WO2021200486A1 - 炭素含有アルミナ粉末、樹脂組成物、放熱部品、及び炭素含有アルミナ粉末の製造方法 - Google Patents

炭素含有アルミナ粉末、樹脂組成物、放熱部品、及び炭素含有アルミナ粉末の製造方法 Download PDF

Info

Publication number
WO2021200486A1
WO2021200486A1 PCT/JP2021/012295 JP2021012295W WO2021200486A1 WO 2021200486 A1 WO2021200486 A1 WO 2021200486A1 JP 2021012295 W JP2021012295 W JP 2021012295W WO 2021200486 A1 WO2021200486 A1 WO 2021200486A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
alumina powder
containing alumina
less
resin
Prior art date
Application number
PCT/JP2021/012295
Other languages
English (en)
French (fr)
Inventor
孝文 小牧
純也 新田
岡本 義昭
昌一 平田
源太 狩野
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to US17/915,368 priority Critical patent/US20230150830A1/en
Priority to EP21778936.1A priority patent/EP4129909A4/en
Priority to JP2022512028A priority patent/JPWO2021200486A1/ja
Priority to CN202180024848.6A priority patent/CN115348951B/zh
Priority to KR1020227037416A priority patent/KR20220160065A/ko
Publication of WO2021200486A1 publication Critical patent/WO2021200486A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body

