.01 to 0.3% by mass.
  • glycidyl (meth) acrylate having a chlorine content adjusted to 0.01 to 0.3% by mass is used. do.
  • glycidyl (meth) acrylate whose chlorine content is adjusted to 0.01 to 0.3% by mass, the thermal coloring of the obtained polymer can be remarkably suppressed for the following reasons. It is presumed that That is, chlorine contained as an impurity in glycidyl (meth) acrylate generates hydrogen chloride and hypochlorous acid during heating and promotes the generation of amines from N-substituted maleimides, and the generated amines are hypochlorous acid.
  • a colored substance is produced by being oxidized by an oxidizing substance such as, and the production of such a colored substance is remarkably suppressed by setting the residual chlorine contained in glycidyl (meth) acrylate to a predetermined range amount. It is thought that this is the reason.
  • an N-substituted maleimide-based polymer having a double bond in the side chain can be finally obtained.
  • the double bond means a polymerizable double bond, that is, a carbon-carbon double bond, and examples thereof include a (meth) acryloyl group, a vinyl group, an allyl group, and a metalyl group.
  • Manufacturing method (I) ⁇ Step (I-2)>
  • a monomer component containing an N-substituted maleimide monomer (a) and an unsaturated carboxylic acid monomer (b) is polymerized to form a base polymer (also referred to as "base polymer 1"). It has a step (I-2) of obtaining (referred to as).
  • the method for obtaining the base polymer 1 by polymerizing the monomer components containing the monomers (a) and (b) is not particularly limited, and known polymerization methods such as bulk polymerization, solution polymerization, and emulsion polymerization are available. Can be mentioned. Of these, solution polymerization is preferable because it is industrially advantageous and structural adjustment such as molecular weight is easy. Further, as the polymerization mechanism of the above-mentioned monomer component, a polymerization method based on a mechanism such as radical polymerization, anion polymerization, cationic polymerization, or coordination polymerization can be used, but the radical polymerization mechanism is industrially advantageous. The polymerization method based on is preferable.
  • the molecular weight of the base polymer 1 obtained by polymerizing the above-mentioned monomer components can be controlled by adjusting the amount and type of the polymerization initiator, the polymerization temperature, the type and amount of the chain transfer agent, and the like.
  • polymerization initiator examples include cumene hydroperoxide, diisopropylbenzene hydroperoxide, di-t-butyl peroxide, lauroyl peroxide, benzoyl peroxide, t-butylperoxyisopropyl carbonate, and t-butylperoxy-.
  • Examples of the chain transfer agent preferably include compounds having a mercapto group such as mercaptocarboxylic acids, mercaptocarboxylic acid esters, alkyl mercaptans, mercapto alcohols, aromatic mercaptans, and mercapto isocyanurates, and more preferably.
  • Examples include alkyl mercaptans, mercaptocarboxylic acids, mercaptocarboxylic acid esters, and more preferably n-dodecyl mercaptan and mercaptopropionic acid.
  • the solvent used for the above polymerization is not particularly limited, and for example, monoalcohols such as methanol, ethanol, isopropanol, n-butanol and s-butanol; polyhydric alcohols such as ethylene glycol and propylene glycol; tetrahydrofuran and dioxane.
  • monoalcohols such as methanol, ethanol, isopropanol, n-butanol and s-butanol
  • polyhydric alcohols such as ethylene glycol and propylene glycol
  • tetrahydrofuran and dioxane tetrahydrofuran and dioxane.
  • Ethers such as ethylene glycol dimethyl ether and diethylene glycol dimethyl ether; ketones such as acetone and methyl ethyl ketone; esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate and 3-methoxybutyl acetate; aromatics such as toluene, xylene and ethylbenzene.
  • the polymerization initiator, the chain transfer agent, and the solvent may be used alone or in combination of two or more. In addition, these usage amounts can be set as appropriate.
  • the polymerization temperature can be appropriately set according to the type and amount of the monomer used, the type and amount of the polymerization initiator and the like, but for example, 50 to 200 ° C. is preferable, and 80 to 120 ° C. is more preferable. ..
  • the polymerization time can be appropriately set, but is preferably 1 to 12 hours, more preferably 3 to 8 hours, for example.
  • the mixing of the above-mentioned monomer components is not particularly limited, and may be appropriately carried out according to the N-substituted maleimide-based polymer to be obtained, and the entire amounts of the above-mentioned monomers (a) and (b) are mixed at the same time.
  • the monomer (b) or (a) may be added little by little to the total amount of the monomer (a) or (b) and mixed.
  • the base polymer 1 After polymerizing the above monomer component to obtain a base polymer 1, the base polymer 1 may be used after removing volatile components from the polymerization reaction solution (polymer solution) to separate the base polymer 1. Although it may be used in a solution state without separation, it is preferable to use it in a solution state without separation for industrial use from the viewpoint of cost and the like.
  • the monomer component used for producing the N-substituted maleimide-based polymer will be described below.
  • a copolymer having a constituent unit derived from each monomer can be obtained.
  • N-substituted maleimide monomer (a) examples include compounds represented by the following general formula (a).
  • R 8 represents a monovalent hydrocarbon group having 1 to 30 carbon atoms, which may have a substituent.
  • R 8 is a monovalent hydrocarbon group having 1 to 30 carbon atoms, which may have a substituent.
  • the monovalent hydrocarbon group preferably has 1 to 20 carbon atoms, and more preferably 6 to 12 carbon atoms.
  • Examples of the hydrocarbon group include a chain or cyclic aliphatic hydrocarbon group and an aromatic hydrocarbon group.
  • the aliphatic hydrocarbon group may be a saturated aliphatic hydrocarbon group or an unsaturated aliphatic hydrocarbon group, but is preferably a saturated aliphatic hydrocarbon group.
  • Examples of the chain saturated aliphatic hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a tert-butyl group, a sec-butyl group, a pentyl group, and an isopentyl group.
  • Examples thereof include linear or branched alkyl groups. Among them, an alkyl group having 1 to 30 carbon atoms is preferable, an alkyl group having 1 to 20 carbon atoms is more preferable, and an alkyl group having 1 to 12 carbon atoms is further preferable.
  • cyclic aliphatic hydrocarbon group examples include a monocyclic alicyclic group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, a cyclodecyl group and a cyclododecyl group.
  • Hydrocarbon groups; polycyclic alicyclic hydrocarbon groups such as dicyclopentanyl group, norbornyl group and adamantyl group; can be mentioned.
  • a monocyclic or polycyclic alicyclic hydrocarbon group having 3 to 30 carbon atoms is preferable, and a monocyclic or polycyclic alicyclic hydrocarbon group having 3 to 18 carbon atoms is more preferable. It is preferably a monocyclic alicyclic hydrocarbon group having 6 to 12 carbon atoms.
  • aromatic hydrocarbon group examples include a phenyl group, a naphthyl group, a benzyl group, a phenethyl group and the like. Of these, an aromatic hydrocarbon group having 6 to 30 carbon atoms is preferable, and an aromatic hydrocarbon group having 6 to 12 carbon atoms is more preferable.
  • the hydrocarbon group may have a substituent.
  • substituents include an alkyl group, an aryl group, a hydroxyl group, a halogen atom, a carboxyl group, an alkoxy group, an aryloxy group and the like.
  • N-substituted maleimide-based monomer examples include N-methylmaleimide, N-ethylmaleimide, N-propylmaleimide, N-isopropylmaleimide, Nt-butylmaleimide, N-dodecylmaleimide, and N.
  • N-benzylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide are preferable, and N-benzylmaleimide and N-cyclohexylmaleimide are preferable from the viewpoint of copolymerizability and heat resistance with the above N-vinylamide-based monomer. More preferably, N-benzylmaleimide is further preferable.
  • N-benzylmaleimide is preferably used in applications where heat-resistant coloring is strongly required, and N-phenylmaleimide is preferably used in applications where affinity with organic fine particles and inorganic fine particles is strongly required.
  • N-benzylmaleimide examples include benzylmaleimide; alkyl-substituted benzylmaleimide such as p-methylbenzylmaleimide and p-butylbenzylmaleimide; phenolic hydroxyl-substituted benzylmaleimide such as p-hydroxybenzylmaleimide; o-chlorobenzylmaleimide. , O-Dichlorobenzylmaleimide, halogen-substituted benzylmaleimide such as p-dichlorobenzylmaleimide; and the like.
  • the N-substituted maleimide monomer (a) may be used alone or in combination of two or more.
  • the N-substituted maleimide monomer (a) is preferably N-benzylmaleimide and N-phenylmaleimide.
  • the combination of these two types may improve the dispersion stability of the pigment or increase the surface hardness of the film after curing.
  • the mass ratio of N-benzylmaleimide to N-phenylmaleimide is preferably 95/5 to 5/95, and more preferably 10/90 to 90/10.
  • the ratio of N-benzylmaleimide is 1 to 30 parts by mass with respect to 100 parts by mass of N-phenylmaleimide. It is preferably 1 to 20 parts by mass, more preferably 1 to 10 parts by mass, and most preferably 1 to 5 parts by mass.
  • the amount of N-benzylmaleimide used is preferably 0.5 to 10% by mass, more preferably 0.5 to 5% by mass, based on 100% by mass of the total monomer component. It is more preferably 0.5 to 3% by mass, particularly preferably 0.5 to 2% by mass, and most preferably 0.5 to 1.8% by mass. Within the above range, the affinity and dispersibility with organic fine particles such as pigments and inorganic fine particles such as quantum dots or silica can be improved.
  • Examples of the unsaturated carboxylic acid monomer (b) include compounds having a carboxyl group and / or a carboxylic acid anhydride group and a polymerizable double bond.
  • Examples of the polymerizable double bond include a (meth) acryloyl group, a vinyl group, an allyl group, and a metharyl group. Of these, the (meth) acryloyl group is preferable.
  • unsaturated carboxylic acid monomer examples include unsaturated monocarboxylic acids such as (meth) acrylic acid, crotonic acid, silicic acid, and vinyl benzoic acid; maleic acid, fumaric acid, itaconic acid, and citracon.
  • unsaturated polyvalent carboxylic acids such as acids and mesaconic acids; the chain is extended between unsaturated groups such as monosuccinate (2-acryloyloxyethyl) and monosuccinate (2-methacryloyloxyethyl) and carboxyl groups.
  • unsaturated long-chain monocarboxylic acids unsaturated acid anhydrides such as maleic anhydride and itaconic anhydride; and the like.
  • unsaturated monocarboxylic acids are preferable, and (meth) acrylic acid is more preferable, from the viewpoint of versatility, availability, and the like.
  • the unsaturated carboxylic acid monomer (b) may be used alone or in combination of two or more.
  • the monomer component for producing the base polymer 1 can be copolymerized with the above-mentioned monomer (a) and the above-mentioned monomer (b) in addition to the above-mentioned monomer (a) and the above-mentioned monomer (b).
  • the monomer (c) may be further contained.
  • the monomer (c) is not particularly limited as long as it can be copolymerized with the above-mentioned monomers (a) and (b), and examples thereof include the following monomers. These may be used individually by 1 type, or may be used in combination of 2 or more type.
  • (Meta) acrylamides such as N, N-dimethyl (meth) acrylamide and N-methylol (meth) acrylamide; weights of polystyrene, polymethyl (meth) acrylate, polyethylene oxide, polypropylene oxide, polysiloxane, polycaprolactone, polycaprolactam, etc.
  • Macromonomers having a (meth) acryloyl group at one end of the coalesced molecular chain conjugated dienes such as 1,3-butadiene, isoprene, and chloroprene; vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl benzoate, etc.
  • the contents of the monomers (a), (b) and (c) can be appropriately set according to the purpose and use of the N-substituted maleimide-based polymer to be obtained.
  • the monomer (a) is preferably 0.5% by mass or more, more preferably 1% by mass or more, and 3% by mass or more, based on 100% by mass of the total monomer component. It is more preferably 50% by mass or less, more preferably 30% by mass or less, and further preferably 20% by mass or less.
  • the monomer (b) is preferably 5% by mass or more, more preferably 10% by mass or more, and more preferably 20% by mass or more, based on 100% by mass of the total monomer component.
  • the monomer (c) is preferably 10% by mass or more, more preferably 20% by mass or more, and more preferably 25% by mass or more, based on 100% by mass of the total monomer component. It is more preferably 90% by mass or less, more preferably 80% by mass or less, and further preferably 70% by mass or less.
  • the content of each of the monomers (a), (b), and (c) is the total amount when two or more kinds of monomers are contained.
  • Step (I-3)> In the above-mentioned production method (I), glycidyl (meth) acrylate having a chlorine content adjusted to 0.01 to 0.3% by mass was further added to the base polymer 1 obtained in the above-mentioned step (I-2). It has a step (I-3) of reacting to obtain an N-substituted maleimide-based polymer having a double bond in the side chain.
  • the chlorine content of glycidyl (meth) acrylate used in the above-mentioned production method (I) is 0.01 to 0.3% by mass.
  • the chlorine content of the glycidyl (meth) acrylate is preferably 0.25% by mass or less, preferably 0.25% by mass or less, in that the thermal coloring of the obtained N-substituted maleimide-based polymer can be further suppressed. It is more preferably 20% by mass or less, and even more preferably 0.15% by mass or less.
  • glycidyl (meth) acrylate is adjusted so that the content of chlorine is less than 0.01% by mass, the preparation equipment for purification and the like becomes excessive, and the apparatus for polymerizing glycidyl (meth) acrylate during purification distillation.
  • the lower limit of the chlorine content is preferably 0.03% by mass or more, and more preferably 0.05% by mass or more from the viewpoint of manufacturing cost.
  • the chlorine content can be determined by measuring by ICP-MS (inductively coupled plasma mass spectrometry) method, and specifically, can be determined by the method described in Examples described later.
  • a method for adjusting the chlorine content of glycidyl (meth) acrylate for example, a method for purifying glycidyl (meth) acrylate is preferable.
  • the method for purifying the above-mentioned glycidyl acrylate is not particularly limited, and known methods such as distillation, extraction, and column chromatography can be mentioned. Among them, chlorine can be easily and safely removed. Distillation is preferred.
  • distillation is not particularly limited, and examples thereof include known distillation methods such as simple distillation, precision distillation (rectification), vacuum distillation (vacuum distillation), molecular distillation, and steam distillation. Among them, industrially easy distillation is used. Precision distillation is preferable, and precision distillation under reduced pressure is more preferable, because it can achieve high purity.
  • the distillation method is not particularly limited, and can be carried out by a known method, and can be carried out by a vacuum concentrator such as an evaporator, simple distillation, or precision distillation using a rectification column.
  • a vacuum concentrator such as an evaporator, simple distillation, or precision distillation using a rectification column.
  • the distillation temperature is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, and even more preferably 50 ° C. or higher, in that condensation collection is industrially easy.
  • the distillation temperature is preferably 150 ° C. or lower, more preferably 100 ° C. or lower, and more preferably 80 ° C. or lower, in that polymerization during distillation can be suppressed and blockage of the apparatus can be prevented. Is even more preferable.
  • the distillation is preferably carried out under reduced pressure, for example, at 40,000 Pa or less, preferably 10000 Pa or less, and more preferably 3000 Pa or less.
  • Examples of the method of performing the distillation under reduced pressure include known methods such as precision distillation equipped with a rectification column.
  • the rectification column used for the distillation preferably has a theoretical plate number of 2 to 100, and more preferably a theoretical plate number of 5 to 50.
  • the chlorine content can be reduced to a desired range by repeating the distillation a plurality of times.
  • the number of times the distillation is repeated is preferably 3 times or less, and more preferably 2 times or less. Repeating distillation four or more times is industrially disadvantageous because the equipment and process become excessive and the distillation yield decreases.
  • a polymerization inhibitor or the like may be added to glycidyl (meth) acrylate.
  • a polymerization inhibitor By adding a polymerization inhibitor, polymerization during distillation can be prevented.
  • the polymerization inhibitor include commonly used polymerization inhibitors for radically polymerizable monomers, such as hydroquinone, methylhydroquinone, trimethylhydroquinone, t-butylhydroquinone, methquinone, and 6-t-butyl-2.
  • glycidyl (meth) acrylate Before and / or after the distillation, glycidyl (meth) acrylate may be washed with a solvent such as water or weak alkaline water, or dried or dehydrated in order to further remove impurities. Especially when a large amount of water is contained, the glycidyl group of glycidyl (meth) acrylate may be hydrolyzed.
  • the water content is preferably 0.2 parts by mass or less, more preferably 0.1 parts by mass or less, and most preferably 0.05 parts by mass or less with respect to 100 parts by mass of glycidyl (meth) acrylate.
  • the chlorine content of glycidyl (meth) acrylate is 0.01 to 0.3% by mass before the step (I-2) or (I-3). It is preferable to have a step (I-1) of purifying glycidyl (meth) acrylate so as to be.
  • the method for reacting the base polymer 1 with glycidyl (meth) acrylate having the chlorine content adjusted to 0.01 to 0.3% by mass is not particularly limited, and is a polymer solution containing the base polymer 1. Is mixed with glycidyl (meth) acrylate having a chlorine content adjusted to 0.01 to 0.3% by mass, and reacted by a known method.
  • the acid group (carboxyl group) of the base polymer 1 reacts with the epoxy group of glycidyl (meth) acrylate, and glycidyl (meth) acrylate is added to the base polymer 1 and is polymerizable at the terminal. A polymer having a double bond is obtained.
  • the temperature of the addition reaction is not particularly limited as long as it is the temperature at which the addition reaction proceeds, but examples thereof include 60 to 150 ° C., preferably 90 to 140 ° C., and 100 to 120 ° C. Is more preferable.
  • the reaction time of the addition reaction is not particularly limited, and examples thereof include 1 to 48 hours, preferably 3 to 24 hours, and more preferably 6 to 12 hours.
  • the amount of the adjusted glycidyl (meth) acrylate used in the above step (I-3) is appropriately set so that the double bond equivalent of the obtained N-substituted maleimide polymer is within a desired range.
  • it is preferably 1 to 150 parts by mass, more preferably 10 to 100 parts by mass, and 15 to 80 parts by mass with respect to 100 parts by mass of the total monomer component giving the base polymer 1. It is more preferably a part.
  • amine compounds such as trimethylamine, triethylamine, triisopropylamine, tributylamine, dimethylbenzylamine, methyldibenzylamine and tribenzylamine; phosphines such as triethylphosphine and triphenylphosphine;
  • Known catalysts such as ammonium salts; phosphonium salts such as tetraphenylphosphonium bromide, amide compounds such as dimethylformamide; and the like may be used.
  • amine compounds and phosphines are preferable, and triethylamine, dimethylbenzylamine, and triphenylphosphine are more preferable in terms of less coloring and easy industrial availability.
  • the amount of the catalyst used can be appropriately set, but is preferably 0.05 to 5% by mass, preferably 0.05 to 5% by mass, based on the total amount of the base polymer 1 and the adjusted glycidyl (meth) acrylate. It is more preferably 1 to 1% by mass, and even more preferably 0.1 to 0.5% by mass. If the amount of the catalyst used is less than the above range, the reaction time becomes long, which may be industrially disadvantageous. On the other hand, if it exceeds the above range, a salt may be formed with the base polymer at the time of charging the catalyst to insolubilize it, which may make stirring difficult, or the obtained polymer may be strongly heat-colored.
  • the manufacturing method (I) may include other steps in addition to the steps (I-1), (I-2), and (I-3) described above.
  • Examples of the other steps include a aging step, a neutralizing step, a deactivation step of a polymerization initiator and a chain transfer agent, a dilution step, a drying step, a concentration step, a purification step and the like. These steps can be performed by a known method.
  • the production method (I) preferably has a step of adjusting the amount of chlorine contained in the glycidyl (meth) acrylate to be used within a predetermined range. Therefore, the step (I-1) of purifying the (meth) glycidyl acrylate so that the content of chlorine in the (meth) glycidyl acrylate is 0.01 to 0.3% by mass, the N-substituted maleimide monomer.
  • the production method is also one of the preferred embodiments of the present invention.
  • the purified (meth) glycidyl acrylate obtained in the above step (I-1) is the above-mentioned glycidyl (meth) acrylate having a chlorine content adjusted to 0.01 to 0.3% by mass.
  • the production method (II) is a monomer component containing an N-substituted maleimide monomer (a) and glycidyl (meth) acrylate having a chlorine content adjusted to 0.01 to 0.3% by mass.
  • base polymer 2 also referred to as “base polymer 2”
  • N-substituted maleimide monomer (a) and glycidyl (meth) acrylate having a chlorine content adjusted to 0.01 to 0.3% by mass are described in the above production method (I). Examples thereof include “N-substituted maleimide monomer (a)” and “glycidyl (meth) acrylate having a chlorine content adjusted to 0.01 to 0.3% by mass”.
