WO2021182550A1 - 熱伝導性ペースト - Google Patents

熱伝導性ペースト Download PDF

Info

Publication number
WO2021182550A1
WO2021182550A1 PCT/JP2021/009673 JP2021009673W WO2021182550A1 WO 2021182550 A1 WO2021182550 A1 WO 2021182550A1 JP 2021009673 W JP2021009673 W JP 2021009673W WO 2021182550 A1 WO2021182550 A1 WO 2021182550A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic powder
mass
heat
parts
powder filler
Prior art date
Application number
PCT/JP2021/009673
Other languages
English (en)
French (fr)
Inventor
小林 宏
龍夫 木部
智 柏谷
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CN202180020417.2A priority Critical patent/CN115279838A/zh
Priority to EP21767763.2A priority patent/EP4120337A4/en
Priority to US17/910,607 priority patent/US20230141794A1/en
Publication of WO2021182550A1 publication Critical patent/WO2021182550A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L93/00Compositions of natural resins; Compositions of derivatives thereof
    • C08L93/04Rosin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the present invention relates to a thermally conductive paste used by being applied between a heat generating component and a heat radiating component.
  • heat-dissipating parts such as heat sinks are attached to dissipate heat generated from heat-generating parts such as semiconductor elements and mechanical parts. It is used with a heat conductive member sandwiched between it and the heat radiating component.
  • heat conductive members such as solid heat conductive sheets, liquid heat conductive pastes, and curable heat conductive greases that change from liquid to solid, and are used properly according to the application. Has been done.
  • Patent Document 1 discloses a thermally conductive grease containing a base oil composed of a copolymer of an unsaturated dicarboxylic acid dibutyl ester and an ⁇ -olefin and a thermally conductive filler. Patent Document 1 describes that this thermally conductive grease has high thermal conductivity and good dispensability and compressibility.
  • thermally conductive grease is in the form of a paste at room temperature and flows under pressure, it is easy to apply in the form of a thin film and has excellent adhesion. There is a problem that it easily flows out from the air and is inferior in pump-out resistance. Note that pump-out is a phenomenon in which thermally conductive grease protrudes from the coated portion and voids (voids) are generated inside the coated portion, making it impossible to maintain good thermal conductivity.
  • a thermally conductive paste that is solid at room temperature but has the property of adhering to the adherend by absorbing heat and softening after being incorporated into a heat-generating component and reducing thermal resistance.
  • Development is in progress (for example, Patent Documents 2 to 4).
  • Information on the technique of the heat conductive paste is described in, for example, JP-A-2001-89756 (Patent Document 2), JP-A-2004-75760 (Patent Document 3) and JP-A-2007-150349 (Patent Document 4).
  • Patent No. 4713161 Japanese Unexamined Patent Publication No. 2001-89756 Japanese Unexamined Patent Publication No. 2004-75760 JP-A-2007-150349
  • the heat conductive paste may be applied to the surface of the heat generating part and / or the heat radiating part by using a conventionally known printing method such as screen printing.
  • a thermally conductive paste contains an inorganic powder filler or the like in order to impart thermal conductivity.
  • the inorganic powder filler in the thermally conductive paste aggregates or the like, it becomes a paste. Therefore, it is not always easy to apply using a conventionally known printing method.
  • the present invention has been proposed in view of such circumstances, and since it can be made into a paste, it can be satisfactorily applied even by using a conventionally known application method, and the occurrence of pump-out is also effective. It is an object of the present invention to provide a thermally conductive paste that can be suppressed.
  • the present inventors have found that the above problems can be solved if the heat conductive paste contains a thermoplastic resin and a volatile solvent and the solubility parameter of the volatile solvent is within a predetermined range, and completes the present invention. It came to.
  • the first aspect of the present invention is a heat conductive paste containing a base oil composition and an inorganic powder filler, wherein the base oil composition has a softening point of 50 ° C. or higher and 150 ° C. or higher.
  • the solubility parameter obtained by the Fedors estimation method of the volatile solvent containing the thermoplastic resin at ° C. or lower and the volatile solvent is 9.0 to 12.0 cal (1/2) / cm (3 / 3 /).
  • the second aspect of the present invention is the thermally conductive paste containing the volatile solvent in a ratio of 10 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the base oil in the first invention.
  • the inorganic powder filler includes a first inorganic powder filler having an average particle size in the range of 10 ⁇ m or more and 100 ⁇ m or less, and the first inorganic powder.
  • a second inorganic powder filler having an average particle size different from that of the powder filler
  • a third inorganic powder filler having a different average particle size from the first inorganic powder filler and the second inorganic powder filler.
  • the heat conductive paste has an average particle size of the inorganic powder filler satisfying the following relational expressions (1) and (2).
  • D 3 / D 2 ⁇ 0.60 ... (2) [In the formula: D 1 represents the average particle size of the first inorganic powder filler, D 2 represents the average particle size of the second inorganic powder filler, and D 3 represents the average particle size of the third inorganic powder filler. show. ]
  • the average particle size of the second inorganic powder filler is in the range of 1 ⁇ m or more and 50 ⁇ m or less, and the average particle size of the third inorganic powder filler is 0. .
  • a thermally conductive paste in the range of 1 ⁇ m or more and 5 ⁇ m or less.
  • the first inorganic powder filler is contained in a ratio of 40 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the inorganic powder filler.
  • the second inorganic powder filler is contained in a ratio of 10 parts by mass or more and 50 parts by mass or less
  • the third inorganic powder filler is contained in a ratio of 10 parts by mass or more and 40 parts by mass or less. ..
  • the inorganic powder filler is selected from copper, aluminum, zinc oxide, magnesium oxide, aluminum oxide, aluminum nitride and silicon carbide.
  • the total amount of the base oil and the thermoplastic resin is 5.3 parts by mass or more with respect to 100 parts by mass of the inorganic powder filler. It is a thermally conductive paste having a ratio of 33.3 parts by mass or less.
  • the eighth aspect of the present invention is the heat containing the thermoplastic resin in a proportion of 50 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the base oil in any one of the first to seventh inventions. It is a conductive paste.
  • a ninth aspect of the present invention is that in any one of the first to eighth aspects, the base oil contains at least one selected from mineral oil, synthetic hydrocarbon oil, diester, polyol ester and phenyl ether. It is a thermally conductive paste.
  • thermoplastic resin is at least one selected from an ester resin, an acrylic resin, a rosin resin, and a cellulose resin. It is a sex paste.
  • the eleventh aspect of the present invention further contains a thixotropy adjusting agent in any one of the first to tenth inventions, and the thixotropy adjusting agent is derived from bentonite, mica, kaolin, sepiolite, saponite, and hectorite.
  • the twelfth of the present invention is the heat conductive paste containing the thixotropy adjusting agent in a ratio of 1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the base oil in the eleventh invention.
