WO2022014129A1 - 熱伝導組成物及びその硬化物 - Google Patents

熱伝導組成物及びその硬化物 Download PDF

Info

Publication number
WO2022014129A1
WO2022014129A1 PCT/JP2021/017796 JP2021017796W WO2022014129A1 WO 2022014129 A1 WO2022014129 A1 WO 2022014129A1 JP 2021017796 W JP2021017796 W JP 2021017796W WO 2022014129 A1 WO2022014129 A1 WO 2022014129A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat conductive
conductive composition
mass
alumina
less
Prior art date
Application number
PCT/JP2021/017796
Other languages
English (en)
French (fr)
Inventor
初 行武
直樹 御法川
一 舟橋
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to US18/001,619 priority Critical patent/US20230227707A1/en
Priority to JP2022536146A priority patent/JP7371785B2/ja
Priority to EP21843425.6A priority patent/EP4184564A1/en
Priority to CN202180061454.8A priority patent/CN116195053A/zh
Publication of WO2022014129A1 publication Critical patent/WO2022014129A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/32Properties characterising the ingredient of the composition containing low molecular weight liquid component
    • C08L2207/324Liquid component is low molecular weight polymer

Definitions

  • the present invention relates to a heat conductive composition and a cured product thereof.
  • the heat conductive material interposed between them is required to have high heat conductivity and insulation.
  • the heat conductive material is composed of a composition filled with a powder that imparts heat conductivity to a matrix such as a resin.
  • Metal oxides such as alumina and metal nitrides such as aluminum nitride are used as the thermally conductive powders, and various dispersants and surface treatment agents have been studied in order to highly fill the resin matrix with these powders. It is done.
  • Patent Document 1 discloses a heat-conducting silicone rubber composition in which a heat-conducting inorganic filler surface-treated with a specific silane coupling agent having an alkyl group is dispersed in the silicone rubber.
  • Patent Document 2 discloses a silicone resin composition containing a thermosetting silicone resin, an inorganic filler, and a dispersant having a specific structure.
  • Patent Documents 1 and 2 As shown in Patent Documents 1 and 2, a silane coupling agent and a dispersant having a siloxane structure are used in order to obtain a resin composition having high thermal conductivity by highly filling the resin with a thermally conductive powder. Many examples of its use have been reported. However, when trying to produce a composition having higher thermal conductivity, there are problems that the flexibility of the composition is lost and it becomes difficult to apply it to a substrate.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a heat conductive composition having excellent flexibility and heat conductivity.
  • the liquid resin has a viscosity at 25 ° C. of 10 mPa ⁇ s or more and 2000 mPa ⁇ s or less, and the dispersant is acrylic.
  • a heat conductive composition which is silicone and in which at least one of the liquid resin and the heat conductive powder has an alkyl group having 4 or more carbon atoms.
  • the content of the liquid resin is 1.0% by mass or more and 20.0% by mass or less, and the content of the heat conductive powder is 75.0% by mass or more with respect to the total amount of the heat conductive composition.
  • Conductive composition. [9] A cured product of the heat conductive composition according to any one of the above [1] to [8].
  • the heat conductive composition of the present embodiment is a composition containing a liquid resin, a heat conductive powder, and a dispersant, and the liquid resin has a viscosity at 25 ° C. of 10 mPa ⁇ s or more and 2000 mPa ⁇ s or less.
  • the dispersant is acrylic silicone, and at least one of the liquid resin and the thermally conductive powder has an alkyl group having 4 or more carbon atoms. This makes it possible to obtain a heat conductive composition having excellent flexibility and heat conductivity.
  • the liquid resin used in this embodiment has a viscosity at 25 ° C. of 10 mPa ⁇ s or more and 2000 mPa ⁇ s or less.
  • the liquid resin means a resin having liquidity or fluidity at room temperature (25 ° C.).
  • the viscosity is 10 mPa ⁇ s or more, the thermal stability is excellent, and when the viscosity is 2000 mPa ⁇ s or less, the heat conductive powder can be highly filled.
  • the viscosity is preferably 20 mPa ⁇ s or more and 1000 mPa ⁇ s or less, more preferably 20 mPa ⁇ s or more and 600 mPa or less, still more preferably 30 mPa ⁇ s or more and 400 mPa or less, and further preferably. Is 30 mPa ⁇ s or more and 200 mPa ⁇ s or less.
  • the viscosity of the liquid resin at 25 ° C. is rotated using a rotary viscometer (for example, manufactured by Toki Sangyo Co., Ltd., trade name: TVB-10, rotor No. 3) in accordance with JIS Z8803: 2011. It can be measured under the condition of a speed of 20 rpm.
  • the liquid resin has an alkyl group having 4 or more carbon atoms from the viewpoint of increasing flexibility when the heat conductive powder described later does not have an alkyl group having 4 or more carbon atoms.
  • the number of carbon atoms of the alkyl group contained in the liquid resin is preferably 6 or more, more preferably 8 or more, from the viewpoint of increasing flexibility.
  • the upper limit of the number of carbon atoms is preferably 30 and more preferably 18.
  • the liquid resin may or may not have an alkyl group having 4 or more carbon atoms.
  • the liquid resin is not particularly limited as long as the viscosity at 25 ° C. is within the above range, and for example, a silicone resin (excluding acrylic silicone described later), an epoxy resin, an acrylic resin, a urethane resin, a phenol resin, a melamine resin, and a urea resin. , Unsaturated polyester, fluororesin, polyimide, polyamide, polyester and the like. Among them, a silicone resin is preferable from the viewpoint that it has good heat resistance and cold resistance and can be used in a wide temperature range. These resins may be used alone or in admixture of two or more.
  • the silicone resin is not particularly limited, and examples thereof include a resin having an organopolysiloxane structure as a main chain, and there are a curable silicone resin and a non-curable silicone resin.
  • examples of the curable silicone resin include an addition reaction curing type silicone resin, a condensation reaction curing type silicone resin, and an organic peroxide curing type silicone resin, and the addition reaction curing type silicone resin is preferable from the viewpoint of enhancing flexibility.
  • the curable silicone resin one filled with a heat conductive powder can be used as a heat radiating sheet and a heat radiating gel.
  • the non-curable silicone resin refers to an organopolysiloxane in which the base polymer does not have a curable functional group such as an alkenyl group, and is also called a non-reactive silicone oil.
  • the most common one is dimethyl silicone oil, which can be filled with a heat conductive powder and used as a heat radiating grease and a heat radiating putty.
  • the silicone oil means a silicone resin having a relatively low degree of polymerization and being oily at room temperature (25 ° C.).
  • the silicone resin may have a functional group other than the curable functional group typified by the alkenyl group.
  • the heat conductive powder described later has an alkyl group having 4 or more carbon atoms
  • a methylphenyl silicone resin, a phenyl silicone resin, or the like can be used as the silicone resin.
  • the silicone resin may have an alkyl group having 4 or more carbon atoms, or may be an alkyl-modified silicone oil.
  • the alkyl-modified silicone oil means a silicone oil in which a part of the methyl group of the dimethyl silicone oil is replaced with an alkyl group having 4 or more carbon atoms.
  • the number of carbon atoms of the alkyl group is preferably 6 or more, more preferably 8 or more, from the viewpoint of increasing flexibility.
  • the upper limit of the number of carbon atoms is preferably 30 and more preferably 18.
  • the alkyl-modified silicone oil may have a curable functional group.
  • the silicone resin can be obtained as a commercial product.
  • DOWNSIL TM EG-3100 manufactured by Dow Toray Co., Ltd.
  • KF-96-100cs manufactured by Shin-Etsu Chemical Co., Ltd.
  • ELEMENT14PDMS100-J manufactured by Momentive Performance Materials Japan GK
  • Examples of commercially available products of alkyl-modified silicone oil include KF-4003 (manufactured by Shin-Etsu Chemical Co., Ltd.) and X-22-7322 (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the content of the liquid resin is preferably 1.0% by mass or more and 20.0% by mass or less, and more preferably 2.0% by mass or more and 10.0% by mass with respect to the total amount of the heat conductive composition of the present embodiment. % Or less.
  • the heat conductive powder can be kneaded with the liquid resin, and when the content is 20.0% by mass or less, the heat conduction performance that can be used as a heat conduction material is imparted. can do.
  • the heat conductive powder used in this embodiment is a powder having a function of transferring heat generated from an electronic component or the like to the outside of the system, and is, for example, a metal, a metal nitride, a metal oxide, a metal carbide, or a metal hydroxide. Things etc. can be mentioned.
  • the heat conductive powder may be used alone or in combination of two or more.
  • the thermally conductive powder is preferably a metal nitride or a metal oxide from the viewpoint of high thermal conductivity and insulating properties, and is particularly preferably composed of a metal nitride and a metal oxide.
  • metal nitride examples include boron nitride, aluminum nitride, silicon nitride and the like. Of these, aluminum nitride is preferable from the viewpoint of high thermal conductivity and high filling property into the resin.
  • metal oxide examples include zinc oxide, alumina, magnesium oxide, silicon dioxide, iron oxide and the like. Among them, alumina is preferable from the viewpoint of high thermal conductivity, a lineup of various particle sizes, and a high degree of freedom in combination with metal nitride.
  • the thermally conductive powder has an alkyl group having 4 or more carbon atoms from the viewpoint of increasing flexibility.
  • the number of carbon atoms of the alkyl group contained in the thermally conductive powder is preferably 6 or more, more preferably 8 or more, from the viewpoint of increasing flexibility.
  • the upper limit of the number of carbon atoms is preferably 20 and more preferably 16.
  • a person who introduces an alkyl group having 4 or more carbon atoms into the heat conductive powder can be appropriately selected depending on the type of the heat conductive powder and the like.
  • the thermally conductive powder is a metal oxide
  • an alkyl group having 4 or more carbon atoms can be introduced on the surface of the metal oxide by using a coupling agent.
  • the thickness of the heat conductive material is adjusted and the heat conductive powder is kneaded with the liquid resin.
  • it is preferably 0.2 ⁇ m or more and 200 ⁇ m or less, more preferably 0.5 ⁇ m or more and 100 ⁇ m or less, and further preferably 1.0 ⁇ m or more and 50 ⁇ m or less.
  • the thermally conductive powder D50 can be measured by a particle size analysis measuring device, and specifically, can be measured by the method described in Examples.
  • Al nitride As the aluminum nitride, a known product such as a commercially available product can be used.
  • the aluminum nitride may be obtained by any manufacturing method, for example, a direct nitriding method in which metallic aluminum powder and nitrogen or ammonia are directly reacted, and the alumina is heated in a nitrogen or ammonia atmosphere while reducing carbon at the same time. It may be obtained by a reduction nitriding method in which a nitriding reaction is performed.
  • the shape of the aluminum nitride is not particularly limited, and examples thereof include an amorphous shape (crushed shape), a spherical shape, an elliptical shape, and a plate shape (scale shape).
  • the particle size (D50) at a cumulative volume of 50% in the particle size distribution of aluminum nitride by the laser diffraction / scattering method is preferably 0.2 ⁇ m or more and 200 ⁇ m or less, more preferably 10 ⁇ m or more and 100 ⁇ m or less, and further preferably. It is 10 ⁇ m or more and 50 ⁇ m or less.
  • the aluminum nitride has a silicon-containing oxide film on its surface from the viewpoint of improving moisture resistance.
  • the silicon-containing oxide film may cover a part of the surface of the aluminum nitride or may cover the whole surface, but it is preferable that the silicon nitride film covers the entire surface of the aluminum nitride. Since aluminum nitride has excellent thermal conductivity, aluminum nitride having a silicon-containing oxide film on its surface (hereinafter, also referred to as silicon-containing oxide-coated aluminum nitride) also has excellent thermal conductivity. Examples of the "silicon-containing oxide" of the silicon-containing oxide film and the silicon-containing oxide-coated aluminum nitride particles include silica and oxides containing silicon and aluminum.
  • the silicon-containing oxide-coated aluminum nitride has a coverage of the silicon-containing oxide film covering the surface of the aluminum nitride by LEIS analysis, preferably 70% or more and 100% or less, and more preferably 70% or more and 95% or less. It is more preferably 72% or more and 90% or less, and particularly preferably 74% or more and 85% or less. When the coverage is 70% or more and 100% or less, the moisture resistance is more excellent. Further, if it exceeds 95%, the thermal conductivity may decrease.
  • the coverage (%) of the silicon-containing oxide film (SiO 2 ) covering the surface of aluminum nitride by LEIS (Low Energy Ion Scattering) analysis is calculated by the following formula. (S Al (AlN) -S Al (AlN + SiO 2 )) / S Al (AlN) x 100
  • S Al (AlN) is the area of the Al peak of aluminum nitride
  • S Al (AlN + SiO 2 ) is the area of the Al peak of the silicon-containing oxide-coated aluminum nitride.
  • the area of the Al peak can be determined by analysis by low energy ion scattering (LEIS), which is a measurement method using an ion source and a rare gas as a probe.
  • LEIS is an analysis method using a rare gas of several keV as an incident ion, and is an evaluation method that enables composition analysis of the outermost surface (reference: The TRC News 201610-04 (October 2016)).