  • the monomer component for producing the base polymer 2 further contains the monomer (a) and the monomer (d) copolymerizable with the prepared glycidyl (meth) acrylate. May be good.
  • the monomer (d) include the same monomers as the monomer (c) described in the production method (I). These may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the polymerization method is not particularly limited, but a method similar to the polymerization method described in the above-mentioned production method (I) is preferably mentioned.
  • the contents of the monomer (a), the adjusted (meth) glycidyl acrylate, and the monomer (d) depend on the purpose and use of the N-substituted maleimide-based polymer to be obtained. Can be set as appropriate.
  • the monomer (a) is preferably 0.5% by mass or more, more preferably 1% by mass or more, and 3% by mass or more, based on 100% by mass of the total monomer component. It is more preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 30% by mass or less.
  • the adjusted (meth) glycidyl acrylate is preferably 10% by mass or more, more preferably 20% by mass or more, and 30% by mass or more, based on 100% by mass of the total monomer component. It is more preferably 90% by mass or less, more preferably 80% by mass or less, and further preferably 60% by mass or less.
  • the monomer (d) is preferably 10% by mass or more, more preferably 20% by mass or more, and more preferably 30% by mass or more with respect to 100% by mass of the total monomer component. It is more preferably 80% by mass or less, more preferably 70% by mass or less, and further preferably 60% by mass or less.
  • the contents of the monomer (a), the adjusted glycidyl (meth) acrylate, and the monomer (d) are the total amount when two or more kinds of monomers are contained.
  • glycidyl (meth) acrylate has a chlorine content of 0.01 to 0.3% by mass. It is preferable to have a step (II-1) of purifying.
  • a step similar to the step (I-1) in the above-mentioned manufacturing method (I) is preferably mentioned.
  • Step (II-3)> In the above-mentioned production method (II), the unsaturated carboxylic acid monomer (b) is further reacted with the base polymer 2 obtained in the above-mentioned step (II-2) to have an N having a double bond in the side chain. It has a step (II-3) of obtaining a substituted maleimide-based polymer.
  • the method for reacting the unsaturated carboxylic acid monomer (b) with the base polymer 2 is not particularly limited, and the unsaturated carboxylic acid monomer (b) is mixed with the polymer solution containing the base polymer 2. , And, if necessary, a polymerization initiator, a chain transfer agent, or the like may be mixed and reacted by a known method.
  • the carboxyl group of the unsaturated carboxylic acid monomer (b) reacts with the epoxy group of the base polymer 2, the unsaturated carboxylic acid monomer (b) is added, and the terminal is polymerizable.
  • An N-substituted maleimide-based polymer having a double bond is obtained.
  • the unsaturated carboxylic acid monomer (b) include those similar to the unsaturated carboxylic acid monomer (b) described in the above-mentioned production method (I).
  • the reaction temperature is not particularly limited as long as it is the temperature at which the reaction proceeds, but examples thereof include 40 to 200 ° C., preferably 60 to 150 ° C., and more preferably 80 to 120 ° C.
  • the reaction time is not particularly limited, and examples thereof include 1 to 48 hours, preferably 3 to 24 hours, and more preferably 5 to 12 hours.
  • the amount of the unsaturated carboxylic acid monomer (b) used in the above step (II-3) is appropriately set so that the double bond equivalent of the obtained N-substituted maleimide polymer is within a desired range. It is preferable, but for example, it is preferably 1 to 50 parts by mass, more preferably 5 to 45 parts by mass, and 10 to 40 parts by mass with respect to 100 parts by mass of the monomer component giving the base polymer 2. It is more preferably a part.
  • a known catalyst such as an amine compound such as triethylamine or dimethylbenzylamine; an ammonium salt such as tetraethylammonium chloride; a phosphonium salt such as tetraphenylphosphonium bromide, or an amide compound such as dimethylformamide; may be used. good.
  • the amount of the catalyst used can be appropriately set.
  • the production method (II) preferably has a step of adjusting the amount of chlorine contained in the glycidyl (meth) acrylate to be used within a predetermined range. Therefore, the step of purifying the glycidyl (meth) acrylate so that the content of chlorine in the glycidyl (meth) acrylate is 0.01 to 0.3% by mass (II-1), the N-substituted maleimide monomer.
  • the N-substituted product is characterized by having a step (II-3) of reacting the unsaturated carboxylic acid monomer (b) with the N-substituted maleimide-based polymer having a double bond in the side chain.
  • a method for producing a maleimide-based polymer is also one of the preferred embodiments of the present invention.
  • the purified (meth) glycidyl acrylate obtained in the above step (II-1) is the above-mentioned glycidyl (meth) acrylate having a chlorine content adjusted to 0.01 to 0.3% by mass.
  • a polybasic acid or a polybasic acid anhydride is further reacted with the N-substituted maleimide-based polymer having a double bond in the side chain. It is preferable to have a step (II-4) of causing the reaction.
  • a carboxyl group is formed by reacting a polybasic acid or a polybase anhydride with a hydroxyl group generated by the reaction of an epoxy group and a carboxyl group in the above step (II-3). It can be generated, and the acid value of the N-substituted maleimide-based polymer can be adjusted to an appropriate range.
  • polybasic acid or polybasic acid anhydride examples include polybasic acids such as succinic acid, maleic acid, phthalic acid, and tetrahydrophthalic acid; succinic anhydride (also known as succinic anhydride), maleic anhydride, and anhydrous.
  • Dibasic acid anhydrides such as phthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, endomethylenetetrahydroanhydride, methylendomethylenetetrahydrophthalic anhydride, and itaconic anhydride. Things; trimellitic anhydride; etc.
  • succinic anhydride and polybasic acid anhydride are preferable, and succinic anhydride, maleic anhydride, tetrahydrophthalic anhydride, and hexahydrophthalic anhydride are preferable because of their high reactivity and easy industrial availability.
  • the reaction temperature in the reaction with the polybasic acid or the polybase anhydride is not particularly limited as long as it is the temperature at which the reaction proceeds, and examples thereof include 0 to 200 ° C. and 20 to 150 ° C. It is preferably 30 to 120 ° C., more preferably 30 to 120 ° C.
  • the reaction time is not particularly limited, and examples thereof include 1 to 12 hours, preferably 2 to 12 hours, and more preferably 2 to 8 hours.
  • the amount of the polybasic acid or polybase anhydride used is not particularly limited, and the acid value of the obtained N-substituted maleimide-based polymer may be set within a desired range.
  • the production method (II) may include other steps in addition to the steps (II-1), (II-2), (II-3), and (II-4) described above.
  • Examples of the other steps include a aging step, a neutralizing step, a deactivation step of a polymerization initiator and a chain transfer agent, a dilution step, a drying step, a concentration step, a purification step and the like. These steps can be performed by a known method.
  • the N-substituted maleimide-based polymer obtained by the above-mentioned production method (I) or (II) has a residual chlorine amount of N-substituted maleimide monomer (a) and glycidyl (meth) acrylate in the polymer. It is preferably 100 to 2000 ppm with respect to the total amount used. The total amount used is the total mass of each monomer used at the time of polymerization. The amount of residual chlorine in the polymer is based on the total amount of N-substituted maleimide monomer (a) and glycidyl (meth) acrylate used in that thermal coloring during curing can be further suppressed.
  • the lower limit of the residual chlorine amount is the total of the N-substituted maleimide monomer (a) and the glycidyl (meth) acrylate in that the raw material glycidyl (meth) acrylate can be easily produced industrially. It is more preferably 200 ppm or more, and further preferably 300 ppm or more, based on the amount used.
  • the amount of residual chlorine in the polymer is the value obtained by measuring the amount of residual chlorine in the polymer by the same method as the method for measuring the amount of chlorine contained in glycidyl (meth) acrylate described above.
  • the N-substituted maleimide-based polymer obtained by the above-mentioned production method (I) or (II) preferably has a residual epichlorohydrin amount of 0.001 to 5 ppm in the above-mentioned polymer.
  • the amount of residual epichlorohydrin is in the above range, safety during production and use of the N-substituted maleimide-based polymer is excellent, and thermal coloring during curing can be further suppressed.
  • Glycidyl (meth) acrylic acid is usually produced by the reaction of (meth) acrylic acid with epichlorohydrin.
  • epichlorohydrin is highly reactive and is known to be a harmful substance to the human body.
  • the amount of residual epichlorohydrin is more preferably 1 ppm or less, and further preferably 0.5 ppm or less.
  • the lower limit of the residual epichlorohydrin amount is more preferably 0.01 ppm or more in that the equipment required for purification of glycidyl (meth) acrylate does not become excessive and is industrially advantageous. ..
  • the amount of residual epichlorohydrin in the polymer can be determined by measuring by the GC-MS method, and specifically, can be determined by the method described in Examples described later.
  • the N-substituted maleimide-based polymer obtained by the method (I) or (II) for producing the N-substituted maleimide polymer of the present invention has a residual chlorine amount within a predetermined range, and thus is thermally colored at the time of curing. Can be significantly suppressed.
  • Such an N-substituted maleimide-based polymer obtained by the above-mentioned production method (I) or (II) is also one of the present inventions.
  • an example of a preferred embodiment of the N-substituted maleimide polymer obtained by the above-mentioned production method (I) or (II) will be described.
  • N-substituted maleimide-based polymer The present invention also comprises a structural unit (A) derived from an N-substituted maleimide monomer and a structural unit represented by the following general formulas (B1), (B2) or (B3) (B3).
  • the total mass of the N-substituted maleimide monomer giving the structural unit (A), which is the raw material of the polymer, and the glycidyl (meth) acrylate giving the structural unit (B) is 100 to 2000 ppm. It is an N-substituted maleimide-based polymer.
  • R 1 and R 3 represent the same or different hydrogen atom or methyl group.
  • R 2 represents a divalent bonding group.
  • A is 0 or 1.
  • R 4 represents a hydrogen atom or a methyl group.
  • R 5 represents an ethylenically unsaturated bond-containing group.
  • R 6 represents a hydrogen atom or a methyl group.
  • R 7 represents an ethylenically unsaturated bond-containing group.
  • X represents a divalent hydrocarbon group.
  • the N-substituted maleimide-based polymer of the present invention comprises an N-substituted maleimide monomer and the structural unit (B) whose residual chlorine content in the polymer gives the structural unit (A) which is the raw material of the polymer. It is 100 to 2000 ppm with respect to the total mass of the given (meth) glycidyl acrylate. Therefore, it is possible to suppress thermal coloring during curing of the polymer.
  • the amount of residual chlorine is preferably 1800 ppm or less, more preferably 1500 ppm or less, and 1200 ppm or less, based on the total mass, in that thermal coloring during curing can be further suppressed. Is even more preferable.
  • the amount of residual chlorine in the polymer can be determined by measuring it by the same method as the method for determining the amount of residual chlorine in the polymer described in "1. Method for producing N-substituted maleimide-based polymer". can.
  • the N-substituted maleimide monomer giving the structural unit (A) is a weight obtained by polymerizing a monomer component containing the N-substituted maleimide monomer to obtain a polymer having the structural unit (A). It is a coalescing raw material.
  • the glycidyl (meth) acrylate that gives the structural unit (B) does not directly give the structural unit (B) by polymerization, but reacts with a functional group derived from another monomer component to react with the structural unit (meth). It is a polymer raw material capable of forming B). That is, as will be described later, the structural unit (B) has a structure derived from glycidyl (meth) acrylate.
  • the N-substituted maleimide-based polymer has a structural unit (A) derived from an N-substituted maleimide monomer and a structural unit (B) represented by the general formulas (B1), (B2) or (B3).
  • the structural unit (B) has a structure derived from glycidyl (meth) acrylate.
  • the N-substituted maleimide-based polymer having the structural unit derived from the N-substituted maleimide monomer and the structural unit represented by the general formula (B1) can be obtained by the method of the above-mentioned production method (I). Can be done.
  • the N-substituted maleimide-based polymer having the structural unit derived from the N-substituted maleimide monomer and the structural unit represented by the general formula (B2) can be obtained by the method of the above-mentioned production method (II). Can be obtained, preferably by the methods of steps (II-1) to (II-3).
  • the N-substituted maleimide-based polymer having the structural unit derived from the N-substituted maleimide monomer and the structural unit represented by the general formula (B3) can be obtained by the method of the above-mentioned production method (II). Can be obtained, preferably by the methods of steps (II-1) to (II-4).
  • the N-substituted maleimide-based polymer has only one structural unit represented by the general formula (B1), the general formula (B2), or the general formula (B3) as the structural unit (B). It may have two or more kinds.
  • N-substituted maleimide monomer the same one as the N-substituted maleimide monomer (a) described in "1.
  • Method for producing N-substituted maleimide-based polymer is preferably mentioned.
  • a form having two types of structural units derived from the N-substituted maleimide monomer, a structural unit derived from N-benzylmaleimide and a structural unit derived from N-phenylmaleimide is also one of the preferred forms of the present invention. be.
  • R 1 and R 3 represent the same or different hydrogen atoms or methyl groups.
  • R 2 represents a divalent linking group.
  • the divalent bonding group include an alkylene group, an alkenylene group, a cycloalkylene group, a cycloalkenylene group, an arylene group, a heteroarylene group, -O-, -CO-,-(CO) O-, and -NH-. , -SO 2- , and combinations thereof.
  • the divalent bonding group preferably has 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, and preferably 1 to 6 carbon atoms.
  • the polymerizable double bond group include a vinyl group, a (meth) acryloyl group, an allyl group, and a metharyl group.
  • a is 0 or 1, but 0 is preferable in terms of reactivity and availability in the industry.
  • R 4 represents a hydrogen atom or a methyl group.
  • R 5 represents an ethylenically unsaturated group.
  • the ethylenically unsaturated-containing group include groups containing a polymerizable double bond such as a (meth) acryloyl group, a vinyl group, an allyl group, and a metalyl group, and the above-mentioned "1.
  • N-substituted maleimide is preferable.
  • examples thereof include residues of the unsaturated carboxylic acid monomer (b) described in "Method for producing a system polymer” excluding the carboxyl group or the carboxylic acid anhydride group.
  • R 6 represents a hydrogen atom or a methyl group.
  • R 7 represents an ethylenically unsaturated bond-containing group.
  • the ethylenically unsaturated-containing group the same groups and an ethylenically unsaturated-containing radical of the R 5 are preferably exemplified.
  • X represents a divalent hydrocarbon group.
  • the divalent hydrocarbon group include a divalent chain or cyclic aliphatic hydrocarbon group and a divalent aromatic hydrocarbon group.
  • the divalent chain aliphatic hydrocarbon group include a methylene group, an ethylene group, a trimethylene group, a propylene group, an ethylidene group, a propylidene group, an isopropylidene group, a vinylene group, a propenylene group, a vinylidene group and the like.
  • a divalent chain aliphatic hydrocarbon group having 1 to 12 carbon atoms and more preferably 1 to 6 carbon atoms can be mentioned.
  • Examples of the divalent cyclic aliphatic hydrocarbon group include 1,2-cyclopentylene group, 1,2-cyclohexylene group, 1,4-cyclohexylene group and 1,2-cyclohexenylene. Examples thereof include a group, a 1,4-cyclohexenylene group, a cyclopentylidene group, a cyclohexylidene group, etc., preferably a divalent cyclic aliphatic hydrocarbon having 4 to 12 carbon atoms, more preferably 4 to 8 carbon atoms.
  • a hydrogen group can be mentioned.
  • divalent aromatic hydrocarbon group examples include a 1,2-phenylene group, a 1,2-naphthylene group, a 2,3-naphthylene group, a benzylidene group, a cinnamylidene group and the like, preferably having 6 carbon atoms.
  • divalent aromatic hydrocarbon groups having up to 18 and more preferably 6 to 12 carbon atoms.
  • the hydrocarbon group may have a substituent. Examples of the substituent include an alkyl group, an aryl group, a hydroxyl group, a halogen atom, a carboxyl group, an alkoxy group, an aryloxy group and the like.
  • X is a residue of the polybasic acid and the polybasic acid anhydride described in "1.
  • Method for producing N-substituted maleimide-based polymer excluding the carboxyl group or the carboxylic acid anhydride group. Is preferable.
  • the N-substituted maleimide-based polymer may have a structural unit (C) other than the structural units (A) and (B).
  • the other structural unit (C) include the structural unit derived from the monomer (c) described in "1. Method for producing N-substituted maleimide-based polymer".
  • the N-substituted maleimide-based polymer is a structural unit represented by the general formula (B1), (B2) or (B3), and further has a structural unit not derived from glycidyl (meth) acrylate. You may be doing it. This structural unit is included in the other structural unit (C).
  • the content ratios of the structural units (A), (B) and (C) can be appropriately set according to the purpose and use of the N-substituted maleimide-based polymer.
  • the content ratio of the structural unit (A) is preferably 0.5 to 50% by mass, more preferably 1 to 30% by mass, and 3 to 3 to 30% by mass with respect to 100% by mass of all structural units. It is more preferably 20% by mass.
  • the content ratio of the structural unit (B) is preferably 5 to 60% by mass, more preferably 10 to 50% by mass, and further preferably 20 to 40% by mass.
  • the content ratio of the structural unit (C) is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, and even more preferably 25 to 70% by mass.
  • the weight average molecular weight of the N-substituted maleimide-based polymer can be appropriately set according to the purpose and application of the polymer, but is preferably 2000 to 1000000, more preferably 3000 or more. It is more preferably 5000 or more. Further, it is more preferably 50,000 or less, and further preferably 30,000 or less.
  • the weight average molecular weight can be determined by a gel permeation chromatography (GPC) method, and specifically, can be determined by the method described in Examples described later.
  • the acid value of the N-substituted maleimide-based polymer is preferably 20 to 200 mgKOH / g, more preferably 30 mgKOH / g or more, further preferably 40 mgKOH / g or more, and 180 mgKOH / g or less. It is more preferable that the amount is 160 mgKOH / g or less.
  • the acid value can be determined by a neutralization titration method using a KOH solution.
  • the N-substituted maleimide-based polymer has a double bond in the side chain.
  • the double bond equivalent of the N-substituted maleimide-based polymer is preferably 300 to 30,000 g / equivalent.
  • the double bond equivalent is more preferably 400 g / equivalent or more, further preferably 420 g / equivalent or more, and the reactivity to light and heat. It is more preferably 3000 g / equivalent or less, and further preferably 2000 g / equivalent or less.
  • the double bond equivalent is the mass of the solid content of the polymer solution per 1 mol of the double bond of the N-substituted maleimide-based polymer.
  • the double bond equivalent can be obtained by dividing the mass (g) of the resin solid content of the polymer solution by the double bond amount (mol) of the polymer. It can also be measured using various analyses such as titration and elemental analysis, NMR and IR, and differential scanning calorimetry. For example, it may be calculated by measuring the number of ethylenic double bonds contained in 1 g of the polymer according to the test method of the raw material as described in JIS K0070: 1992.
  • the above-mentioned N-substituted maleimide-based polymer can be further combined with a polymerizable compound to obtain a curable resin composition. Since the curable resin composition contains the N-substituted maleimide-based polymer, it is possible to provide a cured product in which coloration due to heat is suppressed. Further, by further containing a polymerizable compound, various physical properties such as curability of the resin composition, mechanical strength of the cured product, and solvent resistance can be improved. Such a curable resin composition containing the N-substituted maleimide-based polymer and the polymerizable compound is also one of the present inventions. The curable resin composition of the present invention can also be suitably used as a photosensitive resin composition.
  • the content of the N-substituted maleimide-based polymer in the curable resin composition of the present invention is not particularly limited and can be appropriately set according to the intended use, blending of other components, etc., but for example, a curable resin.
  • the total solid content of the composition is preferably 5 to 90% by mass, more preferably 10 to 80% by mass, still more preferably 15 to 70% by mass, based on 100% by mass of the total solid content.
