WO2021193953A1 - 鋼板およびほうろう製品 - Google Patents

鋼板およびほうろう製品 Download PDF

Info

Publication number
WO2021193953A1
WO2021193953A1 PCT/JP2021/013017 JP2021013017W WO2021193953A1 WO 2021193953 A1 WO2021193953 A1 WO 2021193953A1 JP 2021013017 W JP2021013017 W JP 2021013017W WO 2021193953 A1 WO2021193953 A1 WO 2021193953A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
enamel
content
mno
Prior art date
Application number
PCT/JP2021/013017
Other languages
English (en)
French (fr)
Inventor
伸麻 吉川
荒牧 高志
哲次 福里
楠見 和久
久斉 矢頭
義成 矢野
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to US17/909,706 priority Critical patent/US20230160046A1/en
Priority to JP2021576273A priority patent/JP7115653B2/ja
Priority to KR1020227031061A priority patent/KR20220137749A/ko
Priority to MX2022011095A priority patent/MX2022011095A/es
Publication of WO2021193953A1 publication Critical patent/WO2021193953A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to steel sheets and enamel products.
  • the present application claims priority based on Japanese Patent Application No. 2020-057125 filed in Japan on March 27, 2020, the contents of which are incorporated herein by reference.
  • Enamel products are made by baking glass on the surface of a steel plate. Since enamel products have heat resistance, weather resistance, chemical resistance, and water resistance, they have been widely used as materials for kitchen utensils such as pots and sinks and building materials. Such an enamel product is generally manufactured by processing a steel sheet into a predetermined shape, assembling it into a product shape by welding or the like, and then performing an enamel treatment (firing treatment).
  • Steel sheets used as materials for enamel products have characteristics such as firing strain resistance, nail skipping resistance after enamel treatment, enamel adhesion, foam resistance and black spot defects after enamel treatment. Desired.
  • Nail skipping is a phenomenon in which the enamel layer is damaged within a week or so after firing, and the crescent-shaped fragment is peeled off. The reason why claw skipping occurs is that hydrogen that has penetrated into the steel sheet and solid-dissolved during the process of firing the broom, becomes a gas after cooling and gathers at the interface between the steel sheet and the glaze, and the pressure from the hydrogen gas causes the broom. It is thought that this is because the layer is destroyed.
  • Patent Document 1 proposes a method for producing enamel steel, which is continuously cast by increasing the oxygen content in the steel.
  • Patent Document 1 discloses that a high-quality enamel material having low carbon content, high oxygen content, and less claw skipping can be produced with a high yield without surface defects such as pinholes and slivers.
  • Al is added and deoxidized to adjust the amount of oxygen in the steel.
  • Patent Document 2 proposes a cold-rolled steel sheet for direct one-time enamel, which contains 0.5 to 1.3 times as much Cr as O (oxygen) and has excellent deep drawing property.
  • Patent Document 2 uses Al as the deoxidizing element.
  • Cr is an oxide-forming element like Al, its tendency is lower than that of Al. Therefore, in the technique of Patent Document 2, large non-metal inclusions are generated, and it is difficult to sufficiently produce fine oxides effective for hydrogen storage.
  • Patent Document 3 proposes an enamel steel sheet containing Mn 2 to 19 times as much as O (oxygen), having few surface defects, and having excellent nail skipping resistance, adhesion, foaming resistance and workability.
  • O oxygen
  • Fe—Mn—O-based inclusions are suitable as fine inclusions that have the effect of improving nail jump resistance and do not cause surface defects, and generate large non-metal inclusions. It has been shown that Fe—Mn—O-based inclusions are produced by suppressing the above.
  • addition of Ca and / or Mg is indispensable. When Ca or Mg is added, many large non-metal inclusions are formed as in the case where Al is added.
  • composite oxides containing strongly deoxidizing elements such as Ca and Mg are less likely to form voids due to the pulverizing effect. Therefore, when Ca or Mg is added, there is a problem that the hydrogen storage capacity is lowered.
  • the strength of the steel sheet used for the purpose of reducing the weight of parts since the enamel treatment is a firing treatment, the strength of the steel sheet may decrease due to grain growth, etc., but when considering application to such applications, the decrease in tensile strength due to the enamel treatment is small. Is preferable.
  • Patent Document 4 the number density of the oxides containing oxides containing Fe and Mn and having a diameter of more than 1.0 ⁇ m and 10 ⁇ m or less is 1.0 ⁇ 10 3 pieces / mm 2 or more, 5.0 ⁇ 10 is four or / mm 2 or less and a diameter is the number density of the oxide of 0.1 ⁇ 1.0 .mu.m is 5.0 ⁇ 10 3 cells / mm 2 or more
  • a steel plate characterized by the above is disclosed.
  • excellent enamel characteristics nail skipping resistance, adhesion, appearance
  • strength characteristics characteristics that do not cause a decrease in tensile strength due to enamel treatment or can stably suppress a decrease in tensile strength.
  • Patent Document 4 has a problem that it is necessary to have a large amount of mainly angular oxides present in the steel sheet, and the workability may not be sufficient for severe processing such as deep drawing.
  • the present invention solves the above-mentioned problems and has excellent enamel characteristics (nail skipping resistance, adhesion (enamel adhesion), appearance) after enamel treatment, and a steel sheet provided with this steel sheet, which is excellent in enamel characteristics.
  • the challenge is to provide enamel products.
  • the present invention provides a steel sheet having excellent enamel characteristics (nail skipping resistance, adhesion, appearance) after enamel treatment and capable of suppressing a decrease in tensile strength due to enamel treatment, and enamel characteristics provided with this steel sheet. Providing excellent enamel products is a favorable task.
  • the present inventors have conducted various studies in order to overcome the problems of conventional enamel steel sheets.
  • a means for improving the nail skipping resistance of the steel sheet after the enamel treatment was examined, focusing on the influence of the chemical composition and the manufacturing conditions, while improving the enamel adhesion and the appearance more than before.
  • the following findings were obtained.
  • the fine inclusions MnO and Cr 2 O 3 are suitable.
  • B In the production of steel for brooms, usually, after rough decarburization in a converter, decarburization is performed by a vacuum degassing device such as RH.
  • the present invention has been made in view of the above findings.
  • the gist of the present invention is as follows.
  • the steel plate according to one aspect of the present invention has a mass% of C: 0.0050% or less, Si: 0.050% or less, Mn: 0.007 to 1.00%, P: 0.003 to 0.050%, S: 0.005 to 0.050%, Al: 0.010% or less, O: 0.0300 to 0.1000%, Cu: 0.010 to 0.060%, N: 0.
  • a surface parallel to the surface which has a chemical composition of 0050% or less, Cr: 0.01 to 1.00%, the balance Fe and impurities, and is located at a position 1/4 of the plate thickness in the plate thickness direction from the surface.
  • the major axis is 1.0 ⁇ m ultra 10 ⁇ m or less, of the MnO and the Cr 2 O 3, the number density of the total, 5.0 ⁇ 10 2 cells / mm It may be 2 or more and 5.0 ⁇ 10 4 pieces / mm 2 or less.
  • the steel sheet according to the above [1] or [2] has a number density of MnO having a major axis of 0.1 to 1.0 ⁇ m of 1.0 ⁇ 10 / mm 2 or more and 5.0 ⁇ 10. It may be 2 pieces / mm 2 or less.
  • the steel sheet according to any one of [1] to [3] has a chemical composition of B, Ni, Nb, As, Ti, Se, Ta, W, Mo, Sn in mass%. , Sb, La, Ce, Ca, Mg may be contained in an amount of 0.100% or less in total.
  • the steel sheet according to any one of [1] to [4] above has a Cu content of [Cu], a P content of [P], and an S content of [S] in mass%.
  • [Cu] / [P] is 1.0 to 4.0
  • [P] / [S] is 0.2 to 2.0.
  • the steel sheet according to any one of [1] to [5] above may be a cold-rolled steel sheet.
  • the steel sheet according to any one of [1] to [6] above may be an enamel steel sheet.
  • the enamel product according to another aspect of the present invention includes the steel plate according to any one of [1] to [5].
  • This steel sheet is suitable as a steel sheet for enamel, which is a base material for enamel products applied to kitchen utensils, building materials, energy fields, and the like. Further, according to the above aspect of the present invention, it is possible to provide an enamel product having excellent enamel characteristics. This enamel product is suitable for applications such as kitchen utensils, building materials, and energy fields.
  • a steel sheet according to an embodiment of the present invention (a steel sheet according to the present embodiment) will be described.
  • the steel plate according to this embodiment has a mass% of C: 0.0050% or less, Si: 0.050% or less, Mn: 0.007 to 1.00%, P: 0.003 to 0.050%, S: 0.005 to 0.050%, Al: 0.010% or less, O: 0.0300 to 0.1000%, Cu: 0.010 to 0.060%, N: 0.0050% or less, Cr : 0.01 to 1.00%, having a chemical composition consisting of the balance Fe and impurities, and having a major axis of 1.0 ⁇ m on a surface parallel to the surface at a position 1/4 of the plate thickness in the plate thickness direction from the surface.
  • the total area ratio of the MnO and the Cr 2 O 3 to the total area of the three types of oxides, which are super MnO, Cr 2 O 3 and Al 2 O 3 , is 98.0% or more, and the Al 2 area ratio of O 3 is not more than 2.0%.
  • the total number density of MnO and Cr 2 O 3 having a major axis of more than 1.0 ⁇ m and 10 ⁇ m or less is 5.0 ⁇ 10 2 pieces / mm 2 or more and 5.0 ⁇ 10 4 pieces / mm 2 or less. be.