  • a method for forming a silicon-containing oxide film on the surface of aluminum nitride for example, a first step of covering the surface of aluminum nitride with a siloxane compound containing a structure represented by the following formula (1) and covering with a siloxane compound.
  • a method having a second step of heating the aluminum nitride at a temperature of 300 ° C. or higher and 800 ° C. or lower can be mentioned.
  • R is an alkyl group having 4 or less carbon atoms.
  • the structure represented by the formula (1) is a hydrogen siloxane structural unit having a Si—H bond.
  • R is an alkyl group having 4 or less carbon atoms, that is, a methyl group, an ethyl group, a propyl group or a butyl group, preferably a methyl group, an ethyl group, an isopropyl group or a t-butyl group. , More preferably a methyl group.
  • the siloxane compound is preferably an oligomer or polymer containing the structure represented by the formula (1) as a repeating unit. Further, the siloxane compound may be linear, branched or cyclic.
  • the weight average molecular weight of the siloxane compound is preferably 100 to 2000, more preferably 150 to 1000, and even more preferably 180 to 500, from the viewpoint of easiness of forming a silicon-containing oxide film having a uniform film thickness. Is.
  • the weight average molecular weight is a polystyrene-equivalent value obtained by gel permeation chromatography (GPC).
  • siloxane compound a compound represented by the following formula (2) and / or a compound represented by the following formula (3) are preferably used.
  • R1 and R2 are independently hydrogen atoms or methyl groups, and at least one of R1 and R2 is a hydrogen atom.
  • m is an integer of 0 to 10, preferably 1 to 5, and more preferably 1.
  • n is an integer of 3 to 6, preferably 3 to 5, and more preferably 4.
  • siloxane compound a cyclic hydroxyhydrogensiloxane oligomer in which n is 4 in the formula (3) is particularly preferable from the viewpoint of easy formation of a good silicon-containing oxide film.
  • the surface of the aluminum nitride is covered with a siloxane compound containing the structure represented by the formula (1).
  • the method is not particularly limited as long as the surface of the aluminum nitride can be covered with the siloxane compound containing the structure represented by the formula (1).
  • a dry mixing method in which the siloxane compound is added by spraying or the like while stirring the raw material aluminum nitride using a general powder mixing device and the mixture is dried and mixed is used. Can be mentioned.
  • Examples of the powder mixing device include a Henshell mixer (manufactured by Nippon Coke Industries Co., Ltd.), a container rotary type V blender, a double cone type blender, a ribbon blender having mixing blades, a screw type blender, and a closed rotary kiln. Examples thereof include stirring with a stirrer in a closed container using a magnet coupling.
  • the temperature condition is not particularly limited, but is preferably 10 ° C. or higher and 200 ° C. or lower, more preferably 20 ° C. or higher and 150 ° C. or lower, and further preferably 40 ° C. or higher and 100 ° C. or lower.
  • a vapor phase adsorption method in which the vapor of the siloxane compound alone or a mixed gas with an inert gas such as nitrogen gas is attached or vaporized on the surface of the static aluminum nitride.
  • the temperature condition is not particularly limited, but is preferably 10 ° C. or higher and 200 ° C. or lower, more preferably 20 ° C. or higher and 150 ° C. or lower, and further preferably 40 ° C. or higher and 100 ° C. or lower.
  • the inside of the system can be pressurized or depressurized.
  • a device that is closed and can easily replace the gas in the system is preferable, and for example, a glass container, a desiccator, a CVD device, or the like can be used.
  • the amount of the siloxane compound used in the first step is not particularly limited.
  • the coating amount of the siloxane compound is 0 per 1 m 2 of the surface area calculated from the specific surface area (m 2 / g) obtained from the BET method of the aluminum nitride. It is preferably 1 mg or more and 1.0 mg or less, more preferably 0.2 mg or more and 0.8 mg or less, and further preferably 0.3 mg or more and 0.6 mg or less.
  • the coating amount of the siloxane compound is within the above range, aluminum nitride having a silicon-containing oxide film having a uniform film thickness can be obtained.
  • the coating amount of the siloxane compound per 1 m 2 of the surface area calculated from the specific surface area (m 2 / g) obtained from the BET method of the aluminum nitride is the difference in mass of aluminum nitride before and after coating with the siloxane compound. It can be obtained by dividing by the surface area (m 2 ) calculated from the specific surface area (m 2 / g) obtained from the BET method of aluminum nitride.
  • the specific surface area obtained from the BET method can be measured from the nitrogen adsorption BET 1-point method by the gas flow method.
  • Macsorb HM model-1210 manufactured by Titanch can be used as the evaluation device.
  • the aluminum nitride covered with the siloxane compound obtained in the first step is heated at a temperature of 300 ° C. or higher and 800 ° C. or lower. This makes it possible to form a silicon-containing oxide film on the surface of aluminum nitride.
  • the heating temperature is more preferably 400 ° C. or higher, still more preferably 500 ° C. or higher.
  • the heating time is preferably 30 minutes or more and 6 hours or less, more preferably 45 minutes or more and 4 hours or less, from the viewpoint of ensuring a sufficient reaction time and efficiently forming a good silicon-containing oxide film. Yes, more preferably in the range of 1 hour or more and 2 hours or less.
  • the atmosphere at the time of the heat treatment is preferably performed in an atmosphere containing oxygen gas, for example, in the air (in the air).
  • the silicon-containing oxide-coated aluminum nitride particles may be partially fused to each other.
  • a roller mill, a hammer mill, a jet mill, a ball mill, or the like It can be crushed using a general crusher to obtain silicon-containing oxide-coated aluminum nitride without sticking and agglomeration.
  • the first step and the second step may be further performed in order. That is, the steps of sequentially performing the first step and the second step may be repeatedly executed.
  • ⁇ alumina ⁇ Alumina has thermal conductivity and excellent moisture resistance.
  • ⁇ -alumina ⁇ -Al 2 O 3
  • ⁇ -alumina, ⁇ -alumina, ⁇ -alumina and the like may be contained.
  • a known product such as a commercially available product can be used.
  • Known alumina such as a commercially available product has a wide variety of particle sizes and shapes, and the optimum one can be selected, and is inexpensive.
  • the method for producing alumina may be any method, for example, a method for thermally decomposing ammonium alum, a method for thermally decomposing ammonium aluminum carbonate, an underwater spark discharge method for aluminum, a vapor phase oxidation method, and an aluminum alkoxide. It may be obtained by the hydrolysis method of.
  • the shape of alumina is not particularly limited, and examples thereof include amorphous (crushed), spherical, rounded, and polyhedral.
  • the particle size (D50) at a cumulative volume of 50% in the particle size distribution of alumina by the laser diffraction / scattering method is not particularly limited, but is preferably 0.1 ⁇ m or more and 50 ⁇ m or less.
  • alumina in the case of alumina, it may have an alkyl group having 4 or more carbon atoms from the viewpoint of increasing flexibility.
  • Examples of the method of introducing an alkyl group having 4 or more carbon atoms into alumina include a method of surface-treating alumina with a silane coupling agent.
  • the silane coupling agent is not particularly limited as long as it has an alkyl group having 4 or more carbon atoms, and is, for example, butyltrimethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane, decyltrimethoxysilane, hexadecyltrimethoxysilane and the like. Can be mentioned.
  • silane coupling agent may be used alone or in combination of two or more.
  • the amount of the silane coupling agent used is preferably 0.01 parts by mass or more and 10 parts by mass or less, and more preferably 0.02 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of alumina. By using the silane coupling agent within the above range, the surface treatment of alumina can be sufficiently performed.
  • a method for treating alumina with a silane coupling agent a method in which the silane coupling agent is added by spraying or the like while stirring the raw material alumina using a general powder mixing device, and dry mixing is performed.
  • the powder mixing device include a Henschel mixer (manufactured by Nippon Coke Industries Co., Ltd.) and a Spartan Luzer (manufactured by Dalton Co., Ltd.).
  • silane coupling agent treatment of alumina it is preferable to perform heat treatment at a temperature of 100 to 140 ° C. for 1 to 5 hours, and more preferably to heat treatment at a temperature of 110 to 130 ° C. for 2 to 4 hours after mixing.
  • the mass ratio of aluminum nitride to alumina enhances the filling property of the heat conductive powder into the liquid resin.
  • it is preferably 20 to 80/80 to 20, and more preferably 30 to 70/70 to 30.
  • the total content of aluminum nitride and alumina contained in the heat conductive powder is preferably 90% by mass or more, more preferably 95% by mass or more, and particularly, from the viewpoint of enhancing the heat conductivity of the composition. It is preferably 100% by mass.
  • the heat conductive powder may have different particle sizes.
  • the heat conductive composition may be composed of alumina having a small particle size (for example, D50 of 0.1 ⁇ m or more and 50 ⁇ m or less) and aluminum nitride having a larger particle size than alumina (for example, D50 of 10 ⁇ m or more and 100 ⁇ m or less). Since the heat conductive powder filling amount (% by mass) can be increased, the thermal conductivity of the heat conductive composition can be further increased.
  • the content of the heat conductive powder is preferably 75.0% by mass or more and 98.0% by mass or less, and more preferably 85.0% by mass or more and 96. It is 0% by mass or less.
  • the content of the heat conductive powder is 75.0% by mass or more, the heat conductivity of the composition can be enhanced, and when it is 98.0% by mass or less, the heat conductive powder is kneaded with a liquid resin. Can be done.
  • the dispersant used in this embodiment is acrylic silicone, which has a function of enhancing the dispersibility of the heat conductive powder.
  • the acrylic silicone include a (meth) acrylic acid ester having at least one polydimethylsiloxane structure [-((CH 3 ) 2 SiO) p- ; p is an integer of 1 or more] and an alkyl (meth) acrylic acid.
  • examples thereof include a copolymer obtained by copolymerizing an ester as a monomer.
  • the (meth) acrylic acid ester means an acrylic acid ester or a methacrylic acid ester. Specific examples of the (meth) acrylic acid ester include dimethicone methacrylate.
  • (meth) acrylic acid alkyl ester examples include methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylhexyl acrylate, and tridecylic acrylate.
  • the polydimethylsiloxane structure of the (meth) acrylic acid ester preferably has a silicon atom number of 3 to 100, more preferably 3 to 50, and even more preferably 3 to 30. It will be.
  • the alkyl chain of the (meth) acrylic acid alkyl ester preferably has 1 to 15 carbon atoms, more preferably 1 to 12 carbon atoms, and even more preferably 1 to 9 carbon atoms. It is a thing.
  • the acrylic silicone used in the present embodiment is not limited to a binary copolymer composed of only these components, a monomer containing a vinyl group such as vinyl methyl ether (meth) acrylate, and a carboxyl group such as (meth) acrylic acid. It may be a multi-dimensional copolymer obtained by copolymerizing three or more kinds of monomers selected from the monomers containing the above. For example, the type of the alkyl group of the ester residue, the type of the alkyl group including the siloxane moiety, and a plurality of types of acrylate and methacrylate can be arbitrarily combined and used. Specific examples of acrylic silicone include Cymac (registered trademark) US-350 manufactured by Toagosei Co., Ltd., KP-541, KP-574, and KP-578 manufactured by Shin-Etsu Chemical Co., Ltd. ..
  • the molecular weight of acrylic silicone is not particularly limited, but the polystyrene-equivalent weight average molecular weight measured by GPC (gel permeation chromatography) is preferably 10,000 or more and 300,000 or less, more preferably 50,000. It is 250,000 or more, and more preferably 100,000 or more and 200,000 or less.
  • GPC gel permeation chromatography
  • the acrylic silicone also contains a monomer unit having a carboxy group
  • its acid value is preferably 3 mgKOH / g or more and 95 mgKOH / g or less, more preferably 3 mgKOH / g or more and 70 mgKOH / g or less, and further preferably 3 mgKOH / g. It is g or more and 50 mgKOH / g or less.
  • the acid value can be measured according to JIS K2501: 2003.
  • an ethanol solution of a sample having a concentration of 5 g / L can be prepared, and the solution can be obtained by potentiometric titration using a 2-propanol solution of potassium hydroxide having a concentration of 0.1 mol / L.
  • the acid value is approximately 0 mgKOH / g.
  • the number of moles of the polyalkoxysilyl structure is preferably 3 to 30 mol per molecule of the acrylic silicone, more preferably from the viewpoint of viscosity and dispersibility. It is 3 to 20 mol, more preferably 5 to 15 mol.
  • the number of moles of the polyalkoxysilyl structure can be calculated by combining GPC and each NMR (nuclear magnetic resonance) of 1 H, 13 C, and 29 Si.
  • the method of polymerizing the monomer when synthesizing acrylic silicone is not particularly limited, but living anionic polymerization and living radical polymerization are preferable from the viewpoint of easy control of the degree of polymerization.
  • These polymerization methods are polymerization methods in which the growth active species are stable anions or radicals, and since the active species are stable, the growth ends are stable even after the monomer is consumed, and the polymerization is carried out again when the monomer is added. Since it is started, there is an advantage that the degree of polymerization is easy to control.
