WO2021185310A1 - Vecteur de virus mvsv, vaccin à vecteur viral associé et nouveau vaccin contre la pneumonie à coronavirus basé sur la médiation par mvsv - Google Patents

Vecteur de virus mvsv, vaccin à vecteur viral associé et nouveau vaccin contre la pneumonie à coronavirus basé sur la médiation par mvsv Download PDF

Info

Publication number
WO2021185310A1
WO2021185310A1 PCT/CN2021/081524 CN2021081524W WO2021185310A1 WO 2021185310 A1 WO2021185310 A1 WO 2021185310A1 CN 2021081524 W CN2021081524 W CN 2021081524W WO 2021185310 A1 WO2021185310 A1 WO 2021185310A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
mvsv
virus
vaccine
cov
Prior art date
Application number
PCT/CN2021/081524
Other languages
English (en)
Chinese (zh)
Inventor
秦晓峰
韦治明
权海峰
龙丽梅
Original Assignee
睿丰康生物医药科技(浙江)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 睿丰康生物医药科技(浙江)有限公司 filed Critical 睿丰康生物医药科技(浙江)有限公司
Publication of WO2021185310A1 publication Critical patent/WO2021185310A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5256Virus expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/20011Rhabdoviridae
    • C12N2760/20211Vesiculovirus, e.g. vesicular stomatitis Indiana virus
    • C12N2760/20241Use of virus, viral particle or viral elements as a vector
    • C12N2760/20243Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host

