WO2017051738A1 - 熱軟化性熱伝導性シリコーングリース組成物、熱伝導性被膜の形成方法、放熱構造及びパワーモジュール装置 - Google Patents

熱軟化性熱伝導性シリコーングリース組成物、熱伝導性被膜の形成方法、放熱構造及びパワーモジュール装置 Download PDF

Info

Publication number
WO2017051738A1
WO2017051738A1 PCT/JP2016/076766 JP2016076766W WO2017051738A1 WO 2017051738 A1 WO2017051738 A1 WO 2017051738A1 JP 2016076766 W JP2016076766 W JP 2016076766W WO 2017051738 A1 WO2017051738 A1 WO 2017051738A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
component
group
thermally conductive
grease composition
Prior art date
Application number
PCT/JP2016/076766
Other languages
English (en)
French (fr)
Inventor
邦弘 山田
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to CN201680055400.XA priority Critical patent/CN108026437B/zh
Priority to EP16848526.6A priority patent/EP3354707B1/en
Priority to US15/763,004 priority patent/US10745603B2/en
Priority to KR1020187010922A priority patent/KR20180061242A/ko
Publication of WO2017051738A1 publication Critical patent/WO2017051738A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • H05K7/20472Sheet interfaces
    • H05K7/20481Sheet interfaces characterised by the material composition exhibiting specific thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Definitions

