WO2021186939A1 - セラミックグリーンシート製造工程用剥離フィルム - Google Patents

セラミックグリーンシート製造工程用剥離フィルム Download PDF

Info

Publication number
WO2021186939A1
WO2021186939A1 PCT/JP2021/004157 JP2021004157W WO2021186939A1 WO 2021186939 A1 WO2021186939 A1 WO 2021186939A1 JP 2021004157 W JP2021004157 W JP 2021004157W WO 2021186939 A1 WO2021186939 A1 WO 2021186939A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic green
green sheet
release film
epoxy resin
release agent
Prior art date
Application number
PCT/JP2021/004157
Other languages
English (en)
French (fr)
Inventor
矢野 宏和
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2022508122A priority Critical patent/JPWO2021186939A1/ja
Publication of WO2021186939A1 publication Critical patent/WO2021186939A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08L61/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08L61/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • the present invention relates to a release film used in the process of manufacturing a ceramic green sheet.
  • a ceramic green sheet is molded, and a plurality of obtained ceramic green sheets are laminated and fired.
  • the ceramic green sheet is formed by applying a ceramic slurry containing a ceramic material such as barium titanate or titanium oxide onto a release film.
  • the release film is required to have a release property that allows the release film to be released from a thin ceramic green sheet formed on the release film with an appropriate release force without causing cracks, breakage, or the like.
  • Patent Document 1 includes a base material and a release agent layer provided on one side of the base material, and the release agent layer contains a melamine resin and polyorganosiloxane.
  • a release film obtained by curing the release agent composition contained therein is disclosed.
  • An object of the present invention is to provide a release film for a ceramic green sheet manufacturing process capable of manufacturing a ceramic green sheet having a high adhesive force between the ceramic green sheets during the ceramic green sheet laminating process.
  • the present invention is a release film for a ceramic green sheet manufacturing process including a base material and a release agent layer provided on one side of the base material, and the release is described.
  • a release film for a ceramic green sheet manufacturing process wherein the agent layer is formed of a release agent composition containing a melamine resin, an epoxy resin, and a polyorganosiloxane (Invention 1).
  • a ceramic produced by using the release film by forming the release agent layer from a release agent composition containing a melamine resin, an epoxy resin, and a polyorganosiloxane It is possible to increase the adhesive force between the ceramic green sheets during the process of laminating the green sheets.
  • the mass ratio of the content of the melamine resin to the content of the epoxy resin in the release agent composition is preferably 99: 1 to 30:70 (Invention 2).
  • the polyorganosiloxane has at least one hydroxyl group in one molecule (Invention 3).
  • the weight average molecular weight of the polyorganosiloxane is preferably 500 or more and 10000 or less (Invention 4).
  • the content of the polyorganosiloxane in the release agent composition is 100 parts by mass, which is the total value of the content of the melamine resin and the content of the epoxy resin. It is preferably 1 part by mass or more and 50 parts by mass or less (Invention 5).
  • the melamine resin is the following general formula (a).
  • X represents -H, -CH 2- OH, or -CH 2 -OR, which may be the same or different.
  • R has 1 to 8 carbon atoms. It represents an alkyl group, which may be the same or different; at least one X is -CH 2- OH, or -CH 2 -OR.
  • the weight average molecular weight of the melamine resin is preferably 100 or more and 1000 or less (Invention 7).
  • the release agent composition contains a catalyst (Invention 8).
  • the release film for the ceramic green sheet manufacturing process it is possible to manufacture a ceramic green sheet having a high adhesive force between the ceramic green sheets during the laminating process of the ceramic green sheets.
  • the release film for the ceramic green sheet manufacturing process according to the present embodiment (hereinafter, may be simply referred to as “release film”) includes a base material and a release agent layer provided on one side of the base material. Will be done.
  • the release agent layer may be laminated directly on one side of the base material, or may be laminated on one side of the base material via another layer.
  • Base material The base material in the present embodiment is not particularly limited as long as the release agent layer can be laminated.
  • Examples of such a base material include a film made of polyester such as polyethylene terephthalate and polyethylene naphthalate, polyolefin such as polypropylene and polymethylpentene, and plastic such as polycarbonate and polyvinyl acetate, and may be a single layer. , Two or more layers of the same type or different types may be used.
  • a polyester film is preferable, a polyethylene terephthalate film is particularly preferable, and a biaxially stretched polyethylene terephthalate film is further preferable.
  • the polyethylene terephthalate film Since the polyethylene terephthalate film has high mechanical strength and excellent solvent resistance, stable productivity can be achieved regardless of the scale during processing, use, and the like. Further, by applying an antistatic treatment to the polyethylene terephthalate film, it is possible to prevent ignition due to static electricity when coating a ceramic slurry using an organic solvent, and to enhance the effect of preventing poor coating.
  • the above base material may contain a filler. Further, when the base material is multi-layered, the filler may be contained in at least one surface side layer.
  • one side or both sides thereof may be subjected to surface treatment or primer treatment by an oxidation method, an unevenness method or the like, if desired.
  • the oxidation method include corona discharge treatment, plasma discharge treatment, chromium oxidation treatment (wet), flame treatment, hot air treatment, ozone, and ultraviolet irradiation treatment
  • the unevenness method include sandblasting and sandblasting.
  • Examples include a thermal spraying method.
  • the thickness of the base material is preferably 10 ⁇ m or more, particularly preferably 15 ⁇ m or more, and further preferably 20 ⁇ m or more.
  • the thickness of the base material is preferably 300 ⁇ m or less, particularly preferably 200 ⁇ m or less, and further preferably 125 ⁇ m or less.
  • the release agent layer in the present embodiment is formed from a release agent composition containing a melamine resin, an epoxy resin, and a polyorganosiloxane.
  • the release agent layer is formed from a release agent composition containing a melamine resin, an epoxy resin, and a polyorganosiloxane, and is produced by using the release agent composition. It is possible to enhance the adhesive force between the ceramic green sheets in the laminating process of the ceramic green sheets.
  • the release agent composition for forming the release agent layer contains polyorganosiloxane, the surface free energy on the release surface of the release agent layer is appropriately reduced. Furthermore, since the release agent composition contains a melamine resin and an epoxy resin, the release agent composition can be sufficiently cured by heating (and the presence of a catalyst), and the release agent layer formed has sufficient elasticity. It becomes a thing. As a result, the peeling force when the peeling film is peeled from the ceramic green sheet formed on the peeling surface of the peeling film is appropriately reduced, and good peelability is achieved.
  • the "melamine resin” means a mixture containing a plurality of types of melamine compounds and / or a polynuclear compound formed by condensing the melamine compounds.
  • the phrase “melamine resin” is meant to mean the above mixture or an aggregate of one melamine compound.
  • a cured product of the melamine resin is referred to as a "cured melamine product”.
  • epoxy resin in the present specification means a compound having one or more epoxy groups in the molecule, and includes those which are polymers and those which are not polymers.
  • the melamine resin is not particularly limited as long as it can form a cured melamine product.
  • the melamine resin preferably contains a compound represented by the following general formula (a).
  • X represents -H, -CH 2- OH, or -CH 2 -OR.
  • These groups constitute reactive groups in the condensation reaction between melamine compounds and the hydroxyl group of polyorganosiloxane or the hydroxyl group generated by opening the epoxy group of the epoxy resin.
  • the -NH group formed when X becomes H can carry out a condensation reaction with the -N-CH 2- OH group and the -N-CH 2-R group.
  • both the -N-CH 2- OH group formed when X becomes -CH 2- OH and the -N-CH 2- R group formed when X becomes -CH 2- R are both.
  • -NH group, -N-CH 2- OH group and -N-CH 2- R group can be subjected to a condensation reaction.
  • the groups represented by -CH 2- OH and -CH 2 -OR are condensation reactions between the hydroxyl group of the polyorganosiloxane or the hydroxyl group generated by the opening of the epoxy group of the epoxy resin and the melamine compound. Consists of a reactive group that contributes to. In the formula (a), it is preferable that not all X's are -H, and specifically, at least one X is preferably -CH 2- OH or -CH 2 -OR.
  • R represents a C 1-8 alkyl group having a carbon.
  • the number of carbon atoms is preferably 1 to 4, and particularly preferably 1 to 2.
  • Examples of the alkyl group having 1 to 8 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, an octyl group and the like, and a methyl group is particularly preferable.
  • the above Xs may be the same or different. Further, the above Rs may be the same or different.
  • the number of Xs having ⁇ H in the formula (a) is preferably 2 or less, particularly preferably 1 or less, and further 0. Is preferable.
  • the melamine resin may contain a polynuclear body formed by condensing 2 to 10 compounds represented by the above formula (a), may contain a polynuclear body formed by condensing 2 to 8 compounds, and further may contain 2 It may contain a polynuclear body formed by condensing up to 5 pieces.
  • the weight average molecular weight of the melamine resin is preferably 1000 or less, particularly preferably 900 or less, and further preferably 800 or less.
  • the weight average molecular weight of the melamine resin is 1000 or less, the curability of the release agent composition becomes more excellent, and it becomes easy to form a release agent layer having sufficient coating film strength. As a result, it becomes possible to achieve better peelability.
  • the weight average molecular weight of the melamine resin is preferably 100 or more, particularly preferably 200 or more, and further preferably 300 or more. When the weight average molecular weight of the melamine resin is 100 or more, the reaction rate of the condensation reaction described above is stable, and it becomes easy to form a peeled surface having an excellent surface condition.
  • the weight average molecular weight in the present specification is a standard polystyrene-equivalent value measured by a gel permeation chromatography (GPC) method.
  • epoxy resin in the epoxy resin, the epoxy group is opened in the presence of a catalyst, particularly an acid catalyst, the epoxy compounds are polymerized with each other, or the epoxy group of the epoxy resin is opened.
  • the hydroxyl group produced in the above process and the melamine compound undergo a condensation reaction to bond with each other.
  • the epoxy resin in the present embodiment is a compound having one or more epoxy groups in the molecule, but is preferably a compound having two or more epoxy groups in the molecule.
  • an epoxy resin various known epoxy resins can be used and are not particularly limited.
  • the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, brominated bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, and biphenyl type epoxy.
  • Bifunctional such as an epoxy resin having a biphenyl group such as a resin, a urethane-modified epoxy resin, a rubber-modified epoxy resin, an alkylene glycol-type epoxy resin such as a polyalkylene glycol type, an epoxy resin having a naphthalene ring, and an epoxy resin having a fluorene group.
  • Type glycidyl ether type epoxy resin polyfunctional glycidyl ether type epoxy resin such as phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, trishydroxyphenylmethane type epoxy resin, tetraphenylol ethane type epoxy resin; dimer acid Glycidyl ester type epoxy resin of synthetic fatty acids such as N, N, N', N'-tetraglycidyldiaminodiphenylmethane (TGDDM), tetraglycidyl-m-xylylene diamine, triglycidyl-p-aminophenol, N, N- Aromatic epoxy resins having a glycidyl amino group such as diglycidyl aniline; epoxy resins having a tricyclodecane ring and the like can be mentioned.
  • the epoxy resin one type may be used alone, or two or more types may be used in combination.
  • the rubber-modified epoxy resin can be produced by reacting a rubber component with an epoxy group in the epoxy resin.
  • the rubber component is not particularly limited, and examples thereof include butadiene rubber, acrylic rubber, silicone rubber, butyl rubber, olefin rubber, styrene rubber, isoprene rubber, nitrile rubber, styrene / butadiene rubber, and ethylene / propylene rubber.
  • Examples of the functional group of the rubber component include amino-modified, hydroxy-modified, and carboxyl-modified.
  • the epoxy resin used in producing the rubber-modified epoxy resin is not particularly limited, and conventionally known epoxy resins can be used.
  • the epoxy equivalent of the epoxy resin is preferably 50 g / eq or more, particularly preferably 80 g / eq or more, and further preferably 100 g / eq or more.
  • the epoxy equivalent is preferably 5000 g / eq or less, particularly preferably 2000 g / eq or less, and more preferably 1000 g / eq or less.
  • the epoxy equivalent in the present specification is a value measured according to JIS K7236.
  • the weight average molecular weight (Mw) of the epoxy resin is preferably 100 or more, particularly preferably 200 or more, and further preferably 300 or more.
  • the weight average molecular weight is preferably 50,000 or less, particularly preferably 30,000 or less, and further preferably 20,000 or less.
  • the mass ratio of the melamine resin content and the epoxy resin content is preferably 99: 1 to 30:70, particularly 98: 2 to 40:60. It is preferably 95: 5 to 50:50.
  • the mass ratio of the content of the melamine resin and the content of the epoxy resin is in the above range, the adhesive force between the ceramic green sheets becomes higher. Further, the ceramic green sheet formed on the peeling surface of the release film has excellent peelability when peeled from the release film.