  • the viscosity of acrylic silicone at 25 ° C. is preferably 10 mPa ⁇ s or more and 2000 mPa ⁇ s or less, and more preferably 20 mPa ⁇ s or more and 1000 mPa ⁇ s or less, from the viewpoint of ensuring the same level of fluidity as the liquid resin.
  • the viscosity of acrylic silicone at 25 ° C. is based on JIS Z8803: 2011, and is rotated using a rotational viscometer (for example, manufactured by Toki Sangyo Co., Ltd., trade name: TVB-10, rotor No. 3). It can be measured under the condition of a speed of 20 rpm.
  • the content ratio [liquid resin / acrylic silicone] of the liquid resin and acrylic silicone is preferably 85/15 to 98/2, and more preferably 88/12 to 94/6 in terms of mass ratio.
  • the content ratio is 85/15 or more, the decrease in heat resistance can be suppressed, and when it is 98/2 or less, the heat conductive powder can be highly filled in the liquid resin.
  • the content of acrylic silicone is preferably 0.1% by mass or more and 2.0% by mass or less, more preferably 0.2% by mass or more and 1.0% by mass, based on the total amount of the heat conductive composition of the present embodiment. It is as follows. When the content of acrylic silicone is 0.1% by mass or more, the dispersibility of the heat conductive powder can be enhanced, and when it is 2.0% by mass or less, the volatile content at high temperature can be suppressed.
  • the heat conductive composition of the present embodiment includes flexibility-imparting agents, inorganic ion scavengers, pigments, dyes, diluents, reaction accelerators, etc., as long as the effects of the present invention are not impaired. Additives can be added as needed.
  • the total content of the liquid resin, the heat conductive powder, and the acrylic silicone in the heat conductive composition of the present embodiment is preferably 80 to 100% by mass, more preferably 90 to 100% by mass, and further preferably. Is 95 to 100% by mass.
  • the content of the liquid resin is preferably 1.0% by mass or more and 20.0% by mass or less with respect to the total amount of the heat conduction composition of the present embodiment, and if it is within this range, the heat conduction performance is further enhanced. be able to.
  • the content of the heat conductive powder is preferably 75.0% by mass or more and 98.0% by mass or less with respect to the total amount of the heat conductive composition of the present embodiment, and the content of the heat conductive powder is 75.
  • the thermal conductivity of the composition can be further enhanced, and when it is 98.0% by mass or less, the thermally conductive powder can be kneaded with a liquid resin.
  • the content of acrylic silicone is preferably 0.1% by mass or more and 2.0% by mass or less, and the content of acrylic silicone is 0.1% by mass or more with respect to the total amount of the heat conductive composition of the present embodiment.
  • the dispersibility of the heat conductive powder can be enhanced, and when it is 2.0% by mass or less, the volatile content at high temperature can be suppressed.
  • the liquid resin, the heat conductive powder, acrylic silicone and various additives to be blended as necessary are collectively or divided and supplied to the dispersion / dissolution apparatus, if necessary. It can be obtained by mixing, dissolving and kneading while heating.
  • the dispersion / dissolution device include a raider, a planetary mixer, a rotation / revolution mixer, a kneader, a roll mill, and the like.
  • the consistency of the heat conductive composition of the present embodiment is preferably 260 or more and 350 or less, and more preferably 265 or more and 340 or less.
  • the consistency is an index indicating the flexibility of the heat conductive composition, and the larger the value, the softer the heat conductive composition.
  • the heat conductive composition is excellent in flexibility.
  • the consistency can be measured by a method according to JIS K2220: 2013, and specifically, can be measured by the method described in Examples.
  • the heat conductive composition of the present embodiment has a viscosity of preferably 100 Pa ⁇ s or more and 1000 Pa ⁇ s or less, more preferably 150 Pa ⁇ s or more and 800 Pa ⁇ s or less, and further preferably 200 Pa ⁇ s or more and 500 a ⁇ s or less.
  • the viscosity can be measured by a method according to JIS K7210: 2014 using a flow viscometer, and specifically, can be measured by the method described in Examples.
  • the thermal conductivity of the heat conductive composition of the present embodiment is preferably 4.0 W / m ⁇ K or more, more preferably 5.0 W / m ⁇ K or more, still more preferably 6.0 W / m ⁇ K or more. It is K or more.
  • the thermal conductivity can be measured by a hot disk method conforming to ISO22007-2, and specifically, can be measured by the method described in Examples.
  • the heat conductive composition of the present embodiment has excellent flexibility and heat conductivity, it can be suitably used for heat-generating electronic components such as electronic devices, personal computers, ECUs and batteries for automobiles.
  • the heat conductive composition is prepared by adding a cross-linking agent and a curing agent such as a metal catalyst, and cured by heating or moisture at room temperature (25 ° C.) to obtain a cured product.
  • a cross-linking agent such as a metal catalyst
  • a curing agent such as a metal catalyst
  • room temperature 25 ° C.
  • an addition reaction curable silicone resin which has a characteristic that the liquid resin has excellent soft adhesion among curable silicone resins and does not generate by-products that can be a causative substance such as bubbles, an alkenyl group which is a base polymer.
  • the heat conductive composition is prepared using an organopolysiloxane having the above, an organopolysiloxane having a Si—H group as a cross-linking agent, and a curing agent typified by a platinum catalyst, and reacted at room temperature (25 ° C.) or by heating.
  • a cured silicone resin can be obtained.
  • the heating is preferably performed at a temperature of 50 ° C. or higher and 150 ° C. or lower for 5 minutes or longer and 2 hours or shorter, and at a temperature of 60 ° C. or higher and 120 ° C. or lower for 10 minutes. It is more preferable to carry out under the conditions of 1 hour or less. Since the cured product thus obtained is composed of the heat conductive composition, it is excellent in heat conductivity.
  • the cured product of the heat conductive composition of the present embodiment has an Asker C hardness of preferably 5 or more and 50 or less, more preferably 8 or more and 48 or less, and further preferably 10 or more and 45 or less.
  • the Asker C hardness can be measured by a method conforming to the hardness test (Type C) of JIS K7312: 1996 using an Asker C hardness tester, and specifically, by the method described in Examples. Can be measured.
  • the first step is the surface of aluminum nitride using a vacuum desiccator made of acrylic resin with a plate thickness of 20 mm, having internal dimensions of 260 mm ⁇ 260 mm ⁇ 100 mm, and having a structure divided into upper and lower stages by a partition having through holes. The coating was performed.
  • the vacuum desiccator was closed and heated in an oven at 80 ° C. for 30 hours.
  • the hydrogen gas generated by the reaction was operated by taking safety measures such as letting it escape from the open valve attached to the vacuum desiccator.
  • the sample taken out from the desiccator is placed in an alumina crucible, and the sample is heat-treated in the second step at 650 ° C. for 1.5 hours in the air to obtain a silicon-containing oxide.
  • a coated aluminum nitride was obtained.
  • the specific surface area of aluminum nitride obtained from the BET method was measured using a Macsorb HM model-1210 manufactured by Sloch. Incidentally, as an adsorption gas, using a He70 vol% and N 2 30 vol% of the gas mixture.
  • Alumina surface treatment Alumina surface-treated product 1
  • KBM-3103C decyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., minimum covering area: 297 m 2 / g
  • a hydrolyzate was prepared.
  • the hydrolyzed solution was added with a dropper, and stirring and mixing at a rotation speed of 2000 rpm for 20 seconds was repeated 3 times with a rotation / revolution mixer (ARE-310, manufactured by Shinky Co., Ltd.).
  • the obtained mixture was placed in a stainless steel vat and heat-treated in a hot air oven at a temperature of 120 ° C. for 2 hours to obtain a surface-treated product of alumina AA-18 (alumina surface-treated product 1).
  • Treatment 2 Alumina surface-treated product 2
  • KBM-3033 propyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., minimum covering area: 475 m 2 / g
  • a hydrolysis solution was prepared.
  • a container which corresponds to the amount of propyltrimethoxysilane calculated by the above formula (I).
  • the hydrolysis solution was added with a dropper, and stirring and mixing at a rotation speed of 2000 rpm for 20 seconds was repeated 3 times with a rotation / revolution mixer (manufactured by Shinky Co., Ltd.).
  • the obtained mixture was placed in a stainless steel vat and heat-treated in a hot air oven at a temperature of 120 ° C. for 2 hours to obtain a surface-treated product of alumina AA-18 (alumina surface-treated product 2).
  • a surface-treated product of alumina AA-5 (alumina surface-treated product 3) was obtained in the same manner as in the above treatment 1 except that an amount of the hydrolyzed solution corresponding to the amount was used.
  • a surface-treated product of alumina AA-5 (alumina surface-treated product 4) was obtained in the same manner as in the above treatment 2 except that an amount of the hydrolyzed solution corresponding to the amount was used.
  • the corresponding hydrolysis solution was added with a dropper, and stirring and mixing at a rotation speed of 2000 rpm for 20 seconds was repeated 3 times with a rotation / revolution mixer (ARE-310, manufactured by Shinky Co., Ltd.).
  • the obtained mixture was placed in a stainless steel vat and heat-treated in a hot air oven at a temperature of 120 ° C. for 2 hours to obtain a surface-treated product of alumina AKP-20 (alumina surface-treated product 5).
  • the corresponding hydrolyzate was added with a dropper, and stirring and mixing at a rotation speed of 2000 rpm for 20 seconds was repeated 3 times with a rotation / revolution mixer (manufactured by Shinky Co., Ltd.).
  • the obtained mixture was placed in a stainless steel vat and heat-treated in a hot air oven at a temperature of 120 ° C. for 2 hours to obtain a surface-treated product of alumina AKP-20 (alumina surface-treated product 6).
  • Examples 1 to 5 and Comparative Examples 1 to 9 Weigh each component of the type and blending amount shown in Tables 1 and 2 into a polyethylene container, put it into a rotation / revolution mixer (manufactured by Shinky Co., Ltd.), rotate at 2000 rpm, and stir and mix for 20 seconds three times. Repeatedly, heat conductive compositions of each Example and Comparative Example were obtained. The blanks in Tables 1 and 2 indicate no compounding.
  • Examples 6 and 7 and Comparative Examples 10 to 15 Weigh each component of the type and blending amount shown in Table 3 into a polyethylene container, put it in a rotation / revolution mixer (manufactured by Shinky Co., Ltd.), rotate at 2000 rpm, and repeat stirring and mixing for 20 seconds three times.
  • the heat conductive compositions of Examples and Comparative Examples were obtained.
  • the blanks in Table 3 indicate no compounding.
  • a defoamed heat conductive composition is placed on a polyester film having a thickness of 0.1 mm that has been subjected to a silicone mold release treatment, and a polyester film having a thickness of 0.1 mm is covered over the polyester film so as not to allow air to enter, and a rolling roll is used.
  • the film was molded, cured at 100 ° C. for 15 minutes, and left at room temperature (23 ° C.) for one day to obtain a sheet having a thickness of 2.0 mm.
  • ⁇ Liquid resin> Non-curable silicone resin
  • the heat conductive powder D50 has a particle size (integrated volume of 50%) measured using a laser diffraction type particle size distribution measuring device (manufactured by Microtrac Bell Co., Ltd., trade name: MT3300EXII). It was obtained from 50% particle size D50).
  • Examples 1 to 5 and Comparative Examples 1 to 9 Prepare two pieces of the heat conductive composition in a brass sample container similar to the consistency measurement, cover the surface with a wrap, and use an ISO22007-2 hot disk method measuring device (Kyoto Denshi Kogyo Co., Ltd.). ), The probe of TPS-2500) was set by sandwiching it from above and below, and the thermal conductivity was measured.
  • Examples 6 and 7 and Comparative Examples 10 to 15 Cut out the obtained 2.0 mm thick sheet into strips with a width of 20 mm and a length of 30 mm, prepare two blocks made by stacking three of them, and cover the surface with wrap to make ISO22007-2.
  • the probe of the compliant hot disk method measuring device (TPS-2500 manufactured by Kyoto Electronics Industry Co., Ltd.) was set by sandwiching it from above and below, and the thermal conductivity was measured.
  • Asker C hardness The obtained sheet having a thickness of 2.0 mm was cut into strips having a width of 20 mm and a length of 30 mm, and three sheets were stacked to form a block, which was used as a measurement sample.
  • the Asker C hardness of the measurement sample was measured using an Asker C hardness tester (Asker C rubber hardness tester, manufactured by Polymer Meter Co., Ltd.) in accordance with the hardness test (type C) of JIS K7312: 1996.
  • Examples 1 to 5 using alumina surface-treated with decyltrimethoxysilane as a liquid resin having an alkyl group having 4 or more carbon atoms and / or a thermally conductive powder have a consistency. It can be seen that the thermal conductivity is as high as 270 or more and the thermal conductivity is as high as 6.0 W / m ⁇ K or more.
  • Examples 6 and 7 using alumina surface-treated with decyltrimethoxysilane as a liquid resin having an alkyl group having 4 or more carbon atoms and / or a heat conductive powder are all heat conductive compositions. It can be seen that the viscosity is as low as 350 Pa ⁇ s, the Asker C hardness of the cured product is 50 or less, the flexibility is excellent, and the thermal conductivity is as high as 6.0 W / m ⁇ K or more.

