WO2023157683A1 - 被覆マグネシア粒子、放熱材用フィラー、樹脂組成物、及び被覆マグネシア粒子の製造方法 - Google Patents

被覆マグネシア粒子、放熱材用フィラー、樹脂組成物、及び被覆マグネシア粒子の製造方法 Download PDF

Info

Publication number
WO2023157683A1
WO2023157683A1 PCT/JP2023/003661 JP2023003661W WO2023157683A1 WO 2023157683 A1 WO2023157683 A1 WO 2023157683A1 JP 2023003661 W JP2023003661 W JP 2023003661W WO 2023157683 A1 WO2023157683 A1 WO 2023157683A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesia particles
coated
particles
silicone oil
magnesia
Prior art date
Application number
PCT/JP2023/003661
Other languages
English (en)
French (fr)
Inventor
利輝 廣田
淳一 中園
将太朗 田上
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Publication of WO2023157683A1 publication Critical patent/WO2023157683A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present disclosure relates to coated magnesia particles, fillers for heat dissipating materials, resin compositions, and methods for producing coated magnesia particles.
  • Alumina fillers are widely used in heat dissipating materials, but magnesia fillers are expected to be used as fillers for heat dissipating materials because of their extremely high thermal conductivity.
  • Patent Document 1 discloses a method of treating the surface of magnesia particles with a surface treatment agent containing silicone oil for the purpose of improving the moisture resistance of magnesia.
  • the surface-treated magnesium oxide obtained by the method of Patent Document 1 cannot be said to have sufficient thermal conductivity and moisture resistance, and there is room for improvement.
  • one aspect of the present disclosure aims to provide coated magnesia particles that can achieve both high thermal conductivity and high moisture resistance.
  • the present disclosure provides the following [1] to [10].
  • a coated magnesia particle comprising a magnesia particle and a coating layer covering at least a portion of the surface of the magnesia particle, wherein the coating layer contains a heat-modified silicone oil, and is determined by a nitric acid titration method.
  • Coated magnesia particles having a pH value of 5.0 or less, as measured potentiometrically.
  • a filler for a heat dissipating material containing the coated magnesia particles according to any one of [1] to [3].
  • coated magnesia particles capable of achieving both high thermal conductivity and high moisture resistance can be provided.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of coated magnesia particles.
  • the numerical range indicated using “-” indicates the range including the numerical values before and after “-” as the minimum and maximum values, respectively.
  • the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples.
  • the upper limit value and the lower limit value described individually can be combined arbitrarily.
  • An embodiment of the present disclosure is a coated magnesia particle comprising a magnesia particle and a coating layer covering at least part of the surface of the magnesia particle, wherein the coating layer contains a heat-modified silicone oil,
  • the coated magnesia particles have a pH value of 5.0 or less as measured by potentiometric measurement by nitric acid titration.
  • the coated magnesia particles in addition to having the specific coating layer, have a low pH value as described above, so that they have higher thermal conductivity and higher moisture resistance (humidity resistance reliability). is expressed. Therefore, according to the coated magnesia particles, both high thermal conductivity and high moisture resistance can be achieved.
  • the coated magnesia particles having a low pH value as described above when used as a filler, improve the moisture resistance of the resin composition (for example, the shape retention of a molded product formed from the resin composition in a moisture-resistant environment). performance) can be improved.
  • the pH value of the coated magnesia particles may be 4.0 or less or 3.5 or less from the viewpoint of achieving both high thermal conductivity and high humidity resistance to a higher degree and from the viewpoint of further improving the humidity resistance of the resin composition.
  • the pH value of the coated magnesia particles may be 2.9 or more or 3.0 or more from the viewpoint of achieving both high thermal conductivity and high humidity resistance to a higher degree and from the viewpoint of further improving the humidity resistance of the resin composition.
  • the pH value of the coated magnesia particles may be, for example, 2.9 to 5.0, 3.0 to 4.0, or 3.0 to 3.5.
  • Coated magnesia particles having a low pH value as described above can be obtained, for example, by using magnesia particles with a pH value of 5.0 or less, or by using heavy-burnt magnesia fired in a temperature range of 800 ° C. or higher. It can be obtained by
  • the pH value in this specification means the pH value measured by potentiometric measurement by the nitric acid titration method, and specifically means the value measured by the following method.
  • a measurement sample magnesia particles, coated magnesia particles, etc.
  • a stirrer to prepare a suspension.
  • an automatic titrator for example, model number: AT-710 manufactured by Kyoto Electronics Industrial Co., Ltd.
  • a 0.1 M nitric acid aqueous solution is added dropwise to the suspension (100 mL) at a rate of 0.1 mL/min.
  • Magnesia particles are particles containing magnesia (magnesium oxide).
  • the content of magnesia in the magnesia particles is, for example, 90% by mass or more.
  • the magnesia particles may be particles consisting essentially of magnesia.
  • the phrase "substantially composed of magnesia" means that components other than impurities that are inevitably contained are magnesia (for example, the content of magnesia is 99% by mass or more).
  • the average particle size of the magnesia particles may be, for example, 25 ⁇ m or more, 50 ⁇ m or more, or 70 ⁇ m or more, and may be 150 ⁇ m or less, 130 ⁇ m or less, or 100 ⁇ m or less, and may be 25 ⁇ m to 150 ⁇ m, 50 ⁇ m to 130 ⁇ m, or 70 ⁇ m to 100 ⁇ m. you can
  • the average particle size in the present specification is a value determined as the average particle size (D50) of particles by mass-based particle size distribution measurement by a laser diffraction light scattering method (for example, using “MT3300EXII” manufactured by Microtrack Bell Co., Ltd.).
  • a laser diffraction light scattering method for example, using “MT3300EXII” manufactured by Microtrack Bell Co., Ltd.
  • Mean For measurement 0.6 g of particles and 60 mL of water are mixed in an autosampler, and as a pretreatment, an output of 200 W is applied for 60 seconds for dispersion treatment (for example, Tomy Seiko Co., Ltd. "Ultrasonic generator UD-200 (Equipped with a small amount of chip TP-040)").
  • the pH value of the magnesia particles is, for example, 5.0 or less, and may be 4.5 or less, or 4.0 or less, from the viewpoint that the pH value of the coated magnesia particles is likely to be 5.0 or less.
  • the pH value of the magnesia particles may be 2.9 or higher, 3.0 or higher, or 3.1 or higher, between 2.9 and 5.0, between 3.0 and 4.5, or between 3.1 and 4.0. can be
  • Magnesia particles having the above pH value can be produced, for example, by a method of firing at a high temperature range of 800°C or higher in order to suppress surface activity. Magnesia particles having the above pH value are also commercially available. Commercially available products include, for example, “DMG-120”, “DMG-60” and “DMG-50” manufactured by Denka Co., Ltd.
  • the shape of the magnesia particles is preferably spherical.
  • the spherical shape is not limited to a true spherical shape, and means that the degree of sphericity is 0.80 or more.
  • the sphericity is a value obtained by A/B, where the projected area (A) of the particle is the area (B) of the perfect circle corresponding to the perimeter (PM).
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of coated magnesia particles.
  • 1 in FIG. 1 indicates coated magnesia particles
  • 2 in FIG. 1 indicates magnesia particles
  • 3 in FIG. 1 indicates a coating layer.
  • the surface of the magnesia particles may have a region on which no coating layer exists, but as shown in FIG. 1, it is preferable that the entire surface of the magnesia particles is covered with the coating layer.