  • the "total solid content” means the total amount of the components forming the cured product (components excluding the solvent and the like that volatilize during the formation of the cured product).
  • the polymerizable compound is also referred to as a polymerizable unsaturated bond (also referred to as a polymerizable unsaturated group) that can be polymerized by irradiation with active energy rays such as free radicals, electromagnetic waves (for example, infrared rays, ultraviolet rays, X-rays, etc.) and electron beams. ),
  • active energy rays such as free radicals, electromagnetic waves (for example, infrared rays, ultraviolet rays, X-rays, etc.) and electron beams.
  • a monofunctional compound having one polymerizable unsaturated group in the molecule or a polyfunctional compound having two or more polymerizable unsaturated groups.
  • Examples of the monofunctional compound include N-substituted maleimide-based monomers; (meth) acrylic acid esters; (meth) acrylamides; unsaturated monocarboxylic acids; unsaturated polyvalent carboxylic acids; unsaturated groups and carboxyls. Unsaturated monocarboxylic acids with chain extensions between groups; unsaturated acid anhydrides; aromatic vinyls; conjugated dienes; vinyl esters; vinyl ethers; N-vinyl compounds; unsaturated isocyanates; etc. Can be mentioned. These include the same compounds as those mentioned as the monomer component of the N-substituted maleimide-based polymer. Further, a monomer having an active methylene group or an active methine group can also be used.
  • polyfunctional compound examples include the following compounds. Ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, hexanediol di (meth) acrylate, cyclohexanedimethanol Bifunctional (meth) acrylate compounds such as di (meth) acrylate, bisphenol A alkylene oxide di (meth) acrylate, and bisphenol F alkylene oxide di (meth) acrylate;
  • a trifunctional or higher functional (meth) acrylate compound such as a modified product of dipentaerythritol hexaacrylate represented by.
  • Ethylene glycol divinyl ether diethylene glycol divinyl ether, polyethylene glycol divinyl ether, propylene glycol divinyl ether, butylene glycol divinyl ether, hexanediol divinyl ether, bisphenol A alkylene oxide divinyl ether, bisphenol F alkylene oxide divinyl ether, trimetyl propanetrivinyl ether, ditri Methylolpropan tetravinyl ether, glycerin trivinyl ether, pentaerythritol tetravinyl ether, dipentaerythritol pentavinyl ether, dipentaerythritol hexavinyl ether, ethylene oxide-added trimethylol propanetrivinyl ether, ethylene oxide-added ditrimethylol propanetetravinyl ether, ethylene oxide-added pentaerythritol tetravin
  • Ethylene glycol diallyl ether diethylene glycol diallyl ether, polyethylene glycol diallyl ether, propylene glycol diallyl ether, butylene glycol diallyl ether, hexanediol diallyl ether, bisphenol A alkylene oxide diallyl ether, bisphenol Falkylene oxide diallyl ether, trimethyl propantriallyl ether, Ditrimethylol propanetetraallyl ether, glycerin triallyl ether, pentaerythritol tetraallyl ether, dipentaerythritol pentaallyl ether, dipentaerythritol hexaallyl ether, ethylene oxide-added trimethylol propanetriallyl ether, ethylene oxide-added ditrimethylol propanetetraallyl ether, Polyfunctional allyl ethers such as ethylene oxide-added pentaerythritol tetraallyl ether and ethylene
  • Allyl group-containing (meth) acrylic acid esters such as allyl (meth) acrylate; tri (acryloyloxyethyl) isocyanurate, tri (methacryloyloxyethyl) isocyanurate, alkylene oxide-added tri (acryloyloxyethyl) isocyanurate, alkylene Polyfunctional (meth) acryloyl group-containing isocyanurates such as oxide-added tri (methacryloyloxyethyl) isocyanurate; polyfunctional allyl group-containing isocyanurates such as triallyl isocyanurate; tolylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, etc.
  • Polyfunctional urethane (meth) acrylates obtained by reacting the polyfunctional isocyanate of (meth) with hydroxyl group-containing (meth) acrylic acid esters such as 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate; Polyfunctional aromatic vinyls such as divinylbenzene; etc.
  • the functional number of the polyfunctional polymerizable compound is preferably 3 or more, and more preferably 4 or more.
  • the functional number is preferably 10 or less, more preferably 8 or less.
  • the molecular weight of the polymerizable compound is not particularly limited, but is preferably 2000 or less from the viewpoint of handling.
  • a polyfunctional (meth) acrylate compound a polyfunctional urethane (meth) acrylate compound, and a (meth) acryloyl group-containing isocia are used from the viewpoints of reactivity, economy, availability, and the like.
  • Compounds having a (meth) acryloyl group such as a nurate compound, are preferable, and polyfunctional (meth) acrylate compounds are more preferable.
  • the curable resin composition becomes more excellent in photosensitivity and curability, and a cured product having even higher hardness and high transparency can be obtained.
  • the polyfunctional polymerizable compound it is more preferable to use a trifunctional or higher functional (meth) acrylate compound.
  • the above-mentioned polymerizable compound may be used alone or in combination of two or more.
  • the content of the polymerizable compound in the curable resin composition of the present invention is not particularly limited and may be appropriately set. For example, with respect to 100% by mass of the total solid content of the curable resin composition of the present invention. It is preferably 5 to 95% by mass, more preferably 10% by mass or more, further preferably 15% by mass or more, still more preferably 85% by mass or less, and 80% by mass or less. Is more preferable.
  • the curable resin composition of the present invention may further contain a photopolymerization initiator.
  • a photopolymerization initiator By including the photopolymerization initiator, the curability of the curable resin composition can be improved, and the performance of the obtained cured product can be improved.
  • the photopolymerization initiator used in the present invention preferably includes a radically polymerizable photopolymerization initiator.
  • the radically polymerizable photoinitiator is one that generates a polymerization initiating radical by irradiation with an active energy ray such as an electromagnetic wave or an electron beam.
  • the photopolymerization initiator is not particularly limited, and for example, an alkylphenone-based compound, a benzophenone-based compound, a benzoin-based compound, a thioxanthone-based compound, a halomethylated triazine-based compound, a halomethylated oxadiazole-based compound, and a biimidazole-based compound.
  • Oxym ester compounds, oxime ether compounds, titanosen compounds, benzoic acid ester compounds, aclysin compounds and other known photopolymerization initiators can be used.
  • the photopolymerization initiator it is preferable to use an alkylphenone-based compound, an oxime ester-based compound, or an oxime ether-based compound, and 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopro.
  • Alkylphenones such as pan-1-one ("IRGACURE907", manufactured by BASF), 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 ("IRGACURE369", manufactured by BASF), etc.
  • the content of the photopolymerization initiator in the curable resin composition of the present invention is not particularly limited as long as the effect of the present invention is exhibited, and may be appropriately set.
  • the solid content of the sex resin composition is preferably 0.1 to 30% by mass, more preferably 0.5 to 25% by mass, and more preferably 1 to 20% by mass with respect to 100% by mass of the total solid content. More preferred.
  • one or more photosensitizers, photoradical polymerization accelerators and the like may be used in combination. Sensitivity and curability are further improved by using a photosensitizer and / or a photoradical polymerization accelerator in combination with the photopolymerization initiator.
  • the photosensitizer and photoradical polymerization accelerator include dye compounds such as xanthene dyes, coumarin dyes, 3-ketocoumarin compounds, and pyrromethene dyes; ethyl 4-dimethylaminobenzoate and 4-dimethylaminobenzoic acid.
  • Dialkylaminobenzene compounds such as 2-ethylhexyl
  • mercaptan hydrogen donors such as 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, and 2-mercaptobenzimidazole
  • the amount of these used can be appropriately set from a known method.
  • the curable resin composition of the present invention may further contain other components, if necessary.
  • the other components include a solvent; a coloring material; a dispersant; an antioxidant; a heat resistance improver; a leveling agent; a developing aid; a quantum dot particle; an inorganic fine particle such as zirconia and silica fine particles; a silane type and an aluminum type.
  • Titanium-based coupling agents Fillers, epoxy resins, phenol resins, polyvinylphenols and other thermosetting resins; curing aids such as polyfunctional thiol compounds; plasticizers; polymerization inhibitors; ultraviolet absorbers; matting agents Antifoaming agents; antistatic agents; slip agents; surface modifiers; rocking agents; rocking aids; quinonediazide compounds; polyhydric phenol compounds; acid generators; etc.
  • curing aids such as polyfunctional thiol compounds
  • plasticizers plasticizers
  • polymerization inhibitors ultraviolet absorbers
  • matting agents Antifoaming agents; antistatic agents; slip agents; surface modifiers; rocking agents; rocking aids; quinonediazide compounds; polyhydric phenol compounds; acid generators; etc.
  • These may be used individually by 1 type, or may be used in combination of 2 or more type.
  • These components may be appropriately selected from known components and used, and the amount used thereof can also be appropriately set.
  • the method for preparing the curable resin composition of the present invention is not particularly limited, and a known method may be used. Can be mentioned.
  • the mixing and dispersing method is not particularly limited, and a known method may be used. In addition, other steps that are usually performed may be further included.
  • the curable resin composition contains a coloring material, it is preferable to prepare a dispersion solution of the coloring material in advance and then mix the dispersion solution with the contained components.
  • the dispersion solution of the coloring material can be obtained by mixing the coloring material, the dispersant and the solvent and dispersing them using a known disperser such as a bead mill, a roll mill, a ball mill, a jet mill, a homogenizer, a kneader, or a blender. can. If necessary, the obtained curable resin composition may be filtered with a filter or the like to remove fine dust in the composition.
  • a known disperser such as a bead mill, a roll mill, a ball mill, a jet mill, a homogenizer, a kneader, or a blender.
  • the obtained curable resin composition may be filtered with a filter or the like to remove fine dust in the composition.
  • the curable resin composition of the present invention is, for example, coated on a base material or molded into an arbitrary shape according to the composition, purpose, and application of the curable resin composition, and the coated product or molded product thereof. Can be cured by heating and / or irradiating with active energy rays to obtain a cured product.
  • the above coating and molding methods can be carried out by known methods. Further, the heating and irradiation with active energy rays can be appropriately selected from known methods according to the composition of the curable resin composition and the like. Examples of the active energy ray include ultraviolet rays and electron beams, and among them, ultraviolet rays are preferable.
  • the heating method is not particularly limited, and examples thereof include a heating method at 180 to 280 ° C. for 5 to 120 minutes, preferably 210 to 250 ° C. for 10 to 60 minutes.
  • N-substituted maleimide-based polymer of the present invention and the curable resin composition containing the polymer can give a cured product in which thermal coloring is suppressed. Therefore, the N-substituted maleimide-based polymer and the curable resin composition of the present invention can be suitably used for applications in which suppression of thermal coloring is desired. Specific examples of the above applications include color filters, black matrices, photo spacers, and black column spacers used in liquid crystal / organic EL / quantum dot / micro LED liquid crystal display devices, solid-state image sensors, touch panel display devices, and the like. , Ink, printing plate, printed wiring board, semiconductor element, photoresist, insulating film and other optical members and electrical / electronic members; automobile parts; paints and the like.
  • the obtained N-substituted maleimide-based polymer solution was diluted 100-fold with THF to prepare a sample for measurement, and the amount of residual chlorine in the N-substituted maleimide-based polymer was determined by measuring under the following conditions. rice field. Equipment: ICP-MS Agilent 7700x, manufactured by Agilent Technologies Mass scan speed: 5000 amu / s Regarding the amount of residual chlorine with respect to the total amount of N-substituted maleimide and glycidyl methacrylate, the value of the amount of residual chlorine measured above was used for the synthesis with respect to the total amount of the N-substituted maleimide-based polymer solution. -Determined by dividing by the value of the total mass ratio of substituted maleimide and glycidyl methacrylate.
  • ⁇ Acid value> 1.5 g of the polymer solution was precisely weighed, dissolved in a mixed solvent of 90 g of acetone and 10 g of water, and titrated with a 0.1 N aqueous KOH solution. The titration was carried out using an automatic titrator (trade name: COM-555, manufactured by Hiranuma Sangyo Co., Ltd.), and the acid value per 1 g of the polymer was determined from the polymer concentration (mgKOH / g).
  • glycidyl methacrylate Purification of glycidyl methacrylate (Preparation Example 1)
  • Commercially available glycidyl methacrylate manufactured by NOF CORPORATION
  • was washed with water in a decanter the oil was separated by a separating funnel, and dried and dehydrated with silica gel until the water content became 500 ppm or less.
  • precision distillation was performed at 64-66 ° C. under a reduced pressure of 800 Pa using a glass vacuum distillation apparatus having a 10-stage theoretical plate rectification column equipped with a filler, and 200 ppm of methquinone as a polymerization inhibitor was added for purification.
  • Glysidyl methacrylate A was obtained.
  • the amount of chlorine contained in the obtained purified glycidyl methacrylate A was measured and found to be 0.2% by mass.
  • the amount of chlorine contained in glycidyl methacrylate (commercially available) before purification was measured and found to be 0.5% by mass.
  • the amount of chlorine contained in glycidyl methacrylate was measured by the same method as the amount of residual chlorine in the N-substituted maleimide-based polymer described above.
  • Preparation Example 2 The purified glycidyl methacrylate A obtained in Preparation Example 1 was washed with water again with a decanter, the oil content was separated by a separating funnel, dehydrated and dried with silica gel, and then precision distilled by the same method as in Preparation Example 1. 200 ppm of methquinone was added to obtain purified glycidyl methacrylate B. The amount of chlorine contained in the obtained purified glycidyl methacrylate B (refined product B) was measured and found to be 0.1% by mass.
  • Example 1 347.9 g of propylene glycol monomethyl ether acetate (PGMEA) and 156.8 g of propylene glycol (PGM) were charged in a 2 L separable flask, substituted with nitrogen, and the temperature was raised to 90 ° C.
  • PGMEA propylene glycol monomethyl ether acetate
  • PGM propylene glycol
  • BzMI N-benzylmaleimide
  • CHMA cyclohexyl methacrylate
  • MMA methyl methacrylate
  • MAA methacrylic acid
  • the ratio of the total amount of BzMI and glycidyl methacrylate used to the total liquid amount is It is 12.22%.
  • the weight average molecular weight, polymer concentration, acid value, double bond equivalent, residual chlorine amount, and epichlorohydrin amount of the polymer were measured by the above methods.
  • the heat resistance was evaluated by the above method. The results are shown in Table 1.
  • Example 2 The same operation as in Example 1 was carried out except that N-cyclohexylmaleimide was used instead of N-benzylmaleimide in Example 1 to obtain an N-substituted maleimide-based polymer solution 2.
  • N-substituted maleimide-based polymer solution 2 the weight average molecular weight, polymer concentration, acid value, double bond equivalent, residual chlorine amount, and epichlorohydrin amount of the polymer were measured by the above methods.
  • the heat resistance was evaluated by the above method. The results are shown in Table 1.
  • Example 3 In Example 1, the same operation as in Example 1 was performed except that the purified glycidyl methacrylate B (refined product B) obtained in Preparation Example 2 was used instead of the purified glycidyl methacrylate A (refined product A). , N-substituted maleimide-containing resin solution 3 was obtained. With respect to the obtained N-substituted maleimide-based polymer solution 3, the weight average molecular weight, polymer concentration, acid value, double bond equivalent, residual chlorine amount, and epichlorohydrin amount of the polymer were measured by the above methods. Moreover, the heat resistance was evaluated by the above method. The results are shown in Table 1.
  • Example 4 In a 2 L separable flask, 312.8 g of propylene glycol monomethyl ether acetate (PGMEA) and 83.2 g of propylene glycol (PGM) were charged, substituted with nitrogen, and the temperature was raised to 90 ° C. On the other hand, in the dropping tank, 36.0 g of N-benzylmaleimide (BzMI), 95.04 g of benzyl methacrylate (BzMA), 108.96 g of acrylic acid (AA), 115.2 g of PGMEA, 28.8 g of PGM, and a polymerization initiator (perbutyl (registered)).
  • Example 5 522.0 g of propylene glycol monomethyl ether acetate (PGMEA) was charged in a 2 L separable flask, substituted with nitrogen, and the temperature was raised to 90 ° C. On the other hand, 43.6 g of N-benzylmaleimide (BzMI), 66.9 g of benzyl methacrylate (BzMA), 123.8 g of the purified glycidyl methacrylate (refined product B) obtained in Preparation Example 2, and 100.0 g of PGMEA in the dropping tank.
  • BzMI N-benzylmaleimide
  • BzMA benzyl methacrylate
  • BzMA purified glycidyl methacrylate
  • N-substituted maleimide-based polymer solution 5 the weight average molecular weight, polymer concentration, acid value, double bond equivalent, residual chlorine amount, and epichlorohydrin amount of the polymer were measured by the above methods. Moreover, the heat resistance was evaluated by the above method. The results are shown in Table 1.
  • Example 6 The same operation as in Example 1 was carried out except that N-benzylmaleimide (BzMI) was changed to 6.7 g and cyclohexyl methacrylate (CHMA) was changed to 223.78 g to obtain an N-substituted maleimide-based polymer solution 6. .. With respect to the obtained N-substituted maleimide-based polymer solution 6, the weight average molecular weight, polymer concentration, acid value, double bond equivalent, residual chlorine amount, and epichlorohydrin amount of the polymer were measured by the above methods. Moreover, the heat resistance was evaluated by the above method. The results are shown in Table 1.
  • Example 7 The same operation as in Example 3 was carried out except that N-benzylmaleimide (BzMI) was changed to 6.7 g and phenylmaleimide (PMI) was changed to 60.3 g to obtain an N-substituted maleimide-based polymer solution 7.
  • BzMI N-benzylmaleimide
  • PMI phenylmaleimide
  • 60.3 g N-substituted maleimide-based polymer solution 7.
  • the weight average molecular weight, polymer concentration, acid value, double bond equivalent, residual chlorine amount, and epichlorohydrin amount of the polymer were measured by the above methods.
  • the heat resistance was evaluated by the above method. The results are shown in Table 1.
  • Example 1 In Example 1, the same operation as in Example 1 was carried out except that unpurified glycidyl methacrylate (commercially available product) was used instead of purified glycidyl methacrylate A, and an N-substituted maleimide-based polymer solution was used. 8 was obtained. With respect to the obtained N-substituted maleimide-based polymer solution 8, the weight average molecular weight, acid value, double bond equivalent, polymer concentration, residual chlorine amount, and epichlorohydrin amount of the polymer were measured by the above methods. Moreover, the heat resistance was evaluated by the above method. The results are shown in Table 1.
  • Example 2 In Example 4, the same operation as in Example 4 was carried out except that unpurified glycidyl methacrylate (commercially available product) was used instead of purified glycidyl methacrylate B, and an N-substituted maleimide-based polymer solution was used. I got 9. With respect to the obtained N-substituted maleimide-based polymer solution 9, the weight average molecular weight, acid value, double bond equivalent, polymer concentration, residual chlorine amount, and epichlorohydrin amount of the polymer were measured by the above methods. Moreover, the heat resistance was evaluated by the above method. The results are shown in Table 1.
  • Example 7 (Comparative Example 3) In Example 7, the same operation as in Example 7 was carried out except that unpurified glycidyl methacrylate (commercially available product) was used instead of purified glycidyl methacrylate B, and an N-substituted maleimide-based polymer solution was used. 10 was obtained. With respect to the obtained N-substituted maleimide-based polymer solution 10, the weight average molecular weight, acid value, double bond equivalent, polymer concentration, residual chlorine amount, and epichlorohydrin amount of the polymer were measured by the above methods. Moreover, the heat resistance was evaluated by the above method. The results are shown in Table 1.
  • the N-substituted maleimide-based polymer obtained by using glycidyl (meth) acrylate adjusted to have a chlorine content of 0.01 to 0.3% by mass has a chlorine content of 0. It was found that the heat resistance was excellent and the thermal coloring during curing was significantly suppressed as compared with the N-substituted maleimide-based polymer obtained by using glycidyl (meth) acrylate obtained in an amount of more than 3% by mass. rice field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

