JP5071027B2 - 極低炭素鋼板、極低炭素鋼の精錬方法、および極低炭素鋼板の製造方法 - Google Patents

極低炭素鋼板、極低炭素鋼の精錬方法、および極低炭素鋼板の製造方法 Download PDF

Info

Publication number
JP5071027B2
JP5071027B2 JP2007263481A JP2007263481A JP5071027B2 JP 5071027 B2 JP5071027 B2 JP 5071027B2 JP 2007263481 A JP2007263481 A JP 2007263481A JP 2007263481 A JP2007263481 A JP 2007263481A JP 5071027 B2 JP5071027 B2 JP 5071027B2
Authority
JP
Japan
Prior art keywords
less
inclusions
steel
molten steel
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007263481A
Other languages
English (en)
Other versions
JP2009091623A (ja
Inventor
隆之 西
誠治 古橋
純 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007263481A priority Critical patent/JP5071027B2/ja
Priority to CN201510091526.XA priority patent/CN104775071A/zh
Priority to PCT/JP2008/053843 priority patent/WO2008108363A1/ja
Priority to CN200880014831A priority patent/CN101675177A/zh
Publication of JP2009091623A publication Critical patent/JP2009091623A/ja
Priority to US12/554,365 priority patent/US9340860B2/en
Application granted granted Critical
Publication of JP5071027B2 publication Critical patent/JP5071027B2/ja
Priority to US15/047,990 priority patent/US9771638B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、極低Al濃度でかつTiO系介在物を含み、Al系介在物比率の限定された深絞り性に優れた極低炭素鋼板、およびその制御の鍵となる溶鋼精錬方法を規定した製造方法に関する。
酸素に対する親和力が大きな合金成分による効果を得るために、一般的に溶鋼段階で酸素と強い親和力を有するAlを添加し鋼中酸素濃度を低減させた鋼、いわゆるAl脱酸鋼が広く実用されている。薄板として自動車用の構造体に広く用いられる鋼材のうち、炭素濃度を特に低くした極低炭素鋼においても、このAl脱酸鋼の使用が一般的である。
大規模製鉄所における極低炭素鋼の製造方法は、通常の製鋼法と比較して、特に溶鋼精錬方法に特徴がある。
その精錬方法を説明すると、まず、転炉など製鋼炉で炭素を除く粗脱炭を行い、炭素濃度が0.04質量%から0.07質量%を含む低炭素溶鋼として、未脱酸のまま取鍋に出鋼する。
次に、出鋼された溶鋼に対して、さらに真空脱ガス装置を有する精錬工程で真空脱炭処理が行われ、炭素濃度を0.025質量%以下含有する極低炭素溶鋼が得られる。この際の脱炭反応には溶鋼に炭素と反応する酸素を含有していることが必要であり、この時の酸素濃度を示せば0.03質量%から0.08質量%程度含まれている。
続いて、鋼として必要な合金成分を調整するとともに、その前後でこの合金成分調整が容易でかつ残存する酸素を除去するために、Al添加によるAl脱酸が行われる。このような工程を経て、極低炭素Al脱酸鋼が製造される。
一方、上記のような通常のAl脱酸を行わない薄鋼板およびその製造技術もいくつか開示されている。例えば特許文献1には、酸可溶性Al:0.005重量%以下でTi:0.004〜0.040重量%を含有し、チタン酸化物、マンガン酸化物、シリコン酸化物、アルミナが複合され、かつアルミナが30%以下である酸化物系複合介在物を含有せしめたことを特徴とする欠陥が少なくプレス成形性に優れた薄鋼板およびその製造方法が開示されている。
この文献に記載される技術は、脱酸時に添加したAlによって生じるアルミナが硬質であるので、圧延加工等でも塊状で残存し表面疵となって表面性状を損ない、また鋼板内部に存在するとプレス成形時に割れや疵などの欠陥の発生原因となることを踏まえ、Al脱酸行わずにTiを添加して脱酸を行い、さらに処理法を調整することによって酸化物系複合介在物を含有せしめることを特徴とする。
しかしながら、この技術はあくまで残存する介在物が硬質であることを回避することによって、表面性状やプレス成形性の向上を図るもので、新たな極低炭素鋼の鋼質の発現を得るものではない。
ところで発明者らは、極低炭素を含み、Al濃度を極低水準、具体的には0.005質量%以下で、かつTi等の酸素と親和力を有する合金を一定量含有する冷間圧延鋼材が、同じ強度水準に合金成分を調整しても、深絞り性の指標であるランクフォード値(以下「r値」ともいう。)が高くなるとの知見を得て、その知見に基づく発明を特許出願した(特願2007−054511)。
このような極低炭素でかつAl濃度を極低水準に維持し、かつTi等の酸素と親和力を有する合金を一定量含む鋼は、真空溶解炉のような実験炉あるいは小規模生産炉を用いれば、安定的に得ることが可能である。しかしながら、本発明者の検討の結果、前述したような大規模製鉄所の製鋼設備を用いると、かかる鋼を安定的に得ることは容易には達成されがたいことが明らかになった。
極低炭素濃度域までの脱炭精錬、極低Al域への濃度制御、および合金成分の調整には真空脱ガス装置の中でも二本の浸漬管を有し、溶鋼を環流させるRH式真空脱ガス装置(以下RH装置ともいう)で行われることが多い。この真空脱炭を行うような強攪拌型の精錬装置では、通常直径が数μmから数百μmの非金属介在物が懸濁することになり、この非金属介在物が種類によっては前述の極低炭素鋼の深絞り性に悪影響を及ぼすことが考えられた。そこで、この鋼材が本来有する高い絞り性を発揮できるような非金属介在物の要件について鋭意研究し、その条件を見出すに至った。さらには、その条件を実現する鉄鋼量産製造方法を前提とした製鋼条件も確立するに至り、本発明を完成した。