  • the coating layer is, for example, a layer obtained by heat-treating a film containing silicone oil (for example, a film formed from a composition containing silicone oil), and contains at least a heat-modified silicone oil.
  • the coating layer may be a single layer containing a heat-denatured silicone oil, or may be a multilayer having a plurality of layers containing a heat-denatured silicone oil.
  • the heat-modified silicone oil may exist throughout the coating layer.
  • a thermally denatured product of silicone oil can also be said to be, for example, an aggregate containing a plurality of compounds (decomposed products and crosslinked products thereof) formed by decomposing and crosslinking silicone contained in silicone oil by heating.
  • the heat-denatured product may be bound to the magnesia grains by, for example, hydrogen bonding.
  • Silicone oil refers to an oily polymer (silicone) having a main skeleton of siloxane bonds (Si--O--Si). Silicone, which constitutes silicone oil, is generally a linear polymer.
  • the silicone oil preferably contains a silicone having a structural unit represented by the following formula (1) from the viewpoint of obtaining coated magnesia particles having superior moisture resistance.
  • R 1 and R 2 each independently represent an alkyl group having 1 to 9 carbon atoms or a hydrogen atom, and at least one of R 1 and R 2 is an alkyl group.
  • the number of carbon atoms in the alkyl group is preferably 1-6, more preferably 1.
  • the alkyl group may be an aliphatic alkyl group or an aromatic alkyl group. Aliphatic alkyl groups can be either acyclic or cyclic. Acyclic aliphatic alkyls may be straight or branched. Specific examples of alkyl groups include methyl and phenyl groups.
  • the silicone having the structural unit represented by formula (1) may contain the structural unit as a main structural unit (for example, 60% by mass or more of the total).
  • silicone oils examples include dimethylsilicone oil, methylhydrogensilicone oil, and methylphenylsilicone oil.
  • a commercially available product can be used as the silicone oil.
  • "KF-96", “KF-96SP”, “KF-96-100CS", “KF-96-10CS”, “KF-96-50CS” manufactured by Shin-Etsu Chemical Co., Ltd., "KF-96-100CS", “KF-96L-1CS”, “KF-96L-0.65CS”, “KF-96L-1.5CS”, “KF-99", "KF-965", “KF -965SP", “KF-968", "KF-995", "KF-50", “KF-54”, “HIVAC F-4”, “HIVAC F-5", “KF-56", “KF -56A” (both are trade names), etc. can be used.
  • the viscosity (kinetic viscosity) of silicone oil is, for example, 0.1 mm 2 /s to 500 mm 2 /s at 25°C.
  • the viscosity of the silicone oil is a value determined by measuring the time it takes for the silicone oil to drop through a capillary using an Ostwald viscometer or the like.
  • the average particle size of the coated magnesia particles is preferably 30 ⁇ m to 155 ⁇ m from the viewpoint of achieving both high thermal conductivity and high humidity resistance and improving dispersibility in resin. From the same point of view, the average particle size of the coated magnesia particles may be 40 ⁇ m or more or 45 ⁇ m or more, 150 ⁇ m or less or 145 ⁇ m or less, or 40 ⁇ m to 150 ⁇ m or 45 ⁇ m to 145 ⁇ m.
  • the coated magnesia particles may further comprise another coating layer (a layer that does not contain heat-modified silicone oil) on the coating layer or between the coating layer and the magnesia particles.
  • another coating layer a layer that does not contain heat-modified silicone oil
  • coated magnesia particles are suitable for use as a filler for heat dissipating materials because they can achieve both high thermal conductivity and moisture resistance. That is, another embodiment of the present disclosure is a filler for a heat dissipating material containing the coated magnesia particles.
  • the heat dissipating filler may contain only the coated magnesia particles, or may further contain other particles in addition to the coated magnesia particles.
  • examples of other particles include alumina particles, silica particles, boron nitride particles, silicon nitride particles, and the like.
  • the content of the coated magnesia particles may be, for example, 10% by volume or more, 30% by volume or more, or 50% by volume or more, and 90% by volume or less, 80% by volume or less, or 70% by volume, based on the total amount of the heat dissipating filler. % or less, and may be from 10% to 90%, from 30% to 80%, or from 50% to 70% by volume.
  • the coated magnesia particles may be used in a state of being mixed with resin, for example. That is, another embodiment of the present disclosure is a resin composition containing the above coated magnesia particles and a resin.
  • the resin composition may further contain other particles as described above.
  • the resin composition may be a resin composition for heat dissipation materials.
  • resins examples include silicone resins, epoxy resins, acrylic resins, phenolic resins, melamine resins, urea resins, polyester resins, fluorine resins, polyimide resins, polyamideimide resins, polyetherimide resins, polycarbonate resins, ABS (acrylonitrile-butadiene rubber/styrene) resin, AAS (acrylonitrile/acrylic rubber/styrene) resin, AES (acrylonitrile/ethylene/propylene/diene rubber/styrene) resin, and the like.
  • the content of the resin may be 5% by volume or more, 10% by volume or more, or 20% by volume or more, and is 50% by volume or less, 40% by volume or less, or 30% by volume or less, based on the total amount of the resin composition. Often 5% to 50%, 10% to 40%, or 20% to 30% by volume.
  • the content of the coated magnesia particles may be 20% by volume or more, 30% by volume or more, or 40% by volume or more, and may be 80% by volume or less, 70% by volume or less, or 60% by volume or less, based on the total amount of the resin composition. 20% to 80%, 30% to 70%, or 40% to 60% by volume.
  • One embodiment of the present disclosure includes a step of applying a coating liquid containing silicone oil to the surfaces of magnesia particles (coating step), and a step of heat-treating the magnesia particles coated with the coating liquid (heat treatment step).
  • a method for producing coated magnesia particles comprising: According to this method, the coated magnesia particles described above are obtained.
  • a coating liquid containing magnesia particles and silicone oil is prepared. Since the magnesia particles and silicone oil in the raw material are the same as the magnesia particles and silicone oil in the coated magnesia particles described above, details thereof are omitted.
  • a coating liquid containing silicone oil is applied to the surface of the magnesia particles.
  • the coating method is not particularly limited, and may be, for example, a method of adding and mixing a coating liquid containing silicone oil to magnesia particles (aggregates).
  • the coating liquid containing silicone oil and the magnesia particles may be mixed using a known stirring device. During or after stirring, defoaming treatment may be performed as necessary.
  • the stirring time may be, for example, 1 minute or more and 1 hour or less.
  • the amount of coating liquid containing silicone oil used may be set according to the amount of silicone oil used.
  • the amount of silicone oil used may be 0.1 parts by mass or more, 0.5 parts by mass or more, with respect to a total of 100 parts by mass of magnesia particles and silicone oil. It may be 1.0 parts by mass or more, 3.0 parts by mass or more, or 4.0 parts by mass or more. From the viewpoint of obtaining higher thermal conductivity, the amount of silicone oil used may be 15.0 parts by mass or less, 13.0 parts by mass or less, with respect to a total of 100 parts by mass of magnesia particles and silicone oil.
  • It may be 10.0 parts by mass or less, 7.5 parts by mass or less, 5.0 parts by mass or less, 3.0 parts by mass or less, or 2.0 parts by mass or less.
  • the amount of silicone oil used is, for example, 0.1 parts by mass to 15.0 parts by mass, 0.5 parts by mass to 13.0 parts by mass, and 1.0 part by mass with respect to a total of 100 parts by mass of magnesia particles and silicone oil. Parts by mass to 10.0 parts by mass, 1.0 parts by mass to 5.0 parts by mass, 1.0 parts by mass to 3.0 parts by mass, 3.0 parts by mass to 7.5 parts by mass, or 3.0 parts by mass parts to 5.0 parts by mass.