  • the present invention relates to a heat transfer material interposed at a thermal interface between a heat-generating electronic component and a heat-dissipating component such as a heat sink or a metal housing for cooling the electronic component, and in particular, based on a silicone resin, Thermosoftening thermally conductive silicone grease that improves the heat transfer from heat-generating electronic components to heat-dissipating components by reducing viscosity, softening, or melting at temperatures within the operating temperature range of the components to improve adhesion to the heat interface
  • the present invention relates to a composition, a method for forming a thermally conductive coating thereof, a heat dissipation structure, and a power module device using the composition.
  • the low-hardness thermal conductive sheet is excellent in handling workability, but it is difficult to reduce the thickness, and because it cannot follow the minute irregularities on the surface of electronic parts and heat sinks, the contact thermal resistance increases and efficiency There is a problem that heat cannot be conducted well.
  • the thickness of the heat conductive grease can be reduced, the distance between the electronic component and the heat sink can be reduced, and further, the thermal resistance can be greatly reduced by filling the fine irregularities on the surface.
  • the heat conductive grease has a problem that the oil component is separated (pumping out) by the heat cycle and the thermal characteristics are deteriorated.
  • thermosoftening materials that are solid at room temperature and soften or melt by heat generated from electronic components have been proposed (Patent Documents 1 to 7: JP 2000-509209 A, JP 2000-336279 A). (Japanese Patent Laid-Open Nos. 2001-89756, 2002-121332, 2000-327917, 2001-291807, 2002-234952).
  • Patent Documents 1 to 4 those whose base oil is based on organic substances (Patent Documents 1 to 4) are inferior in heat resistance, so when they are incorporated in automobile applications, there is concern about deterioration due to high temperature, heat resistance, and weather resistance.
  • Patent Documents 5 to 7 Many similar heat-softening materials based on silicone have been proposed as materials having excellent properties and flame retardancy (Patent Documents 5 to 7), all of which are sheet molded products.
  • the sheet molding When dissipating heat dissipation material quickly over a large area, the sheet molding will inevitably contain air bubbles between the contact surface, and paste-like heat dissipation material can be applied to the work surface where heat dissipating material is placed by screen printing, etc. It is the fastest and efficient to apply, but the sheet molding has an insufficient aspect from that viewpoint.
  • the present invention has been made in view of the above circumstances, and is used as a heat transfer material interposed on a thermal interface between a heat-generating electronic component and a heat-dissipating component such as a heat sink or a metal housing for cooling the electronic component. It can be applied in the form of a paste by screen printing, etc., and at a temperature within the operating temperature range of the electronic component, the viscosity decreases, softens, or melts and adheres to the thermal interface, making it more resistant to pumping than conventional products.
  • An object of the present invention is to provide a heat softening thermally conductive silicone grease composition excellent in heat resistance, heat resistance and flame retardancy, a method for forming the thermally conductive coating, a heat dissipation structure, and a power module device using the composition. To do.
  • a silicone wax having a melting point of 30 to 80 ° C. (B) a kinematic viscosity at 25 ° C. represented by the general formula (1) is 10 to 500,000 mm. 2 / s organopolysiloxane and (C) a thermally conductive filler having a thermal conductivity of 10 W / (m ⁇ K) or more, preferably (D) dissolving or dispersing the above components (A) and (B) The heat-softening thermally conductive silicone grease composition containing a specific amount of volatile solvent having a boiling point of 80 to 360 ° C.
  • the heat softening property means heat softening, viscosity reduction or melting by heat (usually at 30 ° C. or higher), and heat softening, viscosity reduction or melting results in fluidization of the surface. It can have "thermosoftening properties".
  • the present invention provides the following heat-softening thermally conductive silicone grease composition, a method for forming a thermally conductive coating, a heat dissipation structure, and a power module device.
  • R 2 is independently an alkyl group having 1 to 18 carbon atoms, but at least one of R 2 bonded to the silicon atom of the main chain is an alkyl group having 8 to 18 carbon atoms.
  • n is a number at which the kinematic viscosity at 25 ° C. of the organopolysiloxane is 10 to 500,000 mm 2 / s.
  • component (D) 10 to 300 parts by mass of a volatile solvent having a boiling point of 80 to 360 ° C. capable of dissolving or dispersing component (A) and component (B) with respect to 100 parts by mass of component (A).
  • the heat softening thermally conductive silicone grease composition according to [1] or [2].
  • a heat-dissipating structure comprising a thermally conductive coating formed from a conductive silicone grease composition, wherein the heat softening thermally conductive silicone grease composition is non-flowable at room temperature prior to electronic component operation,
  • a heat dissipation structure configured to be filled with no gap between the electronic component and the heat dissipation component by lowering the viscosity, softening or melting due to heat generation during operation of the electronic component and at least the surface fluidizing.
  • a power module device comprising a power module and a heat dissipating member provided on a surface of the power module, wherein the power module includes any one of [1] to [4] between the surface of the power module and the heat dissipating member.
  • a power module device comprising the heat softening thermally conductive silicone grease composition described above interposed in a thickness of 25 to 100 ⁇ m.
  • the heat-softening thermally conductive silicone grease composition of the present invention is useful as a heat dissipation material, and is disposed between a heat-generating electronic component and a heat-dissipating component after solvent evaporation, and has fluidity at a temperature before the operation of the electronic component.
  • the viscosity is reduced, softened, or melted at a temperature of 30 to 80 ° C, so that the boundary between the electronic components and the heat dissipation components is substantially filled. Excellent heat resistance and flame retardancy.
  • thermosoftening heat conductive silicone grease composition of this invention It is a schematic sectional drawing of the power module apparatus using the thermosoftening heat conductive silicone grease composition of this invention.
  • component (A) silicone wax is a component related to the heat softening property of the heat softening thermally conductive silicone grease composition of the present invention. If the melting point of component (A) is less than 30 ° C., it will not be in a non-flowable state at room temperature and will be inferior in pump-out resistance. Since the performance is not exhibited because the viscosity is not reduced, softened or melted by heat generation, the temperature is in the range of 30 to 80 ° C., preferably in the range of 35 to 65 ° C. In this specification, room temperature means 1 ° C. or more and less than 30 ° C.
  • the silicone wax of component (A) may be anything as long as it is silicone-modified and has a melting point of 30 to 80 ° C., but the hydrosilylation reaction between ⁇ -olefin and SiH bond-containing silicone compound, higher fatty acid and amino group-containing silicone compound, It is preferable to be obtained by a dehydration reaction or a dehydrogenation reaction between a higher fatty acid and a SiH bond-containing silicone compound.
  • the hydrosilylation reaction between the ⁇ -olefin and the SiH bond-containing silicone compound is carried out by a known method using a platinum catalyst in the absence of a solvent or in a solvent.
  • the reaction temperature is 30 to 150 ° C., but a range of 60 to 120 ° C. is particularly preferable.
  • the alkyl group bonded to the terminal vinyl group of the ⁇ -olefin preferably has a carbon number of 15 to 45, and particularly preferably 16 to 35. These alkyl groups are preferably linear but may be branched. Moreover, several types of alpha olefins may be mixed.
  • organohydrogenpolysiloxane can be used as the SiH bond-containing silicone compound.
  • organohydrogenpolysiloxane examples include molecular chain both ends dimethylhydrogensiloxy group-blocked dimethylpolysiloxane, both molecular chain ends. Trimethylsiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, molecular chain both ends dimethylhydrogensiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, a siloxane unit represented by the formula: (CH 3 ) 3 SiO 1/2 Examples thereof include organosiloxane copolymers composed of a siloxane unit represented by the formula: (CH 3 ) 2 HSiO 1/2 and a siloxane unit represented by the formula: SiO 4/2 , and mixtures of two or more thereof.
  • the number of hydrogen atoms bonded to silicon atoms in the SiH bond-containing silicone compound is 0.7 to 1.5 with respect to one vinyl group of the ⁇ -olefin. It is carried out in quantity, but is not limited to this.
  • the dehydration reaction between the higher fatty acid and the amino group-containing silicone compound can also be easily performed according to known conditions.
  • An amino group-containing silicone compound and a higher fatty acid are mixed in a solvent, reacted at 80 to 150 ° C. under reflux of the solvent, distilled water is distilled off, and then the solvent is removed under reduced pressure.
  • General formula (3) can be used as an amino group containing silicone compound.
  • R 3 in formula (3) is an alkyl group such as a methyl group, an ethyl group, a propyl group, an octyl group or a lauryl group, an alkenyl group such as a vinyl group or an allyl group, or an aryl group such as a phenyl group, a tolyl group or a naphthyl group.
  • a cycloalkyl group such as a cyclopentyl group and a cyclohexyl group, or a monovalent hydrocarbon group having 1 to 20 carbon atoms such as a group in which some or all of the hydrogen atoms are substituted with halogen atoms, a hydroxyl group, or —OR ′ (R 'Is a group represented by a monovalent hydrocarbon group having 1 to 20 carbon atoms. Examples of R ′ are the same as those of the monovalent hydrocarbon group having 1 to 20 carbon atoms of R 3 .
  • A is an aminoalkyl group represented by the formula —R 4 (NR 5 R 6 ) z NR 7 R 8 , and R 4 and R 6 are alkylenes such as a methylene group, an ethylene group, a propylene group, and a hexamethylene group, respectively.
  • a divalent hydrocarbon group having 1 to 6 carbon atoms such as a phenylene group
  • R 5 , R 7 and R 8 are each a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms similar to R 3 above
  • aminoalkyl groups are -C 3 H 6 NH 2 , -C 3 H 6 NHC 2 H 4 NH 2 , -C 6 H 12 NHC 2 H 4 NH 2 , -C 3 H 6 (NHC 2 H 4 ) 2 NH 2 , —C 3 H 6 (NHC 2 H 4 ) 3 NH 2 , —C 2 H 4 NHC 2 H 4 NH 2 , —CH 2 NHC 2 H 4 N (C 4 H 9 ) 2 etc.
  • x and y are 0 ⁇ x ⁇ 3, 0 ⁇ y ⁇ 3, and 0 ⁇ x + y ⁇ 3.
  • the amino group-containing silicone compound of formula (3) is generally one in which the terminal of the silicone chain is blocked with a trimethylsilyl group, but if necessary, the terminal is blocked with a hydroxyl group or an alkoxy group.
  • the higher fatty acid used include palmitic acid, stearic acid, arachidic acid, behenic acid, lignoceric acid, and the like, but stearic acid is preferred because it is easily available.
  • the amount of higher fatty acid charged is preferably equal to or greater than the equivalent amount in terms of the molar amount of amino groups that can react.
  • the dehydrogenation reaction between the higher fatty acid and the SiH bond-containing silicone compound can also be performed according to known conditions.
  • a higher fatty acid is dissolved or dispersed in a solvent, subjected to azeotropic dehydration at a temperature of 80 to 150 ° C., then cooled, a platinum catalyst is added, and a SiH bond-containing silicone is refluxed again at a temperature of 80 to 150 ° C.
  • the compound is added dropwise and dehydrogenation reaction is performed under nitrogen gas flow. After aging, the solvent may be removed under reduced pressure.
  • organohydrogenpolysiloxane can be used as the SiH bond-containing silicone compound, and examples of such organohydrogenpolysiloxane include dimethylhydrogensiloxy group-blocked dimethylpolysiloxane having molecular chain terminals at both ends.
  • the higher fatty acid used include palmitic acid, stearic acid, arachidic acid, behenic acid, lignoceric acid, and the like, but stearic acid is preferred because it is easily available.
  • the amount of higher fatty acid charged is preferably equal to or greater than the equivalent amount of SiH groups that can react.
  • Component (B) The heat softening thermally conductive silicone grease composition of the present invention, when applied to a heat-generating electronic component and / or a heat-dissipating component by screen printing or the like, and then contains the component (D), the volatility of the component (D).
  • the solvent When the solvent is air-dried or heated to evaporate, it becomes non-flowable at room temperature. Thereafter, the viscosity is reduced, softened or melted by heat generation during operation of the electronic component, and at least the surface is fluidized.
  • the component (B) is a necessary component.
  • the organopolysiloxane of component (B) has a kinematic viscosity at 25 ° C. represented by the following general formula (1) of 10 to 500,000 mm 2 / s.
  • R 1 is one or more groups selected from the group of unsubstituted or substituted monovalent hydrocarbon groups having 1 to 18 carbon atoms, and a is 1.8 ⁇ a ⁇ 2.2. ]
  • R 1 is one or more groups selected from the group of unsubstituted or substituted, saturated or unsaturated monovalent hydrocarbon groups having 1 to 18 carbon atoms.
  • groups include, for example, methyl groups, ethyl groups, propyl groups, hexyl groups, octyl groups, decyl groups, alkyl groups such as dodecyl groups, tetradecyl groups, hexadecyl groups, octadecyl groups, cyclopentyl groups, cyclohexyl groups, etc.
  • alkenyl group such as a cycloalkyl group, a vinyl group and an allyl group; an aryl group such as a phenyl group and a tolyl group; an aralkyl group such as a 2-phenylethyl group and a 2-methyl-2-phenylethyl group; Examples thereof include halogenated hydrocarbon groups such as trifluoropropyl group, 2- (perfluorobutyl) ethyl group, 2- (perfluorooctyl) ethyl group, and p-chlorophenyl group.
  • a is in the range of 1.8 to 2.2, particularly preferably in the range of 1.9 to 2.1.
  • kinematic viscosity at 25 ° C. of the organopolysiloxane used in the present invention to easily out low and oil bleeding than 10mm 2 / s, 500,000mm 2 / s than increases the low viscosity, when softened or melted from the becomes poor flowability is required to be 10 ⁇ 500,000mm 2 / s at 25 ° C., it is preferred in particular 30 ⁇ 10,000mm 2 / s.
  • the kinematic viscosity of the organopolysiloxane is a value of 25 ° C. measured with an Ostwald viscometer (hereinafter the same).
  • the organopolysiloxane of component (B) is particularly preferably an alkyl-modified siloxane represented by the following general formula (2).
  • R 2 is independently an alkyl group having 1 to 18 carbon atoms, but at least one of R 2 bonded to the silicon atom of the main chain is an alkyl group having 8 to 18 carbon atoms.