Definitions

  • the present invention relates to a carbon-containing alumina powder, a resin composition, heat-dissipating parts, and a method for producing a carbon-containing alumina powder.
  • a sheet formed by filling silicone rubber with an inorganic powder having good electrical insulation and thermal conductivity for example, an inorganic powder such as boron nitride powder, aluminum nitride powder, and alumina powder, or Asuka-C hardness
  • an inorganic powder such as boron nitride powder, aluminum nitride powder, and alumina powder, or Asuka-C hardness
  • a heat sink is attached via a heat radiating component such as a flexible sheet of 25 or less (for example, Patent Document 1).
  • the quality of heat dissipation in the resin composition after the molding process is greatly affected by the thermal conductivity of the resin composition after the molding process and the adhesion to the adherend (shape followability), and is also included in the resin composition. It is also affected by the presence or absence of voids (air layer). Thermal conductivity is ensured by filling the inorganic powder in a high proportion, but when the inorganic powder is filled in a resin or the like in a high proportion, the fluidity of the resin composition before the molding process is significantly reduced, so that the molding process is performed. The property is impaired and the adhesion is significantly reduced.
  • Japanese Unexamined Patent Publication No. 9-296114 Japanese Unexamined Patent Publication No. 2000-1616 Japanese Unexamined Patent Publication No. 11-209618
  • the spherical alumina powder surface-treated with the alkoxysilane compound thickens when the resin is filled with the spherical alumina powder because of its high specific surface area, low average sphericity, and a distorted shape.
  • high filling of particles is difficult. Therefore, the moldability is low, and the thermal conductivity of the obtained heat-dissipating component is also low.
  • the molded product obtained by filling the resin with the spherical alumina powder has a problem that the tackiness is low and the adhesion (shape followability) to the adherend is not sufficient.
  • the present invention has been made in view of such a problem, and is a carbon-containing alumina powder capable of suppressing an increase in viscosity when filled in a resin and realizing high thermal conductivity of a resin composition containing the resin, and a carbon-containing alumina powder thereof.
  • An object of the present invention is to provide a resin composition containing carbon-containing alumina powder and heat-dissipating parts.
  • the present inventors can suppress an increase in viscosity when filling a resin by using a carbon-containing alumina powder containing specific carbon-containing alumina particles.
  • a carbon-containing alumina powder containing specific carbon-containing alumina particles We have found that it is possible to realize high thermal conductivity of a resin composition containing a resin and to improve the adhesion of the resin composition to an adherend, and have completed the present invention.
  • the present invention is as follows.
  • the carbon content A in the carbon-containing alumina powder and 3 g of the carbon-containing alumina powder were washed twice with 50 mL of acetone at room temperature for 5 minutes each and held at 100 ° C. for 240 minutes, and then in the alumina powder.
  • the ratio B / A is calculated using the carbon content B.
  • Each of the carbon contents is a value measured by a carbon / sulfur simultaneous analyzer.
  • the carbon according to [1] which contains a silicon atom and a carbon atom, and has a ratio MSi / MC of the mass MSi of the silicon atom to the mass MC of the carbon atom of 0.1 or more and 1.2 or less. Containing alumina powder.
  • [5] The method for producing a carbon-containing alumina powder according to [1] or [2], wherein the alkoxysilane compound and the alumina powder are mixed, and the relative humidity at room temperature is 20% or more and 60% or less.
  • a method for producing a carbon-containing alumina powder which comprises a step of heating at a temperature of 100 ° C. or higher and 150 ° C. or lower and a heating time of 0.5 hours or more and 1.5 hours or less.
  • a carbon-containing alumina powder capable of suppressing an increase in viscosity when filled in a resin and realizing high thermal conductivity of the resin composition containing the resin, and a resin composition containing the carbon-containing alumina powder and heat dissipation. Parts can be provided.
  • the present embodiment a mode for carrying out the present invention (hereinafter, simply referred to as “the present embodiment”) will be described in detail.
  • the following embodiments are examples for explaining the present invention, and the present invention is not limited to the present embodiment.
  • the alumina powder of this embodiment contains specific carbon-containing alumina particles.
  • Carbon-containing alumina powder (Carbon-containing alumina particles)
  • the carbon-containing alumina particles according to the present embodiment are particularly limited as long as they are carbon-containing alumina particles and have a diameter equivalent to a circle of projected area by a microscope, an average sphericity, and a specific surface area within the range described later. Not done.
  • the carbon-containing alumina particles can be obtained, for example, by treating the surface of the alumina particles with an alkoxysilane compound under specific conditions.
  • Examples of the alkoxysilane compound usually include four types of alkoxysilane compounds having 1 to 4 alkoxy groups and oligomers obtained by condensing them.
  • Examples of the four types of alkoxysilane compounds include tetraalkoxysilane compounds, trialkoxysilane compounds, dialkoxysilane compounds, and monoalkoxysilane compounds, and those in which a hydrogen atom is not directly bonded to a silicon atom are preferable. These alkoxysilane compounds can be used alone or in admixture of two or more.
  • tetraalkoxysilane compound examples include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, and tetrabutoxysilane.
  • trialkoxysilane compound examples include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltributoxysilane, methyltriphenoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, and butyltrimethoxy.
  • dialkoxysilane compound examples include dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldipropoxysilane, dibutyldimethoxysilane, dipropyldimethoxysilane, phenylmethyldimethoxysilane, phenylmethyldiethoxysilane, diphenyldimethoxysilane, and diphenyldiethoxysilane.
  • Examples thereof include cyclohexylmethyldimethoxysilane and vinylmethyldimethoxysilane.
  • Examples of the monoalkoxysilane compound include trimethylmethoxysilane, triethylmethoxysilane, triphenylmethoxysilane, diethylvinylmethoxysilane, dimethylpropylmethoxysilane, dimethylphenylmethoxysilane, diphenylmethylmethoxysilane, trimethylethoxysilane, triethylethoxysilane, and triphenyl. Examples thereof include ethoxysilane, dimethylvinylethoxysilane, dimethylpropylethoxysilane, and dimethylphenylethoxysilane.
  • the carbon-containing alumina particles according to the present embodiment are spherical, it becomes difficult to thicken the resin when the alumina powder is filled, and therefore the resin can be highly filled. Therefore, the diameter equivalent to the projected area circle by the microscope method is 1 ⁇ m. It is 100 ⁇ m or less and the average sphericity is 0.85 or more. The average sphericity is preferably 0.85 or more and 0.99 or less. When the average sphericity is in the above range, the fluidity of the carbon-containing alumina particles in the resin can be further improved, and the increase in viscosity when the resin is filled with the carbon-containing alumina powder can be suppressed.
  • the average sphericity is measured by the following microscopy. That is, the particle image taken by a scanning electron microscope, a transmission electron microscope, or the like is taken into an image analyzer, and the projected area (SA) and the peripheral length (PM) of the particles are measured from the photograph. Assuming that the area of a perfect circle having the same perimeter as the perimeter (PM) is (SB), the sphericity of the particle is SA / SB.
  • the sphericity of 200 arbitrary particles having a projected area circle-equivalent diameter of 1 ⁇ m or more and 100 ⁇ m or less is obtained as described above, and the arithmetic mean value thereof is taken as the average sphericity.
  • the specific measurement method is as described in the examples.
  • the projected area circle-equivalent diameter refers to the diameter of a perfect circle having the same projected area as the projected area (SA) of the particles.
  • the specific surface area of the carbon-containing alumina particles according to the present embodiment is 0.05 m 2 / g or more 1 because a resin composition and a heat-dissipating material can be obtained in which the contact resistance at the interface with the resin is low and the viscosity is less likely to increase. .0m and 2 / g or less, preferably not more than 0.1 m 2 / g or more 0.6 m 2 / g.
  • the specific surface area is measured by the BET flow method, and the specific measuring method is as described in the examples.
  • the carbon-containing alumina powder according to this embodiment has a ratio B / A of 0.20 or more and 0.90 or less calculated by using the following measuring method.
  • the ratio B / A is 0.20 or more, the effect that the carbon-containing substance such as the surface treatment agent remaining in the carbon-containing alumina powder suppresses bleeding from the resin composition or the heat radiating component can be obtained. ..
  • the ratio B / A is 0.90 or less, it is difficult to thicken the resin when it is filled in the resin, and it is easy to mold the resin.
  • the ratio B / A is determined by washing the carbon content A in the carbon-containing alumina powder according to the present embodiment and 3 g of the carbon-containing alumina powder twice at room temperature with 50 mL of acetone for 5 minutes each, and 240 at 100 ° C. It is calculated using the carbon content B in the alumina powder after holding for a minute.
  • the carbon contents A and B are values measured by a carbon / sulfur simultaneous analyzer. The specific measurement method is as described in the examples.
  • the carbon-containing alumina powder according to the present embodiment satisfies the above range of the ratio B / A, it is possible to suppress an increase in viscosity when the resin is filled with the carbon-containing alumina powder, and the adhesion to the adherend is good. Resin composition and heat-dissipating parts can be obtained.
  • the ratio B / A is 0.20 or more means that a substance (for example, an alkoxysilane compound) containing carbon in a predetermined ratio or more on the surface of the carbon-containing alumina particles in the carbon-containing alumina powder is, for example, chemical. It means that it is firmly fixed by the bond.
  • the strongly adhered carbon-containing substance contributes to the adhesion to the adherend, so that a resin composition and heat-dissipating parts having good adhesion can be obtained.
  • the fact that the ratio B / A is 0.90 or less means that a substance containing carbon in a predetermined ratio or less (for example, an alkoxysilane compound) exists in the carbon-containing alumina powder in a state where it can be easily removed. It means that it is. It is presumed that such a carbon-containing substance can improve the fluidity between the resin and the carbon-containing alumina particles and suppress the increase in viscosity when the resin is filled.
  • the substance containing carbon is an alkoxysilane compound
  • the surface of the alumina particles is treated with the alkoxysilane compound, not all of the alkoxysilane compounds react with the alumina particles, and the unreacted alkoxysilane compound is generated. Remains.
  • the unreacted residual amount of the alkoxysilane compound is so small that the ratio B / A is 0.20 or more, the unreacted alkoxysilane compound is suppressed from bleeding from the resin composition, and the adherend. It is estimated that the adhesion to (shape followability) will be improved.
  • the residual alkoxysilane compound contributes to the fluidity between the resin and the carbon-containing alumina powder, and has the effect of improving the adhesion between the resin and the alumina particles. Therefore, the present inventors consider that it is important that the alkoxysilane compound remains to some extent. That is, when the unreacted residual amount of the alkoxysilane compound is so large that the ratio B / A is 0.90 or less, when the carbon-containing alumina powder is highly filled in the resin or the like, the resin composition before the molding process is formed. It is estimated that the fluidity is improved, the molding processability is maintained, and the adhesion is improved.
  • the ratio B / A calculated by using the above measurement method has better adhesion, better fluidity between the resin and the carbon-containing alumina powder, and from the viewpoint of suppressing thickening. It is preferably 0.20 or more and 0.90 or less, and more preferably 0.30 or more and 0.70 or less.
  • the carbon-containing alumina powder according to the present embodiment contains a silicon atom and a carbon atom, and the ratio of the mass MSi of the silicon atom to the mass MC of the carbon atom (hereinafter, also simply referred to as “mass ratio”) MSi /.
  • the MC is preferably 0.1 or more and 1.2 or less from the viewpoint of the fixing rate of the treatment agent on the alumina surface.
  • the silicon atom and carbon atom are derived from, for example, the alkoxysilane compound used for the surface treatment of the alumina powder, may be derived from the alkoxysilane compound that has reacted with the surface of the alumina powder, and remain on the surface of the alumina powder.