特許第3436857号公報
本発明は、鉄鋼量産製造法によって安定的に製造可能な極低炭素で極低Al濃度でかつ高い絞り性を有する圧延鋼板素材、およびその製造方法の提供にある。具体的には、極低炭素で極低Al濃度でかつ高い深絞り性を有する性質を有する鋼であって、大規模製鉄法で生成が不可避な非金属介在物のうち、その鋼質の発揮に悪影響を及ぼすAlを主成分とする介在物量を制限し、かつ有用なTiOを主成分とする介在物量割合を確保した冷間圧延用鋼素材、および、大規模製鉄法で用いられる設備を用いたときに上記の鋼素材を安定的に製造できる製造方法、特に精錬方法の提供にある。
大規模製鉄所における極低炭素鋼の製造方法において、転炉など製鋼炉で炭素を除く粗脱炭を行い、炭素濃度が0.04質量%から0.07質量%を含む低炭素溶鋼として、未脱酸のまま取鍋などの容器に出鋼する。出鋼された溶鋼は、さらにRH装置等の真空脱ガス装置に搬送されて真空脱炭処理が行われ、炭素濃度を0.025質量%以下含有する極低炭素溶鋼となる。この際の脱炭反応には溶鋼に炭素と反応する酸素を含有していることが必要であり、その酸素濃度は0.03質量%から0.08質量%程度含まれている。
この真空脱炭に要する処理時間の溶鋼の温度低下を補償するために、溶鋼の加熱処理が真空脱炭処理の前後にしばしば行われる。この加熱処理には、溶鋼をAl等の金属と酸素ガスとの酸化反応による加熱、および黒鉛電極から電弧を発生させて溶鋼に通電してジュール熱により熱を供給する電気加熱がある。前者は、Alの燃焼によって生じるAl系介在物の多量の懸濁を生じ、また酸素ガスの供給で脱炭処理後の溶鋼中酸素濃度の変動要因を増やすことになる。またSiの燃焼を利用した場合も同様にSiO系介在物の同様の多量の懸濁を生じる。後者は前述のようなAl系介在物の多量の懸濁は生じ難いものの、電弧加熱時に取鍋スラグ等の巻き込みによって生成するスラグ系介在物が生じるなどの問題があり、さらには電気や電極といったコストや全精錬時間の長時間化といった問題も生じる。
さらに本鋼種の製造には脱炭処理後の酸素濃度の高い溶鋼に対して、Si、Mn、Nb等の合金元素の調整とTi添加を行う必要がある。SiおよびMnは酸素を除く元素、すなわち脱酸元素である。しかし、Alに比較すると酸素との親和力が小さいことから、到達する酸素濃度に限界があり、また脱酸速度が遅く処理時間を要する。その結果として、脱酸状態のバラツキが生じ、Nb等の成分調整、高価な合金元素であるTiの収率低下も生じ、Ti制御性にも悪影響を及ぼす。
これらの問題を一挙に解決するためには、まず本鋼の必要要件であるTiO系介在物分散および含有Ti濃度の実現に加えて、大量製造時に不可避的に混在すると考えられるAl系介在物やスラグ系介在物の存在形態や許容限界を明らかにして、本来の性能を発揮するに足る条件を見出すことが必要と考えた。
ここで、「TiO」とは鋼中のTi酸化物の総称である。Tiは価数として4価、あるいは3価を取り得るため、TiO、Ti、Ti等の存在形態が考えられ、また非化学量論組成もあることからTiOと表記した。
次には、大規模製鉄所での大量製造においてこのような条件を実現できる考え方と理論的方法論を検討することにより、例え金属Alを添加した後に酸素ガス供給をする溶鋼昇熱方法を採用しても、Al系介在物の懸濁を必要程度に抑制することを可能ならしめた。さらには、このような知見から真空脱炭処理後に酸素を多量に含む溶鋼に金属Alを添加して、酸素濃度の予備的な低減を速やかに行い、しかる後のSi,Mnの調整およびNb等の合金成分の調整を容易にならしめ、極低Al濃度を実現するとともに、Ti添加によりTi濃度制御とTiO介在物の分散を両立する方法を確立し、本発明を完成するに至った。
上記の検討の結果得られた本発明は次のとおりである。
(1)質量%で、C:0.0005%以上0.025%以下、Si:0.003%以上0.15%以下、Mn:0.3%以上2.5%以下、P:0.15%以下、S:0.02%以下、N:0.006%以下、sol.Al:0.0002%以上0.005%以下、Ti:0.005%以上0.05%以下、Nb:0.020以上0.20%以下を含有し、残部Feおよび不純物からなるとともに、Nb含有量のTi含有量に対する質量比が2.0以上である化学組成を有し、介在物が下記式(1)から(3)を満たすことを特徴とする極低炭素鋼板。
Ti≧30個/mm (1)
Ti/(NTi+NAl)≧0.80 (2)
Ti/NTotal≧0.65 (3)
ここで、
Ti:圧延方向に平行な縦断面における長径1μm以上の介在物のうち、Ti酸化物を50%以上含有するものの平均数密度、
Al:圧延方向に平行な縦断面における長径1μm以上の介在物のうち、Al酸化物を50%以上含有するものの平均数密度、
Total:圧延方向に平行な縦断面における長径1μm以上の全酸化物系介在物の平均数密度
である。
(2)前記化学組成が、Feの一部に代えて、B:0.002%以下、Cu: 1.0%以下、Ni:1.0%以下、およびCr:1.0%以下からなる群から選ばれる1種または2種以上を含有する上記(1)記載の極低炭素鋼板。
(3)転炉精錬および真空精錬を経て行う上記(1)または(2)に記載される極低炭素鋼の精錬方法であって、前記真空精錬が、溶鋼を環流させる真空脱ガス装置を用い、脱炭精錬を行って溶鋼の炭素濃度を0.025質量%以下まで減少させた後、当該炭素濃度が0.025質量%以下の溶鋼にAl添加を行って、該溶鋼の溶存酸素濃度を0.003質量%以上0.018質量%以下に制御した後に、Tiを添加して、sol.Tiを0.004質量%以上0.04質量%以下とすることを特徴とする極低炭素鋼の精錬方法。
(4)前記の溶鋼の炭素濃度を0.025質量%以下まで減少させた後、前記の溶存酸素濃度の制御に先立って、当該炭素濃度が0.025質量%以下の溶鋼にAl添加と酸素ガス添加を行い、その反応熱によって当該溶鋼温度を上昇させる操作を行うことを特徴とする、上記(3)記載の極低炭素鋼の精錬方法。
(5)上記(3)または(4)に記載される精錬方法により得られた溶鋼を用いて製造されたことを特徴とする極低炭素鋼板の製造方法。
本発明に係る鋼板は、深絞り性を実現するために必要なTiO介在物と、大規模製鉄所の製鋼設備で製造する場合に不可避的に含有されるAl系介在物との存在比率が適切であるため、優れた深絞り性と高強度とを有しつつ、高い生産性を安定して実現しうる。
また、本発明に係る製造方法を採用すれば、生産効率向上の観点から大規模製鉄所で使用される場合が多い強攪拌型の精錬装置を用いても、上記の優れた深絞り性と高強度とを有する冷延鋼板を安定的に製造することが可能である。