  • the polyorganosiloxane is not particularly limited as long as it can impart desired release property to the release agent layer.
  • the polyorganosiloxane preferably has at least one hydroxyl group in one molecule.
  • the polyorganosiloxane having a hydroxyl group allows the polyorganosiloxane to be chemically immobilized in the cured product by a condensation reaction with the melamine resin, and as a result, the poly from the release agent layer to the ceramic green sheet. It becomes easy to suppress the migration of organosiloxane.
  • the structure of the polyorganosiloxane other than the hydroxyl group is not particularly limited as long as it does not inhibit the above-mentioned peelability and the condensation reaction with the melamine resin.
  • a polymer of a silicon-containing compound represented by the following general formula (b) can be used as the polyorganosiloxane.
  • m is an integer of 1 or more.
  • R 1 to R 8 independently mean a hydroxyl group, an organic group (including an organic group having a hydroxyl group), or a group other than these groups.
  • at least one of R 1 to R 8 is a hydroxyl group or an organic group having a hydroxyl group
  • it is preferable that at least one of R 3 to R 8 is these groups. That is, when the polyorganosiloxane has a hydroxyl group or an organic group having a hydroxyl group, the group is preferably present at the terminal of the polyorganosiloxane. The presence of the hydroxyl group at the terminal facilitates the condensation reaction of the polyorganosiloxane with the melamine resin, and the migration of the polyorganosiloxane is effectively suppressed.
  • the organic group examples include a polyester group and a polyether group.
  • the polyorganosiloxane in the present embodiment preferably has at least one polyester group and a polyether group.
  • the polyorganosiloxane and the melamine resin are easily mixed well in the release agent composition, and these are extremely phase-separated during curing. Is suppressed.
  • the condensation reaction between the polyorganosiloxane and the melamine resin and / or the epoxy resin as described above proceeds satisfactorily, and the migration of the polyorganosiloxane is also effectively suppressed.
  • the "organic group” does not include an alkyl group described later.
  • Examples of groups other than hydroxyl groups and organic groups include alkyl groups having 1 to 12 carbon atoms.
  • alkyl groups having 1 to 12 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, an octyl group and the like, and a methyl group is particularly preferable.
  • R 1 to R 8 may be the same or different. Further, when a plurality of R 1 and R 2 exist, R 1 and R 2 may be the same or different from each other.
  • the weight average molecular weight of the polyorganosiloxane is preferably 10,000 or less, particularly preferably 8,000 or less, and further preferably 5,000 or less.
  • the weight average molecular weight of the polyorganosiloxane is preferably 500 or more, particularly preferably 700 or more, and further preferably 1000 or more.
  • the content of polyorganosiloxane in the release agent composition is preferably 1 part by mass or more, particularly 3 parts by mass or more, based on 100 parts by mass of the total value of the melamine resin content and the epoxy resin content. It is preferable that the amount is 5 parts by mass or more.
  • the content of the polyorganosiloxane is preferably 50 parts by mass or less, particularly 40 parts by mass or less, based on 100 parts by mass of the total value of the melamine resin content and the epoxy resin content. It is preferable, and more preferably 30 parts by mass or less. When the content of the polyorganosiloxane is in the above range, appropriate peelability can be obtained from the formed ceramic green sheet.
  • the release agent composition in the present embodiment preferably contains a catalyst from the viewpoint of efficiently proceeding the above-mentioned condensation reaction with the melamine resin and promoting the ring-opening reaction of the epoxy resin.
  • a catalyst from the viewpoint of efficiently proceeding the above-mentioned condensation reaction with the melamine resin and promoting the ring-opening reaction of the epoxy resin.
  • an acid catalyst is preferable, specifically, hydrochloric acid, sulfuric acid, nitrate, phosphoric acid, phosphite, p-toluenesulfonic acid and the like are preferable, and p-toluenesulfonic acid is particularly preferable.
  • the content of the catalyst in the release agent composition is preferably 0.1 part by mass or more, particularly 0.5 part by mass, with respect to 100 parts by mass of the total value of the melamine resin content and the epoxy resin content.
  • the amount is preferably 1 part or more, and more preferably 1 part by mass or more.
  • the content is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, particularly preferably 15 parts by mass or less, and further preferably 10 parts by mass or less. ..
  • the release agent composition may contain a cross-linking agent, a reaction inhibitor, an adhesion improver, a slip agent and the like.
  • the thickness of the release agent layer is preferably 0.01 ⁇ m or more and 2 ⁇ m or less, more preferably 0.03 ⁇ m or more and 1 ⁇ m or less, and particularly 0.1 ⁇ m. As mentioned above, it is preferably 0.5 ⁇ m or less. As a result, good peelability can be obtained, and it is possible to effectively suppress the occurrence of blocking when the release film is wound into a roll.
  • the release force required for peeling the release film from the ceramic green sheet formed on the release surface can be appropriately set.
  • it is preferably 10 mN / 40 mm or more, particularly preferably 15 mN / 40 mm or more, and further preferably 20 mN / 40 mm or more.
  • the peeling force is, for example, preferably 300 mN / 40 mm or less, particularly preferably 200 mN / 40 mm or less, and further preferably 100 mN / 40 mm or less.
  • the release agent layer is formed of a release agent composition containing a melamine resin, an epoxy resin, and polyorganosiloxane, the release force as described above can be easily set. be able to.
  • the details of the method for measuring the peeling force described above are as described in the test examples described later.
  • the method for producing the release film in the present embodiment is not particularly limited as long as it includes forming a release agent layer from the above-mentioned release agent composition.
  • the obtained coating film is dried and heated to cure the release agent composition. It is preferable to form a release agent layer, thereby obtaining a release film.
  • Specific examples of the above-mentioned coating method include a gravure coating method, a bar coating method, a spray coating method, a spin coating method, a knife coating method, a roll coating method, and a die coating method.
  • the organic solvent is not particularly limited, and various solvents can be used.
  • hydrocarbon compounds such as toluene, hexane, and heptane, isopropyl alcohol, isobutyl alcohol, acetone, ethyl acetate, methyl ethyl ketone, methyl isobutyl ketone, and mixtures thereof are used.
  • the release agent composition coated as described above is preferably thermoset.
  • the heating temperature is preferably 80 ° C. or higher, and particularly preferably 100 ° C. or higher. Further, the heating temperature is preferably 170 ° C. or lower, and particularly preferably 160 ° C. or lower.
  • the heating time for thermosetting is preferably 30 seconds or longer, and particularly preferably 50 seconds or longer. The heating time is preferably 120 seconds or less, and particularly preferably 90 seconds or less.
  • the release film in this embodiment is preferably used for producing a ceramic green sheet.
  • a ceramic slurry containing a ceramic material such as barium titanate or titanium oxide is applied to the peeled surface of the release agent layer.
  • the coating can be performed by using, for example, a slot die coating method, a doctor blade method, or the like.
  • binder component contained in the ceramic slurry examples include butyral resin, acrylic resin and the like.
  • solvent contained in the ceramic slurry examples include an organic solvent, an aqueous solvent and the like.
  • the ceramic green sheet can be molded by drying the coated ceramic slurry. After molding the ceramic green sheet, the ceramic green sheet is separated from the release film. At this time, in the release film of the present embodiment, the release agent layer is formed from the release agent composition containing the melamine resin, the epoxy resin and the polyorganosiloxane, so that the release film is formed against the ceramic green sheet. It has excellent peelability. Therefore, the ceramic green sheet can be peeled off with an appropriate peeling force without causing cracks, breakage, or the like.
  • the release agent layer is formed from the release agent composition containing the melamine resin, the epoxy resin and the polyorganosiloxane, the release agent layer is said to be present during the step of laminating the ceramic green sheet.
  • the adhesive strength between the ceramic green sheets is high, which suppresses the misalignment between the plurality of ceramic green sheets.
  • another layer such as an antistatic layer may be provided on the surface of the base material opposite to the release agent layer, or between the base material and the release agent layer.
  • Example 1 Methylated melamine resin as a melamine resin (manufactured by Sanwa Chemical Co., Ltd., product name "MW-30MLF", weight average molecular weight: 714) 95 parts by mass (solid content conversion value, the same applies hereinafter) and rubber-modified epoxy as an epoxy resin.
  • the obtained coating liquid was uniformly coated on one side of a biaxially stretched polyethylene terephthalate film (thickness: 38 ⁇ m) as a base material with a bar coater. Next, the obtained coating film was dried by heating at 150 ° C. for 1 minute and cured to obtain a release film in which a release agent layer having a thickness of 0.1 ⁇ m was laminated on the substrate.
  • the thickness of the release agent layer was measured using a spectroscopic ellipsometer (manufactured by JA Woolam Japan, product name "M-2000").
  • Examples 2 to 8 A release film was produced in the same manner as in Example 1 except that the type of epoxy resin was changed as shown in Table 1.
  • Example 9 A release film was produced in the same manner as in Example 1 except that the content of the melamine resin and the type and content of the epoxy resin were changed as shown in Table 1.
  • E1 Rubber-modified epoxy resin (manufactured by DIC Corporation, product name "TSR-601", epoxy equivalent: 450 to 500 g / eq, weight average molecular weight (Mw): 16,000)
  • E4 Phenol novolac type epoxy resin (manufactured by Mitsubishi Chemical Corporation, product name
  • the ceramic slurry was uniformly applied to the release surface of the release agent layer, and then dried in a dryer. As a result, a ceramic green sheet having a thickness of 3 ⁇ m was formed on the release film.
  • the release film with a ceramic green sheet thus obtained was cut into a width of 40 mm, and this was used as a measurement sample.
  • the base material side of the above measurement sample is fixed to a rigid plate, and a tensile tester (manufactured by Shimadzu Corporation, product name "AG-IS500N”) is used to make a ceramic with a peeling angle of 90 ° and a peeling speed of 0.3 m / min.
  • the green sheet was peeled from the release film, and the force required for peeling (peeling force; mN / 40 mm) was measured. The results are shown in Table 1.
  • Test Example 2 Evaluation of adhesive strength between green sheets
  • a ceramic green sheet having a thickness of 3 ⁇ m was formed on the release film in the same manner as in Test Example 1.
  • the release film with a ceramic green sheet thus obtained was cut into a length of 100 mm and a width of 100 mm.
  • an adhesive tape whose base material is a polyethylene terephthalate film was attached to the surface of the release film with a ceramic green sheet on the side of the ceramic green sheet to support the ceramic green sheet so that it could withstand the release test.
  • the surface on the ceramic green sheet side that was in contact with the release surface of the release film is placed on the surface on the ceramic green sheet side of another release film with ceramic green sheet.
  • the two ceramic green sheets were thermocompression bonded (60 ° C., 10 MPa). Then, the release film of the release film with the ceramic green sheet was peeled off and cut into 10 mm squares, and this was used as a measurement sample.
  • Test Example 4 (Amount of silicone transferred to the green sheet surface) A ceramic green sheet having a thickness of 3 ⁇ m was formed on the release film in the same manner as in Test Example 1. The ceramic green sheet thus obtained is peeled from the release film, and the silicon atom ratio (atomic%) measured by X-ray photoelectron spectroscopy (XPS) on the surface of the ceramic green sheet in contact with the release film. ) was obtained, and this was used as an index of the amount of silicone transfer. Regarding the calculation of the silicon atom ratio, the count numbers of each element of Si, C, O, Ti and Ba are obtained, the total amount is 100%, and the percentage of the count number of Si elements is the silicon atom ratio (atomic%). ). The results are shown in Table 1.
  • the release film of Comparative Example 2 using a general-purpose silicone-based release agent did not provide any adhesive force between the ceramic green sheets. Further, even in the release film of Comparative Example 1 in which only the melamine resin was used as the main component of the release agent composition without containing the epoxy resin, the adhesive force between the ceramic green sheets was not sufficient. On the other hand, according to the release film of the example using the release agent composition containing the epoxy resin together with the melamine resin, the adhesive force between the ceramic green sheets was sufficiently high.
  • the reason why the adhesive strength between the ceramic green sheets is insufficient is considered to be that the silicone-based component used in the release agent layer of the release film is transferred to the ceramic green sheet.
  • Comparative Example 1 which showed a value similar to that of the example, was inferior in the adhesive strength between the green sheets. .. Therefore, the lack of adhesive strength between the ceramic green sheets cannot be explained only by the transfer of polyorganosiloxane.
  • the release agent layer of the release film forming the ceramic green sheet is formed of a release agent composition containing a melamine resin, an epoxy resin, and a polyorganosiloxane. You can see that it was achieved by doing.
  • the release film for the ceramic green sheet manufacturing process of the present invention is suitable for molding a ceramic green sheet for manufacturing a laminated ceramic product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