  • the number density of MnO having a major axis of 0.1 to 1.0 ⁇ m is 1.0 ⁇ 10 pieces / mm 2 or more and 5.0 ⁇ 10 2 pieces / mm 2 or less.
  • ⁇ Chemical composition> First, the reason for limiting the chemical composition will be described.
  • % with respect to the chemical composition means mass%.
  • the numerical range indicated by sandwiching "-" includes the values at both ends as upper and lower limits. For example, 0.007 to 1.00% indicates that it is 0.007% or more and 1.00% or less. On the other hand, if it is shown to be greater than or less than, the value is not included as the upper limit or the lower limit.
  • the C content is set to 0.0050% or less.
  • the C content is preferably 0.0020% or less.
  • Si 0.050% or less If the Si content is high, the enamel characteristics are impaired, and at the same time, a large amount of Si oxide is formed by hot rolling, which may reduce the nail skipping resistance. This effect becomes remarkable when the Si content exceeds 0.050%, so the Si content is set to 0.050% or less.
  • the Si content is preferably 0.008% or less from the viewpoint of improving foam resistance, black spot resistance, and the like, and obtaining better surface texture after enamel treatment.
  • Mn 0.007 to 1.00%
  • Mn is an element that produces oxygen-containing inclusions and contributes to the improvement of enamel properties.
  • Mn is an element that also has an action of preventing hot brittleness due to S.
  • the Mn content is set to 0.007% or more.
  • the Mn content is preferably 0.10% or more.
  • Mn is also an element that has the effect of lowering the transformation point of steel, and if the Mn content is excessive, transformation occurs in the firing temperature range of the broom treatment, causing firing strain, which causes deformation of the product. Become. Further, if the Mn content becomes excessive, the workability of the steel deteriorates. Therefore, the Mn content is set to 1.00% or less.
  • the Mn content is preferably 0.50% or less.
  • P 0.003 to 0.050%
  • P is an element that has the effect of increasing the pickling weight loss of the steel sheet during pickling, which is an enamel pretreatment. If the P content is less than 0.003%, pickling will be insufficient and the adhesion of the enamel will be impaired. Therefore, the P content is set to 0.003% or more. The P content is preferably 0.005% or more. On the other hand, if the P content exceeds 0.050%, the pickling weight loss becomes excessive, and bubbles and black spot defects are likely to occur after the enamel treatment. To avoid this, the P content is set to 0.050% or less. The P content is preferably 0.035% or less.
  • S 0.005 to 0.050%
  • S is an element that accelerates the pickling rate, roughens the surface of the steel sheet after pickling, and contributes to the improvement of enamel adhesion.
  • the S content is set to 0.005% or more.
  • the S content is set to 0.050% or less.
  • Al 0.010% or less
  • Al is a strongly deoxidizing element, and it is necessary to carefully control the Al content in the steel sheet according to the present embodiment. If the Al content exceeds 0.010%, it becomes difficult to retain the required amount of O in the steel, and it becomes difficult to control the oxide that is effective for nail skipping resistance. Therefore, the Al content is set to 0.010% or less.
  • the Al content is preferably 0.005% or less.
  • the lower limit of the Al content need not be limited, but the Al content may be 0.001% or more.
  • O 0.0300 to 0.1000%
  • O is a constituent element of fine inclusions that capture hydrogen in steel and improve nail skipping resistance, and is an important element in enamel steel sheets.
  • the O content is 0.0300% or more in order to secure the desired enamel characteristics.
  • the O content is preferably 0.0400% or more.
  • the O content is set to 0.1000% or less.
  • Cu 0.010 to 0.060%
  • Cu is an element that improves the enamel adhesion by forming fine irregularities on the surface of the steel sheet after pickling, although it reduces the weight loss by pickling.
  • the Cu content is set to 0.010% or more.
  • the Cu content is preferably 0.020% or more.
  • the Cu content is set to 0.060% or less.
  • the Cu content is preferably 0.050% or less.
  • N 0.0050% or less
  • N is an impurity and is an element that causes strain aging. When strain aging occurs, the workability of the steel sheet is impaired. Therefore, it is better that the N content is small, but in order to excessively reduce N, the processing time in the steelmaking stage is long, and the steelmaking cost also increases. Therefore, the N content is set to 0.0050% or less.
  • Cr 0.01-1.00%
  • Cr is an element that produces inclusions containing O and contributes to the improvement of enamel characteristics.
  • the oxide has an appropriate size as compared with the case where Cr and Mn are not contained, and the occurrence of nail skipping after the enamel treatment is suppressed.
  • the Cr content is set to 0.01% or more.
  • the Cr content is preferably 0.03% or more.
  • the Cr content is set to 1.00% or less.
  • the Cr content is preferably 0.50% or less, more preferably 0.30% or less, still more preferably 0.08% or less.
  • the chemical composition of the steel sheet according to the present embodiment is basically composed of the above elements and the balance of Fe and impurities.
  • Impurities are components that are mixed in from raw materials such as ores or scraps or due to various factors in the manufacturing process when steel materials are industrially manufactured, and do not adversely affect the steel sheet according to the present embodiment. Means what is acceptable in the range.
  • B, Ni, Nb, As, Ti, Se, Ta, W, Mo, Sn, Sb, La, Ce, Ca and Mg are the same. It is preferable to limit the content to the range described later.
  • B, Ni, Nb, As, Ti , Se, Ta, W, Mo, Sn, Sb, La, Ce, Ca, and Mg are elements that do not need to be positively contained, but are impurities that can be unavoidably mixed. In general, these elements are rarely mixed alone, and are often mixed with two or more kinds of elements such as Ni and Mo. If these elements are excessively contained, the reaction with the oxide-forming element cannot be ignored, and the desired oxide control becomes difficult. Therefore, it is preferable to limit the total content of these elements to 0.100% or less.
  • the total content is more preferably 0.050% or less, still more preferably 0.010% or less. Further, when these elements act as deoxidizing elements, it may affect the value of free oxygen, making it difficult to adjust the free oxygen. Therefore, it is preferable that the upper limit of the content of each element is within a range that does not affect the value of free oxygen at the casting stage.
  • the above steel composition may be measured by a general analysis method for steel.
  • the steel component may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry).
  • C and S may be measured by using the high frequency induction heating combustion-infrared absorption method
  • N may be measured by using the inert gas melting-heat conductivity method
  • O may be measured by using the inert gas melting-non-dispersion infrared absorption method.
  • the content of each element is controlled as described above, and the content of the elements satisfies the following relationship.
  • [Cu] / [P] 1.0 to 4.0 Cu has the effect of reducing the pickling weight loss, while P has the effect of increasing the pickling weight loss.
  • [Cu] / [P] ([Cu] is the content of Cu in mass%, which is the ratio of the Cu content to the P content. , [P] is P content in mass%) is preferably 1.0 or more and 4.0 or less.
  • [Cu] / [P] is preferably 1.5 or more and 3.5 or less.
  • the steel plate according to the present embodiment is substantially composed of Mn and / or Cr and O as oxides (even if Al, Si, and Ca are inevitably contained, the total content thereof is 2.0.
  • MnO, Cr 2 O 3 and Al 2 O having a major axis of more than 1.0 ⁇ m on a surface parallel to the surface at a position 1/4 of the plate thickness in the plate thickness direction from the surface containing an oxide (% or less).
  • the major axis is the proportion of the total area of MnO and Cr 2 O 3 is 1.0 ⁇ m than 98.0% or more, the proportion of the area of Al 2 O 3 It is 2.0% or less. That is, in the steel sheet according to the present embodiment, attention is paid to three oxides of MnO, Cr 2 O 3 , and Al 2 O 3 which have a great influence on the nail jump resistance, and the area ratios of these are defined.
  • MnO and Cr 2 O 3 are fine oxides, voids are generated around the oxides during cold rolling to improve nail skipping resistance. Therefore, among the three types of oxides MnO, Cr 2 O 3 and Al 2 O 3 having a major axis of more than 1.0 ⁇ m, the total area of MnO and Cr 2 O 3 having a major axis of more than 1.0 ⁇ m The ratio shall be 98.0% or more. It is preferably 99.0% or more.
  • MnO and Cr 2 O 3 may be deposited singly, but as a complex oxide, (as the oxide essentially consisting of Mn, Cr and O) may be deposited, sulfides such as MnS It may be compound-precipitated with an object.
  • the oxides can be finely dispersed by adjusting free oxygen during casting.
  • the number and size of the oxide should be controlled within a desired range by adjusting free oxygen in the casting process. Becomes difficult.
  • Al 2 O 3 is a coarse oxide, when Al 2 O 3 is produced, the amount of oxide decreases and the nail jump resistance deteriorates.
  • the area ratio of Al 2 O 3 to the total area of the three types of oxides MnO, Cr 2 O 3 and Al 2 O 3 is set to 2.0% or less. It is preferably 1.0% or less.
  • the measurement target was oxides with a major axis of 1.0 ⁇ m or more ( three types of oxides, MnO, Cr 2 O 3 and Al 2 O 3 ). Oxides with a major axis of less than 1.0 ⁇ m are enamel. This is because it has almost no effect on the characteristics.