以下に、本発明の最良の形態や製造条件の範囲およびこれらの設定理由について説明する。なお、本明細書において、化学組成を表す「%」は、特にことわりが無い限り「質量%」である。
1.化学組成
まず、本実施形態に係る鋼の化学組成について説明する。
C:0.0005%以上0.025%以下
炭素はTi等の炭化物形成元素と結合し、TiC、NbCまたはその複合炭窒化析出物を形成する。このため、C含有量を適正化することにより、これら析出物の体積分率を限定して鋼の成形性を高めることができる。すなわち、これら析出物による析出強化の効果および焼鈍時の固溶炭素、固溶窒素低減による深絞り性の向上効果をもたらす。
しかしながら、C含有量が0.0005%未満では充分な引張強度が得られない。また、溶鋼段階にあっては、炭素は溶鋼中に共存する酸素と反応し、反応物が減圧除去されることによって脱炭される。このため、C含有量を0.0005%未満とするためには長時間の真空処理が必要となり、経済的観点からも好ましくない。
一方、炭素含有量が0.025%を超えると耐力が上昇し伸びが低下して、成形性が劣化する。
したがって、C含有量を0.0005%以上0.025%以下とする。さらなる成形性、特にr値確保の観点からは、C含有量を0.010%以下とすることが好ましい。
Si:0.003%以上0.15%以下
Siは安価な固溶強化元素であり、低コストで鋼板の高強度化ができるので、強度向上を目的として含有させることができる。しかしながら、Siが有する脱酸力は低Al濃度域ではその影響が大きくなるため、Si濃度が0.15%を超えると、この脱酸力によってTiOの生成が阻害される。さらには、冷延鋼板の用途によっては溶融亜鉛めっきを施す場合があり、この場合にはSi含有量が0.15%を超えるとめっき品質に悪影響を及ぼす。したがって、Si含有量を0.15%以下とする。0.10%以下であればSi脱酸によるTiOの生成の阻害が実質的に生じないため好ましい。また、Siによる固溶強化を必要としない場合には0.03%以下とすることがさらに好ましい。
一方、Siは粗鋼の段階から含有されるものであり、含有量を低下させるためには所定の処理が必要となる。このため、Si含有量を過剰に低下させることは生産性の低下を招く。したがって、Si含有量を0.003%以上とする。
以上をまとめると、Si含有量は、0.003%以上0.15%以下、好ましくは0.003%以上0.10%以下、特に好ましくは0.003%以上0.03%以下である。
Mn:0.3%以上2.5%以下
Mnは固溶強化により鋼板の高強度化する作用を有するものの、Mn含有量が0.3%未満では目的とする高強度化が図れない場合がある。一方Mn含有量が2.5%を超えると耐力の上昇と伸びの劣化が顕著になり、加工時にしわや割れが生じやすくなる。このためMn含有量を0.3〜2.5%とする。高強度化の効果を確実に得る観点からはMn含有量を0.4%以上とすることが好ましく、成形性を維持する観点からはMn含有量を2.0%以下とすることが好ましい。
P:0.15%以下
Pはr値の低下を押さえながら、固溶強化によって鋼板を高強度化する有用な元素であり、強度向上を目的として含有させることができる。しかしながら、P含有量が過剰になると、粒界偏析による脆化が懸念される。また、冷延鋼板の表面に溶融亜鉛めっきを施す鋼種では合金化処理性が低下してめっき密着性が低下したり、めっき表面にP偏析に起因するすじ模様が現れたりするといった問題が生じる。したがってP含有量を0.15%以下とする。0.06%以下とすることが好ましい。下限については、高強度化を図り製造コストの上昇を抑制する観点から、0.03%以上とすることが好ましい。
S:0.02%以下
Sは不純物として鋼板中に存在するが、その含有量が過剰であると鋼板表面にスケール疵が生じやすくなり、外観を劣化させる場合がある。そのためS含有量を0.02%以下とする。0.01%以下とすることが好ましい。
N:0.006%以下
Nは過剰に含有すると、耐力が上昇したり、ストレッチャーストレインが発生したりして、加工時に鋼板の面歪みが発生しやすくなる。このためN含有量を0.006%以下とする。0.003%以下とすることが好ましい。
sol.Al:0.0002%以上0.005%以下
鋼中Alは、酸化物等の分析時に使用する酸に溶解しない形態と固溶あるいは窒化物等の酸に溶解する形態があり、一般にAl含有量は酸に可溶な量で表し、これをsol.Alで表記する。sol.Al含有量は溶鋼段階での溶解Al量と関連づけられるので、鋼の脱酸に強く影響する。
本実施の形態に係る鋼板ではTi脱酸によるTiO分散を必要とし、Alはこれを阻害するので、sol.Al含有量を0.005%以下とする。0.003%以下とすることが好ましい。
一方、後述するように、Al自体は溶鋼の製造工程で予備脱酸や温度調整に使用できるので、その含有量を0.0002%以上とする。0.0005%以上とすることが好ましい。
Ti:0.005%以上0.05%以下
鋼中Tiは溶鋼段階では脱酸するとともに、高r値を有する鋼板を得るために必要なTiO介在物を生成させる機能を有する重要な元素である。またその一部はTiNとして析出することにより、Nによるストッレッチャーストレインや耐力上昇を抑制して加工時の面歪みを抑制する。そのためTi含有量を0.005%以上とする。
一方0.05%を超えてTiを含有させると、TiCの析出量が増加して伸びを劣化させ、加工時に面歪みや割れが生じるようになる。また溶融亜鉛めっきを施した冷延鋼板とする場合には、めっき表面にすじ模様を呈するといった問題も生じる。したがってTi含有量を0.05%以下とする。なおTiは比較的高価な元素で製造コストに影響するから、r値維持の観点や加工時の面歪みの発生防止の観点で許容される場合には、その含有量を0.025%以下とすることが好ましい。
Nb:0.020以上0.20%以下
Nbは鋼中にあってCと結合しNbCの析出物を生成し、鋼板の機械特性を向上させる。特に45°方向のr値が大きくなる。この効果を得るためには0.020%以上を必要とする。Nb含有量が0.020%未満であるとNbCの析出量が不足して固溶Cの固定ができず、引張強度を安定して得ることが困難になる場合がある。より安定した効果を得るためには0.040%以上とすることが好ましい。
一方、Nb含有量が0.20%を超えるとC対してNbが過剰な量となり、かえって耐力が上昇し伸びが低下する。したがって、Nb含有量の上限を0.20%とする。
Nb含有量のTi含有量に対する質量比:2.0以上