  • the heat treatment step can also be called a baking treatment step. Thereby, a coating layer is formed on the surface of the magnesia particles.
  • the temperature of the heat treatment is preferably 250° C. or higher, more preferably 300° C., from the viewpoint that a coating layer can be formed more uniformly on the surface of the magnesia particles by sufficiently heat-modifying the silicone oil. °C or higher, more preferably 350°C or higher.
  • the treatment temperature is 600° C. or lower, and may be 500° C. or lower or 450° C. or lower, from the viewpoint of suppressing the sintering of the magnesia particles from decreasing the sphericity of the particles. From these points of view, the treatment temperature may be, for example, 250°C to 600°C, 300°C to 500°C, or 350°C to 450°C.
  • the treatment time (holding time at the treatment temperature) is, for example, 1 hour to 4 hours, 1 hour to 3 hours, or 2 hours to 3 hours.
  • the atmosphere during the heat treatment may be an air atmosphere or an inert gas atmosphere such as nitrogen, helium, or argon.
  • an air atmosphere such as nitrogen, helium, or argon.
  • a batch type furnace a continuous furnace (roller hearth kiln, pusher furnace, etc.) can be used.
  • a step of pulverizing the obtained heat-treated product may be performed for the purpose of adjusting the particle size.
  • a general pulverizer or pulverizer can be used.
  • a mortar, ball mill, jet mill, or the like can be used.
  • pulseverization in this specification also includes "crushing".
  • a process (classification process) of classifying the pulverized material obtained in the pulverization process may be carried out.
  • Classification may be performed using a JIS standard sieve, or may be performed using a vibrating sieve, an ultrasonic sieve, or the like.
  • coated magnesia particles having a desired average particle size can be obtained.
  • Example 1 [Production of coated magnesia particles]
  • coated magnesia particles were produced using DMG-120 as the magnesia particles and KF-96 as the silicone oil. Specifically, first, silicone oil (KF-96) is added to magnesia particles (DMG-120), and degassed for 1 minute using a vacuum defoaming kneading device (“Thinkey Co., Ltd. “Awatori Mixer”). Foam kneaded. As a result, a layer of silicone oil was formed on the surface of the magnesia particles. At this time, the amount of silicone oil used was 1 part by mass with respect to a total of 100 parts by mass of magnesia particles and silicone oil.
  • magnesia particles coated with silicone oil were placed in a small electric furnace and heat-treated at 400° C. for 2 hours. As a result, a coating layer containing the heat-modified silicone oil was formed on the surface of the magnesia particles.
  • the obtained heat-treated product was pulverized using an agate mortar, and then classified using a JIS sieve (opening: 323 ⁇ m).
  • coated magnesia particles particles of Example 1 comprising magnesia particles and a coating layer covering the magnesia particles were obtained.
  • the average particle size (D50) of the coated magnesia particles was obtained by measuring the mass-based particle size distribution by the laser diffraction light scattering method using "MT3300EXII” manufactured by Microtrack Bell Co., Ltd. At the time of measurement, 0.6 g of coated magnesia particles and 60 mL of ethanol were mixed in an autosampler, and as a pretreatment, "Ultrasonic generator UD-200 (with micro chip TP-040)" manufactured by Tomy Seiko Co., Ltd. was used. Then, an output of 200 W was applied to perform dispersion treatment for 60 seconds.
  • the pH value of coated magnesia particles was measured by the following method. First, 1.0 g of coated magnesia particles were added to 100 mL of a mixed aqueous solution containing 0.1% by mass of Triton X-100 as a wetting agent and 0.1% by mass of lithium perchlorate as an electrolyte. Then, a suspension was prepared by dispersing for 10 minutes with a stirrer.
  • Example 2 Particles of Example 2 (coated magnesia particles) were obtained in the same manner as in Example 1, except that the amounts of magnesia particles and silicone oil used were changed as shown in Table 1. Also, in the same manner as in Example 1, the average particle size (D50) and pH value of the coated magnesia particles were measured.
  • Example 3 Particles of Example 3 (coated magnesia particles) were obtained in the same manner as in Example 1, except that KF-99 was used instead of KF-96 as the silicone oil. Also, in the same manner as in Example 1, the average particle size (D50) and pH value of the coated magnesia particles were measured.
  • Example 4 Particles (coated magnesia particles) of Example 4 were obtained in the same manner as in Example 2, except that the heat treatment conditions were changed as shown in Table 1. Also, in the same manner as in Example 1, the average particle size (D50) and pH value of the coated magnesia particles were measured.
  • Example 5 Particles (coated magnesia particles) of Example 5 were obtained in the same manner as in Example 3, except that the heat treatment conditions were changed as shown in Table 1. Also, in the same manner as in Example 1, the average particle size (D50) and pH value of the coated magnesia particles were measured.
  • Example 6 Particles of Example 6 (coated magnesia particles) were obtained in the same manner as in Example 2, except that DMG-50 was used as the magnesia particles instead of DMG-120. Also, in the same manner as in Example 1, the average particle size (D50) and pH value of the coated magnesia particles were measured.
  • Example 7 Particles of Example 7 (coated magnesia particles) were obtained in the same manner as in Example 3, except that DMG-50 was used as the magnesia particles instead of DMG-120. Also, in the same manner as in Example 1, the average particle size (D50) and pH value of the coated magnesia particles were measured.
  • Example 8 Particles of Example 8 (coated magnesia particles) were obtained in the same manner as in Example 2, except that DMG-60 was used as the magnesia particles instead of DMG-120. Also, in the same manner as in Example 1, the average particle size (D50) and pH value of the coated magnesia particles were measured.
  • Example 9 Particles of Example 9 (coated magnesia particles) were obtained in the same manner as in Example 3, except that DMG-60 was used as the magnesia particles instead of DMG-120. Also, in the same manner as in Example 1, the average particle size (D50) and pH value of the coated magnesia particles were measured.
  • Comparative Example 5 Particles (coated magnesia particles) of Comparative Example 5 were obtained in the same manner as in Example 1, except that Starmag P was used as the magnesia particles and the amount of silicone oil used was changed as shown in Table 2. Ta. Also, in the same manner as in Example 1, the average particle size (D50) and pH value of the coated magnesia particles were measured.
  • the filling amount of the filler (measurement powder and alumina powder) was 77.5% by volume, and the volume ratio of the silicone resin SE1885:A and SE1885:B was 1:1.
  • the volume ratio of the powder in the filler is 39.5% by volume for measured powder, 3.40% by volume for "DAW-05" manufactured by Denka Co., Ltd., and 11.6 for "ASFP-40" manufactured by Denka Co., Ltd. It was made to be volume %.
  • the evaluation sheet obtained above was subjected to a moisture resistance test under the same conditions as condition 1 of the moisture resistance test (A), and the change in shape after the moisture resistance test was visually observed.
  • condition 1 of the moisture resistance test A
  • the shape (sheet shape) of the pad could be maintained, the resin composition was evaluated as having excellent shape retention.
  • thermal conductivity of the particles of Examples 1-9 and Comparative Examples 1-5 was evaluated based on the thermal conductivity of the resin composition. Specifically, the thermal conductivity of the evaluation sheet (resin composition) before and after the moisture resistance test B was measured using a resin material thermal resistance measuring machine "TRM-046RHHT" manufactured by Hitachi Technology Service Co., Ltd. . The measurement was carried out under the conditions of a constant load mode and a set load of 2N.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