  • the steel sheet according to the embodiment order to further improve the ⁇ flying property without decreasing the strength, diameter 1.0 ⁇ m greater, following 10 [mu] m, the number density of the sum of MnO and Cr 2 O 3, 5.0 ⁇ 10 2 to 5.0 ⁇ 10 4 pieces / mm 2 is preferable.
  • MnO and Cr 2 O 3 having a major axis exceeding 1.0 ⁇ m are present in the steel sheet to improve the nail jump resistance. Oxides having a major axis of less than 1.0 ⁇ m have a small effect of improving nail skipping resistance.
  • the amount of coarse oxides increases, the number density of oxides decreases, the hydrogen storage effect becomes small, and the effect of improving nail flying resistance becomes small.
  • the total number density of MnO and Cr 2 O 3 having a major axis of more than 1.0 ⁇ m and less than 10 ⁇ m is controlled.
  • the number density of these oxides is 5.0 ⁇ 10 2 pieces / mm 2 or more. More preferably, it is 1.0 ⁇ 10 3 pieces / mm 2 or more.
  • the oxide is present in an amount of more than 5.0 ⁇ 10 4 pieces / mm 2 , more voids are generated at the interface between the oxide and the steel sheet base material during processing, and the strength of the steel sheet is lowered. Therefore, it is preferable that the number density is 5.0 ⁇ 10 4 pieces / mm 2 or less. More preferably, it is 1.0 ⁇ 10 4 pieces / mm 2 or less.
  • oxides having a major axis of less than 1.0 ⁇ m have a small effect on enamel characteristics.
  • MnO having a major axis of 0.1 to 1.0 ⁇ m is present at 1.0 ⁇ 10 pieces / mm 2 or more because the decrease in tensile strength due to the enamel treatment can be further suppressed.
  • the number density of MnO having a major axis of 0.1 to 1.0 ⁇ m exceeds 5.0 ⁇ 10 2 / mm 2 , the workability may be deteriorated, which is not preferable.
  • gaps (voids) are likely to be formed between the oxide and the base steel plate during press working, and the workability is lowered. Therefore, it is desirable that the shape of the oxide is spherical.
  • the above-mentioned oxide ratio and number density are measured using MQA (Metals Quality Analyzer: registered trademark). Specifically, when the plate thickness of the steel plate is t, it exists in the range of 10 mm ⁇ 10 mm on the surface parallel to the surface of the steel plate at the position of t / 4 (t: plate thickness) in the plate thickness direction from the surface. Analyze the oxides that are produced.
  • the steel sheet according to the present embodiment is preferably a cold-rolled steel sheet. Further, the steel sheet according to the present embodiment has excellent enamel characteristics. Therefore, it is preferable to use a steel plate for enamel, which is a material for enamel products.
  • the enamel product according to the present embodiment includes the above-mentioned steel plate according to the present embodiment.
  • it is an enamel product obtained by subjecting a steel sheet according to the present embodiment to an enamel treatment and processing it as necessary.
  • a preferable manufacturing method of the steel sheet according to the present embodiment will be described.
  • a steel piece having the above-mentioned chemical composition is produced by melting, refining, and casting, and the steel piece is hot-rolled, cold-rolled, annealed, and temper-rolled, if necessary. Can be manufactured by performing. Each step may be set based on a conventional method except for the conditions shown below.
  • MnO and Cr By adding Mn and Cr to molten steel with a metal or alloy before deoxidation with Al or Si, three types of oxides, MnO, Cr 2 O 3 and Al 2 O 3, having a major axis exceeding 1.0 ⁇ m
  • the ratio of the total area of MnO and Cr 2 O 3 having a major axis of more than 1.0 ⁇ m to the total area of is 98.0% or more, and the ratio of the area of Al 2 O 3 is 2.0% or less. Can be done. The proportion of this oxide hardly changes in the subsequent steps.
  • the activity of MnO and Cr 2 O 3 can be lowered as compared with the case of adding MnO and Cr 2 O 3 alone, and the major axis is stably over 1.0 ⁇ m.
  • 10 ⁇ m of MnO and Cr 2 O 3 can be obtained in the range of 5.0 ⁇ 10 2 to 5.0 ⁇ 10 4 pieces / mm 2.
  • the major axis can be 0.1 to 1.0 ⁇ m by adjusting the amount of Al having a strong oxidizing power. The number density of a certain MnO can be controlled.
  • the enamel product according to the present embodiment is obtained by processing the steel plate according to the present embodiment into a predetermined shape, assembling it into a product shape by welding or the like, and performing an enamel treatment (firing treatment).
  • the enamel treatment for example, the glassy material of the glaze and the steel sheet may be brought into close contact with each other by heating the steel sheet coated with the glaze to a predetermined temperature and holding it for a predetermined time.
  • the preferred firing treatment conditions for the steel sheet according to the present embodiment are, for example, a firing temperature of 750 to 900 ° C. and a firing time of 1.5 to 10 minutes (in a furnace). Further, firing may be repeated several times for double coating and repair.
  • the solid solution C and the iron carbide can suppress the grain growth during the enamel treatment and suppress the decrease in strength.
  • the conditions of the firing treatment shown here are merely examples, and do not limit the conditions of the enamel treatment of the steel sheet according to the present embodiment.
  • Example 1 Steel with the chemical composition shown in Table 1 (the balance is Fe and impurities) is melted in a converter, and in the secondary refining, the order of addition of Al, Cr and Mn is set to B1 or B2 in Table 2, and then continuous casting is performed. Made into a slab. These slabs were heated at 1150 to 1250 ° C. and then hot-rolled at a finishing temperature of 900 ° C. or higher to obtain a hot-rolled steel sheet wound at 600 to 700 ° C. Then, the hot-rolled steel sheet is pickled and then cold-rolled at a rolling rate of 70 to 85% to obtain a cold-rolled steel sheet, which is continuously annealed at 650 to 750 ° C. and then temper-rolled to obtain a plate thickness of 0. A 7 mm steel plate (cold-rolled steel plate) was used.
  • Table 1 the balance is Fe and impurities
  • a 2 kg ball head weight was dropped from a height of 1 m on the fired sample, and the state of enamel peeling of the deformed portion was measured with 169 palpation needles and evaluated by the area ratio of the unpeeled portion.
  • the area ratio was evaluated by averaging 4 samples.
  • the evaluation criteria were as follows, A: excellent, B: normal, C: problematic, and C was rejected.
  • C Area ratio of unpeeled part is less than 40%
  • C1 to C18 which are examples of the invention, were excellent in enamel characteristics because the chemical composition and oxides were within the scope of the present invention.
  • the enamel characteristics of c1 to c20 which are comparative examples, were inferior. Comparing C4, C6, C17 and c17 using A4 with 0.12% Cr, A6 with 0.08% Cr, and A17 with 0.06% Cr, 2 out of 10 samples of C4 No black spots were observed in any of the C6, C17, and c17 samples.
  • Example 2 Refining No. in Table 2 Cr, Mn, and Al were added in the order of addition shown in B1, and the steel Nos.
  • a steel plate was manufactured under the same conditions as in Example 1. The obtained steel sheet is present in a range of 10 mm ⁇ 10 mm on a surface parallel to the surface of the steel sheet at a position t / 4 from the surface in the plate thickness direction using MQA (Metals Quality Analyzer (registered trademark)).
  • the proportion of oxides major diameter is 1.0 .mu.m greater than the number density of the major axis is 1.0 .mu.m ultra 10 ⁇ m or less MnO and Cr 2 O 3, the major axis is at 0.1 ⁇ 1.0 .mu.m
  • the number density of MnO was measured. The results are shown in Table 4.
  • the tensile strength of the obtained steel sheet was measured.
  • Tensile strength (TS) was measured by performing a tensile test according to JIS Z2241: 2011 using a JIS No. 5 test piece. Further, the obtained steel sheet was subjected to a heat treatment simulating enamel treatment at a furnace temperature of 830 ° C. for 5 minutes, and a tensile test was performed in the same manner as described above to determine the tensile strength. From the above results, the ratio of the strength after the heat treatment to the strength before the heat treatment was calculated. When the tensile strength after the heat treatment was 0.85 (85%) or more of the tensile strength before the heat treatment, it was judged that the decrease in strength due to the enamel treatment could be stably suppressed.
  • Table 1 Table 2, as can be seen from Table 4, the total number density of the MnO and Cr 2 O 3 long diameter is less than 1.0 ⁇ m ultra 10 ⁇ m is, 5.0 ⁇ 10 2 cells / mm 2 or more, 5. When it is 0 ⁇ 10 4 pieces / mm 2 or less, the nail skipping resistance is also B evaluation or higher, and the total number density of MnO and Cr 2 O 3 having a major axis of more than 1.0 ⁇ m and 10 ⁇ m or less is 1. When it was 0 ⁇ 10 3 pieces / mm 2 or more, the nail jump resistance was evaluated as A.
  • the number density of the MnO oxide having a major axis of 0.1 to 1.0 ⁇ m was in an appropriate range, the decrease in tensile strength due to the enamel treatment was further suppressed.
  • the larger the number density the smaller the decrease in tensile strength.
  • the MnO oxide having a major axis of 0.1 to 1.0 ⁇ m was substantially spherical.
  • a steel plate was manufactured under the same conditions as in Example 1.
  • the results are shown in Table 5.
  • This steel sheet is suitable as a steel sheet for enamel, which is a base material for enamel products applied to kitchen utensils, building materials, energy fields, and the like. Therefore, the present invention has high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