本実施の形態に係る鋼板では、高r値を得るためのTiとNbの複合添加によるC,Nの固定を、TiOを介在させて行う。したがって、45°方向の高r値化を確実にするためにNb含有量のTi含有量に対する質量比(以下、「(Nb/Ti)比」ともいう。)は2.0以上必要である。一方、上限は特に規定しないが、TiおよびNbの含有量からは(Nb/Ti)比は40以下であり、(Nb/Ti)比が過剰に高いと再結晶温度が上昇し、高温での焼鈍が必要となるため、20以下が好ましい。
本実施形態に係る鋼板は次の元素を鉄の一部に換えて任意成分として含んでもよい。
B:0.002%以下
Bは二次加工脆化を防止する作用を有するので含有させることが好ましい。B含有量が0.0001%未満ではこの効果が小さく、0.002%を超えるとr値が顕著に低下する。このためB含有量を0.002%以下とする。0.0003〜0.001%とすれば、B添加の効果を効率的に享受することができる。
Cu:1.0%以下、Ni:1.0%以下、Cr:1.0%以下
Cu、Ni、Crは強度確保のために添加してもよい。過剰に添加しても効果は飽和するため、製造費用の観点から、いずれの元素についても上限を1.0%とする。
2.介在物
(1)介在物の特徴
本実施形態に係る鋼板は、上記の化学組成上の特徴に加え、鋼板の圧延方向に平行な縦断面(以下「圧延方向断面」という。)で観察される、長径が1μm以上の介在物について、次の特徴を有する。
(ア)Ti酸化物をTiO換算で50質量%以上含有する第一の介在物の平均数密度NTiが30個/mm以上である(下記式(1))。
Ti≧30個/mm (1)
ここで、「平均数密度」とは、断面観察で観測される所定の介在物の1mmあたりの個数の平均値であり、単位は個/mmである。
(イ)Al酸化物をAl換算で50質量%以上含有する第二の介在物の前記断面での平均数密度NAlと前記NTiとが下記(2)式を満たす。
Ti/(NTi+NAl)≧0.80 (2)
(ウ)全酸化物系介在物の前記断面での平均数密度NTotalと前記NTiとが下記(3)式を満たす。
Ti/NTotal≧0.65 (3)
なお、以下の説明では、(3)式に係る介在物個数比率NTi/(NTi+NAl)をα、(3)式に係る介在物個数比率NTi/NTotalをβとも記す。
本実施形態に係る鋼板は、Ti脱酸によって生じるTiOを主要成分とする介在物が、高r値を発現するために必要である。
ここで、「TiO」とは前述のように鋼中のTi酸化物の総称である。ただし、濃度を求める場合にはTiOで換算して計算する。
また、「TiOを主要成分とする介在物」とは、TiOを含む介在物には、TiOのほかTiおよび/またはNbの炭化物および/または窒化物も含むため、TiOをTiO換算で50質量%以上含むものをいう。
(2)TiOを主要成分とする介在物の平均数密度
本実施形態に係る冷延鋼材は、第一の介在物(圧延方向縦断面で観察されるTiOを主要成分とする介在物のうち、圧延方向に伸展した長さ1μm以上のもの)が、平均数密度として30個/mm以上存在することが必要であり、60個/mm以上であることが好ましい。平均数密度が30個/mm未満では、Nb、Tiの炭窒化物が複合析出するサイトとして不十分な数密度であり、鋼板での高r値化に与える影響が小さくなる。上限は高r値化の観点では特に設定する必要はないが、冷間圧延鋼板の表面性状の観点からは1000個/mm以下とすることが好ましい。
(3)鋼中介在物量とr値との関係評価実験
ところで、大量生産工程で本鋼を製造する場合には、TiO以外の介在物が様々な要因で鋼中に含有されうる。具体的には、大量生産工程では溶鋼を保持する耐火物や雰囲気との遮断に使用する耐火材、副原料中にAlおよびAlが含まれている。また、脱炭のために0.03〜0.08%程度含まれる鋼中酸素を部分的に除去するにあたって、安価で迅速に作用することからAlが添加される場合が多い。さらには、溶鋼の温度を制御する目的で、その酸化熱を用いるべくAlが添加される場合もある。このように、大量生産工程での製造過程では溶鋼へのAl混入は避けがたく、結果的にAlを主要成分とする介在物が不可避的に存在する。ここで「Alを主要成分とする介在物」とは、Al含有量が50%以上を含むものであって、残部はTiO、MnO、MgO等である。
介在物組成および量の測定方法については特に限定はされないが、以下のような方法が例示できる。
本発明における測定対象となる介在物は脱酸反応によって生じるもので、耐火物剥離等で含有されるマクロ介在物とは異なるものである。観察される介在物の多くは円相当の大きさでも数μmないし数十μm程度にとどまる。形状は塊状ないしその角がとれたような孤立形状で、鋳片での介在物分布を熱間圧延および冷間圧延ででも受け継ぐことになる。すなわち、前述のマクロ介在物やAl脱酸時にしばしば観察される群落状介在物のように、熱間圧延および冷間圧延で破砕されて圧延長手方向に点列状で並ぶことや、熱間圧延温度域で組成変形して同方向に伸展された介在物になることはほとんどない。このような熱間圧延および冷間圧延での鋼の組成変形の影響を受けがたい塊状介在物の評価は、鋳造段階の溶鋼採取試料、鋳片、熱間圧延鋼板、冷間圧延鋼板のいずれであっても本質的な差が生じにくい。
試料の取り扱いの容易さからは、熱間圧延鋼板および冷間圧延鋼板が好適であり、介在物の観察の容易さからは熱間圧延鋼板での測定が良い。
その方法を以下に示す。試料の採取は、4.0mm程度に熱間圧延された鋼帯の幅中央から板に対して垂直な圧延方向断面が観察できるよう、長さ10ないし20mm程度とする。観察面積、いわいる被顕面積は任意でよいが、測定誤差を考慮すれば観察対象となる介在物が数十個ないし百数十個程度以上測定できる面積が適当であり、そのためには数mm程度を要する。冷間圧延鋼板で介在物を観察する場合でも、同様に鋼帯の幅中央から板に対して垂直な圧延方向断面が観察できるように長さ10ないし20mm程度とする。上記の数mmの被顕面積を要する場合には、それを複数位置から採取すればよい。
こうして得られた試験片の圧延方向縦断面を観察面として、この面に露出する介在物を観測する。その際、走査型電子顕微鏡(SEM)を用いて形状評価を行って、圧延方向に沿って僅かに伸展した長さ1μm以上の介在物を計測対象とする。また、SEMに付属するエネルギー分散型X線マイクロアナライザ(EDS)を用いて第一の介在物と第二の介在物とを区別しながら個数計測を行う。さらにSEMとEDSとを用いて、全酸化物系介在物個数についても個数計測を行う。
そこで、Alを主要成分とする介在物を含めた鋼中介在物量と冷延鋼板のr値との関係を明確にするために、以下の実験を行った。その結果、上記の第二の介在物(第一の介在物と同様の形状的特徴、すなわち、圧延方向縦断面で観察したときに圧延方向に伸展した長さ1μm以上、を有するAlを主要成分とするAl酸化物)および全酸化物系介在物と第一の介在物との間に上記(1)式、および(2)式の関係を満たすときに、優れたr値を有する鋼板が得られることが明らかになった。以下に詳しく説明する。