  • any of the first to twelfth heat conductive pastes is applied to the surfaces of heat generating parts and / or heat radiating parts, and the heat conductive paste is dried to form a heat conductive sheet. It is a method of manufacturing a heat conductive sheet to obtain.
  • the fourteenth aspect of the present invention is a method for manufacturing a heat-generating component with a heat-dissipating component in which the heat-generating component and the heat-dissipating component are adhered to each other via a heat conductive sheet.
  • the thermal conductive paste is dried to obtain a thermal conductive sheet, and the heat generating component and the heat radiating component are bonded to each other via the thermal conductive sheet. It is a method of manufacturing heat-generating parts with heat-dissipating parts.
  • the thermally conductive paste of the present invention can be made into a paste, it can be applied satisfactorily even by using a conventionally known coating method, and the occurrence of pump-out can be effectively suppressed.
  • the present embodiment a specific embodiment of the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail.
  • the present invention is not limited to the following embodiments, and can be carried out with appropriate modifications within the scope of the object of the present invention.
  • the thermally conductive paste according to the present embodiment contains a base oil composition and an inorganic powder filler.
  • the base oil composition contains the base oil, a thermoplastic resin having a softening point of 50 ° C. or higher and 150 ° C. or lower, and a volatile solvent, and the solubility parameter obtained by the Fedors estimation method of the volatile solvent. However, it is characterized in that it is 9.0 to 12.0 cal (1/2) / cm (3/2).
  • the volatile solvent has a predetermined solubility parameter, it is possible to effectively suppress the aggregation of the inorganic powder filler in the heat conductive paste, and the coatability at room temperature can be further improved. ..
  • the applied heat conductive paste forms a semi-solid heat conductive sheet containing a base oil, a soft thermoplastic resin, and an inorganic powder filler by volatilizing the volatile solvent. ..
  • the adhesion to the heat generating component and the heat radiating component can be improved.
  • the thermally conductive sheet contains a thermoplastic resin having a softening point of 50 ° C. or higher and 150 ° C. or lower at a specific ratio, the thermally conductive sheet softens at a predetermined temperature or higher, so-called phase. Will make a change.
  • the thermally conductive sheet softens at a predetermined temperature or higher, so-called phase. Will make a change.
  • the fluidity of the heat conductive sheet increases and spreads even more uniformly, and the adhesion is improved when the distance between the heat-generating parts and the heat-dissipating parts is narrowed.
  • the thermal resistance can be lowered and the heat conduction efficiency can be improved.
  • the uniformly spread thermal conductive sheet is cured at a temperature lower than a predetermined temperature based on the softening point of the thermoplastic resin and undergoes a phase change as the temperature drops thereafter, and is in a semi-solid state having an appropriate hardness. Return to the heat conductive sheet.
  • the outflow of the base oil can be prevented by the networked thermoplastic resin while the adhesion between the heat generating component and the heat radiating component is maintained, and the pump out can be effectively suppressed.
  • Base oil composition contains at least a base oil, a thermoplastic resin, and a volatile solvent. Each component contained in the base oil composition will be described.
  • Base oil Various base oils can be used as the base oil.
  • hydrocarbon-based base oils such as mineral oils and synthetic hydrocarbon oils, ester-based base oils, ether-based base oils, phosphoric acid esters, and silicon oils. And fluorine oil and the like.
  • a base oil containing at least one selected from hydrocarbon-based base oils such as mineral oils and synthetic hydrocarbon oils, ester-based base oils and ether-based base oils.
  • the mineral oil for example, a mineral oil-based lubricating oil distillate is refined by appropriately combining refining methods such as solvent extraction, solvent dewaxing, hydrorefining, hydrocracking, and wax isomerization, and is 150 neutral oil or 500 neutral. Oil, bright stock, high viscosity index base oil and the like can be used.
  • the mineral oil used as the base oil is preferably a highly hydrorefined high viscosity index base oil.
  • Examples of the synthetic hydrocarbon oil include poly- ⁇ -olefins such as normal paraffin, isoparaffin, polybutene, polyisobutylene, 1-decene oligomer, co-oligomer of 1-decene and ethylene, or hydrides thereof alone or. Two or more types can be mixed and used. Of these, poly- ⁇ -olefins are more preferable. Further, alkylbenzene, alkylnaphthalene and the like can also be used.
  • ester-based base oils include diesters and polyol esters.
  • diester include esters of dibasic acids such as adipic acid, azelaic acid, sebacic acid, and dodecane diic acid.
  • dibasic acid an aliphatic dibasic acid having 4 to 36 carbon atoms is preferable.
  • the alcohol residue constituting the ester portion is preferably a monohydric alcohol residue having 4 to 26 carbon atoms.
  • polyol ester examples include neopentyl polyol esters in which a hydrogen atom does not exist on the ⁇ -carbon, and specific examples thereof include carboxylic acid esters such as neopentyl glycol, trimethylolpropane, and pentaerythritol.
  • carboxylic acid residue constituting the ester portion is preferably a monocarboxylic acid residue having 4 or more carbon atoms and 26 or less carbon atoms.
  • Examples of ether-based base oils include polyglycol and (poly) phenyl ether.
  • Examples of polyglycol include polyethylene glycol, polypropylene glycol, and derivatives thereof.
  • Examples of the (poly) phenyl ether include alkylated diphenyl ethers such as monoalkylated diphenyl ethers and dialkylated diphenyl ethers, alkylated tetraphenyl ethers such as monoalkylated tetraphenyl ethers and dialkylated tetraphenyl ethers, pentaphenyl ethers, and monoalkylated products. Examples thereof include alkylated pentaphenyl ethers such as pentaphenyl ethers and dialkylated pentaphenyl ethers.
  • the kinematic viscosity of the base oil is preferably 10 mm 2 / s or more and 1200 mm 2 / s or less at 40 ° C. It is preferable to set the kinematic viscosity at 40 ° C. to 10 mm 2 / s or more because evaporation and degreasing of the base oil at high temperatures tend to be suppressed. Further, by setting the kinematic viscosity at 40 ° C. to 1200 mm 2 / s or less, the coatability (handleability) of the heat conductive paste can be improved, and the fluidity can be further improved when a phase change occurs.
  • thermoplastic resin softens the thermally conductive paste at a high temperature to impart fluidity.
  • the thermoplastic resin has a softening point of 50 ° C. or higher and 150 ° C. or lower.
  • the softening point is a temperature at which the thermoplastic resin softens and begins to deform when the thermoplastic resin is heated.
  • the softening point can be measured using, for example, a melt mass flow rate measuring machine.
  • the thermoplastic resin having a softening point of 50 ° C. or higher and 150 ° C. or lower preferably contains at least one selected from ester resin, acrylic resin, rosin resin and cellulose resin. Further, it may be a mixture of a thermoplastic resin such as wax and various compounds such as a rosin derivative.