この鋼板は、所定の化学組成を有し、表面から板厚方向に板厚の1/4の位置の前記表面と平行な面において、長径が1.0μm超であるMnO、CrおよびAlの3種類の酸化物の合計面積に対する、前記MnOおよび前記Crの合計面積率が、98.0%以上であり、前記Alの面積率が2.0%以下である。

Description

鋼板およびほうろう製品
 本発明は、鋼板およびほうろう製品に関する。
 本願は、2020年03月27日に、日本に出願された特願2020-057125号に基づき優先権を主張し、その内容をここに援用する。
 ほうろう製品は、鋼板の表面にガラス質が焼き付けられたものである。ほうろう製品は、耐熱性、耐候性、耐薬品性、耐水性の機能を有するので、従来、鍋類、流し台等の台所用品や建材等の材料として広く利用されている。このようなほうろう製品は、一般に、鋼板を所定形状に加工後、溶接等により製品形状に組み立てられた後、ほうろう処理(焼成処理)が施されることで製造される。
 ほうろう製品の素材として用いられる鋼板(ほうろう用鋼板)には、その特性として、耐焼成ひずみ性、ほうろう処理後の耐爪飛び性、ほうろう密着性、ほうろう処理後の耐泡・黒点欠陥性等が求められる。
 爪飛びとは、焼成後から一週間程度までの間にほうろう層が損傷し、三日月状の割片が剥離する現象である。爪飛びが発生する理由としては、ほうろう焼成などの過程において鋼板中に侵入し固溶していた水素が、冷却後に気体となって鋼板と釉薬との界面に集合し、水素ガスによる圧力でほうろう層が破壊されるためであると考えられる。
 爪飛びの防止には、介在物を多くすることにより、鋼板の水素吸蔵能を向上させることが有効であると考えられる。
 例えば、特許文献1には鋼中酸素含有量を高めて連続鋳造する、ほうろう用鋼の製造法が提案されている。特許文献1では、低炭素、高酸素で爪飛び等の少ない良質のほうろう用材がピンホール、スリバー等の表面疵もなく、高歩留まりで製造できると開示されている。
 しかしながら、特許文献1では、Alを添加して脱酸処理し、鋼中酸素量を調整している。このようにAlによって鋼中酸素量を調整する場合、溶鋼に添加したAlなどによって大型非金属介在物(10μm以上)が多く形成され、水素吸蔵に効果の高い微細酸化物を十分に生成させることが難しかった。
 この対策として、特許文献2では、CrをO(酸素)の0.5~1.3倍含有する、深絞り性に優れた直接1回掛けほうろう用冷延鋼板が提案されている。
 しかしながら、特許文献2では脱酸元素としてAlを用いている。また、CrはAlと同様に酸化物形成元素であるものの、Alに比べてその傾向が低い。そのため、特許文献2の技術においては、大型非金属介在物が生成してしまい、水素吸蔵に有効な微細な酸化物を十分に生成することが難しかった。
 また、特許文献3では、MnをO(酸素)の2~19倍含有する、表面疵が少なく、耐爪飛び性、密着性、耐泡立ち性および加工性が優れた琺瑯用鋼板が提案されている。特許文献3では、耐爪飛び性を向上させる効果があり、かつ、表面欠陥をもたらさない微細な介在物としては、Fe-Mn-O系介在物が好適であり、大型非金属介在物の生成を抑制して、Fe-Mn-O系介在物を生成させることが示されている。
 しかしながら、特許文献3の技術では、Caおよび/またはMgの添加を必須としている。CaやMgを添加した場合、Alを添加した場合と同様に、大型非金属介在物が多く形成される。また、CaやMgのような強脱酸元素を含む複合酸化物は、粉砕効果によりボイドができにくい。そのため、CaやMgを添加する場合、水素吸蔵能が低下するという課題があった。
 また、ほうろう製品では、一部の用途において、部品の軽量化を目的として、使用される鋼板の高強度化が求められている。ほうろう処理は焼成処理であることから、結晶粒成長などにより、鋼板の強度が低下する場合があるが、このような用途への適用を考慮する場合には、ほうろう処理による引張強度の低下が小さい方が好ましい。
 例えば、特許文献4では、Fe及びMnを含む酸化物を含有し、前記酸化物の内、直径が1.0μmより大きく10μm以下の前記酸化物の個数密度が、1.0×10個/mm以上、5.0×10個/mm以下であり、かつ直径が0.1~1.0μmの前記酸化物の個数密度が5.0×10個/mm以上であることを特徴とする鋼板が開示されている。特許文献4では、ほうろう処理後に、優れたほうろう特性(耐爪飛び性、密着性、外観)及び強度特性(ほうろう処理による引張強度の低下を生じさせない、または引張強度低下を安定的に抑制できる特性)が得られると記載されている。
 しかしながら、特許文献4では、鋼板に、主として角ばった酸化物を多く存在させる必要があり、深絞りのような厳しい加工に対しては加工性が十分ではない場合があるという課題があった。
日本国特公昭57-49089号公報 日本国特開2001-342542号公報 日本国特開2003-96542号公報 日本国特許第6115691号公報
 本発明は、上記の課題を解決し、ほうろう処理後に優れたほうろう特性(耐爪飛び性、密着性(ほうろう密着性)、外観)を有する鋼板及び、この鋼板を備えた、ほうろう特性に優れたほうろう製品を提供することを課題とする。
 また、本発明は、ほうろう処理後に優れたほうろう特性(耐爪飛び性、密着性、外観)を有し、ほうろう処理による引張強度の低下を抑制できる鋼板及び、この鋼板を備えた、ほうろう特性に優れたほうろう製品を提供することを、好ましい課題とする。
 本発明者らは、従来のほうろう用鋼板の課題を克服するために種々の検討を重ねた。特に、ほうろう密着性及び外観を従来以上とした上で、ほうろう処理後の鋼板の耐爪飛び性を向上させる手段を、化学組成、製造条件の影響に着目して検討した。その結果、以下の知見を得た。
(a)耐爪飛び性を向上させるためには、大型介在物、特にAlの生成を抑制し、微細な介在物を多量に析出させることが好ましい。微細な介在物としては、MnO、Crが好適である。
(b)ほうろう用鋼の製造に際しては、通常、転炉で粗脱炭した後、RH等の真空脱ガス装置で脱炭をする。一般に、真空脱炭では脱炭速度を向上させるために、酸素濃度を高くし、脱炭後に脱酸剤としてAlを投入する。この脱酸時に大型介在物が多量に生成する。一方で、脱酸力の小さいMnおよびCrを、Alによる脱酸の前に添加し、微細な介在物を生成した後、Alによる脱酸を行うことで、大型介在物の生成を抑制できる。
 本発明は、上記の知見に鑑みてなされた。本発明の要旨は以下の通りである。
[1]本発明の一態様に係る鋼板は、質量%で、C:0.0050%以下、Si:0.050%以下、Mn:0.007~1.00%、P:0.003~0.050%、S:0.005~0.050%、Al:0.010%以下、O:0.0300~0.1000%、Cu:0.010~0.060%、N:0.0050%以下、Cr:0.01~1.00%、残部Feおよび不純物からなる化学組成を有し、表面から板厚方向に板厚の1/4の位置の前記表面と平行な面において、長径が1.0μm超であるMnO、CrおよびAlの3種類の酸化物の合計面積に対する、前記MnOおよび前記Crの合計面積率が、98.0%以上であり、前記Alの面積率が2.0%以下である。
[2]上記[1]に記載の鋼板は、前記長径が1.0μm超10μm以下である、前記MnOおよび前記Crの、合計の個数密度が、5.0×10個/mm以上、5.0×10個/mm以下であってもよい。
[3]上記[1]または[2]に記載の鋼板は、長径が0.1~1.0μmであるMnOの個数密度が、1.0×10個/mm以上、5.0×10個/mm以下であってもよい。
[4]上記[1]~[3]の何れかに記載の鋼板は、前記化学組成が、更に、質量%で、B、Ni、Nb、As、Ti、Se、Ta、W、Mo、Sn、Sb、La、Ce、Ca、Mgからなる群から選択される1種以上を、合計で0.100%以下含んでもよい。
[5]上記[1]~[4]の何れかに記載の鋼板は、質量%での、Cu含有量を[Cu]、P含有量を[P]、S含有量を[S]としたとき、[Cu]/[P]が、1.0~4.0であり、[P]/[S]が0.2~2.0である。
[6]上記[1]~[5]の何れかに記載の鋼板は、冷延鋼板であってもよい。
[7]上記[1]~[6]の何れかに記載の鋼板は、ほうろう用鋼板であってもよい。
[8]本発明の別の態様に係るほうろう製品は、[1]~[5]の何れかに記載の鋼板を備える。
 本発明の上記態様によれば、ほうろう処理後の耐爪飛び性、ほうろう密着性、ほうろう処理後の外観に優れる鋼鈑を提供できる。この鋼板は、台所用品、建材、エネルギー分野等に適用されるほうろう製品の基材であるほうろう用鋼板として好適である。
 また、本発明の上記態様によれば、ほうろう特性に優れるほうろう製品を提供できる。このほうろう製品は、台所用品、建材、エネルギー分野等の用途に好適である。
 本発明の一実施形態に係る鋼板(本実施形態に係る鋼板)について説明する。
 本実施形態に係る鋼板は、質量%で、C:0.0050%以下、Si:0.050%以下、Mn:0.007~1.00%、P:0.003~0.050%、S:0.005~0.050%、Al:0.010%以下、O:0.0300~0.1000%、Cu:0.010~0.060%、N:0.0050%以下、Cr:0.01~1.00%、残部Feおよび不純物からなる化学組成を有し、表面から板厚方向に板厚の1/4の位置の前記表面と平行な面において、長径が1.0μm超であるMnO、CrおよびAlの3種類の酸化物の合計面積に対する、前記MnOおよび前記Crの合計面積率が、98.0%以上であり、前記Alの面積率が2.0%以下である。好ましくは、長径が1.0μm超10μm以下であるMnOおよびCrの合計の個数密度が、5.0×10個/mm以上、5.0×10個/mm以下である。また、好ましくは、長径が0.1~1.0μmであるMnOの個数密度が、1.0×10個/mm以上、5.0×10個/mm以下である。
<化学組成>
 まず、化学組成の限定理由について説明する。以下、化学組成に関する%は、質量%を意味する。また、「~」を挟んで示される数値範囲は、その両端の値を上下限として含む。例えば、0.007~1.00%は、0.007%以上、1.00%以下であることを示す。一方、超、未満と示された場合、その値を上限または下限として含まない。
C:0.0050%以下
 C含有量が高いほど、ほうろうの泡欠陥が生じやすくなる傾向があり、またプレス加工性も悪くなる。C含有量は製品性能上、低いほど好ましいが、Cを過度に低減するには製鋼段階での処理時間が長くかかり、製鋼コストも上昇する。そのため、C含有量は0.0050%以下とする。C含有量は、好ましくは0.0020%以下である。
Si:0.050%以下
 Si含有量が高いと、ほうろう特性が阻害されると同時に、熱間圧延でSi酸化物が多量に形成され、耐爪飛び性が低下する場合がある。この影響は、Si含有量が0.050%を超えると顕著になるので、Si含有量を0.050%以下とする。耐泡、耐黒点性などを向上させ、更に良好なほうろう処理後の表面性状を得る点からは、Si含有量は、0.008%以下とすることが好ましい。
Mn:0.007~1.00%