本発明は、N-置換マレイミド単量体と(メタ)アクリル酸グリシジルを使用して重合体を製造した場合に、熱着色が格段に抑制された重合体を得ることができるN-置換マレイミド系重合体の製造方法を提供することを目的とする。本発明は、N-置換マレイミド単量体(a)と、不飽和カルボン酸単量体(b)とを含む単量体成分を重合してベースポリマーを得る工程(I-2)、及び、該ベースポリマーに、含有塩素量が0.01~0.3質量%に調整された(メタ)アクリル酸グリシジルを反応させて、側鎖に二重結合を有するN-置換マレイミド系重合体を得る工程(I-3)を有することを特徴とするN-置換マレイミド系重合体の製造方法。

Description

N-置換マレイミド系重合体、及びその製造方法
本発明は、N-置換マレイミド系重合体の製造方法、及び、上記製造方法により得られるN-置換マレイミド系重合体に関する。より詳しくは、硬化物の熱による着色を抑制することができるN-置換マレイミド系重合体、及び、その製造方法に関する。
N-置換マレイミド系重合体は、N-ベンジルマレイミドやN-フェニルマレイミド等のN-置換マレイミド単量体を含む単量体成分を重合して得られる重合体である。このようなマレイミド系重合体は、一般的に、ガラス転移温度が高く、耐熱性等に優れるため、光学材料や電機・電子材料等として、広く利用されている。
また、重合体の架橋性や架橋密度を向上させるために、重合体の側鎖に重合性二重結合を導入することが知られている。このような側鎖に重合性二重結合を有する重合体は、例えば、酸基を有する単量体を含む単量体成分を重合してベースとなる重合体を得て、その重合体に、エポキシ基と重合性二重結合を有する化合物を付加反応させることにより、重合体に重合性二重結合を導入する方法や、エポキシ基と重合性二重結合を有する化合物を含む単量体成分を重合してベースとなる重合体を得て、その重合体に、酸基と重合性二重結合を有する化合物を反応させて、重合体に重合性二重結合を導入する方法等によって得ることができる。このような側鎖に重合性二重結合を有する重合体を製造する場合に、上記エポキシ基と重合性二重結合を有する化合物の一つとして、(メタ)アクリル酸グリシジル(アクリル酸グリシジル及び/又はメタクリル酸グリシジル)が使用される。
例えば、特許文献1には、エチレン性不飽和二重結合を有する、カルボキシル基含有ラジカル重合性共重合体を含むカラーフィルター用感光性樹脂組成物が記載され、上記ラジカル重合性共重合体を得る方法として、N-置換マレイミド化合物と、(メタ)アクリル酸(アクリル酸及び/又はメタクリル酸)等の不飽和カルボン酸化合物を単量体成分として得られる共重合体に、エポキシ基含有エチレン性不飽和化合物を反応させる方法が記載されている。
特開2012-32772号公報
ところで、(メタ)アクリル酸グリシジルを使用して得られた重合体は、その構成によっては、熱によって着色し易いという問題があった。とりわけ、(メタ)アクリル酸グリシジルと、N-置換マレイミド系単量体、又はN-置換マレイミド系単量体由来の構成単位を含む重合体とを混合して加熱すると、得られる硬化物の熱による着色(熱着色)が顕著になるという問題があった。このような着色は、N-置換マレイミド系重合体を淡色や透明な製品の製造に使用したい場合に、大きな問題となる。
本発明は、上記現状に鑑みて、N-置換マレイミド単量体と(メタ)アクリル酸グリシジルを使用して重合体を製造する場合に、熱着色が格段に抑制された重合体を得ることができるN-置換マレイミド系重合体の製造方法を提供することを目的とする。
本発明者は、上記課題を解決すべく、(メタ)アクリル酸グリシジルとN-置換マレイミド系単量体を使用して重合体を製造する方法について種々検討したところ、(メタ)アクリル酸グリシジルには塩素が不純物として含まれ、その塩素がマレイミド基の熱酸化を促進することにより、得られる重合体の熱着色が起こることを見いだした。そして、本発明者は、含有塩素量が所定範囲量の(メタ)アクリル酸グリシジルを使用すること、例えば、含有塩素量が所定範囲量となるように調整された(メタ)アクリル酸グリシジルを使用することにより、熱着色が格段に抑制された、側鎖に二重結合を有するN-置換マレイミド系重合体が得られることを見いだし、本発明を完成するに至った。
すなわち、本発明は、N-置換マレイミド単量体(a)と、不飽和カルボン酸単量体(b)とを含む単量体成分を重合してベースポリマーを得る工程(I-2)、及び、上記ベースポリマーに、含有塩素量が0.01~0.3質量%に調整された(メタ)アクリル酸グリシジルを反応させて、側鎖に二重結合を有するN-置換マレイミド系重合体を得る工程(I-3)を有することを特徴とするN-置換マレイミド系重合体の製造方法である。
上記N-置換マレイミド系重合体の製造方法は、上記工程(I-2)の前に、(メタ)アクリル酸グリシジル中の含有塩素量が0.01~0.3質量%となるように(メタ)アクリル酸グリシジルを精製する工程(I-1)を更に含むことが好ましい。
本発明はまた、N-置換マレイミド単量体(a)と、含有塩素量が0.01~0.3質量%に調整された(メタ)アクリル酸グリシジルとを含む単量体成分を重合してベースポリマーを得る工程(II-2)、及び、上記ベースポリマーに、不飽和カルボン酸単量体(b)を反応させて、側鎖に二重結合を有するN-置換マレイミド系重合体を得る工程(II-3)を有することを特徴とするN-置換マレイミド系重合体の製造方法である。
上記N-置換マレイミド系重合体の製造方法は、上記工程(II-2)の前に、(メタ)アクリル酸グリシジル中の含有塩素量が0.01~0.3質量%となるように(メタ)アクリル酸グリシジルを精製する工程(II-1)を更に含むことが好ましい。
上記N-置換マレイミド系重合体の製造方法は、上記工程(II-3)の後、更に、上記側鎖に二重結合を有するN-置換マレイミド系重合体に、多塩基酸又は多塩基酸無水物を反応させる工程(II-4)を有することが好ましい。
上記N-置換マレイミド系重合体の製造方法において、上記N-置換マレイミド系重合体中の残留塩素量は、N-置換マレイミド単量体(a)と(メタ)アクリル酸グリシジルの合計使用量に対して100~2000ppmであることが好ましい。
本発明はまた、N-置換マレイミド単量体由来の構造単位(A)、及び、下記一般式(B1)、(B2)又は(B3)で表される構造単位(B)を有するN-置換マレイミド系重合体であって、該構造単位(B)は、(メタ)アクリル酸グリシジルに由来する構造を含み、該N-置換マレイミド系重合体中の残留塩素量が、重合体原料である該構造単位(A)を与えるN-置換マレイミド単量体と該構造単位(B)を与える(メタ)アクリル酸グリシジルの合計質量に対して100~2000ppmであることを特徴とするN-置換マレイミド系重合体である。
Figure JPOXMLDOC01-appb-C000002
(一般式(B1)中、R及びRは、同一又は異なって、水素原子又はメチル基を表す。Rは、二価の結合基を表す。aは、0又は1である。
一般式(B2)中、Rは、水素原子又はメチル基を表す。Rは、エチレン性不飽和結合含有基を表す。
一般式(B3)中、Rは、水素原子又はメチル基を表す。Rは、エチレン性不飽和結合含有基を表す。Xは、二価の炭化水素基を表す。)
上記N-置換マレイミド系重合体は、酸価が20~200mgKOH/gであることが好ましい。
上記N-置換マレイミド系重合体は、二重結合当量が300~3000g/当量であることが好ましい。
本発明はまた、上述したN-置換マレイミド系重合体、及び、重合性化合物を含むことを特徴とする硬化性樹脂組成物でもある。
本発明によれば、熱着色が格段に抑制された、側鎖に二重結合を有するN-置換マレイミド系重合体を好適に得ることができる。本発明のN-置換マレイミド系重合体は、光学材料や電機・電子材料等として好適に使用することができる。
以下に本発明を詳述する。
なお、以下において記載する本発明の個々の好ましい形態を2つ以上組み合わせたものもまた、本発明の好ましい形態である。
なお、本明細書において、「(メタ)アクリル酸」とは「アクリル酸」及び「メタアクリル酸」を意味し、「(メタ)アクリレート」とは「アクリレート」及び「メタクリレート」を意味する。
1.N-置換マレイミド系重合体の製造方法
本発明は、N-置換マレイミド単量体(a)と、不飽和カルボン酸単量体(b)とを含む単量体成分を重合してベースポリマーを得る工程(I-2)、及び、上記ベースポリマーに、含有塩素量が0.01~0.3質量%に調整された(メタ)アクリル酸グリシジルを反応させて、側鎖に二重結合を有するN-置換マレイミド系重合体を得る工程(I-3)を有することを特徴とするN-置換マレイミド系重合体の製造方法(I)である。
また本発明は、N-置換マレイミド単量体(a)と、含有塩素量が0.01~0.3質量%に調整された(メタ)アクリル酸グリシジルとを含む単量体成分を重合してベースポリマーを得る工程(II-2)、及び、上記ベースポリマーに、不飽和カルボン酸単量体(b)を反応させて、側鎖に二重結合を有するN-置換マレイミド系重合体を得る工程(II-3)を有することを特徴とするN-置換マレイミド系重合体の製造方法(II)でもある。
本発明のN-置換マレイミド系重合体の製造方法(I)及び(II)においては、いずれも含有塩素量が0.01~0.3質量%に調整された(メタ)アクリル酸グリシジルを使用する。含有塩素量が0.01~0.3質量%に調整された(メタ)アクリル酸グリシジルを使用することにより、得られる重合体の熱着色を格段に抑制することができるのは、以下の理由によると推測される。すなわち、(メタ)アクリル酸グリシジルに不純物として含まれる塩素が、加熱時に塩化水素や次亜塩素酸を発生させ、N-置換マレイミドからのアミンの発生を促進し、発生したアミンが次亜塩素酸等の酸化物質により酸化されて着色物質を生成させると考えられ、(メタ)アクリル酸グリシジルに含まれる残留塩素を所定範囲量とすることにより、そのような着色物質の生成が格段に抑制されるためと考えられる。
本発明のN-置換マレイミド系重合体の製造方法では、最終的に、側鎖に二重結合を有するN-置換マレイミド系重合体を得ることができる。側鎖に二重結合を有することにより、N-置換マレイミド系重合体の架橋性が高くなり、また架橋密度を高めることができる。
上記二重結合とは、重合性二重結合、すなわち炭素-炭素二重結合を意味し、例えば、(メタ)アクリロイル基、ビニル基、アリル基、メタリル基等が挙げられる。
本発明のN-置換マレイミド系重合体の製造方法(I)及び(II)について、以下に詳述する。
1-1.製造方法(I)
<工程(I-2)>
上記製造方法(I)は、N-置換マレイミド単量体(a)と、不飽和カルボン酸単量体(b)とを含む単量体成分を重合してベースポリマー(「ベースポリマー1」とも称する)を得る工程(I-2)を有する。
上記単量体(a)及び(b)を含む単量体成分を重合してベースポリマー1を得る方法としては、特に限定されず、バルク重合、溶液重合、乳化重合等の公知の重合方法が挙げられる。なかでも、工業的に有利で、分子量等の構造調整が容易な点で、溶液重合が好ましい。また、上記単量体成分の重合機構は、ラジカル重合、アニオン重合、カチオン重合、配位重合等の機構に基づいた重合方法を用いることができるが、工業的に有利な点で、ラジカル重合機構に基づく重合方法が好ましい。
上記単量体成分を重合して得られるベースポリマー1の分子量は、重合開始剤の量や種類、重合温度、連鎖移動剤の種類や量の調整等により制御することができる。
上記重合開始剤としては、例えば、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-アミルパーオキシ-2-エチルヘキサノエート、アゾビスイソブチロニトリル、1,1’-アゾビス(シクロヘキサンカルボニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)、過酸化水素、過硫酸塩等の通常重合開始剤として使用される過酸化物やアゾ化合物等が挙げられる。
上記連鎖移動剤としては、例えば、メルカプトカルボン酸類、メルカプトカルボン酸エステル類、アルキルメルカプタン類、メルカプトアルコール類、芳香族メルカプタン類、メルカプトイソシアヌレート類等のメルカプト基を有する化合物が好ましく挙げられ、より好ましくは、アルキルメルカプタン類、メルカプトカルボン酸類、メルカプトカルボン酸エステル類、更に好ましくは、n-ドデシルメルカプタン、メルカプトプロピオン酸が挙げられる。
上記重合に使用する溶媒としては、特に限定されず、例えば、メタノール、エタノール、イソプロパノール、n-ブタノール、s-ブタノール等のモノアルコール類;エチレングリコール、プロピレングリコール等の多価アルコール類;テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類;アセトン、メチルエチルケトン等のケトン類;酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート等のエステル類;トルエン、キシレン、エチルベンゼン等の芳香族炭化水素類;クロロホルム;ジメチルスルホキシド;炭酸ジメチル等が挙げられる。
上記重合開始剤、連鎖移動剤、溶媒は、それぞれ1種のみ使用してもよいし、2種以上組み合わせて使用してもよい。また、これらの使用量は、適宜設定することができる。
重合温度としては、使用する単量体の種類や量、重合開始剤等の種類や量に応じて適宜設定することができるが、例えば、50~200℃が好ましく、80~120℃がより好ましい。
重合時間としては、適宜設定することができるが、例えば、1~12時間が好ましく、3~8時間がより好ましい。
上記単量体成分の混合は、特に限定されず、得ようとするN-置換マレイミド系重合体に応じて適宜行えばよく、上記単量体(a)及び(b)の全量を同時に混合してもよいし、上記単量体(a)又は(b)の全量に、上記単量体(b)又は(a)を少量ずつ添加して混合してもよい。
上記単量体成分を重合してベースポリマー1を得た後、重合反応液(重合体溶液)から揮発分を除去してベースポリマー1を分離してから、ベースポリマー1を使用してもよいし、また、分離せずに溶液状態で使用してもよいが、工業的利用としては分離せず溶液状態で使用する方がコスト等の点から好ましい。
上記N-置換マレイミド系重合体の製造に使用する単量体成分について下記に説明する。各単量体を含む単量体成分を重合することにより、各単量体由来の構成単位を有する共重合体を得ることができる。
(N-置換マレイミド単量体(a))
上記N-置換マレイミド単量体(a)としては、例えば、下記一般式(a)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000003
(式中、Rは、置換基を有していてもよい、炭素数1~30の一価の炭化水素基を表す。)
一般式(a)中、Rは、置換基を有していていもよい、炭素数1~30の一価の炭化水素基である。上記一価の炭化水素基は、炭素数が1~20であることが好ましく、6~12であることがより好ましい。
上記炭化水素基としては、鎖状又は環状の脂肪族炭化水素基、又は芳香族炭化水素基が挙げられる。
上記脂肪族炭化水素基は、飽和脂肪族炭化水素基であってもよいし、不飽和脂肪族炭化水素基であってもよいが、飽和脂肪族炭化水素基であることが好ましい。
鎖状の飽和脂肪族炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、sec-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、ヘプチル基、2-メチルヘキシル基、3-メチルヘキシル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3-エチルペンチル基、2,2,3-トリメチルブチル基、オクチル基、メチルヘプチル基、ジメチルヘキシル基、2-エチルヘキシル基、3-エチルヘキシル基、トリメチルペンチル基、3-エチル-2-メチルペンチル基、2-エチル-3-メチルペンチル基、2,2,3,3-テトラメチルブチル基、ノニル基、メチルオクチル基、3,7-ジメチルオクチル基、ジメチルヘプチル基、3-エチルヘプチル基、4-エチルヘプチル基、トリメチルヘキシル基、3,3-ジエチルペンチル基、デシル基、ウンデシル基、ドデシル基等の直鎖状又は分岐鎖状のアルキル基が挙げられる。
なかでも、炭素数1~30のアルキル基であることが好ましく、炭素数1~20のアルキル基であることがより好ましく、炭素数1~12のアルキル基であることが更に好ましい。
環状の脂肪族炭化水素基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロドデシル基等の単環系脂環式炭化水素基;ジシクロペンタニル基、ノルボルニル基、アダマンチル基等の多環系脂環式炭化水素基;が挙げられる。
なかでも、炭素数3~30の単環又は多環系脂環式炭化水素基であることが好ましく、炭素数3~18の単環又は多環系脂環式炭化水素基であることがより好ましく、炭素数6~12の単環系脂環式炭化水素基であることが更に好ましい。
上記芳香族炭化水素基としては、例えば、フェニル基、ナフチル基、ベンジル基、フェネチル基等を挙げることができる。なかでも、炭素数6~30の芳香族炭化水素基であることが好ましく、炭素数6~12の芳香族炭化水素基であることがより好ましい。
上記炭化水素基は、置換基を有していてもよい。上記置換基としては、例えば、アルキル基、アリール基、水酸基、ハロゲン原子、カルボキシル基、アルコキシ基、アリールオキシ基等が挙げられる。
上記N-置換マレイミド系単量体の具体例としては、例えば、N-メチルマレイミド、N-エチルマレイミド、N-プロピルマレイミド、N-イソプロピルマレイミド、N-t-ブチルマレイミド、N-ドデシルマレイミド、N-シクロヘキシルマレイミド、N-オクチルマレイミド、N-2-エチルヘキシルマレイミド、N-デシルマレイミド、N-ラウリルマレイミド、N-テトラデシルマレイミド、N-ステアリルマレイミド、N-2-デシルテトラデシルマレイミド、N-フェニルマレイミド、N-ベンジルマレイミド、N-ナフチルマレイミド、N-クロロフェニルマレイミド、N-メチルフェニルマレイミド、N-ヒドロキシルエチルマレイミド、N-ヒドロキシルフェニルマレイミド、N-メトキシフェニルマレイミド、N-カルボキシフェニルマレイミド、N-ニトロフェニルマレイミド、N-トリブロモフェニルマレイミド、N,N’-オルトフェニレンビスマレイミド、N,N’-メタフェニレンビスマレイミド、N,N’-パラフェニレンビスマレイミド等が挙げられる。なかでも、上記N-ビニルアミド系単量体との共重合性や耐熱性の観点から、N-ベンジルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミドが好ましく、N-ベンジルマレイミド、N-シクロヘキシルマレイミドがより好ましく、N-ベンジルマレイミドが更に好ましい。特に、耐熱着色性が強く求められる用途ではN-ベンジルマレイミドが好適に用いられ、有機微粒子や無機微粒子との親和性が強く求められる用途ではN-フェニルマレイミドが好適に用いられる。
上記N-ベンジルマレイミドとしては、例えば、ベンジルマレイミド;p-メチルベンジルマレイミド、p-ブチルベンジルマレイミド等のアルキル置換ベンジルマレイミド;p-ヒドロキシベンジルマレイミド等のフェノール性水酸基置換ベンジルマレイミド;o-クロロベンジルマレイミド、o-ジクロロベンジルマレイミド、p-ジクロロベンジルマレイミド等のハロゲン置換ベンジルマレイミド;等が挙げられる。
上記N-置換マレイミド単量体(a)は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
なかでも、上記N-置換マレイミド単量体(a)は、N-ベンジルマレイミド及びN-フェニルマレイミドであることが好ましい。これら2種の組み合わせにより、顔料の分散安定性が向上したり、硬化後の膜の表面硬度が高くなる場合がある。
N-ベンジルマレイミドとN-フェニルマレイミドの質量比は、95/5~5/95であることが好ましく、10/90~90/10であることがより好ましい。
また、N-置換マレイミド単量体(a)として、N-フェニルマレイミドを主成分として使用する場合のN-ベンジルマレイミドの割合は、N-フェニルマレイミド100質量部に対して、1~30質量部であることが好ましく、1~20質量部であることがより好ましく、1~10質量部であることが更に好ましく、1~5質量部であることが最も好ましい。
また、N-ベンジルマレイミドの使用量は、総単量体成分100質量%に対して、0.5~10質量%であることが好ましく、0.5~5質量%であることがより好ましく、0.5~3質量%であることが更に好ましく、0.5~2質量%であることが特に好ましく、0.5~1.8質量%であることが最も好ましい。
上記範囲とすることで、顔料等の有機微粒子や、量子ドット又はシリカ等の無機微粒子との親和性や分散性が向上しうる。
(不飽和カルボン酸単量体(b))
上記不飽和カルボン酸単量体(b)としては、カルボキシル基及び/又はカルボン酸無水物基と重合性二重結合とを有する化合物が挙げられる。
上記重合性二重結合としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基、メタリル基等が挙げられる。なかでも、(メタ)アクリロイル基が好ましい。
上記不飽和カルボン酸単量体の具体例としては、例えば、(メタ)アクリル酸、クロトン酸、ケイ皮酸、ビニル安息香酸等の不飽和モノカルボン酸類;マレイン酸、フマル酸、イタコン酸、シトラコン酸、メサコン酸等の不飽和多価カルボン酸類;コハク酸モノ(2-アクリロイルオキシエチル)、コハク酸モノ(2-メタクリロイルオキシエチル)等の不飽和基とカルボキシル基との間が鎖延長されている不飽和長鎖モノカルボン酸類;無水マレイン酸、無水イタコン酸等の不飽和酸無水物類;等が挙げられる。これらのなかでも、汎用性、入手性等の観点から、不飽和モノカルボン酸類が好ましく、(メタ)アクリル酸がより好ましい。
上記不飽和カルボン酸単量体(b)は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
(上記単量体(a)及び単量体(b)と共重合可能な単量体(c))
ベースポリマー1を製造するための単量体成分は、上記単量体(a)及び単量体(b)以外に、上記単量体(a)及び単量体(b)と共重合可能な単量体(c)を更に含んでいてもよい。
上記単量体(c)としては、上述した単量体(a)及び(b)と共重合可能であれば特に限定されず、例えば、下記の単量体を挙げることができる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸2,3-ヒドロキシプロピル等のヒドロキシアルキル(メタ)アクリレート等の水酸基含有単量体;