  • n is a number at which the kinematic viscosity at 25 ° C. of the organopolysiloxane is 10 to 500,000 mm 2 / s.
  • R 2 is independently of each other a methyl group having 1 to 18 carbon atoms, an ethyl group, a propyl group, a hexyl group, an octyl group, a decyl group, a dodecyl group, a tetradecyl group, a hexadecyl group, an octadecyl group.
  • at least one of R 2 bonded to the silicon atom of the main chain is an alkyl group having 8 to 18 carbon atoms, preferably 10 to 14 carbon atoms.
  • the alkyl group may have a branch.
  • n is the organo kinematic viscosity at 25 ° C. polysiloxane 10 ⁇ 500,000mm 2 / s, is preferably 30 ⁇ 10,000mm 2 / s, a few more preferably becomes 100 ⁇ 8,000mm 2 / s .
  • component (B) is less than 10 parts by mass relative to 100 parts by mass of component (A), the fluidity after low viscosity, softening or melting is poor, and if greater than 300 parts by mass, component ( After D) is volatilized, it does not become non-flowable at room temperature, and is in the same state as general heat dissipating grease, so it is in the range of 10 to 300 parts by weight, preferably 50 to 250 parts by weight. Range.
  • the thermally conductive filler of component (C) needs to have a thermal conductivity of 10 W / (m ⁇ K) or more. When the thermal conductivity is less than 10 W / (m ⁇ K), the thermal conductivity itself of the thermosoftening thermally conductive silicone grease composition becomes small.
  • the upper limit of thermal conductivity varies depending on the material used for the thermally conductive filler, but there is no particular upper limit.
  • thermally conductive filler having a thermal conductivity of 10 W / (m ⁇ K) or more include aluminum powder, copper powder, silver powder, nickel powder, gold powder, alumina powder, zinc oxide powder, magnesium oxide powder, Examples thereof include aluminum nitride powder, boron nitride powder, silicon nitride powder, diamond powder, and carbon powder, and granular materials. These may be used alone or in combination.
  • the heat conductive filler When powder or granular material is used as the heat conductive filler, its shape may be indefinite, spherical or any shape, but those having an average particle size of 0.1 to 100 ⁇ m may be used.
  • the thickness is 5 to 50 ⁇ m, more preferably 0.5 to 30 ⁇ m.
  • the average particle size is less than 0.1 ⁇ m, the composition does not become grease-like and poor in extensibility, and when it exceeds 100 ⁇ m, the uniformity of the composition becomes poor.
  • the average particle diameter is a volume-based cumulative average diameter measured by Microtrac MT3300EX, which is a particle size analyzer manufactured by Nikkiso Co., Ltd.
  • the blending amount of the heat conductive filler is in the range of 500 to 7,000 parts by weight, preferably in the range of 1,000 to 6,000 parts by weight with respect to 100 parts by weight of the component (A).
  • the amount is preferably 2,000 to 5,000 parts by mass. If the blending amount is less than 500 parts by mass, the required thermal conductivity cannot be obtained, and if it exceeds 7,000 parts by mass, the composition does not become a grease and the extensibility becomes poor.
  • Component (D) It is preferable that a volatile solvent is further blended as the component (D) in the heat softening thermally conductive silicone grease composition of the present invention.
  • the volatile solvent of component (D) may be any solvent as long as it can dissolve or disperse component (A) and component (B).
  • component (B) For example, toluene, xylene, acetone, methyl ethyl ketone, cyclohexane, n-hexane, n-heptane , Butanol, IPA, isoparaffin, and the like. From the viewpoint of safety, health, and workability in printing, an isoparaffin solvent is preferable.
  • the volatile solvent of component (D) has a boiling point of 80 to 360 ° C, preferably 150 to 350 ° C. If the boiling point is less than 80 ° C., the volatilization is too fast and the viscosity increases during the printing operation, which may cause problems. When the boiling point exceeds 360 ° C., it tends to remain in the thermosoftening thermally conductive silicone grease composition of the present invention, and the thermal characteristics may be deteriorated.
  • thermosoftening thermally conductive silicone grease composition of the present invention has a viscosity at room temperature. Since it cannot be lowered sufficiently, the printability may be deteriorated, and when it is more than 300 parts by mass, the settling of the filler is accelerated, and the preservability of the thermosoftening thermally conductive silicone grease composition may be deteriorated. Therefore, the range is preferably 10 to 300 parts by mass, and more preferably 50 to 200 parts by mass.
  • component (E) and / or component (F) may be further used in some cases.
  • Component (E) is a one-terminal trifunctional hydrolyzable organopolysiloxane represented by the following general formula (4). Wherein R 9 is an alkyl group having 1 to 6 carbon atoms, and R 10 is one or two selected from the group of unsubstituted or substituted monovalent hydrocarbon groups having 1 to 18 carbon atoms. Wherein b is an integer of 5 to 120.)
  • the organopolysiloxane of the general formula (4) is used for treating the surface of the thermally conductive filler of component (C), but not only assists in increasing the filling of the thermally conductive filler, Covering the surface of the thermally conductive filler makes it difficult for the thermally conductive fillers to agglomerate with each other, and the effect persists even at high temperatures, thus improving the heat resistance of the thermosoftening thermally conductive silicone grease composition. There is work.
  • R 9 includes, for example, an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, and a propyl group, and a methyl group and an ethyl group are particularly preferable.
  • R 10 is one or more groups selected from the group of unsubstituted or substituted, saturated or unsaturated monovalent hydrocarbon groups having 1 to 18 carbon atoms.
  • Examples of such groups include: For example, methyl group, ethyl group, propyl group, hexyl group, octyl group, decyl group, dodecyl group, alkyl group such as tetradecyl group, hexadecyl group, octadecyl group, cycloalkyl group such as cyclopentyl group, cyclohexyl group, vinyl group, Alkenyl groups such as allyl groups, aryl groups such as phenyl groups and tolyl groups, aralkyl groups such as 2-phenylethyl groups and 2-methyl-2-phenylethyl groups, 3,3,3-trifluoropropyl groups, 2- Halogenated hydrocarbon groups such as (perfluorobutyl) ethyl group, 2- (perfluorooctyl) ethyl group, p-chlorophenyl group and the like are mentioned. It is preferred. B
  • the addition amount is preferably 10 to 200 parts by mass, more preferably 30 to 150 parts by mass with respect to 100 parts by mass of the component (A).
  • the component (F) is an organosilane represented by the following general formula (5) or a partial hydrolysis condensate thereof.
  • R 11 c SiW 4-c (5) (Wherein R 11 is an unsubstituted or halogen atom-substituted monovalent hydrocarbon group having 1 to 20 carbon atoms, W is a hydroxyl group or a hydrolyzable group, and c is an integer of 1 to 3)
  • the organosilane of the general formula (5) or its partially hydrolyzed condensate is used for treating the surface of the thermally conductive filler of the component (C) as well as the function of the component (E).
  • the heat softening heat conductive silicone grease composition functions to improve the heat resistance.
  • R 11 is an unsubstituted or halogen atom-substituted monovalent hydrocarbon group having 1 to 20 carbon atoms
  • examples of R 11 include an alkyl group, a cycloalkyl group, and an alkenyl group. Specific examples thereof include, for example, methyl groups, ethyl groups, propyl groups, hexyl groups, octyl groups, decyl groups, dodecyl groups, tetradecyl groups, hexadecyl groups, octadecyl groups and other alkyl groups, cyclopentyl groups, cyclohexyl groups, and the like.
  • Cycloalkyl group such as vinyl group, allyl group, aryl group such as phenyl group, tolyl group, aralkyl group such as 2-phenylethyl group, 2-methyl-2-phenylethyl group, 3, 3, Such as 3-trifluoropropyl group, 2- (perfluorobutyl) ethyl group, 2- (perfluorooctyl) ethyl group, p-chlorophenyl group, etc. Halogenated hydrocarbon groups. c is 1, 2 or 3, with 1 being particularly preferred.
  • W examples include a hydrolyzable group selected from a hydroxyl group or an alkoxy group having 1 to 6 carbon atoms, an acyloxy group, an alkenyloxy group, etc.
  • Specific examples of the hydrolyzable group include a methoxy group, an ethoxy group Group, propoxy group, butoxy group, acetoxy group, propenoxy group and the like. In the present invention, among these, a hydroxyl group and an alkoxy group are particularly preferable.
  • the amount of addition in the case of blending the organosilane of the general formula (5) as the component (F) or a partial hydrolysis condensate thereof is in the range of 1 to 50 parts by mass with respect to 100 parts by mass of the component (A). Is more preferable, and the range of 10 to 30 parts by mass is more preferable.
  • thermosoftening thermally conductive silicone grease composition of the present invention each of the above components is mixed with Trimix, Twinwin, Planetary Mixer (all registered trademarks of a mixer manufactured by Inoue Seisakusho Co., Ltd.), Ultra Mixer ( Mix for 30 minutes to 4 hours using a mixer such as Mizuho Kogyo Co., Ltd. (registered trademark of Mizuho Kogyo Co., Ltd.) or Hibis Disper Mix (registered trademark of Special Machine Chemical Co., Ltd. If necessary, it may be heated.
  • Trimix, Twinwin, Planetary Mixer all registered trademarks of a mixer manufactured by Inoue Seisakusho Co., Ltd.
  • Ultra Mixer Mix for 30 minutes to 4 hours using a mixer such as Mizuho Kogyo Co., Ltd. (registered trademark of Mizuho Kogyo Co., Ltd.) or Hibis Disper Mix (registered trademark of Special Machine Chemical Co., Ltd. If necessary, it may be heated.
  • thermal conductivity of the resulting heat softening thermally conductive silicone grease composition is less than 0.7 W / (m ⁇ K), a sufficient heat dissipation effect may not be obtained, so 0.7 W / (m ⁇ K) or higher, and more preferably 1.0 W / (m ⁇ K) or higher.
  • the thermal conductivity is a value measured at 25 ° C. using TPA-501 manufactured by Kyoto Electronics Industry Co., Ltd.
  • the viscosity of the heat softening thermally conductive silicone grease composition is less than 50 Pa ⁇ s at 25 ° C., the thermally conductive filler of the component (C) may easily settle, and the viscosity may be more than 500 Pa ⁇ s. If it is large, the applicability may be deteriorated, so the range is preferably 50 to 500 Pa ⁇ s, more preferably 50 to 300 Pa ⁇ s.
  • the viscosity of the heat softening thermally conductive silicone grease composition is a value measured with a spiral viscometer PC-1TL (10 rpm) manufactured by Malcolm Corporation.
  • the heat-softening thermally conductive silicone grease composition of the present invention is applied to a heat-generating electronic component and / or a heat-dissipating component by screen printing or the like, then air-dried or heated, and a volatile solvent of component (D) is blended. In that case, by volatilizing the component (D), it can be a non-fluid thermal conductive film at room temperature.
  • a heat-generating electronic component that generates heat by operation and has a temperature higher than room temperature
  • a heat-dissipating component and a heat-softening thermally conductive silicone grease composition interposed between these two components
  • the heat-softening thermal conductive silicone grease composition is non-flowable at room temperature before the electronic component operation and the electronic component operation.
  • the electronic component and the heat dissipating component are substantially filled with no gap by lowering the viscosity, softening or melting due to the heat generated at the time and fluidizing at least the surface.
  • thermosoftening thermally conductive silicone grease composition of the present invention can be used in a power module device.
  • a power module device comprising a power module and a heat dissipating member provided on the surface of the power module, between the surface of the power module and the heat dissipating member,
  • a power module device comprising the thermosoftening thermally conductive silicone grease composition of the present invention interposed in a thickness of 25 to 100 ⁇ m.
  • the power module is a general term for a thyristor module, a diode module, an IGBT module, a power MOSFET, and the like.
  • a typical structure is shown in FIG. 1, but is not limited thereto.
  • FIG. 1 A typical structure is shown in FIG. 1, but is not limited thereto.
  • 1, 1 is an IGBT chip, 2 is a solder, 3 is a copper pattern, 4 is a substrate, 5 is a copper base plate, 6 is a heat dissipating grease, and 7 is a heat dissipating body.
  • the conductive silicone grease composition is used as the heat dissipating grease 6 in FIG.
  • the test relating to the present invention was performed as follows.
  • the absolute viscosity of the heat softening thermally conductive silicone grease composition was measured with model number PC-1TL (10 rpm) manufactured by Malcolm Co., Ltd., and the thermal conductivity was measured with TPA-501 manufactured by Kyoto Electronics Industry Co., Ltd. All were measured at 25 ° C.
  • the average particle diameter is a volume-based cumulative average diameter measured by Microtrac MT3300EX, which is a particle size analyzer manufactured by Nikkiso Co., Ltd.
  • the pump-out resistance was performed by the method shown below.
  • Examples 1 to 5 and Comparative Examples 1 to 3 The amounts of the components shown in Tables 1 and 2 were charged into a 5 liter planetary mixer (registered trademark of a mixer manufactured by Inoue Seisakusho Co., Ltd.) and stirred for 1 hour at 25 ° C. Examples 1 to 5 and Comparative Example 1 ⁇ 3 heat softening thermally conductive silicone grease compositions were prepared. Tables 1 and 2 also show the properties of the obtained heat-softening thermally conductive silicone grease composition.
  • silicone wax (I) obtained in Synthesis Example 1 is used as component (A-1).
  • Silicone wax (II) [Synthesis Example 2] 1.860 g of an amino group-containing silicone compound represented by the following average structural formula, the same amount of toluene, and 205 g of stearic acid were charged into a flask, heated under nitrogen gas flow, and reacted at 110-120 ° C. for 10 hours under reflux. After condensing condensed water, 1,858 g of silicone wax (II) was obtained by removing toluene by stripping. At this time, the charging ratio of stearic acid / amino group-containing silicone compound was 2.2 in terms of molar ratio. The melting point of this silicone wax (II) was 40 ° C. The silicone wax (II) obtained in Synthesis Example 2 is used as component (A-2).
  • silicone wax (III) While dropping, dehydrogenation reaction was performed for 8 hours. Thereafter, aging was performed for 2 hours, and similarly, toluene was removed by strips to obtain silicone wax (III). At this time, the charging ratio of stearic acid / SiH group-containing silicone compound was 1.1 in terms of molar ratio. The melting point of this silicone wax (III) was 45 ° C. The silicone wax (III) obtained in Synthesis Example 3 is used as component (A-3).
  • Thermally conductive filler (C-1) Alumina powder: Average particle size 8.9 ⁇ m (thermal conductivity: 27 W / (m ⁇ K)) (C-2) Zinc oxide powder: average particle size 1.0 ⁇ m (thermal conductivity: 54 W / (m ⁇ K)) (C-3) Aluminum powder: average particle size 20 ⁇ m (thermal conductivity: 236 W / (m ⁇ K))
  • IGBT chip 2 Solder 3: Copper pattern 4: Substrate 5: Copper base plate 6: Thermal grease 7: Heat radiator