基材と、当該基材の片面側に設けられた剥離剤層とを備えたセラミックグリーンシート製造工程用剥離フィルムであって、上記剥離剤層が、メラミン樹脂と、エポキシ樹脂と、ポリオルガノシロキサンとを含有する剥離剤組成物から形成されているセラミックグリーンシート製造工程用剥離フィルム。当該セラミックグリーンシート製造工程用剥離フィルムによれば、セラミックグリーンシートの積層工程時に当該セラミックグリーンシート間で高い接着力を有するセラミックグリーンシートを製造することができる。

Description

セラミックグリーンシート製造工程用剥離フィルム
 本発明は、セラミックグリーンシートを製造する工程で使用する剥離フィルムに関するものである。
 従来より、積層セラミックコンデンサや多層セラミック基板といった積層セラミック製品を製造するには、セラミックグリーンシートを成形し、得られたセラミックグリーンシートを複数枚積層して焼成することが行われている。
 セラミックグリーンシートは、チタン酸バリウムや酸化チタンなどのセラミック材料を含有するセラミックスラリーを剥離フィルム上に塗工することにより成形される。剥離フィルムには、当該剥離フィルム上に成形した薄いセラミックグリーンシートから当該剥離フィルムを、ヒビ、破断等が生じることなく、適度な剥離力により剥離できる剥離性が要求される。
 上述のような剥離フィルムの例として、特許文献1には、基材と、当該基材の片側に設けられた剥離剤層とを備え、当該剥離剤層が、メラミン樹脂とポリオルガノシロキサンとを含有する剥離剤組成物を硬化してなるものである剥離フィルムが開示されている。
特開2017-105092号公報
 ところで、積層セラミック製品を製造するにあたり、セラミックグリーンシートを複数枚積層して圧着する時に、セラミックグリーンシート同士の接着力が弱く、密着しないことがあった。このような密着不良が発生すると、接着面の位置ずれによる切断不良、電極等の位置精度の低下、積層体を焼成した後のデラミネーション等の欠陥が生じ、積層セラミック製品の信頼性が低下してしまう問題があった。
 本発明は、セラミックグリーンシートの積層工程時に当該セラミックグリーンシート間で高い接着力を有するセラミックグリーンシートを製造することができるセラミックグリーンシート製造工程用剥離フィルムを提供することを目的とする。
 上記目的を達成するために、第1に本発明は、基材と、前記基材の片面側に設けられた剥離剤層とを備えたセラミックグリーンシート製造工程用剥離フィルムであって、前記剥離剤層が、メラミン樹脂と、エポキシ樹脂と、ポリオルガノシロキサンとを含有する剥離剤組成物から形成されていることを特徴とするセラミックグリーンシート製造工程用剥離フィルムを提供する(発明1)。
 上記発明(発明1)においては、剥離剤層が、メラミン樹脂と、エポキシ樹脂と、ポリオルガノシロキサンとを含有する剥離剤組成物から形成されることで、当該剥離フィルムを使用して製造したセラミックグリーンシートの積層工程時における、当該セラミックグリーンシート間の接着力を高めることができる。
 上記発明(発明1)においては、前記剥離剤組成物中における前記メラミン樹脂の含有量と前記エポキシ樹脂の含有量との質量比が、99:1~30:70であることが好ましい(発明2)。
 上記発明(発明1,2)においては、前記ポリオルガノシロキサンが、1分子中に少なくとも1個の水酸基を有することが好ましい(発明3)。
 上記発明(発明1~3)においては、前記ポリオルガノシロキサンの重量平均分子量が、500以上、10000以下であることが好ましい(発明4)。
 上記発明(発明1~4)においては、前記剥離剤組成物中における前記ポリオルガノシロキサンの含有量が、前記メラミン樹脂の含有量および前記エポキシ樹脂の含有量の合計値100質量部に対して、1質量部以上、50質量部以下であることが好ましい(発明5)。
 上記発明(発明1~5)においては、前記メラミン樹脂が、下記一般式(a)
Figure JPOXMLDOC01-appb-C000002