(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸i-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸s-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸n-アミル、(メタ)アクリル酸s-アミル、(メタ)アクリル酸t-アミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸テトラヒドロフルフリル、(メタ)アクリル酸N,N-ジメチルアミノエチル、1,4-ジオキサスピロ[4,5]デカ-2-イルメタアクリル酸、(メタ)アクリロイルモルホリン、4-(メタ)アクリロイルオキシメチル-2-メチル-2-エチル-1,3-ジオキソラン、4-(メタ)アクリロイルオキシメチル-2-メチル-2-イソブチル-1,3-ジオキソラン、4-(メタ)アクリロイルオキシメチル-2-メチル-2-シクロヘキシル-1,3-ジオキソラン、4-(メタ)アクリロイルオキシメチル-2,2-ジメチル-1,3-ジオキソラン等の(メタ)アクリル酸エステル;
シクロヘキシル(メタ)アクリレート、シクロヘキシルメチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、1-アダマンチル(メタ)アクリレート、(3,4-エポキシシクロヘキシル)メチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート、ペンタシクロペンタデカンジメタノールルジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、ノルボルナンジメタノールジ(メタ)アクリレート、p-メンタン-1,8-ジオールジ(メタ)アクリレート、p-メンタン-2,8-ジオールジ(メタ)アクリレート、p-メンタン-3,8-ジオールジ(メタ)アクリレート、ビシクロ[2.2.2]-オクタン-1-メチル-4-イソプロピル-5,6-ジメチロールジ(メタ)アクリレート等の脂環式(メタ)アクリレート;
(メタ)アクリル酸β-メチルグリシジル、(メタ)アクリル酸β-エチルグリシジル、ビニルベンジルグリシジルエーテル、アリルグリシジルエーテル、(メタ)アクリル酸(3,4-エポキシシクロヘキシル)メチル、ビニルシクロヘキセンオキシド等の、(メタ)アクリル酸グリシジル以外のエポキシ基含有単量体;
N,N-ジメチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド等の(メタ)アクリルアミド類;ポリスチレン、ポリメチル(メタ)アクリレート、ポリエチレンオキシド、ポリプロピレンオキシド、ポリシロキサン、ポリカプロラクトン、ポリカプロラクタム等の重合体分子鎖の片末端に(メタ)アクリロイル基を有するマクロモノマー類;1,3-ブタジエン、イソプレン、クロロプレン等の共役ジエン類;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、2-エチルヘキシルビニルエーテル、n-ノニルビニルエーテル、ラウリルビニルエーテル、シクロヘキシルビニルエーテル、メトキシエチルビニルエーテル、エトキシエチルビニルエーテル、メトキシエトキシエチルビニルエーテル、メトキシポリエチレングリコールビニルエーテル、2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル等のビニルエーテル類;N-ビニルピロリドン、N-ビニルカプロラクタム、N-ビニルイミダゾール、N-ビニルモルフォリン、N-ビニルアセトアミド等のN-ビニル化合物類;スチレン、ビニルトルエン、α-メチルスチレン、キシレン、メトキシスチレン、エトキシスチレン等の芳香族ビニル類;(メタ)アクリル酸イソシアナトエチル、アリルイソシアネート等の不飽和イソシアネート類;α-アリルオキシメチルアクリル酸、α-アリルオキシメチルアクリル酸メチル、α-アリルオキシメチルアクリル酸エチル、α-アリルオキシメチルアクリル酸n-プロピル、α-アリルオキシメチルアクリル酸i-プロピル、α-アリルオキシメチルアクリル酸n-ブチル、α-アリルオキシメチルアクリル酸s-ブチル、α-アリルオキシメチルアクリル酸t-ブチル、α-アリルオキシメチルアクリル酸n-アミル、α-アリルオキシメチルアクリル酸s-アミル、α-アリルオキシメチルアクリル酸t-アミル、α-アリルオキシメチルアクリル酸ネオペンチル等のα-(不飽和アルコキシアルキル)アクリレート系単量体;ジメチル-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジエチル-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジシクロヘキシル-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート、ジベンジル-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート等のジアルキル-2,2’-(オキシジメチレン)ジアクリレート系単量体;等。
上記単量体(a)、(b)及び(c)の各含有量は、得ようとするN-置換マレイミド系重合体の目的、用途に応じて適宜設定することができる。
上記単量体(a)は、総単量体成分100質量%に対して、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましく、3質量%以上であることが更に好ましく、50質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることが更に好ましい。
上記単量体(b)は、総単量体成分100質量%に対して、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることが更に好ましく、60質量%以下であることが好ましく、50質量%以下であることがより好ましく、40質量%以下であることが更に好ましい。
上記単量体(c)は、総単量体成分100質量%に対して、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、25質量%以上であることが更に好ましく、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることが更に好ましい。
上記単量体(a)、(b)、(c)の各含有量は、2種以上の単量体を含む場合、その合計量である。
<工程(I-3)>
上記製造方法(I)は、更に、上記工程(I-2)で得られたベースポリマー1に、含有塩素量が0.01~0.3質量%に調整された(メタ)アクリル酸グリシジルを反応させて、側鎖に二重結合を有するN-置換マレイミド系重合体を得る工程(I-3)を有する。
上記製造方法(I)において使用する(メタ)アクリル酸グリシジルの含有塩素量は、0.01~0.3質量%である。上記範囲に調整された(メタ)アクリル酸グリシジルを使用することで、残留塩素量が少ないN-置換マレイミド系重合体を製造することができ、上記重合体の熱着色を抑制することができる。また、上記重合体を安全に製造することができる。
上記(メタ)アクリル酸グリシジルの含有塩素量は、得られるN-置換マレイミド系重合体の熱着色をより一層抑制することができる点で、0.25質量%以下であることが好ましく、0.20質量%以下であることがより好ましく、0.15質量%以下であることが更により好ましい。
一方、含有塩素量が0.01質量%未満となるよう(メタ)アクリル酸グリシジルを調整すると、精製等の調製設備が過大になるほか、精製蒸留中の(メタ)アクリル酸グリシジルの重合による装置閉塞、精製収率の低下等のおそれがあり、工業的に不利であるため好ましくない。上記含有塩素量の下限値は、製造コストの観点から0.03質量%以上であることが好ましく、0.05質量%以上であることがより好ましい。
上記含有塩素量は、ICP-MS(誘導結合プラズマ質量分析)法により測定して求めることができ、具体的には、後述する実施例に記載の方法により求めることができる。
上記(メタ)アクリル酸グリシジルの含有塩素量を調整する方法としては、例えば、(メタ)アクリル酸グリシジルを精製する方法が好ましく挙げられる。
上記(メタ)アクリル酸グリシジルを精製する方法としては、特に限定されず、蒸留、抽出、カラムクロマトグラフィー等の公知の方法が挙げられるが、なかでも、塩素を容易かつ安全に除去できる点で、蒸留が好ましい。
上記蒸留としては、特に限定されず、単蒸留、精密蒸留(精留)、減圧蒸留(真空蒸留)、分子蒸留、水蒸気蒸留等の公知の蒸留方法が挙げられるが、なかでも、工業的に容易に高純度にできる点で、精密蒸留が好ましく、減圧下での精密蒸留がより好ましい。
蒸留方法は、特に限定されず、公知の方法で行うことができ、エバポレータ等の減圧濃縮装置や、単蒸留、精留塔を用いた精密蒸留で行うことができる。
蒸留温度は、凝縮捕集が工業的に容易である点で、30℃以上であることが好ましく、40℃以上であることがより好ましく、50℃以上であることが更に好ましい。また、蒸留温度は、蒸留中の重合を抑制し装置の閉塞等を防止することができる点で、150℃以下であることが好ましく、100℃以下であることがより好ましく、80℃以下であることが更に好ましい。
上記蒸留は減圧下で行うことが好ましく、例えば、40000Pa以下、好ましくは10000Pa以下、より好ましくは3000Pa以下で行うことが好ましい。
上記蒸留を減圧下で行う方法としては、例えば、精留塔を備えた精密蒸留等の公知の方法が挙げられる。
上記蒸留に用いる精留塔は、理論段数2~100が好ましく、理論段数5~50がさらに好ましい。蒸留による塩素分の低減が不十分である場合、蒸留を複数回繰り返すことで塩素分を所望の範囲まで低減することができる。蒸留を繰り返す回数は3回以下が好ましく、2回以下が更に好ましい。4回以上蒸留を繰り返すことは、設備や工程が過大になるほか、蒸留収率が低下し工業的に不利である。
上記蒸留を行う際、(メタ)アクリル酸グリシジルに重合禁止剤等を添加してもよい。重合禁止剤を添加することにより、蒸留中の重合を防止することができる。上記重合禁止剤としては、通常使用されるラジカル重合性単量体用の重合禁止剤が挙げられ、例えば、ハイドロキノン、メチルハイドロキノン、トリメチルハイドロキノン、t-ブチルハイドロキノン、メトキノン、6-t-ブチル-2,4-キシレノール、2,6-ジ-t-ブチルフェノール、2,6-ジ-t-ブチル-4-メトキシフェノール、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)等のフェノール系禁止剤、有機酸銅塩やフェノチアジン等が挙げられる。これらは1種のみ使用してもよいし、又は2種以上を併用してもよい。なかでも、フェノール系禁止剤が好ましく、メトキノン、6-t-ブチル-2,4-キシレノール、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)がより好ましい。
上記蒸留の前及び/又は後に、更に不純物を除去するため、(メタ)アクリル酸グリシジルを水又は弱アルカリ水等の溶剤により洗浄してもよいし、乾燥、脱水してもよい。特に水が多く含まれると、(メタ)アクリル酸グリシジルのグリシジル基が加水分解するおそれがある。水の含有量は(メタ)アクリル酸グリシジル100質量部に対し、0.2質量部以下が好ましく、0.1質量部以下がさらに好ましく、0.05質量部以下が最も好ましい。
このように、本発明の製造方法(I)は、工程(I-2)又は(I-3)の前に、(メタ)アクリル酸グリシジルの含有塩素量が0.01~0.3質量%となるように(メタ)アクリル酸グリシジルを精製する工程(I-1)を有することが好ましい。
上記ベースポリマー1に、上記含有塩素量が0.01~0.3質量%に調整された(メタ)アクリル酸グリシジルを反応させる方法としては、特に限定されず、ベースポリマー1を含む重合体溶液に、上記含有塩素量が0.01~0.3質量%に調整された(メタ)アクリル酸グリシジルを混合して、公知の方法で反応させるとよい。上記反応により、ベースポリマー1が有する酸基(カルボキシル基)と、(メタ)アクリル酸グリシジルのエポキシ基が反応して、(メタ)アクリル酸グリジジルが、ベースポリマー1に付加され、末端に重合性二重結合を有する重合体が得られる。
上記付加反応の温度としては、上記付加反応が進行する温度であれば特に限定されないが、例えば、60~150℃が挙げられ、90~140℃であることが好ましく、100~120℃であることがより好ましい。
上記付加反応の反応時間としては、特に限定されないが、例えば、1~48時間、好ましくは3~24時間、より好ましくは6~12時間が挙げられる。
上記工程(I-3)における上記調整された(メタ)アクリル酸グリシジルの使用量としては、得られるN-置換マレイミド系重合体の二重結合当量が所望の範囲となるように適宜設定することが好ましいが、例えば、上記ベースポリマー1を与える総単量体成分100質量部に対し、1~150質量部であることが好ましく、10~100質量部であることがより好ましく、15~80質量部であることが更に好ましい。
上記付加反応においては、トリメチルアミン、トリエチルアミン、トリイソプロピルアミン、トリブチルアミン、ジメチルベンジルアミン、メチルジベンジルアミン、トリベンジルアミン等のアミン化合物;トリエチルホスフィン、トリフェニルホスフィン等のホスフィン類;塩化テトラエチルアンモニウム等のアンモニウム塩;臭化テトラフェニルホスホニウム等のホスホニウム塩、ジメチルホルムアミド等のアミド化合物;等の公知の触媒を使用してもよい。なかでも、着色の少なさ、工業的入手の容易さの点で、アミン化合物、ホスフィン類が好ましく、トリエチルアミン、ジメチルベンジルアミン、トリフェニルホスフィンがより好ましい。
上記触媒の使用量は、適宜設定することができるが、ベースポリマー1と上記調整された(メタ)アクリル酸グリシジルの合計量に対し、0.05~5質量%であることが好ましく、0.1~1質量%であることがより好ましく、0.1~0.5質量%であることが更に好ましい。上記触媒の使用量が上記の範囲を下回ると、反応時間が長くなり工業的に不利となるおそれがある。また上記の範囲を上回ると、触媒の投入時にベースポリマーと塩を形成して不溶化して撹拌が困難になったり、得られた重合体の熱着色が強くなったりするおそれがある。
上記製造方法(I)は、上述した工程(I-1)、(I-2)、(I-3)以外に、他の工程を有していてもよい。上記他の工程としては、例えば、熟成工程、中和工程、重合開始剤や連鎖移動剤の失活工程、希釈工程、乾燥工程、濃縮工程、精製工程等が挙げられる。これらの工程は、公知の方法により行うことができる。
上記製造方法(I)は、上述したように、使用する(メタ)アクリル酸グリシジルの含有塩素量を所定範囲量に調整する工程を有することが好ましい。
従って、(メタ)アクリル酸グリシジル中の含有塩素量が0.01~0.3質量%となるように(メタ)アクリル酸グリシジルを精製する工程(I-1)、N-置換マレイミド単量体(a)と、不飽和カルボン酸単量体(b)とを含む単量体成分を重合してベースポリマーを得る工程(I-2)、及び、上記ベースポリマーに、上記工程(I-1)で得られた精製(メタ)アクリル酸グリシジルを反応させて、側鎖に二重結合を有するN-置換マレイミド系重合体を得る工程(I-3)を有するN-置換マレイミド系重合体の製造方法もまた本発明の好ましい形態の一つである。上記工程(I-1)で得られた精製(メタ)アクリル酸グリシジルとは、上述した、含有塩素量が0.01~0.3質量%に調整された(メタ)アクリル酸グリシジルである。
1-2.製造方法(II)
<工程(II-2)>
上記製造方法(II)は、N-置換マレイミド単量体(a)と、含有塩素量が0.01~0.3質量%に調整された(メタ)アクリル酸グリシジルとを含む単量体成分を重合してベースポリマー(「ベースポリマー2」とも称する。)を得る工程(II-2)を有する。
上記N-置換マレイミド単量体(a)、及び、含有塩素量が0.01~0.3質量%に調整された(メタ)アクリル酸グリシジルとしては、上記の製造方法(I)において記載された「N-置換マレイミド単量体(a)」、「含有塩素量が0.01~0.3質量%に調整された(メタ)アクリル酸グリシシジル」と同様のものをそれぞれ挙げることができる。
上記ベースポリマー2を製造するための単量体成分は、更に、上記単量体(a)及び上記調整された(メタ)アクリル酸グリシジルと共重合可能な単量体(d)を含んでいてもよい。
上記単量体(d)としては、上記の製造方法(I)において記載した上記単量体(c)と同様の単量体を挙げることができる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
重合方法としては、特に限定されないが、上記製造方法(I)において記載の重合方法と同様の方法が好ましく挙げられる。
上記単量体(a)、上記調整された(メタ)アクリル酸グリシジル、及び上記単量体(d)の各含有量は、得ようとするN-置換マレイミド系重合体の目的、用途に応じて適宜設定することができる。
上記単量体(a)は、総単量体成分100質量%に対して、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましく、3質量%以上であることが更に好ましく、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることが更に好ましい。
上記調整された(メタ)アクリル酸グリシジルは、総単量体成分100質量%に対して、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることが更に好ましく、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、60質量%以下であることが更に好ましい。
上記単量体(d)は、総単量体成分100質量%に対して、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることが更に好ましく、80質量%以下であることが好ましく、70質量%以下であることがより好ましく、60質量%以下であることが更に好ましい。
上記単量体(a)、上記調整された(メタ)アクリル酸グリシジル、上記単量体(d)の各含有量は、2種以上の単量体を含む場合、その合計量である。
本発明の製造方法(II)は、工程(II-2)の前に、(メタ)アクリル酸グリシジルの含有塩素量が0.01~0.3質量%となるように(メタ)アクリル酸グリシジルを精製する工程(II-1)を有することが好ましい。
上記工程(II-1)としては、上述した製造方法(I)における工程(I-1)と同様の工程が好ましく挙げられる。
<工程(II-3)>
上記製造方法(II)は、更に、上記工程(II-2)で得られたベースポリマー2に、不飽和カルボン酸単量体(b)を反応させて、側鎖に二重結合を有するN-置換マレイミド系重合体を得る工程(II-3)を有する。
上記ベースポリマー2に、上記不飽和カルボン酸単量体(b)を反応させる方法としては、特に限定されず、ベースポリマー2を含む重合体溶液に、上記不飽和カルボン酸単量体(b)、及び、必要に応じて重合開始剤や連鎖移動剤等を混合して、公知の方法で反応させるとよい。
上記反応によりベースポリマー2が有するエポキシ基に、不飽和カルボン酸単量体(b)が有するカルボキシル基が反応して、上記不飽和カルボン酸単量体(b)が付加され、末端に重合性二重結合を有するN-置換マレイミド系重合体が得られる。
上記不飽和カルボン酸単量体(b)としては、上記の製造方法(I)に記載された不飽和カルボン酸単量体(b)と同様のものが挙げられる。
反応温度としては、上記反応が進行する温度であれば特に限定されないが、例えば、40~200℃が挙げられ、60~150℃であることが好ましく、80~120℃であることがより好ましい。
反応時間としては、特に限定されないが、例えば、1~48時間、好ましくは3~24時間、より好ましくは5~12時間が挙げられる。
上記工程(II-3)における上記不飽和カルボン酸単量体(b)の使用量としては、得られるN-置換マレイミド系重合体の二重結合当量が所望の範囲となるように適宜設定することが好ましいが、例えば、上記ベースポリマー2を与える単量体成分100質量部に対し、1~50質量部であることが好ましく、5~45質量部であることがより好ましく、10~40質量部であることが更に好ましい。
上記反応においては、トリエチルアミンやジメチルベンジルアミン等のアミン化合物;塩化テトラエチルアンモニウム等のアンモニウム塩;臭化テトラフェニルホスホニウム等のホスホニウム塩、ジメチルホルムアミド等のアミド化合物;等の公知の触媒を使用してもよい。上記触媒の使用量は、適宜設定することができる。
上記製造方法(II)は、上述したように、使用する(メタ)アクリル酸グリシジルの含有塩素量を所定範囲量に調整する工程を有することが好ましい。
従って、(メタ)アクリル酸グリシジル中の含有塩素量が0.01~0.3質量%となるように(メタ)アクリル酸グリシジルを精製する工程(II-1)、N-置換マレイミド単量体(a)と、上記工程(II-1)で得られた精製(メタ)アクリル酸グリシジルとを含む単量体成分を重合してベースポリマーを得る工程(II-2)、及び、上記ベースポリマーに、不飽和カルボン酸単量体(b)を反応させて、側鎖に二重結合を有するN-置換マレイミド系重合体を得る工程(II-3)を有することを特徴とするN-置換マレイミド系重合体の製造方法もまた本発明の好ましい形態の一つである。上記工程(II-1)で得られた精製(メタ)アクリル酸グリシジルとは、上述した、含有塩素量が0.01~0.3質量%に調整された(メタ)アクリル酸グリシジルである。
<工程(II-4)>
上記製造方法(II)においては、上記工程(II-3)の後、更に、上記側鎖に二重結合を有するN-置換マレイミド系重合体に、多塩基酸又は多塩基酸無水物を反応させる工程(II-4)を有することが好ましい。上記工程(II-4)を行うことにより、上記工程(II-3)においてエポキシ基とカルボキシル基との反応により生じる水酸基に、多塩基酸又は多塩基無水物を反応させることで、カルボキシル基を生じさせることができ、上記N-置換マレイミド系重合体の酸価を適切な範囲に調整することができる。
上記多塩基酸又は多塩基酸無水物としては、例えば、コハク酸、マレイン酸、フタル酸、テトラヒドロフタル酸等の多塩基酸;無水コハク酸(別名:コハク酸無水物)、無水マレイン酸、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸、無水イタコン酸等の二塩基酸無水物;トリメリット酸無水物;等が挙げられる。なかでも、コハク酸、多塩基酸無水物が好ましく、更に反応性の高さ、工業的入手の容易さから、無水コハク酸、無水マレイン酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸が好ましい。
上記多塩基酸又は多塩基無水物との反応における反応温度としては、上記反応が進行する温度であれば特に限定されないが、例えば、0~200℃が挙げられ、20~150℃であることが好ましく、30~120℃であることがより好ましい。
反応時間としては、特に限定されないが、例えば、1~12時間、好ましくは2~12時間、より好ましくは2~8時間が挙げられる。
上記多塩基酸又は多塩基無水物の使用量は特に限定されず、得られるN-置換マレイミド系重合体の酸価が所望の範囲となるように設定するとよい。