まず、雰囲気調整が可能な30kg誘導加熱炉にて、C0.001〜0.002%、Si:0.005〜0.03%、Mn:0.40〜0.48%、P:0.045〜0.055%、S:0.004〜0.006%、Sol.Al:0.0005〜0.0014%、Ti:0.010〜0.015%、Nb:0.040〜0.060%を含有する鋼を作製した。このとき、(Nb/Ti)比は3.0〜4.5の範囲にあった。
この際、酸素濃度が高い状態でAl系介在物が懸濁し、かつsol.Al濃度を低値な状態になる程度のAlを添加して、その後所望のTi濃度になるようTiを添加して直ちに鋳造した。このようにして、上記成分を含有し、かつTiO系介在物およびAl系介在物を含む母材を作製した。
この母材は1250℃で加熱後、920℃仕上げで熱間圧延に相当する鍛造を行って4.0mm厚の熱延鋼板を作製し、さらにこれを冷間圧延および焼鈍を行い、0.7mm厚の冷延鋼板とした。この冷延鋼板から圧延方向に対して45度の方向をなすJIS5号試験片を採取して引張試験を行い、r値を測定した。以下、この圧延方向に対して45度方向のr値をr45値ともいう。
介在物個数の計測のために、次のようにしてサンプル調製を行った。厚さ0.7mm鋼板について、圧延方向縦断面が得られるように幅方向中心部で切断し、さらに圧延方向の長さが約10mmになるように切断して、圧延方向縦断面の面積が約7.0mmとなる試験片を作製した。
こうして得られた試験片の圧延方向縦断面を観察面として、この面に露出する介在物を、SEMとSEMに付属するEDSを用いて第一の介在物と第二の介在物とを区別しながら個数計測を行った。さらにSEMとEDSとを用いて、全酸化物系介在物個数についても個数計測を行った。
こうして行った個数計測の結果に基づいて第一の介在物、第二の介在物、および全酸化物系介在物の平均数密度を求め、さらにこれらに基づいて介在物個数比率αおよびβを求めた。こうして得た介在物個数比率と別途準備し測定したJIS5号試験片のr45値との関係を評価した。なお、上記の評価に用いた鋼板は、TiOの介在物個数がいずれも30個/mm以上であった。
(4)介在物個数比率α
まず、介在物個数比率αがr45値に及ぼす影響を図1に示す。図に示すように、r45値は、介在物個数比率αの影響を受け、αが0.80以上でr45値が2.0を超える値になっていることがわかる。すなわち,TiO系介在物はAl系介在物よりもr45値向上効果が高く、その介在物個数比率αを80%以上とすることで、極めて良好な深絞り性を得ることができる。また、介在物個数比率αが82%以上であれば、極めて良好な深絞り性を安定的に得ることができる。
(5)介在物個数比率β
次に、介在物個数比率βがr45値に及ぼす影響を図2に示す。図に示すように、r45値は、介在物個数比率の影響を受け、βが0.65以上でr45値が2.0を超える値になっていることがわかる。また、介在物個数比率βが0.8以上であれば、2.0を超えるr45値を安定的に有することができる。
3.製造方法
(1)精錬工程
(ア)大量製造プロセスを前提とした検討
次に、そのような鋼の製造方法を、大量製造プロセスを前提として検討を行った。
大規模製鉄所における極低炭素鋼は、前述のように転炉など製鋼炉で炭素を除く粗脱炭を行い、炭素濃度が0.04質量%から0.07質量%を含む低炭素溶鋼として、未脱酸のまま取鍋などの容器に出鋼する。出鋼された溶鋼は、さらにRH装置等の真空脱ガス装置に搬送されて真空脱炭処理が行われ、炭素濃度を0.025質量%以下含有する極低炭素溶鋼となる。この際の脱炭反応には溶鋼に炭素と反応する酸素を含有していることが必要であり、その酸素濃度は0.03質量%から0.08質量%程度含まれている。
このとき大量製造プロセスでは、不可避的にAl系介在物が生成する。その第1の理由は、鋼中Alおよび周囲のAl源の存在である。すなわち、FeSi等の合金鉄中に含まれる金属Al分、取鍋スラグに含有されるAl分、そして前の溶鋼処理から持ち来された取鍋内壁に付着したAl源、および前の溶鋼処理から持ち来された真空脱ガス装置内部に付着したAl源である。その第二の理由は、真空脱炭処理の間に生じる溶鋼の温度低下を補償するために、溶鋼の加熱処理によって生成するAl源である。つまりこの加熱処理は、Al等の金属と酸素ガスとの酸化反応による溶鋼加熱により、不可避に生じる多量のAl系介在物である。その第三の理由は、脱炭処理後の溶鋼に残存する溶鋼中酸素濃度の迅速な除去のためのAl添加であり、結果として多量のAl系介在物懸濁が不可避である。
すなわち大量製造を想定した場合、溶鋼中でのAl系介在物の懸濁は、これらAl介在物源の存在から不可避であり、Ti添加によるTi脱酸前にこのような状態を回避するための方法の着想が必要となった。
(イ)介在物中の平均Al濃度の溶存酸素濃度依存性
そこで、Ti添加前、高い溶存酸素を含有する溶鋼をAl系酸化物共存下で、精練工程に相当する時間、1873K程度の製鋼温度で保持し、保持後の溶鋼試料をボンブにて採取して含まれる介在物をSEMおよびEDSで調査した。その結果、溶鋼中のMn濃度やSi濃度にもよって含有量は変化するものの、(Mn、Fe)AlO相および/またはMnO−SiO−Al相が認められた。
この(Mn、Fe)AlO相および/またはMnO−SiO−Al相が懸濁した状態でTiを添加した後、溶鋼試料を採取し含まれる介在物を調査したところ、Ti酸化物の介在物が観測され、添加したTiがTiOに変化していることが確認された。
一方、先の(Mn、Fe)AlO相および/またはMnO−SiO−Al相が懸濁した状態から、さらにAlを添加して一旦Alを懸濁させた後に、Tiを添加し、溶鋼試料を採取して含まれる介在物を調査したところ、Alを40%以上含むAl系介在物にTiOやMgOが含まれた介在物が多くなった。
以上の基礎的な評価に基づいて、未脱酸溶鋼またはAl脱酸溶鋼、およびそれを処理するRH脱ガス装置を用いて、溶鋼環流処理における溶鋼成分、酸素活量および非金属介在物組成の関係を調査した。溶鋼には、Siが0.01〜0.04%、Mnが1.10〜1.40%、sol.Alが0.0005〜0.005%を含む鋼を用い、酸素活量の測定には固体電解質による酸素濃淡電池を原理とする酸素センサーを用いた。溶鋼は鉄製のボンブ試料で汲み上げ採取し、試料を鏡面研磨した後、その断面に観察される非金属介在物の平均組成をSEMおよびEDSで調査した。その結果を図3に示す。