Abstract

液状樹脂と、熱伝導性粉末と、分散剤とを含む組成物であって、 前記液状樹脂は、25℃における粘度が10mPa・s以上2000mPa・s以下であり、 前記分散剤がアクリルシリコーンであり、 前記液状樹脂および前記熱伝導性粉末の少なくとも1種が炭素数4以上のアルキル基を有する熱伝導組成物。

Description

熱伝導組成物及びその硬化物
 本発明は、熱伝導組成物及びその硬化物に関する。
 近年、電子機器、部品の高性能化、小型化に伴い、電子機器等から発生する熱量が大きくなり、効率的に熱を逃がすための手法が盛んに研究されている。特に、発熱源からヒートシンクへ効率的に熱を逃がすために、その間に介在させる熱伝導材料は高い熱伝導性および絶縁性が求められる。一般に熱伝導材料は、樹脂等のマトリックスに熱伝導性を付与する粉末が充填された組成物からなる。熱伝導性の粉末としては、アルミナ等の金属酸化物、窒化アルミニウム等の金属窒化物が用いられるが、これらの粉末を樹脂マトリックス中に高充填させるために各種分散剤及び表面処理剤の検討が行われている。
 例えば、特許文献1には、シリコーンゴムに、アルキル基を有する特定のシランカップリング剤で表面処理を施した熱伝導性無機フィラーを分散させてなる熱伝導性シリコーンゴム組成物が開示されている。また、特許文献2には、熱硬化性シリコーン樹脂、無機フィラー及び特定の構造を有する分散剤を含むシリコーン樹脂組成物が開示されている。
特開平11-209618号公報 国際公開第2017/002474号
 熱伝導性の粉末を樹脂中に高充填し、高い熱伝導性を有する樹脂組成物を得るために、前記特許文献1及び2に示すように、シランカップリング剤及びシロキサン構造を有する分散剤を用いる例が多数報告されている。しかしながら、より高い熱伝導性を有する組成物を作製しようとする場合、組成物の柔軟性が失われたり、基材に塗布することが難しくなるといった課題があった。
 本発明は、前記課題を解決するためになされたものであり、柔軟性に優れ、かつ熱伝導性に優れる熱伝導組成物を提供することを目的とする。
 本発明者らは、前記課題を解決するべく鋭意検討した結果、下記の発明により前記課題を解決できることを見出した。
 すなわち、本願発明は、以下に関する。
[1]液状樹脂と、熱伝導性粉末と、分散剤とを含む組成物であって、前記液状樹脂は、25℃における粘度が10mPa・s以上2000mPa・s以下であり、前記分散剤がアクリルシリコーンであり、前記液状樹脂および前記熱伝導性粉末の少なくとも1種が炭素数4以上のアルキル基を有する熱伝導組成物。
[2]前記液状樹脂がシリコーン樹脂である上記[1]に記載の熱伝導組成物。
[3]前記シリコーン樹脂がアルキル変性シリコーンオイルである上記[2]に記載の熱伝導組成物。
[4]前記熱伝導性粉末が金属窒化物と金属酸化物とからなる上記[1]~[3]のいずれかに記載の熱伝導組成物。
[5]前記金属酸化物がアルミナである上記[4]に記載の熱伝導組成物。
[6]前記金属窒化物が窒化アルミニウムであり、該窒化アルミニウムは表面に珪素含有酸化物被膜を有する上記[4]に記載の熱伝導組成物。
[7]熱伝導組成物全量に対して、前記液状樹脂の含有量が、1.0質量%以上20.0質量以下であり、前記熱伝導性粉末の含有量が、75.0質量%以上98.0質量%以下であり、前記アクリルシリコーンの含有量が、0.1質量%以上2.0質量%以下である、上記[1]~[6]のいずれかに記載の熱伝導組成物。
[8]前記液状樹脂と、アクリルシリコーンとの含有比率〔液状樹脂/アクリルシリコーン〕が、質量比で85/15~98/2である上記[1]~[7]のいずれかに記載の熱伝導組成物。
[9]上記[1]~[8]のいずれかに記載の熱伝導組成物の硬化物。
 本発明によれば、柔軟性に優れ、かつ熱伝導性に優れる熱伝導組成物を提供することができる。
 以下、本発明について、一実施形態を参照しながら詳細に説明する。
<熱伝導組成物>
 本実施形態の熱伝導組成物は、液状樹脂と、熱伝導性粉末と、分散剤とを含む組成物であって、前記液状樹脂は、25℃における粘度が10mPa・s以上2000mPa・s以下であり、前記分散剤がアクリルシリコーンであり、前記液状樹脂および前記熱伝導性粉末の少なくとも1種が炭素数4以上のアルキル基を有する。これにより、柔軟性に優れ、かつ熱伝導性に優れた熱伝導組成物とすることができる。
(液状樹脂)
 本実施形態で用いる液状樹脂は、25℃における粘度が10mPa・s以上2000mPa・s以下である。ここで、液状樹脂とは、室温(25℃)で液状又は流動性を有する樹脂を意味する。
 前記粘度が10mPa・s以上であれば熱安定性に優れ、2000mPa・s以下であれば熱伝導性粉末を高充填できる。このような観点から、前記粘度は、好ましくは20mPa・s以上1000mPa・s以下であり、より好ましくは20mPa・s以上600mPa以下であり、さらに好ましくは30mPa・s以上400mPa以下であり、よりさらに好ましくは、30mPa・s以上200mPa・s以下である。
 なお、液状樹脂の25℃における粘度は、JIS Z8803:2011に準拠して、回転粘度計(例えば、東機産業(株)製、商品名:TVB-10、ロータNo.3)を用いて回転速度20rpmの条件で測定することができる。
 液状樹脂は、後述する熱伝導性粉末が炭素数4以上のアルキル基を有さない場合、柔軟性を高める観点から、炭素数4以上のアルキル基を有する。液状樹脂が有するアルキル基の炭素数は、柔軟性を高める観点から、好ましくは6以上であり、より好ましくは8以上である。前記炭素数の上限値としては、好ましくは30であり、より好ましくは18である。なお、熱伝導性粉末が炭素数4以上のアルキル基を有する場合にあっては、液状樹脂は炭素数4以上のアルキル基を有しても良く、有しなくても良い。
 液状樹脂は、25℃における粘度が前記範囲内であれば特に限定されず、例えば、シリコーン樹脂(後述するアクリルシリコーンを除く)、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミド、ポリエステル等が挙げられる。中でも、耐熱性及び耐寒性が良好で、幅広い温度領域で使用できるという観点から、シリコーン樹脂が好ましい。これらの樹脂は単独で、または2種以上を混合して使用してもよい。
 シリコーン樹脂としては、特に限定されず、オルガノポリシロキサン構造を主鎖とする樹脂が挙げられ、硬化型シリコーン樹脂、非硬化型シリコーン樹脂がある。硬化型シリコーン樹脂としては、付加反応硬化型シリコーン樹脂、縮合反応硬化型シリコーン樹脂、有機過酸化物硬化型シリコーン樹脂などがあり、柔軟性を高める観点から、付加反応硬化型シリコーン樹脂が好ましい。硬化型シリコーン樹脂は、熱伝導性粉末を充填したものを放熱シート及び放熱ゲルとして使用できる。非硬化型シリコーン樹脂とは、ベースポリマーがアルケニル基のような硬化性官能基を持たないオルガノポリシロキサンを言い、非反応性シリコーンオイルとも呼ばれる。最も一般的なものとしてジメチルシリコーンオイルが挙げられ、熱伝導性粉末を充填したものを放熱グリース及び放熱パテとして使用できる。
 なお、本明細書において、シリコーンオイルとは、シリコーン樹脂のうち、比較的重合度が低く、常温(25℃)で油状であるのものを意味する。
 シリコーン樹脂は、アルケニル基に代表される硬化性官能基以外の官能基を有していてもよい。後述する熱伝導性粉末が炭素数4以上のアルキル基を有する場合、シリコーン樹脂としては、例えば、メチルフェニルシリコーン樹脂、フェニルシリコーン樹脂等を用いることができる。シリコーン樹脂は、柔軟性を高める観点から、炭素数4以上のアルキル基を有していてもよく、アルキル変性シリコーンオイルであってもよい。ここで、アルキル変性シリコーンオイルとは、ジメチルシリコーンオイルのメチル基の一部を炭素数4以上のアルキル基で置換したシリコーンオイルを意味する。アルキル基の炭素数は、柔軟性を高める観点から、好ましくは6以上であり、より好ましくは8以上である。前記炭素数の上限値としては、好ましくは30であり、より好ましくは18である。
 なお、アルキル変性シリコーンオイルは、硬化性官能基を有していてもよい。
 シリコーン樹脂は、市販品として入手することができる。例えば、硬化型シリコーン樹脂の市販品としては、DOWSILTM EG-3100(ダウ・東レ(株)製)等が挙げられる。また、非硬化型シリコーン樹脂において、ジメチルシリコーンオイルの市販品としては、KF-96-100cs(信越化学工業(株)製)、ELEMENT14PDMS100-J(モメンティブ・パフォーマンス・マテリアルズジャパン合同会社製)等が挙げられ、アルキル変性シリコーンオイルの市販品としては、KF-4003(信越化学工業(株)製)、X-22-7322(信越化学工業(株)製)等が挙げられる。
 前記液状樹脂の含有量は、本実施形態の熱伝導組成物全量に対して好ましくは1.0質量%以上20.0質量%以下であり、より好ましくは2.0質量%以上10.0質量%以下である。前記液状樹脂の含有量が1.0質量%以上であると熱伝導性粉末を液状樹脂で練り合わせることができ、20.0質量%以下であると熱伝導材料として使用できる熱伝導性能を付与することができる。
(熱伝導性粉末)
 本実施形態で用いる熱伝導性粉末は、電子部品等から発生した熱を系外に伝熱させる機能を有する粉末であり、例えば、金属、金属窒化物、金属酸化物、金属炭化物、金属水酸化物等が挙げられる。熱伝導性粉末は単独で、または2種以上を混合して使用してもよい。
 熱伝導性粉末は、高熱伝導性及び絶縁性の観点から、金属窒化物、金属酸化物が好ましく、特に、金属窒化物と金属酸化物とからなることが好ましい。
 金属窒化物としては、窒化ホウ素、窒化アルミニウム、窒化ケイ素等が挙げられる。中でも、熱伝導性が高く、樹脂への充填性が高いという観点から、窒化アルミニウムが好ましい。
 金属酸化物としては、酸化亜鉛、アルミナ、酸化マグネシウム、二酸化ケイ素、酸化鉄等が挙げられる。中でも、熱伝導性が高く、多様な粒度がラインナップされており、金属窒化物との組み合わせの自由度が高いという観点から、アルミナが好ましい。
 熱伝導性粉末は、前記液状樹脂が炭素数4以上のアルキル基を有さない場合、柔軟性を高める観点から、炭素数4以上のアルキル基を有する。熱伝導性粉末が有するアルキル基の炭素数は、柔軟性を高める観点から、好ましくは6以上であり、より好ましくは8以上である。前記炭素数の上限値としては、好ましくは20であり、より好ましくは16である。
 熱伝導性粉末に炭素数4以上のアルキル基を導入する方は、該熱伝導性粉末の種類等により適宜選択することができる。例えば、熱伝導性粉末が金属酸化物の場合、カップリング剤を用いることにより、金属酸化物の表面に炭素数4以上のアルキル基を導入することができる。
 熱伝導性粉末のレーザー回折散乱法による粒度分布における累積体積50%での粒子径(以下、D50と表記する。)は、熱伝導材料の厚みの調整、及び液状樹脂に熱伝導性粉末を混練する際のハンドリング性の観点から、好ましくは0.2μm以上200μm以下であり、より好ましくは0.5μm以上100μm以下であり、さらに好ましくは1.0μm以上50μm以下である。
 なお、熱伝導性粉末のD50は、粒度分析測定装置により測定することができ、具体的には実施例に記載の方法により測定することができる。
〔窒化アルミニウム〕