Definitions

  • the present disclosure relates to the technical field of genetic engineering, specifically the mVSV virus vector and its virus vector vaccine, and a new coronary pneumonia vaccine mediated by mVSV.
  • Coronavirus is a member of the order Nidovirals, family Coronavirus, and genus Coronavirus in the virological classification.
  • the genome is a single-stranded, positive-stranded RNA with a complete genome. It is between 26 and 32 kb in length and is currently the largest RNA virus known in its genome.
  • Coronavirus infections are widespread in nature, and common mammals such as dogs, cats, mice, pigs, cattle and poultry are all susceptible. In recent years, multiple types of coronaviruses have been isolated from beluga whales, camels, and especially bats.
  • human coronavirus 229E HCV-229E
  • HCoV-OC43 human coronavirus 229E
  • SARS-CoV that appeared in 2003
  • HCoV-NL63 that was isolated in the Netherlands in 2004
  • HCoV-HKU1 identified in Hong Kong in 2005
  • MERS Middle East respiratory syndrome virus
  • the spike protein (S protein) of the virus first recognizes the receptor protein ACE2 (angiotensin-converting enzyme 2) on the cell membrane, and then mediates and promotes the fusion of the viral envelope and the cell membrane. , And finally make the virus invade the host cell.
  • ACE2 angiotensin-converting enzyme 2
  • Coronavirus can infect the respiratory tract, digestive tract, liver, kidney and nervous system of the body, causing various degrees of pathological damage, and even death in severe cases.
  • the International Commission for Classification of Virology (ICTV, 2012) divided the members of the genus Coronavirus into four groups in its ninth report: ⁇ group, ⁇ group, ⁇ group and ⁇ group.
  • Human coronaviruses are mainly distributed in the ⁇ group and ⁇ group.
  • HCoV-229E and HCoV-NL63 are in the ⁇ group
  • HCoV-OC43 and HCoV-HKU1 are in the 2a subgroup in the ⁇ group
  • MERS-CoV belongs to the 2c subgroup in the ⁇ group
  • the latest SARS-CoV- 2 and SARS belong to the 2b subgroup in the ⁇ group.
  • SARS-CoV-2 coronavirus Since the outbreak of the novel coronavirus (COVID-19) pneumonia, it has caused more than 80,000 infections across the country and nearly 4,000 deaths; and it has caused more than 50,000 infections and thousands of deaths worldwide.
  • a highly transmissible coronavirus The difference between SARS-CoV-2 coronavirus and traditional coronavirus is that it is susceptible to everyone. It can not only infect the upper respiratory tract, causing fever, cough, laryngitis and other common cold symptoms, but also infect the lower respiratory tract, causing bronchitis and pneumonia. And other acute respiratory symptoms.
  • SARS-CoV-2 The structure of SARS-CoV-2 is similar to SARS coronavirus. It is an enveloped single-stranded positive-stranded RNA virus.
  • the spike protein S protein reflected on the surface of the virus is a specific organization structure on the virus envelope. A large number of spike proteins are formed on the surface of the virus, which play an important role when the virus invades the target cell and recognizes the virus and the cell.
  • the SARS S protein vaccine can produce high-titer anti-SARS-CoV virus neutralizing antibodies, which can effectively prevent SARS-CoV infection. Therefore, in view of the high similarity of the three-dimensional structure of SARS-CoV-2 and SARS S protein
  • the S antigen of the new coronavirus is usually used as the main target.
  • pathogens that currently cause severe infectious diseases such as human immunodeficiency virus (HIV), influenza virus, severe acute respiratory syndrome virus (SARS-CoV), etc., all invade through the mucosal surface (genital tract, respiratory tract, gastrointestinal tract) And the infected body, because the body cannot induce an effective mucosal immune response to clear the mucosal infectious pathogens, the pathogens quickly spread into the blood, and then invade the whole body, causing damage to the body, especially the lung tissue.
  • HCV human immunodeficiency virus
  • influenza virus influenza virus
  • SARS-CoV severe acute respiratory syndrome virus
  • the bottleneck of conventional mucosal vaccination with traditional antigens is that the frequent physical oscillations of the mucosal cilia can quickly remove foreign antigens; there is a large amount of acidic solution in the mucosal area, which is rich in hydrolytic enzymes, DNA enzymes, etc., which can quickly degrade foreign antigens. Therefore, the traditional antigen inoculated on the mucosal site is rapidly cleared and degraded, and cannot stay in the mucosal area effectively, so that it is not enough to be presented by APC and cannot induce an effective mucosal immune response. Even if induced, the degree of response is very low.
  • VSV vesicular stomatitis virus
  • the known vaccine carrier vesicular stomatitis virus (VSV) wild strain can infect a variety of animals and insects in the natural environment. There are horses, cattle (sheep), and pigs that are naturally infected with VSV in domestic animals. In the natural state of the population, there is almost no active infection of vesicular stomatitis virus, and the infection to humans will not cause obvious symptoms. Therefore, vesicular stomatitis Virus (VSV) as a viral vector vaccine has natural advantages compared with other vectors. Therefore, VSV as a viral vector chimerizing or fusing target antigens will enhance the body's immune response strength. VSV viral vector vaccines further adopt mucosal vaccination.
  • VSV vesicular stomatitis virus
  • the VSV virus vector also has characteristics that other tool vectors do not have.
  • the designed preventive vaccine is used to prevent enveloped viruses, the VSV virus can completely display the envelope protein of the target virus on its own envelope protein GP, and fully expose the antigen protein on the surface of the recombinant virus. After inactivated in vitro, this type of viral vector vaccine still has the specific immune response to effectively activate the body.
  • the foreign viral envelope protein further enhances the immunogenicity of the antigen and fully activates the host immune response through specific fusion with GP.
  • the recombinant virus vaccine does not have the ability to replicate twice, and its safety is significantly enhanced.
  • the present disclosure proposes a VSV-modified viral vector mVSV, a mVSV viral vector and a mVSV-mediated new coronary pneumonia vaccine, which has a better preventive or therapeutic effect on patients infected with the new coronary pneumonia virus.
  • the present disclosure provides a vector mVSV, a viral vector for vaccine development, and a new coronavirus vaccine based on the mVSV viral vector that can be quickly developed through the mVSV-Vac platform that can be widely used in a variety of viruses that are raging in today's society.
  • the mVSV virus vector, the vesicular stomatitis virus Indiana strain Indiana VSV gene M encoded amino acid has multiple site modification mutations, the site mutation occurs at the 51st position of the VSV M protein methionine M is replaced with benzene Alanine F, phenylalanine F at position 110 were replaced by alanine A, and Isoleucine I at position 225 was replaced by leucine L, which was defined as mVSV.
  • a mVSV viral vector vaccine comprising the above-mentioned mVSV viral vector, the heterologous antigen gene of the target virus is integrated in the mVSV, and the heterologous antigen gene is fused or chimeric at the N-terminus of the mVSV envelope GP gene or C-terminal, the target virus vaccine formed after fusion or chimeric antigen is defined as an attenuated vesicular stomatitis virus vaccine.
  • the DNA of the heterologous antigen gene is a codon-optimized sequence, and the antigen gene contains the encoding A full-length or partial truncation of the spike protein S gene of the mentioned virus envelope.
  • the full length of the spike protein S gene of the target virus envelope includes SEQ ID NO: 1 or a gene sequence having an amino acid that is at least 98% identical to that of SEQ ID NO: 2, and is defined as a chimeric antigen Gene A;
  • the partial truncation of the spike protein S gene of the target virus envelope includes the base sequence of SEQ ID NO: 3 or a gene sequence that has at least 98% identity with the amino acid encoding SEQ ID NO: 4, definition It is a chimeric combinatorial gene B.
  • heterologous antigen gene DNA is integrated into the envelope GP gene coding sequence or adjacent non-coding sequence in the mVSV vector gene fragment.
  • the heterologous antigen gene when fused at the N-terminus or C-terminus of the envelope GP gene, the 5'-end fusion of the envelope GP gene occurs after the envelope GP gene signal peptide. The 3'end fusion of the gene occurs before the stop codon of the envelope GP gene.
  • the antigen gene of the mVSV envelope GP fusion is selected from the RBD segment of the spike protein of the new coronavirus SARS-CoV-2, and the envelope GP gene is present in any of the vaccine vector pmVSV-Core backbone vectors corresponding to the target virus.
  • the heterologous antigen gene of the envelope GP fusion comprises an RBD gene or an RBD truncated gene encoding the S protein of the target virus, and the heterologous antigen gene comprises SEQ ID NO: 5 or encoding SEQ ID NO: 6
  • the gene sequence of amino acids with at least 98% identity is defined as the fusion antigen gene C.
  • a vaccine based on mVSV-mediated novel coronavirus pneumonia wherein the above-mentioned target virus is a novel coronavirus pneumonia virus, and the mVSV virus vector is chimeric or fused with SARS-CoV-2 antigen genes, and the antigen genes are selected from SARS-CoV-2.
  • the predominant epitope of the spike protein S of the CoV-2 pathogen includes a chimeric antigen gene A, a chimeric assembly gene B, or a fusion antigen gene C.