Abstract

(A)融点が30~80℃のシリコーンワックス、(B)下式 R1 aSiO(4-a)/2 〔R1は一価炭化水素基、aは1.8≦a≦2.2。〕 で表される25℃における動粘度が10~500,000mm2/sのオルガノポリシロキサン、及び(C)10W/(m・K)以上の熱伝導率を有する熱伝導性充填材を含む熱軟化性熱伝導性シリコーングリース組成物。

Description

熱軟化性熱伝導性シリコーングリース組成物、熱伝導性被膜の形成方法、放熱構造及びパワーモジュール装置
 本発明は、電子部品の冷却のために発熱性電子部品とヒートシンク又は金属筐体などの放熱部品との間の熱境界面に介装する熱伝達材料に関し、特に、シリコーン樹脂をベースとし、電子部品の作動温度範囲内の温度において粘度低下、軟化、又は融解して熱境界面に対する密着性を向上させ、発熱性電子部品から放熱部品への熱伝達を改善する熱軟化性熱伝導性シリコーングリース組成物、その熱伝導性被膜の形成方法、放熱構造及び該組成物を用いたパワーモジュール装置に関するものである。
 テレビ、ビデオ、コンピューター、医療器具、事務機械、通信装置等、最近の電子機器の回路設計は複雑性を増しており、トランジスタ数十万個相当分を内包する集積回路が製造されるようになった。電子機器の小型化、高性能化に伴い、ますます縮小する面積に組み込むこれらの電子部品の個数が増大するとともに、電子部品自体の形状も引き続き小型化している。このため、各電子部品から発生する熱が増加しており、この熱により故障又は機能不全が生じることから熱を効果的に放散させる実装技術が重要になっている。
 パーソナルコンピューター、デジタルビデオディスク、携帯電話などの電子機器に使用されるCPU、ドライバIC、メモリーなどの電子部品において集積度の向上に伴い発生する熱を除去するため、多くの熱放散方法及びそれに使用する熱放散部材が提案されている。
 従来、電子機器等において電子部品の温度上昇を抑えるために、アルミニウム、銅、黄銅等、熱伝導率の高い金属を用いたヒートシンクに直接伝熱する方法が取られる。このヒートシンクは電子部品から発生する熱を伝導し、その熱を外気との温度差によって表面から放出する。電子部品から発生する熱をヒートシンクに効率良く伝えるために、ヒートシンクと電子部品を空隙なく密着させる必要があり、柔軟性を有する低硬度熱伝導性シートあるいは熱伝導性グリースが電子部品とヒートシンクとの間に介装されている。
 しかし、低硬度熱伝導性シートは、取り扱い作業性には優れるが、厚さを薄くすることが難しく、また、電子部品やヒートシンク表面の微細な凹凸に追従できないので接触熱抵抗が大きくなり、効率よく熱を伝導することができないという問題がある。
 一方、熱伝導性グリースは、厚さを薄くできるので電子部品とヒートシンクの距離を小さくすることができ、更に表面の微細な凹凸を埋めることにより大幅に熱抵抗を低減することができる。しかし、熱伝導性グリースは、ヒートサイクルによりオイル分が分離(ポンピングアウト)して熱特性が低下する問題がある。
 近年、低硬度熱伝導性シートの取り扱い性と、熱伝導性グリースの低熱抵抗化の両方の特性を有し、かつ一般的な放熱グリースよりも耐ポンプアウト性が優れるメリットも有する熱伝導性部材として、室温では固体状であり、電子部品から発生する熱により軟化あるいは溶融する熱軟化性材料が多数提案されている(特許文献1~7:特表2000-509209号公報、特開2000-336279号公報、特開2001-89756号公報、特開2002-121332号公報、特開2000-327917号公報、特開2001-291807号公報、特開2002-234952号公報)。
 しかしながら、ベースオイルが有機物をベースにしたものは(特許文献1~4)、耐熱性に劣るため、自動車用途等にこれらが組み込まれた場合には高温による劣化が懸念されるし、耐熱性、耐候性、難燃性に優れる材料として、シリコーンをベースにした同様の熱軟化性材料も多数提案されているが(特許文献5~7)、これらは何れもシート成型物である。
 広い面積に迅速に放熱材料を配置する場合、シート成型物はどうしても接触面との間に気泡が入ってしまうし、また放熱材料を配置する作業面において、ペースト状の放熱材料をスクリーン印刷等で塗布するのが一番速く効率が良いが、シート成型物はその観点からも不十分な面がある。
特表2000-509209号公報 特開2000-336279号公報 特開2001-89756号公報 特開2002-121332号公報 特開2000-327917号公報 特開2001-291807号公報 特開2002-234952号公報
 本発明は、上記事情に鑑みなされたもので、電子部品の冷却のために発熱性電子部品とヒートシンク又は金属筐体などの放熱部品との間の熱境界面に介装する熱伝達材料として用いられ、ペースト状でスクリーン印刷等により塗布することができ、電子部品の作動温度範囲内の温度において粘度低下、軟化、又は融解して熱境界面に対して密着し、従来製品よりも耐ポンプアウト性、耐熱性及び難燃性に優れる熱軟化性熱伝導性シリコーングリース組成物、その熱伝導性被膜の形成方法、放熱構造、及び該組成物を用いたパワーモジュール装置を提供することを目的とする。
 本発明者は、上記問題に鑑み鋭意検討した結果、(A)融点が30~80℃のシリコーンワックス、(B)一般式(1)で表される25℃における動粘度が10~500,000mm2/sのオルガノポリシロキサン、及び(C)10W/(m・K)以上の熱伝導率を有する熱伝導性充填材、好ましくは(D)上記成分(A)及び(B)を溶解もしくは分散しうる沸点80~360℃の揮発性溶剤の特定量を含む熱軟化性熱伝導性シリコーングリース組成物が、塗布時はペースト状であるため、容易にかつ迅速にスクリーン印刷ができることから作業効率を落とすことがなく、その後含有する溶剤を揮発させることで、常温で非流動性の状態になることから、一般的な放熱グリースよりも耐ポンプアウト性が向上し、信頼性が向上することを見出し、本発明をなすに至った。
 ここで、熱軟化性とは、熱により(通常、30℃以上において)熱軟化、低粘度化又は融解することをいい、熱軟化、低粘度化又は融解して表面が流動化するものを「熱軟化性」を有するものとすることができる。
 従って、本発明は、以下の熱軟化性熱伝導性シリコーングリース組成物、熱伝導性被膜の形成方法、放熱構造及びパワーモジュール装置を提供する。
〔1〕
 成分(A):融点が30~80℃のシリコーンワックス:100質量部、
成分(B):下記一般式(1)
  R1 aSiO(4-a)/2     (1)
〔式中、R1は炭素数1~18の非置換又は置換の一価炭化水素基の群の中から選択される1種もしくは2種以上の基であり、aは1.8≦a≦2.2である。〕
で表される25℃における動粘度が10~500,000mm2/sのオルガノポリシロキサン:10~300質量部、
成分(C):10W/(m・K)以上の熱伝導率を有する熱伝導性充填材:500~7,000質量部
を含む熱軟化性熱伝導性シリコーングリース組成物。
〔2〕
 成分(B)のオルガノポリシロキサンが、下記一般式(2)で表されるアルキル変性シロキサンである〔1〕記載の熱軟化性熱伝導性シリコーングリース組成物。
Figure JPOXMLDOC01-appb-C000002
〔式中、R2は独立に炭素数1~18のアルキル基であるが、主鎖のケイ素原子に結合しているR2のうち少なくとも1つは炭素数8~18のアルキル基である。nは該オルガノポリシロキサンの25℃での動粘度が10~500,000mm2/sとなる数である。〕
〔3〕
 更に、成分(D)として、成分(A)及び成分(B)を溶解もしくは分散しうる沸点80~360℃の揮発性溶剤を、成分(A)100質量部に対し、10~300質量部含む〔1〕又は〔2〕記載の熱軟化性熱伝導性シリコーングリース組成物。
〔4〕
 成分(D)が、イソパラフィンである〔3〕記載の熱軟化性熱伝導性シリコーングリース組成物。
〔5〕
 発熱性電子部品及び/又は放熱部品に、〔1〕~〔4〕のいずれかに記載の熱軟化性熱伝導性シリコーングリース組成物をスクリーン印刷で塗布した後、風乾又は加熱することで、室温にて非流動性の状態の被膜を得る熱伝導性被膜の形成方法。
〔6〕
 動作することによって発熱して室温より高い温度となる発熱性電子部品と、放熱部品と、これら両部品との間に介在される〔1〕~〔4〕のいずれかに記載の熱軟化性熱伝導性シリコーングリース組成物から形成される熱伝導性被膜とを含む放熱構造であって、上記熱軟化性熱伝導性シリコーングリース組成物が、電子部品動作以前の室温状態で非流動性であり、かつ電子部品動作時の発熱により低粘度化、軟化又は融解して少なくとも表面が流動化することによって上記電子部品と放熱部品との間に空隙なく充填されるように構成した放熱構造。
〔7〕
 パワーモジュールと、パワーモジュールの表面に設けられた放熱体とを備えているパワーモジュール装置であって、前記パワーモジュールの表面と放熱体との間に、〔1〕~〔4〕のいずれかに記載の熱軟化性熱伝導性シリコーングリース組成物を25~100μmの厚さで介在させるパワーモジュール装置。
 本発明の熱軟化性熱伝導性シリコーングリース組成物は、放熱材料として有用であり、溶剤揮発後、発熱性電子部品と放熱部品との間に配置され、電子部品動作以前の温度では流動性がなく、電子部品動作時の発熱により30~80℃の温度で低粘度化、軟化、又は溶融することにより電子部品と放熱部品との境界に実質的に充填され、従来製品よりも耐ポンプアウト性、耐熱性及び難燃性に優れる。
本発明の熱軟化性熱伝導性シリコーングリース組成物を用いるパワーモジュール装置の概略断面図である。
 以下、詳述する。
成分(A);
 成分(A)のシリコーンワックスは、本発明の熱軟化性熱伝導性シリコーングリース組成物の熱軟化の性質に関係する成分である。
 成分(A)の融点は、30℃未満であると室温にて、非流動性の状態にならず耐ポンプアウト性に劣るものになるし、80℃より高いと発熱性電子部品の動作時の発熱により低粘度化、軟化あるいは溶融しないため性能が発揮できないため、30~80℃の範囲であり、好ましくは35~65℃の範囲である。なお、本明細書において、室温とは1℃以上30℃未満をいう。
 成分(A)のシリコーンワックスは、シリコーン変性されて、融点が30~80℃であれば何でもよいが、αオレフィンとSiH結合含有シリコーン化合物とのヒドロシリル化反応、高級脂肪酸とアミノ基含有シリコーン化合物との脱水反応、もしくは高級脂肪酸とSiH結合含有シリコーン化合物との脱水素反応によって得られるものであることが好ましい。
 αオレフィンとSiH結合含有シリコーン化合物とのヒドロシリル化反応は、無溶剤又は溶剤中で、白金系触媒を使用して公知の方法により実施される。反応温度は30~150℃であるが、特に60~120℃の範囲が好ましい。
 ここで、αオレフィンの末端ビニル基に結合するアルキル基は、炭素数15~45の範囲であることが好ましく、特に16~35が好ましい。これらアルキル基は、直鎖状が好ましいが、分岐していてもよい。また、数種類のαオレフィンが混合していてもよい。
 SiH結合含有シリコーン化合物としては、オルガノハイドロジェンポリシロキサンを用いることができ、このようなオルガノハイドロジェンポリシロキサンとしては、例えば、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサンコポリマー、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサンコポリマー、式:(CH33SiO1/2で表されるシロキサン単位と式:(CH32HSiO1/2で表されるシロキサン単位と式:SiO4/2で表されるシロキサン単位からなるオルガノシロキサンコポリマー、及びこれらの2種以上の混合物が挙げられる。