図3に示すように、溶存酸素が酸素濃度換算で0.003%以上であれば、介在物の平均Al濃度は80%以下となり、Alを含む介在物中の組成がMnO−Al系およびSiO−MnO−Al系介在物に変化する。溶存酸素が酸素濃度換算で0.0085%以上であれば介在物中の平均Al濃度は60%以下となり、さらに確実にTiO系介在物を生成することができ、好ましい。なお、上限は、脱酸に要するTi添加量が増加して脱酸後の清浄度も悪化することから酸素濃度換算で0.018%以下とする。
(ウ)介在物中の平均Al濃度とTi添加後の介在物中TiO濃度との関係
次に、Ti添加前の介在物中の平均Al濃度とTi添加後の介在物中TiO濃度との関係を図4に示す。図に示すように、Ti添加前の介在物中の平均Al濃度が80%以下になると、TiO系介在物の生成比率が高まる。さらに60%以下になると残存Al濃度の高い介在物は認められなくなり、より確実にTiO系介在物を生成させることが可能となるため好ましい。
(エ)介在物中の平均TiO濃度とsol.Ti濃度との関係
鋼中の酸可溶性Ti濃度、すなわちsol.Ti濃度について説明する。通常のTi分析で得られるTi濃度(以下「全Ti濃度」ともいう。)には酸化物として含まれるTiも含まれる。一般にAl脱酸鋼であれば、Tiが酸化物として含まれる量は無視しうる量であるので、全Ti濃度とsol.Ti濃度はほぼ等量である。しかしながら、本発明に係る鋼は、基本的にはTi脱酸鋼であるから、Ti酸化物が多量の存在することになり、酸化物以外の溶存Ti濃度と関連づけられるsol.Ti濃度の限定は重要である。すなわち、介在物中の平均TiO濃度が確実に80%以上を得るためには、sol.Tiは0.004%以上必要である。より望ましくはsol.Tiは0.006%以上含まれるとよい。
(2)その他の工程
上記の精錬工程を経ることで、酸化物系介在物の量およびその組成のバランスが高度に制御された鋼を得ることが実現される。したがって、その鋼片を素材として冷延鋼板を製造する工程は公知のものを適宜採用すればよい。その一例を示すと次のようになる。
上記の真空精錬工程を経て化学組成の調整がなされた溶鋼を、連続鋳造して所定の長さの鋼片とする。この鋼片を必要に応じて加熱して所定の温度として、粗熱間圧延工程に供する。粗熱間圧延することで得られた粗鋼板に対して、所定の温度管理を行いつつ仕上熱間圧延を行い、得られた鋼板を冷却して巻き取る。この鋼板に対して冷間圧延を行って冷延鋼板を得る。この冷延鋼板には必要に応じて焼鈍処理を施してもよい。なお前述のように、本発明における酸化物系介在物は比較的硬質な塊状であるから、これらの圧延工程で破砕されたり伸展されたりすることが少なく、その鋼板中の平均数密度は、この圧延の圧延条件によって原理的には影響を受けないため、その圧延条件は特に制限されない。
以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
1.実施例1
(1)鋼板の準備
溶鋼290tonを転炉で脱炭精錬し、その未脱酸溶鋼を収容した取鍋をRH装置へ移送し、RH装置で真空脱炭処理を行った。RH装置にて真空脱炭が終了した後、未脱酸溶鋼の予備脱酸と溶鋼の昇温操作を兼ねて金属Alを添加した。Al添加後に真空槽内の溶鋼に酸素を38Nm/minで供給して適宜酸化反応による溶鋼への熱付与を実施した。その後溶鋼に酸素濃度が含有される状態で既に含有されている濃度を勘案してTi以外の各種合金を添加調整し、最後にTiを添加調整し表1に示される化学組成になるように調整した。
Figure 0005071027
これらの精錬実施後、溶鋼を収容した取鍋を連続鋳造機に搬送し、幅960mm〜1200mm、厚さ250mmのスラブ形状の鋳片を得た。さらにこのスラブを常法にて1250℃で加熱し、引き続いて920℃仕上げで板厚3.2mmまで熱間圧延を行った。熱間圧延された鋼板について冷間圧延および焼鈍を実施し、厚さ0.7mmの鋼板を得た。
(2)評価
この鋼板の先端部および後端部を切断して除外し、除外後の鋼板を、幅方向の中心線を含むように、圧延方向かつ厚み方向に切断した。続いて、この断面を観察できるように、圧延方向の長さが10mmの観察用試験片を切り出した。
これらの観察用試験片について、SEM/EDSを用いて酸化物系介在物の観察および分析を行って、介在物個数比率αおよびβを求めた。
この0.7mm鋼板から圧延方向に対して45度傾斜した方向を長手方向とするJIS5号試験片を採取して引張試験を行い、45度方向のr値(r45値)を測定した。
(3)結果
表2に介在物個数比率αおよびβとr45値とを示した。介在物個数比率αが0.80以上であって、かつ、介在物個数比率βが0.65以上を満たす場合に、r45値は2.0以上となることが確認された。
Figure 0005071027
2.実施例2
実施例1と同じ溶鋼290tonを転炉で脱炭精錬し、その未脱酸溶鋼を収容した取鍋をRH装置へ移送し、RH装置で真空脱炭処理を行った。RH装置にて真空脱炭が終了した後、未脱酸溶鋼の予備脱酸と溶鋼の昇温操作を兼ねて金属Alを添加した。Al添加後に真空槽内の溶鋼に酸素を38Nm/minで供給して適宜酸化反応による溶鋼への熱付与を実施した。その後、溶鋼になお酸素濃度が含有される状態で安定化ジルコニア固体電解質による酸素濃淡電池を原理とする酸素濃度センサーにより酸素濃度を測定した。溶鋼に酸素濃度が含有される状態で既に含有されている濃度を勘案してTi以外の各種合金を添加調整し、さらにTiを添加調整した。調整後の溶鋼の組成は表3のとおりである。これらの処理後溶鋼中のsol.Ti濃度を調査するために、鉄製ボンブにて試料を汲み上げ採取した。また、このボンブ試料の断面を鏡面研磨して、EDSを装備したSEMにて組成別の介在物個数を調べた。
その結果を表4に示す。実施例2−1および2−2は、溶存酸素濃度を0.007%から0.02%の範囲にあって、その後のTi添加によりsol.Ti濃度を0.004%〜0.04%の範囲にすることにより、TiO酸化物量に関連する比率α、βとも所望の範囲に制御できていることがわかる。
Figure 0005071027
Figure 0005071027
一方、比較例2−3および2−4は、溶存酸素濃度が規定の範囲から外れた場合であり、比較例2−5および2−6は、溶存酸素濃度は規定の範囲にあるがその後の[sol.Ti]濃度が特許請求の範囲から外れた場合である。いずれの場合も、TiO酸化物量に関連する比率α、β、あるいは製品Ti濃度が特許請求範囲を外れており、制御性に劣ることがわかる。
介在物個数比率αとr45値との関係を示すグラフである。 介在物個数比率βとr45値との関係を示すグラフである。 溶鋼中溶存酸素と介在物中Al濃度の関係を示すグラフである。 Ti添加前の介在物中Al濃度とTi添加後の介在物中TiO濃度の関係を示すグラフである。