マグネシア粒子2と、該マグネシア粒子2の表面の少なくとも一部を被覆する被覆層3と、を備える被覆マグネシア粒子1であって、被覆層3が、シリコーンオイルの加熱変性物を含み、硝酸滴定法による電位差測定で測定されるpH値が、5.0以下である、被覆マグネシア粒子1。

Description

被覆マグネシア粒子、放熱材用フィラー、樹脂組成物、及び被覆マグネシア粒子の製造方法
 本開示は、被覆マグネシア粒子、放熱材用フィラー、樹脂組成物、及び被覆マグネシア粒子の製造方法に関する。
 近年5G高速通信下では通信量の増大に伴い、通信機器の発熱量が増加しているため、より高い放熱部材が求められている。放熱部材にはアルミナフィラーが広く用いられているが、マグネシアフィラーは、極めて高い熱伝導率を有するため、放熱材用フィラーとしての活用が期待される。
 しかしながら、マグネシアは高温高湿環境下で水マグネシアに変化し、それに伴って熱伝導率が低下するため、マグネシアフィラーは限られた環境下での使用に限定されている。そこで、マグネシアの耐湿性を向上させるべく種々検討が行われている。例えば特許文献1には、マグネシアの耐湿性を向上する目的で、マグネシア粒子の表面をシリコーンオイルを含む表面処理剤で処理する方法が開示されている。
特開2014-37750号公報
 しかしながら、特許文献1の方法で得られる表面処理酸化マグネシウムは、熱伝導性及び耐湿性が充分とはいえず、改善の余地がある。
 そこで、本開示の一側面は、高熱伝導性及び高耐湿性を両立できる被覆マグネシア粒子を提供することを目的とする。
 本開示は、いくつかの側面において、下記[1]~[10]を提供する。
[1] マグネシア粒子と、前記マグネシア粒子の表面の少なくとも一部を被覆する被覆層と、を備える被覆マグネシア粒子であって、前記被覆層が、シリコーンオイルの加熱変性物を含み、硝酸滴定法による電位差測定で測定されるpH値が、5.0以下である、被覆マグネシア粒子。
[2] 平均粒子径が30μm~155μmである、[1]に記載の被覆マグネシア粒子。
[3] 前記シリコーンオイルが、下記式(1)で表される構造単位を有するシリコーンを含む、[1]又は[2]に記載の被覆マグネシア粒子。
Figure JPOXMLDOC01-appb-C000002
[式(1)中、R及びRは、それぞれ独立して、炭素数1~9のアルキル基又は水素原子を示し、R及びRの少なくとも一方はアルキル基である。]
[4] [1]~[3]のいずれかに記載の被覆マグネシア粒子を含有する、放熱材用フィラー。
[5] [1]~[3]のいずれかに記載の被覆マグネシア粒子と、樹脂と、を含有する樹脂組成物。
[6] [1]~[3]のいずれかに記載の被覆マグネシア粒子の製造方法であって、マグネシア粒子の表面に、シリコーンオイルを含む塗液を塗布する工程と、前記塗液で被覆されたマグネシア粒子を加熱処理する工程と、を含む、被覆マグネシア粒子の製造方法。
[7] 硝酸滴定法による電位差測定で測定される前記マグネシア粒子のpH値が、5.0以下である、[6]に記載の被覆マグネシア粒子の製造方法。
[8] 前記マグネシア粒子の平均粒子径が25μm~150μmである、[6]又は[7]に記載の被覆マグネシア粒子の製造方法。
[9] 前記加熱処理の処理温度が250℃以上である、[6]~[8]のいずれかに記載の被覆マグネシア粒子の製造方法。
[10] 前記シリコーンオイルの使用量が、前記マグネシア粒子と前記シリコーンオイルの合計100質量部に対して、0.1質量部~15.0質量部である、[6]~[9]のいずれかに記載の被覆マグネシア粒子の製造方法。
 本開示の一側面によれば、高熱伝導性及び高耐湿性を両立できる被覆マグネシア粒子を提供することができる。
被覆マグネシア粒子の一実施形態を示す模式断面図である。
 本明細書中、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。また、個別に記載した上限値及び下限値は任意に組み合わせ可能である。
 以下、本開示のいくつかの実施形態について説明する。ただし、本開示は下記実施形態に限定されるものではない。
(被覆マグネシア粒子)
 本開示の一実施形態は、マグネシア粒子と、該マグネシア粒子の表面の少なくとも一部を被覆する被覆層と、を備える被覆マグネシア粒子であって、被覆層が、シリコーンオイルの加熱変性物を含み、硝酸滴定法による電位差測定で測定されるpH値が、5.0以下である、被覆マグネシア粒子である。
 驚くべきことに、被覆マグネシア粒子が、上記特定の被覆層を有することに加えて、上記のような低いpH値を有することで、より高い熱伝導性とより高い耐湿性(耐湿信頼性)とが発現する。そのため、上記被覆マグネシア粒子によれば、高熱伝導性及び高耐湿性を両立できる。また、上記のような低いpH値を有する被覆マグネシア粒子は、フィラーとして用いられた場合に、樹脂組成物の耐湿性(例えば、樹脂組成物で形成される成形物の耐湿環境下での形状保持性)を向上させることができる傾向がある。
 被覆マグネシア粒子のpH値は、高熱伝導性及び高耐湿性をより高度に両立する観点及び樹脂組成物の耐湿性をより向上させる観点から、4.0以下又は3.5以下であってもよい。被覆マグネシア粒子のpH値は、高熱伝導性及び高耐湿性をより高度に両立する観点及び樹脂組成物の耐湿性をより向上させる観点から、2.9以上又は3.0以上であってもよい。これらの観点から、被覆マグネシア粒子のpH値は、例えば、2.9~5.0であってよく、3.0~4.0、又は3.0~3.5であってもよい。
 上記のような低いpH値を有する被覆マグネシア粒子は、例えば、マグネシア粒子として、pH値が5.0以下であるマグネシア粒子を用いること、800℃以上の温度域で焼成された重焼マグネシアを用いること等により得ることができる。
 本明細書におけるpH値は、硝酸滴定法による電位差測定で測定されるpH値を意味し、具体的には、以下の方法で測定される値を意味する。
 まず、湿潤剤である0.1質量%のトリトンX-100と、電解質である0.1質量%の過塩素酸リチウムとを含有する混合水溶液100mLに対し、測定試料(マグネシア粒子、被覆マグネシア粒子等)1.0gを添加して、撹拌機にて10分間分散処理して懸濁液を調製する。次いで、自動滴定装置(例えば京都電子工業化株式会社製、型番:AT-710)を用いて、0.1Mの硝酸水溶液を0.1mL/分の速度で懸濁液(100mL)に滴下する。0.1Mの硝酸水溶液を1mL滴下した時点(滴下開始から10分後)での、前記懸濁液(液温約25℃)のpHを、自動滴定装置のガラス電極を用いて測定し、得られた値を測定試料のpH値とする。
 マグネシア粒子は、マグネシア(酸化マグネシウム)を含む粒子である。マグネシア粒子中のマグネシアの含有量は、例えば、90質量%以上である。マグネシア粒子は、実質的にマグネシアのみからなる粒子であってもよい。「実質的にマグネシアのみからなる」とは、不可避的に含有される不純物以外の成分がマグネシアである(例えば、マグネシアの含有量が99質量%以上である)ことを意味する。