  • the mass ratio MSi / MC is preferably 0.1 or more and 1.2 or less, and more preferably 0.2 or more and 0.4 or less, from the viewpoint of the fixing rate of the treatment agent on the alumina surface.
  • the mass ratio MSi / MC is measured by, for example, an energy dispersive X-ray analyzer (EDX). That is, it can be obtained from the ratio of the X-ray counts of the Si element and the C element.
  • EDX energy dispersive X-ray analyzer
  • the content of the carbon-containing alumina particles in the carbon-containing alumina powder is preferably 10% by mass or more, more preferably 50% by mass or more, from the viewpoint of modifying the surface of the alumina particles. .. More preferably, it may be 70% by mass or more and 90% by mass or more. The upper limit may be 100% by mass or less, 10% by mass or less, 30% by mass or less, and 50% by mass or less.
  • the method for producing the carbon-containing alumina powder of the present embodiment includes a step of mixing the alkoxysilane compound and the alumina powder (hereinafter, also referred to as “mixing step”) and a relative humidity of 20% or more and 60% or less at room temperature. It has a step of heating at a temperature of 100 ° C. or higher and 150 ° C. or lower and a heating time of 0.5 hours or longer and 1.5 hours or lower (hereinafter, also referred to as “heating step”).
  • alkoxysilane compound as a raw material examples include the above-mentioned four types of alkoxysilane compounds having 1 to 4 alkoxy groups, oligomers obtained by condensing them, and the like. Among these, a trialkoxysilane compound and a dialkoxysilane compound are preferable from the viewpoint of reacting well with the alumina powder. These alkoxysilane compounds can be used alone or in admixture of two or more.
  • alumina powder As the raw material alumina powder, a known alumina powder containing alumina particles having an average sphericity of 0.85 or more can be used.
  • the raw material alumina powder preferably contains alumina particles having an average particle size of 1 ⁇ m or more and 100 ⁇ m or less.
  • the average particle size refers to the median diameter (d50) based on the volume.
  • the average particle size of the alumina particles can be measured by, for example, a laser light diffraction scattering type particle size distribution measuring machine (“Model LS-230” (trade name) manufactured by Beckman Coulter).
  • the measurement solution is prepared by adding alumina particles to ethanol and dispersing the measurement solution with a known stirrer such as a homogenizer for about 1 minute so that the display of the concentration adjustment window of the apparatus becomes 45% or more and 55% or less. Obtained by preparing.
  • the raw material alumina powder preferably contains alumina particles having an average spherical degree of alumina particles having a projected area circle-equivalent diameter of 1 ⁇ m or more and 100 ⁇ m or less by microscopy and having an average sphericity of 0.85 or more.
  • the average sphericity is preferably 0.90 or more and 0.98 or less from the viewpoint of suppressing thickening when the resin is filled.
  • the average sphericity is measured by the above-mentioned microscopy method, and the specific measuring method is as described in Examples.
  • the diameter equivalent to the projected area circle by the above microscopy is less than 10 ⁇ m.
  • the proportion of alumina particles having a sphericity of 0.85 or less is preferably 1.0% or less on a number basis, and more preferably 0.5% or less on a number basis.
  • the lower limit is, for example, 0.1% on a number basis.
  • Alumina particles contained in the alumina powder of the raw material, its specific surface area, because it can widely contact area of the interface between the alkoxysilane compound is preferably from 0.05 m 2 / g or more 1.0 m 2 / g, More preferably, it is 0.1 m 2 / g or more and 0.5 m 2 / g or less.
  • 0.1 part by mass or more and 3.0 parts by mass or less, preferably 0.2 parts by mass or more and 1.0 part by mass or less of the hydrolyzed solution in which methanol, ethanol and water are dissolved in a solvent is added.
  • the solvent water is preferable in terms of dispersibility, safety and economy, but a flammable liquid such as alcohol and a mixed liquid such as water-alcohol may be used as long as the raw materials can be dispersed.
  • a mixing method for example, a predetermined amount of the raw material and the solvent may be added and mixed with a stirrer or the like until the mixture is sufficiently dispersed.
  • the mixed solution obtained as described above has a relative humidity of 20% or more and 60% or less at room temperature (25 ° C.), a temperature of 100 ° C. or more and 150 ° C. or less, and a heating time of 0. Heat for 5 hours or more and 1.5 hours or less.
  • the alkoxysilane compound reacts with the alumina particles, and the carbon-containing alumina powder according to the present embodiment is obtained.
  • the relative humidity is 20% or more, the alkoxysilane compound is hydrolyzed by the surface-adsorbed water of the alumina particles, and the effect of easily reacting with the OH groups on the alumina surface can be obtained.
  • the temperature is 100 ° C. or higher, the effect that the reaction easily proceeds can be obtained.
  • the temperature is 150 ° C. or lower, the boiling point of the alkoxysilane is not reached before the reaction, and a decrease in the reaction amount can be suppressed.
  • the obtained carbon-containing alumina particles may be used as they are as the carbon-containing alumina powder according to the present embodiment.
  • the carbon-containing alumina powder according to the present embodiment can be obtained by subjecting the obtained carbon-containing alumina particles to a classification treatment, a sieving treatment, or the like.
  • the resin composition according to the present embodiment contains at least a resin and a carbon-containing alumina powder according to the present embodiment.
  • the resin composition according to the present embodiment can suppress thickening and has high thermal conductivity, and is a molded product such as a heat-dissipating part obtained from the resin composition. It is possible to improve the adhesion to the adherend.
  • thermoplastic resin various polymer compounds such as thermoplastic resin and its oligomers and elastomers can be used.
  • epoxy resin phenol resin, melamine resin, urea resin, unsaturated polyester, urethane resin, acrylic resin, and Fluororesin
  • Polyamides such as polyimide, polyamideimide, and polyetherimide
  • Polyethylene such as polybutylene terephthalate and polyethylene terephthalate
  • Polyphenylene sulfide aromatic polyester, polysulfone, liquid crystal polymer, polyether sulfone, polycarbonate, maleimide modified resin, ABS (Acrylonitrile / butadiene / styrene) resin, AAS (acrylonitrile / acrylic rubber / styrene) resin, AES (acrylonitrile / ethylene / propylene / diene rubber / styrene) resin, EVA (ethylene vinyl acetate copolymer) resin, silicone resin, silicone resin, silicone
  • epoxy resin epoxy resin, phenol resin, urethane resin, acrylic resin, fluororesin, polyimide, polyphenylene sulfide, polycarbonate, ABS resin, and silicone resin are preferable from the viewpoint of heat resistant temperature, strength, and hardness after curing.
  • Silicone resin, epoxy resin, urethane resin, and acrylic resin are more preferable, and silicone resin is further preferable.
  • the silicone resin it is preferable to use a rubber or gel obtained from a one-component or two-component addition reaction type liquid silicone having an organic group such as a methyl group and a phenyl group.
  • a rubber or gel obtained from a one-component or two-component addition reaction type liquid silicone having an organic group such as a methyl group and a phenyl group.
  • examples of such rubbers or gels include "YE5822A solution / YE5822B solution” manufactured by Momentive Performance Materials Japan GK and "SE1885A solution / SE1885B solution” manufactured by Toray Dow Corning. Can be done.
  • the content of the carbon-containing alumina powder according to the present embodiment is 30% by mass or more and 97% by mass or less with respect to the total amount of the resin composition from the viewpoint of expressing the characteristics of the filler to be filled. It is preferably 50% by mass or more and 95% by mass or less. Since the carbon-containing alumina powder according to the present embodiment is difficult to thicken even when filled in the resin, it is possible to suppress the thickening of the resin composition even if it is contained in the resin composition within the above range. Is.
  • the content of the carbon-containing alumina powder is 50% by mass or more, it tends to be easy to obtain a resin composition and heat-dissipating parts capable of achieving good thermal conductivity and adhesion to an adherend.
  • the resin content for binding the carbon-containing alumina powder can be secured, and the heat-dissipating component can be more preferably used.
  • the content of the resin according to the present embodiment is 3% by mass or more and 70% by mass or less with respect to the total amount of the resin composition from the viewpoint of expressing the characteristics of the filler to be filled. It is preferable, and it is more preferable that it is 5% by mass or more and 50% by mass or less.
  • the resin composition of the present embodiment contains fused silica, crystalline silica, zircon, and silicic acid, if necessary, as long as the characteristics of the present embodiment are not impaired.
  • Inorganic fillers such as calcium, calcium carbonate, silicon carbide, aluminum nitride, boron nitride, beryllia, and zirconia; nitrogen-containing compounds such as melamine and benzoguanamine, oxazine ring-containing compounds, and phosphate compounds of phosphorus compounds, aromatic condensed phosphorus.
  • Flame-retardant compounds such as acid esters and halogen-containing condensed phosphoric acid esters; additives and the like may be contained.
  • Additives include reaction retarders such as dimethyl maleate, curing agents, curing accelerators, flame retardants, flame retardants, colorants, tackifiers, UV absorbers, antioxidants, optical brighteners, and light. Examples thereof include sensitizers, thickeners, lubricants, defoaming agents, surface conditioners, brighteners, and polymerization inhibitors. These components may be used alone or in admixture of two or more. In the resin composition of the present embodiment, the content of other components is usually 0.1% by mass or more and 5.0% by mass or less, respectively.
  • Examples of the method for producing the resin composition of the present embodiment include a method of sufficiently stirring the resin, the carbon-containing alumina powder, and other components as needed.
  • a predetermined amount of each component is blended with a blender, a Henschel mixer or the like, kneaded with a heating roll, a kneader, a uniaxial or biaxial extruder or the like, cooled, and then pulverized.
  • the heat radiating component according to the present embodiment includes the carbon-containing alumina powder or the resin composition according to the present embodiment.
  • the heat radiating component according to the present embodiment can realize high thermal conductivity, that is, can have high heat radiating property.
  • the adhesion to the adherend can be improved.
  • the content of the carbon-containing alumina powder in the heat-dissipating component according to the present embodiment is preferably 30% by volume or more and 85% by volume or less from the viewpoint of achieving higher thermal conductivity and adhesion to the adherend.
  • heat-dissipating parts include heat-dissipating sheets, heat-dissipating grease, heat-dissipating spacers, semiconductor encapsulants, heat-dissipating paints (heat-dissipating coating agents), heat-dissipating potting agents, heat-dissipating gap fillers, and the like.
  • the measurement of the specific surface area is a value based on the BET method, and carbon obtained in Examples and Comparative Examples using a specific surface area measuring machine "Macsorb HM model-1208 (trade name)" manufactured by Mountech Co., Ltd.
  • the specific surface area (m 2 / g) was measured by the BET one-point method using 1.0 g of each of the contained alumina particles.
  • each of the carbon-containing alumina particles obtained in Examples and Comparative Examples was heated at 300 ° C. and 5 minutes in a nitrogen gas atmosphere as a pretreatment. Further, in the BET measurement, a mixed gas of 30% nitrogen and 70% helium was used as the adsorbed gas, and the flow rate was adjusted so that the indicated value of the main body flow meter was 25 ml / min.
  • Ratio B / A of carbon content A and carbon content B in carbon-containing alumina powder was measured using a carbon / sulfur simultaneous analyzer (CS-444LS type (trade name) manufactured by LECO), and the carbon content A was quantified by the calibration curve method. .. Specifically, after obtaining a calibration curve using carbon steel having a known carbon content as a standard substance, each of the carbon-containing alumina powders obtained in Examples and Comparative Examples was used together with iron powder and tungsten powder as a combustion improver.
  • Mass ratio MSi / MC For the mass ratio MSi / MC of silicon atom and carbon atom, 0.1 g of each of the carbon-containing alumina particles obtained in Examples and Comparative Examples was added to Energy Dispersive X-ray Analyzer (EDX) (Hitachi High Technologies). From the count ratio of C and Si on the particle surface when measured using a desktop microscope MiniscopeTM3030Plus) under the conditions of an acceleration voltage of 15 kV, an energy range of 10 to 40 keV, a number of channels of 1024 to 4096, and a spectrum collection of 20 sec. The mass ratios of each were calculated to obtain the mass ratio MSi / MC.
  • EDX Energy Dispersive X-ray Analyzer