 Mnは、酸素を含有する介在物を生成し、ほうろう特性の向上に寄与する元素である。また、Mnは、Sによる熱間脆性を防止する作用も有する元素である。これらの効果を得るため、Mn含有量は0.007%以上とする。Mn含有量は、好ましくは0.10%以上である。
 一方で、Mnは鋼の変態点を低下させる作用を有する元素でもあり、Mn含有量が過剰であると、ほうろう処理の焼成温度範囲で変態が生じ、焼成ひずみが生じ、製品の変形の原因となる。またMn含有量が過剰になると鋼の加工性が劣化する。このためMn含有量は1.00%以下とする。Mn含有量は、好ましくは0.50%以下である。
P:0.003~0.050%
 Pは、ほうろう前処理である酸洗の際に、鋼板の酸洗減量を大きくする作用がある元素である。P含有量が0.003%未満であると、酸洗が不十分となり、ほうろうの密着性が損なわれる。そのため、P含有量を0.003%以上とする。P含有量は、好ましくは0.005%以上である。
 一方、P含有量が0.050%を超えると酸洗減量が過大になり、ほうろう処理後に泡や黒点欠陥が生じやすくなる。これを避けるためにP含有量は0.050%以下とする。P含有量は、好ましくは0.035%以下である。
S:0.005~0.050%
 Sは、酸洗速度を速め、酸洗後の鋼板表面を粗くして、ほうろう密着性の向上に寄与する元素である。この効果を得るため、S含有量を0.005%以上とする。
 一方、S含有量が過剰になると、鋼中の酸化物の制御に必要なMnの効果が低下する場合がある。そのため、S含有量を0.050%以下とする。
Al:0.010%以下
 Alは、強脱酸元素であり、本実施形態に係る鋼板では、Al含有量を慎重に制御する必要がある。Al含有量が0.010%を超えると、必要とする量のOを鋼中に留めることが困難となり、耐爪飛び性に有効となる酸化物の制御が困難になる。そのため、Al含有量を0.010%以下とする。Al含有量は、好ましくは0.005%以下である。
 Al含有量の下限は限定する必要はないが、Al含有量は0.001%以上であってもよい。
O:0.0300~0.1000%
 Oは、鋼中の水素を捕捉して耐爪飛び性を向上させる微細な介在物の構成元素であり、ほうろう用鋼板では重要な元素である。本実施形態に係る鋼板においては、所望のほうろう特性を確保するために、O含有量は0.0300%以上とする。O含有量が0.0300%に満たない場合には、介在物個数が不十分となり、爪飛び欠陥が多発する。O含有量は、好ましくは0.0400%以上である。
 一方、O含有量が過剰に高くなると、延性が劣化する。そのため、O含有量を0.1000%以下とする。
Cu:0.010~0.060%
 Cuは、酸洗減量を小さくするものの、酸洗後の鋼板表面に微細な凹凸を形成することで、ほうろう密着性を向上させる元素である。この効果を得るため、Cu含有量を0.010%以上とする。Cu含有量が0.010%に満たない場合にはほうろう密着性向上効果が十分でない。Cu含有量は、好ましくは0.020%以上である。
 一方、Cu含有量が0.060%を超えると鋼の酸洗における溶解速度が低下しすぎ、上記凹凸が十分に形成されない。その結果、良好な密着性を得ることができない。そのため、Cu含有量は0.060%以下とする。Cu含有量は、好ましくは0.050%以下である。
N:0.0050%以下
 Nは、不純物であり、歪時効を生じる原因となる元素である。歪時効が生じると、鋼板の加工性が損なわれる。そのため、N含有量は少ないほうがよいが、Nを過度に低減するには製鋼段階での処理時間が長くかかり、製鋼コストも上昇する。そのため、N含有量は0.0050%以下とする。
Cr:0.01~1.00%
 Crは、Oを含有する介在物を生成し、ほうろう特性の向上に寄与する元素である。特に、CrとMnとを複合含有させた場合、含有しない場合と比較して酸化物が適切なサイズとなり、ほうろう処理後の爪飛びの発生が抑制される。Cr含有量が、0.01%未満では、Mnとの複合酸化物による効果が得られない。そのため、Cr含有量を0.01%以上とする。Cr含有量は、好ましくは0.03%以上である。
 一方、Cr含有量が1.00%を超えると、加工性が劣化し、耐黒点性も損なわれる。そのため、Cr含有量を1.00%以下とする。Cr含有量は、好ましくは0.50%以下、より好ましくは0.30%以下、さらに好ましくは0.08%以下である。
 本実施形態に係る鋼板の化学組成は、上記元素を含み、残部はFe及び不純物からなることを基本とする。不純物とは、鋼材を工業的に製造する際に、鉱石もしくはスクラップ等のような原料から、または製造工程の種々の要因によって混入する成分であって、本実施形態に係る鋼板に悪影響を与えない範囲で許容されるものを意味する。
 本実施形態に係る鋼板においては、不純物として含まれる元素のうち、B、Ni、Nb、As、Ti、Se、Ta、W、Mo、Sn、Sb、La、Ce、Ca、Mgについては、その含有量を後述する範囲に制限することが好ましい。
B、Ni、Nb、As、Ti、Se、Ta、W、Mo、Sn、Sb、La、Ce、Ca、Mgの1種以上の合計:0.100%以下
 B、Ni、Nb、As、Ti、Se、Ta、W、Mo、Sn、Sb、La、Ce、Ca、Mgは、積極的に含有させる必要がない元素であるが、不可避的に混入し得る不純物である。これらの元素は、一般に、単独で混入することは少なく、例えばNi及びMoの様に2種以上の元素で混入することが多い。これらの元素を過剰に含有すると、酸化物形成元素との反応が無視できなくなり、所望の酸化物制御が困難なものとなる。そのため、これらの元素の含有量の合計を、0.100%以下に制限することが好ましい。合計含有量は、より好ましくは0.050%以下、さらに好ましくは0.010%以下である。
 また、これらの元素は脱酸元素として作用する場合には、フリー酸素の値に影響して、フリー酸素の調整が困難になる場合がある。そのため、各々の元素の含有量の上限は鋳造段階でのフリー酸素の値に影響が出ない範囲にすることが好ましい。
 上記した鋼成分は、鋼の一般的な分析方法によって測定すればよい。例えば、鋼成分は、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。CおよびSは高周波誘導加熱燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用い、Oは不活性ガス融解-非分散型赤外線吸収法を用いて測定すればよい。
 本実施形態に係る鋼板は、化学組成において、上記のように各元素の含有量を制御した上で、さらに、元素同士の含有量が以下の関係を満たすことが好ましい。
[Cu]/[P]:1.0~4.0
 Cuは酸洗減量を低減させるのに対し、Pは酸洗減量を増加させる作用がある。それら相互の影響を踏まえて、ほうろう密着性をより向上させるために、Cu含有量とP含有量との比である[Cu]/[P]([Cu]は質量%でのCuの含有量、[P]は質量%でのP含有量)を1.0以上、4.0以下とすることが好ましい。[Cu]/[P]は、好ましくは1.5以上、3.5以下である。
[P]/[S]:0.2~2.0
 PもSも酸洗減量を大きくする元素であるが、ほうろう密着性に関してはPとSとは相互作用があり、その含有量比である[P]/[S]([P]は質量%でのP含有量、[S]は質量%でのS含有量)が0.2以上、2.0以下であれば、安定してほうろう密着性が向上するので、好ましい。この効果は酸洗減量だけではなく、酸洗後の表面状態にも関係していると考えられる。
<酸化物>
 本実施形態に係る鋼板は、酸化物として、実質的にMnおよび/またはCrとOとからなる(不可避的にAl、Si、Caが含有されていても、その含有量の合計が2.0%以下である)酸化物を含み、表面から板厚方向に板厚の1/4の位置の表面と平行な面において、長径が1.0μm超であるMnO、CrおよびAlの3種類の酸化物の合計面積に対する、長径が1.0μm超であるMnOとCrとの合計面積の割合が98.0%以上であり、Alの面積の割合が2.0%以下である。すなわち、本実施形態に係る鋼板では、耐爪飛び性に影響の大きいMnO、Cr、Alの3つの酸化物に着目し、これらの面積率を規定する。
 MnO及びCrは、微細な酸化物であるので、冷間圧延時に酸化物周辺にボイドを生成し、耐爪飛び性を向上させる。そのため、長径が1.0μm超であるMnO、CrおよびAlの3種類の酸化物のうち、長径が1.0μm超である、MnOとCrとの合計面積の割合を98.0%以上とする。好ましくは99.0%以上である。
 MnOおよびCrは、それぞれ単独で析出していてもよいが、複合酸化物として、(実質的にMn、CrおよびOからなる酸化物として)析出してもよいし、MnS等の硫化物と複合析出していてもよい。本実施形態では、複合析出している場合も、MnOおよびCrとの合計面積としてカウントする。
 また、脱酸生成物の元素であるAl、Si、Ca等を含む酸化物の生成を抑制することで、鋳造中のフリー酸素の調整で酸化物を微細に分散させることができる。一方で脱酸生成物の元素としてAl、Si、Ca等を含む酸化物が生成する場合には、鋳造過程でのフリー酸素の調整によって酸化物の個数と大きさとを所望の範囲に制御することが困難になる。
 一方、Alは粗大な酸化物であるため、Alが生成すると酸化物量が減少し、耐爪飛び性が低下する。そのため、MnO、CrおよびAlの3種類の酸化物の合計面積に対するAlの面積率を2.0%以下とする。好ましくは1.0%以下である。
 測定対象を長径が1.0μm以上の酸化物(MnO、CrおよびAlの3種類の酸化物)としたのは、長径が1.0μm未満のサイズの酸化物は、ほうろう特性にほとんど影響しないからである。
 本実施形態に係る鋼板では、強度を低下させずに耐爪飛び性をより向上させるため、長径1.0μm超、10μm以下の、MnO及びCrの合計の個数密度を、5.0×10~5.0×10個/mmとすることが好ましい。
 長径が1.0μmを超えるMnO及びCrは、鋼板中に存在することで耐爪飛び性を向上させる。長径が1.0μm未満の酸化物は、耐爪飛び性を向上させる効果が小さい。一方で、粗大な酸化物が多くなると酸化物の個数密度が減少し、水素吸蔵効果が小さくなり、耐爪飛び性を向上させる効果が小さくなる。また、粗大な酸化物は、加工時の割れの起点となりやすく、延性を低減させる。そのため。長径が1.0μm超、10μm以下のMnO及びCrの合計の個数密度を制御する。
 耐爪飛び性を向上させるためには、これらの酸化物の個数密度を、5.0×10個/mm以上とすることが好ましい。より好ましくは、1.0×10個/mm以上である。
 一方、上記酸化物が5.0×10個/mmを超えて存在すると、加工時に酸化物と鋼板母材との界面に空隙が必要以上に多く発生し、鋼板強度が低下する。そのため、個数密度を5.0×10個/mm以下とすることが好ましい。より好ましくは1.0×10個/mm以下である。
 上述のように、長径が1.0μm未満の酸化物はほうろう特性に与える影響は小さい。しかしながら、長径が0.1~1.0μmであるMnOを1.0×10個/mm以上存在させることで、ほうろう処理による引張強度の低下をより抑制することができるので、好ましい。