  • the antigen gene includes the full length of the spike protein S gene and the corresponding dominant antigen genes in different S gene truncations, and the dominant antigen gene is selected from those corresponding to the receptor binding domain RBD encoding the spike protein S Full-length gene or corresponding truncation gene truncation.
  • the antigen gene of SARS-CoV-2 is selected from codon-optimized synthetic genes that encode one or more of the receptor binding domain RBD of the spike protein of human neocorona pneumonia virus, wherein The receptor binding domain RBD contains one or more antigen genes of different mutant strains of new coronavirus pneumonia.
  • Inoculation and immunization can be carried out by intramuscular injection, intravenous, nasal drip or oral administration.
  • Viral vector vaccine with a dose of 10 6 -10 8 pfu (mVSV-A, B/C)
  • the present disclosure selects live viruses as vaccine vectors, chimeric or fuses specific target antigen genes, and utilizes the replication ability of vesicular stomatitis virus in cells to express target antigens efficiently and quickly,
  • a specific administration method can significantly enhance the specific mucosal immune response;
  • the modified VSV proposed in the present disclosure patent mVSV
  • mVSV virus has lower toxicity, higher antigen loading capacity, and more stable virus genome.
  • the new coronary pneumonia vaccine involved in this disclosure will cause a strong innate immune response, activate the body’s immune system, and act like an adjuvant.
  • the target antigen carried by the virus will be fully discovered, and the antigen that is different from ordinary vaccines is unstable and easily degraded.
  • the target antigen of the viral vector of the present disclosure will be expressed in the cytoplasm in large quantities along with the replication of the virus, and will be fully presented to the DC cells to cause a specific immune response of the body.
  • the vaccine When the vaccine is administered to the mucosal site, the body will be induced Produce a locally acquired mucosal immune response.
  • the mVSV-Vac vector system of the present disclosure can be used for mucosal delivery of preventive or therapeutic vaccines for various transmucosal infectious pathogens.
  • the vaccine of the present disclosure can effectively induce the production of specific mucosal SIgA and systemic IgG against SARS-CoV-2.
  • the new coronary pneumonia vaccine mediated by the viral vector (mVSV) provided in the present disclosure can be administered via intramuscular injection, intravenous, nasal drip, oral administration and other immunization routes, which can solve the problem that traditional vaccines in the prior art cannot induce high-intensity immune responses (
  • the low titers of neutralizing antibodies make up for the inability of antigens carried by traditional vaccines to stay in the mucous membranes effectively, and cannot be fully presented to immune cells by APCs.
  • the activated immune response is weak and antibody titers are low.
  • the mVSV new crown vaccine involved in this disclosure can be used in combination with other vector vaccines.
  • the first shot uses mVSV new crown vaccine to immunize first
  • the second shot uses the second viral vector vaccine (adenovirus vector vaccine, poxvirus vector vaccine) for the second shot.
  • the second stimulation will further activate the acquired immune response against the new crown antigen, which greatly improves the response rate of vaccination.
  • the mVSV vector-mediated new coronary pneumonia vaccine involved in this disclosure has the following three characteristics:
  • Its core is a virus vaccine-mediated vector, which encodes the coronavirus spike protein spike protein S and different truncated bodies, preferably the antigen protein sequence is mainly derived from the SARS-CoV-2 strain.
  • the recombinant attenuated vesicular stomatitis virus is packaged through a specific modified plasmid (low copy) packaging system, that is, the vesicular stomatitis virus recombination subsystem.
  • the immune effect of mVSV vaccines is significantly improved, and the increased systemic IgG neutralizing antibodies and the number of sIgA antibodies in the mucosa are further induced in the body.
  • the fusion candidate vaccine mVSV-C will further activate the body's anti-viral T cell immunity while inducing a specific humoral immune response, forming a permanent memory, and producing a life-long protective effect.
  • the mVSV viral vector involved in the present disclosure can be used in the research of virus vaccines for purposes other than the currently rampant new coronavirus; in addition, it is also possible to administer immunologically effective amounts of the recombinant new coronavirus vaccine vector and the recombinant new coronavirus vaccine to patients with new coronavirus
  • Different immune adjuvant compositions have obvious curative and preventive effects; the immune response is the induction of anti-S protein serum antibodies and induces a specific protective immune response against S protein, and the induced specific neutralizing antibody titer exceeds 1 International units/ml.
  • the present disclosure provides the new coronary pneumonia vaccine and its adjuvant composition one or more times according to the patient's clinical performance, and even then provides the recombinant new coronary vaccine to the patient within weeks, months or years of the first providing step Or a vaccine combination combined with a target viral vector and a composition containing an adjuvant.
  • Patients who are provided with a new coronavirus vaccine recombinant new coronavirus vaccine or its adjuvant composition include: the individual exhibits one or more symptoms of SARS-CoV-2 The individual lacks any symptoms of SARS-CoV-2, the individual has been exposed to SARS-CoV-2, the individual has been in contact with an individual suffering from SARS-CoV-2, the individual is a child, an elderly person People who are exposed to or at risk of biological weapons are members of the military or health care workers.
  • mVSV virus vector wherein the mVSV virus vector includes mVSV virus, and the mVSV virus is a virus obtained by mutating the amino acid of the matrix protein M of the vesicular stomatitis virus Indiana strain, and the mutation occurs in the matrix protein.
  • M methionine at position 51 was mutated to phenylalanine
  • phenylalanine at position 110 was mutated to alanine
  • isoleucine at position 225 was mutated to leucine.
  • a vaccine comprising the mVSV viral vector described in (1), wherein a heterologous antigen gene of the target virus is integrated into the gene of the mVSV viral vector.
  • the SARS-CoV-2 antigen gene of the new coronavirus pneumonia virus is a codon-optimized sequence, and the codon-optimized sequence includes a full-length or partial truncated body of the new coronavirus pneumonia virus SARS-CoV-2 spike protein S gene.
  • a method for treating or preventing COVID-19 wherein the method includes the step of administering the vaccine according to any one of (2) to (11) to the patient.
  • FIG. 1 Schematic diagram of pmVSV-Core-A and pmVSV-Core-B plasmid construction, virus packaging and identification;
  • Figure 6 is a schematic diagram of VSV-spike protein S recombinant virus vaccine packaging through genetic recombination plasmid;
  • Figure 7 relates to the toxicity comparison between different point mutants of VSV and wild strains, including MTT toxicity detection in MEF cells (A), replication of different mutant strains (B), and safety comparison of different mutant strains in mouse models (C ).
  • the term "about” means: a value includes the standard deviation of the error of the device or method used to determine the value.
  • the selected/optional/preferred “numerical range” includes both the numerical endpoints at both ends of the range and all natural numbers covered by the numerical endpoints relative to the aforementioned numerical endpoints.
  • the experimental techniques and experimental methods used in this example are conventional techniques and methods unless otherwise specified.
  • the experimental methods for which specific conditions are not indicated in the following examples usually follow conventional conditions such as Sambrook et al., Molecular Cloning: Experiment The conditions described in the room manual (New York: Cold Spring Harbor Laboratory Press, 1989), or in accordance with the conditions recommended by the manufacturer.
  • the materials, reagents, etc. used in the examples, unless otherwise specified, can be obtained through formal commercial channels.
  • the present disclosure mainly constructs the SARS-CoV-2 virus protective epitope onto the VSV virus backbone vector (pCore).
  • VSV virus backbone vector pCore
  • the reagents and consumables used in this disclosure are as follows: Q5 Hot start High-Fidelity DNA polymerase (NEB M0493L), Nhe I-HF (NEB R3131L), Xho I (NEB R0146S), T4 DNA Ligase Enzyme (NEB M0202L), E.
  • the 293T and 293T-hACE2 adherent cells were cultured in a special culture environment (Thermo BB150 cell culture incubator) containing 5% CO2 at 37°C, using DMEM high-sugar complete medium for culture.
  • Attenuated mVSV virus vector Attenuated mVSV virus vector:
  • a three-site mutant of the matrix protein (M) of the recombinant vesicular stomatitis virus Indiana strain selected by the attenuated mVSV virus vector
  • the mutated amino acid positions preferably have amino acid substitutions from the 51st, 110th and 225th positions at the same time.
  • the amino acid substitution mode is: the 51st methionine M is replaced by phenylalanine F, and the 110th phenylalanine Acid F was replaced with Alanine A, and Isoleucine I at position 225 was replaced with Leucine L.