上記製造方法(II)は、上述した工程(II-1)、(II-2)、(II-3)、(II-4)以外に、他の工程を有していてもよい。上記他の工程としては、例えば、熟成工程、中和工程、重合開始剤や連鎖移動剤の失活工程、希釈工程、乾燥工程、濃縮工程、精製工程等が挙げられる。これらの工程は、公知の方法により行うことができる。
上記製造方法(I)又は(II)により得られるN-置換マレイミド系重合体は、上記重合体中の残留塩素量が、N-置換マレイミド単量体(a)と(メタ)アクリル酸グリシジルの合計使用量に対して100~2000ppmであることが好ましい。
上記合計使用量とは、重合時に使用したそれぞれの単量体の合計質量である。
硬化時の熱着色をより一層抑制することができる点で、上記重合体中の残留塩素量は、N-置換マレイミド単量体(a)と(メタ)アクリル酸グリシジルの合計使用量に対して、1800ppm以下であることがより好ましく、1500ppm以下であることが更に好ましく、1000ppm以下であることが特に好ましい。また、上記残留塩素量の下限値は、原料である(メタ)アクリル酸グリシジルの工業的製造が容易である点で、N-置換マレイミド単量体(a)と(メタ)アクリル酸グリシジルの合計使用量に対して、200ppm以上であることがより好ましく、300ppm以上であることが更に好ましい。
上記重合体中の残留塩素量は、上述した(メタ)アクリル酸グリシジル中の含有塩素量を測定する方法と同様の方法により重合体中の残留塩素量を測定して得られた値を、重合体原料として使用したN-置換マレイミド単量体(a)と(メタ)アクリル酸グリシジルの合計使用量(質量)で除することにより求められる。
本発明では、所定範囲の含有塩素量に調整された(メタ)アクリル酸グリシジルを使用するが、調整されていない(メタ)アクリル酸グリシジルも併用してもよい。この(メタ)アクリル酸グリシジルの使用量とは、上述した調整された(メタ)アクリル酸グリシジルだけでなく、調整されていない(メタ)アクリル酸グリシジルも併せて使用した場合は、それも含めた(メタ)アクリル酸グリシジルの総使用量である。
また上記製造方法(I)又は(II)により得られるN-置換マレイミド系重合体は、上記重合体中の残留エピクロロヒドリン量が0.001~5ppmであることが好ましい。残留エピクロロヒドリン量が上述の範囲であると、N-置換マレイミド系重合体の製造時や使用時の安全性が優れるとともに、硬化時の熱着色をより一層抑制することができる。
(メタ)アクリル酸グリシジルは、通常、(メタ)アクリル酸とエピクロロヒドリンとの反応によって製造される。そのため、(メタ)アクリル酸グリシジルには、除去されない塩素が不純物として残留するととともに、エピクロロヒドリンも残留する。エピクロロヒドリンは、反応性が非常に高く、人体に有害な物質であることが知られている。本発明の製造方法では、残留塩素のみならず、残留エピクロロヒドリンも減少させることができ、熱着色の抑制だけでなく、安全性にも優れるN-置換マレイミド系重合体を得ることができる。
上記残留エピクロロヒドリン量は1ppm以下であることがより好ましく、0.5ppm以下であることが更に好ましい。また、上記残留エピクロロヒドリン量の下限値は、(メタ)アクリル酸グリシジルの精製に要する設備が過大になり過ぎず工業的に有利である点で、0.01ppm以上であることがより好ましい。
上記重合体中の残留エピクロロヒドリン量は、GC-MS法により測定して求めることができ、具体的には、後述する実施例に記載の方法により求めることができる。
このように本発明のN-置換マレイミド重合体の製造方法(I)又は(II)により得られるN-置換マレイミド系重合体は、残留塩素量が所定範囲量となるので、硬化時の熱着色を格段に抑制することができる。このような、上記製造方法(I)又は(II)により得られるN-置換マレイミド系重合体も本発明の一つである。
以下に、上記製造方法(I)又は(II)で得られるN-置換マレイミド重合体の好ましい態様の一例について説明する。
2.N-置換マレイミド系重合体
本発明はまた、N-置換マレイミド単量体由来の構造単位(A)、及び、下記一般式(B1)、(B2)又は(B3)で表される構造単位(B)を有するN-置換マレイミド系重合体であって、上記構造単位(B)は、(メタ)アクリル酸グリシジルに由来する構造を含み、上記N-置換マレイミド系重合体中の残留塩素量が、重合体原料である上記構造単位(A)を与えるN-置換マレイミド単量体と上記構造単位(B)を与える(メタ)アクリル酸グリシジルの合計質量に対して100~2000ppmであることを特徴とするN-置換マレイミド系重合体である。
Figure JPOXMLDOC01-appb-C000004
(一般式(B1)中、R及びRは、同一又は異なって、水素原子又はメチル基を表す。Rは、二価の結合基を表す。aは、0又は1である。
一般式(B2)中、Rは、水素原子又はメチル基を表す。Rは、エチレン性不飽和結合含有基を表す。
一般式(B3)中、Rは、水素原子又はメチル基を表す。Rは、エチレン性不飽和結合含有基を表す。Xは、二価の炭化水素基を表す。)
本発明のN-置換マレイミド系重合体は、当該重合体中の残留塩素量が、重合体原料である上記構造単位(A)を与えるN-置換マレイミド単量体と上記構造単位(B)を与える(メタ)アクリル酸グリシジルの合計質量に対して100~2000ppmである。そのため、重合体の硬化時の熱着色を抑制することができる。
上記残留塩素量は、硬化時の熱着色をより一層抑制することができる点で、上記の合計質量に対して1800ppm以下であることが好ましく、1500ppm以下であることがより好ましく、1200ppm以下であることが更に好ましい。
上記重合体中の残留塩素量は、上記の「1.N-置換マレイミド系重合体の製造方法」に記載の重合体中の残留塩素量を求める方法と同様の方法により測定して求めることができる。
上記構造単位(A)を与えるN-置換マレイミド単量体は、当該N-置換マレイミド単量体を含む単量体成分を重合することにより上記構造単位(A)を有する重合体が得られる重合体原料である。
上記構造単位(B)を与える(メタ)アクリル酸グリシジルは、重合により直接構造単位(B)を与えるものではなく、他の単量体成分由来の官能基と反応等して、上記構造単位(B)を形成しうる重合体原料である。すなわち、後述するように、上記構造単位(B)は、(メタ)アクリル酸グリシジル由来の構造を有する。
上記N-置換マレイミド系重合体は、N-置換マレイミド単量体由来の構造単位(A)、及び、上記一般式(B1)、(B2)又は(B3)で表される構造単位(B)を有し、上記構造単位(B)は、(メタ)アクリル酸グリシジルに由来する構造を有する。
上記N-置換マレイミド単量体由来の構造単位、及び、上記一般式(B1)で表される構造単位を有するN-置換マレイミド系重合体は、上述した製造方法(I)の方法により得ることができる。
上記N-置換マレイミド単量体由来の構造単位、及び、上記一般式(B2)で表される構造単位を有するN-置換マレイミド系重合体は、上述した製造方法(II)の方法により得ることができ、好ましくは工程(II-1)~(II-3)の方法より得ることができる。
上記N-置換マレイミド単量体由来の構造単位、及び、上記一般式(B3)で表される構造単位を有するN-置換マレイミド系重合体は、上述した製造方法(II)の方法により得ることができ、好ましくは工程(II-1)~(II-4)の方法により得ることができる。
上記N-置換マレイミド系重合体は、上記構造単位(B)として、上記一般式(B1)、一般式(B2)、又は、一般式(B3)で表される構造単位を1種のみ有していてもよいし、2種以上有していてもよい。
上記N-置換マレイミド単量体としては、上記の「1.N-置換マレイミド系重合体の製造方法」において記載したN-置換マレイミド単量体(a)と同様のものが好ましく挙げられる。
また、N-置換マレイミド単量体由来の構造単位として、N-ベンジルマレイミド由来の構造単位及びN-フェニルマレイミド由来の構造単位の2種を有する形態も、本発明の好適な形態の一つである。
上記一般式(B1)中、R及びRは、同一又は異なって、水素原子又はメチル基を表す。
は二価の結合基を表す。上記二価の結合基としては、例えば、アルキレン基、アルケニレン基、シクロアルキレン基、シクロアルケニレン基、アリーレン基、ヘテロアリーレン基、-O-、-CO-、-(CO)O-、-NH-、-SO-、及びこれらの組み合わせ等が挙げられる。
上記二価の結合基は、炭素数が1~12であることが好ましく、炭素数1~8であることがより好ましく、炭素数1~6であることが好ましい。
としては、例えば、上記の「1.N-置換マレイミド系重合体の製造方法」において記載した不飽和カルボン酸単量体(b)の、重合性二重結合基とカルボキシル基又はカルボン酸無水物基とを除く残基が好ましく挙げられ、具体的には、例えば、-(CO)O-CH=CH-等が好ましく挙げられる。
上記重合性二重結合基としては、ビニル基、(メタ)アクリロイル基、アリル基、メタリル基等が挙げられる。
aは、0又は1であるが、反応性及び工業的入手の容易さの点で、0が好ましい。
上記一般式(B2)中、Rは、水素原子又はメチル基を表す。
は、エチレン性不飽和含有基を表す。上記エチレン性不飽和含有基としては、(メタ)アクリロイル基、ビニル基、アリル基、メタリル基等の重合性二重結合を含む基が挙げられ、好ましくは、上記の「1.N-置換マレイミド系重合体の製造方法」において記載した不飽和カルボン酸単量体(b)の、カルボキシル基又はカルボン酸無水物基とを除く残基が挙げられる。
としては、具体的には、例えば、-(CH-O(CO)-CH=CH(mは、1~6の整数である。)、-CH=CH、-C(CH)=CH等が挙げられるが、なかでも、-CH=CH、-C(CH)=CHであることが好ましい。
上記一般式(B3)中、Rは、水素原子又はメチル基を表す。
は、エチレン性不飽和結合含有基を表す。上記エチレン性不飽和含有基としては、上記Rのエチレン性不飽和含有基と同様の基が好ましく挙げられる。
Xは、二価の炭化水素基を表す。上記二価の炭化水素基としては、二価の鎖状又は環状の脂肪族炭化水素基、二価の芳香族炭化水素基が挙げられる。
上記二価の鎖状の脂肪族炭化水素基としては、例えば、メチレン基、エチレン基、トリメチレン基、プロピレン基、エチリデン基、プロピリデン基、イソプロピリデン基、ビニレン基、プロペニレン基、ビニリデン基等が挙げられ、好ましくは炭素数1~12、より好ましくは炭素数1~6の二価の鎖状の脂肪族炭化水素基が挙げられる。
上記二価の環状の脂肪族炭化水素基としては、例えば、1,2-シクロペンチレン基、1,2-シクロへキシレン基、1,4-シクロへキシレン基、1,2-シクロへキセニレン基、1,4-シクロへキセニレン基、シクロペンチリデン基、シクロヘキシリデン基等が挙げられ、好ましくは炭素数4~12、より好ましくは炭素数4~8の二価の環状の脂肪族炭化水素基が挙げられる。
上記二価の芳香族炭化水素基としては、例えば、1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、ベンジリデン基、シンナミリデン基等が挙げられ、好ましくは炭素数6~18、より好ましくは炭素数6~12の二価の芳香族炭化水素基が挙げられる。
上記炭化水素基は、置換基を有していてもよい。上記置換基としては、例えば、アルキル基、アリール基、水酸基、ハロゲン原子、カルボキシル基、アルコキシ基、アリールオキシ基等が挙げられる。
なかでもXは、上記の「1.N-置換マレイミド系重合体の製造方法」において記載した多塩基酸及び多塩基酸無水物の、カルボキシル基又はカルボン酸無水物基を除く残基であることが好ましい。Xとしては、具体的には、例えば、-(CH-、-CH=CH-、-CH-C(=CH)H-、フェニレン基、シクロヘキシレン基、シクロヘキセニレン基等が挙げられる。
上記一般式(B1)、(B2)及び(B3)において、(メタ)アクリル鎖グリシジルに由来する構造としては、それぞれ下記が挙げられる。
Figure JPOXMLDOC01-appb-C000005
上記N-置換マレイミド系重合体は、上記構造単位(A)及び(B)以外の他の構造単位(C)を有していてもよい。上記他の構造単位(C)としては、上記の「1.N-置換マレイミド系重合体の製造方法」において記載した上記単量体(c)由来の構造単位等が挙げられる。
また、上記N-置換マレイミド系重合体は、上記一般式(B1)、(B2)又は(B3)で表される構造単位であって、(メタ)アクリル酸グリシジルに由来しない構造単位を更に有していてもよい。この構造単位は、上記他の構造単位(C)に含まれる。
上記構造単位(A)、(B)及び(C)の各含有割合は、N-置換マレイミド系重合体の目的、用途に応じて適宜設定することができる。例えば、上記構造単位(A)の含有割合は、全構造単位100質量%に対して、0.5~50質量%であることが好ましく、1~30質量%であることがより好ましく、3~20質量%であることが更に好ましい。
上記構造単位(B)の含有割合は、5~60質量%であることが好ましく、10~50質量%であることがより好ましく、20~40質量%であることが更に好ましい。
上記構造単位(C)の含有割合は、10~90質量%であることが好ましく、20~80質量%であることがより好ましく、25~70質量%であることが更に好ましい。
上記N-置換マレイミド系重合体の重量平均分子量は、上記重合体の目的、用途に応じて適宜設定することができるが、2000~1000000であることが好ましく、3000以上であることがより好ましく、5000以上であることが更に好ましい。また、50000以下であることがより好ましく、30000以下であることが更に好ましい。
上記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)法により求めることができ、具体的には、後述の実施例に記載の方法で求めることができる。
上記N-置換マレイミド系重合体の酸価は、20~200mgKOH/gであることが好ましく、30mgKOH/g以上であることがより好ましく、40mgKOH/g以上であることが更に好ましく、180mgKOH/g以下であることがより好ましく、160mgKOH/g以下であることが更に好ましい。
上記酸価は、KOH溶液を用いた中和滴定法により求めることができる。
上記N-置換マレイミド系重合体は、側鎖に二重結合を有する。上記N-置換マレイミド系重合体の二重結合当量は、300~30000g/当量であることが好ましい。重合体の保存安定性に優れる点で、上記二重結合当量は、400g/当量以上であることがより好ましく、420g/当量以上であることが更に好ましく、また、光や熱に対する反応性の点で、3000g/当量以下であることがより好ましく、2000g/当量以下であることが更に好ましい。
上記二重結合当量とは、上記N-置換マレイミド系重合体の二重結合1molあたりの重合体溶液の固形分の質量である。上記二重結合当量は、重合体溶液の樹脂固形分の質量(g)を重合体の二重結合量(mol)で除することにより、求めることができる。また、滴定及び元素分析、NMR、IR等の各種分析や示差走査熱量計法を用いて測定することもできる。例えば、JIS K 0070:1992に記載のよう素価の試験方法に準拠して、重合体1gあたりに含まれるエチレン性二重結合の数を測定することにより算出してもよい。
3.硬化性樹脂組成物
上述したN-置換マレイミド系重合体は、更に重合性化合物と組み合わせることにより、硬化性樹脂組成物とすることができる。上記硬化性樹脂組成物は、上記N-置換マレイミド系重合体を含むので、熱による着色が抑制された硬化物を与えることができる。また、更に重合性化合物を含むことにより、樹脂組成物の硬化性、硬化物の機械的強度、耐溶剤性等の各種物性を向上させることができる。このような上記N-置換マレイミド系重合体、及び、重合性化合物を含む硬化性樹脂組成物もまた、本発明の一つである。本発明の硬化性樹脂組成物は、感光性樹脂組成物としても好適に用いることができる。
本発明の硬化性樹脂組成物における上記N-置換マレイミド系重合体の含有量は、特に限定されず、用途や他成分の配合等に応じて適宜設定することができるが、例えば、硬化性樹脂組成物の固形分総量100質量%に対して、5~90質量%であることが好ましく、10~80質量%であることがより好ましく、15~70質量%であることが更に好ましい。
なお、「固形分総量」とは、硬化物を形成する成分(硬化物の形成時に揮発する溶媒等を除く成分)の総量を意味する。
<重合性化合物>
上記重合性化合物としては、フリーラジカル、電磁波(例えば赤外線、紫外線、X線等)、電子線等の活性エネルギー線の照射等により重合し得る、重合性不飽和結合(重合性不飽和基とも称す)を有する低分子化合物が挙げられ、例えば、重合性不飽和基を分子中に1つ有する単官能の化合物、又は、2個以上有する多官能の化合物が挙げられる。
上記単官能の化合物としては、例えば、N置換マレイミド系単量体;(メタ)アクリル酸エステル類;(メタ)アクリルアミド類;不飽和モノカルボン酸類;不飽和多価カルボン酸類;不飽和基とカルボキシル基の間が鎖延長されている不飽和モノカルボン酸類;不飽和酸無水物類;芳香族ビニル類;共役ジエン類;ビニルエステル類;ビニルエーテル類;N-ビニル化合物類;不飽和イソシアネート類;等が挙げられる。これらは、上記N-置換マレイミド系重合体の単量体成分として挙げた化合物等と同様のものが挙げられる。また、活性メチレン基や活性メチン基を有する単量体等を用いることもできる。
上記多官能の化合物としては、例えば、下記の化合物等が挙げられる。
エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、ビスフェノールAアルキレンオキシドジ(メタ)アクリレート、ビスフェノールFアルキレンオキシドジ(メタ)アクリレート等の2官能(メタ)アクリレート化合物;
トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加ジトリメチロールプロパンテトラ(メタ)アクリレート、エチレンオキシド付加ペンタエリスリトールテトラ(メタ)アクリレート、エチレンオキシド付加ジペンタエリスリトールヘキサ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加ジトリメチロールプロパンテトラ(メタ)アクリレート、プロピレンオキシド付加ペンタエリスリトールテトラ(メタ)アクリレート、プロピレンオキシド付加ジペンタエリスリトールヘキサ(メタ)アクリレート、ε-カプロラクトン付加トリメチロールプロパントリ(メタ)アクリレート、ε-カプロラクトン付加ジトリメチロールプロパンテトラ(メタ)アクリレート、ε-カプロラクトン付加ペンタエリスリトールテトラ(メタ)アクリレート、ε-カプロラクトン付加ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタアクリレートコハク酸変性物、ペンタエリスリトールトリアクリレートコハク酸変性物、ジペンタエリスリトールペンタアクリレートフタル酸変性物、ペンタエリスリトールトリアクリレートフタル酸変性物、下記式:
Figure JPOXMLDOC01-appb-C000006
で表されるジペンタエリスリトールヘキサアクリレートの変性物等の3官能以上の多官能(メタ)アクリレート化合物;
エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、ポリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ブチレングリコールジビニルエーテル、ヘキサンジオールジビニルエーテル、ビスフェノールAアルキレンオキシドジビニルエーテル、ビスフェノールFアルキレンオキシドジビニルエーテル、トリメチロールプロパントリビニルエーテル、ジトリメチロールプロパンテトラビニルエーテル、グリセリントリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ジペンタエリスリトールペンタビニルエーテル、ジペンタエリスリトールヘキサビニルエーテル、エチレンオキシド付加トリメチロールプロパントリビニルエーテル、エチレンオキシド付加ジトリメチロールプロパンテトラビニルエーテル、エチレンオキシド付加ペンタエリスリトールテトラビニルエーテル、エチレンオキシド付加ジペンタエリスリトールヘキサビニルエーテル等の多官能ビニルエーテル類;
(メタ)アクリル酸2-ビニロキシエチル、(メタ)アクリル酸3-ビニロキシプロピル、(メタ)アクリル酸1-メチル-2-ビニロキシエチル、(メタ)アクリル酸2-ビニロキシプロピル、(メタ)アクリル酸4-ビニロキシブチル、(メタ)アクリル酸4-ビニロキシシクロヘキシル、(メタ)アクリル酸5-ビニロキシペンチル、(メタ)アクリル酸6-ビニロキシヘキシル、(メタ)アクリル酸4-ビニロキシメチルシクロヘキシルメチル、(メタ)アクリル酸p-ビニロキシメチルフェニルメチル、(メタ)アクリル酸2-(ビニロキシエトキシ)エチル、(メタ)アクリル酸2-(ビニロキシエトキシエトキシエトキシ)エチル等のビニルエーテル基含有(メタ)アクリル酸エステル類;
エチレングリコールジアリルエーテル、ジエチレングリコールジアリルエーテル、ポリエチレングリコールジアリルエーテル、プロピレングリコールジアリルエーテル、ブチレングリコールジアリルエーテル、ヘキサンジオールジアリルエーテル、ビスフェノールAアルキレンオキシドジアリルエーテル、ビスフェノールFアルキレンオキシドジアリルエーテル、トリメチロールプロパントリアリルエーテル、ジトリメチロールプロパンテトラアリルエーテル、グリセリントリアリルエーテル、ペンタエリスリトールテトラアリルエーテル、ジペンタエリスリトールペンタアリルエーテル、ジペンタエリスリトールヘキサアリルエーテル、エチレンオキシド付加トリメチロールプロパントリアリルエーテル、エチレンオキシド付加ジトリメチロールプロパンテトラアリルエーテル、エチレンオキシド付加ペンタエリスリトールテトラアリルエーテル、エチレンオキシド付加ジペンタエリスリトールヘキサアリルエーテル等の多官能アリルエーテル類;
(メタ)アクリル酸アリル等のアリル基含有(メタ)アクリル酸エステル類;トリ(アクリロイルオキシエチル)イソシアヌレート、トリ(メタクリロイルオキシエチル)イソシアヌレート、アルキレンオキシド付加トリ(アクリロイルオキシエチル)イソシアヌレート、アルキレンオキシド付加トリ(メタクリロイルオキシエチル)イソシアヌレート等の多官能(メタ)アクリロイル基含有イソシアヌレート類;トリアリルイソシアヌレート等の多官能アリル基含有イソシアヌレート類;トリレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート等の多官能イソシアネートと(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル等の水酸基含有(メタ)アクリル酸エステル類との反応で得られる多官能ウレタン(メタ)アクリレート類;ジビニルベンゼン等の多官能芳香族ビニル類;等。