  • the content of the thermoplastic resin is not particularly limited, but it is preferably contained in a ratio of 50 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the base oil.
  • the content of the thermoplastic resin is not particularly limited, but it is preferably contained in a ratio of 50 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the base oil.
  • the total of the base oil and the thermoplastic resin is 5.3 parts by mass or more and 33.3 parts by mass or less with respect to 100 parts by mass of the inorganic powder filler described later.
  • the volatile solvent makes the heat conductive paste grease-like and improves the coatability at room temperature.
  • the volatile solvent may be any solvent having a boiling point that volatilizes in an environment at room temperature or high temperature, and examples thereof include a solvent having a boiling point of 70 ° C. or higher and 250 ° C. or lower.
  • the solubility parameter obtained by the Fedors estimation method of this volatile solvent is 9.0 to 12.0 cal (1/2) / cm (3/2) .
  • This solubility parameter is based on R.I. F.
  • the values obtained by the Fedors estimation method described in Fedors, Polymer Engineering Science, 14, p147 (1974) are shown.
  • the solubility parameter is expressed by the following equation (1), considering that the aggregation energy density and the molar molecular weight depend on the type and number of substituents.
  • the solubility parameter is an eigenvalue of each compound.
  • Examples of the volatile solvent satisfying the above-mentioned boiling point and solubility parameter ⁇ include ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-ethyl-1-butanol, and 3-methyl-1-butanol.
  • the content of the volatile solvent is not particularly limited, but it is preferably contained in a ratio of 10 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the base oil.
  • the amount is 10 parts by mass or more, aggregation of the inorganic powder filler can be suppressed and coatability at room temperature can be improved.
  • the content is 200 parts by mass or less, the content of the thermoplastic resin or the like can be relatively increased, and for example, pump-out can be effectively suppressed.
  • an additive containing one or more selected from thixotropy modifiers, antioxidants, anti-diffusion agents, and dispersants can be further contained. ..
  • the antioxidant prevents the oxidation of the base oil contained in the base oil composition.
  • examples of the antioxidant include compounds such as hindered amine-based, hindered phenol-based, sulfur-based, phosphorus-based, benzotriazole-based, triazine-based, benzophenone-based, benzoate-based, and HALS.
  • thixotropy modifier examples include organically treated bentonite, organically treated sepiolite, urea compounds, sodium terephthalamate, polytetrafluoroethylene, silica gel, mica, kaolin, saponite, and hectorite.
  • the content of the thixotropy adjusting agent is 1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the base oil.
  • the amount is 1 part by mass or more, the outflow of the base oil can be prevented and the pump-out can be effectively suppressed.
  • the amount is 10 parts by mass or less, the heat-thermally conductive paste spreads uniformly and becomes easy to form a thin film.
  • dispersant examples include polyglycerin monoalkyl ether compounds, compounds having a carboxylic acid structure such as fatty acid esters, and polycarboxylic acid compounds. These may be used alone, or may be used in combination of two or more. In particular, it is preferable to use a polyglycerin monoalkyl ether compound, a compound having a carboxylic acid structure, and a polycarboxylic acid-based compound in combination.
  • the content of these other additives is preferably more than 0 parts by mass and less than 20 parts by mass with respect to 100 parts by mass of the base oil composition.
  • Inorganic powder filler imparts high thermal conductivity to the thermally conductive paste.
  • the inorganic powder filler used for the heat conductive paste according to the present embodiment one kind of inorganic powder filler having an average particle size may be used, or a plurality of inorganic powder fillers having different average particle sizes may be used. May be good.
  • the first inorganic powder filler having an average particle diameter in the range of 10 ⁇ m or more and 100 ⁇ m or less and the first inorganic powder filler have different average particle diameters.
  • Two types of inorganic powder fillers having different average particle sizes, which contain two inorganic powder fillers and a third inorganic powder filler having a different average particle size from the first inorganic powder filler and the second inorganic powder filler. Can be used.
  • the average particle size of the inorganic powder filler satisfies the following relational expressions (1) and (2).
  • D 1 represents the average particle size of the first inorganic powder filler
  • D 2 represents the average particle size of the second inorganic powder filler
  • D 3 represents the average particle size of the third inorganic powder filler.
  • the first, second and third inorganic powder fillers having a predetermined average particle size relationship, it is possible to reduce the base oil entering the gaps between the particles of the inorganic powder filler. Therefore, it is possible to spread the heat conductive paste more uniformly with the content of the inorganic powder filler increased.
  • the average particle size of the second inorganic powder filler is not particularly limited as long as it satisfies the above relational expression, but is preferably in the range of 1 ⁇ m or more and 50 ⁇ m or less. It is possible to spread the thermally conductive paste more uniformly with the content of the inorganic powder filler increased.
  • the average particle size of the third inorganic powder filler is not particularly limited as long as it satisfies the above relational expression, but is preferably in the range of 0.1 ⁇ m or more and 5 ⁇ m or less. This makes it possible to spread the thermally conductive paste more uniformly with the content of the inorganic powder filler increased.
  • each of the first, second and third inorganic powder fillers is not particularly limited, but 40 parts by mass or more of the first inorganic powder filler is added to 100 parts by mass of the inorganic powder filler. It is contained in a ratio of 80 parts by mass or less, a second inorganic powder filler is contained in a ratio of 10 parts by mass or more and 50 parts by mass or less, and a third inorganic powder filler is contained in a ratio of 10 parts by mass or more and 40 parts by mass or less. It is preferable to do so.
  • the thermally conductive paste is spread even more uniformly with the content of the inorganic powder filler increased. It becomes possible to do so.
  • the type of the inorganic powder filler used in the thermally conductive paste according to the present embodiment is not particularly limited as long as it has a higher thermal conductivity than the base oil, and is, for example, a metal oxide, an inorganic nitride, or a metal. (Including alloys), powders such as silicon compounds are preferably used.
  • the type of the inorganic powder filler of the present invention may be one type, or two or more types may be used in combination.
  • powders of non-conductive substances such as semiconductors and ceramics such as zinc oxide, magnesium oxide, aluminum oxide, aluminum nitride, boron nitride, silicon carbide, silica, and diamond can be preferably used.
  • Powders of zinc oxide, magnesium oxide, aluminum oxide, aluminum nitride, boron nitride, silicon carbide and silica are more preferable, and powders of zinc oxide, aluminum oxide and aluminum nitride are particularly preferable.
  • Each of these inorganic powder fillers may be used alone, or two or more thereof may be combined.
  • powders such as copper and aluminum can be used.
  • the first, second, and third inorganic powder fillers mean that they are inorganic powder fillers having a predetermined average particle size, and may contain inorganic powder fillers of different materials.