 一方、長径が0.1~1.0μmであるMnOの個数密度が5.0×10個/mmを超えると、加工性が低下する場合があるので好ましくない。
 また、角張った酸化物は、プレス加工時に酸化物と母材鋼板との間に隙間(空隙)ができ易く、加工性が低下する。そのため、酸化物の形状は球状であることが望ましい。
 上述した、酸化物の割合、個数密度は、MQA(Metals Quality Analyzer:登録商標)を用いて測定する。具体的には、鋼板の板厚をtとした場合、表面から板厚方向にt/4(t:板厚)の位置における、鋼板の表面と平行な面の、10mm×10mmの範囲に存在する酸化物を分析する。
 冷間圧延を行うことで、酸化物と母材との界面にボイドが生成し、ほうろう処理後の耐爪飛び性が向上する。そのため、本実施形態に係る鋼板は、冷延鋼板であることが好ましい。
 また、本実施形態に係る鋼板は、ほうろう特性に優れる。そのため、ほうろう製品の素材であるほうろう用鋼板とすることが好ましい。
 また、本実施形態に係るほうろう製品は、上述した本実施形態に係る鋼板を備える。例えば、本実施形態に係る鋼板にほうろう処理を行って、必要に応じて加工されて得られるほうろう製品である。
<製造方法>
 本実施形態に係る鋼板の好ましい製造方法について説明する。
 本実施形態に係る鋼板は、溶解、精錬、鋳造によって上述した化学組成を有する鋼片を製造し、この鋼片に対し、必要に応じて、熱間圧延、冷間圧延、焼鈍、調質圧延を行うことで製造できる。各工程は、以下に示す条件以外は、常法に基づいて設定すればよい。
[精錬工程]
 一般には、ほうろう用鋼板を製造する場合、二次精錬初期にAlやSiによる脱酸を行う。しかしながら、本実施形態に係る鋼板の製造方法では、脱炭完了後かつAlやSiによる脱酸前に、溶鋼にMnおよびCrの1種以上を添加する。AlやSiによる脱酸前に、溶鋼にMnおよびCrを、金属または合金で添加することで、長径が1.0μm超であるMnO、CrおよびAlの3種類の酸化物の合計面積に対する、長径が1.0μm超である、MnOとCrとの合計面積の割合を98.0%以上、Alの面積の割合を2.0%以下にすることができる。この酸化物の割合は、以降の工程ではほとんど変化しない。
 また、AlまたはSiによる脱酸前にMnおよびCrを添加することにより、MnOおよびCrの活量を単独添加の場合よりも低下させることができ、安定的に長径1.0μm超~10μmのMnO及びCrを5.0×10~5.0×10個/mmの範囲で得ることができる。
 また、溶鋼に対し、金属または合金のMnとCrを添加した後に、AlまたはSiを添加するに際し、酸化力の強いAlの添加量を調整することで、長径が0.1~1.0μmであるMnOの個数密度を制御することができる。
 また、本実施形態に係るほうろう製品は、本実施形態に係る鋼板を、所定形状に加工後、溶接等により製品形状に組み立てられ、ほうろう処理(焼成処理)が施されることにより、得られる。ほうろう処理については、例えば、釉薬を塗布した鋼板を、所定の温度に加熱して所定時間保持することによって、釉薬のガラス質と鋼板とを密着させればよい。本実施形態に係る鋼板についての好ましい焼成処理条件は、例えば、焼成温度750~900℃、焼成時間1.5~10分(在炉)の範囲がよい。また2回塗りおよび補修のために焼成を数回繰り返しても良い。このような条件で焼成処理を行うことにより、固溶C及び鉄炭化物によりほうろう処理中の粒成長を抑制し、強度低下を抑制できるようになる。ここに示した焼成処理の条件はあくまで例示であり、本実施形態に係る鋼板のほうろう処理の条件を限定するものではない。
<実施例1>
 表1に示す化学組成(残部はFe及び不純物)の鋼を転炉で溶製し、二次精錬において、Alと、Cr及びMnの添加順を表2のB1またはB2とし、その後、連続鋳造によってスラブとした。
 これらのスラブを1150~1250℃で加熱後、900℃以上の仕上げ温度で熱間圧延を行い、600~700℃で巻き取り熱延鋼板とした。そして、熱延鋼板を酸洗後、70~85%の圧延率で冷間圧延を行い冷延鋼板とし、650~750℃で連続焼鈍を施した後、調質圧延を施し、板厚0.7mmの鋼板(冷延鋼板)とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 得られた鋼板に対し、MQA(Metals Quality Analyzer(登録商標)を用いて、表面から板厚方向にt/4の位置(t:板厚)における、鋼板の表面と平行な面の、10mm×10mmの範囲に存在する酸化物を分析し、酸化物の割合を測定した。
 結果を表3に示す。
 また、得られた鋼板に対し、ほうろう特性(耐爪飛び性、ほうろう密着性、ほうろう処理後の外観)を、以下の要領で評価した。結果を表3に示す。
[耐爪飛び性]
 前処理として、鋼板から、150mm×100mmのサイズのサンプルを採取し、サンプルに対し、アルカリ脱脂後、70℃の15g/l硫酸ニッケル液に7分間浸漬し、その後、中和処理を行った。その後、日本フェロー製102#釉薬を両面に100μm施釉し、露点35℃の雰囲気で、860℃×5分間焼成した。
 焼成後のサンプルに、150℃で20時間保持する加熱を行い、爪飛び発生状況を目視で観察し、評価した。発生状況は、4枚のサンプルの平均で評価した。評価基準は以下の通りとし、A:優れる、B:通常、C:問題ありとして、Cを不合格とした。
 A:爪飛びの発生が、10個以下/面
 B:爪飛びの発生が、11~20個/面
 C:爪飛びの発生が、21個以上/面
[ほうろう密着性]
 前処理として、鋼板から、150mm×100mmのサイズのサンプルを4枚採取し、サンプルに対し、アルカリ脱脂後、70℃の10%硫酸溶液に10分間浸漬した後、70℃の15g/l硫酸ニッケル液に7分間浸漬し、その後、中和処理を行った。さらに、日本フェロー製102#釉薬を両面に100μm施釉し、露点35℃の雰囲気で、860℃×5分間焼成した。
 焼成後のサンプルに、2kgの球頭の重りを1m高さから落下させ、変形部のほうろう剥離状況を169本の触診針で計測し、未剥離部の面積率で評価した。面積率は、4枚のサンプルの平均で評価した。
 評価基準は以下の通りとし、A:優れる、B:通常、C:問題ありとして、Cを不合格とした。
 A:未剥離部の面積率が90%以上
 B:未剥離部の面積率が40%以上、90%未満
 C:未剥離部の面積率が40%未満
[外観]
 前処理として、鋼板から、150mm×100mmサイズのサンプルを10枚採取し、サンプルに対し、アルカリ脱脂後、70℃の15g/l硫酸ニッケル液に7分間浸漬し、その後、中和処理を行った。さらに、日本フェロー製102#釉薬を両面に100μm施釉し、露点35℃の雰囲気で、860℃×5分間焼成した。
 焼成後のサンプルに対し、外観を目視で観察し、泡・黒点の状況を評価した。泡・黒点が10枚中3枚以上に発生している場合は泡・黒点発生、泡・黒点の発生が10枚中2枚以下であれば問題なしとした。
Figure JPOXMLDOC01-appb-T000003
 表1~表3から分かるように、発明例であるC1~C18については、化学組成、酸化物が本発明範囲であったため、ほうろう特性に優れていた。
 一方、比較例であるc1~c20については、ほうろう特性が劣位であった。
 Crが0.12%のA4、Crが0.08%のA6、Crが0.06%のA17を用いた、C4、C6、C17及びc17で比較すると、C4のサンプルでは10枚中2枚に黒点が観察されたが、C6、C17、c17のサンプルのいずれにも黒点は観察されなかった。
<実施例2>
 表2の精錬No.B1に示す添加順で、Cr、Mn、Alを添加し、表1の鋼No.A5、A9、A11、A17、の化学組成を有するスラブを得た。
 このスラブに対し、実施例1と同じ条件で鋼板を製造した。
 得られた鋼板に対し、MQA(Metals Quality Analyzer(登録商標)を用いて、表面から板厚方向にt/4の位置における、鋼板の表面と平行な面の、10mm×10mmの範囲に存在する酸化物を分析し、長径が1.0μm超である酸化物の割合、長径が1.0μm超10μm以下であるMnOおよびCrの個数密度、長径が0.1~1.0μmであるMnOの個数密度を測定した。
 結果を表4に示す。
 また、得られた鋼板に対し、ほうろう特性(耐爪飛び性、ほうろう密着性、ほうろう処理後の外観)を、実施例1と同じ要領で評価した。また、以下の要領で、ほうろう処理による引張強度低下代を測定した。結果を表4に示す。
[ほうろう処理前後の引張強度]
 得られた鋼板の引張強度を測定した。引張強度(TS)は、JIS5号試験片を用いて、JIS Z2241:2011に従って引張試験を行って測定した。
 また、得られた鋼板に、炉温830℃にて5分間のほうろう処理を模擬した熱処理を施し、上記と同様に引張試験を行って引張強度を求めた。
 上記の結果から、熱処理前の強度に対する熱処理後の強度の割合を算出した。
 熱処理後の引張強度が熱処理前の引張強度及の0.85(85%)以上である場合に、ほうろう処理による強度低下を安定的に抑制できると判断した。
Figure JPOXMLDOC01-appb-T000004
 表1、表2、表4から分かるように、長径が1.0μm超10μm以下であるMnOおよびCrの合計の個数密度が、5.0×10個/mm以上、5.0×10個/mm以下である場合には、耐爪飛び性もB評価以上であり、長径が1.0μm超10μm以下であるMnOおよびCrの合計の個数密度が1.0×10個/mm以上である場合には、耐爪飛び性はA評価であった。
 また、長径が0.1~1.0μmであるMnO酸化物の個数密度が適切な範囲にある場合には、ほうろう処理による引張強度の低下がより抑制された。特に、個数密度が大きいほど引張強度の低下代は小さかった。また、長径が0.1~1.0μmであるMnO酸化物は略球状であった。
<実施例3>
 表2の精錬No.B1に示す添加順で、Cr、Mn、Alを添加し、表1の鋼No.A3、A8、A9、A11、A17、A18の化学組成を有するスラブを得た。
 このスラブに対し、実施例1と同じ条件で鋼板を製造した。
 得られた鋼板に対し、実施例2と同じ要領で、長径が1.0μm超である酸化物の割合、長径が1.0μm超10μm以下であるMnOおよびCrの個数密度を測定した。
 結果を表5に示す。
 また、得られた鋼板に対し、ほうろう特性(耐爪飛び性、ほうろう密着性、ほうろう処理後の外観)を、実施例1と同じ要領で評価した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表1、表2、表5から分かるように、[Cu]/[P]が、1.0~4.0であり、[P]/[S]が0.2~2.0である場合には、ほうろう密着性についてより優れていた。
 本発明によれば、ほうろう処理後の耐爪飛び性、ほうろう密着性、ほうろう処理後の外観に優れる鋼鈑を提供できる。この鋼板は、台所用品、建材、エネルギー分野等に適用されるほうろう製品の基材であるほうろう用鋼板として好適である。そのため、本発明は産業上の利用可能性が高い。