 窒化アルミニウムは、市販品など公知のものを使用することができる。窒化アルミニウムは、どのような製法で得られたものでもよく、例えば、金属アルミニウム粉と窒素又はアンモニアとを直接反応させる直接窒化法、アルミナを炭素還元しながら窒素又はアンモニア雰囲気下で加熱して同時に窒化反応を行う還元窒化法で得られたものでもよい。
 窒化アルミニウムの形状は、特に限定されず、例えば、無定形(破砕状)、球形、楕円状、板状(鱗片状)などが挙げられる。
 また、窒化アルミニウムのレーザー回折散乱法による粒度分布における累積体積50%での粒子径(D50)は、好ましくは0.2μm以上200μm以下であり、より好ましくは10μm以上100μm以下であり、さらに好ましくは10μm以上50μm以下である。
 窒化アルミニウムは、その表面に珪素含有酸化物被膜を有することが耐湿性向上の観点から好ましい。珪素含有酸化物被膜は、窒化アルミニウムの表面の一部を覆っていてもよく、全部を覆っていてもよいが、窒化アルミニウムの表面の全部を覆っていることが好ましい。
 窒化アルミニウムは熱伝導性に優れるため、表面に珪素含有酸化物被膜を有する窒化アルミニウム(以下、珪素含有酸化物被覆窒化アルミニウムともいう)も熱伝導性に優れる。
 珪素含有酸化物被膜および珪素含有酸化物被覆窒化アルミニウム粒子の「珪素含有酸化物」としては、シリカ、並びに珪素およびアルミニウムを含む酸化物が挙げられる。
 珪素含有酸化物被覆窒化アルミニウムは、窒化アルミニウムの表面を覆う珪素含有酸化物被膜のLEIS分析による被覆率が、好ましくは70%以上100%以下であり、より好ましくは70%以上95%以下であり、さらに好ましくは72%以上90%以下であり、特に好ましくは74%以上85%以下である。前記被覆率が70%以上100%以下であると、より耐湿性に優れる。また、95%を超えると熱伝導率が低下する場合がある。
 窒化アルミニウムの表面を覆う珪素含有酸化物被膜(SiO)のLEIS(Low Energy Ion Scattering)分析による被覆率(%)は、下記式で求められる。
(SAl(AlN)-SAl(AlN+SiO))/SAl(AlN)×100
 上記式中、SAl(AlN)は、窒化アルミニウムのAlピークの面積であり、SAl(AlN+SiO)は、珪素含有酸化物被覆窒化アルミニウムのAlピークの面積である。Alピークの面積は、イオン源と希ガスとをプローブにする測定方法である低エネルギーイオン散乱(LEIS)による分析から求めることができる。LEISは、数keVの希ガスを入射イオンとする分析手法で、最表面の組成分析を可能とする評価手法である(参考文献:The TRC News 201610-04(October2016))。
 窒化アルミニウムの表面に珪素含有酸化物被膜を形成する方法としては、例えば、窒化アルミニウムの表面を、下記式(1)で表される構造を含むシロキサン化合物により覆う第1工程と、シロキサン化合物により覆われた窒化アルミニウムを300℃以上800℃以下の温度で加熱する第2工程とを有する方法が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 式(1)中、Rは炭素数が4以下のアルキル基である。
 式(1)で表される構造は、Si-H結合を有するハイドロジェンシロキサン構造単位である。式(1)中、Rは炭素数が4以下のアルキル基、すなわち、メチル基、エチル基、プロピル基又はブチル基であり、好ましくはメチル基、エチル基、イソプロピル基又はt-ブチル基であり、より好ましくはメチル基である。
 前記シロキサン化合物としては、式(1)で表される構造を繰り返し単位として含むオリゴマー又はポリマーが好ましい。また、前記シロキサン化合物は、直鎖状、分岐鎖状又は環状のいずれであってもよい。前記シロキサン化合物の重量平均分子量は、均一な膜厚の珪素含有酸化物被膜の形成容易性の観点から、好ましくは100~2000であり、より好ましくは150~1000であり、さらに好ましくは180~500である。なお、前記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)によるポリスチレン換算値とする。
 前記シロキサン化合物としては、下記式(2)で表される化合物及び/又は下記式(3)で表される化合物が好適に用いられる。
Figure JPOXMLDOC01-appb-C000002
 式(2)中、R1及びR2は、それぞれ独立に、水素原子又はメチル基であり、R1及びR2の少なくともいずれかは水素原子である。mは0~10の整数であり、好ましくは1~5、より好ましくは1である。
Figure JPOXMLDOC01-appb-C000003
 式(3)中、nは3~6の整数であり、好ましくは3~5、より好ましくは4である。
 前記シロキサン化合物としては、良好な珪素含有酸化物被膜の形成容易性の観点から、特に、式(3)においてnが4である環状ハイドロジェンシロキサンオリゴマーが好ましい。
 第1工程では、前記窒化アルミニウムの表面を、前記式(1)で示される構造を含むシロキサン化合物により覆う。
 第1工程では、上記窒化アルミニウムの表面を、前記式(1)で示される構造を含むシロキサン化合物により覆うことができれば、特に方法は限定されない。第1工程の方法としては、一般的な粉体混合装置を用いて、原料の窒化アルミニウムを撹拌しながら前記シロキサン化合物を噴霧などで添加して、乾式混合することで被覆する乾式混合法などが挙げられる。
 前記粉体混合装置としては、例えば、ヘンシェルミキサー(日本コークス工業(株)製)、容器回転型のVブレンダー、ダブルコーン型ブレンダーなど、混合羽根を有するリボンブレンダー、スクリュー型ブレンダー、密閉型ロータリーキルン、マグネットカップリングを用いた密閉容器の撹拌子による撹拌などが挙げられる。温度条件は、特に限定されないが、好ましくは10℃以上200℃以下であり、より好ましくは20℃以上150℃以下であり、さらに好ましくは40℃以上100℃以下の範囲である。
 また、前記シロキサン化合物の蒸気単独もしくは窒素ガスなどの不活性ガスとの混合ガスを、静置した窒化アルミニウム表面に付着又は蒸着させる気相吸着法を用いることもできる。温度条件は、特に限定されないが、好ましくは10℃以上200℃以下であり、より好ましくは20℃以上150℃以下であり、さらに好ましくは40℃以上100℃以下の範囲である。さらに必要な場合には、系内を加圧あるいは減圧させることもできる。この場合に使用できる装置としては、密閉系、且つ、系内の気体を容易に置換できる装置が好ましく、例えば、ガラス容器、デシケーター、CVD装置などを使用できる。
 前記シロキサン化合物の第1工程での使用量は、特に限定されない。第1工程で得られる、前記シロキサン化合物により覆われた窒化アルミニウムにおいて、前記シロキサン化合物の被覆量が、窒化アルミニウムのBET法から求めた比表面積(m/g)から算出した表面積1m当たり0.1mg以上1.0mg以下であることが好ましく、より好ましくは0.2mg以上0.8mg以下の範囲であり、さらに好ましくは0.3mg以上0.6mg以下の範囲である。前記シロキサン化合物の被覆量が前記範囲内であると均一な膜厚の珪素含有酸化物被膜を有する窒化アルミニウムを得ることができる。
 なお、前記窒化アルミニウムのBET法から求めた比表面積(m/g)から算出した表面積1m当たりの、前記シロキサン化合物の被覆量は、シロキサン化合物で被覆する前後の窒化アルミニウムの質量差を、窒化アルミニウムのBET法から求めた比表面積(m/g)から算出した表面積(m)で除すことで求めることができる。
 なお、BET法から求める比表面積は、ガス流動法による窒素吸着BET1点法から測定することができる。評価装置としては、Mountech社製Macsorb HM model-1210を用いることができる。
 第2工程では、第1工程で得られたシロキサン化合物により覆われた窒化アルミニウムを、300℃以上800℃以下の温度で加熱する。これにより、窒化アルミニウム表面に珪素含有酸化物被膜を形成することができる。加熱温度は、より好ましくは400℃以上であり、さらに好ましくは500℃以上である。
 加熱時間は、十分な反応時間を確保し、また、良好な珪素含有酸化物被膜の形成を効率的に行う観点から、30分以上6時間以下が好ましく、より好ましくは45分以上4時間以下であり、さらに好ましくは1時間以上2時間以下の範囲である。
 前記加熱処理時の雰囲気は、酸素ガスを含む雰囲気下、例えば大気中(空気中)で行うことが好ましい。
 第2工程の熱処理後に、珪素含有酸化物被覆窒化アルミニウム粒子同士が、部分的に融着することがあるが、このような場合には、例えば、ローラーミル、ハンマーミル、ジェットミル、ボールミル等の一般的な粉砕機を用いて解砕し、固着及び凝集のない珪素含有酸化物被覆窒化アルミニウムを得ることができる。
 また、第2工程終了後に、さらに、第1工程及び第2工程を順に行ってもよい。すなわち、第1工程及び第2工程を順に行う工程を、繰り返し実行してもよい。
〔アルミナ〕
 アルミナは、熱伝導性を有し且つ耐湿性に優れる。アルミナは、α-アルミナ(α-Al)が好ましい。α-アルミナ以外に、γ-アルミナ、θ-アルミナ、δ-アルミナ等が含まれていてもよい。
 アルミナは、市販品など公知のものを使用することができる。市販品など公知のアルミナは、粒径及び形状などの種類が豊富で最適なものを選択でき、また、安価である。
 アルミナの製法は、どのような製法で得られたものでもよく、例えば、アンモニウムミョウバンの熱分解法、アンモニウムアルミニウム炭酸塩の熱分解法、アルミニウムの水中火花放電法、気相酸化法、及びアルミニウムアルコキシドの加水分解法などで得られたものでもよい。
 アルミナの形状は、特に限定されず、例えば、無定形(破砕状)、球形、丸み状、多面体状などが挙げられる。
 また、アルミナのレーザー回折散乱法による粒度分布における累積体積50%での粒子径(D50)は、特に限定されないが、0.1μm以上50μm以下であることが好ましい。
 例えば、アルミナの場合は、柔軟性を高める観点から、炭素数4以上のアルキル基を有していてもよい。アルミナに炭素数4以上のアルキル基を導入する方法としては、例えば、シランカップリング剤でアルミナの表面処理をする方法が挙げられる。シランカップリング剤は、炭素数4以上のアルキル基を有すれば特に限定されず、例えば、ブチルトリメトキシシラン、ヘキシルトリメトキシシラン、オクチルトリメトキシシラン、デシルトリメトキシシラン、ヘキサデシルトリメトキシシラン等が挙げられる。中でも、組成物の柔軟性を高める観点から、オクチルトリメトキシシラン、デシルトリメトキシシラン、ヘキサデシルトリメトキシシランが好ましく、デシルトリメトキシシランがより好ましい。
 シランカップリング剤は単独で、または2種以上を混合して使用してもよい。
 シランカップリング剤の使用量は、アルミナ100質量部に対して好ましくは0.01質量部以上10質量部以下であり、より好ましくは0.02質量部以上5質量部以下である。シランカップリング剤を前記範囲内で使用することにより、アルミナの表面処理を十分に行うことができる。
 アルミナのシランカップリング剤処理の代表的な方法としては、一般的な粉体混合装置を用いて、原料のアルミナを撹拌しながら前記シランカップリング剤を噴霧などで添加して、乾式混合する方法がある。
 前記粉体混合装置としては、例えば、ヘンシェルミキサー(日本コークス工業(株)製)、スパルタンリューザー(ダルトン(株)製)が挙げられる。
 前記アルミナのシランカップリング剤処理では混合後、温度100~140℃で1~5時間加熱処理を行うことが好ましく、温度110~130℃で2~4時間加熱処理を行うことがより好ましい。