  • Viscosity Silicone rubber A liquid (vinyl group-containing polymethylsiloxane, YE5822A liquid manufactured by Momentive Performance Materials Japan LLC (trade name)) is used to combine the carbon-containing alumina powders obtained in Examples and Comparative Examples. ), The carbon-containing alumina powder (filling rate of alumina powder: 87.9% by mass) after being left for one day is added and mixed using a stirrer (NZ-1100 (trade name) manufactured by Tokyo Rika Kikai Co., Ltd.). , Vacuum defoaming to give the composition.
  • a stirrer NZ-1100 (trade name) manufactured by Tokyo Rika Kikai Co., Ltd.
  • the viscosity (Pa ⁇ s) of the obtained composition was determined using a B-type viscometer type (TVB-10 (trade name) manufactured by Toki Sangyo Co., Ltd.). The viscosity was measured using a No. 7 spindle at a rotation speed of 20 rpm and a room temperature of 20 ° C.
  • Thermal conductivity Silicone rubber A liquid (vinyl group-containing polymethylsiloxane, YE5822A liquid (trade name) manufactured by Momentive Performance Materials Japan LLC), which was obtained in Examples and Comparative Examples, respectively.
  • the blending ratio thereof was 0.01 part by volume with respect to 100 parts by volume of the silicone rubber mixed solution obtained by mixing 10 parts by volume of the silicone rubber A solution with 1 part by volume of the silicone rubber B solution. It was calculated by adding the maximum filling amount of the alumina powder obtained in Examples and Comparative Examples to the liquid to which the reaction retarder was added, and the ratio was shown in Table 1.
  • the obtained slurry-like sample was poured into a mold provided with a recess having a diameter of 28 mm and a thickness of 3 mm, degassed, and then heat-molded at 150 ° C. for 20 minutes.
  • the obtained molded product was sandwiched between a copper heater case of 15 mm ⁇ 15 mm and a copper plate, and set with a tightening torque of 5 kgf / cm. Then, 15 W of electric power was applied to the copper heater case and the case was held for 4 minutes, the temperature difference between the copper heater case and the copper plate was measured, and the thermal resistance was calculated by the following formula.
  • Thermal resistance (° C / W) Temperature difference between copper heater case and copper plate (° C) / Heater power (W)
  • the thermal conductivity is calculated from the following formula. Was calculated. That is, the thermal conductivity is a value when each of the carbon-containing alumina powders obtained in Examples and Comparative Examples is filled with the maximum filling amount that can be heat-molded.
  • ARC-TC-1 type trade name manufactured by Agne Co., Ltd. was used.
  • Thermal conductivity (W / m ⁇ K) molded body thickness (m) / ⁇ thermal resistance (° C / W) x heat transfer area (m 2 ) ⁇
  • Example 1 As an alkoxysilane compound, 0.5 parts by mass of hexyltrimethoxysilane (KBM-3063 manufactured by Shin-Etsu Chemical Co., Ltd.), 0.5 parts by mass of methanol, and 0.1 parts by mass of water were mixed in this order for 2 days at room temperature. A hydrolyzate was prepared with stirring. Next, an alumina powder having an average particle diameter of 45 ⁇ m (DAW-45 manufactured by Denka Co., Ltd. (trade name), an alumina particle having a projected area circle equivalent diameter of 1 ⁇ m or more and 100 ⁇ m or less by microscopy) has an average sphericalness of 0.90 and a specific surface area of 0.
  • Example 2 As shown in Table 2, a carbon-containing alumina powder containing carbon-containing alumina particles was obtained in the same manner as in Example 1 except that the relative humidity and the heating temperature were changed. The physical properties of the obtained carbon-containing alumina particles and carbon-containing alumina powder were evaluated. The results are shown in Table 2.
  • Example 3 As the alkoxysilane compound, N-decyltrimethoxysilane (KBM-3103C (trade name) manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of hexyltrimethoxysilane, and the relative humidity and heating temperature shown in Table 2 were changed. Obtained a carbon-containing alumina powder containing carbon-containing alumina particles in the same manner as in Example 1. The physical properties of the obtained carbon-containing alumina particles and carbon-containing alumina powder were evaluated. The results are shown in Table 2.
  • Example 4 As the alkoxysilane compound, dimethyldimethoxysilane (KBM-22 (trade name) manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of hexyltrimethoxysilane, and the relative humidity and heating temperature shown in Table 2 were changed.
  • a carbon-containing alumina powder containing carbon-containing alumina particles was obtained in the same manner as in Example 1. The physical properties of the obtained carbon-containing alumina particles and carbon-containing alumina powder were evaluated. The results are shown in Table 2.
  • Example 5 As the alumina powder, instead of DAW-45 (trade name) manufactured by Denka Co., Ltd., an alumina powder having an average particle diameter of 3 ⁇ m (DAW-03 (trade name) manufactured by Denka Co., Ltd., with a projected area circle equivalent diameter of 1 ⁇ m or more and 100 ⁇ m or less by microscopy). Carbon in the same manner as in Example 1 except that the average sphericity of certain alumina particles: 0.90, specific surface area: 0.7 m 2 / g) was used, and the relative humidity and heating temperature were changed as shown in Table 2. A carbon-containing alumina powder containing containing alumina particles was obtained. The physical properties of the obtained carbon-containing alumina particles and carbon-containing alumina powder were evaluated. The results are shown in Table 2.
  • Example 6 As the alumina powder, instead of DAW-45 (trade name) manufactured by Denka Co., Ltd., an alumina powder having an average particle diameter of 90 ⁇ m (DAW-90 (trade name) manufactured by Denka Co., Ltd., with a projected area circle equivalent diameter by microscopy of 1 ⁇ m or more and 100 ⁇ m or less.
  • DAW-45 trade name
  • DAW-90 trade name
  • Table 2 A carbon-containing alumina powder containing carbon-containing alumina particles was obtained.
  • the physical properties of the obtained carbon-containing alumina particles and carbon-containing alumina powder were evaluated. The results are shown in Table 2.
  • Example 7 First, alumina LS-21 (trade name) manufactured by Nippon Light Metal Co., Ltd. was melted, cooled, and crushed in an arc furnace to prepare a pulverized fused alumina product. The crushing treatment was performed with a ball mill, and alumina balls were used as the crushing medium. The obtained pulverized alumina product was classified into alumina powder (average particle size: 0.2 ⁇ m, average sphericity of alumina particles having a projected area circle equivalent diameter of 1 ⁇ m or more and 100 ⁇ m or less by microscopic method: 0.75, specific surface area: 0.2 m 2 / g) was prepared.
  • alumina powder average particle size: 0.2 ⁇ m, average sphericity of alumina particles having a projected area circle equivalent diameter of 1 ⁇ m or more and 100 ⁇ m or less by microscopic method: 0.75, specific surface area: 0.2 m 2 / g
  • alumina powder and the alumina powder having an average particle diameter of 45 ⁇ m (DAW-45 (trade name) manufactured by Denka Co., Ltd., the average sphericalness of alumina particles having a projected area circle equivalent diameter of 1 ⁇ m or more and 100 ⁇ m or less by microscopy:
  • Alumina powder was obtained by appropriately mixing with 0.90, specific surface area: 0.2 m 2 / g).
  • a carbon-containing alumina powder containing carbon-containing alumina particles was obtained in the same manner as in Example 1 except that this alumina powder was used and the relative humidity and heating temperature were changed as shown in Table 2.
  • Table 2 The physical properties of the obtained carbon-containing alumina particles and carbon-containing alumina powder were evaluated. The results are shown in Table 2.
  • alumina powder instead of DAW-45 (trade name) manufactured by Denka Co., Ltd., an alumina powder having an average particle diameter of 120 ⁇ m (DAW-120 (trade name) manufactured by Denka Co., Ltd.) has a projected area circle equivalent diameter of 1 ⁇ m or more and 100 ⁇ m or less by microscopy.
  • the average sphericity of certain alumina particles: 0.90, specific surface area: 0.03 m 2 / g) was used, and the relative humidity and heating temperature shown in Table 3 were changed, but in the same manner as in Example 1.
  • a carbon-containing alumina powder containing carbon-containing alumina particles was obtained.
  • the physical properties of the obtained carbon-containing alumina particles and carbon-containing alumina powder were evaluated. The results are shown in Table 3.
  • alumina powder instead of DAW-45 (trade name) manufactured by Denka Co., Ltd., an alumina powder having an average particle diameter of 1 ⁇ m (DAW-01 manufactured by Denka Co., Ltd. (trade name), the equivalent diameter of the projected area circle by microscopy is 1 ⁇ m or more and 100 ⁇ m or less.
  • the average sphericity of certain alumina particles: 0.90, specific surface area: 1.2 m 2 / g) was used, and the relative humidity and heating temperature shown in Table 3 were changed, but in the same manner as in Example 1.
  • a carbon-containing alumina powder containing carbon-containing alumina particles was obtained.
  • the physical properties of the obtained carbon-containing alumina particles and carbon-containing alumina powder were evaluated. The results are shown in Table 3.
  • alumina LS-21 (trade name) manufactured by Nippon Light Metal Co., Ltd. was melted, cooled, and crushed in an arc furnace to prepare a pulverized fused alumina product.
  • the crushing treatment was performed with a ball mill, and alumina balls were used as the crushing medium.
  • the obtained pulverized alumina product was classified into alumina powder (average particle size: 0.2 ⁇ m, average sphericity of alumina particles having a projected area circle equivalent diameter of 1 ⁇ m or more and 100 ⁇ m or less by microscopic method: 0.75, specific surface area: 0.2 m 2 / g) was prepared.
  • alumina powder and the alumina powder having an average particle diameter of 45 ⁇ m (DAW-45 (trade name) manufactured by Denka Co., Ltd., the average sphericalness of alumina particles having a projected area circle equivalent diameter of 1 ⁇ m or more and 100 ⁇ m or less by microscopy:
  • Alumina powder was obtained by appropriately mixing with 0.90, specific surface area: 0.2 m 2 / g).
  • a carbon-containing alumina powder containing carbon-containing alumina particles was obtained in the same manner as in Example 1 except that this alumina powder was used and the relative humidity and heating temperature were changed as shown in Table 3.
  • Table 3 The physical properties of the obtained carbon-containing alumina particles and carbon-containing alumina powder were evaluated. The results are shown in Table 3.
  • Example 4 A carbon-containing alumina powder containing carbon-containing alumina particles was obtained in the same manner as in Example 1 except that the relative humidity was changed from 50% to 15%. The physical properties of the obtained carbon-containing alumina particles and carbon-containing alumina powder were evaluated. The results are shown in Table 3.
  • Example 5 A carbon-containing alumina powder containing carbon-containing alumina particles was obtained in the same manner as in Example 1 except that the relative humidity was changed from 50% to 70%. The physical properties of the obtained carbon-containing alumina particles and carbon-containing alumina powder were evaluated. The results are shown in Table 3.
  • Example 6 A carbon-containing alumina powder containing carbon-containing alumina particles was obtained in the same manner as in Example 1 except that the heating temperature was changed from 140 ° C. to 80 ° C. The physical properties of the obtained carbon-containing alumina particles and carbon-containing alumina powder were evaluated. The results are shown in Table 3.
  • Example 7 A carbon-containing alumina powder containing carbon-containing alumina particles was obtained in the same manner as in Example 1 except that the heating temperature was changed from 140 ° C. to 170 ° C. The physical properties of the obtained carbon-containing alumina particles and carbon-containing alumina powder were evaluated. The results are shown in Table 3.
  • Example 8 A carbon-containing alumina powder containing carbon-containing alumina particles was obtained in the same manner as in Example 1 except that the heating time was changed from 1.0 hour to 0.3 hours. The physical properties of the obtained carbon-containing alumina particles and carbon-containing alumina powder were evaluated. The results are shown in Table 3.
  • Example 9 A carbon-containing alumina powder containing carbon-containing alumina particles was obtained in the same manner as in Example 1 except that the heating time was changed from 1.0 hour to 2.0 hours. The physical properties of the obtained carbon-containing alumina particles and carbon-containing alumina powder were evaluated. The results are shown in Table 3.
  • the carbon-containing alumina powder according to the present embodiment and the resin composition using the alumina powder can be applied to various uses, but a heat radiating sheet, a heat radiating grease, a heat radiating spacer, a semiconductor encapsulant, and a heat radiating paint (heat radiating coating agent). ), Heat-dissipating potting agent, heat-dissipating gap filler, and other heat-dissipating parts. Further, these heat-dissipating parts can be suitably used for personal computers, automobiles, portable electronic devices, household electric appliances and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本発明の炭素含有アルミナ粉末は、顕微鏡法による投影面積円相当径が1μm以上100μm以下である炭素含有アルミナ粒子を含む炭素含有アルミナ粉末であって、前記炭素含有アルミナ粒子の平均球形度が、0.85以上であり、かつ、比表面積が0.05m2/g以上1.0m2/g以下であり、かつ、特定の測定方法を用いて算出された、前記炭素含有アルミナ粉末中の炭素含有率Aに対する炭素含有率Bの比B/Aが、0.20上0.90以下である。