Claims (5)

  1. 質量%で、
    C:0.0005%以上0.025%以下、
    Si:0.003%以上0.15%以下、
    Mn:0.3%以上2.5%以下、
    P:0.15%以下、
    S:0.02%以下、
    N:0.006%以下、
    sol.Al:0.0002%以上0.005%以下、
    Ti:0.005%以上0.05%以下、
    Nb:0.020以上0.20%以下
    を含有し、残部Feおよび不純物からなるとともに、Nb含有量のTi含有量に対する質量比が2.0以上である化学組成を有し、
    介在物が下記式(1)から(3)を満たすことを特徴とする極低炭素鋼板。
    Ti≧30個/mm (1)
    Ti/(NTi+NAl)≧0.80 (2)
    Ti/NTotal≧0.65 (3)
    ここで、
    Ti:圧延方向に平行な縦断面における長径1μm以上の介在物のうち、Ti酸化物を50%以上含有するものの平均数密度、
    Al:圧延方向に平行な縦断面における長径1μm以上の介在物のうち、Al酸化物を50%以上含有するものの平均数密度、
    Total:圧延方向に平行な縦断面における長径1μm以上の全酸化物系介在物の平均数密度
    である。
  2. 前記化学組成が、Feの一部に代えて、B:0.002%以下、Cu: 1.0%以下、Ni:1.0%以下、およびCr:1.0%以下からなる群から選ばれる1種または2種以上を含有する請求項1記載の極低炭素鋼板。
  3. 転炉精錬および真空精錬を経て行う請求項1または2に記載される極低炭素鋼の精錬方法であって、
    前記真空精錬が、
    溶鋼を環流させる真空脱ガス装置を用い、脱炭精錬を行って溶鋼の炭素濃度を0.025質量%以下まで減少させた後、
    当該炭素濃度が0.025質量%以下の溶鋼にAl添加を行って、該溶鋼の溶存酸素濃度を0.003質量%以上0.018質量%以下に制御した後に、
    Tiを添加して、sol.Tiを0.004質量%以上0.04質量%以下とする
    ことを特徴とする極低炭素鋼の精錬方法。
  4. 前記の溶鋼の炭素濃度を0.025質量%以下まで減少させた後、前記の溶存酸素濃度の制御に先立って、
    当該炭素濃度が0.025質量%以下の溶鋼にAl添加と酸素ガス添加を行い、その反応熱によって当該溶鋼温度を上昇させる操作を行うことを特徴とする、
    請求項3記載の極低炭素鋼の精錬方法。
  5. 請求項3または4に記載される精錬方法により得られた溶鋼を用いて製造されたことを特徴とする極低炭素鋼板の製造方法。
JP2007263481A 2007-03-05 2007-10-09 極低炭素鋼板、極低炭素鋼の精錬方法、および極低炭素鋼板の製造方法 Active JP5071027B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007263481A JP5071027B2 (ja) 2007-10-09 2007-10-09 極低炭素鋼板、極低炭素鋼の精錬方法、および極低炭素鋼板の製造方法
CN201510091526.XA CN104775071A (zh) 2007-03-05 2008-03-04 冷轧钢板和合金化熔融镀锌钢板以及它们的制造方法
PCT/JP2008/053843 WO2008108363A1 (ja) 2007-03-05 2008-03-04 冷間圧延鋼板および合金化溶融亜鉛めっき鋼板ならびにそれらの製造方法
CN200880014831A CN101675177A (zh) 2007-03-05 2008-03-04 冷轧钢板和合金化熔融镀锌钢板以及它们的制造方法
US12/554,365 US9340860B2 (en) 2007-03-05 2009-09-04 Cold-rolled steel sheet and galvannealed steel sheet
US15/047,990 US9771638B2 (en) 2007-03-05 2016-02-19 Cold-rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007263481A JP5071027B2 (ja) 2007-10-09 2007-10-09 極低炭素鋼板、極低炭素鋼の精錬方法、および極低炭素鋼板の製造方法