  • Example 1 The toxicity of the M protein three-site mutation against the Indiana strain of VSV is greatly reduced
  • the M protein can induce the apoptosis of host cells. It is the main factor for the VSV wild strain to infect cloven-hoofed animals.
  • the best way for wild VSV strains is to carry out genetic engineering mutations in the M gene.
  • Existing studies have shown that non-synonymous mutations at the 51st amino acid of the M protein will reduce the neurotoxicity of wild VSV. Therefore, the technique of the present disclosure is implemented Firstly, a single point mutation comparison was performed. At position 51, methionine was mutated to phenylalanine, alanine, leucine and arginine (control).
  • M51F-F110 (A/R/L), found that the toxicity of M51F-F110A has been further reduced in the 2 mutant strains, but in the follow-up (Figure 7C), the VSV wild strain sensitive Balb/c mice were dropped Nasal administration (simulation of nervous system infection), it was found that high-dose E9pfu administration of M51F-F110A still caused some mice (1/4 ratio) to lose weight, although only a transient phenomenon occurred within 5 days after vaccination. However, it still shows that the attenuation modification for the M gene has not reached the best way. Further, based on the positions of the above 2 mutations, the present disclosure has found a third mutation site that can significantly reduce the toxicity of the M protein, that is, the 225th amino acid.
  • the amino acid at position L was mutated from Leucine I to Leucine L, and the attenuation effect was the most significant (part of the comparison results are not shown in Figure 7). Further, as shown in Figure 7B, at the cellular level, it passes through the three positions of the M protein. The point mutant mVSV (M51F-F110A-I225L) did not detect any damage to normal MEF fibroblasts (multiplicity of infection rose to 10, and no significant cytopathic changes were observed). Similarly, different mutant strains were used in animal models The challenge experiment is shown in Figure 7C.
  • mice Balb/c In 8-week-old mice Balb/c, the E9pfu mutant strain virus was instilled into the nose for preliminary safety evaluation (intravenous administration was also verified by mouse model administration, the same dose, each There were 6 mice in the group. Except for the control group, the wild strain of VSV produced significant adverse reactions. The mice with other mutant strains had milder symptoms). The statistical results showed that the virus with and only 3 mutations did not cause the weight of the mice. However, other mutant strains showed a significant decrease in body weight and then recovered. In addition, after the early administration, the VSV wild strain showed a toxic reaction of abnormally increasing body temperature. At the same time, the VSV wild strain and mVSV-M51R in the control group showed small symptoms. In the phenomenon of nerve paralysis in the hind legs of mice, only the three mutant strains administered to mice did not produce any adverse reactions, which proves that the attenuated strain is highly safe to normal mice, has no toxic side effects, and does not have potential neurotoxicity.
  • the S gene sequence of SARS-CoV-2 released by NCBI is codon-optimized to facilitate its expression in the cell (named antigen gene A), and multiple potential epitopes predicted based on the SARS-CoV-2 sequence are combined into
  • the new antigen gene (named as antigen gene B), the sequence of antigen gene A and antigen gene B are handed over to Nanjing GenScript Biotech to synthesize into pCDNA3.1 and pUC57 vectors respectively, after PCR amplification of the target gene, the fragment purification reagent Recover and purify the target band from the cassette, use restriction endonucleases, MCS1 (Xhol) and MCS2 (Nhel) to digest the fragment and pmVSV-GFP vector at 37°C for 3 hours, and then perform the ligation reaction after the vector and the target fragment are recovered by the gel.
  • Primer synthesis and primer information The primers were synthesized by Suzhou Jinweizhi Bio-Biotech Co., Ltd.
  • the PCR primers and bacterial liquid PCR primers selected for the amplification of A gene were constructed as shown in Table 1:
  • Obtain the target gene use the pCDNA3.1 plasmid with the target gene sequence as a template to PCR amplify the A gene with the primers in Table 1; use the pUC57 plasmid with the target gene sequence as the template to PCR amplify the B gene with the primers in Table 2;
  • Double-enzyme digestion of the above purified product and vector 37°C digestion for 3h
  • the VSV virus was packaged according to the standard method for the correctly sequenced plasmid, and the pmVSV-GFP plasmid was taken as a positive packaging control; the virus supernatant was collected once at 48h and 72h, and 300uL was used to infect the 293T cells pre-plated on the 6-well plate.
  • the packaged viruses were named mVSV-GFP, mVSV-A, mVSV-B; the cells were collected after cytopathic disease to detect the antigen expression level by WB.
  • test serum Dilute the test serum and the negative serum in an appropriate ratio (1:100) with antibody serum diluent (1% BSA), add 100ul per well, and incubate at 37 degrees Celsius for 2 hours;
  • antibody serum diluent 1% BSA
  • the C fragment was fused to the C-terminus of the VSV-G envelope gene on the pVSV-GFP vector by overlap extension PCR (product number is GP-C), or fused to the N-terminus of the VSV-G envelope gene (product number is ( C-GP).
  • the second round of PCR takes the two target fragments of the first round of PCR as templates, and uses the upstream primers and fragments of fragment 1 respectively.
  • the downstream primer of 2 carries out the amplification of the fusion fragment, the fragment and pVSV-GFP vector are digested with restriction endonucleases (MCS1(MluI) and MCS2(XhoI)) at 37°C for 3h, and the vector and the target fragment are recovered by the gel
  • MCS1(MluI) and MCS2(XhoI) restriction endonucleases
  • Primer synthesis and primer information The primers were synthesized by Suzhou Jinweizhi Bio-Biotechnology Co., Ltd., and the specific primer information is shown in the following table:
  • viruses Collect the virus supernatant once at 48h and 72h each, and take 300uL to infect the 293T cells pre-plated on the 6-well plate and package them.
  • the viruses are named mVSV-(GP-C) and mVSV-(C-GP) respectively;
  • the cells are collected for WB to detect the antigen expression level.
  • test serum Dilute the test serum and the negative serum in an appropriate ratio (1:100) with antibody serum diluent (1% BSA), add 100ul per well, and incubate at 37 degrees Celsius for 2 hours;
  • antibody serum diluent 1% BSA
  • the antibody was serially diluted (1:2) 10 ⁇ L/tube with Opti-MEM, and a positive control without antibody (20 ⁇ L virus solution, final virus concentration 4E5TU/mL) and a negative control without virus (20 ⁇ L) Opti-MEM);
  • the pseudovirus is also serially diluted to 8E5TU/mL;
  • step 5 Take 10 ⁇ L of the diluted virus solution (8E5TU/mL) and add it to the 10 ⁇ L serially diluted antibody in step 2 (1:1 pipetting and mixing) (at this time, the final virus concentration is 4E5pfu/mL);
  • the serum neutralization titer is determined according to the dilution factor of the antibody serum corresponding to the hole where the green fluorescence appears last.
  • mVSV-C In the intravenous administration group, the most neutralizing antibodies were induced, which indirectly indicates that the specific and preferred neocorona antigen RBD will be fused with VSVG (high immunogenicity) (N-terminal fusion) to produce neutralizing antibodies against neocorona, indirectly supporting evidence
  • VSVG high immunogenicity
  • N-terminal fusion N-terminal fusion
  • the fusion of foreign dominant antigens to the N-terminus of mVSV vector gene GP can enhance the body's recognition of antigens by enhancing the display of dominant antigens in the recombinant virus envelope, and induce the production of neutralizing antibodies and antiviral immune memory.
  • mVSV-mediated SARS-CoV-2 vaccine series products include mVSV-A/B and mVSV-C.
  • the antigen gene of the new coronavirus is integrated into the non-enveloped core region of the virus, preferably the chimeric position is in the coding region of the envelope GP and polymerase L.
  • This viral vector candidate must be a live strain at the time of vaccination due to the antigen gene It needs to be transcribed and translated into protein by infected host cells in the body before it can be presented by the immune cell DC.
  • the antigen gene can express the foreign antigen in the body with the replication of the virus, and activate the body to produce specific immunity against the new crown.
  • the design strategy of another mVSV-C candidate vaccine is completely different.
  • the technical solution is to integrate the truncated antigen gene of the new coronavirus into the envelope GP gene of mVSV, preferably integrated into the N of the GP gene. From the results of Examples 3 and 4, it can be found that the RBD protein integrated at the N-terminus is expressed in fusion with the GP protein. At the protein level, it is proved that the candidate antigen protein of the mVSV-C-GP vaccine is displayed on the surface of the envelope. Type vaccines can be inactivated (irradiation or high temperature) and then inoculated.
  • the safety is better, although in the examples, it is not further elaborated whether such candidate vaccines will be inactivated after inactivated vaccination.
  • the live operation reduces the specific immune response induced by the antigen.
  • the reduction of immunogenicity can improve the response efficiency by increasing the vaccination dose during clinical vaccination, and make up for the disadvantage of weak immunogenicity caused by inactivation.