上記重合性化合物のなかでも、硬化性樹脂組成物の硬化性をより高める観点から、多官能の重合性化合物を用いることが好ましい。上記多官能の重合性化合物の官能数としては、3以上が好ましく、4以上がより好ましい。また、上記官能数は10以下が好ましく、8以下がより好ましい。
また上記重合性化合物の分子量としては特に限定されないが、取り扱いの観点から、例えば、2000以下が好ましい。
上記多官能の重合性化合物としては、なかでも、反応性、経済性、入手性等の観点から、多官能(メタ)アクリレート化合物、多官能ウレタン(メタ)アクリレート化合物、(メタ)アクリロイル基含有イソシアヌレート化合物等の、(メタ)アクリロイル基を有する化合物が好ましく、多官能(メタ)アクリレート化合物がより好ましい。(メタ)アクリロイル基を有する化合物を含むことにより、硬化性樹脂組成物が感光性及び硬化性により優れたものとなり、より一層高硬度で高透明性の硬化物を得ることができる。上記多官能の重合性化合物としては、3官能以上の多官能(メタ)アクリレート化合物を用いることが更に好ましい。
上記重合性化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
本発明の硬化性樹脂組成物における上記重合性化合物の含有量は、特に限定されず、適宜設定すればよいが、例えば、本発明の硬化性樹脂組成物の固形分総量100質量%に対し、5~95質量%であることが好ましく、10質量%以上であることがより好ましく、15質量%以上であることが更に好ましく、また、85質量%以下であることがより好ましく、80質量%以下であることが更に好ましい。
<光重合開始剤>
本発明の硬化性樹脂組成物は、更に光重合開始剤を含んでいてもよい。光重合開始剤を含むことにより、硬化性樹脂組成物の硬化性を向上させ、得られる硬化物の性能を向上させることができる。
本発明において使用する光重合開始剤としては、好ましくはラジカル重合性の光重合開始剤が挙げられる。ラジカル重合性の光重合開始剤とは、電磁波や電子線等の活性エネルギー線の照射により重合開始ラジカルを発生させるものである。
上記光重合開始剤としては、特に限定されず、例えば、アルキルフェノン系化合物、ベンゾフェノン系化合物、ベンゾイン系化合物、チオキサントン系化合物、ハロメチル化トリアジン系化合物、ハロメチル化オキサジアゾール系化合物、ビイミダゾール系化合物、オキシムエステル系化合物、オキシムエーテル系化合物、チタノセン系化合物、安息香酸エステル系化合物、アクリジン系化合物等の公知の光重合開始剤を使用することができる。
なかでも、上記光重合開始剤としては、アルキルフェノン系化合物、オキシムエステル系化合物、オキシムエーテル系化合物を用いることが好ましく、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン(「IRGACURE907」、BASF社製)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(「IRGACURE369」、BASF社製)等のアルキルフェノン系化合物や、1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル]-,2-(O-ベンゾイルオキシム)(「OXE01」、BASF社製)、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム) (「OXE02」、BASF社製)、1,2-オクタンジオン、1-[4-(フェニルチオ)-,2-,(O-ベンゾイルオキシム)]、エタノン(「OXE03」、BASF社製)、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)(「OXE04」、BASF社製))等のオキシムエステル系化合物を用いることがより好ましい。
上記光重合開始剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
本発明の硬化性樹脂組成物における上記光重合開始剤の含有量は、本発明の効果が発揮される範囲であれば、特に限定されず、適宜設定すればよいが、例えば、本発明の硬化性樹脂組成物の固形分総量100質量%に対し、0.1~30質量%であることが好ましく、0.5~25質量%であることがより好ましく、1~20質量%であることが更に好ましい。
また、必要に応じて、光増感剤や光ラジカル重合促進剤等を1種又は2種以上併用してもよい。上記光重合開始剤とともに、光増感剤及び/又は光ラジカル重合促進剤を併用することにより、感度や硬化性がより向上される。
上記光増感剤や光ラジカル重合促進剤としては、例えば、キサンテン色素、クマリン色素、3-ケトクマリン系化合物、ピロメテン色素等の色素系化合物;4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸2-エチルヘキシル等のジアルキルアミノベンゼン系化合物;2-メルカプトベンゾチアゾール、2-メルカプトベンゾオキサゾール、2-メルカプトベンゾイミダゾール等のメルカプタン系水素供与体等が挙げられる。これらの使用量は、公知の方法から適宜設定することができる。
<その他の成分>
本発明の硬化性樹脂組成物は、必要に応じて更に他の成分を含んでいてもよい。上記他の成分としては、例えば、溶剤;色材;分散剤;酸化防止剤;耐熱向上剤;レベリング剤;現像助剤;量子ドット粒子;ジルコニアやシリカ微粒子等の無機微粒子;シラン系、アルミニウム系、チタン系等のカップリング剤;フィラー、エポキシ樹脂、フェノール樹脂、ポリビニルフェノール等の熱硬化性樹脂;多官能チオール化合物等の硬化助剤;可塑剤;重合禁止剤;紫外線吸収剤;艶消し剤;消泡剤;帯電防止剤;スリップ剤;表面改質剤;揺変化剤;揺変助剤;キノンジアジド化合物;多価フェノール化合物;酸発生剤;等が挙げられる。これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの成分は、公知のものから適宜選択して使用するとよく、その使用量も適宜設定することができる。
<硬化性樹脂組成物の調製方法>
本発明の硬化性樹脂組成物の調製方法としては、特に限定されず公知の方法を用いればよく、例えば、上述した各含有成分を、各種の混合機や分散機を用いて混合分散する方法が挙げられる。混合分散方法は特に限定されず、公知の方法により行えばよい。また、通常行われる他の工程を更に含んでいてもよい。なお、上記硬化性樹脂組成物が色材を含む場合は、色材の分散溶液を予め調製した後、この分散溶液と、上記含有成分とを混合して調製するとよい。上記色材の分散溶液は、色材、分散剤及び溶媒を混合し、ビーズミル、ロールミル、ボールミル、ジェットミル、ホモジナイザー、ニーダー、ブレンダー等の公知の分散機を用いて分散処理することにより得ることができる。得られた硬化性樹脂組成物は、必要に応じて、フィルター等によって濾過処理を行って、組成物中の微細なゴミを除去してもよい。
本発明の硬化性樹脂組成物は、硬化性樹脂組成物の組成や目的、用途に応じて、例えば、基材上に塗布したり、又は、任意の形状に成形し、その塗布物や成形物を加熱及び/又は活性エネルギー線照射することにより硬化させて硬化物を得ることができる。
上記塗布や成形方法は、公知の方法により行うことができる。
また、上記加熱や活性エネルギー線照射は、硬化性樹脂組成物の組成等に応じて、公知の方法から適宜選択して行うことができる。
上記活性エネルギー線としては、紫外線、電子線等が挙げられるが、なかでも紫外線が好ましい。
上記加熱方法としては、特に限定されないが、180~280℃で5~120分間、好ましくは210~250℃で10~60分間が挙げられる。
4.用途
本発明のN-置換マレイミド系重合体、及びこれを含む硬化性樹脂組成物は、熱着色が抑制された硬化物を与えることができるものである。そのため、本発明のN-置換マレイミド系重合体及び硬化性樹脂組成物は、熱着色の抑制が望まれる用途に好適に用いることができる。
上記用途としては、具体的には、例えば、液晶・有機EL・量子ドット・マイクロLED液晶表示装置や固体撮像素子、タッチパネル式表示装置等に用いられるカラーフィルター、ブラックマトリクス、フォトスペーサー、ブラックカラムスペーサー、インキ、印刷版、プリント配線板、半導体素子、フォトレジスト、絶縁膜等の光学部材や電機・電子部材;自動車部品;塗料等の各種用途が挙げられる。
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「部」は「質量部」を、「%」は「質量%」を意味するものとする。また、各種物性についての測定方法は下記のとおりである。
<残留塩素量>
得られたN-置換マレイミド系重合体溶液をTHFにて100倍希釈して測定用試料を調製し、下記の条件で測定することにより、N-置換マレイミド系重合体中の残留塩素量を求めた。
装置:Agilent Technologies社製、ICP-MS Agilent 7700x
質量スキャンスピード:5000amu/s
また、N置換マレイミド及びメタクリル酸グリシジルの合計量に対する残留塩素量については、上記で測定して得られた残留塩素量の値を、N-置換マレイミド系重合体溶液の総量に対する合成に使用したN-置換マレイミドとメタクリル酸グリシジルの合計質量比率の値で除することにより求めた。
<重量平均分子量>
N-置換マレイミド系重合体の重量平均分子量について、ゲル浸透クロマトグラフィー(GPC)法により下記の条件で測定して求めた。
装置:東ソー製 HLC-8320GPC
検出器:RI
カラム:TSKgel SuperHZM-M
カラム温度:30℃
流速:0.6ml/min
検量線:Polystyrene Standards
溶離液:THF
<ポリマー濃度(質量%)>
重合体溶液をアルミカップに約1gはかり取り、アセトン約3gを加えて溶解させた後、常温で自然乾燥させた。そして、熱風乾燥機(エスペック社製、商品名:PHH-101)を用い、真空下160℃で1.5時間乾燥した後、デシケータ内で放冷し、質量を測定した。その質量減少量から、重合体溶液の固形分(質量%)を計算した。
<酸価>
重合体溶液を1.5g精秤し、アセトン90gと水10gの混合溶媒に溶解させ、0.1NのKOH水溶液で滴定した。滴定は、自動滴定装置(商品名:COM-555、平沼産業社製)を用いて行い、ポリマー濃度から、重合体1g当たりの酸価を求めた(mgKOH/g)。
<二重結合当量>
JIS K 0070:1992に記載のよう素価の試験方法に準拠して、重合体1gあたりに含まれるエチレン性二重結合の数を測定することにより算出した。
<残留エピクロロヒドリン量>
N-置換マレイミド系重合体溶液中に含まれるエピクロロヒドリン量について、GC-MS法により下記の条件で測定して求めた。
装置:GC-MS:サーモクエスト社製 PolarisQ
質量範囲:M/e 20-200 EI法
恒温槽:40℃(0min)→10℃/min→200℃(0min)
流量:He 1.0ml/min
試料調整:重合体溶液をメタノールで5倍希釈
<耐熱性>
(樹脂組成物溶液の調製)
N-置換マレイミド系重合体溶液10部、ラジカル重合性化合物としてジペンタエリスリトールヘキサアクリレート(DPHA)10部、光重合開始剤としてイルガキュア907(BASF社製)1部、及び、PGMEA30部を混合して、樹脂組成物溶液を得た。
(b値の測定)
得られた樹脂組成物溶液を、スピンコーター(ミカサ株式会社製、1H-D7)を用いて、塗布量が固形分換算で0.4~1.2mg/cmとなるように、5cm角ガラス基板(ソーダライムガラスAS-2K、東新理興社製)上に均一に塗布した。この際、各樹脂組成物について、スピンコーターの回転数を変化させて塗布量(固形分換算)を変え、塗布量の異なる2枚の塗布板を作製した。2枚のうち1枚の塗布量が必ず0.6mg/cmより大きい値となるように、他の1枚の塗布量が必ず0.6mg/cmより小さい値となるようにした。
これらの塗布板を90℃で3分間乾燥させることにより、ガラス基板上に塗膜が形成された積層体を得た。その後、100mJ/cmで紫外線露光し、ガラス基板の端部に付着している樹脂を除去した後、得られた積層体を、パーフェクトオーブン恒温器(エスペック社製)を用いて230℃で30分間加熱処理を行い、室温まで冷却した。冷却後、積層体の塗膜表面を、測色色差計ZE6000(日本電色工業社製)を用いて測定し、加熱試験後のb値を得た。各塗膜につき上述のようにして用意した2枚の塗膜の測定値から塗布量(x)とb値(y)の近似直線(検量線)を求め、塗布量が0.6mg/cmの場合のb値を各塗膜の耐熱性の評価結果として採用した。
メタクリル酸グリシジルの精製
(調製例1)
市販のメタクリル酸グリシジル(日本油脂社製)を、デカンターにて水洗後、油分を分液ロートにより分離し、シリカゲルにて水分が500ppm以下になるまで乾燥脱水を行った。次いで、充填物を備えた理論段数10段精留塔を有するガラス製減圧蒸留装置を用いて、800Paの減圧下64~66℃で精密蒸留を行い、重合禁止剤としてメトキノンを200ppm添加し、精製メタクリル酸グリシジルAを得た。
得られた精製メタクリル酸グリシジルA(精製品A)中の含有塩素量を測定したところ、0.2質量%であった。
また、精製前のメタクリル酸グリシジル(市販品)中の含有塩素量を測定したところ、0.5質量%であった。
なお、メタクリル酸グリシジル中の含有塩素量は、上述したN-置換マレイミド系重合体中の残留塩素量と同様の方法にて測定した。
(調製例2)
調製例1で得られた精製メタクリル酸グリシジルAを、再度デカンターにて水洗後、油分を分液ロートにより分離し、シリカゲルにより脱水乾燥の後、調製例1と同様の方法で精密蒸留を行い、メトキノン200ppmを加え、精製メタクリル酸グリシジルBを得た。
得られた精製メタクリル酸グリシジルB(精製品B)中の含有塩素量を測定したところ、0.1質量%であった。
(実施例1)
2Lセパラブルフラスコに、プロピレングリコールモノメチルエーテルアセテート(PGMEA)347.9g、プロピレングリコール(PGM)156.8gを仕込み、窒素置換し、90℃に昇温した。
他方、滴下槽にN-ベンジルマレイミド(BzMI)67.0g、メタクリル酸シクロヘキシル(CHMA)163.48g、メタクリル酸メチル(MMA)3.35g、メタクリル酸(MAA)101.17g、PGMEA70.3g、PGM20.2g、重合開始剤(パーブチル(登録商標)O、日油株式会社製)6.7g、連鎖移動剤(n-ドデシルメルカプタン)6.7gを仕込み、混合撹拌してBzMIを溶解させた。
滴下槽から反応槽に、90℃で3時間連続的に滴下したのち、更に30分、90℃を保持した。その後、115℃に昇温し、1.5時間反応を行った。反応後、室温まで冷却した後、ベースポリマー溶液を得た。
得られたベースポリマー溶液に、調製例1で得た精製メタクリル酸グリシジルA(精製品A)55.32g、トリエチルアミン1.2g、重合禁止剤(アンテージ(登録商標)W400、川口化学工業株式会社製)0.6gを添加し、酸素濃度7%に調整した酸素/窒素MIXガスを20ml/minでバブリングしながら115℃に昇温し、8時間反応を行った。その後、室温まで冷却し、N-置換マレイミド系重合体溶液1(1000.72g)を得た。
重合体溶液1の全液量1000.72gに対し、BzMIとメタクリル酸グリシジル(GMA)の合計使用量は122.32gであるから、全液量に対するBzMIとメタクリル酸グリシジルの合計使用量の比率は12.22%である。
得られたN-置換マレイミド系重合体溶液1について、重合体の重量平均分子量、ポリマー濃度、酸価、二重結合当量、残留塩素量、及びエピクロロヒドリン量を上記の方法で測定した。残留塩素量は、重合体溶液に対して100ppmであった。よって、BzMIとGMAの合計使用量に対する残留塩素量は、100/12.22%=820ppmと算出される。また、上記の方法で耐熱性の評価を行った。結果を表1に示す。
(実施例2)
実施例1において、N-ベンジルマレイミドの代わりに、N-シクロヘキシルマレイミドを使用した以外は、実施例1と同様の操作を行い、N-置換マレイミド系重合体溶液2を得た。
得られたN-置換マレイミド系重合体溶液2について、重合体の重量平均分子量、ポリマー濃度、酸価、二重結合当量、残留塩素量、及びエピクロロヒドリン量を上記の方法で測定した。また、上記の方法で耐熱性の評価を行った。結果を表1に示す。
(実施例3)
実施例1において、精製メタクリル酸グリシジルA(精製品A)の代わりに、調製例2で得られた精製メタクリル酸グリシジルB(精製品B)を使用した以外は実施例1と同様の操作を行い、N-置換マレイミド含有樹脂溶液3を得た。
得られたN-置換マレイミド系重合体溶液3について、重合体の重量平均分子量、ポリマー濃度、酸価、二重結合当量、残留塩素量、及びエピクロロヒドリン量を上記の方法で測定した。また、上記の方法で耐熱性の評価を行った。結果を表1に示す。
(実施例4)
2Lセパラブルフラスコに、プロピレングリコールモノメチルエーテルアセテート(PGMEA)312.8g、プロピレングリコール(PGM)83.2gを仕込み、窒素置換し、90℃に昇温した。
他方、滴下槽にN-ベンジルマレイミド(BzMI)36.0g、メタクリル酸ベンジル(BzMA)95.04g、アクリル酸(AA)108.96g、PGMEA115.2g、PGM28.8g、重合開始剤(パーブチル(登録商標)O、日油製)4.8g、連鎖移動剤(n-ドデシルメルカプタン)0.72gを仕込み、混合撹拌してBzMIを溶解させた。
滴下槽から反応槽に、90℃で3時間連続的に滴下したのち、更に30分間、90℃を保持した。その後、115℃に昇温し、1.5時間反応を行った。
一旦室温に冷却した後、調製例2で得られた精製メタクリル酸グリシジルB(精製品B)165.2g、ジメチルベンジルアミン1.2g、重合禁止剤(アンテージ(登録商標)W400、川口化学工業株式会社製)0.6gを添加し、酸素濃度7%に調整した酸素/窒素MIXガスを20ml/minでバブリングしながら110℃に昇温し、12時間反応を行った。
その後室温まで冷却し、N-置換マレイミド系重合体溶液4を得た。
得られたN-置換マレイミド系重合体溶液4について、重合体の重量平均分子量、ポリマー濃度、酸価、二重結合当量、残留塩素量、及びエピクロロヒドリン量を上記の方法で測定した。また、上記の方法で耐熱性の評価を行った。結果を表1に示す。
(実施例5)
2Lセパラブルフラスコに、プロピレングリコールモノメチルエーテルアセテート(PGMEA)522.0gを仕込み、窒素置換し、90℃に昇温した。
他方、滴下槽にN-ベンジルマレイミド(BzMI)43.6g、メタクリル酸ベンジル(BzMA)66.9g、調製例2で得られた精製メタクリル酸グリシジル(精製品B)123.8g、PGMEA100.0g、重合開始剤(t-ブチルパーオキシ-2-エチルヘキサノエート)4.8g、連鎖移動剤(n-ドデシルメルカプタン)2.72gを仕込み、混合撹拌してBzMIを溶解させた。
滴下槽から反応槽に、90℃で3時間連続的に滴下したのち、更に30分間、90℃を保持した。その後、115℃に昇温し、1.5時間反応を行った。
一旦室温に冷却した後、アクリル酸(AA)62.8g、ジメチルベンジルアミン1.2g、重合禁止剤(アンテージ(登録商標)W400、川口化学工業株式会社製)0.6gを添加し、酸素濃度7%に調整した酸素/窒素MIXガスを20ml/minでバブリングしながら110℃に昇温し、12時間反応を行った。
その後室温まで冷却し、テトラヒドロフタル酸無水物(THPA)81.7gを添加し、100℃で3時間反応させた後、室温まで冷却し、N-置換マレイミド系重合体溶液5を得た。
得られたN-置換マレイミド系重合体溶液5について、重合体の重量平均分子量、ポリマー濃度、酸価、二重結合当量、残留塩素量、及びエピクロロヒドリン量を上記の方法で測定した。また、上記の方法で耐熱性の評価を行った。結果を表1に示す。
(実施例6)
N-ベンジルマレイミド(BzMI)を6.7g、メタクリル酸シクロヘキシル(CHMA)を223.78gに変えた以外は、実施例1と同様の操作を行い、N-置換マレイミド系重合体溶液6を得た。
得られたN-置換マレイミド系重合体溶液6について、重合体の重量平均分子量、ポリマー濃度、酸価、二重結合当量、残留塩素量、及びエピクロロヒドリン量を上記の方法で測定した。また、上記の方法で耐熱性の評価を行った。結果を表1に示す。
(実施例7)
N-ベンジルマレイミド(BzMI)を6.7g、フェニルマレイミド(PMI)を60.3gに変えた以外は、実施例3と同様の操作を行い、N-置換マレイミド系重合体溶液7を得た。
得られたN-置換マレイミド系重合体溶液7について、重合体の重量平均分子量、ポリマー濃度、酸価、二重結合当量、残留塩素量、及びエピクロロヒドリン量を上記の方法で測定した。また、上記の方法で耐熱性の評価を行った。結果を表1に示す。
(比較例1)
実施例1において、精製メタクリル酸グリシジルAの代わりに、精製を行っていないメタクリル酸グリシジル(市販品)を使用した以外は、実施例1と同様の操作を行い、N-置換マレイミド系重合体溶液8を得た。
得られたN-置換マレイミド系重合体溶液8について、重合体の重量平均分子量、酸価、二重結合当量、ポリマー濃度、残留塩素量、及びエピクロロヒドリン量を上記の方法で測定した。また、上記の方法で耐熱性の評価を行った。結果を表1に示す。
(比較例2)
実施例4において、精製メタクリル酸グリシジルBの代わりに、精製を行っていないメタクリル酸グリシジル(市販品)を使用した以外は、実施例4と同様の操作を行い、N-置換マレイミド系重合体溶液9を得た。
得られたN-置換マレイミド系重合体溶液9について、重合体の重量平均分子量、酸価、二重結合当量、ポリマー濃度、残留塩素量、及びエピクロロヒドリン量を上記の方法で測定した。また、上記の方法で耐熱性の評価を行った。結果を表1に示す。
(比較例3)
実施例7において、精製メタクリル酸グリシジルBの代わりに、精製を行っていないメタクリル酸グリシジル(市販品)を使用した以外は、実施例7と同様の操作を行い、N-置換マレイミド系重合体溶液10を得た。
得られたN-置換マレイミド系重合体溶液10について、重合体の重量平均分子量、酸価、二重結合当量、ポリマー濃度、残留塩素量、及びエピクロロヒドリン量を上記の方法で測定した。また、上記の方法で耐熱性の評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000007
なお、表1中の記載は、下記を表す。
BzMI:N-ベンジルマレイミド
CHMI:N-シクロヘキシルマレイミド
PMI:フェニルマレイミド
CHMA:メタクリル酸シクロヘキシル
MMA:メタクリル酸メチル
BzMA:メタクリル酸ベンジル
MAA:メタクリル酸
AA:アクリル酸
GMA:メタクリル酸グリシジル
THPA:テトラヒドロフタル酸無水物
精製品A:精製メタクリル酸グリシジルA
精製品B:精製メタクリル酸グリシジルB
市販品:精製を行っていないメタクリル酸グリシジル
表1より、含有塩素量が0.01~0.3質量%となるよう調整された(メタ)アクリル酸グリシジルを使用して得られたN-置換マレイミド系重合体は、含有塩素量が0.3質量%超の(メタ)アクリル酸グリシジルを使用して得られたN-置換マレイミド系重合体と比較して、耐熱性に優れ、硬化時の熱着色が格段に抑制されることがわかった。
 