(式中、Xは、-H、-CH-OH、または-CH-O-Rを示し、それぞれ同じであってもよいし、異なっていてもよい。Rは、炭素数1~8個のアルキル基を示し、それぞれ同じであってもよいし、異なっていてもよい。少なくとも1個のXは、-CH-OH、または-CH-O-Rである。)
で表される化合物、または2個以上の前記化合物が縮合してなる多核体を含有することが好ましい(発明6)。
 上記発明(発明1~6)においては、前記メラミン樹脂の重量平均分子量が、100以上、1000以下であることが好ましい(発明7)。
 上記発明(発明1~7)においては、前記剥離剤組成物が、触媒を含有することが好ましい(発明8)。
 本発明に係るセラミックグリーンシート製造工程用剥離フィルムによれば、セラミックグリーンシートの積層工程時に当該セラミックグリーンシート間で高い接着力を有するセラミックグリーンシートを製造することができる。
 以下、本発明の実施形態について説明する。
 本実施形態に係るセラミックグリーンシート製造工程用剥離フィルム(以下単に「剥離フィルム」という場合がある。)は、基材と、当該基材の片面側に設けられた剥離剤層とを備えて構成される。なお、剥離剤層は、基材の片面に直接積層されていてもよく、または、その他の層を介して基材の片面に積層されていてもよい。
1.セラミックグリーンシート製造工程用剥離フィルムを構成する各部材
(1)基材
 本実施形態における基材は、剥離剤層を積層することができれば特に限定されるものではない。かかる基材としては、例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル、ポリプロピレンやポリメチルペンテン等のポリオレフィン、ポリカーボネート、ポリ酢酸ビニルなどのプラスチックからなるフィルムが挙げられ、単層であってもよいし、同種または異種の2層以上の多層であってもよい。これらの中でもポリエステルフィルムが好ましく、特にポリエチレンテレフタレートフィルムが好ましく、さらには二軸延伸ポリエチレンテレフタレートフィルムが好ましい。ポリエチレンテレフタレートフィルムは、機械的強度が大きく、また耐溶剤性に優れることから、加工時、使用時等において、規模の大小にかかわらず安定した生産性を達成できる。さらに、ポリエチレンテレフタレートフィルムに帯電防止処理を行うことで、有機溶剤を使用するセラミックスラリーを塗工する際の静電気による発火を防止したり、塗工不良等を防止する効果を高めることができる。
 上記の基材には、フィラーが含まれてもよい。また、基材が多層の場合は、少なくとも一方の表面側の層にフィラーが含まれてもよい。
 また、基材においては、その表面に設けられる剥離剤層との密着性を向上させる目的で、所望により片面または両面に、酸化法や凹凸化法などによる表面処理、あるいはプライマー処理を施すことができる。上記酸化法としては、例えばコロナ放電処理、プラズマ放電処理、クロム酸化処理(湿式)、火炎処理、熱風処理、オゾン、紫外線照射処理などが挙げられ、また、凹凸化法としては、例えばサンドブラスト法、溶射処理法などが挙げられる。これらの表面処理法は、基材フィルムの種類に応じて適宜選ばれるが、一般にコロナ放電処理法が効果および操作性の面から好ましく用いられる。
 基材の厚さは、10μm以上であることが好ましく、特に15μm以上であることが好ましく、さらには20μm以上であることが好ましい。また、基材の厚さは、300μm以下であることが好ましく、特に200μm以下であることが好ましく、さらには125μm以下であることが好ましい。
(2)剥離剤層
 本実施形態における剥離剤層は、メラミン樹脂と、エポキシ樹脂と、ポリオルガノシロキサンとを含有する剥離剤組成物から形成されたものである。
 本実施形態に係る剥離フィルムによれば、剥離剤層が、メラミン樹脂と、エポキシ樹脂と、ポリオルガノシロキサンとを含有する剥離剤組成物から形成されることで、当該剥離フィルムを使用して製造したセラミックグリーンシートの積層工程時における、当該セラミックグリーンシート間の接着力を高めることができる。
 また、本実施形態における剥離フィルムでは、剥離剤層を形成するための剥離剤組成物がポリオルガノシロキサンを含有するため、剥離剤層の剥離面における表面自由エネルギーが適度に低下する。さらに、剥離剤組成物がメラミン樹脂およびエポキシ樹脂を含有するため、加熱(および触媒の存在)によって剥離剤組成物を十分に硬化させることができ、形成される剥離剤層は十分な弾性を有するものとなる。これらにより、剥離フィルムの剥離面上に成形されたセラミックグリーンシートから剥離フィルムを剥離する際の剥離力が適度に低下し、良好な剥離性が達成される。
 なお、一般的に、「メラミン樹脂」とは、複数種のメラミン化合物および/または当該メラミン化合物が縮合してできる多核体を含む混合物を意味する。本明細書においては、「メラミン樹脂」という語句は、上記混合物または1種のメラミン化合物の集合物を意味するものとする。さらに、本明細書では、当該メラミン樹脂が硬化したものを「メラミン硬化物」というものとする。
 また、本明細書における「エポキシ樹脂」とは、分子内に1個以上のエポキシ基を有する化合物を意味し、重合体になっているものも、重合体になっていないものも含むものとする。
(2-1)メラミン樹脂
 メラミン樹脂は、メラミン硬化物を形成することができる限り、特に制限されない。特に、メラミン樹脂は、下記一般式(a)で示される化合物を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000003
 式(a)中、Xは、-H、-CH-OH、または-CH-O-Rを示す。これらの基は、メラミン化合物同士の縮合反応や、ポリオルガノシロキサンが有する水酸基、またはエポキシ樹脂のエポキシ基が開環して生成した水酸基との縮合反応における反応基を構成する。具体的には、XがHとなることで形成される-NH基は、-N-CH-OH基および-N-CH-R基との間で縮合反応を行うことができる。また、Xが-CH-OHとなることで形成される-N-CH-OH基およびXが-CH-Rとなることで形成される-N-CH-R基は、ともに、-NH基、-N-CH-OH基および-N-CH-R基との間で縮合反応を行うことができる。また、-CH-OHおよび-CH-O-Rで示される基は、ポリオルガノシロキサンが有する水酸基またはエポキシ樹脂のエポキシ基が開環して生成した水酸基とメラミン化合物との間の縮合反応に寄与する反応基を構成する。式(a)中、全てのXが-Hとならないことが好ましく、具体的には、少なくとも1個のXは、-CH-OH、または-CH-O-Rであることが好ましい。
 上記-CH-O-Rで示される基において、Rは、炭素数1~8個のアルキル基を示す。当該炭素数は、1~4個であることが好ましく、特に1~2個であることが好ましい。炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基等が挙げられ、特にメチル基が好ましい。
 上記Xは、それぞれ同じであってもよいし、異なっていてもよい。また、上記Rは、それぞれ同じであってもよいし、異なっていてもよい。
 上述した縮合反応の効率に優れるという観点から、式(a)中、-HとなるXの数は、2個以下であることが好ましく、特に1個以下であることが好ましく、さらには0個であることが好ましい。-HとなるXの数が0個となるメラミン化合物の例としては、全てのXが-CH-O-CHであるヘキサメトキシメチルメラミンが好ましく挙げられる。
 上記メラミン樹脂は、上記式(a)で表される化合物が2~10個縮合してなる多核体を含んでよく、また2~8個縮合してなる多核体を含んでよく、さらには2~5個縮合してなる多核体を含んでよい。
 メラミン樹脂の重量平均分子量は、1000以下であることが好ましく、特に900以下であることが好ましく、さらには800以下であることが好ましい。メラミン樹脂の重量平均分子量が1000以下であることで、剥離剤組成物の硬化性がより優れたものとなり、十分な塗膜強度を有する剥離剤層を形成し易いものとなる。その結果、より優れた剥離性を達成することが可能となる。一方、メラミン樹脂の重量平均分子量は、100以上であることが好ましく、特に200以上であることが好ましく、さらには300以上であることが好ましい。メラミン樹脂の重量平均分子量が100以上であることで、前述した縮合反応の反応速度が安定し、表面状態の優れた剥離面を形成し易いものとなる。なお、本明細書における重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定した標準ポリスチレン換算の値である。
(2-2)エポキシ樹脂
 本実施形態において、エポキシ樹脂は、触媒、特に酸触媒の存在下でエポキシ基が開環して、エポキシ化合物同士が重合したり、エポキシ樹脂のエポキシ基が開環して生成した水酸基とメラミン化合物との間で縮合反応して結合したりする。本実施形態おけるエポキシ樹脂は、分子内に1個以上のエポキシ基を有する化合物であるが、分子内に2個以上のエポキシ基を有する化合物であることが好ましい。
 このようなエポキシ樹脂としては、公知の種々のエポキシ樹脂を用いることができ、特に制限されない。エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ビフェニル型エポキシ樹脂等のビフェニル基を有するエポキシ樹脂、ウレタン変性エポキシ樹脂、ゴム変性エポキシ樹脂、ポリアルキレングリコール型等のアルキレングリコール型のエポキシ樹脂、ナフタレン環を有するエポキシ樹脂、フルオレン基を有するエポキシ樹脂などの二官能型のグリシジルエーテル型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂などの多官能型のグリシジルエーテル型エポキシ樹脂;ダイマー酸等の合成脂肪酸のグリシジルエステル型エポキシ樹脂;N,N,N’,N’-テトラグリシジルジアミノジフェニルメタン(TGDDM)、テトラグリシジル-m-キシリレンジアミン、トリグリシジル-p-アミノフェノール、N,N-ジグリシジルアニリン等のグリシジルアミノ基を有する芳香族エポキシ樹脂;トリシクロデカン環を有するエポキシ樹脂などが挙げられる。エポキシ樹脂としては、1種を単独で用いてもよく2種以上を併用してもよい。
 ゴム変性エポキシ樹脂は、エポキシ樹脂中のエポキシ基にゴム成分を反応させることにより製造することができる。ゴム成分としては、特に限定されないが、例えば、ブタジエンゴム、アクリルゴム、シリコ-ンゴム、ブチルゴム、オレフィンゴム、スチレンゴム、イソプレンゴム、ニトリルゴム、スチレン・ブタジエンゴム、エチレン・プロピレンゴム等が挙げられる。ゴム成分の官能基はアミノ変性、ヒドロキシ変性、またはカルボキシル変性されたもの等が挙げられる。なお、ゴム変性エポキシ樹脂を製造する際に使用されるエポキシ樹脂としては、特に制限はなく、従来公知のものを用いることができる。