Claims (8)

  1. 質量%で、
    C:0.0050%以下、
    Si:0.050%以下、
    Mn:0.007~1.00%、
    P:0.003~0.050%、
    S:0.005~0.050%、
    Al:0.010%以下、
    O:0.0300~0.1000%、
    Cu:0.010~0.060%、
    N:0.0050%以下、
    Cr:0.01~1.00%、
    残部Feおよび不純物からなる化学組成を有し、
     表面から板厚方向に板厚の1/4の位置の前記表面と平行な面において、
      長径が1.0μm超であるMnO、CrおよびAlの3種類の酸化物の合計面積に対する、前記MnOおよび前記Crの合計面積率が、98.0%以上であり、前記Alの面積率が2.0%以下である、
    ことを特徴とする鋼板。
  2.  前記長径が1.0μm超10μm以下である、前記MnOおよび前記Crの、合計の個数密度が、5.0×10個/mm以上、5.0×10個/mm以下である、
    ことを特徴とする請求項1に記載の鋼板。
  3.  長径が0.1~1.0μmであるMnOの個数密度が、1.0×10個/mm以上、5.0×10個/mm以下である、
    ことを特徴とする請求項1または2に記載の鋼板。
  4.  前記化学組成が、更に、質量%で、
     B、Ni、Nb、As、Ti、Se、Ta、W、Mo、Sn、Sb、La、Ce、Ca、Mgからなる群から選択される1種以上を、合計で0.100%以下含む、
    ことを特徴とする請求項1~3の何れか1項に記載の鋼板。
  5.  質量%での、Cu含有量を[Cu]、P含有量を[P]、S含有量を[S]としたとき、[Cu]/[P]が、1.0~4.0であり、[P]/[S]が0.2~2.0である、
    ことを特徴とする請求項1~4の何れか1項に記載の鋼板。
  6.  冷延鋼板であることを特徴とする請求項1~5の何れか1項に記載の鋼板。
  7.  ほうろう用鋼板であることを特徴とする請求項1~6の何れか1項に記載の鋼板。
  8.  請求項1~5の何れか1項に記載の鋼板を備えたほうろう製品。
PCT/JP2021/013017 2020-03-27 2021-03-26 鋼板およびほうろう製品 WO2021193953A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/909,706 US20230160046A1 (en) 2020-03-27 2021-03-26 Steel sheet and enameled product
JP2021576273A JP7115653B2 (ja) 2020-03-27 2021-03-26 鋼板およびほうろう製品
KR1020227031061A KR20220137749A (ko) 2020-03-27 2021-03-26 강판 및 법랑 제품
MX2022011095A MX2022011095A (es) 2020-03-27 2021-03-26 Lamina de acero y producto esmaltado.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-057125 2020-03-27
JP2020057125 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021193953A1 true WO2021193953A1 (ja) 2021-09-30