 マグネシア粒子の平均粒子径は、例えば、25μm以上、50μm以上又は70μm以上であってよく、150μm以下、130μm以下又は100μm以下であってよく、25μm~150μm、50μm~130μm、又は70μm~100μmであってよい。
 本明細書における平均粒子径は、レーザー回折光散乱法(例えば、マイクロトラックベル株式会社製「MT3300EXII」を使用)よる質量基準の粒度分布測定により、粒子の平均粒子径(D50)として求められる値を意味する。測定に際しては、オートサンプラーに粒子0.6gと水60mLとを混合し、前処理として、200Wの出力をかけて60秒間の分散処理(例えば、株式会社トミー精工製「超音波発生器UD-200(微量チップTP-040装着)」を使用)を行う。分散処理後の混合液に、分散剤としてヘキサメタリン酸ナトリウム1質量%溶液20mLを混合し、得られた試料を測定に用いる。水の屈折率は1.33とし、マグネシア粒子及び被覆マグネシア粒子の屈折率は1.74とする。
 マグネシア粒子のpH値は、被覆マグネシア粒子のpH値が5.0以下となりやすい観点から、例えば、5.0以下であり、4.5以下又は4.0以下であってもよい。マグネシア粒子のpH値は、2.9以上、3.0以上又は3.1以上であってよく、2.9~5.0、3.0~4.5、又は3.1~4.0であってよい。
 上記pH値を有するマグネシア粒子は、例えば、表面の活性を抑制するために800℃以上の高温域で焼成する方法により製造することができる。上記pH値を有するマグネシア粒子は、市販品として入手することもできる。市販品としては、例えば、デンカ株式会社製の「DMG-120」、「DMG-60」、「DMG-50」等が挙げられる。
 マグネシア粒子の形状は、球状であることが好ましい。ここで、球状とは、真球状に限られず、球形度が0.80以上であるものをいう。球形度とは、粒子の投影面積(A)とし、周囲長(PM)に対応する真円の面積(B)としたときに、A/Bで求められる値である。
 図1は、被覆マグネシア粒子の一実施形態を示す模式断面図である。図1中の1は、被覆マグネシア粒子を示し、図1中の2はマグネシア粒子を示し、図1中の3は被覆層を示す。マグネシア粒子の表面には、その上に被覆層が存在しない領域が存在していてもよいが、図1に示すように、マグネシア粒子の表面の全部が被覆層によって被覆されていることが好ましい。
 被覆層は、例えば、シリコーンオイルを含む膜(例えば、シリコーンオイルを含む組成物で形成された膜)を加熱処理してなる層であり、少なくともシリコーンオイルの加熱変性物を含む。被覆層はシリコーンオイルの加熱変性物を含む単層であってよく、シリコーンオイルの加熱変性物を含む層を複数有する多層であってもよい。
 シリコーンオイルの加熱変性物は、被覆層の全体に渡って存在してよい。シリコーンオイルの加熱変性物は、例えば、シリコーンオイルに含まれるシリコーンが加熱により分解及び架橋して生成する複数の化合物(分解物及びそれらの架橋体)を含む集合体ということもできる。加熱変性物は、例えば、水素結合等によりマグネシア粒子に結合していてもよい。
 シリコーンオイルは、シロキサン結合(Si-O-Si)による主骨格を有するポリマー(シリコーン)のうち、オイル状のものをいう。シリコーンオイルを構成するシリコーンは、一般的に、直鎖状ポリマーである。シリコーンオイルは、より優れた耐湿性を有する被覆マグネシア粒子が得られる観点から、好ましくは、下記式(1)で表される構造単位を有するシリコーンを含む。
Figure JPOXMLDOC01-appb-C000003
 式(1)中、R及びRは、それぞれ独立して、炭素数1~9のアルキル基又は水素原子を示し、R及びRの少なくとも一方はアルキル基である。アルキル基の炭素数は、好ましくは1~6であり、より好ましくは1である。アルキル基は、脂肪族アルキル基であっても、芳香族アルキル基であってもよい。脂肪族アルキル基は、非環式又は環式のいずれであってもよい。非環式の脂肪族アルキルは、直鎖状であっても分岐鎖状であってもよい。アルキル基の具体例としては、メチル基及びフェニル基が挙げられる。上記式(1)で表される構造単位を有するシリコーンは、該構造単位を主たる構造単位として(例えば、全体の60質量%以上)含んでいてよい。
 シリコーンオイルとしては、例えば、ジメチルシリコーンオイル、メチルハイドロジェンシリコーンオイル、メチルフェニルシリコーンオイル等が挙げられる。
 シリコーンオイルとしては、市販品を用いることができる。具体的には、例えば、信越化学工業株式会社製の「KF-96」、「KF-96SP」、「KF-96-100CS」、「KF-96-10CS」、「KF-96-50CS」、「KF-96-100CS」、「KF-96L-1CS」、「KF-96L-0.65CS」、「KF-96L-1.5CS」、「KF-99」、「KF-965」、「KF-965SP」、「KF-968」、「KF-995」、「KF-50」、「KF-54」、「HIVAC F-4」、「HIVAC F-5」、「KF-56」、「KF-56A」(いずれも商品名)等を用いることができる。
 シリコーンオイルの粘度(動粘度)は、例えば、25℃において0.1mm/s~500mm/sである。シリコーンオイルの粘度は、オストワルド粘度計等を用いて、シリコーンオイルが毛細管中を落下する時間を測定することで求められる値である。
 被覆マグネシア粒子の平均粒子径は、高熱伝導性及び高耐湿性をより高度に両立する観点及び樹脂への分散性を高める観点から、好ましくは30μm~155μmである。同様の観点から、被覆マグネシア粒子の平均粒子径は、40μm以上又は45μm以上であってもよく、150μm以下又は145μm以下であってもよく、40μm~150μm、又は45μm~145μmであってもよい。
 被覆マグネシア粒子は、被覆層上、又は、被覆層とマグネシア粒子との間に、他の被覆層(シリコーンオイルの加熱変性物を含まない層)を更に備えていてもよい。
 被覆マグネシア粒子は、高熱伝導性及び耐湿性を両立できることから、放熱材用フィラーとして好適に用いられる。すなわち、本開示の他の一実施形態は、上記の被覆マグネシア粒子を含有する放熱材用フィラーである。
 放熱材用フィラーは、被覆マグネシア粒子のみを含有してもよく、被覆マグネシア粒子に加えて、その他の粒子を更に含有してもよい。その他の粒子としては、例えば、アルミナ粒子、シリカ粒子、窒化ホウ素粒子、窒化ケイ素粒子等が挙げられる。
 被覆マグネシア粒子の含有量は、放熱材用フィラー全量を基準として、例えば、10体積%以上、30体積%以上又は50体積%以上であってよく、90体積%以下、80体積%以下又は70体積%以下であってよく、10体積%~90体積%、30体積%~80体積%、又は50体積%~70体積%であってよい。
 被覆マグネシア粒子は、例えば、樹脂と混合された状態で用いられてよい。すなわち、本開示の他の一実施形態は、上記の被覆マグネシア粒子と、樹脂とを含有する樹脂組成物である。樹脂組成物は、上述したその他の粒子を更に含有してもよい。樹脂組成物は、放熱材用樹脂組成物であってよい。