Description

炭素含有アルミナ粉末、樹脂組成物、放熱部品、及び炭素含有アルミナ粉末の製造方法
 本発明は、炭素含有アルミナ粉末、樹脂組成物、放熱部品、及び炭素含有アルミナ粉末の製造方法に関する。
 近年、ICやMPU等の発熱性電子部品の小薄型化・高機能化の進展に伴い、電子部品が搭載された電子機器の発熱量が増大し、効率のよい放熱方法の開発が依然として期待されている。電子機器の放熱は、発熱性電子部品の搭載された基板にヒートシンクを取り付けるか、ヒートシンクを取り付けるスペースを確保することができないときは、直接、電子機器の金属製シャーシに基板を取り付けることなどが行われている。このとき、電気絶縁性と熱伝導性の良好な無機質粉末、例えば、窒化ホウ素粉末、窒化アルミニウム粉末、及びアルミナ粉末等の無機粉末をシリコーンゴムに充填させて成形したシートや、アスカ-C硬度が25以下の柔軟性シートなどの放熱部品を介してヒートシンクが取り付けられている(例えば、特許文献1)。
 成形加工後の樹脂組成物における放熱性の良否は、成形加工後の樹脂組成物の熱伝導性と被着物への密着性(形状追従性)に大きく左右され、また、樹脂組成物に含まれるボイド(空気層)の有無によっても影響される。熱伝導性は無機粉末を高い割合で充填することにより確保されるが、無機粉末を樹脂などに高い割合で充填した際、成形加工前の樹脂組成物の流動性が非常に低下するため成形加工性が損なわれ、密着性が著しく低下する。一方、成形加工前の樹脂組成物の粘度上昇に伴い、内包したボイドが除去しづらくなることから熱伝導性も低下する。そこで、無機粉末の充填率をある程度保持して、成形加工前の樹脂組成物の流動性と高熱伝導性を両立し、成形加工性と密着性を大きく損なわせない手法として、球状アルミナ粉末とアルコキシシラン化合物の使用が提案されている(例えば、特許文献2)。
 また、無機粉末の高充填化は、成形加工前の樹脂組成物の流動性を損なうだけでなく、成形加工後の樹脂組成物において、圧縮永久歪みの増大や引張強度の低下など成形加工後の樹脂組成物における機械的物性の耐熱信頼性を著しく低下させる。機械的物性の耐熱信頼性を向上させる方法として、長鎖アルキル基を有するアルコキシシラン化合物で無機粉末の表面を処理することが提案されている(例えば、特許文献3)。
特開平9-296114号公報 特開2000-1616号公報 特開平11-209618号公報
 しかしながら、上記アルコキシシラン化合物で表面処理した球状アルミナ粉末は、比表面積が高く、平均球形度が低く歪な形状を含む等の理由により、樹脂に球状アルミナ粉末を充填する際に増粘し、アルミナ粒子の高充填が難しいとの問題を有する。そのため、成形性が低く、また、得られる放熱部品の熱伝導率も低くなる。
 また、樹脂にこの球状アルミナ粉末を充填して得られた成形品では、タック性が低いため、被着物への密着性(形状追従性)が十分ではないとの問題を有する。
 本発明は、このような課題に鑑みてなされたものであり、樹脂に充填する際に粘度上昇を抑制でき、その樹脂を含む樹脂組成物の高熱伝導化を実現できる炭素含有アルミナ粉末、並びにその炭素含有アルミナ粉末を含む樹脂組成物及び放熱部品の提供を目的とする。
 本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、特定の炭素含有アルミナ粒子を含む炭素含有アルミナ粉末を用いることにより、樹脂に充填する際に粘度上昇を抑制でき、その樹脂を含む樹脂組成物の高熱伝導化を実現でき、かつ、その樹脂組成物の被着物への密着性を良好にすることができることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下のとおりである。
 [1]顕微鏡法による投影面積円相当径が1μm以上100μm以下である炭素含有アルミナ粒子を含む炭素含有アルミナ粉末であって、前記炭素含有アルミナ粒子の平均球形度が、0.85以上であり、かつ、比表面積が0.05m2/g以上1.0m2/g以下であり、かつ、下記の測定方法を用いて算出された、前記炭素含有アルミナ粉末中の炭素含有率Aに対する炭素含有率Bの比B/Aが、0.20以上0.90以下である、炭素含有アルミナ粉末。
(測定方法)
 前記炭素含有アルミナ粉末中の前記炭素含有率Aと、前記炭素含有アルミナ粉末3gをアセトン50mLを用いて室温で5分間ずつ2回洗浄し、100℃で240分間保持した後の前記アルミナ粉末中の前記炭素含有率Bとを用いて、前記比B/Aを算出する。各前記炭素含有率は、炭素/硫黄同時分析計によって測定された値である。
 [2]ケイ素原子と炭素原子とを含み、前記ケイ素原子の質量MSiと前記炭素原子の質量MCとの比MSi/MCが0.1以上1.2以下である、[1]に記載の炭素含有アルミナ粉末。
 [3]樹脂と、[1]又は[2]に記載の炭素含有アルミナ粉末とを含む、樹脂組成物。
 [4][1]若しくは[2]に記載の炭素含有アルミナ粉末、又は[3]に記載の樹脂組成物を含む、放熱部品。
 [5][1]又は[2]に記載の炭素含有アルミナ粉末の製造方法であって、アルコキシシラン化合物と、アルミナ粉末とを混合する工程と、室温下での相対湿度20%以上60%以下、温度100℃以上150℃以下、かつ加熱時間0.5時間以上1.5時間以下で加熱する工程とを有する、炭素含有アルミナ粉末の製造方法。
 本発明によれば、樹脂に充填する際に粘度上昇を抑制でき、その樹脂を含む樹脂組成物の高熱伝導化を実現できる炭素含有アルミナ粉末、並びにその炭素含有アルミナ粉末を含む樹脂組成物及び放熱部品の提供することができる。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について、詳細に説明する。なお、以下の本実施形態は、本発明を説明するための例示であり、本発明は本実施形態のみに限定されない。
 本実施形態のアルミナ粉末は、特定の炭素含有アルミナ粒子を含む。
[炭素含有アルミナ粉末]
(炭素含有アルミナ粒子)
 本実施形態に係る炭素含有アルミナ粒子は、炭素を含有するアルミナ粒子であって、後述の範囲内の顕微鏡による投影面積円相当径、平均球形度、及び比表面積を有するものであれば、特に限定されない。炭素含有アルミナ粒子は、例えば、アルコキシシラン化合物でアルミナ粒子の表面を特定の条件で処理することで得られる。
 アルコキシシラン化合物は、通常、1~4個のアルコキシ基を有する4種類のアルコキシシラン化合物、及びこれらを縮合したオリゴマーが挙げられる。4種類のアルコキシシラン化合物としては、テトラアルコキシシラン化合物、トリアルコキシシラン化合物、ジアルコキシシラン化合物、及びモノアルコキシシラン化合物が挙げられ、ケイ素原子に水素原子が直接結合していないものであると好ましい。これらのアルコキシシラン化合物は、1種単独で、又は2種以上を適宜混合して使用することができる。
 テトラアルコキシシラン化合物としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン、及びテトラブトキシシラン等が挙げられる。
 トリアルコキシシラン化合物としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、メチルトリフェノキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、N-デシルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3,4-エポキシシクロヘキシルエチルトリメトキシシラン、3,4-エポキシシクロヘキシルエチルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、及び3-メルカプトプロピルトリエトキシシラン等を挙げることができる。
 ジアルコキシシラン化合物としては、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジプロポキシシラン、ジブチルジメトキシシラン、ジプロピルジメトキシシラン、フェニルメチルジメトキシシラン、フェニルメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、シクロヘキシルメチルジメトキシシラン、及びビニルメチルジメトキシシラン等が挙げられる。
 モノアルコキシシラン化合物としては、トリメチルメトキシシラン、トリエチルメトキシシラン、トリフェニルメトキシシラン、ジエチルビニルメトキシシラン、ジメチルプロピルメトキシシラン、ジメチルフェニルメトキシシラン、ジフェニルメチルメトキシシラン、トリメチルエトキシシラン、トリエチルエトキシシラン、トリフェニルエトキシシラン、ジメチルビニルエトキシシラン、ジメチルプロピルエトキシシラン、及びジメチルフェニルエトキシシラン等が挙げられる
 本実施形態に係る炭素含有アルミナ粒子は、球状であると、樹脂にアルミナ粉末を充填する際に増粘しにくくなり、そのため、樹脂に高充填できることから、顕微鏡法による投影面積円相当径が1μm以上100μm以下であり、かつ、平均球形度が0.85以上である。平均球形度は、0.85以上0.99以下であることが好ましい。平均球形度が上記範囲にあることにより、樹脂中の炭素含有アルミナ粒子の流動性をより向上させ、樹脂に炭素含有アルミナ粉末を充填する際の粘度上昇を抑制することができる。また、アルミナ粒子同士の接触がより十分になり、接触面積が大きくなる結果、より高熱伝導性の樹脂組成物及び放熱部品を得ることができる傾向にあり、また、樹脂からアルミナ粒子が脱落し難い傾向にある。平均球形度は、下記の顕微鏡法により測定される。すなわち、走査型電子顕微鏡、及び透過型電子顕微鏡等にて撮影した粒子像を画像解析装置に取り込み、写真から粒子の投影面積(SA)と周囲長(PM)を測定する。その周囲長(PM)と同一の周囲長を持つ真円の面積を(SB)とすると、その粒子の球形度はSA/SBとなる。よって、試料の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、SB=πr2であるから、SB=π×(PM/2π)2となり、個々の粒子の球形度は、球形度=SA/SB=SA×4π/(PM)2となる。投影面積円相当径が1μm以上100μm以下である任意の粒子200個の球形度を上記のようにして求め、その相加平均値を平均球形度とする。なお、具体的な測定方法は、実施例に記載のとおりである。また、投影面積円相当径は、粒子の投影面積(SA)と同一の投影面積を持つ真円の直径を指す。
 本実施形態に係る炭素含有アルミナ粒子の比表面積は、樹脂との界面の接触抵抗が低く、粘度上昇がより起こりにくい樹脂組成物及び放熱材料が得られることから、0.05m2/g以上1.0m2/g以下であり、0.1m2/g以上0.6m2/g以下であることが好ましい。なお、本実施形態において、比表面積はBET流動法により測定され、具体的な測定方法は、実施例に記載のとおりである。
(炭素含有アルミナ粉末)
 本実施形態に係る炭素含有アルミナ粉末は、下記の測定方法を用いて算出された比B/Aが0.20以上0.90以下である。比B/Aが、0.20以上であると、炭素含有アルミナ粉末中に残留する表面処理剤等の炭素を含む物質が、樹脂組成物又は放熱部品からのブリードを抑制するという効果が得られる。一方、比B/Aが、0.90以下であると、樹脂に充填した際に増粘し難く、かつ、成形加工し易いという効果が得られる。(測定方法)
 上記比B/Aは、本実施形態に係る炭素含有アルミナ粉末中の炭素含有率Aと、上記炭素含有アルミナ粉末3gをアセトン50mLを用いて室温で5分間ずつ2回洗浄し、100℃で240分間保持した後のアルミナ粉末中の炭素含有率Bとを用いて算出される。炭素含有率A及びBは、炭素/硫黄同時分析計によって測定された値である。具体的な測定方法は、実施例に記載のとおりである。
 本実施形態に係る炭素含有アルミナ粉末が、上記比B/Aの範囲を満たすことで、樹脂に炭素含有アルミナ粉末を充填する際に粘度上昇を抑制でき、かつ、被着物への密着性が良好な樹脂組成物及び放熱部品を得ることができる。本発明者らは、この理由について定かではないが、次のように推定している。
 上記比B/Aが0.20以上であるということは、炭素含有アルミナ粉末中の炭素含有アルミナ粒子の表面に所定の割合以上の炭素を含む物質(例えば、アルコキシシラン化合物)が、例えば、化学結合により強く固着していることを意味する。この場合、その強く固着した炭素を含む物質が被着物への密着性に寄与することで、その密着性が良好な樹脂組成物及び放熱部品を得ることができると考えられる。一方、上記比B/Aが0.90以下であるということは、炭素含有アルミナ粉末中に、所定の割合以下の炭素を含む物質(例えばアルコキシシラン化合物)が、容易に除去できる状態で存在していることを意味する。このような炭素を含む物質は、樹脂と炭素含有アルミナ粒子との間の流動性を向上させ、樹脂に充填する際に粘度上昇を抑制できると推定している。
 例えば、炭素を含む物質が、アルコキシシラン化合物である場合、アルコキシシラン化合物によりアルミナ粒子の表面を処理すると、アルコキシシラン化合物の全てが、アルミナ粒子と反応するわけではなく、未反応のアルコキシシラン化合物が残留する。この場合、アルコキシシラン化合物の未反応残留量が、上記比B/Aが0.20以上になる程度に少ないと、樹脂組成物から未反応のアルコキシシラン化合物がブリードするのを抑制し、被着物への密着性(形状追従性)が向上すると推定している。一方、残留アルコキシシラン化合物は、樹脂と炭素含有アルミナ粉末との間の流動性に寄与し、樹脂とアルミナ粒子の密着性を向上させるとの効果を有する。そのため、本発明者らは、アルコキシシラン化合物はある程度残留していることが重要と考えている。すなわち、アルコキシシラン化合物の未反応残留量が、上記比B/Aが0.90以下になる程度に多いと、炭素含有アルミナ粉末を樹脂などに高充填した際、成形加工前の樹脂組成物の流動性が向上し、成形加工性が維持され、密着性が良好になると推定している。