Publications (2)

Publication Number Publication Date
JP2009091623A JP2009091623A (ja) 2009-04-30
JP5071027B2 true JP5071027B2 (ja) 2012-11-14

Family

ID=40663897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007263481A Active JP5071027B2 (ja) 2007-03-05 2007-10-09 極低炭素鋼板、極低炭素鋼の精錬方法、および極低炭素鋼板の製造方法

Country Status (1)

Country Link
JP (1) JP5071027B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3855678B2 (ja) * 2000-04-28 2006-12-13 住友金属工業株式会社 耐常温時効性、加工性、塗装焼付硬化性に優れた薄鋼板の製造方法
JP4280078B2 (ja) * 2003-01-24 2009-06-17 新日本製鐵株式会社 深絞り性に優れた高強度冷延鋼板及びめっき鋼板、加工性に優れた鋼管、並びに、それらの製造方法
JP4072090B2 (ja) * 2003-04-16 2008-04-02 新日本製鐵株式会社 伸びフランジ成形性に優れた高強度鋼板およびその製造方法
JP4398801B2 (ja) * 2004-06-16 2010-01-13 新日本製鐵株式会社 深絞り性に優れた冷延鋼板及びその製造方法
JP4725366B2 (ja) * 2006-03-01 2011-07-13 住友金属工業株式会社 冷延鋼板および溶融亜鉛めっき鋼板ならびにそれらの製造方法

Also Published As

Publication number Publication date
JP2009091623A (ja) 2009-04-30

Similar Documents

Publication Publication Date Title
US9771638B2 (en) Cold-rolled steel sheet
KR100437931B1 (ko) 극저탄소박강판 및 그 제조 방법
JP6229640B2 (ja) 継目無鋼管およびその製造方法
CN113684413B (zh) 一种深冲内胆用冷轧搪瓷钢及其制造方法
JP5549307B2 (ja) 時効性および焼付け硬化性に優れた冷延鋼板およびその製造方法
JP6115691B1 (ja) 鋼板およびほうろう製品
JP6196453B2 (ja) 耐スケール剥離性に優れたフェライト系ステンレス鋼板及びその製造方法
JP6037882B2 (ja) 耐スケール剥離性に優れたフェライト系ステンレス鋼板及びその製造方法
EP4206345A1 (en) Electric resistance welded steel pipe and method for manufacturing same
JP2002363694A (ja) 曲げ加工性に優れた超高強度冷延鋼板
JP2004156116A (ja) 薄鋼板および薄鋼板用溶鋼の脱酸方法
JP4525813B2 (ja) 溶融亜鉛めっき鋼板およびその製造方法
JP4998365B2 (ja) 極低炭素鋼板およびその製造方法
JP5071027B2 (ja) 極低炭素鋼板、極低炭素鋼の精錬方法、および極低炭素鋼板の製造方法
KR101169510B1 (ko) 냉간 압연 강판 및 합금화 용융 아연 도금 강판 및 그들의 제조 방법
JP7009666B1 (ja) 加工性、耐食性に優れる溶接管用Ni-Cr-Mo系合金
JP5239652B2 (ja) 高張力冷延鋼板
JPH05302112A (ja) マグネシウム脱酸による薄鋼板の溶製方法
JP3622497B2 (ja) 表面性状に優れた鋼板の製造方法
JP2011202274A (ja) 鋼板および溶融亜鉛めっき鋼板ならびにそれらの製造方法
JP4525814B2 (ja) 溶融亜鉛めっき鋼板およびその製造方法
JP6234871B2 (ja) 表面疵の少ない鋼材の製造方法
JP5092908B2 (ja) 耐二次加工脆性に優れた高強度薄鋼板およびその製造方法
JP4525815B2 (ja) 溶融亜鉛めっき鋼板およびその製造方法
JP2000248344A (ja) 磁気特性に優れた無方向性電磁鋼板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

R150 Certificate of patent or registration of utility model

Ref document number: 5071027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350