Abstract

L'invention concerne un vecteur viral recombinant mVSV de la protéine M du virus de la stomatite vésiculaire (VSV). Le vecteur viral recombinant comprend des souches mutantes de virus obtenues par la mutation de trois sites M51F, F110A et I225L de la protéine M d'une souche sauvage du VSV Indiana. L'invention concerne en outre un nouveau vaccin contre la pneumonie à coronavirus formé par la chimérisation d'un vecteur de virus mVSV ou la par la fusion d'un vecteur de virus mVSV avec un domaine de liaison au récepteur de la protéine spike S des pathogènes du SARS-CoV-2.
PCT/CN2021/081524 2020-03-20 2021-03-18 Vecteur de virus mvsv, vaccin à vecteur viral associé et nouveau vaccin contre la pneumonie à coronavirus basé sur la médiation par mvsv WO2021185310A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010203073.6A CN111088283B (zh) 2020-03-20 2020-03-20 mVSV病毒载体及其病毒载体疫苗、一种基于mVSV介导的新冠肺炎疫苗
CN202010203073.6 2020-03-20

Publications (1)

Publication Number Publication Date
WO2021185310A1 true WO2021185310A1 (fr) 2021-09-23

Family

ID=70400536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081524 WO2021185310A1 (fr) 2020-03-20 2021-03-18 Vecteur de virus mvsv, vaccin à vecteur viral associé et nouveau vaccin contre la pneumonie à coronavirus basé sur la médiation par mvsv

Country Status (2)

Country Link
CN (1) CN111088283B (fr)
WO (1) WO2021185310A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113475463A (zh) * 2021-02-03 2021-10-08 湖州市中心医院 一种新型冠状病毒致肺损伤动物模型的建立方法及其小鼠模型