 αオレフィンとSiH結合含有シリコーン化合物との反応は、αオレフィンのビニル基1個に対して、SiH結合含有シリコーン化合物中のケイ素原子に結合した水素原子の個数が0.7~1.5となる量で実施されるが、これに限定されるものではない。
 高級脂肪酸とアミノ基含有シリコーン化合物との脱水反応も公知の条件に従って容易に行うことができる。溶剤中でアミノ基含有シリコーン化合物と高級脂肪酸を混合し、80~150℃の温度で、溶剤還流下で反応、縮合水を溜去してから、減圧下で溶剤を除去すればよい。
 ここで、アミノ基含有シリコーン化合物としては、下記一般式(3)で示されるものを用いることができる。
  Ax3 ySiO(4-x-y)/2     (3)
 式(3)中のR3はメチル基、エチル基、プロピル基、オクチル基、ラウリル基等のアルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基、ナフチル基等のアリール基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基又はそれらの一部又は全部の水素原子がハロゲン原子に置換された基等の炭素数1~20の一価炭化水素基、水酸基又は-OR′(R′は炭素数1~20の一価炭化水素基)で示される基である。R′としては、上記R3の炭素数1~20の一価炭化水素基と同様のものが例示できる。
 また、Aは式-R4(NR56zNR78で表されるアミノアルキル基で、R4、R6はそれぞれメチレン基、エチレン基、プロピレン基、ヘキサメチレン基等のアルキレン基、フェニレン基等の炭素数1~6の二価炭化水素基、R5、R7、R8はそれぞれ水素原子又は上記R3と同様の炭素数1~20の一価炭化水素基、zは0~5の整数である。このようなアミノアルキル基を例示すると、-C36NH2、-C36NHC24NH2、-C612NHC24NH2、-C36(NHC242NH2、-C36(NHC243NH2、-C24NHC24NH2、-CH2NHC24N(C492等が挙げられるが、これらに限定されるものではない。
 x、yは、0<x≦3、0≦y<3、0<x+y≦3である。
 なお、式(3)のアミノ基含有シリコーン化合物としては、シリコーン鎖の末端がトリメチルシリル基で封鎖されたものが一般的であるが、必要に応じて、末端が水酸基又はアルコキシ基等にて封鎖されたものも使用し得る。
 また、使用される高級脂肪酸としては、例えば、パルミチン酸、ステアリン酸、アラキジン酸、ベヘン酸、リグノセリン酸などが挙げられるが、入手のし易さなどからステアリン酸が好ましい。高級脂肪酸の仕込み量は、反応しうるアミノ基量に対して、モル比で、当量以上であることが好ましい。
 高級脂肪酸とSiH結合含有シリコーン化合物との脱水素反応も公知の条件に従って行うことができる。溶剤中に高級脂肪酸を溶解あるいは分散し、80~150℃の温度で共沸脱水を行った後、冷却し、白金系触媒を添加、再び80~150℃の温度で還流下、SiH結合含有シリコーン化合物を滴下、窒素ガス通気下で脱水素反応を行う。熟成後、溶剤を減圧下で除去すればよい。
 ここで、SiH結合含有シリコーン化合物としては、オルガノハイドロジェンポリシロキサンを用いることができ、このようなオルガノハイドロジェンポリシロキサンとしては、例えば、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサンコポリマー、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサンコポリマー、式:(CH33SiO1/2で表されるシロキサン単位と式:(CH32HSiO1/2で表されるシロキサン単位と式:SiO4/2で表されるシロキサン単位からなるオルガノシロキサンコポリマー、及びこれらの2種以上の混合物が挙げられる。
 また、使用される高級脂肪酸としては、例えば、パルミチン酸、ステアリン酸、アラキジン酸、ベヘン酸、リグノセリン酸などが挙げられるが、入手のし易さなどからステアリン酸が好ましい。高級脂肪酸の仕込み量は、反応しうるSiH基量に対して、モル比で、当量以上であることが好ましい。
成分(B);
 本発明の熱軟化性熱伝導性シリコーングリース組成物は、発熱性電子部品及び/又は放熱部品に、スクリーン印刷などで塗布した後、成分(D)を含む場合は、成分(D)の揮発性溶剤を風乾あるいは加熱し揮発させることで、室温にて非流動性の状態になる。その後、電子部品動作時の発熱により低粘度化、軟化又は融解して少なくとも表面が流動化するが、その流動性を上げるために成分(B)は必要な成分である。
 成分(B)のオルガノポリシロキサンは、下記一般式(1)で表される25℃における動粘度が10~500,000mm2/sのものである。
  R1 aSiO(4-a)/2     (1)
〔式中、R1は炭素数1~18の非置換又は置換の一価炭化水素基の群の中から選択される1種もしくは2種以上の基であり、aは1.8≦a≦2.2である。〕
 上記式(1)において、R1は炭素数1~18の非置換又は置換の、飽和又は不飽和の一価炭化水素基の群から選択される1種もしくは2種以上の基である。このような基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基等のアリール基、2-フェニルエチル基、2-メチル-2-フェニルエチル基等のアラルキル基、3,3,3-トリフロロプロピル基、2-(パーフロロブチル)エチル基、2-(パーフロロオクチル)エチル基、p-クロロフェニル基等のハロゲン化炭化水素基が挙げられる。aは1.8~2.2の範囲であり、特に1.9~2.1の範囲が好ましい。
 また、本発明で使用するオルガノポリシロキサンの25℃における動粘度は、10mm2/sより低いとオイルブリードが出易くなるし、500,000mm2/sより大きくなると低粘度化、軟化又は融解時の流動性が乏しくなることから、25℃で10~500,000mm2/sであることが必要であり、特に30~10,000mm2/sであることが好ましい。なお、オルガノポリシロキサンの動粘度は、オストワルド粘度計で測定した25℃の値である(以下、同じ)。
 また、成分(B)のオルガノポリシロキサンは、下記一般式(2)で表されるアルキル変性シロキサンであることが特に好ましい。
Figure JPOXMLDOC01-appb-C000003
〔式中、R2は独立に炭素数1~18のアルキル基であるが、主鎖のケイ素原子に結合しているR2のうち少なくとも1つは炭素数8~18のアルキル基である。nは該オルガノポリシロキサンの25℃での動粘度が10~500,000mm2/sとなる数である。〕
 上記式(2)において、R2は、互いに独立に、炭素数1~18のメチル基、エチル基、プロピル基、ヘキシル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基等のアルキル基であり、主鎖のケイ素原子に結合しているR2のうち少なくとも1つは、炭素数8~18、好ましくは炭素数10~14のアルキル基である。該アルキル基は分岐を有していてもよい。
 nは該オルガノポリシロキサンの25℃での動粘度が10~500,000mm2/s、好ましくは30~10,000mm2/s、更に好ましくは100~8,000mm2/sとなる数である。
 成分(B)の配合量は、成分(A)100質量部に対して10質量部より小さいと、低粘度化、軟化又は融解した後の流動性が乏しいし、300質量部より大きいと成分(D)が揮発した後、室温にて、非流動性の状態にならず、一般の放熱グリースと同じ状態になってしまうため、10~300質量部の範囲であり、好ましくは50~250質量部の範囲である。
成分(C);
 成分(C)の熱伝導性充填材は、熱伝導率が10W/(m・K)以上であることが必要である。熱伝導率が10W/(m・K)未満であると、熱軟化性熱伝導性シリコーングリース組成物の熱伝導率そのものが小さくなる。熱伝導率の上限は、熱伝導性充填材に用いる材料によっても変化するが、特に上限はない。
 10W/(m・K)以上の熱伝導率を有する熱伝導性充填材としては、例えば、アルミニウム粉末、銅粉末、銀粉末、ニッケル粉末、金粉末、アルミナ粉末、酸化亜鉛粉末、酸化マグネシウム粉末、窒化アルミニウム粉末、窒化ホウ素粉末、窒化珪素粉末、ダイヤモンド粉末、カーボン粉末などの粉末や粒状物が挙げられ、これらを1種類又は2種類以上混ぜ合わせて用いてもよい。
 熱伝導性充填材として粉末や粒状物を用いる場合に、その形状は不定形でも球形でも如何なる形状でも構わないが、平均粒径0.1~100μmのものを用いるのがよく、好ましくは0.5~50μmであり、更に好ましくは0.5~30μmである。平均粒径が0.1μm未満であると、組成物がグリース状にならず伸展性に乏しくなり、100μmを超えると組成物の均一性が乏しくなる。なお、平均粒径は、日機装株式会社製の粒度分析計であるマイクロトラックMT3300EXにより測定した体積基準の累積平均径である。
 上記熱伝導性充填材の配合量は、成分(A)100質量部に対して500~7,000質量部の範囲であり、好ましくは1,000~6,000質量部の範囲であり、更に好ましくは2,000~5,000質量部である。配合量が500質量部未満であると、必要な熱伝導率が得られず、7,000質量部を超えると、組成物がグリース状にならず伸展性が乏しくなる。
成分(D);
 本発明の熱軟化性熱伝導性シリコーングリース組成物には、更に成分(D)として揮発性溶剤を配合することが好ましい。成分(D)の揮発性溶剤としては、成分(A)及び成分(B)を溶解あるいは分散できれば如何なる溶剤でもよいが、例えば、トルエン、キシレン、アセトン、メチルエチルケトン、シクロヘキサン、n-ヘキサン、n-ヘプタン、ブタノール、IPA、イソパラフィンなどが挙げられ、安全面、健康面及び印刷での作業性の点からイソパラフィン系の溶剤が好ましい。
 成分(D)の揮発性溶剤は、沸点が80~360℃、好ましくは150~350℃のものである。沸点が80℃未満では、揮発が速すぎて印刷作業中に粘度が上昇して不具合が生じる場合がある。沸点が360℃を超えると、本発明の熱軟化性熱伝導性シリコーングリース組成物中に残存し易くなり、熱特性が低下する場合がある。
 成分(D)を配合する場合の添加量は、成分(A)100質量部に対して10質量部より少ないと、本発明の熱軟化性熱伝導性シリコーングリース組成物の、室温での粘度を十分に下げることができないため印刷性も悪くなる場合があるし、300質量部より多いと充填材の沈降が速くなり、熱軟化性熱伝導性シリコーングリース組成物の保存性が悪くなる場合があるため、10~300質量部の範囲であることが好ましく、より好ましくは50~200質量部の範囲である。
 また、本発明においては、更に場合によって成分(E)及び/又は成分(F)を用いてもよい。
成分(E);
 成分(E)は、下記一般式(4)で表される片末端3官能の加水分解性オルガノポリシロキサンである。
Figure JPOXMLDOC01-appb-C000004
(式中、R9は炭素数1~6のアルキル基であり、R10は炭素数1~18の非置換又は置換の一価炭化水素基の群の中から選択される1種もしくは2種以上の基であり、bは5~120の整数である。)
 一般式(4)のオルガノポリシロキサンは、成分(C)の熱伝導性充填材の表面を処理するために用いるものであるが、熱伝導性充填材の高充填化を補助するばかりでなく、熱伝導性充填材表面を覆うことにより熱伝導性充填材同士の凝集を起こりにくくし、高温下でもその効果は持続するため、本熱軟化性熱伝導性シリコーングリース組成物の耐熱性を向上させる働きがある。
 上記式(4)中、R9は、例えば、メチル基、エチル基、プロピル基などの炭素数1~6のアルキル基が挙げられるが、特にメチル基、エチル基が好ましい。