 エポキシ樹脂のエポキシ当量は、50g/eq以上であることが好ましく、特に80g/eq以上であることが好ましく、さらには100g/eq以上であることが好ましい。また、当該エポキシ当量は、5000g/eq以下であることが好ましく、特に2000g/eq以下であることが好ましく、さらには1000g/eq以下であることが好ましい。エポキシ樹脂のエポキシ当量が上記の範囲にあることにより、セラミックグリーンシート間の接着力がより高いものとなる。なお、本明細書におけるエポキシ当量は、JIS K7236に準じて測定される値である。
 エポキシ樹脂の重量平均分子量(Mw)は、100以上であることが好ましく、特に200以上であることが好ましく、さらには300以上であることが好ましい。また、当該重量平均分子量は、50,000以下であることが好ましく、特に30,000以下であることが好ましく、さらには20,000以下であることが好ましい。エポキシ樹脂の重量平均分子量が上記の範囲にあることにより、セラミックグリーンシート間の接着力がより高いものとなる。
 本実施形態の剥離剤組成物において、メラミン樹脂の含有量とエポキシ樹脂の含有量との質量比は、99:1~30:70であることが好ましく、特に98:2~40:60であることが好ましく、さらには95:5~50:50であることが好ましい。メラミン樹脂の含有量とエポキシ樹脂の含有量との質量比が上記範囲にあることにより、セラミックグリーンシート間の接着力がより高いものとなる。また、剥離フィルムの剥離面上に成形されたセラミックグリーンシートを剥離フィルムから剥離する際の剥離性に優れたものとなる。
(2-3)ポリオルガノシロキサン
 ポリオルガノシロキサンは、剥離剤層に対して所望の剥離性を付与できるものである限り、特に限定されない。本実施形態に係る剥離フィルムでは、ポリオルガノシロキサンは、1分子中に少なくとも1個の水酸基を有するものであることが好ましい。ポリオルガノシロキサンが水酸基を有することで、当該ポリオルガノシロキサンはメラミン樹脂との縮合反応により硬化物中に化学的に固定されることが可能となり、その結果、剥離剤層からセラミックグリーンシートへのポリオルガノシロキサンの移行を抑制し易いものとなる。
 ポリオルガノシロキサンにおける上記水酸基以外の構造は、前述の剥離性ならびにメラミン樹脂との縮合反応を阻害しない限り、特に限定されるものではない。ポリオルガノシロキサンとしては、下記の一般式(b)で示されるケイ素含有化合物の重合体を使用することができる。
Figure JPOXMLDOC01-appb-C000004
 式(b)中、mは1以上の整数である。また、R~Rは、それぞれ独立に、水酸基、有機基(水酸基を有する有機基を含む)、またはこれらの基以外の基を意味する。ここで、R~Rの少なくとも1個が水酸基または水酸基を有する有機基となる場合には、R~Rの少なくとも1個がこれらの基であることが好ましい。すなわち、ポリオルガノシロキサンが水酸基または水酸基を有する有機基を有する場合には、当該基は、ポリオルガノシロキサンの末端に存在することが好ましい。水酸基が末端に存在することで、ポリオルガノシロキサンがメラミン樹脂との間で縮合反応し易くなり、ポリオルガノシロキサンの移行が効果的に抑制される。
 上記有機基の例としては、ポリエステル基およびポリエーテル基が挙げられ、特に、本実施形態におけるポリオルガノシロキサンは、ポリエステル基およびポリエーテル基の少なくとも1種を有することが好ましい。ポリオルガノシロキサンがポリエステル基およびポリエーテル基の少なくとも1種を有することで、剥離剤組成物中においてポリオルガノシロキサンとメラミン樹脂とが良好に混合され易くなり、硬化の際においてこれらが極端に相分離することが抑制される。これにより、前述したようなポリオルガノシロキサンとメラミン樹脂および/またはエポキシ樹脂との縮合反応が良好に進行し、ポリオルガノシロキサンの移行も効果的に抑制される。なお、本明細書において、「有機基」は、後述するアルキル基を含まないものとする。
 水酸基および有機基(水酸基を有する有機基を含む)以外の基の例としては、炭素数1~12のアルキル基が挙げられる。炭素数1~12のアルキル基の例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基等が挙げられ、特にメチル基が好ましい。
 R~Rは同一であっても異なっていてもよい。また、RおよびRが複数存在する場合、RおよびRは、それぞれ同一であっても異なっていてもよい。
 ポリオルガノシロキサンの重量平均分子量は、10000以下であることが好ましく、特に8000以下であることが好ましく、さらには5000以下であることが好ましい。一方、ポリオルガノシロキサンの重量平均分子量は、500以上であることが好ましく、特に700以上であることが好ましく、さらには1000以上であることが好ましい。ポリオルガノシロキサンの重量平均分子量が上記範囲にあることで、ポリオルガノシロキサンと、メラミン樹脂およびエポキシ樹脂との相溶性がより優れたものとなり、剥離フィルムの剥離面上に成形されたセラミックグリーンシートから剥離フィルムを剥離する際の剥離力を適度な大きさに制御することができる。
 剥離剤組成物中におけるポリオルガノシロキサンの含有量は、メラミン樹脂の含有量およびエポキシ樹脂の含有量の合計値100質量部に対して、1質量部以上であることが好ましく、特に3質量部以上であることが好ましく、さらには5質量部以上であることが好ましい。また、ポリオルガノシロキサンの含有量は、メラミン樹脂の含有量およびエポキシ樹脂の含有量の合計値100質量部に対して、50質量部以下であることが好ましく、特に40質量部以下であることが好ましく、さらには30質量部以下であることが好ましい。ポリオルガノシロキサンの含有量が上記の範囲にあることにより、製膜したセラミックグリーンシートとの間で適度な剥離性が得られる。
(2-4)触媒
 本実施形態における剥離剤組成物は、メラミン樹脂による前述した縮合反応を効率よく進行させる観点、およびエポキシ樹脂の開環反応を促す観点から、触媒を含有することが好ましい。このような触媒の例としては、酸触媒が好ましく、具体的には、塩酸、硫酸、硝酸、リン酸、亜リン酸、p-トルエンスルホン酸等が好ましく、特にp-トルエンスルホン酸が好ましい。
 剥離剤組成物中における触媒の含有量は、メラミン樹脂の含有量およびエポキシ樹脂の含有量の合計値100質量部に対して、0.1質量部以上であることが好ましく、特に0.5質量部以上であることが好ましく、さらには1質量部以上であることが好ましい。また、当該含有量は、30質量部以下であることが好ましく、20質量部以下であることがより好ましく、特に15質量部以下であることが好ましく、さらには10質量部以下であることが好ましい。
(2-5)その他の成分
 剥離剤組成物は、上記成分の他、架橋剤、反応抑制剤、密着向上剤、滑り剤等を含有してもよい。
(2-6)剥離剤層の物性等
 剥離剤層の厚さは、0.01μm以上、2μm以下であることが好ましく、0.03μm以上、1μm以下であることがより好ましく、特に0.1μm以上、0.5μm以下であることが好ましい。これにより、良好な剥離性が得られるとともに、剥離フィルムをロール状に巻き取った際に、ブロッキングが発生することを効果的に抑制することができる。
2.セラミックグリーンシート製造工程用剥離フィルムの物性
 本実施形態に係る剥離フィルムでは、剥離面上に成形されたセラミックグリーンシートから当該剥離フィルムを剥離する際に要する剥離力を、適宜設定することができるものの、例えば、10mN/40mm以上であることが好ましく、特に15mN/40mm以上であることが好ましく、さらに20mN/40mm以上であることが好ましい。また、当該剥離力は、例えば、300mN/40mm以下であることが好ましく、特に200mN/40mm以下であることが好ましく、さらには100mN/40mm以下であることが好ましい。本実施形態に係る剥離フィルムでは、剥離剤層がメラミン樹脂とエポキシ樹脂とポリオルガノシロキサンとを含有する剥離剤組成物によって形成されたものであるため、上述のような剥離力に容易に設定することができる。なお、上述した剥離力の測定方法の詳細は、後述する試験例に記載の通りである。
3.セラミックグリーンシート製造工程用剥離フィルムの製造方法
 本実施形態における剥離フィルムの製造方法は、前述した剥離剤組成物から剥離剤層を形成することを含む限り、特に制限されない。例えば、基材の一方の面に、前述した剥離剤組成物および所望により有機溶剤を含有する塗布液を塗工した後、得られた塗膜を乾燥および加熱することで剥離剤組成物を硬化させて剥離剤層を形成し、これにより剥離フィルムを得ることが好ましい。
 上述した塗工の具体的な方法としては、例えば、グラビアコート法、バーコート法、スプレーコート法、スピンコート法、ナイフコート法、ロールコート法、ダイコート法などが挙げられる。
 上記有機溶剤としては特に制限はなく、様々なものを用いることができる。例えばトルエン、ヘキサン、ヘプタン等の炭化水素化合物をはじめ、イソプロピルアルコール、イソブチルアルコール、アセトン、酢酸エチル、メチルエチルケトン、メチルイソブチルケトン及びこれらの混合物等が用いられる。特に、メチルエチルケトンとイソプロピルアルコールとの混合液を使用することが好ましい。
 上記のように塗工した剥離剤組成物は、熱硬化させることが好ましい。この場合の加熱温度は80℃以上であることが好ましく、特に100℃以上であることが好ましい。また、当該加熱温度は170℃以下であることが好ましく、特に160℃以下であることが好ましい。熱硬化させる場合の加熱時間は、30秒以上であることが好ましく、特に50秒以上であることが好ましい。また、当該加熱時間は、120秒以下であることが好ましく、特に90秒以下であることが好ましい。
4.セラミックグリーンシート製造工程用剥離フィルムの使用方法
 本実施形態における剥離フィルムは、セラミックグリーンシートを製造するために使用することが好ましい。この場合、最初に、剥離剤層の剥離面に対し、チタン酸バリウムや酸化チタンなどのセラミック材料を含有するセラミックスラリーを塗工する。塗工は、例えば、スロットダイ塗工方式やドクターブレード方式等を用いて行うことができる。
 セラミックスラリーに含まれるバインダー成分の例としては、ブチラール系樹脂、アクリル系樹脂等が挙げられる。セラミックスラリーに含まれる溶媒の例としては、有機溶媒、水系溶媒等が挙げられる。