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009111738A2 (fr) 2008-03-06 2009-09-11 Mayo Foundation For Medical Education And Research Vecteurs d’adénovirus répliquant à cycle unique
US9816080B2 (en) 2014-10-31 2017-11-14 President And Fellows Of Harvard College Delivery of CAS9 via ARRDC1-mediated microvesicles (ARMMs)
WO2018067546A1 (fr) 2016-10-03 2018-04-12 President And Fellows Of Harvard College Administration d'arn thérapeutiques par le biais de microvésicules à arrdc1
TW202146427A (zh) * 2020-02-21 2021-12-16 美商國際愛滋病疫苗開發股份有限公司 用於預防冠狀病毒疾病的疫苗組合物
CN111088283B (zh) * 2020-03-20 2020-06-23 苏州奥特铭医药科技有限公司 mVSV病毒载体及其病毒载体疫苗、一种基于mVSV介导的新冠肺炎疫苗
US10787501B1 (en) 2020-04-02 2020-09-29 Regeneron Pharmaceuticals, Inc. Anti-SARS-CoV-2-spike glycoprotein antibodies and antigen-binding fragments
GB2594365B (en) 2020-04-22 2023-07-05 BioNTech SE Coronavirus vaccine
CN113599512A (zh) * 2020-05-04 2021-11-05 国光生物科技股份有限公司 免疫组合物
WO2021224946A1 (fr) * 2020-05-07 2021-11-11 Bharat Biotech International Limited Vaccin contre le coronavirus par immunisation nasale
WO2021226520A1 (fr) * 2020-05-08 2021-11-11 Kiromic BioPharma, Inc. Compositions de peptides pour le traitement d'infections pathogènes
CN111662379B (zh) * 2020-05-09 2021-03-02 江苏省疾病预防控制中心(江苏省公共卫生研究院) 抗新型冠状病毒的抗体、制备方法和应用
CN111518175B (zh) * 2020-05-11 2021-02-26 广东珩达生物医药科技有限公司 Sars-cov-2抗原多肽及其重组腺相关病毒和在制备疫苗中的应用
TWI799855B (zh) * 2020-05-11 2023-04-21 長庚醫療財團法人林口長庚紀念醫院 抗新型冠狀病毒(SARS-CoV-2)之新穎單株抗體及其應用
WO2021232050A1 (fr) * 2020-05-11 2021-11-18 Board Of Regents, The University Of Texas System Immunothérapie basée sur des cellules tueuses naturelles pour le traitement ou la prévention d'une infection par sars-cov-2
CN111467489B (zh) * 2020-05-12 2022-06-03 上海荣瑞医药科技有限公司 一种治疗肿瘤的药物
CN111286493B (zh) * 2020-05-12 2020-10-27 上海荣瑞医药科技有限公司 一种溶瘤病毒疫苗及其与免疫细胞联合治疗肿瘤的药物
CN111529701A (zh) * 2020-05-14 2020-08-14 内蒙古自治区国际蒙医医院(内蒙古自治区蒙医药研究所) 一种口服后产生新型冠状病毒抗体的制剂及其制备方法
CN111671890B (zh) * 2020-05-14 2022-08-05 苏州大学 一种新型冠状病毒疫苗及其应用
DE20175031T1 (de) * 2020-05-15 2021-09-09 Euroimmun Medizinische Labordiagnostika Ag Verfahren zur Bestimmung der Wirksamkeit eines SARS-CoV-2 Impfstoffs
CN111518740A (zh) * 2020-05-18 2020-08-11 军事科学院军事医学研究院军事兽医研究所 一种表达SARS-CoV-2 S基因的重组植物乳酸菌及其制备方法
CN113684219B (zh) * 2020-05-18 2022-12-23 康希诺(上海)生物科技有限公司 mRNA或mRNA组合物及其制备方法和应用
RU2723008C9 (ru) * 2020-05-19 2021-02-09 федеральное государственное бюджетное учреждение «Национальный исследовательский центр эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи» Министерства здравоохранения Российской Федерации Способ получения штамма клеток яичника китайского хомячка, продуцента рекомбинантного белка RBD вируса SARS-CoV-2, штамм клеток яичника китайского хомячка, продуцент рекомбинантного белка RBD вируса SARS-CoV-2, способ получения рекомбинантного белка RBD вируса SARS-CoV-2, тест-система для иммуноферментного анализа сыворотки или плазмы крови человека и ее применение
CN116102644A (zh) * 2020-05-19 2023-05-12 益科思特(北京)医药科技发展有限公司 抗新型冠状病毒Spike蛋白抗体及其应用
US11129890B1 (en) * 2020-05-19 2021-09-28 Vigene Biosciences, Inc. Non-integrating HIV-1 comprising mutant RT/IN proteins and the SARS-CoV-2 spike protein
IL298333A (en) * 2020-05-20 2023-01-01 Alexandru Adrian Hennrich A viral assembly vector for a vaccine against the corona virus cell
WO2021239666A1 (fr) * 2020-05-26 2021-12-02 Diaccurate Procédés thérapeutiques
WO2021247567A1 (fr) * 2020-06-01 2021-12-09 Washington University Constructions vaccinales contre le coronavirus et procédés de fabrication et d'utilisation correspondants
CN113750227A (zh) * 2020-06-01 2021-12-07 康希诺生物股份公司 一种SARS-CoV-2疫苗
CN111647077B (zh) * 2020-06-02 2021-02-09 深圳市因诺赛生物科技有限公司 新型冠状病毒(sars-cov-2)刺突蛋白结合分子及其应用
CN116057069A (zh) * 2020-06-03 2023-05-02 瑞泽恩制药公司 用抗SARS-CoV-2刺突糖蛋白抗体治疗或预防SARS-CoV-2感染和COVID-19的方法
CN113278068B (zh) * 2020-06-04 2023-11-10 山东宽和正生物医药有限公司 针对新冠病毒SARS-CoV-2的单克隆抗体F5
WO2021250219A1 (fr) * 2020-06-10 2021-12-16 Bavarian Nordic A/S Vaccin à base du virus de la vaccine ankara modifié (mva) recombinant contre une maladie à coronavirus
CN113151184B (zh) * 2020-06-15 2023-03-21 上海市公共卫生临床中心 基于细胞膜展示冠状病毒免疫原以诱导中和抗体的方法
CN111603557B (zh) * 2020-06-15 2023-11-28 睿丰康生物医药科技(浙江)有限公司 一种包膜替换型病毒载体疫苗及其构建方法
WO2021254270A1 (fr) * 2020-06-15 2021-12-23 上海市公共卫生临床中心 Procédé pour induire un anticorps neutralisant sur la base d'une membrane cellulaire pour afficher un immunogène de coronavirus
CN111893097A (zh) * 2020-06-16 2020-11-06 惠君生物医药科技(杭州)有限公司 一种冠状病毒假病毒包装系统及一步法包装方法
CN113797326B (zh) * 2020-06-17 2024-01-19 上海君实生物医药科技股份有限公司 一种预防冠状病毒引起疾病的疫苗
KR20230038205A (ko) * 2020-06-17 2023-03-17 메이사 백신즈, 인크. 키메라 rsv 및 코로나바이러스 단백질, 면역원성 조성물, 및 사용 방법
WO2021260176A1 (fr) * 2020-06-25 2021-12-30 Virometix Ag Épitopes synthétiques de bêta-coronavirus