 上記の測定方法を用いて算出された比B/Aは、より良好な密着性と、樹脂と炭素含有アルミナ粉末とのより良好な流動性を有し、かつ、増粘の抑制の観点から、0.20以上0.90以下であることが好ましく、0.30以上0.70以下であることがより好ましい。
 本実施形態に係る炭素含有アルミナ粉末は、ケイ素原子と炭素原子とを含み、上記ケイ素原子の質量MSiと上記炭素原子の質量MCとの比(以下、単に「質量比」ともいう。)MSi/MCが、処理剤のアルミナ表面への定着率の観点から、0.1以上1.2以下であることが好ましい。ケイ素原子及び炭素原子は、例えば、アルミナ粉末の表面処理に用いられたアルコキシシラン化合物に由来し、アルミナ粉末の表面と反応したアルコキシシラン化合物に由来してもよく、アルミナ粉末の表面に残留しているアルコキシシラン化合物に由来しているものであってもよい。質量比MSi/MCが上記の範囲にあると、処理剤のアルミナ表面への定着率の観点から、好ましい。質量比MSi/MCは、処理剤のアルミナ表面への定着率の観点から、0.1以上1.2以下であることが好ましく、0.2以上0.4以下であることがより好ましい。
 質量比MSi/MCは、例えば、エネルギー分散型X線分析装置(EDX)により測定される。即ち、Si元素とC元素のX線カウント数の比から求めることができる。
(炭素含有アルミナ粉末中における炭素含有アルミナ粒子の含有率)
 本実施形態において、炭素含有アルミナ粉末中における炭素含有アルミナ粒子の含有率は、アルミナ粒子表面の改質の観点から、10質量%以上であることが好ましく、50質量%以上であることがより好ましい。さらに好ましくは70質量%以上、90質量%以上であってよい。上限については100質量%以下、10質量%以下、30質量%以下、50質量%以下であってよい。
[炭素含有アルミナ粉末の製造方法]
 本実施形態の炭素含有アルミナ粉末の製造方法は、アルコキシシラン化合物と、アルミナ粉末とを混合する工程(以下、「混合工程」ともいう。)と、室温下での相対湿度20%以上60%以下、温度100℃以上150℃以下、かつ加熱時間0.5時間以上1.5時間以下で加熱する工程(以下、「加熱工程」ともいう。)とを有する。
(原料)
 本実施形態に係る炭素含有アルミナ粉末を得るための原料としては、アルコキシシラン化合物と、アルミナ粉末と、必要に応じて、メタノール、エタノール、及び水とを用いる。
 原料のアルコキシシラン化合物としては、上記の1~4個のアルコキシ基を有する4種類のアルコキシシラン化合物、及びこれらを縮合したオリゴマー等が挙げられる。これらの中でも、アルミナ粉末と良好に反応する点から、トリアルコキシシラン化合物、及びジアルコキシシラン化合物が好ましい。これらのアルコキシシラン化合物は、1種単独で、又は2種以上を適宜混合して使用することができる。
 原料のアルミナ粉末としては、平均球形度が0.85以上であるアルミナ粒子を含む公知のアルミナ粉末を用いることができる。
 原料のアルミナ粉末としては、平均粒子径が1μm以上100μm以下であるアルミナ粒子を含むことが好ましい。なお、本実施形態において、平均粒子径とは、体積基準によるメジアン径(d50)を指す。アルミナ粒子の平均粒子径は、例えば、レーザー光回折散乱式粒度分布測定機(ベックマン・コールター社製「モデルLS-230」(商品名))によって測定できる。この場合、測定溶液は、エタノールにアルミナ粒子を加えて、ホモジナイザー等の公知の撹拌機で、およそ1分間分散処理を行い、装置の濃度調整ウインドウの表示が45%以上55%以下になるように調製することで得られる。粒度分布の解析は、粒子径0.04μm以上2000μm以下の範囲を116分割(log(μm)=0.04の幅)にして行う。測定方法の詳細は、「レーザー回折・散乱法粒度分布測定装置LSシリーズ」(ベックマン・コールター株式会社社製)、又は豊田真弓著「粒度分布を測定する」(ベックマン・コールター株式会社、粒子物性本部学術チーム)を参照できる。
 原料のアルミナ粉末としては、顕微鏡法による投影面積円相当径が1μm以上100μm以下であるアルミナ粒子の平均球形度が、0.85以上であるアルミナ粒子を含むことが好ましい。平均球形度は、樹脂に充填した際に増粘を抑制する点から、0.90以上0.98以下であることが好ましい。平均球形度は、上記の顕微鏡法により測定され、具体的な測定方法は、実施例に記載のとおりである。
 球形度が低いアルミナ粒子が含まれると、炭素含有アルミナ粉末の球形度も低くなり、樹脂に充填した際に増粘する傾向がある点から、上記の顕微鏡法による投影面積円相当径が10μm未満であるアルミナ粒子の球形度が0.85以下であるアルミナ粒子の割合が、個数基準で1.0%以下であることが好ましく、個数基準で0.5%以下であることがより好ましい。下限は、例えば、個数基準で0.1%である。
 原料のアルミナ粉末に含まれるアルミナ粒子は、その比表面積が、アルコキシシラン化合物との界面の接触面積が広くできることから、0.05m2/g以上1.0m2/g以下であることが好ましく、0.1m2/g以上0.5m2/g以下であることがより好ましい。
(製造方法)
 本実施形態の炭素含有アルミナ粉末の製造方法において、まず、混合工程では、アルコキシシラン化合物と、アルミナ粉末と、必要に応じて、メタノールと、エタノールと、水とを混合して、混合液を得る。本実施形態では、アルコキシシラン化合物と、アルミナ粉末との反応が進行しやすく、未反応のアルコキシシラン化合物が過剰にならないよう抑制する観点から、アルミナ粉末100質量部に、アルコキシシラン化合物と、必要に応じて、メタノールと、エタノールと、水とを溶媒に溶解させた加水分解液0.1質量部以上3.0質量部以下を、好ましくは0.2質量部以上1.0質量部以下を添加して、混合することが好ましい。溶媒としては、水が、分散性、安全性及び経済性の点で好ましいが、原料を分散させることができれば、アルコール等の可燃性液体、及び水-アルコール等の混合液でもあってもよい。混合方法は、例えば、原料と溶媒とを所定量投入し、十分分散するまで撹拌機等で混合すればよい。
 次に加熱工程では、上記のようにして得られた混合液を、室温(25℃)下での相対湿度が20%以上60%以下で、温度100℃以上150℃以下、かつ加熱時間0.5時間以上1.5時間以下で加熱する。この工程を経ることで、アルコキシシラン化合物と、アルミナ粒子とが反応し、本実施形態に係る炭素含有アルミナ粉末が得られる。相対湿度が20%以上であると、アルミナ粒子の表面吸着水によってアルコキシシラン化合物が加水分解し、アルミナ表面のOH基と反応し易くなるという効果が得られる。また、温度が100℃以上であると、反応が進行し易いという効果が得られる。さらに、温度が150℃以下であると、反応前にアルコキシシランの沸点に到達せず、反応量の低下を抑制できるという効果が得られる。
 得られた炭素含有アルミナ粒子をそのまま、本実施形態に係る炭素含有アルミナ粉末としてもよい。あるいは、得られた炭素含有アルミナ粒子に対して、分級処理、篩分処理等をすることで、本実施形態に係る炭素含有アルミナ粉末を得ることもできる。
[樹脂組成物及びその製造方法]
 本実施形態に係る樹脂組成物は、少なくとも、樹脂と、本実施形態に係る炭素含有アルミナ粉末とを含む。本実施形態に係る樹脂組成物は、上記炭素含有アルミナ粉末を含むことにより、増粘を抑制できると共に高い熱伝導性を有し、しかもその樹脂組成物から得られる放熱部品のような成形品の被着物への密着性を良好にすることが可能となる。
(樹脂)
 樹脂としては、熱可塑性樹脂及びそのオリゴマー、エラストマー類等の種々の高分子化合物を用いることでき、例えば、エポキシ樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、ウレタン樹脂、アクリル樹脂、及びフッ素樹脂;ポリイミド、ポリアミドイミド、及びポリエーテルイミド等のポリアミド;ポリブチレンテレフタレート、及びポリエチレンテレフタレート等のポリエステル;ポリフェニレンスルフィド、芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS(アクリロニトリル・ブタジエン・スチレン)樹脂、AAS(アクリロニトリル・アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム・スチレン)樹脂、EVA(エチレン酢酸ビニル共重合体)樹脂、及びシリコーン樹脂等を用いることができる。これらの樹脂は、1種単独で、又は2種以上を適宜混合して用いることができる。
 これらの樹脂の中でも、耐熱温度や強度及び硬化後の硬度の点から、エポキシ樹脂、フェノール樹脂、ウレタン樹脂、アクリル樹脂、フッ素樹脂、ポリイミド、ポリフェニレンスルフィド、ポリカーボネート、ABS樹脂、及びシリコーン樹脂が好ましく、シリコーン樹脂、エポキシ樹脂、ウレタン樹脂、及びアクリル樹脂がより好ましく、シリコーン樹脂が更に好ましい。
 シリコーン樹脂としては、メチル基及びフェニル基などの有機基を有する一液型または二液型付加反応型液状シリコーンから得られるゴム又はゲルを用いることが好ましい。このようなゴム又はゲルとしては、例えば、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製の「YE5822A液/YE5822B液」、及び東レ・ダウコーニング社製の「SE1885A液/SE1885B液」などを挙げることができる。
(炭素含有アルミナ粉末の配合量)
 本実施形態の樹脂組成物において、充填するフィラーの特性発現の点から、その樹脂組成物の全量に対して、本実施形態に係る炭素含有アルミナ粉末の含有量が30質量%以上97質量%以下であることが好ましく、50質量%以上95質量%以下であることがより好ましい。本実施形態に係る炭素含有アルミナ粉末は、樹脂に充填しても増粘し難いので、上記の範囲内で樹脂組成物中に含まれても、樹脂組成物の増粘を抑制することが可能である。また、炭素含有アルミナ粉末の含有量が50質量%以上であると、良好な高熱伝導化及び被着物への密着性を実現できる樹脂組成物及び放熱部品を得ることが容易になる傾向にあり、95質量%以下であると、炭素含有アルミナ粉末を結着する樹脂分を確保でき、放熱部品により好適に用いることができる。
 本実施形態の樹脂組成物において、充填するフィラーの特性発現の点から、その樹脂組成物の全量に対して、本実施形態に係る樹脂の含有量が3質量%以上70質量%以下であることが好ましく、5質量%以上50質量%以下であることがより好ましい。
(その他の成分)
 本実施形態の樹脂組成物には、本実施形態の特性が損なわれない範囲において、本実施形態に係る炭素含有アルミナ粉末及び樹脂以外に、必要に応じて、溶融シリカ、結晶シリカ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化珪素、窒化アルミニウム、窒化ホウ素、ベリリア、及びジルコニア等の無機充填材;メラミン及びベンゾグアナミン等の窒素含有化合物、オキサジン環含有化合物、及びリン系化合物のホスフェート化合物、芳香族縮合リン酸エステル、及び含ハロゲン縮合リン酸エステル等の難燃性の化合物;添加剤等を含んでもよい。添加剤としては、マレイン酸ジメチル等の反応遅延剤、硬化剤、硬化促進剤、難燃助剤、難燃剤、着色剤、粘着付与剤、紫外線吸収剤、酸化防止剤、蛍光増白剤、光増感剤、増粘剤、滑剤、消泡剤、表面調整剤、光沢剤、及び重合禁止剤等が挙げられる。これらの成分は、1種単独で、又は2種以上を適宜混合して用いることができる。本実施形態の樹脂組成物において、その他の成分の含有率は、通常、それぞれ0.1質量%以上5.0質量%以下である。
(樹脂組成物の製造方法)
 本実施形態の樹脂組成物の製造方法は、例えば、樹脂と、炭素含有アルミナ粉末と、必要に応じてその他の成分を十分に攪拌して得る方法が挙げられる。本実施形態の樹脂組成物は、例えば、各成分の所定量を、ブレンダー及びヘンシェルミキサー等によりブレンドした後、加熱ロール、ニーダー、及び一軸又は二軸押し出し機等によって混練し、冷却後、粉砕することによって製造することができる。
[放熱部品]
 本実施形態に係る放熱部品は、本実施形態に係る炭素含有アルミナ粉末、又は樹脂組成物を含む。本実施形態に係る放熱部品は、上記炭素含有アルミナ粉末又は樹脂組成物を用いることで、高い熱伝導性を実現できる、すなわち、高い放熱性を有することができる。さらに、本実施形態に係る放熱部品は、上記炭素含有アルミナ粉末又は樹脂組成物を用いることで、被着物への密着性を良好にすることができる。本実施形態に係る放熱部品中の炭素含有アルミナ粉末の含有率は、より高い熱伝導性及び被着物への密着性を実現できる点から、30体積%以上85体積%以下であることが好ましく、40体積%以上83体積%以下であることがより好ましい。放熱部品としては、例えば、放熱シート、放熱グリース、放熱スペーサー、半導体封止材、放熱塗料(放熱コート剤)、放熱ポッティング剤、放熱ギャップフィラー等が挙げられる。
 以下に実施例及び比較例を示し、本発明を詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
〔評価方法〕
(1)炭素含有アルミナ粉末の平均球形度
 上記の顕微鏡法のとおり、走査型電子顕微鏡(SEM)(日本電子社製JSM-6301F型)にて撮影した粒子像を画像解析装置(マウンテック社製「MacView」(商品名))に取り込み、写真から、実施例及び比較例にて得られた炭素含有アルミナ粒子のそれぞれの粒子(顕微鏡法による投影面積円相当径が1μm以上100μm以下)の投影面積(A)と周囲長(PM)を任意に200個測定した。それらの値を用いて、個々の粒子の球形度及びその割合を求め、また、個々の粒子の球形度の相加平均値を平均球形度とした。
(2)比表面積