Claims (10)

  1. N-置換マレイミド単量体(a)と、不飽和カルボン酸単量体(b)とを含む単量体成分を重合してベースポリマーを得る工程(I-2)、及び、
    該ベースポリマーに、含有塩素量が0.01~0.3質量%に調整された(メタ)アクリル酸グリシジルを反応させて、側鎖に二重結合を有するN-置換マレイミド系重合体を得る工程(I-3)を有する
    ことを特徴とするN-置換マレイミド系重合体の製造方法。
  2. 前記工程(I-2)の前に、(メタ)アクリル酸グリシジル中の含有塩素量が0.01~0.3質量%となるように(メタ)アクリル酸グリシジルを精製する工程(I-1)を更に含むことを特徴とする請求項1に記載のN-置換マレイミド系重合体の製造方法である。
  3. N-置換マレイミド単量体(a)と、含有塩素量が0.01~0.3質量%に調整された(メタ)アクリル酸グリシジルとを含む単量体成分を重合してベースポリマーを得る工程(II-2)、及び、
    該ベースポリマーに、不飽和カルボン酸単量体(b)を反応させて、側鎖に二重結合を有するN-置換マレイミド系重合体を得る工程(II-3)を有する
    ことを特徴とするN-置換マレイミド系重合体の製造方法。
  4. 前記工程(II-2)の前に、(メタ)アクリル酸グリシジル中の含有塩素量が0.01~0.3質量%となるように(メタ)アクリル酸グリシジルを精製する工程(II-1)を更に含むことを特徴とする請求項3に記載のN-置換マレイミド系重合体の製造方法である。
  5. 前記工程(II-3)の後、更に、前記側鎖に二重結合を有するN-置換マレイミド系重合体に、多塩基酸又は多塩基酸無水物を反応させる工程(II-4)を有することを特徴とする請求項3又は4に記載のN-置換マレイミド系重合体の製造方法。
  6. 前記N-置換マレイミド系重合体中の残留塩素量が、N-置換マレイミド単量体(a)と(メタ)アクリル酸グリシジルの合計使用量に対して100~2000ppmであることを特徴とする請求項1~5のいずれかに記載のN-置換マレイミド系重合体の製造方法。
  7. N-置換マレイミド単量体由来の構造単位(A)、及び、下記一般式(B1)、(B2)又は(B3)で表される構造単位(B)を有するN-置換マレイミド系重合体であって、
    該構造単位(B)は、(メタ)アクリル酸グリシジルに由来する構造を含み、
    該N-置換マレイミド系重合体中の残留塩素量が、重合体原料である該構造単位(A)を与えるN-置換マレイミド単量体と該構造単位(B)を与える(メタ)アクリル酸グリシジルの合計質量に対して100~2000ppmである
    ことを特徴とするN-置換マレイミド系重合体。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(B1)中、R及びRは、同一又は異なって、水素原子又はメチル基を表す。Rは、二価の結合基を表す。aは、0又は1である。
    一般式(B2)中、Rは、水素原子又はメチル基を表す。Rは、エチレン性不飽和結合含有基を表す。
    一般式(B3)中、Rは、水素原子又はメチル基を表す。Rは、エチレン性不飽和結合含有基を表す。Xは、二価の炭化水素基を表す。)
  8. 前記N-置換マレイミド系重合体は、酸価が20~200mgKOH/gであることを特徴とする請求項7に記載のN-置換マレイミド系重合体。
  9. 前記N-置換マレイミド系重合体は、二重結合当量が300~3000g/当量であることを特徴とする請求項7又は8に記載のN-置換マレイミド系重合体。
  10. 請求項7~9のいずれかに記載のN-置換マレイミド系重合体、及び、重合性化合物を含むことを特徴とする硬化性樹脂組成物。
PCT/JP2021/012544 2020-04-01 2021-03-25 N-置換マレイミド系重合体、及びその製造方法 WO2021200540A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227028911A KR20220131537A (ko) 2020-04-01 2021-03-25 N-치환 말레이미드계 중합체, 및 그 제조 방법
CN202180017130.4A CN115210271B (zh) 2020-04-01 2021-03-25 N-取代马来酰亚胺系聚合物及其制造方法
JP2022512067A JPWO2021200540A1 (ja) 2020-04-01 2021-03-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020066023 2020-04-01
JP2020-066023 2020-04-01

Publications (1)

Publication Number Publication Date
WO2021200540A1 true WO2021200540A1 (ja) 2021-10-07

Family

ID=77929214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012544 WO2021200540A1 (ja) 2020-04-01 2021-03-25 N-置換マレイミド系重合体、及びその製造方法

Country Status (5)

Country Link
JP (1) JPWO2021200540A1 (ja)
KR (1) KR20220131537A (ja)
CN (1) CN115210271B (ja)
TW (1) TW202146497A (ja)
WO (1) WO2021200540A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773914A (zh) * 2022-05-18 2022-07-22 苏州世名科技股份有限公司 一种颜料分散液及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201316A (ja) * 2001-09-25 2003-07-18 Dainippon Printing Co Ltd マレイミド系アルカリ可溶性共重合体、電離放射線硬化用樹脂組成物、カラーフィルター及び液晶表示装置
JP2013148602A (ja) * 2012-01-17 2013-08-01 Nippon Shokubai Co Ltd 感光性樹脂組成物
JP2016004165A (ja) * 2014-06-17 2016-01-12 株式会社日本触媒 硬化膜、その用途及び製造方法
JP2020122052A (ja) * 2019-01-29 2020-08-13 株式会社日本触媒 アルカリ可溶性樹脂、硬化性樹脂組成物、及びその用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005196064A (ja) * 2004-01-09 2005-07-21 Fuji Photo Film Co Ltd 光学補償シートおよび液晶表示装置
KR20110109944A (ko) 2010-03-29 2011-10-06 가부시키가이샤 닛폰 쇼쿠바이 컬러 필터용 감광성 수지 조성물

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201316A (ja) * 2001-09-25 2003-07-18 Dainippon Printing Co Ltd マレイミド系アルカリ可溶性共重合体、電離放射線硬化用樹脂組成物、カラーフィルター及び液晶表示装置
JP2013148602A (ja) * 2012-01-17 2013-08-01 Nippon Shokubai Co Ltd 感光性樹脂組成物
JP2016004165A (ja) * 2014-06-17 2016-01-12 株式会社日本触媒 硬化膜、その用途及び製造方法
JP2020122052A (ja) * 2019-01-29 2020-08-13 株式会社日本触媒 アルカリ可溶性樹脂、硬化性樹脂組成物、及びその用途

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773914A (zh) * 2022-05-18 2022-07-22 苏州世名科技股份有限公司 一种颜料分散液及其制备方法和应用

Also Published As

Publication number Publication date
CN115210271B (zh) 2023-08-25
TW202146497A (zh) 2021-12-16
CN115210271A (zh) 2022-10-18
JPWO2021200540A1 (ja) 2021-10-07
KR20220131537A (ko) 2022-09-28

Similar Documents

Publication Publication Date Title
JP6807791B2 (ja) アルカリ可溶性樹脂、感光性樹脂組成物及びその用途
JP6751611B2 (ja) 硬化性樹脂組成物及びその用途
JP2024038213A (ja) 共重合体、共重合体溶液、感光性樹脂組成物、硬化物、共重合体の製造方法、及び、共重合体溶液の製造方法
JP2020186325A (ja) アルカリ可溶性樹脂、及び、硬化性樹脂組成物
WO2021200540A1 (ja) N-置換マレイミド系重合体、及びその製造方法
JP6463658B2 (ja) 硬化性樹脂組成物及びカラーフィルタ
JP2020122052A (ja) アルカリ可溶性樹脂、硬化性樹脂組成物、及びその用途
JP7263052B2 (ja) アルカリ可溶性樹脂、硬化性樹脂組成物及びその用途
JP6381192B2 (ja) アルカリ可溶性樹脂の製造方法
JP6814077B2 (ja) 硬化性樹脂組成物
JP7161928B2 (ja) 重合体、重合体を含む硬化性樹脂組成物、及びその用途
JP7160554B2 (ja) 光学材料用樹脂組成物及びその用途
JP7449153B2 (ja) 熱硬化性樹脂、その製造方法、及び、硬化性樹脂組成物
JP7161927B2 (ja) 環構造含有重合体、環構造含有重合体を含む硬化性樹脂組成物、及びその用途
CN111542554B (zh) 聚合物、固化性树脂组合物及其用途
JP7315416B2 (ja) 感光性樹脂組成物、硬化物、及び積層体
JP2022093921A (ja) 重合体溶液の製造方法及び重合体溶液
JP7078490B2 (ja) 重合性単量体組成物、重合体及びその製造方法、硬化性樹脂組成物、及びその用途
JP2023057930A (ja) ラジカル重合性重合体および感光性組成物
JP2023049678A (ja) 感光性樹脂組成物、及び、その用途
JP2023003688A (ja) 硬化性樹脂組成物、感光性樹脂組成物、硬化物、及び硬化性樹脂組成物の製造方法
JP2023004059A (ja) ラジカル重合性重合体およびその感光性組成物
JP2023075463A (ja) 共重合体、共重合体溶液、感光性樹脂組成物、硬化物、共重合体の製造方法
WO2023162889A1 (ja) 重合体及びその感光性樹脂組成物
JP2022189367A (ja) ラジカル重合性重合体およびその感光性組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781974

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512067

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227028911

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21781974

Country of ref document: EP

Kind code of ref document: A1