  • the first inorganic powder filler may be an inorganic powder filler made of one kind of material or an inorganic powder filler made of two or more kinds of materials as long as the average particle size is the same. .. The same applies to the second and third inorganic powder fillers.
  • the thermally conductive paste according to the present embodiment may contain inorganic powder fillers having different average particle sizes other than the first, second and third inorganic powder fillers.
  • the content of the first, second and third inorganic powder fillers contained in the heat conductive paste according to the present embodiment is 80% by mass or more with respect to 100 mass by mass of the inorganic powder filler. It is more preferably 90% by mass or more, further preferably 95% by mass or more, further preferably 99% by mass or more, and 100% by mass (that is, the first, above. It is most preferable that it does not contain an inorganic powder filler having a different average particle size other than the second and third inorganic powder fillers).
  • the average particle size of the inorganic powder filler can be calculated as the volume average diameter of the particle size distribution measured by the laser diffraction / scattering method (based on JIS R 1629: 1997).
  • the content of the inorganic powder filler is preferably 50% by mass or more and 90% by mass or less, and preferably 60% by mass or more and 90% by mass or less, based on 100% by mass of the heat conductive paste. More preferred.
  • the thermal conductivity of the thermally conductive paste itself can be sufficiently increased, and the separation of the base oil can be suppressed and the exudation of the base oil can be suppressed, which is preferable.
  • it is 93% by mass or less it is possible to suppress a decrease in consistency and spread the thermally conductive paste more uniformly.
  • Method for manufacturing thermally conductive paste> Regarding the production of the heat conductive paste according to the present embodiment, the method is not particularly limited as long as the components can be uniformly mixed.
  • a general manufacturing method there is a method of kneading with a planetary mixer, a rotation / revolution mixer, or the like, and further uniformly kneading with three rolls.
  • a heat conductive sheet can also be produced by using the heat conductive paste according to the present embodiment. Specifically, the above-mentioned heat conductive paste is applied to the surface of heat generating parts, heat radiating parts, etc., and the heat conductive paste is dried to volatilize the volatile solvent in the heat conductive paste, thereby forming a base oil. , A heat conductive sheet containing a soft thermoplastic resin and an inorganic powder filler is obtained.
  • heat conductive paste As a method of applying the heat conductive paste, conventionally known methods such as screen printing, gravure printing, offset printing, flexographic printing, inkjet printing, and dispenser printing can be used.
  • the heat conductive paste may be applied in a solid shape, or may be applied so as to form a predetermined pattern according to the surface shape of the heat generating component and / or the heat radiating component, for example.
  • the method for drying the heat conductive paste may be natural drying, air may be supplied to the coated surface to dry it, or it may be heated to dry, and there is no particular limitation.
  • Such a heat conductive sheet has moderate flexibility and high handleability, and for example, the heat conductive sheet can be handled alone. For example, it is also possible to transport the heat conductive sheet alone and join the heat generating component and the heat radiating component via the heat conductive sheet at the transport destination.
  • Manufacturing method of manufacturing method of heat-generating parts with heat-dissipating parts It is also possible to manufacture a heat generating component with a heat radiating component by using the thermally conductive paste according to the present embodiment. Specifically, the above-mentioned heat conductive paste is applied to the surface of the heat generating component and / or the heat radiating component, and the heat conductive paste is dried to obtain a heat conductive sheet, and the heat generating component is formed through the heat conductive sheet. Adheres to heat dissipation parts. In this way, it is also possible to manufacture a heat generating component with a heat radiating component.
  • the average particle size of each inorganic powder filler was measured by a laser diffraction / scattering method (based on JIS R 1629: 1997) using a particle size distribution measuring device (SALD-7000 manufactured by Shimadzu Corporation).
  • B Base oil
  • B) -1 Dipentaerythritol isononanoic acid ester (ester-based base oil)
  • B) -2 Trimellitic acid tri (2-ethylhexyl) ester (ester-based base oil)
  • B) -3 Trimellitic acid tri (3,5,5-trimethylhexyl) ester (ester-based base oil)
  • thermoplastic resin (C) -1 A mixture of ester wax and rosin derivative. As the mixing ratio, a thermoplastic resin containing 150 parts by mass of the rosin derivative with respect to 100 parts by mass of the ester wax was used. The softening point of this thermoplastic resin is 110 ° C.
  • D Thixotropy modifier
  • D Organically treated bentonite
  • D Organically treated sepiolite
  • E) -1 Ethylene glycol monomethyl ether (solubility parameter is in the range of 9.0 to 12.0 cal (1/2) / cm (3/2))
  • E) -2 1-propanol (Solubility parameter is in the range of 9.0 to 12.0 cal (1/2) / cm (3/2))
  • E) -3 Methanol (Solubility parameter is out of the range of 9.0 to 12.0 cal (1/2) / cm (3/2))
  • E) -4 Butyl acetate (Solubility parameter is out of the range of 9.0 to 12.0 cal (1/2) / cm (3/2))
  • thermally Conductive Sheet The thermally conductive paste of Examples and Comparative Examples was applied to a single-sided fluorine-treated PET film having a thickness of 0.05 mm and a width of 100 mm by screen printing, and in a heating furnace set at 100 ° C. for 1 hour. Heating was performed to volatilize the volatile solvent. After that, the thermoplastic resin is melted, and then a single-sided fluorine-treated PET film of the same type is placed on the thermoplastic resin so that the fluorine-treated surfaces are brought into contact with each other so that the heat conductive paste is sandwiched between them, and heating is set to 100 ° C. Passed between the rolls. After cooling, the film was cut to a length of 100 mm and the PET film was peeled off to obtain thermally conductive sheets having film thicknesses of 0.1 mm and 0.5 mm.
  • thermal conductivity The thermal conductivity of the produced heat conductive sheet was measured at room temperature using a transient heat measuring device (ASTMD5470 compliant). The evaluation results are shown in Table 1 (indicated as "thermal conductivity” in Table 1).
  • the sagging resistance of the above heat conductive sheet was evaluated. Specifically, a heat conductive sheet having a thickness of 0.5 mm is placed on a glass substrate and heated in a heating furnace set at 80 ° C. for 10 minutes to bring the heat conductive sheet and the glass substrate into close contact with each other. It was used as a test sample. Next, the test sample was placed vertically in an electric furnace heated to 150 ° C. and held for 4 hours. After taking out the test sample and cooling it, visually check the thermal conductivity sheet, and immediately after placing it vertically in the electric furnace (initial) and after holding it vertically in the electric furnace for 4 hours, the dripping is " ⁇ ".
  • the heat conductive pastes of Examples 1 to 37 can be made into a paste. Further, since the heat conductive pastes of Examples 1 to 37 have a viscosity of 200 Pa ⁇ s or less, it can be seen that they can be satisfactorily applied even by using a conventionally known coating method such as screen printing.