 樹脂としては、例えば、シリコーン樹脂、エポキシ樹脂、アクリル樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、ポリエステル樹脂、フッ素樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリカーボネート樹脂、ABS(アクリロニトリル・ブタジエンゴム・スチレン)樹脂、AAS(アクリロニトリル・アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム・スチレン)樹脂等が挙げられる。
 樹脂の含有量は、樹脂組成物全量を基準として、5体積%以上、10体積%以上又は20体積%以上であってよく、50体積%以下、40体積%以下又は30体積%以下であってよく、5体積%~50体積%、10体積%~40体積%、又は20体積%~30体積%であってよい。被覆マグネシア粒子の含有量は、樹脂組成物全量を基準として、20体積%以上、30体積%以上又は40体積%以上であってよく、80体積%以下、70体積%以下又は60体積%以下であってよく、20体積%~80体積%、30体積%~70体積%、又は40体積%~60体積%であってよい。
(被覆マグネシア粒子の製造方法)
 本開示の一実施形態は、マグネシア粒子の表面に、シリコーンオイルを含む塗液を塗布する工程(塗布工程)と、該塗液で被覆されたマグネシア粒子を加熱処理する工程(加熱処理工程)と、を含む、被覆マグネシア粒子の製造方法である。この方法によれば、上記で説明した被覆マグネシア粒子が得られる。
 塗布工程では、まず、マグネシア粒子及びシリコーンオイルを含む塗液を準備する。原料におけるマグネシア粒子及びシリコーンオイルは、上述した被覆マグネシア粒子におけるマグネシア粒子及びシリコーンオイルと同じであるため、これらの詳細は省略する。
 次に、シリコーンオイルを含む塗液をマグネシア粒子の表面に塗布する。塗布方法は、特に限定されず、例えば、マグネシア粒子(集合物)にシリコーンオイルを含む塗液を添加して混合する方法等であってよい。シリコーンオイルを含む塗液とマグネシア粒子との混合は、公知の撹拌装置を用いて行ってよい。撹拌時又は撹拌後に、必要に応じて脱泡処理を行ってもよい。撹拌時間は、例えば、1分間以上であってよく、1時間以下であってよい。
 シリコーンオイルを含む塗液の使用量は、シリコーンオイルの使用量に応じて設定してよい。シリコーンオイルの使用量は、十分な耐湿信頼性を付与する観点から、マグネシア粒子とシリコーンオイルの合計100質量部に対して、0.1質量部以上であってよく、0.5質量部以上、1.0質量部以上、3.0質量部以上又は4.0質量部以上であってもよい。シリコーンオイルの使用量は、より高い熱伝導率が得られる観点から、マグネシア粒子とシリコーンオイルの合計100質量部に対して、15.0質量部以下であってよく、13.0質量部以下、10.0質量部以下、7.5質量部以下、5.0質量部以下、3.0質量部以下又は2.0質量部以下であってもよい。シリコーンオイルの使用量は、例えば、マグネシア粒子とシリコーンオイルの合計100質量部に対して、0.1質量部~15.0質量部、0.5質量部~13.0質量部、1.0質量部~10.0質量部、1.0質量部~5.0質量部、1.0質量部~3.0質量部、3.0質量部~7.5質量部、又は3.0質量部~5.0質量部であってよい。
 加熱処理工程では、塗液で被覆されたマグネシア粒子を加熱することで、シリコーンオイルを加熱変性させてマグネシア粒子に焼き付ける。したがって、加熱処理工程は、焼付処理工程ということもできる。これにより、マグネシア粒子の表面上に被覆層が形成される。
 加熱処理の温度(処理温度)は、シリコーンオイルを充分に加熱変性させることでマグネシア粒子の表面により均一に被覆層を形成することができる観点から、好ましくは250℃以上であり、より好ましくは300℃以上であり、更に好ましくは350℃以上である。処理温度は、マグネシア粒子の焼結により該粒子の球形度が低下することを抑制する観点から、600℃以下であり、500℃以下又は450℃以下であってもよい。これらの観点から、処理温度は、例えば、250℃~600℃であってよく、300℃~500℃、又は350℃~450℃であってもよい。
 処理時間(上記処理温度での保持時間)は、例えば、1時間~4時間であり、1時間~3時間、又は2時間~3時間であってもよい。
 加熱処理時の雰囲気は、大気雰囲気であってよく、窒素、ヘリウム、アルゴン等の不活性ガス雰囲気であってもよい。加熱処理には、例えば、バッチ式炉、連続炉(ローラーハースキルン、プッシャー炉等)などを用いることができる。
 加熱処理工程の後、粒度を調整する目的で、得られた加熱処理物を粉砕する工程(粉砕処理工程)を実施してもよい。粉砕処理は、一般的な粉砕機又は解砕機を用いることができる。例えば、乳鉢、ボールミル、ジェットミル等を用いることができる。なお、本明細書における「粉砕」には「解砕」も含まれる。
 粉砕処理工程で得られた粉砕物を分級する工程(分級工程)を実施してもよい。分級は、JIS標準篩を使用して行ってよく、振動篩、超音波篩等を使用して行ってもよい。分級工程を実施することで、所望の平均粒子径を有する被覆マグネシア粒子を得ることができる。
 以下、本開示の内容を実施例及び比較例を用いてより詳細に説明するが、本開示は以下の実施例に限定されるものではない。
 以下の実施例では、下記の材料を用いた。なお、下記に示すD50及びpH値は、上述した方法で測定された値である。
<材料>
[マグネシア(MgO)粒子]
・DMG-120:デンカ株式会社製、D50:120μm、pH値:3.2
・DMG-50:デンカ株式会社製、D50:50μm、pH値:4.4
・DMG-60:デンカ株式会社製、D50:60μm、pH値:3.5
・スターマグP:神島化学工業社製、D50:3.5μm、pH値:10.5
[シリコーンオイル]
・KF-96:信越化学工業株式会社製、ジメチルシリコーンオイル
・KF-99:信越化学工業株式会社製、メチルハイドロジェンシリコーンオイル
<実施例1>
[被覆マグネシア粒子の作製]
 実施例1では、マグネシア粒子としてDMG-120を用い、シリコーンオイルとしてKF-96を用いて、被覆マグネシア粒子を作製した。
 具体的には、まず、マグネシア粒子(DMG-120)にシリコーンオイル(KF-96)を添加し、真空脱泡混練装置(株式会社シンキー製の「あわとり練太郎」)を用いて1分間脱泡混練した。これにより、マグネシア粒子の表面にシリコーンオイルからなる層を形成した。この際、シリコーンオイルの使用量は、マグネシア粒子とシリコーンオイルの合計100質量部に対し、1質量部とした。次いで、シリコーンオイルで被覆されたマグネシア粒子を小型電気炉に投入し、400℃で2時間加熱処理を行った。これにより、マグネシア粒子の表面に、シリコーンオイルの加熱変性物を含む被覆層を形成した。次いで、得られた加熱処理物を、メノウ乳鉢を用いて解砕した後、JIS篩(目開き:323μm)を用いて分級した。以上の操作により、マグネシア粒子と、該マグネシア粒子を被覆する被覆層とを備える、被覆マグネシア粒子(実施例1の粒子)を得た。