 比表面積の測定は、BET法に基づく値であり、マウンテック社製比表面積測定機「Macsorb HM model-1208(商品名)」を用い、実施例及び比較例で得られた炭素含有アルミナ粒子のそれぞれ1.0gを用い、BET一点法にて、比表面積(m2/g)を測定した。なお、測定に先立ち、前処理として、実施例及び比較例にて得られた炭素含有アルミナ粒子のそれぞれについて、窒素ガス雰囲気中で300℃、及び5分間加熱を行った。また、BET測定において、吸着ガスには、窒素30%、及びヘリウム70%の混合ガスを用い、本体流量計の指示値が25ml/minになるように流量を調整した。
(3)炭素含有アルミナ粉末中における炭素含有率Aと炭素含有率Bとの比B/A
 まず、炭素/硫黄同時分析計(LECO社製CS-444LS型(商品名))を用いて、炭素含有アルミナ粉末中における炭素量を測定し、検量線法にて、炭素含有率Aを定量した。具体的には、炭素含有量が既知の炭素鋼を標準物質として検量線を求めた後、実施例及び比較例で得られた炭素含有アルミナ粉末のそれぞれを鉄粉や助燃材であるタングステン粉末と共に、酸素雰囲気下で、アルコキシシラン化合物が完全に分解し、全炭素がCO2に変換されるまで酸化燃焼し、生成したCO2量を赤外検出器で測定して、炭素含有率Aを求めた。
 続いて、実施例及び比較例で得られた炭素含有アルミナ粉末のそれぞれ3gを、アセトン50mLを用いて室温(25℃)で5分間ずつ2回洗浄し、100℃で240分間保持し、アルミナ粉末を得た。炭素/硫黄同時分析計(LECO社製CS-444LS型(商品名))を用いて、このアルミナ粉末中における炭素量を測定し、検量線法にて、炭素含有率Bを定量した。検量線法の測定は、上記と同様の方法で行った。
 得られた炭素含有率Aと、炭素含有率Bとを用いて、比B/Aを算出した。
(4)質量比MSi/MC
 ケイ素原子と炭素原子との質量比MSi/MCは、実施例及び比較例にて得られた炭素含有アルミナ粒子のそれぞれの0.1gを、エネルギー分散型X線分析装置(EDX)(日立ハイテクノロジーズ社製卓上顕微鏡MiniscopeTM3030Plus)を用いて、加速電圧15kV、エネルギー範囲10~40keV、チャンネル数1024~4096、スペクトル収集20secの条件の範囲にて測定した際の、粒子表面のCとSiのカウント比よりそれぞれの質量比を算出して、質量比MSi/MCを求めた。
(5)粘度
 実施例及び比較例にて得られたそれぞれの炭素含有アルミナ粉末をシリコーンゴムA液(ビニル基含有ポリメチルシロキサン、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製YE5822A液(商品名))に、1日放置後の炭素含有アルミナ粉末(アルミナ粉末の充填率:87.9質量%)を投入し、撹拌機(東京理化器械社製NZ-1100(商品名))を用いて混合し、真空脱泡して組成物を得た。得られた組成物について、B型粘度計型(東機産業社製TVB-10(商品名))を用いて、粘度(Pa・s)を求めた。粘度測定は、No7スピンドルを使用し、回転数は20rpm、室温20℃で行った。
(6)熱伝導率
 シリコーンゴムA液(ビニル基含有ポリメチルシロキサン、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製YE5822A液(商品名))に、実施例及び比較例にて得られたそれぞれの炭素含有アルミナ粉末と、反応遅延剤(マレイン酸ジメチル、関東化学社製)と、シリコーンゴムB液(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製YE5822B液(商品名)、架橋剤等を含む)とを順に投入し、攪拌した後、脱泡処理をして、スラリー状試料を得た。なお、これらの配合比は、シリコーンゴムA液10体積部に、シリコーンゴムB液1体積部の割合で混合して得られたシリコーンゴム混合液100質量部に対して、0.01質量部の反応遅延剤を加えた液体に、実施例及び比較例にて得られたアルミナ粉末を加熱成形可能な最大充填量を加えることで算出され、表1に示される割合であった。
Figure JPOXMLDOC01-appb-T000001
 その後、得られたスラリー状試料を、直径28mm、及び厚さ3mmのくぼみの設けられた金型に流し込み、脱気後、150℃で20分で加熱成形した。得られた成形品を15mm×15mmの銅製ヒーターケースと銅板との間に挟み、締め付けトルク5kgf/cmにてセットした。その後、銅製ヒーターケースに15Wの電力をかけて4分間保持し、銅製ヒーターケースと銅板との温度差を測定し、下記の式にて熱抵抗を算出した。
 熱抵抗(℃/W)=銅製ヒーターケースと銅板との温度差(℃)/ヒーター電力(W)
 次いで、熱抵抗(℃/W)、伝熱面積[銅製ヒーターケースの面積](m2)、及び締め付けトルク5kgf/cm時の成形体厚(m)を用いて、下記の式から熱伝導率を算出した。すなわち、熱伝導率は、実施例及び比較例にて得られた炭素含有アルミナ粉末のそれぞれを加熱成形可能な最大充填量で充填したときの値である。なお、熱伝導率測定装置としては、アグネ社製ARC-TC-1型(商品名)を用いた。
 熱伝導率(W/m・K)=成形体厚(m)/{熱抵抗(℃/W)×伝熱面積(m2)}
〔実施例1〕
 アルコキシシラン化合物として、ヘキシルトリメトキシシラン(信越化学社製KBM-3063)0.5質量部と、メタノール0.5質量部と、水0.1質量部とをこの順に混合し、室温で2日攪拌して加水分解液を調製した。
 次いで、平均粒子径45μmアルミナ粉末(デンカ社製DAW-45(商品名)、顕微鏡法による投影面積円相当径が1μm以上100μm以下であるアルミナ粒子の平均球形度:0.90、比表面積:0.2m2/g)100質量部に対して、1.0質量部の加水分解液を添加後、混合機(日本アイリッヒ社製EL-1(商品名))で約5分間混合攪拌し、室温で1日放置した。
 その後、室温(25℃)下での相対湿度50%、温度140℃にて、1.0時間加熱処理を行い、炭素含有アルミナ粒子を含む炭素含有アルミナ粉末を得た。得られた炭素含有アルミナ粒子及び炭素含有アルミナ粉末の物性を評価した。その結果を表2に示す。
〔実施例2〕
 表2に記載のとおり、相対湿度、及び加熱温度を変更した以外は、実施例1と同様にして、炭素含有アルミナ粒子を含む炭素含有アルミナ粉末を得た。得られた炭素含有アルミナ粒子及び炭素含有アルミナ粉末の物性を評価した。その結果を表2に示す。
〔実施例3〕
 アルコキシシラン化合物として、ヘキシルトリメトキシシランの代わりに、N-デシルトリメトキシシラン(信越化学社製KBM-3103C(商品名))を用い、かつ、表2に示す相対湿度及び加熱温度に変更した以外は、実施例1と同様にして、炭素含有アルミナ粒子を含む炭素含有アルミナ粉末を得た。得られた炭素含有アルミナ粒子及び炭素含有アルミナ粉末の物性を評価した。その結果を表2に示す。
〔実施例4〕
 アルコキシシラン化合物として、ヘキシルトリメトキシシランの代わりに、ジメチルジメトキシシラン(信越化学社製KBM-22(商品名))を用い、かつ、表2に示す相対湿度及び加熱温度に変更した以外は、実施例1と同様にして、炭素含有アルミナ粒子を含む炭素含有アルミナ粉末を得た。得られた炭素含有アルミナ粒子及び炭素含有アルミナ粉末の物性を評価した。その結果を表2に示す。
〔実施例5〕
 アルミナ粉末として、デンカ社製DAW-45(商品名)に代えて、平均粒子径3μmアルミナ粉末(デンカ社製DAW-03(商品名)、顕微鏡法による投影面積円相当径が1μm以上100μm以下であるアルミナ粒子の平均球形度:0.90、比表面積:0.7m2/g)を用い、かつ、表2に示す相対湿度及び加熱温度に変更した以外、実施例1と同様にして、炭素含有アルミナ粒子を含む炭素含有アルミナ粉末を得た。得られた炭素含有アルミナ粒子及び炭素含有アルミナ粉末の物性を評価した。その結果を表2に示す。
〔実施例6〕
 アルミナ粉末として、デンカ社製DAW-45(商品名)に代えて、平均粒子径90μmアルミナ粉末(デンカ社製DAW-90(商品名)、顕微鏡法による投影面積円相当径が1μm以上100μm以下であるアルミナ粒子の平均球形度:0.90、比表面積:0.06m2/g)を用い、かつ、表2に示す相対湿度及び加熱温度に変更した以外は、実施例1と同様にして、炭素含有アルミナ粒子を含む炭素含有アルミナ粉末を得た。得られた炭素含有アルミナ粒子及び炭素含有アルミナ粉末の物性を評価した。その結果を表2に示す。
〔実施例7〕
 まず、日本軽金属(株)社製アルミナLS-21(商品名)をアーク炉で溶融、冷却、及び粉砕して電融アルミナ粉砕物を調製した。なお、粉砕処理はボールミルで行い、粉砕メディアにはアルミナボールを用いた。得られたアルミナ粉砕物を分級処理によりアルミナ粉末(平均粒子径:0.2μm、顕微鏡法による投影面積円相当径が1μm以上100μm以下であるアルミナ粒子の平均球形度:0.75、比表面積:0.2m2/g)を調製した。
 続いて、得られたアルミナ粉末と、平均粒子径45μmアルミナ粉末(デンカ社製DAW-45(商品名)、顕微鏡法による投影面積円相当径が1μm以上100μm以下であるアルミナ粒子の平均球形度:0.90、比表面積:0.2m2/g)と適宜混合し、アルミナ粉末を得た。このアルミナ粉末を用い、かつ、表2に示す相対湿度及び加熱温度に変更した以外は、実施例1と同様にして、炭素含有アルミナ粒子を含む炭素含有アルミナ粉末を得た。得られた炭素含有アルミナ粒子及び炭素含有アルミナ粉末の物性を評価した。その結果を表2に示す。
〔比較例1〕
 アルミナ粉末として、デンカ社製DAW-45(商品名)に代えて、平均粒子径120μmアルミナ粉末(デンカ社製DAW-120(商品名)、顕微鏡法による投影面積円相当径が1μm以上100μm以下であるアルミナ粒子の平均球形度:0.90、比表面積:0.03m2/g)を用い、かつ、表3に示す相対湿度及び加熱温度に変更した以外は、実施例1と同様にして、炭素含有アルミナ粒子を含む炭素含有アルミナ粉末を得た。得られた炭素含有アルミナ粒子及び炭素含有アルミナ粉末の物性を評価した。その結果を表3に示す。
〔比較例2〕
 アルミナ粉末として、デンカ社製DAW-45(商品名)に代えて、平均粒子径1μmアルミナ粉末(デンカ社製DAW-01(商品名)、顕微鏡法による投影面積円相当径が1μm以上100μm以下であるアルミナ粒子の平均球形度:0.90、比表面積:1.2m2/g)を用い、かつ、表3に示す相対湿度及び加熱温度に変更した以外は、実施例1と同様にして、炭素含有アルミナ粒子を含む炭素含有アルミナ粉末を得た。得られた炭素含有アルミナ粒子及び炭素含有アルミナ粉末の物性を評価した。その結果を表3に示す。
〔比較例3〕
 まず、日本軽金属(株)社製アルミナLS-21(商品名)をアーク炉で溶融、冷却、及び粉砕して電融アルミナ粉砕物を調製した。なお、粉砕処理はボールミルで行い、粉砕メディアにはアルミナボールを用いた。得られたアルミナ粉砕物を分級処理によりアルミナ粉末(平均粒子径:0.2μm、顕微鏡法による投影面積円相当径が1μm以上100μm以下であるアルミナ粒子の平均球形度:0.75、比表面積:0.2m2/g)を調製した。
 続いて、得られたアルミナ粉末と、平均粒子径45μmアルミナ粉末(デンカ社製DAW-45(商品名)、顕微鏡法による投影面積円相当径が1μm以上100μm以下であるアルミナ粒子の平均球形度:0.90、比表面積:0.2m2/g)と適宜混合し、アルミナ粉末を得た。このアルミナ粉末を用い、かつ、表3に示す相対湿度及び加熱温度に変更した以外は、実施例1と同様にして、炭素含有アルミナ粒子を含む炭素含有アルミナ粉末を得た。得られた炭素含有アルミナ粒子及び炭素含有アルミナ粉末の物性を評価した。その結果を表3に示す。
〔比較例4〕
 相対湿度を50%から15%に変更した以外は、実施例1と同様にして、炭素含有アルミナ粒子を含む炭素含有アルミナ粉末を得た。得られた炭素含有アルミナ粒子及び炭素含有アルミナ粉末の物性を評価した。その結果を表3に示す。
〔比較例5〕
 相対湿度を50%から70%に変更した以外は、実施例1と同様にして、炭素含有アルミナ粒子を含む炭素含有アルミナ粉末を得た。得られた炭素含有アルミナ粒子及び炭素含有アルミナ粉末の物性を評価した。その結果を表3に示す。
〔比較例6〕
 加熱温度を140℃から80℃に変更した以外は、実施例1と同様にして、炭素含有アルミナ粒子を含む炭素含有アルミナ粉末を得た。得られた炭素含有アルミナ粒子及び炭素含有アルミナ粉末の物性を評価した。その結果を表3に示す。
〔比較例7〕
 加熱温度を140℃から170℃に変更した以外は、実施例1と同様にして、炭素含有アルミナ粒子を含む炭素含有アルミナ粉末を得た。得られた炭素含有アルミナ粒子及び炭素含有アルミナ粉末の物性を評価した。その結果を表3に示す。
〔比較例8〕
 加熱時間を1.0時間から0.3時間に変更した以外は、実施例1と同様にして、炭素含有アルミナ粒子を含む炭素含有アルミナ粉末を得た。得られた炭素含有アルミナ粒子及び炭素含有アルミナ粉末の物性を評価した。その結果を表3に示す。
〔比較例9〕
 加熱時間を1.0時間から2.0時間に変更した以外は、実施例1と同様にして、炭素含有アルミナ粒子を含む炭素含有アルミナ粉末を得た。得られた炭素含有アルミナ粒子及び炭素含有アルミナ粉末の物性を評価した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本出願は、2020月3月31日出願の日本特許出願(特願2020-064175)に基づくものであり、その内容はここに参照として取り込まれる 。
 本実施形態に係る炭素含有アルミナ粉末、及びこのアルミナ粉末を用いた樹脂組成物は、種々の用途に適用できるが、放熱シート、放熱グリース、放熱スペーサー、半導体封止材、放熱塗料(放熱コート剤)、放熱ポッティング剤、放熱ギャップフィラー等の放熱部品に好適である。また、これらの放熱部品は、パソコン、自動車、携帯電子機器、及び家庭用電化製品等に好適に使用できる。