  • a semi-solid state heat conductive sheet could be prepared by volatilizing the volatile solvent after coating. From this, the solubility parameter obtained by the Fedors estimation method of the volatile solvent containing the base oil, the thermoplastic resin having a softening point of 50 ° C. or higher and 150 ° C. or lower, and the volatile solvent is 9.0 to 12.
  • a thermally conductive paste in the range of 0.0 cal (1/2) / cm (3/2) can be applied satisfactorily even by using a conventionally known coating method, and the volatile solvent is volatile. It can be seen that the heat conductive sheet can be formed by the above.
  • thermally conductive pastes of Examples 1 to 37 have good "fluidity” and “dripping resistance” after being held at 250 ° C. for 4 hours, and further, the distance traveled from the original place in the cycle evaluation test. Was also small. From this, it can be seen that the thermally conductive pastes of Examples 1 to 37 can effectively suppress the occurrence of pump-out.
  • Example 31 in which the volatile solvent is contained in a ratio of 15 parts by mass with respect to 100 parts by mass of the base oil, the paste can be formed and the viscosity is 200 Pa ⁇ s or less. It can be applied by using the application method of. However, when the upper limit of the viscosity is close, for example, a thermally conductive paste containing a volatile solvent in a proportion of less than 10 parts by mass with respect to 100 parts by mass of the base oil, a conventionally known coating method such as screen printing is used. It can be seen that it tends to be relatively difficult to apply.
  • Examples 35 to 37 in which the type of "thermoplastic resin having a softening point of 50 ° C. or higher and 150 ° C. or lower" is changed can be similarly satisfactorily applied, and pump-out may occur. It can be seen that it can be effectively suppressed.
  • the heat conductive pastes of Comparative Examples 1 and 2 in which the solubility parameter obtained by the Fedors estimation method is out of the range of 9.0 to 12.0 cal (1/2) / cm (3/2) are pastes. It was not possible to make it into a heat conductive sheet by applying it in the first place.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

ペースト化が可能であることから従来公知の塗布方法を用いても良好に塗布することができ、かつポンプアウトの発生も効果的に抑制する熱伝導性ペーストを提供する。 基油組成物と、無機粉末充填剤と、を含む熱伝導性ペーストであって、基油組成物は、基油と、軟化点が50℃以上150℃以下の熱可塑性樹脂と、揮発性溶剤と、を含有し、揮発性溶剤のFedorsの推算法で得られる溶解度パラメータが、9.0~12.0cal(1/2)/cm(3/2)である熱伝導性ペーストである。

Description

熱伝導性ペースト
 本発明は、発熱部品と放熱部品の間に塗布して用いられる熱伝導性ペーストに関する。
 電子機器では、半導体素子や機械部品等の発熱部品から生じる熱を放熱するために、ヒートシンクなどの放熱部品が取り付けられるが、この放熱部品への熱の伝達を効率よくする目的で、発熱部品と放熱部品との間に熱伝導性部材を挟んで用いている。この熱伝導性部材には、固体状の熱伝導性シートや、液体状の熱伝導性ペースト、液体状から固体状に変化する硬化型熱伝導性グリースなどの種類があり、用途に応じて使い分けられている。
 例えば、特許文献1には、不飽和ジカルボン酸ジブチルエステルとα-オレフィンとのコポリマーからなる基油と、熱伝導性充填剤と、を含有する熱伝導性グリースが開示されている。特許文献1には、この熱伝導性グリースは、高い熱伝導性と、良好なディスペンス性および圧縮性と、を有することが記載されている。
 しかしながらこのような熱伝導性グリースは常温でペースト状であり加圧により流動するため、薄膜状に塗布しやすく密着性に優れるものの、発熱と放熱の繰り返しにより発熱部品等の膨張、収縮により塗布部分から流出しやすく耐ポンプアウト性に劣るという課題がある。なお、ポンプアウトとは塗布部分から熱伝導性グリースがはみ出し、その内部にボイド(空隙)が発生して良好な熱伝導率を維持できなくなる現象をいう。
 これらの欠点を克服するために常温では固体でありながら、発熱部品に組み込まれた後は、吸熱し軟化することで被着体に密着し、熱抵抗を低くできる性質を有する熱伝導性ペーストの開発が進められている(例えば、特許文献2~4)。熱伝導性ペーストの技術に関する情報として、例えば特開2001-89756(特許文献2)、特開2004-75760(特許文献3)及び特開2007-150349(特許文献4)に記載がある。