 R10は、炭素数1~18の非置換又は置換の、飽和又は不飽和の一価炭化水素基の群から選択される1種もしくは2種以上の基であり、このような基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基等のアリール基、2-フェニルエチル基、2-メチル-2-フェニルエチル基等のアラルキル基、3,3,3-トリフロロプロピル基、2-(パーフロロブチル)エチル基、2-(パーフロロオクチル)エチル基、p-クロロフェニル基等のハロゲン化炭化水素基が挙げられるが、特にメチル基が好ましい。
 また、bは5~120の整数であり、好ましくは10~90の整数である。
 成分(E)を配合する場合の添加量は、成分(A)100質量部に対して10~200質量部であることが好ましく、より好ましくは30~150質量部の範囲である。
成分(F);
 成分(F)は、下記一般式(5)で表されるオルガノシランあるいはその部分加水分解縮合物である。
  R11 cSiW4-c     (5)
(式中、R11は炭素数1~20の非置換又はハロゲン原子置換の一価炭化水素基であり、Wは水酸基又は加水分解性基であり、cは1~3の整数である。)
 一般式(5)のオルガノシランあるいはその部分加水分解縮合物は、成分(E)の働き同様、成分(C)の熱伝導性充填材の表面を処理するために用いるものであるが、同じように熱伝導性充填材の高充填化を補助するばかりでなく、熱伝導性充填材表面を覆うことにより熱伝導性充填材同士の凝集を起こりにくくし、高温下でもその効果は持続するため、本熱軟化性熱伝導性シリコーングリース組成物の耐熱性を向上させる働きがある。
 上記式(5)中、R11は炭素数1~20の非置換又はハロゲン原子置換の一価炭化水素基であり、R11としては、アルキル基、シクロアルキル基、アルケニル基等を挙げることができるが、その具体例としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基等のアリール基、2-フェニルエチル基、2-メチル-2-フェニルエチル基等のアラルキル基、3,3,3-トリフロロプロピル基、2-(パーフロロブチル)エチル基、2-(パーフロロオクチル)エチル基、p-クロロフェニル基等のハロゲン化炭化水素基が挙げられる。cは1,2又は3であるが、特に1であることが好ましい。
 Wとしては、水酸基、又は炭素数1~6のアルコキシ基、アシロキシ基、アルケニルオキシ基等から選択される加水分解性基が挙げられるが、加水分解性基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、アセトキシ基、プロペノキシ基等が挙げられる。本発明においては、これらの中でも、特に水酸基及びアルコキシ基が好ましい。
 成分(F)である一般式(5)のオルガノシランあるいはその部分加水分解縮合物を配合する場合の添加量は、成分(A)100質量部に対して1~50質量部の範囲であることが好ましく、より好ましくは10~30質量部の範囲である。
 本発明の熱軟化性熱伝導性シリコーングリース組成物を製造するには、上記各成分をトリミックス、ツウィンミックス、プラネタリミキサー(いずれも井上製作所(株)製混合機の登録商標)、ウルトラミキサー(みずほ工業(株)製混合機の登録商標)、ハイビスディスパーミックス(特殊機化工業(株)製混合機の登録商標)等の混合機にて30分~4時間混合する。必要ならば加熱してもよい。
 得られる熱軟化性熱伝導性シリコーングリース組成物の熱伝導率は、0.7W/(m・K)より小さいと十分な放熱効果が得られない場合があるため、0.7W/(m・K)以上であることが好ましく、より好ましくは1.0W/(m・K)以上である。なお、熱伝導率は、京都電子工業株式会社製のTPA-501により25℃において測定した値である。
 熱軟化性熱伝導性シリコーングリース組成物の粘度は、25℃において、50Pa・sより小さいと成分(C)の熱伝導性充填材が沈降し易くなってしまう場合があるし、500Pa・sより大きいと塗布性が悪くなってしまう場合があるため、50~500Pa・sの範囲であることが好ましく、より好ましくは50~300Pa・sである。なお、熱軟化性熱伝導性シリコーングリース組成物の粘度は、株式会社マルコム製のスパイラル粘度計PC-1TL(10rpm)で測定した値である。
 本発明の熱軟化性熱伝導性シリコーングリース組成物は、発熱性電子部品及び/又は放熱部品に、スクリーン印刷などで塗布した後、風乾あるいは加熱し、成分(D)の揮発性溶剤を配合する場合は、その成分(D)を揮発させることで、室温にて非流動性の状態の熱伝導性被膜になり得る。
 また、本発明においては、動作することによって発熱して室温より高い温度となる発熱性電子部品と、放熱部品と、これら両部品との間に介在される熱軟化性熱伝導性シリコーングリース組成物から形成される熱伝導性被膜とを含む放熱構造とすることができ、その熱軟化性熱伝導性シリコーングリース組成物は、電子部品動作以前の室温状態で非流動性であり、かつ電子部品動作時の発熱により低粘度化、軟化又は融解して少なくとも表面が流動化することによって上記電子部品と放熱部品との間に実質的に空隙なく充填される。
パワーモジュール装置;
 本発明の熱軟化性熱伝導性シリコーングリース組成物は、パワーモジュール装置に用いることができる。このようなパワーモジュール装置としては、パワーモジュールと、パワーモジュールの表面に設けられた放熱体とを備えているパワーモジュールの装置であって、前記パワーモジュールの表面と放熱体との間に、本発明の熱軟化性熱伝導性シリコーングリース組成物を25~100μmの厚さで介在させてなるパワーモジュール装置である。
 ここで、パワーモジュールとは、サイリスタモジュール、ダイオードモジュール、IGBTモジュール、パワーMOSFETなどの総称である。代表的な構造を図1に示すがこれに限ったものではない。ここで、図1において、1はIGBTチップ、2ははんだ、3は銅パターン、4は基板、5は銅ベース板、6は放熱グリース、7は放熱体であり、本発明の熱軟化性熱伝導性シリコーングリース組成物は、図1の放熱グリース6として用いられる。
 以下、本発明を合成例、実施例及び比較例によって更に詳述するが、本発明はこれによって限定されるものではない。本発明の優位性をより明確にする目的で、具体的な実施例を示して証明する。
 本発明に関する試験は、次のように行った。
 熱軟化性熱伝導性シリコーングリース組成物の絶対粘度の測定は、株式会社マルコム製の型番PC-1TL(10rpm)にて行い、また熱伝導率は、京都電子工業株式会社製のTPA-501により、いずれも25℃において測定した。また、平均粒径は、日機装株式会社製の粒度分析計であるマイクロトラックMT3300EXにより測定した体積基準の累積平均径である。耐ポンプアウト性は、下記に示す方法により行った。
〔耐ポンプアウト性〕
 アルミニウム板に、0.3gの熱軟化性熱伝導性シリコーングリース組成物を塗布し、70℃のオーブンで1時間、組成物中の溶剤を揮発させた。その後、冷める前に0.5mmのスペーサーを設けスライドガラスを被せ、熱軟化性熱伝導性シリコーングリース組成物を挟み込んだ。この試験片を地面から垂直に立て、0℃と100℃(各30分)を交互に繰り返すようにセットされたエスペック株式会社製の熱衝撃試験機(型番:TSE-11-A)の中に配置し、1,000サイクル試験を行った。1,000サイクル後、熱軟化性熱伝導性シリコーングリース組成物が元の場所からどのくらいズレたかを測定した。
〔実施例1~5及び比較例1~3〕
 表1、2に示す成分の量を容量5リットルプラネタリミキサー(井上製作所(株)製混合機の登録商標)に投入し、25℃にて1時間撹拌して実施例1~5、比較例1~3の熱軟化性熱伝導性シリコーングリース組成物を製造した。得られた熱軟化性熱伝導性シリコーングリース組成物の特性も表1、2に併記する。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
成分(A)シリコーンワックス
(A-1)シリコーンワックス(I)
〔合成例1〕
 平均構造式C3060なるαオレフィン924g(2.2モル)、同量のトルエン、及び塩化白金酸の、中和テトラメチルジビニルジシロキサン錯体化物5g(0.5質量%トルエン溶液)をフラスコに仕込み、80℃で、下記平均構造式で示されるSiH結合含有シリコーン化合物726g(1.0モル)を滴下した。次いで、110~120℃においてトルエン還流下で5時間反応させ、その後、トルエンをストリップによって除去することにより、シリコーンワックス(I)を2,310g得た。なお、この時、αオレフィンのビニル基1個に対して、SiH結合含有シリコーン化合物中のケイ素原子に結合した水素原子の個数は、1.1であった。
 このシリコーンワックス(I)の融点は61℃であった。また、この合成例1で得られたシリコーンワックス(I)を成分(A-1)とする。
Figure JPOXMLDOC01-appb-C000007
(A-2)シリコーンワックス(II)
〔合成例2〕
 下記平均構造式で示されるアミノ基含有シリコーン化合物1,860g、同量のトルエン、及びステアリン酸205gをフラスコに仕込み、窒素ガス通気下昇温させ、110~120℃で還流下10時間反応させながら、縮合水を溜去した後、トルエンをストリップによって除去することにより、シリコーンワックス(II)を1,858g得た。なお、この時、ステアリン酸/アミノ基含有シリコーン化合物の仕込み比は、モル比で2.2であった。
 このシリコーンワックス(II)の融点は、40℃であった。また、この合成例2で得られたシリコーンワックス(II)を成分(A-2)とする。
Figure JPOXMLDOC01-appb-C000008
(A-3)シリコーンワックス(III)
〔合成例3〕
 ステアリン酸350gとトルエン360gをフラスコに仕込み、窒素通気下110~120℃のトルエン還流下で1時間共沸脱水し、70℃まで冷却した後、塩化白金酸の、中和テトラメチルジビニルジシロキサン錯体化物2g(0.5質量%トルエン溶液)をフラスコに仕込み、その後、再び昇温し、110~120℃のトルエン還流下にて、下記平均構造式で示されるSiH結合含有シリコーン化合物100gを少量ずつ滴下しながら、脱水素反応を8時間行った。その後2時間熟成を行い、同様にトルエンをストリップによって除去することによりシリコーンワックス(III)を得た。この時、ステアリン酸/SiH基含有シリコーン化合物の仕込み比は、モル比で1.1であった。
 このシリコーンワックス(III)の融点は、45℃であった。また、この合成例3で得られたシリコーンワックス(III)を成分(A-3)とする。
Figure JPOXMLDOC01-appb-C000009
成分(B)オルガノポリシロキサン
(B-1)下記式で表されるポリシロキサン
Figure JPOXMLDOC01-appb-C000010
成分(C)熱伝導性充填材
(C-1)アルミナ粉末:平均粒径8.9μm(熱伝導率:27W/(m・K))
(C-2)酸化亜鉛粉末:平均粒径1.0μm(熱伝導率:54W/(m・K))
(C-3)アルミニウム粉末:平均粒径20μm(熱伝導率:236W/(m・K))
成分(D)揮発性溶剤
(D-1)IPソルベント2028(イソパラフィン系溶剤、出光興産株式会社商品名、沸点;210-254℃)
(D-2)IPソルベント2835(イソパラフィン系溶剤、出光興産株式会社商品名、沸点;270-350℃)
成分(E)
(E-1)下記式で表されるポリシロキサン
Figure JPOXMLDOC01-appb-C000011
成分(F)
(F-1)下記式で表されるシラン
1021Si(OCH33
1:IGBTチップ
2:はんだ
3:銅パターン
4:基板
5:銅ベース板
6:放熱グリース
7:放熱体