 例えば、熱伝導性粉末が、窒化アルミニウムとアルミナとの混合物の場合には、前記窒化アルミニウムとアルミナとの質量比〔窒化アルミニウム/アルミナ〕は、液状樹脂への熱伝導性粉末の充填性を高める観点から、好ましくは20~80/80~20であり、より好ましくは30~70/70~30である。
 前記熱伝導性粉末中に含まれる窒化アルミニウム及びアルミナの合計含有量は、組成物の熱伝導性を高める観点から、好ましくは90質量%以上であり、より好ましくは95質量%以上であり、特に好ましくは100質量%である。
 前記熱伝導性粉末は、粒径の異なるものを用いてもよい。例えば、粒径の小さいアルミナ(例えばD50が0.1μm以上50μm以下)とアルミナよりも粒径の大きい窒化アルミニウム(例えばD50が10μm以上100μm以下)とで構成することにより、熱伝導組成物中の熱伝導性粉末充填量(質量%)を多くすることができるため、熱伝導組成物の熱伝導率をより高くすることができる。
 前記熱伝導性粉末の含有量は、本実施形態の熱伝導組成物全量に対して好ましくは75.0質量%以上98.0質量%以下であり、より好ましくは85.0質量%以上96.0質量%以下である。前記熱伝導性粉末の含有量が75.0質量%以上であると組成物の熱伝導性を高めることができ、98.0質量%以下であると熱伝導性粉末を液状樹脂で練り合わせることができる。
(分散剤)
 本実施形態で用いる分散剤はアクリルシリコーンであり、熱伝導性粉末の分散性を高める機能を有する。アクリルシリコーンとしては、例えば、ポリジメチルシロキサン構造〔-((CHSiO)-;pは1以上の整数〕を少なくとも1個有する(メタ)アクリル酸エステル、及び(メタ)アクリル酸アルキルエステルをモノマーとして共重合し得られる共重合体が挙げられる。ここで、(メタ)アクリル酸エステルとは、アクリル酸エステル又はメタクリル酸エステルを意味する。
 前記(メタ)アクリル酸エステルの具体例としてメタクリル酸ジメチコン等が挙げられる。また、(メタ)アクリル酸アルキルエステルの具体例としてメタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、アクリル酸エチルヘキシル、アクリル酸トリデシル等が挙げられる。
 前記(メタ)アクリル酸エステルが有するポリジメチルシロキサン構造は、珪素原子数が3~100個からなるものが好ましく、より好ましくは3~50個からなるものであり、さらに好ましくは3~30個からなるものである。また、(メタ)アクリル酸アルキルエステルが有するアルキル鎖は炭素原子数が1~15個からなるものが好ましく、より好ましくは1~12個からなるものであり、さらに好ましくは1~9個からなるものである。
 本実施形態で用いるアクリルシリコーンは、これらの成分のみからなる二元共重合体に限らず、さらにビニルメチルエーテル(メタ)アクリレート等のビニル基を含有するモノマー、(メタ)アクリル酸等のカルボキシル基を含有するモノマー等から選択される3種以上のモノマーを共重合させた多元共重合体でもよい。例えば、エステル残基のアルキル基の種類、シロキサン部分を含むアルキル基の種類、さらにアクリレート及びメタクリレートなどを複数種任意に組み合わせて重合させ使用することもできる。
 アクリルシリコーンの具体例としては、東亞合成(株)製のサイマック(登録商標)US-350、信越化学工業(株)製のKP-541、KP-574、及びKP-578等を挙げることができる。
 アクリルシリコーンの分子量は特に限定されるものではないが、GPC(ゲル浸透クロマトグラフィー)測定によるポリスチレン換算の重量平均分子量は、好ましくは10,000以上300,000以下であり、より好ましくは50,000以上250,000以下であり、さらに好ましくは100,000以上200,000以下である。重量平均分子量が10,000以上であると熱伝導性粉末の液状樹脂への分散性を高めることができ、300,000以下であると粘度が下がり混練しやすくなる。
 アクリルシリコーンがカルボキシ基を有するモノマー単位をも含む場合、その酸価は好ましくは3mgKOH/g以上95mgKOH/g以下であり、より好ましくは3mgKOH/g以上70mgKOH/g以下であり、さらに好ましくは3mgKOH/g以上50mgKOH/g以下である。アクリルシリコーンの酸化が前記範囲内であると熱伝導性粉末を液状樹脂中に分散させやすくすることができる。
 なお、酸価はJIS K2501:2003に準拠して測定することができる。具体的には、5g/Lの濃度の試料のエタノール溶液を調製し、0.1mol/Lの濃度の水酸化カリウムの2-プロパノール溶液を用いて電位差滴定により求めることができる。なお、アクリルシリコーンがカルボキシル基を有しない場合には、酸価の値はほぼ0mgKOH/gとなる。
 アクリルシリコーンがポリアルコキシシリル構造を有するモノマー単位をも含む場合、粘度及び分散性の観点から、ポリアルコキシシリル構造のモル数は、アクリルシリコーン1分子当たり好ましくは3~30モルであり、より好ましくは3~20モルであり、さらに好ましくは5~15モルである。
 なお、ポリアルコキシシリル構造のモル数は、GPC及びH、13C、29Siの各NMR(核磁気共鳴)を組み合わせることによって算出することができる。
 アクリルシリコーンを合成する際のモノマーの重合方法については特に制限されないが、重合度を制御しやすいという点からリビングアニオン重合、リビングラジカル重合が好ましい。これらの重合法は成長活性種が安定なアニオン又はラジカルである重合法であり、活性種が安定であるため、モノマーが消費された後でも成長末端は安定であり、モノマーを追加すると再び重合が開始されるため、重合度が制御しやすいという利点がある。
 アクリルシリコーンの25℃における粘度は、液状樹脂と同等レベルの流動性を確保する観点から、好ましくは10mPa・s以上2000mPa・s以下であり、より好ましくは20mPa・s以上1000mPa・s以下である。
 なお、アクリルシリコーンの25℃における粘度は、JIS Z8803:2011に準拠して、回転粘度計(例えば、東機産業(株)製、商品名:TVB-10、ロータNo.3)を用いて回転速度20rpmの条件で測定することができる。
 前記液状樹脂と、アクリルシリコーンとの含有比率〔液状樹脂/アクリルシリコーン〕は、質量比で好ましくは85/15~98/2であり、より好ましくは88/12~94/6である。前記含有比率が85/15以上であると耐熱性の低下を抑制することができ、98/2以下であると熱伝導性粉末を液状樹脂に高充填することができる。
 アクリルシリコーンの含有量は、本実施形態の熱伝導組成物全量に対して好ましくは0.1質量%以上2.0質量%以下であり、より好ましくは0.2質量%以上1.0質量%以下である。アクリルシリコーンの含有量が0.1質量%以上であると熱伝導性粉末の分散性を高めることができ、2.0質量%以下であると高温下での揮発分を抑制することができる。
 本実施形態の熱伝導組成物は、以上の各成分の他に、本発明の効果を阻害しない範囲で、可撓性付与剤、無機イオン捕捉剤、顔料、染料、希釈剤、反応促進剤などの添加剤を必要に応じて配合することができる。
 本実施形態の熱伝導組成物中、液状樹脂、熱伝導性粉末、及びアクリルシリコーンの合計含有量は、好ましくは80~100質量%であり、より好ましくは90~100質量%であり、さらに好ましくは95~100質量%である。
 前記液状樹脂の含有量は、本実施形態の熱伝導組成物全量に対して好ましくは1.0質量%以上20.0質量%以下であり、この範囲内であれば、熱伝導性能をより高めることができる。
 前記熱伝導性粉末の含有量は、本実施形態の熱伝導組成物全量に対して好ましくは75.0質量%以上98.0質量%以下であり、前記熱伝導性粉末の含有量が75.0質量%以上であると組成物の熱伝導性をより高めることができ、98.0質量%以下であると熱伝導性粉末を液状樹脂で練り合わせることができる。
 アクリルシリコーンの含有量は、本実施形態の熱伝導組成物全量に対して好ましくは0.1質量%以上2.0質量%以下であり、アクリルシリコーンの含有量が0.1質量%以上であると熱伝導性粉末の分散性を高めることができ、2.0質量%以下であると高温下での揮発分を抑制することができる。
 本実施形態の熱伝導組成物は、前記液状樹脂、熱伝導性粉末、アクリルシリコーン及び必要に応じて配合される各種添加剤を一括又は分割して、分散・溶解装置へ供給し、必要に応じて加熱しながら混合、溶解、混練することで得ることができる。分散・溶解装置としては、例えば、らいかい器、プラネタリーミキサー、自転・公転ミキサー、ニーダー、ロールミル等が挙げられる。
 本実施形態の熱伝導組成物の稠度は、好ましくは260以上350以下であり、より好ましくは265以上340以下である。
 なお、本明細書において稠度とは、熱伝導組成物の柔軟性を示す指標であり、値が大きい程、熱伝導組成物が柔らかいことを示す。熱伝導組成物の稠度が前記範囲内であると該熱伝導組成物は柔軟性に優れる。
 前記稠度は、JIS K2220:2013に準拠した方法で測定することができ、具体的には実施例に記載の方法により測定することができる。
 本実施形態の熱伝導組成物は、粘度が好ましく100Pa・s以上1000Pa・s以下であり、より好ましくは150Pa・s以上800Pa・s以下であり、さらに好ましくは200Pa・s以上500a・s以下である。
 前記粘度は、フロー粘度計を用いてJIS K7210:2014に準拠した方法で測定することができ、具体的には実施例に記載の方法により測定することができる。
 本実施形態の熱伝導組成物の熱伝導率は、好ましくは4.0W/m・K以上であり、より好ましくは5.0W/m・K以上であり、さらに好ましくは6.0W/m・K以上である。
 なお、前記熱伝導率は、ISO22007-2に準拠するホットディスク法により測定することができ、具体的には実施例に記載の方法により測定することができる。
 本実施形態の熱伝導組成物は、柔軟性に優れ、かつ熱伝導性に優れることから、電子機器、パソコン、自動車用のECU及び電池など、発熱性の電子部品に好適に用いることができる。
[硬化物]
 液状樹脂が硬化型である場合、架橋剤及び金属触媒などの硬化剤を加えて前記熱伝導組成物を作製し、室温(25℃)、加熱、または湿気により硬化させることで硬化物を得ることができる。例えば、液状樹脂が硬化型シリコーン樹脂の中で柔軟密着性に優れ、気泡などの原因物質となり得る副生成物が生成しない特徴を持つ、付加反応硬化型シリコーン樹脂の場合、ベースポリマーであるアルケニル基を有するオルガノポリシロキサンと架橋剤であるSi-H基を有するオルガノポリシロキサンと白金触媒に代表される硬化剤とを用いて前記熱伝導組成物を作製し、室温(25℃)または加熱により反応させることでシリコーン樹脂硬化物を得ることができる。前記熱伝導組成物を加熱により硬化させる場合、該加熱は、温度50℃以上150℃以下で、5分間以上2時間以下の条件で行うことが好ましく、温度60℃以上120℃以下で、10分間以上1時間以下の条件で行うことがより好ましい。このようにして得られる硬化物は、前記熱伝導組成物からなるため熱伝導性に優れる。
 本実施形態の熱伝導組成物の硬化物は、柔軟性の観点から、アスカーC硬度が好ましくは5以上50以下であり、より好ましくは8以上48以下であり、さらに好ましくは10以上45以下である。
 なお、前記アスカーC硬度は、アスカーC 硬度計を用いて、JIS K7312:1996の硬さ試験(タイプC)に準拠した方法で測定することができ、具体的には実施例に記載の方法により測定することができる。