特許第4713161号 特開2001-89756号公報 特開2004-75760号公報 特開2007-150349号公報
 さて、熱伝導性ペーストは、発熱部品及び/又は放熱部品の表面にスクリーン印刷等の従来公知の印刷法を用いて塗布が行われることがある。一方で、このような熱伝導性ペーストは、熱伝導性を付与するために無機粉末充填剤等を含んでおり、例えば、熱伝導性ペースト中の無機粉末充填剤が凝集等したりするとペースト化が困難となるため、従来公知の印刷法を用いて塗布することが必ずしも容易であるとはいえないものである。
 本発明は、このような実情に鑑みて提案されたものであり、ペースト化が可能であることから従来公知の塗布方法を用いても良好に塗布することができ、かつポンプアウトの発生も効果的に抑制することができる熱伝導性ペーストを提供することを目的とする。
 本発明者らは、熱可塑性樹脂と、揮発性溶剤を含有し、揮発性溶剤の溶解度パラメータが所定の範囲である熱伝導性ペーストであれば上記課題を解決できることを見出し、本発明を完成するに至った。
 (1)本発明の第1は、基油組成物と、無機粉末充填剤と、を含む熱伝導性ペーストであって、前記基油組成物は、基油と、軟化点が50℃以上150℃以下の熱可塑性樹脂と、揮発性溶剤と、を含有し、該揮発性溶剤のFedorsの推算法で得られる溶解度パラメータが、9.0~12.0cal(1/2)/cm(3/2)である熱伝導性ペーストである。
 (2)本発明の第2は、第1の発明において、前記基油100質量部に対して前記揮発性溶剤を10質量部以上200質量部以下の割合で含有する熱伝導性ペーストである。
 (3)本発明の第3は、第1又は第2の発明において、前記無機粉末充填剤は、平均粒子径が10μm以上100μm以下の範囲にある第1無機粉末充填剤と、該第1無機粉末充填剤とは平均粒子径が異なる第2無機粉末充填剤と、該第1無機粉末充填剤及び該第2無機粉末充填剤とは平均粒子径が異なる第3無機粉末充填剤と、を含有し、前記無機粉末充填剤の平均粒径が以下の関係式(1)、(2)を満たす熱伝導性ペーストである。
 D/D<0.70・・・(1)
 D/D<0.60・・・(2)
[式中:Dは第1無機粉末充填剤の平均粒径を表し、Dは第2無機粉末充填剤の平均粒径を表し、Dは第3無機粉末充填剤の平均粒径を表す。]
 (4)本発明の第4は、第3の発明において、前記第2無機粉末充填剤の平均粒子径は1μm以上50μm以下の範囲であり、前記第3無機粉末充填剤の平均粒子径は0.1μm以上5μm以下の範囲である熱伝導性ペーストである。
 (5)本発明の第5は、第3又は第4の発明において、無機粉末充填剤100質量部に対し、前記第1無機粉末充填剤を40質量部以上80質量部以下の割合で含有し、前記第2無機粉末充填剤を10質量部以上50質量部以下の割合で含有し、前記第3無機粉末充填剤を10質量部以上40質量部以下の割合で含有する熱伝導性ペーストである。
 (6)本発明の第6は、第1から第5のいずれかの発明において、前記無機粉末充填剤が、銅、アルミニウム、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム及び炭化ケイ素から選ばれる少なくとも1種以上を含有する熱伝導性ペーストである。
 (7)本発明の第7は、第1から第6のいずれかの発明において、無機粉末充填剤100質量部に対し、前記基油と前記熱可塑性樹脂との合計が5.3質量部以上33.3質量部以下の割合である熱伝導性ペーストである。
 (8)本発明の第8は、第1から第7のいずれかの発明において、前記基油100質量部に対し、前記熱可塑性樹脂を50質量部以上200質量部以下の割合で含有する熱伝導性ペーストである。
 (9)本発明の第9は、第1から第8のいずれかの発明において、前記基油は、鉱油、合成炭化水素油、ジエステル、ポリオールエステル及びフェニルエーテルから選ばれる少なくとも1種以上を含有する熱伝導性ペーストである。
 (10)本発明の第10は、第1から第9のいずれかの発明において、前記熱可塑性樹脂は、エステル樹脂、アクリル樹脂、ロジン樹脂及びセルロース樹脂から選ばれる少なくとも1種以上である熱伝導性ペーストである。
 (11)本発明の第11は、第1から第10のいずれかの発明において、さらにチクソトロピー調整剤を含有し、該チクソトロピー調整剤は、ベントナイト、マイカ、カオリン、セピオライト、サポナイト、及びヘクトライトから選ばれる少なくとも1種以上を含有する熱伝導性ペーストである。
 (12)本発明の第12は、第11の発明において、前記基油100質量部に対し、前記チクソトロピー調整剤を1質量部以上10質量部以下の割合で含有する熱伝導性ペーストである。
 (13)本発明の第13は、発熱部品及び/又は放熱部品の表面に第1から第12のいずれかの熱伝導性ペーストを塗布し、該熱伝導性ペーストを乾燥して熱伝導性シートを得る熱伝導性シートの製造方法である。
 (14)本発明の第14は、発熱部品と放熱部品とが熱伝導性シートを介して接着させる放熱部品付発熱部品の製造方法であって、発熱部品及び/又は放熱部品の表面に第1から第12のいずれかの熱伝導性ペーストを塗布し、該熱伝導性ペーストを乾燥して熱伝導性シートを得て、該熱伝導性シートを介して前記発熱部品と前記放熱部品とを接着させる放熱部品付発熱部品の製造方法である。
 本発明の熱伝導性ペーストは、ペースト化が可能であることから従来公知の塗布方法を用いても良好に塗布することができ、かつポンプアウトの発生も効果的に抑制することができる。
 以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について詳細に説明する。なお、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。
 ≪熱伝導性ペースト≫
 本実施の形態に係る熱伝導性ペーストは、基油組成物と、無機粉末充填剤と、を含有する。そして、基油組成物においては、基油と、軟化点が50℃以上150℃以下の熱可塑性樹脂と、揮発性溶剤と、を含有し、揮発性溶剤のFedorsの推算法で得られる溶解度パラメータが、9.0~12.0cal(1/2)/cm(3/2)であることを特徴としている。
 本発明者の研究により以下のことが明らかとなった。すなわち、基油と、熱可塑性樹脂と、揮発性溶剤と、を含有する基油組成物を含むことでペースト化が可能であることから、スクリーン印刷等の従来公知の塗布法による室温での塗布性を向上させることができる。
 さらに、その揮発性溶剤が所定の溶解度パラメータを有することにより熱伝導性ペースト中の無機粉末充填剤の凝集を効果的に抑制することが可能となり、室温での塗布性をさらに向上させることができる。
 そして、塗布された熱伝導性ペーストは、揮発性溶剤が揮発することによって基油と、軟熱可塑性樹脂と、無機粉末充填剤と、を含有する半固体状の熱伝導性シートが形成される。例えば、この熱伝導性シートが発熱部品と放熱部品との間に形成することで、発熱部品や放熱部品との密着性を高めることができる。
 さらに、その熱伝導性シートには特定の割合で軟化点が50℃以上150℃以下の熱可塑性樹脂が含まれていることにより、熱伝導性シートが所定の温度以上で軟化して、いわゆるフェイズチェンジを起こすようになる。これにより、例えば発熱部品からの発熱による高温時には、熱伝導性シートの流動性が高まってさらに均一に拡がるようになり、発熱部品や放熱部品との間隔が狭くなった状態で密着性が高まり、熱抵抗をより低くすることができ、熱伝導効率を向上させることができる。