Claims (7)

  1.  成分(A):融点が30~80℃のシリコーンワックス:100質量部、
    成分(B):下記一般式(1)
      R1 aSiO(4-a)/2     (1)
    〔式中、R1は炭素数1~18の非置換又は置換の一価炭化水素基の群の中から選択される1種もしくは2種以上の基であり、aは1.8≦a≦2.2である。〕
    で表される25℃における動粘度が10~500,000mm2/sのオルガノポリシロキサン:10~300質量部、
    成分(C):10W/(m・K)以上の熱伝導率を有する熱伝導性充填材:500~7,000質量部
    を含む熱軟化性熱伝導性シリコーングリース組成物。
  2.  成分(B)のオルガノポリシロキサンが、下記一般式(2)で表されるアルキル変性シロキサンである請求項1記載の熱軟化性熱伝導性シリコーングリース組成物。
    Figure JPOXMLDOC01-appb-C000001
    〔式中、R2は独立に炭素数1~18のアルキル基であるが、主鎖のケイ素原子に結合しているR2のうち少なくとも1つは炭素数8~18のアルキル基である。nは該オルガノポリシロキサンの25℃での動粘度が10~500,000mm2/sとなる数である。〕
  3.  更に、成分(D)として、成分(A)及び成分(B)を溶解もしくは分散しうる沸点80~360℃の揮発性溶剤を、成分(A)100質量部に対し、10~300質量部含む請求項1又は2記載の熱軟化性熱伝導性シリコーングリース組成物。
  4.  成分(D)が、イソパラフィンである請求項3記載の熱軟化性熱伝導性シリコーングリース組成物。
  5.  発熱性電子部品及び/又は放熱部品に、請求項1~4のいずれか1項に記載の熱軟化性熱伝導性シリコーングリース組成物をスクリーン印刷で塗布した後、風乾又は加熱することで、室温にて非流動性の状態の被膜を得る熱伝導性被膜の形成方法。
  6.  動作することによって発熱して室温より高い温度となる発熱性電子部品と、放熱部品と、これら両部品との間に介在される請求項1~4のいずれか1項に記載の熱軟化性熱伝導性シリコーングリース組成物から形成される熱伝導性被膜とを含む放熱構造であって、上記熱軟化性熱伝導性シリコーングリース組成物が、電子部品動作以前の室温状態で非流動性であり、かつ電子部品動作時の発熱により低粘度化、軟化又は融解して少なくとも表面が流動化することによって上記電子部品と放熱部品との間に空隙なく充填されるように構成した放熱構造。
  7.  パワーモジュールと、パワーモジュールの表面に設けられた放熱体とを備えているパワーモジュール装置であって、前記パワーモジュールの表面と放熱体との間に、請求項1~4のいずれか1項に記載の熱軟化性熱伝導性シリコーングリース組成物を25~100μmの厚さで介在させるパワーモジュール装置。
PCT/JP2016/076766 2015-09-25 2016-09-12 熱軟化性熱伝導性シリコーングリース組成物、熱伝導性被膜の形成方法、放熱構造及びパワーモジュール装置 WO2017051738A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680055400.XA CN108026437B (zh) 2015-09-25 2016-09-12 热软化性导热性硅脂组合物、导热性被膜的形成方法、散热结构和功率模块装置
EP16848526.6A EP3354707B1 (en) 2015-09-25 2016-09-12 Thermosoftening and heat conductive silicone grease composition, heat conductive film formation method, heat dissipation structure, and power module device
US15/763,004 US10745603B2 (en) 2015-09-25 2016-09-12 Thermosoftening and heat conductive silicone grease composition, heat conductive film formation method, heat dissipation structure, and power module device
KR1020187010922A KR20180061242A (ko) 2015-09-25 2016-09-12 열연화성 열전도성 실리콘 그리스 조성물, 열전도성 피막의 형성 방법, 방열 구조 및 파워 모듈 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-187688 2015-09-25
JP2015187688A JP6436035B2 (ja) 2015-09-25 2015-09-25 熱軟化性熱伝導性シリコーングリース組成物、熱伝導性被膜の形成方法、放熱構造及びパワーモジュール装置