 次に実施例により、本発明を具体的に説明するが、本発明は、これらの例によってなんら限定されるものではない。
[合成例1:珪素含有酸化物被覆窒化アルミニウムの作製]
 第1工程は、板厚20mmのアクリル樹脂製で内寸法が260mm×260mm×100mmであり、貫通孔を有する仕切りで上下二段に分けられた構造の真空デシケーターを使用して、窒化アルミニウムの表面被覆を行った。真空デシケーターの上段に、D50が42μm、BET法から求めた比表面積が0.08m/gの球状の窒化アルミニウム(FAN-f50-A1、古河電子(株)製)30gをステンレストレーに均一に広げて静置した。次に、真空デシケーターの下段には、式(3)においてn=4であるシロキサン化合物(環状メチルハイドロジェンシロキサン4量体:東京化成工業(株)製)を10g、ガラス製シャーレに入れて静置した。その後、真空デシケーターを閉じ、80℃のオーブンで30時間の加熱を行った。なお、反応により発生する水素ガスは、真空デシケーターに付随する開放弁から逃がすなどの安全対策を取って操作を行った。第1工程を終了した後、デシケーターから取り出したサンプルをアルミナ製のるつぼに入れ、大気中で、サンプルを650℃、1.5時間の条件で第2工程の熱処理を行うことで珪素含有酸化物被覆窒化アルミニウムを得た。
 なお、窒化アルミニウムのBET法から求めた比表面積は、Mountech社製Macsorb HM model-1210を用いて測定した。なお、吸着ガスとして、He70体積%とN30体積%の混合ガスを用いた。
[アルミナの表面処理]
(1)処理1:アルミナ表面処理品1
 表面処理剤としてKBM-3103C(デシルトリメトキシシラン、信越化学工業(株)製、最小被覆面積:297m/g) 1.0gを溶媒(エタノール/水=9/1) 9.0gに溶かし、加水分解液を調製した。
 容器にアルミナ AA-18(住友化学(株)製、D50=20μm、比表面積:0.15m/g) 100gを投入し、下記式(I)で算出されるデシルトリメトキシシラン量に相当する加水分解液をスポイトで加え、自転・公転ミキサー((株)シンキー製、ARE-310)で、回転数2000rpm、20秒間の撹拌混合を3回繰り返した。得られた混合物をステンレスバットに入れ、熱風オーブンで温度120℃、2時間の加熱処理を行い、アルミナ AA-18の表面処理品(アルミナ表面処理品1)を得た。
Figure JPOXMLDOC01-appb-M000004
(2)処理2:アルミナ表面処理品2
 表面処理剤としてKBM-3033(プロピルトリメトキシシラン、信越化学工業(株)製、最小被覆面積:475m/g) 1.0gを溶媒(エタノール/水=9/1) 9.0gに溶かし、加水分解液を調製した。
 容器にアルミナ AA-18(住友化学(株)製、D50=20μm、比表面積:0.15m/g) 100gを投入し、前記式(I)で算出されるプロピルトリメトキシシラン量に相当する加水分解液をスポイトで加え、自転・公転ミキサー((株)シンキー製)で、回転数2000rpm、20秒間の撹拌混合を3回繰り返した。得られた混合物をステンレスバットに入れ、熱風オーブンで温度120℃、2時間の加熱処理を行い、アルミナ AA-18の表面処理品(アルミナ表面処理品2)を得た。
(3)処理3:アルミナ表面処理品3
 アルミナとして AA-18の代わりに、AA-5(住友化学(株)製、D50=6μm、比表面積:0.28m/g)を用い、前記式(I)で算出されるデシルトリメトキシシラン量に相当する量の加水分解液を用いたこと以外は、前記処理1と同様にして、アルミナ AA-5の表面処理品(アルミナ表面処理品3)を得た。
(4)処理4:アルミナ表面処理品4
 アルミナとして AA-18の代わりに、AA-5(住友化学(株)製、D50=6μm、比表面積:0.28m/g)を用い、前記式(I)で算出されるプロピルトリメトキシシラン量に相当する量の加水分解液を用いたこと以外は、前記処理2と同様にして、アルミナ AA-5の表面処理品(アルミナ表面処理品4)を得た。
(5)処理5:アルミナ表面処理品5
 表面処理剤としてKBM-3103C(デシルトリメトキシシラン、信越化学工業(株)製、最小被覆面積:297m/g) 4.0gを溶媒(エタノール/水=9/1) 6.0gに溶かし、加水分解液を調製した。
 容器にアルミナAKP-20(住友化学(株)製、D50=0.5μm、比表面積:4.32m/g)100gを投入し、前記式(I)で算出されるデシルトリメトキシシラン量に相当する加水分解液をスポイトで加え、自転・公転ミキサー((株)シンキー製、ARE-310)で、回転数2000rpm、20秒間の撹拌混合を3回繰り返した。得られた混合物をステンレスバットに入れ、熱風オーブンで温度120℃、2時間の加熱処理を行い、アルミナ AKP-20の表面処理品(アルミナ表面処理品5)を得た。
(6)処理6:アルミナ表面処理品6
 表面処理剤としてKBM-3033(プロピルトリメトキシシラン、信越化学工業(株)製、最小被覆面積:475m/g) 4.0gを溶媒(エタノール/水=9/1) 6.0gに溶かし、加水分解液を調製した。
 容器にアルミナ AKP-20(住友化学(株)製、D50=0.5μm、比表面積:4.32m/g) 100gを投入し、前記式(I)で算出されるプロピルトリメトキシシラン量に相当する加水分解液をスポイトで加え、自転・公転ミキサー((株)シンキー製)で、回転数2000rpm、20秒間の撹拌混合を3回繰り返した。得られた混合物をステンレスバットに入れ、熱風オーブンで温度120℃、2時間の加熱処理を行い、アルミナ AKP-20の表面処理品(アルミナ表面処理品6)を得た。
(実施例1~5、及び比較例1~9)
 表1及び表2に記載の種類及び配合量の各成分をポリエチレン容器に量り取り、自転・公転ミキサー((株)シンキー製)に投入して、回転数2000rpm、20秒間の撹拌混合を3回繰り返し、各実施例及び比較例の熱伝導組成物を得た。なお、表1及び表2中の空欄は配合なしを表す。
(実施例6、7、及び比較例10~15)
 表3に記載の種類及び配合量の各成分をポリエチレン容器に量り取り、自転・公転ミキサー((株)シンキー製)に投入して、回転数2000rpm、20秒間の撹拌混合を3回繰り返し、各実施例及び比較例の熱伝導組成物を得た。なお、表3中の空欄は配合なしを表す。
 シリコーン離型処理を施した厚み0.1mmのポリエステルフィルム上に、脱泡した熱伝導組成物を載せ、そのうえから厚み0.1mmのポリエステルフィルムを空気の混入がないように被せ、圧延ロールにて成形し、100℃で15分間硬化させ、さらに一日室温(23℃)で放置後、厚み2.0mmのシートを得た。
 熱伝導組成物の調製に使用した表1~表3に記載の各成分の詳細は以下のとおりである。
<液状樹脂>
(非硬化型シリコーン樹脂)
・KF-96-100cs:ジメチルシリコーンオイル、信越化学工業(株)製、粘度(25℃)=100mPa・s
・KF-4003:アルキル変性シリコーンオイル(炭素数8のアルキル基を有する)、信越化学工業(株)製、粘度(25℃)=40mPa・s
(硬化型シリコーン樹脂)
・DOWSILTM EG-3100:ビニル基含有ジメチルシリコーン樹脂(架橋剤及び白金触媒を含む)、ダウ・東レ(株)製、粘度(25℃)=320mPa・s
<分散剤>
・KP-578:アクリルシリコーン〔(アクリレーツ/アクリル酸エチルヘキシル/メタクリル酸ジメチコン)コポリマー〕、信越化学工業(株)製、粘度(25℃)=180mPa・s
<熱伝導性粉末>
(窒化アルミニウム)
・FAN-f50-A1:古河電子(株)製、D50=42μm、比表面積(BET法)=0.08m/g、
・FAN-f50-A1 珪素含有酸化物被覆:合成例1で製造した珪素含有酸化物被覆窒化アルミニウム、D50=45μm
(アルミナ)
・AA-18:住友化学(株)製、D50=20μm、
・アルミナ表面処理品1:処理1で得られたAA-18の表面処理品
・アルミナ表面処理品2:処理2で得られたAA-18の表面処理品
・AA-5:住友化学(株)製、D50=6μm
・アルミナ表面処理品3:処理3で得られたAA-5の表面処理品
・アルミナ表面処理品4:処理4で得られたAA-5の表面処理品
・AKP-20:住友化学(株)製、D50=0.5μm
・アルミナ表面処理品5:処理5で得られたAKP-20の表面処理品
・アルミナ表面処理品6:処理6で得られたAKP-20の表面処理品
<その他の成分>
(硬化触媒)
・XC86-250:白金触媒、モメンティブ社製
(架橋剤)
・TSF-484:ハイドロジェンシロキサン、モメンティブ社製
 なお、熱伝導性粉末のD50は、レーザー回折式粒度分布測定装置(マイクロトラック・ベル(株)製、商品名:MT3300EXII)を用いて測定した粒度分布において積算体積が50%となる粒径(50%粒径D50)から求めた。
<評価項目>
(1)稠度
 JIS K2220:2013に準拠して、1/4スケールで下記手順により稠度を求めた。
 黄銅製の試料容器に熱伝導組成物を入れ、表面を平らにした後、25℃で、1/4円すいを前記熱伝導組成物に落下させ5秒間侵入した深さを測定し、下記式より稠度を算出した。
  稠度=3.75×(侵入深さ(mm)×10)+24
(2)熱伝導率
(実施例1~5、及び比較例1~9)
 稠度測定と同様の黄銅製の試料容器に前記熱伝導組成物を入れたものを2個準備し、表面をラップで覆って、ISO22007-2に準拠するホットディスク法測定装置(京都電子工業(株)製、TPS-2500)のプローブを上下から挟み込む形でセットし、熱伝導率の測定を実施した。
(実施例6、7、及び比較例10~15)
 得られた厚み2.0mmのシートを幅20mm×長さ30mmで短冊状に切り出し、それを3枚重ねてブロックを作ったものを2個準備し、表面をラップで覆って、ISO22007-2に準拠するホットディスク法測定装置(京都電子工業(株)製、TPS-2500)のプローブを上下から挟み込む形でセットし、熱伝導率の測定を実施した。
(3)フロー粘度
 JIS K7210:2014に準拠して、フロー粘度計(GFT-100EX、(株)島津製作所製)を用いて、温度30℃、ダイ穴径(直径)1.0mm、試験力40(重り7.8kg)の条件で測定した。
(4)アスカーC硬度
 得られた厚み2.0mmのシートを幅20mm×長さ30mmで短冊状に切り出し、それを3枚重ねてブロックをつくり、測定サンプルとした。アスカーC 硬度計(アスカー Cゴム硬度計、高分子計器(株)製)を用いて、JIS K7312:1996の硬さ試験(タイプC)に準拠して前記測定サンプルのアスカーC硬度を測定した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表1及び表2より、炭素数4以上のアルキル基を有する液状樹脂及び/又は熱伝導性粉末として、デシルトリメトキシシランで表面処理したアルミナを用いた実施例1~5は、いずれも稠度が270以上と高く、かつ熱伝導率は6.0W/m・K以上と高いことがわかる。
Figure JPOXMLDOC01-appb-T000007
 表3より、炭素数4以上のアルキル基を有する液状樹脂及び/又は熱伝導性粉末として、デシルトリメトキシシランで表面処理したアルミナを用いた実施例6及び7は、いずれも熱伝導組成物の粘度が350Pa・sと低く、その硬化物のアスカーC硬度が50以下であり柔軟性に優れ、かつ熱伝導率は6.0W/m・K以上と高いことがわかる。