[平均粒子径(D50)の測定]
 マイクロトラックベル株式会社製「MT3300EXII」を用いたレーザー回折光散乱法による質量基準の粒度分布測定により、被覆マグネシア粒子の平均粒子径(D50)として求めた。測定に際しては、オートサンプラーに被覆マグネシア粒子0.6gと、エタノール60mLとを混合し、前処理として、株式会社トミー精工製「超音波発生器UD-200(微量チップTP-040装着)」を用いて、200Wの出力をかけて60秒間の分散処理を行った。分散処理後の混合液に、分散剤としてヘキサメタリン酸ナトリウム1質量%溶液20mLを混合し、得られた試料を測定に用いた。水の屈折率は1.33とし、被覆マグネシア粒子の屈折率は1.74とした。
[pH値の測定]
 被覆マグネシア粒子のpH値を以下の方法で測定した。
 まず、湿潤剤である0.1質量%のトリトンX-100と、電解質である0.1質量%の過塩素酸リチウムとを含有する混合水溶液100mLに対し、被覆マグネシア粒子1.0gを添加して、撹拌機にて10分間分散処理して懸濁液を調製した。次いで、自動滴定装置(京都電子工業化株式会社製、型番:AT-710)を用いて、0.1Mの硝酸水溶液を0.1mL/分の速度で懸濁液(100mL)に滴下した。0.1Mの硝酸水溶液を1mL滴下した時点(滴下開始から10分後)での、前記懸濁液(液温約25℃)のpHを、自動滴定装置のガラス電極を用いて測定し、得られた値を被覆マグネシア粒子のpH値とした。
<実施例2>
 マグネシア粒子及びシリコーンオイルの使用量を表1に示すように変更したことを除き、実施例1と同様にして、実施例2の粒子(被覆マグネシア粒子)を得た。また、実施例1と同様にして、被覆マグネシア粒子の平均粒子径(D50)及びpH値を測定した。
<実施例3>
 シリコーンオイルとしてKF-96に代えてKF-99を用いたことを除き、実施例1と同様にして、実施例3の粒子(被覆マグネシア粒子)を得た。また、実施例1と同様にして、被覆マグネシア粒子の平均粒子径(D50)及びpH値を測定した。
<実施例4>
 加熱処理条件を表1に示すように変更したことを除き、実施例2と同様にして、実施例4の粒子(被覆マグネシア粒子)を得た。また、実施例1と同様にして、被覆マグネシア粒子の平均粒子径(D50)及びpH値を測定した。
<実施例5>
 加熱処理条件を表1に示すように変更したことを除き、実施例3と同様にして、実施例5の粒子(被覆マグネシア粒子)を得た。また、実施例1と同様にして、被覆マグネシア粒子の平均粒子径(D50)及びpH値を測定した。
<実施例6>
 マグネシア粒子としてDMG-120に代えてDMG-50を用いたことを除き、実施例2と同様にして、実施例6の粒子(被覆マグネシア粒子)を得た。また、実施例1と同様にして、被覆マグネシア粒子の平均粒子径(D50)及びpH値を測定した。
<実施例7>
 マグネシア粒子としてDMG-120に代えてDMG-50を用いたことを除き、実施例3と同様にして、実施例7の粒子(被覆マグネシア粒子)を得た。また、実施例1と同様にして、被覆マグネシア粒子の平均粒子径(D50)及びpH値を測定した。
<実施例8>
 マグネシア粒子としてDMG-120に代えてDMG-60を用いたことを除き、実施例2と同様にして、実施例8の粒子(被覆マグネシア粒子)を得た。また、実施例1と同様にして、被覆マグネシア粒子の平均粒子径(D50)及びpH値を測定した。
<実施例9>
 マグネシア粒子としてDMG-120に代えてDMG-60を用いたことを除き、実施例3と同様にして、実施例9の粒子(被覆マグネシア粒子)を得た。また、実施例1と同様にして、被覆マグネシア粒子の平均粒子径(D50)及びpH値を測定した。
<比較例1~4>
 原料であるマグネシア粒子(DMG-120、DMG-50、DMG-60及びスターマグP)を、それぞれ比較例1~4の粒子とした。
<比較例5>
 マグネシア粒子としてスターマグPを用いたこと、及び、シリコーンオイルの使用量を表2に示すように変更したことを除き、実施例1と同様にして、比較例5の粒子(被覆マグネシア粒子)を得た。また、実施例1と同様にして、被覆マグネシア粒子の平均粒子径(D50)及びpH値を測定した。
<評価>
 実施例1~9及び比較例1~5の粒子(被覆マグネシア粒子及びマグネシア粒子)について、耐湿性及び熱伝導性の評価を行った。評価方法を以下に示す。
[耐湿試験(A)]
 粒子の耐湿試験を行い、耐湿試験前後の質量を測定し、増加した質量が全てMg(OH)への変化によるものであると仮定して、Mg(OH)への変化率を求めた。Mg(OH)への変化率が小さいほど、耐湿性に優れると評価した。なお、耐湿試験は、エスペック社製HAST試験機を用いて、以下の2つの条件で行った。
[条件1]
・不飽和モード
・温度:121℃、湿度:100RH%、静置時間:80h
[条件2]
・不飽和モード
・温度:135℃、湿度:85RH%、静置時間:96h
[耐湿試験(B)]
 実施例1~9及び比較例1~5の粒子からなる粉体をそれぞれ測定粉体とし、これらの測定粉体をそれぞれ用いて、形状保持性の評価用シート(放熱パッド)を作製した。具体的には、測定粉体と、アルミナ粉体(デンカ株式会社製「DAW-05」及びデンカ株式会社製「ASFP-40」)と、シリコーン樹脂(信越化学株式会社製のSE1885:A及びSE1885:B)とを攪拌羽根のついたミキサーで混合し、樹脂組成物を調製した後、シートコータを用いて、該樹脂組成物を厚さ3mmのシート状に成形した。この際、フィラー(測定粉体及びアルミナ粉体)の充填量を77.5体積%とし、シリコーン樹脂はSE1885:AとSE1885:Bとの体積比率を1:1とした。フィラー中の粉体の体積比は、★測定粉体が39.5体積%、デンカ株式会社製「DAW-05」が3.40体積%、デンカ株式会社製「ASFP-40」が11.6体積%となるようにした。
 上記で得られた評価用シートについて、上記耐湿試験(A)の条件1と同じ条件で耐湿試験を実施し、耐湿試験後の形状変化を目視で観察した。パッドの形状(シート状)が維持できた場合に、樹脂組成物が形状保持性に優れると評価した。
[熱伝導率の評価]
 樹脂組成物の熱伝導率に基づき、実施例1~9及び比較例1~5の粒子の熱伝導率を評価した。具体的には、上記耐湿試験Bの前後における評価用シート(樹脂組成物)の熱伝導率を、株式会社日立テクノロジーサービス社製の樹脂材料熱抵抗測定機「TRM-046RHHT」を用いて測定した。測定は、荷重一定モード、設定荷重2Nの条件で実施した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 1…被覆マグネシア粒子、2…マグネシア粒子、3…被覆層。