Publications (1)

Publication Number Publication Date
WO2017051738A1 true WO2017051738A1 (ja) 2017-03-30

Family

ID=58386460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076766 WO2017051738A1 (ja) 2015-09-25 2016-09-12 熱軟化性熱伝導性シリコーングリース組成物、熱伝導性被膜の形成方法、放熱構造及びパワーモジュール装置

Country Status (7)

Country Link
US (1) US10745603B2 (ja)
EP (1) EP3354707B1 (ja)
JP (1) JP6436035B2 (ja)
KR (1) KR20180061242A (ja)
CN (1) CN108026437B (ja)
TW (1) TWI687486B (ja)
WO (1) WO2017051738A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020145102A1 (ja) * 2019-01-10 2020-07-16 信越化学工業株式会社 熱伝導性シリコーン組成物
JPWO2022014129A1 (ja) * 2020-07-15 2022-01-20
WO2022044723A1 (ja) * 2020-08-26 2022-03-03 デクセリアルズ株式会社 熱伝導性組成物及びこれを用いた熱伝導性シート

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102445179B1 (ko) 2017-10-26 2022-09-21 시예드 타이무르 아흐마드 소수성, 올레포빅 및 올레필릭 코팅용 비-뉴턴 유체를 포함하는 조성물, 및 그의 사용 방법
EP3624182B1 (en) * 2018-09-12 2022-04-20 Infineon Technologies AG Power semiconductor module arrangement, substrate arrangement, and method for producing the same
TWI696251B (zh) * 2018-12-05 2020-06-11 艾姆勒車電股份有限公司 改良型igbt模組散熱結構
WO2021124807A1 (ja) * 2019-12-20 2021-06-24 株式会社Moresco 低残渣シロキサン化合物並びにそれを用いた潤滑油組成物及び潤滑剤
US11264299B1 (en) 2020-09-03 2022-03-01 Northrop Grumman Systems Corporation Direct write, high conductivity MMIC attach
CN116075547B (zh) * 2020-09-30 2024-04-09 积水保力马科技株式会社 导热性片、其安装方法及制造方法
JP2023047991A (ja) * 2021-09-27 2023-04-06 信越化学工業株式会社 熱伝導性フィルム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115985A (ja) * 1987-10-21 1989-05-09 Internatl Business Mach Corp <Ibm> コーティング材料の塗布方法
JP2007051227A (ja) * 2005-08-18 2007-03-01 Shin Etsu Chem Co Ltd 熱伝導性シリコーングリース組成物およびその硬化物
JP2012520923A (ja) * 2009-03-16 2012-09-10 ダウ コーニング コーポレーション 熱伝導性グリース、並びに、該グリースを用いる方法及びデバイス

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU723258B2 (en) 1996-04-29 2000-08-24 Parker-Hannifin Corporation Conformal thermal interface material for electronic components
JP3444199B2 (ja) * 1998-06-17 2003-09-08 信越化学工業株式会社 熱伝導性シリコーンゴム組成物及びその製造方法
JP3948642B2 (ja) * 1998-08-21 2007-07-25 信越化学工業株式会社 熱伝導性グリース組成物及びそれを使用した半導体装置
JP3504882B2 (ja) 1999-05-24 2004-03-08 富士高分子工業株式会社 熱伝導性・電気絶縁性シリコーン組成物及びこれを用いたシリコーン成形物
JP3435097B2 (ja) 1999-05-25 2003-08-11 富士高分子工業株式会社 熱伝導性組成物
US6391442B1 (en) 1999-07-08 2002-05-21 Saint-Gobain Performance Plastics Corporation Phase change thermal interface material
US20030207128A1 (en) 2000-04-10 2003-11-06 Tomoaki Uchiya Thermally conductive sheet
JP2001291807A (ja) 2000-04-10 2001-10-19 Three M Innovative Properties Co 熱伝導性シート
JP3580358B2 (ja) * 2000-06-23 2004-10-20 信越化学工業株式会社 熱伝導性シリコーン組成物及び半導体装置
JP2002121332A (ja) 2000-10-12 2002-04-23 Shin Etsu Chem Co Ltd 熱軟化性放熱シート
JP3712943B2 (ja) 2001-02-08 2005-11-02 富士高分子工業株式会社 熱軟化放熱シート及びこれを用いた放熱シート
US6620515B2 (en) * 2001-12-14 2003-09-16 Dow Corning Corporation Thermally conductive phase change materials
JP4219793B2 (ja) * 2003-11-25 2009-02-04 信越化学工業株式会社 放熱用シリコーングリース組成物
JP4993135B2 (ja) 2008-07-08 2012-08-08 信越化学工業株式会社 熱伝導性シリコーン組成物
CN103476779B (zh) * 2011-02-01 2016-04-06 帝斯曼知识产权资产管理有限公司 具有亲水性端基的含硅酮的单体
JP5640945B2 (ja) * 2011-10-11 2014-12-17 信越化学工業株式会社 硬化性オルガノポリシロキサン組成物及び半導体装置
KR102108902B1 (ko) * 2013-01-22 2020-05-11 신에쓰 가가꾸 고교 가부시끼가이샤 열전도성 실리콘 조성물, 열전도성 층 및 반도체 장치
CN106459419B (zh) * 2014-06-20 2019-10-18 陶氏东丽株式会社 热熔性有机硅及固化性热熔组合物
CN106536609B (zh) * 2014-07-07 2022-04-29 霍尼韦尔国际公司 具有离子清除剂的热界面材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115985A (ja) * 1987-10-21 1989-05-09 Internatl Business Mach Corp <Ibm> コーティング材料の塗布方法
JP2007051227A (ja) * 2005-08-18 2007-03-01 Shin Etsu Chem Co Ltd 熱伝導性シリコーングリース組成物およびその硬化物
JP2012520923A (ja) * 2009-03-16 2012-09-10 ダウ コーニング コーポレーション 熱伝導性グリース、並びに、該グリースを用いる方法及びデバイス

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020145102A1 (ja) * 2019-01-10 2020-07-16 信越化学工業株式会社 熱伝導性シリコーン組成物
JPWO2022014129A1 (ja) * 2020-07-15 2022-01-20
WO2022014129A1 (ja) * 2020-07-15 2022-01-20 昭和電工株式会社 熱伝導組成物及びその硬化物
JP7371785B2 (ja) 2020-07-15 2023-10-31 株式会社レゾナック 熱伝導組成物及びその硬化物
WO2022044723A1 (ja) * 2020-08-26 2022-03-03 デクセリアルズ株式会社 熱伝導性組成物及びこれを用いた熱伝導性シート

Also Published As

Publication number Publication date
EP3354707A1 (en) 2018-08-01
CN108026437B (zh) 2021-05-11
US20180291249A1 (en) 2018-10-11
US10745603B2 (en) 2020-08-18
TWI687486B (zh) 2020-03-11
JP6436035B2 (ja) 2018-12-12
EP3354707B1 (en) 2020-11-11
TW201734141A (zh) 2017-10-01
CN108026437A (zh) 2018-05-11
EP3354707A4 (en) 2019-05-01
KR20180061242A (ko) 2018-06-07
JP2017061613A (ja) 2017-03-30

Similar Documents

Publication Publication Date Title
JP6436035B2 (ja) 熱軟化性熱伝導性シリコーングリース組成物、熱伝導性被膜の形成方法、放熱構造及びパワーモジュール装置
JP5664563B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
KR101696485B1 (ko) 열 계면 물질
JP3938681B2 (ja) 放熱構造体
JP4933094B2 (ja) 熱伝導性シリコーングリース組成物
JP5233325B2 (ja) 熱伝導性硬化物及びその製造方法
TWI667291B (zh) Thermally conductive fluorenone composition
JP6075261B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
TWI822954B (zh) 導熱性矽氧組成物及其製造方法、以及導熱性矽氧硬化物
JP5843364B2 (ja) 熱伝導性組成物
JP6202475B2 (ja) 熱伝導性複合シリコーンゴムシート
JP7285231B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP2012107152A (ja) 熱伝導性シリコーングリース組成物
JP7082563B2 (ja) 熱伝導性シリコーン組成物の硬化物
CN112714784B (zh) 导热性有机硅组合物及其固化物
JP2022180701A (ja) 熱伝導性シリコーン組成物及びその硬化物
EP4082970A1 (en) Thermally conductive silicone resin composition
JP2022174600A (ja) 熱伝導性シリコーン組成物及びその硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848526

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15763004

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187010922

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016848526

Country of ref document: EP