 剥離面に対するスラリーの塗工に続き、塗工されたセラミックスラリーを乾燥させることで、セラミックグリーンシートを成形することができる。セラミックグリーンシートの成形の後、当該セラミックグリーンシートを剥離フィルムから分離する。このとき、本実施形態における剥離フィルムでは、剥離剤層が、メラミン樹脂、エポキシ樹脂およびポリオルガノシロキサンを含有する剥離剤組成物から形成されたものであることにより、剥離フィルムがセラミックグリーンシートに対して優れた剥離性を有するものとなっている。そのため、セラミックグリーンシートを、ヒビ、破断等が生じることなく、適度な剥離力により剥離することができる。
 次に、積層セラミック製品を得るにあたり、剥離フィルムから分離したセラミックグリーンシートを、複数枚積層し、圧着する。このとき、本実施形態における剥離フィルムでは、剥離剤層が、メラミン樹脂、エポキシ樹脂およびポリオルガノシロキサンを含有する剥離剤組成物から形成されたものであることにより、セラミックグリーンシートの積層工程時に当該セラミックグリーンシート間の接着力が高いものとなり、これにより、複数枚のセラミックグリーンシート相互間の位置ずれが抑制される。その結果、切断不良、電極等の位置精度の低下、積層体を焼成した後のデラミネーション等の欠陥が生じることが抑制されて、得られる積層セラミック製品の製造における歩留まりが向上する。
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
 例えば、基材における剥離剤層の反対側の面、または基材と剥離剤層との間には、帯電防止層等の他の層が設けられてもよい。
 以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。
〔実施例1〕
 メラミン樹脂としてのメチル化メラミン樹脂(三和ケミカル社製,製品名「MW-30MLF」,重量平均分子量:714)95質量部(固形分換算値,以下同じ)と、エポキシ樹脂としてのゴム変性エポキシ樹脂(E1;DIC社製,製品名「TSR-601」,エポキシ当量:450~500g/eq,重量平均分子量(Mw)16,000)5質量部と、ポリオルガノシロキサンとしてのポリエステル変性水酸基含有ポリジメチルシロキサン(ビックケミー・ジャパン社製,製品名「BYK-370」,重量平均分子量(Mw)3,600)30質量部と、触媒としてのp-トルエンスルホン酸2質量部とを、イソプロピルアルコールとメチルエチルケトンとの混合溶剤(質量比5:5)にて混合し、固形分3質量%の剥離剤組成物の塗布液を得た。
 得られた塗布液を、基材としての二軸延伸ポリエチレンテレフタレートフィルム(厚さ:38μm)の片面上にバーコーターにより均一に塗布した。次いで、得られた塗膜を150℃で1分間加熱乾燥して硬化させ、基材上に厚さ0.1μmの剥離剤層が積層された剥離フィルムを得た。
 なお、剥離剤層の厚さは、分光エリプソメーター(ジェー・エー・ウーラム・ジャパン社製,製品名「M―2000」)を用いて測定した。
〔実施例2~8〕
 エポキシ樹脂の種類を表1に記載の通り変更した以外は、実施例1と同様にして剥離フィルムを製造した。
〔実施例9,比較例1〕
 メラミン樹脂の含有量ならびにエポキシ樹脂の種類および含有量を表1に記載の通り変更した以外は、実施例1と同様にして剥離フィルムを製造した。
〔比較例2〕
 付加反応型シリコーン樹脂(信越化学工業社製,製品名「KS847H」)100質量部と、白金触媒(信越化学工業社製,製品名「CAT-PL-50T」)1質量部とを、トルエンとメチルエチルケトンとの混合溶剤(質量比5:5)にて混合し、固形分2質量%の剥離剤組成物の塗布液を得た。得られた剥離剤組成物の塗布液を使用し、実施例1と同様にして剥離フィルムを製造した。
 なお、表1に記載の略号等の詳細は以下の通りである。
<エポキシ樹脂>
 E1:ゴム変性エポキシ樹脂(DIC社製,製品名「TSR-601」,エポキシ当量:450~500g/eq,重量平均分子量(Mw):16,000)
 E2:ビスフェノールF型エポキシ樹脂/ゴム変性エポキシ樹脂=70/30(質量比)(DIC社製,製品名「TSR-930」,エポキシ当量:180~200g/eq,重量平均分子量(Mw):1,400)
 E3:ビスフェノールA型エポキシ樹脂/ゴム変性エポキシ樹脂=70/30(質量比)(DIC社製,製品名「TSR-960」,エポキシ当量:230~250g/eq,重量平均分子量(Mw):2,546)
 E4:フェノールノボラック型エポキシ樹脂(三菱ケミカル社製,製品名「jER-154」,エポキシ当量:176~180g/eq,重量平均分子量(Mw):1,524)
 E5:ビスフェノールA型エポキシ樹脂(三菱ケミカル社製,製品名「jER-828」,エポキシ当量:184~194g/eq,重量平均分子量(Mw):409)
 E6:ビスフェノールF型エポキシ樹脂(三菱ケミカル社製,製品名「jER-807」,エポキシ当量:160~175g/eq,重量平均分子量(Mw):336)
 E7:多官能型エポキシ樹脂(三菱ケミカル社製,製品名「jER-604」,エポキシ当量:110~130g/eq,重量平均分子量(Mw):413)
 E8:多官能型エポキシ樹脂(三菱ケミカル社製,製品名「jER-630」,エポキシ当量:90~105g/eq,重量平均分子量(Mw):345)
〔試験例1〕(剥離フィルム-グリーンシート間の剥離力の評価)
 チタン酸バリウム(BaTiO;堺化学工業社製,製品名「BT-03」)100質量部、ブチラール系バインダー樹脂(積水化学工社製,製品名「BM-2」)10質量部、およびジオクチルフタレート(関東化学社製,製品名「フタル酸ジオクチル 鹿1級」)5質量部に、トルエンとエタノールとの混合液(質量比5:5)120質量部を加え、ボールミルにて混合分散させて、セラミックスラリーを調製した。
 実施例および比較例にて製造してから常温で48時間保管した剥離フィルムにおいて、剥離剤層の剥離面に上記セラミックスラリーを均一に塗工し、その後、乾燥機にて乾燥させた。これにより、剥離フィルム上に厚さ3μmのセラミックグリーンシートを形成した。このようにして得られたセラミックグリーンシート付剥離フィルムを、40mm幅に裁断し、これを測定サンプルとした。
 上記測定サンプルの基材側を剛板に固定し、引張試験機(島津製作所社製,製品名「AG-IS500N」)を用いて90°の剥離角度、0.3m/分の剥離速度でセラミックグリーンシートを剥離フィルムから剥離し、剥離するのに必要な力(剥離力;mN/40mm)を測定した。結果を表1に示す。
〔試験例2〕(グリーンシート間の接着力の評価)
 試験例1と同様にして、剥離フィルム上に厚さ3μmのセラミックグリーンシートを形成した。このようにして得られたセラミックグリーンシート付剥離フィルムを、縦100mm×横100mmに裁断した。
 次に、上記セラミックグリーンシート付剥離フィルムのセラミックグリーンシート側の面に基材がポリエチレンテレフタレートフィルムである粘着テープを貼付し、剥離試験に耐えられるようセラミックグリーンシートをサポートした。当該セラミックグリーンシート付剥離フィルムから剥離フィルムを剥がした後、剥離フィルムの剥離面に接触していたセラミックグリーンシート側の面を、別のセラミックグリーンシート付剥離フィルムのセラミックグリーンシート側の面に載置し、2枚のセラミックグリーンシートを熱圧着(60℃,10MPa)した。その後、上記別のセラミックグリーンシート付剥離フィルムの剥離フィルムを剥がして10mm角に裁断し、これを測定サンプルとした。
 上記測定サンプルを剛板に固定し、引張試験機(島津製作所社製,製品名「AG-IS500N」)を用いて、200mm/分の剥離速度でセラミックグリーンシート同士を垂直方向に面剥離し、剥離するのに必要な力(接着力;N/cm)の最大値を測定した。結果を表1に示す。
〔試験例3〕(剥離フィルムの表面自由エネルギーの測定)
 実施例および比較例で製造した剥離フィルムの剥離剤面に対する各種液滴の接触角を測定した。その測定値をもとに、北崎・畑理論により、表面自由エネルギー(mJ/m)を求めた。接触角は、接触角計(協和界面科学社製,製品名「DM-701」)を使用し、静滴法によってJIS R3257:1999に準じて測定した。液滴については、「分散成分」としてジヨードメタン、「双極子成分」として1-ブロモナフタレン、「水素結合成分」として蒸留水を使用した。結果を表1に示す。
〔試験例4〕(グリーンシート面へのシリコーン移行量)
 試験例1と同様にして、剥離フィルム上に厚さ3μmのセラミックグリーンシートを形成した。このようにして得られたセラミックグリーンシートを剥離フィルムから剥離し、剥離フィルムに接していた当該セラミックグリーンシートの面について、X線光電子分光分析法(XPS)によって測定されるケイ素原子比率(原子%)を求め、これをシリコーン移行量の指標とした。なお、ケイ素原子比率の算出については、Si、C、O、TiおよびBaの各元素のカウント数を求め、この合計量を100%として、Si元素のカウント数の百分率をケイ素原子比率(原子%)とした。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000005
 上記の結果から理解できるように、汎用のシリコーン系剥離剤を用いた比較例2の剥離フィルムでは、セラミックグリーンシート間の接着力が全く得られなかった。また、エポキシ樹脂を含まずメラミン樹脂のみを剥離剤組成物の主剤とした比較例1の剥離フィルムでも、セラミックグリーンシート間の接着力が十分ではなかった。これに対し、メラミン樹脂とともにエポキシ樹脂を含有する剥離剤組成物を使用した実施例の剥離フィルムによれば、セラミックグリーンシート間の接着力が十分に高いものとなった。
 なお、一般的に、セラミックグリーンシート同士の接着力が不足する理由としては、剥離フィルムの剥離剤層に使用されるシリコーン系成分がセラミックグリーンシートに移行することが考えられる。しかしながら、剥離フィルムに接していた側のグリーンシート表面へのシリコーン移行量を検討したところ、実施例と同程度の値を示す比較例1が、グリーンシート間接着力に劣るという結果が得られている。このため、セラミックグリーンシート同士の接着力不足は、ポリオルガノシロキサンの移行だけでは説明がつかない。したがって、セラミックグリーンシート同士の接着力の向上は、セラミックグリーンシートを製膜する剥離フィルムの剥離剤層が、メラミン樹脂と、エポキシ樹脂と、ポリオルガノシロキサンとを含有する剥離剤組成物から形成されていることで達成できたことが分かる。
 本発明のセラミックグリーンシート製造工程用剥離フィルムは、積層セラミック製品を製造するセラミックグリーンシートを成形するのに好適である。