 

Claims (10)

  1.  マグネシア粒子と、前記マグネシア粒子の表面の少なくとも一部を被覆する被覆層と、を備える被覆マグネシア粒子であって、
     前記被覆層が、シリコーンオイルの加熱変性物を含み、
     硝酸滴定法による電位差測定で測定されるpH値が、5.0以下である、被覆マグネシア粒子。
  2.  平均粒子径が30μm~155μmである、請求項1に記載の被覆マグネシア粒子。
  3.  前記シリコーンオイルが、下記式(1)で表される構造単位を有するシリコーンを含む、請求項1に記載の被覆マグネシア粒子。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R及びRは、それぞれ独立して、炭素数1~9のアルキル基又は水素原子を示し、R及びRの少なくとも一方はアルキル基である。]
  4.  請求項1~3のいずれか一項に記載の被覆マグネシア粒子を含有する、放熱材用フィラー。
  5.  請求項1~3のいずれか一項に記載の被覆マグネシア粒子と、樹脂と、を含有する樹脂組成物。
  6.  請求項1~3のいずれか一項に記載の被覆マグネシア粒子の製造方法であって、
     マグネシア粒子の表面に、シリコーンオイルを含む塗液を塗布する工程と、
     前記塗液で被覆されたマグネシア粒子を加熱処理する工程と、を含む、被覆マグネシア粒子の製造方法。
  7.  硝酸滴定法による電位差測定で測定される前記マグネシア粒子のpH値が、5.0以下である、請求項6に記載の被覆マグネシア粒子の製造方法。
  8.  前記マグネシア粒子の平均粒子径が25μm~150μmである、請求項6に記載の被覆マグネシア粒子の製造方法。
  9.  前記加熱処理の処理温度が250℃以上である、請求項6に記載の被覆マグネシア粒子の製造方法。
  10.  前記シリコーンオイルの使用量が、前記マグネシア粒子と前記シリコーンオイルの合計100質量部に対して、0.1質量部~15.0質量部である、請求項6に記載の被覆マグネシア粒子の製造方法。

     
PCT/JP2023/003661 2022-02-17 2023-02-03 被覆マグネシア粒子、放熱材用フィラー、樹脂組成物、及び被覆マグネシア粒子の製造方法 WO2023157683A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022023024 2022-02-17
JP2022-023024 2022-02-17

Publications (1)

Publication Number Publication Date
WO2023157683A1 true WO2023157683A1 (ja) 2023-08-24

Family

ID=87578536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003661 WO2023157683A1 (ja) 2022-02-17 2023-02-03 被覆マグネシア粒子、放熱材用フィラー、樹脂組成物、及び被覆マグネシア粒子の製造方法

Country Status (2)

Country Link
TW (1) TW202344475A (ja)
WO (1) WO2023157683A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812321A (ja) * 1994-06-23 1996-01-16 Ube Chem Ind Co Ltd マグネシア粉末及びその製造方法
JPH08157268A (ja) * 1994-12-01 1996-06-18 Ube Chem Ind Co Ltd マグネシア系耐火粒子
JP2007070608A (ja) * 2005-08-11 2007-03-22 Techno Polymer Co Ltd 樹脂配合用酸化マグネシウムフィラー及びそれを含む熱伝導性樹脂組成物
JP2012153552A (ja) * 2011-01-25 2012-08-16 Ube Material Industries Ltd 酸化マグネシウム粉末

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812321A (ja) * 1994-06-23 1996-01-16 Ube Chem Ind Co Ltd マグネシア粉末及びその製造方法
JPH08157268A (ja) * 1994-12-01 1996-06-18 Ube Chem Ind Co Ltd マグネシア系耐火粒子
JP2007070608A (ja) * 2005-08-11 2007-03-22 Techno Polymer Co Ltd 樹脂配合用酸化マグネシウムフィラー及びそれを含む熱伝導性樹脂組成物
JP2012153552A (ja) * 2011-01-25 2012-08-16 Ube Material Industries Ltd 酸化マグネシウム粉末

Also Published As

Publication number Publication date
TW202344475A (zh) 2023-11-16

Similar Documents

Publication Publication Date Title
JP2019116401A (ja) 六方晶窒化ホウ素粉末及びその製造方法、並びにそれを用いた組成物及び放熱材
TWI714587B (zh) 導熱性組成物
JP5089908B2 (ja) 高熱伝導性樹脂コンパウンド・高熱伝導性樹脂成形体・放熱シート用配合粒子、高熱伝導性樹脂コンパウンド・高熱伝導性樹脂成形体・放熱シート、および、その製造方法
JP7389014B2 (ja) 絶縁放熱シート
TWI553673B (zh) Electromagnetic wave absorptive heat conducting sheet and electromagnetic wave absorptive heat conducting sheet
JP5793494B2 (ja) セラミックス混合物、及びそれを用いたセラミックス含有熱伝導性樹脂シート
WO1998035360A1 (en) Conductive, resin-based compositions
KR20190137446A (ko) 열전도성이 우수한 경량 고분자 조성물과 그 제조방법 및 이 조성물을 이용하여 제조한 물품
WO2022059661A1 (ja) 酸化マグネシウム粉末、フィラー組成物、樹脂組成物、及び放熱部品
WO2023157683A1 (ja) 被覆マグネシア粒子、放熱材用フィラー、樹脂組成物、及び被覆マグネシア粒子の製造方法
WO2022014129A1 (ja) 熱伝導組成物及びその硬化物
WO2022071137A1 (ja) 球状アルミナ粉末、樹脂組成物、放熱材料
WO2020196644A1 (ja) 塊状窒化ホウ素粒子、熱伝導樹脂組成物及び放熱部材
JPH07252377A (ja) 高熱伝導性樹脂組成物
WO2021200486A1 (ja) 炭素含有アルミナ粉末、樹脂組成物、放熱部品、及び炭素含有アルミナ粉末の製造方法
JP3572692B2 (ja) α−アルミナ粉末含有樹脂組成物及びゴム組成物
CN115803394B (zh) 树脂组合物
WO2022059660A1 (ja) 酸化マグネシウム粉末、フィラー組成物、樹脂組成物、及び放熱部品
JPWO2019188444A1 (ja) 有機無機複合粒子からなる粉末
JP7308426B1 (ja) 窒化ホウ素被覆熱伝導性粒子及びその製造方法並びに熱伝導樹脂組成物及び熱伝導性成形体
WO2010004996A1 (ja) 熱伝導性ノイズ抑制シート
WO2022059659A1 (ja) 酸化マグネシウム粉末、フィラー組成物、樹脂組成物、及び放熱部品
JP7174197B1 (ja) 熱伝導性ポリシロキサン組成物
WO2023190735A1 (ja) 熱伝導性フィラー、熱伝導性フィラーの製造方法および熱伝導性樹脂組成物
WO2022264715A1 (ja) 熱伝導性ポリシロキサン組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756210

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024501294

Country of ref document: JP

Kind code of ref document: A