Claims (5)

  1.  顕微鏡法による投影面積円相当径が1μm以上100μm以下である炭素含有アルミナ粒子を含む炭素含有アルミナ粉末であって、前記炭素含有アルミナ粒子の平均球形度が、0.85以上であり、かつ、比表面積が0.05m2/g以上1.0m2/g以下であり、かつ、
     下記の測定方法を用いて算出された、前記炭素含有アルミナ粉末中の炭素含有率Aに対する炭素含有率Bの比B/Aが、0.20以上0.90以下である、炭素含有アルミナ粉末。(測定方法)
     前記炭素含有アルミナ粉末中の前記炭素含有率Aと、前記炭素含有アルミナ粉末3gをアセトン50mLを用いて室温で5分間ずつ2回洗浄し、100℃で240分間保持した後の前記アルミナ粉末中の前記炭素含有率Bとを用いて、前記比B/Aを算出する。各前記炭素含有率は、炭素/硫黄同時分析計によって測定された値である。
  2.  ケイ素原子と炭素原子とを含み、前記ケイ素原子の質量MSiと前記炭素原子の質量MCとの比MSi/MCが0.1以上1.2以下である、請求項1に記載の炭素含有アルミナ粉末。
  3.  樹脂と、請求項1又は2に記載の炭素含有アルミナ粉末とを含む、樹脂組成物。
  4.  請求項1若しくは2に記載の炭素含有アルミナ粉末、又は請求項3に記載の樹脂組成物を含む、放熱部品。
  5.  請求項1又は2に記載の炭素含有アルミナ粉末の製造方法であって、
     アルコキシシラン化合物と、アルミナ粉末とを混合する工程と、
     室温下での相対湿度20%以上60%以下、温度100℃以上150℃以下、かつ加熱時間0.5時間以上1.5時間以下で加熱する工程とを有する、炭素含有アルミナ粉末の製造方法。
     
PCT/JP2021/012295 2020-03-31 2021-03-24 炭素含有アルミナ粉末、樹脂組成物、放熱部品、及び炭素含有アルミナ粉末の製造方法 WO2021200486A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/915,368 US20230150830A1 (en) 2020-03-31 2021-03-24 Carbon-containing alumina powder, resin composition, heat dissipation component, and method for producing carbon-containing alumina powder
EP21778936.1A EP4129909A4 (en) 2020-03-31 2021-03-24 CARBON ALUMINUM OXIDE POWDER, RESIN COMPOSITION, HEAT DISSIPATION COMPONENT AND METHOD FOR PRODUCING CARBON ALUMINUM OXIDE POWDER
JP2022512028A JPWO2021200486A1 (ja) 2020-03-31 2021-03-24
CN202180024848.6A CN115348951B (zh) 2020-03-31 2021-03-24 含碳氧化铝粉末、树脂组合物、散热部件以及含碳氧化铝粉末的制造方法
KR1020227037416A KR20220160065A (ko) 2020-03-31 2021-03-24 탄소 함유 알루미나 분말, 수지 조성물, 방열 부품, 및 탄소 함유 알루미나 분말의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020064175 2020-03-31
JP2020-064175 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021200486A1 true WO2021200486A1 (ja) 2021-10-07

Family

ID=77927307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012295 WO2021200486A1 (ja) 2020-03-31 2021-03-24 炭素含有アルミナ粉末、樹脂組成物、放熱部品、及び炭素含有アルミナ粉末の製造方法

Country Status (6)

Country Link
US (1) US20230150830A1 (ja)
EP (1) EP4129909A4 (ja)
JP (1) JPWO2021200486A1 (ja)
KR (1) KR20220160065A (ja)
TW (1) TW202140675A (ja)
WO (1) WO2021200486A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4206299A1 (en) * 2021-12-31 2023-07-05 Tianjin Laird Technologies Limited Novel low oil bleeding thermal gap pad material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09296114A (ja) 1996-04-30 1997-11-18 Denki Kagaku Kogyo Kk シリコーンゴム組成物およびその用途
JPH11209618A (ja) 1998-01-27 1999-08-03 Matsushita Electric Works Ltd 熱伝導性シリコーンゴム組成物
JP2000001616A (ja) 1998-06-17 2000-01-07 Shin Etsu Chem Co Ltd 熱伝導性シリコーンゴム組成物及びその製造方法
JP2003201116A (ja) * 2001-10-10 2003-07-15 Showa Denko Kk アルミナ粒、アルミナ粒の製造方法、アルミナ粒を含む組成物
JP2012020900A (ja) * 2010-07-14 2012-02-02 Denki Kagaku Kogyo Kk 球状アルミナ粉末、その製造方法及び用途
JP2014122364A (ja) * 2014-03-20 2014-07-03 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物、このエポキシ樹脂組成物が使用された半導体装置、有機修飾無機充填材、エポキシ樹脂組成物の製造方法
JP2017508701A (ja) * 2014-01-21 2017-03-30 サソール・パーフオーマンス・ケミカルズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング アルミナ組成物およびその製造法
JP2018095496A (ja) * 2016-12-12 2018-06-21 日本アエロジル株式会社 表面処理無機酸化物粉末及びその表面処理方法
JP2020064175A (ja) 2018-10-17 2020-04-23 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09296114A (ja) 1996-04-30 1997-11-18 Denki Kagaku Kogyo Kk シリコーンゴム組成物およびその用途
JPH11209618A (ja) 1998-01-27 1999-08-03 Matsushita Electric Works Ltd 熱伝導性シリコーンゴム組成物
JP2000001616A (ja) 1998-06-17 2000-01-07 Shin Etsu Chem Co Ltd 熱伝導性シリコーンゴム組成物及びその製造方法
JP2003201116A (ja) * 2001-10-10 2003-07-15 Showa Denko Kk アルミナ粒、アルミナ粒の製造方法、アルミナ粒を含む組成物
JP2012020900A (ja) * 2010-07-14 2012-02-02 Denki Kagaku Kogyo Kk 球状アルミナ粉末、その製造方法及び用途
JP2017508701A (ja) * 2014-01-21 2017-03-30 サソール・パーフオーマンス・ケミカルズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング アルミナ組成物およびその製造法
JP2014122364A (ja) * 2014-03-20 2014-07-03 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物、このエポキシ樹脂組成物が使用された半導体装置、有機修飾無機充填材、エポキシ樹脂組成物の製造方法
JP2018095496A (ja) * 2016-12-12 2018-06-21 日本アエロジル株式会社 表面処理無機酸化物粉末及びその表面処理方法
JP2020064175A (ja) 2018-10-17 2020-04-23 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4206299A1 (en) * 2021-12-31 2023-07-05 Tianjin Laird Technologies Limited Novel low oil bleeding thermal gap pad material
JP7478805B2 (ja) 2021-12-31 2024-05-07 ティエンジン レアード テクノロジーズ リミテッド 新規な低オイルブリードサーマルギャップパッド材料

Also Published As

Publication number Publication date
TW202140675A (zh) 2021-11-01
EP4129909A1 (en) 2023-02-08
CN115348951A (zh) 2022-11-15
EP4129909A4 (en) 2023-09-27
JPWO2021200486A1 (ja) 2021-10-07
KR20220160065A (ko) 2022-12-05
US20230150830A1 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
US6054520A (en) Heat conductive BN filler and electrically insulating/heat dissipating sheet
JP5089908B2 (ja) 高熱伝導性樹脂コンパウンド・高熱伝導性樹脂成形体・放熱シート用配合粒子、高熱伝導性樹脂コンパウンド・高熱伝導性樹脂成形体・放熱シート、および、その製造方法
JP5867426B2 (ja) 窒化ホウ素粉末の製造方法
US10144816B2 (en) Spherical alumina powder and resin composition using same
JP6183319B2 (ja) 熱伝導性シリコーン組成物及び熱伝導性シート
WO2020241716A1 (ja) アルミナ粉末、樹脂組成物、放熱部品、及び被覆アルミナ粒子の製造方法
WO2021200491A1 (ja) アルミナ粉末、樹脂組成物、及び放熱部品
WO2019230969A1 (ja) 放熱組成物、放熱部材、及び放熱部材用フィラー集合体
EP3048133A1 (en) Curable resin composition, cured product thereof, and semiconductor device using the same
EP2957601A1 (en) Resin composition and method for producing same, and highly thermally conductive resin molded article
CN109153811B (zh) 铝产品及其在具有高热导率的聚合物组合物中的用途
US20230416501A1 (en) Hydrophobic aluminum nitride powder and method for producing the same
WO2021200486A1 (ja) 炭素含有アルミナ粉末、樹脂組成物、放熱部品、及び炭素含有アルミナ粉末の製造方法
EP4215488A1 (en) Magnesium oxide powder, filler composition, resin composition and heat dissipating component
WO2021200490A1 (ja) アルミナ粉末、樹脂組成物、及び放熱部品
JP5795168B2 (ja) 熱伝導性樹脂組成物及び半導体パッケージ
WO2022075434A1 (ja) 熱伝導性シリコーン組成物および熱伝導性部材
JP5323432B2 (ja) 熱伝導用成形体
CN115348951B (zh) 含碳氧化铝粉末、树脂组合物、散热部件以及含碳氧化铝粉末的制造方法
KR102400549B1 (ko) 방열 패드용 열전도성 조성물 및 이를 포함하는 방열 패드
WO2020077031A1 (en) Highly conductive additives to reduce settling
WO2024057678A1 (ja) 熱伝導性組成物
JP2014166929A (ja) 金属珪素粉末、及びこれを用いた樹脂組成物
EP4215486A1 (en) Magnesium oxide powder, filler composition, resin composition, and heat dissipating component
WO2023157683A1 (ja) 被覆マグネシア粒子、放熱材用フィラー、樹脂組成物、及び被覆マグネシア粒子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21778936

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512028

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227037416

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021778936

Country of ref document: EP

Effective date: 20221031