TW202208398A (zh) * 2020-07-01 2022-03-01 義大利商萊伊錫拉有限責任公司 大猩猩腺病毒核酸及胺基酸序列,包含彼之載體,及其用途
WO2022000845A1 (fr) * 2020-07-01 2022-01-06 江苏省疾病预防控制中心(江苏省公共卫生研究院) Vaccin à base de protéine recombinée pour la prévention du sars-cov-2 et son procédé de préparation
WO2022003719A2 (fr) * 2020-07-03 2022-01-06 Indian Institute Of Science Fragments polypeptidiques, composition immunogène contre le sras-cov-2 et mise en oeuvre de ceux-ci
WO2022006565A1 (fr) * 2020-07-03 2022-01-06 Kang Zhang Polypeptides, compositions de vaccin et leur utilisation pour induire une réponse immunitaire au sars-cov-2 chez les primates
RU2733831C1 (ru) * 2020-07-08 2020-10-07 Федеральное государственное учреждение науки "Государственный научный центр вирусологии и биотехнологии "Вектор" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФБУН ГНЦ ВБ "Вектор" Роспотребнадзора) Искусственный ген, кодирующий бицистронную структуру, образованную последовательностями рецептор-связующего домена гликопротеина S коронавируса SARS-CoV-2, P2A-пептида и гликопротеина G VSV, рекомбинантная плазмида pStem-rVSV-Stbl_RBD_SC2, обеспечивающая экспрессию искусственного гена и рекомбинантный штамм вируса везикулярного стоматита rVSV-Stbl_RBD_SC2, используемого для создания вакцины против коронавируса SARS-CoV-2
US20230248818A1 (en) * 2020-07-08 2023-08-10 The Trustees Of The University Of Pennsylvania Nucleoside-modified RNA for Inducing an Immune Response Against SARS-CoV-2
CN111778264B (zh) * 2020-07-14 2021-06-29 广州佰芮慷生物科技有限公司 基于新型腺病毒载体Sad23L和/或Ad49L的新型冠状病毒肺炎疫苗
CN112079906B (zh) * 2020-07-15 2022-11-04 张影 一种新型冠状病毒刺突蛋白、相关生物材料及其应用、检测试纸和检测试剂盒
CN114057848B (zh) * 2020-08-07 2023-11-21 清华大学 一种预防新型冠状病毒肺炎covid-19的多肽、免疫原性偶联物及其用途
US11149286B1 (en) * 2020-08-17 2021-10-19 Mayo Foundation For Medical Education And Research Adenovirus vectors and methods for using adenovirus vectors
US20230338511A1 (en) * 2020-08-28 2023-10-26 University Of Houston System Single-chain coronavirus viral membrane protein complexes
CN112079901B (zh) * 2020-09-04 2021-11-19 华中科技大学 拮抗多肽及其用于制备抗新型冠状病毒药物的应用
JP2023540778A (ja) * 2020-09-07 2023-09-26 ジーアイ・セル・インコーポレイテッド Ace2結合力が減少したコロナウイルス由来の受容体結合ドメイン変異体及びこれを含むワクチン組成物
WO2022055978A1 (fr) * 2020-09-08 2022-03-17 The Trustees Of The University Of Pennsylvania Compositions et méthodes de diminution de risque de maladie amplifiée par vaccin
WO2022081707A1 (fr) * 2020-10-13 2022-04-21 The Government Of The United States, As Represented By The Secretary Of The Army Vaccin à adn de sras-cov-2 et son procédé d'administration
CN112226413B (zh) * 2020-10-14 2022-04-15 苏州大学 基于SARS-CoV-2 S蛋白RBD区域的靶向性外泌体及其制备方法
CN112618707B (zh) * 2020-10-15 2023-07-04 广州达博生物制品有限公司 一种SARS-CoV-2冠状病毒疫苗及其制备方法
WO2022081954A1 (fr) * 2020-10-16 2022-04-21 President And Fellows Of Harvard College Vésicules extracellulaires activées par le domaine ww ciblant des coronavirus
US20230416309A1 (en) * 2020-10-23 2023-12-28 Jiangsu Provincial Center For Disease Control And Prevention (Public Health Research Institute Of Ji Fusion protein and application thereof
CN112175913A (zh) * 2020-10-28 2021-01-05 中国人民解放军军事科学院军事医学研究院 SARS-CoV-2减毒株及其在预防新冠肺炎中的应用
WO2022092779A1 (fr) * 2020-10-29 2022-05-05 에스케이바이오사이언스 주식회사 Vecteur viral comprenant un matériau d'antigène du sras-coronavirus-2 et son utilisation
CN112626035A (zh) * 2020-12-03 2021-04-09 中国科学院微生物研究所 一种新冠肺炎疫苗以及疫苗套件
EP4263812A1 (fr) * 2020-12-17 2023-10-25 Versitech Limited Compositions immunogenes contre la grippe et le sars-cov-2, leurs procèdes de fabrication et leur utilisation
CN112375748B (zh) * 2021-01-11 2021-04-09 中国科学院动物研究所 基于水疱性口炎病毒载体的新型冠状病毒嵌合重组疫苗及其制备方法与应用
CN115040644B (zh) * 2021-04-08 2023-03-07 中国农业科学院哈尔滨兽医研究所(中国动物卫生与流行病学中心哈尔滨分中心) 新冠肺炎重组狂犬病病毒载体疫苗
CN113073106B (zh) * 2021-06-04 2021-09-07 北京华芢生物技术有限公司 新型冠状病毒b.1.525尼日利亚突变株rbd的基因及其应用
CN113186204B (zh) * 2021-06-11 2021-10-15 北京华芢生物技术有限公司 新型冠状病毒巴西株p.1突变株rbd的基因及其应用
CN113621076A (zh) * 2021-08-31 2021-11-09 南华大学 一种针对新冠病毒变异毒株Delta的融合蛋白、喷鼻式疫苗及其制备方法和应用
CN113801208B (zh) * 2021-09-29 2023-09-22 中国疾病预防控制中心病毒病预防控制所 一种新型冠状病毒的t细胞免疫检测方法
WO2023104904A2 (fr) * 2021-12-08 2023-06-15 Genclis Sars-cov-2 et variants utilisant deux récepteurs cellulaires indépendants pour la réplication
CN114150004B (zh) * 2022-02-09 2022-04-22 广州恩宝生物医药科技有限公司 表达SARS-CoV-2奥密克戎突变株病毒抗原肽的核酸序列及其应用
US11878055B1 (en) 2022-06-26 2024-01-23 BioNTech SE Coronavirus vaccine
CN115725657A (zh) * 2022-09-16 2023-03-03 中国科学院广州生物医药与健康研究院 一种节段化的水泡性口炎病毒载体及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1788088A (zh) * 2003-03-27 2006-06-14 渥太华健康研究学会 突变的水泡性口炎病毒及其用途
CN101007168A (zh) * 2006-01-23 2007-08-01 北京大学 一种sars疫苗及其制备方法
CN105087645A (zh) * 2015-08-04 2015-11-25 上海交通大学 M蛋白三氨基酸位点突变的猪用vsv病毒载体构建和应用
CN105555958A (zh) * 2013-06-26 2016-05-04 西安大略大学 水疱性口炎病毒的改性基质蛋白
CN111088283A (zh) * 2020-03-20 2020-05-01 苏州奥特铭医药科技有限公司 mVSV病毒载体及其病毒载体疫苗、一种基于mVSV介导的新冠肺炎疫苗