Claims (8)

  1.  基材と、前記基材の片面側に設けられた剥離剤層とを備えたセラミックグリーンシート製造工程用剥離フィルムであって、
     前記剥離剤層が、メラミン樹脂と、エポキシ樹脂と、ポリオルガノシロキサンとを含有する剥離剤組成物から形成されている
    ことを特徴とするセラミックグリーンシート製造工程用剥離フィルム。
  2.  前記剥離剤組成物中における前記メラミン樹脂の含有量と前記エポキシ樹脂の含有量との質量比が、99:1~30:70であることを特徴とする請求項1に記載のセラミックグリーンシート製造工程用剥離フィルム。
  3.  前記ポリオルガノシロキサンが、1分子中に少なくとも1個の水酸基を有することを特徴とする請求項1または2に記載のセラミックグリーンシート製造工程用剥離フィルム。
  4.  前記ポリオルガノシロキサンの重量平均分子量が、500以上、10000以下であることを特徴とする請求項1~3のいずれか一項に記載のセラミックグリーンシート製造工程用剥離フィルム。
  5.  前記剥離剤組成物中における前記ポリオルガノシロキサンの含有量が、前記メラミン樹脂の含有量および前記エポキシ樹脂の含有量の合計値100質量部に対して、1質量部以上、50質量部以下であることを特徴とする請求項1~4に記載のセラミックグリーンシート製造工程用剥離フィルム。
  6.  前記メラミン樹脂が、下記一般式(a)
    Figure JPOXMLDOC01-appb-C000001