 一方、均一に広がった熱伝導性シートは、その後の温度低下に伴って、熱可塑性樹脂の軟化点に基づく所定の温度未満で硬化してフェイズチェンジを起こし、適度な硬さの半固体状態の熱伝導性シートに戻る。これにより、発熱部品と放熱部品との密着性を維持した状態で、ネットワーク化した熱可塑性樹脂により基油の流出を防ぐことができ、ポンプアウトを効果的に抑制することができる。
 以下、基油組成物に含まれる各成分について説明する。
 <1.基油組成物>
 基油組成物には少なくとも基油と、熱可塑性樹脂と、揮発性溶剤と、を含有する。基油組成物に含有される各成分について説明する。
 (1)基油
 基油としては、種々の基油が使用でき、例えば、鉱油、合成炭化水素油等の炭化水素系基油、エステル系基油、エーテル系基油、リン酸エステル、シリコン油及びフッ素油等が挙げられる。中でも、鉱油、合成炭化水素油等の炭化水素系基油、エステル系基油及びエーテル系基油から選ばれる少なくとも1種以上を含有する基油を用いるのが好ましい。
 鉱油としては、例えば、鉱油系潤滑油留分を溶剤抽出、溶剤脱ロウ、水素化精製、水素化分解、ワックス異性化等の精製手法を適宜組み合わせて精製したもので、150ニュートラル油、500ニュートラル油、ブライトストック、高粘度指数基油等を用いることができる。基油に用いられる鉱油は、高度に水素化精製された高粘度指数基油が好ましい。
 合成炭化水素油としては、例えばノルマルパラフィン、イソパラフィン、ポリブテン、ポリイソブチレン、1-デセンオリゴマー、1-デセンとエチレンとのコオリゴマー等のポリ-α-オレフィン又はこれらの水素化物等を単独で、もしくは2種以上を混合して使用することができる。中でもポリ-α-オレフィンがより好ましい。また、アルキルベンゼンやアルキルナフタレン等を用いることもできる。
 エステル系基油としては、ジエステルやポリオールエステルが挙げられる。ジエステルとしては、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸等の二塩基酸のエステルが挙げられる。二塩基酸としては、炭素数4以上36以下の脂肪族二塩基酸が好ましい。エステル部を構成するアルコール残基は、炭素数4以上26以下の一価アルコール残基が好ましい。ポリオールエステルとしては、β位の炭素上に水素原子が存在していないネオペンチルポリオールのエステルで、具体的にはネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール等のカルボン酸エステルが挙げられる。エステル部を構成するカルボン酸残基は、炭素数4以上26以下のモノカルボン酸残基が好ましい。
 エーテル系基油としては、ポリグリコールや(ポリ)フェニルエーテル等が挙げられる。ポリグリコールとしては、ポリエチレングリコールやポリプロピレングリコール、及びこれらの誘導体等が挙げられる。(ポリ)フェニルエーテルとしては、モノアルキル化ジフェニルエーテル、ジアルキル化ジフェニルエーテル等のアルキル化ジフェニルエーテルや、モノアルキル化テトラフェニルエーテル、ジアルキル化テトラフェニルエーテル等のアルキル化テトラフェニルエーテル、ペンタフェニルエーテル、モノアルキル化ペンタフェニルエーテル、ジアルキル化ペンタフェニルエーテル等のアルキル化ペンタフェニルエーテル等が挙げられる。
 基油の動粘度は、40℃で10mm/s以上1200mm/s以下であることが好ましい。40℃における動粘度を10mm/s以上とすることで、高温下での基油の蒸発や離油等が抑制される傾向にあるため好ましい。また、40℃における動粘度を1200mm/s以下とすることで熱伝導性ペーストの塗布性(取り扱い性)を向上させ、さらにフェイズチェンジを起こしたときに流動性を向上させることができる。
 (2)熱可塑性樹脂
 熱可塑性樹脂は、高温時に、熱伝導性ペーストを軟化させて流動性を付与する。熱可塑性樹脂としては、軟化点が50℃以上150℃以下のものである。なお、軟化点とは、熱可塑性樹脂を加熱した場合に、熱可塑性樹脂が軟化して変形し始める温度である。軟化点は、例えば、メルトマスフローレイト測定機を用いて測定できる。
 軟化点が50℃以上150℃以下の熱可塑性樹脂としては、エステル樹脂、アクリル樹脂、ロジン樹脂及びセルロース樹脂から選ばれる少なくとも1種以上を含むことが好ましい。また、ワックスなどの熱可塑性樹脂にロジン誘導体などの各種化合物などを混合したものであってもよい。
 熱可塑性樹脂の含有量は、特に限定されるものではないが、基油100質量部に対し、50質量部以上200質量部以下の割合で含有することが好ましい。50質量部以上であることにより、発熱部品と放熱部品との密着性を維持した状態で、ネットワーク化した熱可塑性樹脂により基油の流出を防ぐことができ、ポンプアウトを効果的に抑制することができる。基油100質量部に対し、200質量部以下であることにより、熱伝導性ペーストが均一に拡がって薄膜化することが容易となる。
 なお、後述する無機粉末充填剤100質量部に対して、基油と熱可塑性樹脂と、の合計が5.3質量部以上33.3質量部以下であることが好ましい。
 (3)揮発性溶剤
 揮発性溶剤は、熱伝導性ペーストをグリース状にし、室温での塗布性を向上させる。揮発性溶剤は、室温又は高温での環境下で揮発する程度の沸点を有する溶剤であればよく、例えば、70℃以上250℃以下の沸点を有する溶剤を挙げることができる。
 また、この揮発性溶剤のFedorsの推算法で得られる溶解度パラメータが、9.0~12.0cal(1/2)/cm(3/2)であることを特徴としている。この溶解度パラメータは、R.F.Fedors,Polymer Engineering Science,14,p147(1974)に記載される、Fedors推算法で得られた値を示す。Fedors推算法では、凝集エネルギー密度とモル分子容とが、置換基の種類及び数に依存していると考えて、溶解度パラメータを以下の(1)式で表す。溶解度パラメータは、各化合物の固有値である。
 δ=(ΣEcoh/ΣV)1/2・・・(1)
[式中:Ecoh:凝集エネルギー密度(単位:cal/mol)、V:モル分子容(cm/mol)、δ:溶解度パラメータ(単位:cal(1/2)/cm(3/2)を表す。]
 上記、沸点や溶解度パラメータδの条件を満たす揮発性溶剤としては、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-エチル-1-ブタノール、3-メチル-1-ブタノール、1-ペンタノール、2-ペンタノール、1-ヘキサノール、1-ヘプタノール、1-オクタノール、2,4-ジメチル―3-ペンタノール、3-ペンタノール、2-エチル-1-ヘキサノール、1-ノナノール、3,5,5-トリメチル-1-ヘキサノール、2-メチル-3-ブチン-2-オール、α-テルピネオール、β-テルピネオール、γ-テルピネオール、テキサノール、ジエチレングリコール、エチレングリコールジブチラート、ジエチレングリコールモノブチルエーテル、ヘキシルグリコール、メチルプロピルトリグリコール、ジエチレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、フェニルプロピレングリコール、ジプロピレングリコールモノメチルエーテル、シクロペンタノン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノン、リモネン、メチルエチルケトン、アセトン、アセトニトリル、2,4,4-トリメチル-1,3-ペンタジオール-1-モノイソブチレート等を例示することができる。