 

Claims (9)

  1.  液状樹脂と、熱伝導性粉末と、分散剤とを含む組成物であって、
     前記液状樹脂は、25℃における粘度が10mPa・s以上2000mPa・s以下であり、
     前記分散剤がアクリルシリコーンであり、
     前記液状樹脂および前記熱伝導性粉末の少なくとも1種が炭素数4以上のアルキル基を有する熱伝導組成物。
  2.  前記液状樹脂がシリコーン樹脂である請求項1に記載の熱伝導組成物。
  3.  前記シリコーン樹脂がアルキル変性シリコーンオイルである請求項2に記載の熱伝導組成物。
  4.  前記熱伝導性粉末が金属窒化物と金属酸化物とからなる請求項1~3のいずれか1項に記載の熱伝導組成物。
  5.  前記金属酸化物がアルミナである請求項4に記載の熱伝導組成物。
  6.  前記金属窒化物が窒化アルミニウムであり、該窒化アルミニウムは表面に珪素含有酸化物被膜を有する請求項4に記載の熱伝導組成物。
  7.  熱伝導組成物全量に対して、前記液状樹脂の含有量が、1.0質量%以上20.0質量以下であり、前記熱伝導性粉末の含有量が、75.0質量%以上98.0質量%以下であり、前記アクリルシリコーンの含有量が、0.1質量%以上2.0質量%以下である、請求項1~6のいずれか1項に記載の熱伝導組成物。
  8.  前記液状樹脂と、前記アクリルシリコーンとの含有比率〔液状樹脂/アクリルシリコーン〕が、質量比で85/15~98/2である請求項1~7のいずれか1項に記載の熱伝導組成物。
  9.  請求項1~8のいずれか1項に記載の熱伝導組成物の硬化物。

     
PCT/JP2021/017796 2020-07-15 2021-05-11 熱伝導組成物及びその硬化物 WO2022014129A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/001,619 US20230227707A1 (en) 2020-07-15 2021-05-11 Thermally conductive composition and cured product thereof
JP2022536146A JP7371785B2 (ja) 2020-07-15 2021-05-11 熱伝導組成物及びその硬化物
EP21843425.6A EP4184564A1 (en) 2020-07-15 2021-05-11 Thermally conductive composition and cured product thereof
CN202180061454.8A CN116195053A (zh) 2020-07-15 2021-05-11 导热组合物及其固化物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020121569 2020-07-15
JP2020-121569 2020-07-15

Publications (1)

Publication Number Publication Date
WO2022014129A1 true WO2022014129A1 (ja) 2022-01-20

Family

ID=79554677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017796 WO2022014129A1 (ja) 2020-07-15 2021-05-11 熱伝導組成物及びその硬化物

Country Status (6)

Country Link
US (1) US20230227707A1 (ja)
EP (1) EP4184564A1 (ja)
JP (1) JP7371785B2 (ja)
CN (1) CN116195053A (ja)
TW (1) TWI781621B (ja)
WO (1) WO2022014129A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023007894A1 (ja) * 2021-07-29 2023-02-02 昭和電工株式会社 熱伝導性樹脂組成物、硬化物、熱伝導部材及び電子機器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230097362A1 (en) * 2020-09-03 2023-03-30 Fuji Polymer Industries Co., Ltd. Thermally conductive silicone heat dissipation material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209618A (ja) * 1998-01-27 1999-08-03 Matsushita Electric Works Ltd 熱伝導性シリコーンゴム組成物
WO2017002474A1 (ja) * 2015-07-01 2017-01-05 昭和電工株式会社 窒化ホウ素を含む熱硬化性シリコーン樹脂組成物、シリコーン樹脂組成物用分散剤及び無機フィラー
WO2017051738A1 (ja) * 2015-09-25 2017-03-30 信越化学工業株式会社 熱軟化性熱伝導性シリコーングリース組成物、熱伝導性被膜の形成方法、放熱構造及びパワーモジュール装置
JP2020073626A (ja) * 2019-08-01 2020-05-14 昭和電工株式会社 無機粒子分散樹脂組成物及び無機粒子分散樹脂組成物の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3178805B2 (ja) * 1997-10-16 2001-06-25 電気化学工業株式会社 放熱スペーサー
JP6658866B2 (ja) * 2016-03-18 2020-03-04 信越化学工業株式会社 熱伝導性シリコーン組成物及び半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209618A (ja) * 1998-01-27 1999-08-03 Matsushita Electric Works Ltd 熱伝導性シリコーンゴム組成物
WO2017002474A1 (ja) * 2015-07-01 2017-01-05 昭和電工株式会社 窒化ホウ素を含む熱硬化性シリコーン樹脂組成物、シリコーン樹脂組成物用分散剤及び無機フィラー
WO2017051738A1 (ja) * 2015-09-25 2017-03-30 信越化学工業株式会社 熱軟化性熱伝導性シリコーングリース組成物、熱伝導性被膜の形成方法、放熱構造及びパワーモジュール装置
JP2020073626A (ja) * 2019-08-01 2020-05-14 昭和電工株式会社 無機粒子分散樹脂組成物及び無機粒子分散樹脂組成物の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023007894A1 (ja) * 2021-07-29 2023-02-02 昭和電工株式会社 熱伝導性樹脂組成物、硬化物、熱伝導部材及び電子機器

Also Published As

Publication number Publication date
TWI781621B (zh) 2022-10-21
TW202204569A (zh) 2022-02-01
JPWO2022014129A1 (ja) 2022-01-20
US20230227707A1 (en) 2023-07-20
JP7371785B2 (ja) 2023-10-31
EP4184564A1 (en) 2023-05-24
CN116195053A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
WO2022014129A1 (ja) 熱伝導組成物及びその硬化物
TWI669272B (zh) Spherical alumina powder and resin composition using spherical alumina powder
JPWO2017002474A1 (ja) 窒化ホウ素を含む熱硬化性シリコーン樹脂組成物、シリコーン樹脂組成物用分散剤及び無機フィラー
TWI751632B (zh) 無機粒子分散樹脂組成物及無機粒子分散樹脂組成物的製造方法
JP7055255B1 (ja) 熱伝導性シリコーン組成物の製造方法
CN109312216B (zh) 高导热复合材料
WO2023007894A1 (ja) 熱伝導性樹脂組成物、硬化物、熱伝導部材及び電子機器
TW201827382A (zh) 矽氧系混成聚合物被覆氮化鋁填料
TW202140675A (zh) 含碳之氧化鋁粉末、樹脂組成物、散熱零件、以及含碳之氧化鋁粉末之製造方法
US20230399512A1 (en) Thermally conductive composition
US20230313017A1 (en) Thermally conductive composition
WO2023119903A1 (ja) 熱伝導組成物及びその硬化物
WO2023157683A1 (ja) 被覆マグネシア粒子、放熱材用フィラー、樹脂組成物、及び被覆マグネシア粒子の製造方法
US20240043659A1 (en) Heat conducting composition
CN117430866A (zh) 表面处理填料、表面处理填料的制造方法和导热组合物
EP4253482A1 (en) Resin composition
CN116601241A (zh) 表面被处理过的导热性填料的制造方法和导热组合物
TW200831579A (en) Resin composition and radiating spacer formed from the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21843425

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022536146

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021843425

Country of ref document: EP

Effective date: 20230215