    (式中、Xは、-H、-CH-OH、または-CH-O-Rを示し、それぞれ同じであってもよいし、異なっていてもよい。Rは、炭素数1~8個のアルキル基を示し、それぞれ同じであってもよいし、異なっていてもよい。少なくとも1個のXは、-CH-OH、または-CH-O-Rである。)
    で表される化合物、または2個以上の前記化合物が縮合してなる多核体を含有することを特徴とする請求項1~5のいずれか一項に記載のセラミックグリーンシート製造工程用剥離フィルム。
  7.  前記メラミン樹脂の重量平均分子量が、100以上、1000以下であることを特徴とする請求項1~6のいずれか一項に記載のセラミックグリーンシート製造工程用剥離フィルム。
  8.  前記剥離剤組成物が、触媒を含有することを特徴とする請求項1~7のいずれか一項に記載のセラミックグリーンシート製造工程用剥離フィルム。
PCT/JP2021/004157 2020-03-17 2021-02-04 セラミックグリーンシート製造工程用剥離フィルム WO2021186939A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022508122A JPWO2021186939A1 (ja) 2020-03-17 2021-02-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020046625 2020-03-17
JP2020-046625 2020-03-17

Publications (1)

Publication Number Publication Date
WO2021186939A1 true WO2021186939A1 (ja) 2021-09-23

Family

ID=77771818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004157 WO2021186939A1 (ja) 2020-03-17 2021-02-04 セラミックグリーンシート製造工程用剥離フィルム

Country Status (2)

Country Link
JP (1) JPWO2021186939A1 (ja)
WO (1) WO2021186939A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129779A1 (ja) * 2014-02-28 2015-09-03 リンテック株式会社 グリーンシート製造用剥離フィルム、グリーンシート製造用剥離フィルムの製造方法、グリーンシートの製造方法、およびグリーンシート
WO2017098956A1 (ja) * 2015-12-10 2017-06-15 リンテック株式会社 セラミックグリーンシート製造工程用剥離フィルム
JP2017144636A (ja) * 2016-02-17 2017-08-24 リンテック株式会社 セラミックグリーンシート製造工程用剥離フィルムおよびその製造方法
WO2019065214A1 (ja) * 2017-09-29 2019-04-04 東洋紡株式会社 セラミックグリーンシート製造用離型フィルム
JP2019073003A (ja) * 2017-10-12 2019-05-16 東洋紡株式会社 セラミックグリーンシート製造用離型フィルム
WO2020032007A1 (ja) * 2018-08-10 2020-02-13 東洋紡株式会社 セラミックグリーンシート製造用離型フィルム
WO2020050081A1 (ja) * 2018-09-03 2020-03-12 東洋紡株式会社 セラミックグリーンシート製造用離型フィルム
JP2020090094A (ja) * 2018-11-22 2020-06-11 東洋クロス株式会社 機能層を有する基材フィルムから機能層を除去する方法、および基材フィルムの回収方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129779A1 (ja) * 2014-02-28 2015-09-03 リンテック株式会社 グリーンシート製造用剥離フィルム、グリーンシート製造用剥離フィルムの製造方法、グリーンシートの製造方法、およびグリーンシート
WO2017098956A1 (ja) * 2015-12-10 2017-06-15 リンテック株式会社 セラミックグリーンシート製造工程用剥離フィルム
JP2017144636A (ja) * 2016-02-17 2017-08-24 リンテック株式会社 セラミックグリーンシート製造工程用剥離フィルムおよびその製造方法
WO2019065214A1 (ja) * 2017-09-29 2019-04-04 東洋紡株式会社 セラミックグリーンシート製造用離型フィルム
JP2019073003A (ja) * 2017-10-12 2019-05-16 東洋紡株式会社 セラミックグリーンシート製造用離型フィルム
WO2020032007A1 (ja) * 2018-08-10 2020-02-13 東洋紡株式会社 セラミックグリーンシート製造用離型フィルム
WO2020050081A1 (ja) * 2018-09-03 2020-03-12 東洋紡株式会社 セラミックグリーンシート製造用離型フィルム
JP2020090094A (ja) * 2018-11-22 2020-06-11 東洋クロス株式会社 機能層を有する基材フィルムから機能層を除去する方法、および基材フィルムの回収方法

Also Published As

Publication number Publication date
JPWO2021186939A1 (ja) 2021-09-23

Similar Documents

Publication Publication Date Title
JP6802785B2 (ja) セラミックグリーンシート製造工程用剥離フィルム
KR102619220B1 (ko) 세라믹 그린 시트 제조 공정용 박리 필름
JP6646424B2 (ja) セラミックグリーンシート製造工程用剥離フィルム
JP7082890B2 (ja) セラミックグリーンシート製造工程用剥離フィルム
WO2016208469A1 (ja) セラミックグリーンシート製造工程用剥離フィルム
JP6619200B2 (ja) セラミックグリーンシート製造工程用剥離フィルム
KR102342530B1 (ko) 세라믹 그린 시트 제조용 이형 필름
TW201522531A (zh) 用於介電陶瓷形成材料之離型膜的可經高能輻射固化之丙烯醯氧官能性聚矽氧組合物與使用其之用於介電陶瓷形成材料的離型膜
WO2018079337A1 (ja) 剥離シート
WO2021186939A1 (ja) セラミックグリーンシート製造工程用剥離フィルム
KR20170096966A (ko) 세라믹 그린 시트 제조 공정용 박리 필름 및 그 제조 방법
KR20200066680A (ko) 세라믹 그린 시트 제조용 이형 필름
JP7450116B2 (ja) フレキシブルデバイス用樹脂組成物、フレキシブルデバイス用フィルム状接着剤、フレキシブルデバイス用接着シート、及びフレキシブルデバイスの製造方法
WO2022209547A1 (ja) セラミックグリーンシート製造工程用剥離フィルム
JP2018122578A (ja) 剥離シートおよび剥離シートの製造方法
JP2018168303A (ja) 粘着シート用剥離フィルム
JP7445086B2 (ja) フレキシブルデバイス用フィルム状接着剤、フレキシブルデバイス用接着シート、及びフレキシブルデバイスの製造方法
JP2021126841A (ja) 剥離シート
JP2023085061A (ja) 剥離シート
JP2022182520A (ja) 離型フィルム
JP2022048120A (ja) 離型フィルム
TW202248366A (zh) 陶瓷生胚片製造步驟用剝離膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771123

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508122

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21771123

Country of ref document: EP

Kind code of ref document: A1