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1788088A (zh) * 2003-03-27 2006-06-14 渥太华健康研究学会 突变的水泡性口炎病毒及其用途
CN101007168A (zh) * 2006-01-23 2007-08-01 北京大学 一种sars疫苗及其制备方法
CN105555958A (zh) * 2013-06-26 2016-05-04 西安大略大学 水疱性口炎病毒的改性基质蛋白
CN105087645A (zh) * 2015-08-04 2015-11-25 上海交通大学 M蛋白三氨基酸位点突变的猪用vsv病毒载体构建和应用
CN111088283A (zh) * 2020-03-20 2020-05-01 苏州奥特铭医药科技有限公司 mVSV病毒载体及其病毒载体疫苗、一种基于mVSV介导的新冠肺炎疫苗

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. N. VAN DEN POL, J. N. DAVIS: "Highly Attenuated Recombinant Vesicular Stomatitis Virus VSV-12'GFP Displays Immunogenic and Oncolytic Activity", JOURNAL OF VIROLOGY, AMERICAN SOCIETY FOR MICROBIOLOGY., vol. 87, no. 2, 15 January 2013 (2013-01-15), pages 1019 - 1034, XP055173691, ISSN: 0022538X, DOI: 10.1128/JVI.01106-12 *
FANG XINKUI, ZHANG SHIKUAN, SUN XIAODONG, LI JINJIN, SUN TAO: "Evaluation of attenuated VSVs with mutated M or/and G proteins as vaccine vectors", VACCINE, ELSEVIER, AMSTERDAM, NL, vol. 30, no. 7, 1 February 2012 (2012-02-01), AMSTERDAM, NL, pages 1313 - 1321, XP055852162, ISSN: 0264-410X, DOI: 10.1016/j.vaccine.2011.12.085 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113475463A (zh) * 2021-02-03 2021-10-08 湖州市中心医院 一种新型冠状病毒致肺损伤动物模型的建立方法及其小鼠模型
CN113475463B (zh) * 2021-02-03 2023-02-24 湖州市中心医院 一种新型冠状病毒致肺损伤动物模型的建立方法及其小鼠模型

Also Published As

Publication number Publication date
CN111088283A (zh) 2020-05-01
CN111088283B (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
WO2021185310A1 (fr) Vecteur de virus mvsv, vaccin à vecteur viral associé et nouveau vaccin contre la pneumonie à coronavirus basé sur la médiation par mvsv
WO2021254327A1 (fr) Vaccin à vecteur viral de type à remplacement d'enveloppe et procédé de construction associé
US11759516B2 (en) Nucleic acid vaccine against the SARS-CoV-2 coronavirus
Guo et al. Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector‐based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus
TWI688652B (zh) 作為對抗腸病毒感染之免疫原的病毒顆粒及其製造
Zhu SARS immunity and vaccination
WO2020063370A2 (fr) Composition immunitaire, son procédé de préparation et application associée
RU2464316C2 (ru) F-белок респираторно-синцитиального вируса и его применение
US20050002953A1 (en) SARS-coronavirus virus-like particles and methods of use
EP4106809A1 (fr) Compositions de vaccin de prévention de maladie à coronavirus
CN113151184B (zh) 基于细胞膜展示冠状病毒免疫原以诱导中和抗体的方法
US11179459B1 (en) Vaccine composition for preventing human infection of SARS coronavirus and alleviating infection symptoms
WO2023138334A1 (fr) Vaccin à nouvelle protéine de coronavirus recombinante, son procédé de préparation et son application
WO2021254270A1 (fr) Procédé pour induire un anticorps neutralisant sur la base d'une membrane cellulaire pour afficher un immunogène de coronavirus
JP2021536228A (ja) ヘマグルチニン(ha)タンパク質内の非ドミナントエピトープに対する免疫応答を誘起するためのベクター
Jung et al. The human ACE-2 receptor binding domain of SARS-CoV-2 express on the viral surface of the Newcastle disease virus as a non-replicating viral vector vaccine candidate
JP2021505529A (ja) ネコカリシウイルスワクチン
WO2022135563A1 (fr) Procédé pour induire simultanément une réponse immunitaire contre de multiples virus
WO2023138333A1 (fr) Vaccin recombinant à base de protéine sars-cov-2, son procédé de préparation et son utilisation
Kim et al. DNA vaccination against foot‐and‐mouth disease via electroporation: study of molecular approaches for enhancing VP1 antigenicity
US7235245B2 (en) Chimeric lyssavirus nucleic acids and polypeptides
US11896658B2 (en) RSV vaccines and methods of production and use thereof
US10881722B2 (en) Epizootic hemorrhagic disease vaccine
WO2023023940A1 (fr) Immunogène destiné à induire un vaccin à lymphocytes t anti-coronavirus à large spectre et son utilisation
US20230144060A1 (en) MERS-CoV VACCINE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21770910

Country of ref document: EP

Kind code of ref document: A1