Family

ID=77892274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013017 WO2021193953A1 (ja) 2020-03-27 2021-03-26 鋼板およびほうろう製品

Country Status (6)

Country Link
US (1) US20230160046A1 (ja)
JP (1) JP7115653B2 (ja)
KR (1) KR20220137749A (ja)
MX (1) MX2022011095A (ja)
TW (1) TWI771963B (ja)
WO (1) WO2021193953A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199555A1 (ja) * 2022-04-11 2023-10-19 日本製鉄株式会社 鋼板およびほうろう製品

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10102222A (ja) * 1996-09-30 1998-04-21 Nkk Corp 深絞り性の優れた直接1回掛けほうろう用冷延鋼板およびその製造方法
JPH116030A (ja) * 1997-06-13 1999-01-12 Nkk Corp 深絞り性に優れたほうろう用冷延鋼板およびその製造方法
JPH116031A (ja) * 1997-06-13 1999-01-12 Nkk Corp 加工性に優れ、ほうろう焼成時に軟化しにくいほうろう用冷延鋼板およびその製造方法
JP2000063985A (ja) * 1998-08-21 2000-02-29 Nkk Corp 焼成後強度が低下しにくいほうろう用冷延鋼板
JP2014500397A (ja) * 2010-12-27 2014-01-09 ポスコ 表面欠陥のないホウロウ用鋼板およびその製造方法
CN109423578A (zh) * 2017-08-21 2019-03-05 Posco公司 搪瓷用冷轧钢板及其制造方法
JP2020002413A (ja) * 2018-06-26 2020-01-09 日本製鉄株式会社 鋼の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749089A (en) 1980-09-05 1982-03-20 Tokico Ltd Liquid supply system
JPS57188254A (en) 1981-05-14 1982-11-19 Masao Saida Spine adjusting table
JPH11229087A (ja) * 1998-02-18 1999-08-24 Nkk Corp 成形性に優れたほうろう用冷延鋼板およびその製造方法
JP3360624B2 (ja) * 1998-11-16 2002-12-24 住友金属工業株式会社 ほうろう用冷延鋼板とその製造方法
JP3412565B2 (ja) * 1999-06-25 2003-06-03 住友金属工業株式会社 耐爪飛び性および密着性が優れたほうろう用鋼板およびその製造方法
JP3797063B2 (ja) * 2000-05-02 2006-07-12 住友金属工業株式会社 耐爪飛び性、密着性、加工性が優れたほうろう用鋼板とその製造方法
JP4360009B2 (ja) * 2000-06-02 2009-11-11 Jfeスチール株式会社 ほうろう用冷延鋼板および製造方法
JP2003003237A (ja) * 2001-06-20 2003-01-08 Nippon Steel Corp 面内異方性が小さい連続鋳造ほうろう用鋼板およびその製造方法
JP4023123B2 (ja) * 2001-09-21 2007-12-19 住友金属工業株式会社 ほうろう用鋼板とその製造方法
KR101019225B1 (ko) * 2005-11-09 2011-03-04 신닛뽄세이테쯔 카부시키카이샤 내피쉬스케일성이 매우 우수한 연속 주조 에나멜링용 강판및 그 제조 방법
CN101517115B (zh) * 2006-09-19 2011-10-05 新日本制铁株式会社 搪瓷施釉用加工产品以及搪瓷加工产品
CN102747309A (zh) * 2012-07-27 2012-10-24 宝山钢铁股份有限公司 一种搪瓷用钢及其制造方法
MY179869A (en) * 2013-09-10 2020-11-18 Nippon Steel Corp Cold-rolled steel sheet for vitreous enameling and enameled product
EP3348661A4 (en) * 2015-09-11 2019-02-13 Nippon Steel & Sumitomo Metal Corporation STEEL PLATE AND ENAMELED PRODUCT
DE102017218434A1 (de) * 2017-10-16 2019-04-18 Thyssenkrupp Ag Emaillieren von höherfesten Stählen
TWI704237B (zh) * 2018-05-17 2020-09-11 日商日本製鐵股份有限公司 鋼板及琺瑯製品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10102222A (ja) * 1996-09-30 1998-04-21 Nkk Corp 深絞り性の優れた直接1回掛けほうろう用冷延鋼板およびその製造方法
JPH116030A (ja) * 1997-06-13 1999-01-12 Nkk Corp 深絞り性に優れたほうろう用冷延鋼板およびその製造方法
JPH116031A (ja) * 1997-06-13 1999-01-12 Nkk Corp 加工性に優れ、ほうろう焼成時に軟化しにくいほうろう用冷延鋼板およびその製造方法
JP2000063985A (ja) * 1998-08-21 2000-02-29 Nkk Corp 焼成後強度が低下しにくいほうろう用冷延鋼板
JP2014500397A (ja) * 2010-12-27 2014-01-09 ポスコ 表面欠陥のないホウロウ用鋼板およびその製造方法
CN109423578A (zh) * 2017-08-21 2019-03-05 Posco公司 搪瓷用冷轧钢板及其制造方法
JP2020002413A (ja) * 2018-06-26 2020-01-09 日本製鉄株式会社 鋼の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199555A1 (ja) * 2022-04-11 2023-10-19 日本製鉄株式会社 鋼板およびほうろう製品

Also Published As

Publication number Publication date
TWI771963B (zh) 2022-07-21
JPWO2021193953A1 (ja) 2021-09-30
KR20220137749A (ko) 2022-10-12
MX2022011095A (es) 2022-10-03
US20230160046A1 (en) 2023-05-25
JP7115653B2 (ja) 2022-08-09
TW202136539A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
JP6586012B2 (ja) ほうろう用冷延鋼板及びほうろう製品
EP2684985A1 (en) Steel sheet for hot pressing, and process for producing hot-pressed member utilizing same
JP6115691B1 (ja) 鋼板およびほうろう製品
EP1442147B1 (en) Steel sheet for vitreous enameling excellent in workability and fish scale resistance, and method for producing the same
EP2799562A1 (en) Hot-rolled steel sheet and process for manufacturing same
JPWO2007055400A1 (ja) 耐つまとび性に著しく優れた連続鋳造ほうろう用鋼板およびその製造方法
CN108430662B (zh) 耐蚀性优异的热压成型品及其制造方法
KR20190131084A (ko) 드로잉 캔용 냉연 강판 및 그 제조 방법
AU2002363283A1 (en) Steel sheet for vitreous enameling and method for producing the same
KR20210107806A (ko) 열간 프레스 부재, 열간 프레스 부재용 냉연 강판, 및 그것들의 제조 방법
TWI428453B (zh) 罐用鋼板及其製造方法
CN110777301B (zh) 一种冷轧搪瓷钢及其制造方法
JP7115653B2 (ja) 鋼板およびほうろう製品
WO2021256145A1 (ja) 耐疲労特性に優れた析出硬化型マルテンサイト系ステンレス鋼板
JP3412565B2 (ja) 耐爪飛び性および密着性が優れたほうろう用鋼板およびその製造方法
TWI846235B (zh) 鋼板及琺瑯製品
WO2024149279A1 (zh) 一种点焊性能优异的带镀层吉帕钢及其制造方法
WO2024061368A1 (zh) 一种低点焊裂纹敏感性的带镀层超高强钢及其制造方法
WO2024150824A1 (ja) 溶接継手
KR101169510B1 (ko) 냉간 압연 강판 및 합금화 용융 아연 도금 강판 및 그들의 제조 방법
JP5239652B2 (ja) 高張力冷延鋼板
JP3183451B2 (ja) ほうろう用冷延鋼板の製造方法
WO2024185204A1 (ja) 熱間プレス部材
CN118703903A (zh) 一种点焊性能优异的带镀层超高强钢及其制造方法
JP5071027B2 (ja) 極低炭素鋼板、極低炭素鋼の精錬方法、および極低炭素鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776866

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021576273

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202217050272

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20227031061

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776866

Country of ref document: EP

Kind code of ref document: A1