 揮発性溶剤の含有量としては、特に制限されるものではないが、基油100質量部に対し、10質量部以上200質量部以下の割合で含有することが好ましい。10質量部以上であることで、無機粉末充填剤の凝集を抑制して、室温での塗布性を向上させることができる。200質量部以下であることで、相対的に熱可塑性樹脂等の含有量を増やすことが可能となり、例えばポンプアウトを効果的に抑制することができる効果を奏する。
 (4)その他の添加剤
 熱伝導性ペーストの各種特性を高めるために、チクソトロピー調整剤、酸化防止剤、拡散防止剤、及び分散剤から選ばれる一種以上を含む添加剤を更に含有させることができる。
 酸化防止剤は、基油組成物に含まれる基油の酸化を防止する。酸化防止剤は、ヒンダードアミン系、ヒンダードフェノール系、イオウ系、リン系、ベンゾトリアゾール系、トリアジン系、ベンゾフェノン系、ベンゾエート系、HALS等の化合物が挙げられる。
 チクソトロピー調整剤は、例えば、有機処理ベントナイト、有機処理セピオライト、ウレア化合物、ナトリウムテレフタラメート、ポリテトラフルオロエチレン、シリカゲル、マイカ、カオリン、サポナイト、及びヘクトライト等を挙げることができる。
 チクソトロピー調整剤を含有する場合、チクソトロピー調整剤の含有量としては、基油100質量部に対し、1質量部以上10質量部以下の割合で含有する。1質量部以上であることにより、基油の流出を防ぐことができ、ポンプアウトを効果的に抑制することができる。10質量部以下であることにより、熱熱伝導性ペーストが均一に拡がって薄膜化することが容易となる。
 分散剤は、例えば、ポリグリセリンモノアルキルエーテル化合物、脂肪酸エステルのようなカルボン酸構造を有する化合物、ポリカルボン酸系化合物等を挙げることができる。これらは単独で使用してもよいが、2種以上を組み合わせて使用してもよい。特に、ポリグリセリンモノアルキルエーテル化合物、カルボン酸構造を有する化合物、ポリカルボン酸系化合物を併用することが好ましい。
 これらのその他の添加剤の含有量としては、基油組成物100質量部に対して0質量部より多く、20質量部未満であることが好ましい。
 <2.無機粉末充填剤>
 無機粉末充填剤は、熱伝導性ペーストに高い熱伝導性を付与する。本実施の形態に係る熱伝導性ペーストに用いられる無機粉末充填剤は、1種類の平均粒径の無機粉末充填剤を用いてもよいし、平均粒径の異なる無機粉末充填剤を複数用いてもよい。
 平均粒径の異なる無機粉末充填剤を複数用いる場合、例えば、平均粒子径が10μm以上100μm以下の範囲にある第1無機粉末充填剤と、第1無機粉末充填剤とは平均粒子径が異なる第2無機粉末充填剤と、第1無機粉末充填剤及び第2無機粉末充填剤とは平均粒子径が異なる第3無機粉末充填剤と、を含有する3種類の平均粒径の異なる無機粉末充填剤を用いることができる。
 そして、無機粉末充填剤の平均粒径が以下の関係式(1)、(2)を満たすことが好ましい。
 D/D<0.70・・・(1)
 D/D<0.60・・・(2)
[式中:Dは第1無機粉末充填剤の平均粒径を表し、Dは第2無機粉末充填剤の平均粒径を表し、Dは第3無機粉末充填剤の平均粒径を表す。]
 所定の平均粒径の関係を有する第1、第2及び第3の無機粉末充填剤を含有することにより、無機粉末充填剤の粒子間の隙間に入り込む基油を減らすことが可能となる。そのため、無機粉末充填剤の含有量を増やした状態で熱伝導性ペーストをさらに均一に拡がるようにすることが可能となる。
 第2無機粉末充填剤の平均粒子径は上記の関係式を満たすのであれば特に制限はされないが、1μm以上50μm以下の範囲であることが好ましい。無機粉末充填剤の含有量を増やした状態で熱伝導性ペーストをより均一に拡がるようにすることが可能となる。
 第3無機粉末充填剤の平均粒子径は上記の関係式を満たすのであれば特に制限はされないが、0.1μm以上5μm以下の範囲であることが好ましい。これにより、無機粉末充填剤の含有量を増やした状態で熱伝導性ペーストをより均一に拡がるようにすることが可能となる。
 第1、第2及び第3の無機粉末充填剤のそれぞれの含有量は、特に制限されるものではないが、無機粉末充填剤100質量部に対して第1無機粉末充填剤を40質量部以上80質量部以下の割合で含有し、第2無機粉末充填剤を10質量部以上50質量部以下の割合で含有し、第3無機粉末充填剤を10質量部以上40質量部以下の割合で含有することが好ましい。第1、第2及び第3の無機粉末充填剤のそれぞれの含有量がこのような範囲であることにより、無機粉末充填剤の含有量を増やした状態で熱伝導性ペーストをさらになお均一に拡がるようにすることが可能となる。
 本実施の形態に係る熱伝導性ペーストに用いられる無機粉末充填剤の種類は、基油より高い熱伝導率を有するものであれば特に限定されず、例えば、金属酸化物、無機窒化物、金属(合金も含む。)、ケイ素化合物などの粉末が好適に用いられる。本発明の無機粉末充填剤の種類は1種類であってもよいし、また2種以上を組み合わせて用いることもできる。
 電気絶縁性を求める場合には、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、窒化ホウ素、炭化ケイ素、シリカ、ダイヤモンドなどの、半導体やセラミックなどの非導電性物質の粉末が好適に使用でき、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、窒化ホウ素、炭化ケイ素、シリカの粉末がより好ましく、酸化亜鉛、酸化アルミニウム、窒化アルミニウムの粉末が特に好ましい。これらの無機粉末充填剤をそれぞれ単独で用いてもよいし、2種以上を組み合わせてもよい。
 無機粉末充填剤として金属を用いる場合、銅、アルミニウム等の粉末を用いることができる。
 なお、第1、第2及び第3の無機粉末充填剤は、所定の平均粒子径を有する無機粉末充填剤であることを意味し、異なる材料の無機粉末充填剤を含んでいてもよい。例えば第1の無機粉末充填剤は、平均粒子径が同じであれば一種の材料からなる無機粉末充填剤であってもよいし、2種以上の材料からなる無機粉末充填剤であってもよい。第2及び第3の無機粉末充填剤についても同様である。
 また、本実施の形態に係る熱伝導性ペーストは上記第1、第2及び第3の無機粉末充填剤以外の平均粒径の異なる無機粉末充填剤を含有してもよい。しかしながら、本実施の形態に係る熱伝導性ペーストに含有される第1、第2及び第3の無機粉末充填剤の含有量は、無機粉末充填剤100質量に対して80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることが更に好ましく、99質量%以上であることが更に尚好ましく、100質量%であること(すなわち、上記第1、第2及び第3の無機粉末充填剤以外の平均粒径の異なる無機粉末充填剤を含有しないこと。)が最も好ましい。
 なお、本実施の形態に係る熱伝導性ペーストにおいて、無機粉末充填剤の平均粒径はレーザー回折散乱法(JIS R 1629:1997に準拠)により測定した粒度分布の体積平均径として算出できる。
 無機粉末充填剤の含有量は熱伝導性ペースト100質量%に対して50質量%以上90質量%以下の割合で含有することが好ましく、60質量%以上90質量%以下の割合で含有することがより好ましい。50質量%以上であることにより熱伝導性ペースト自体の熱伝導性を十分高くすることができ、また基油の離油を抑制し基油の滲み出しを抑制することができるため好ましい。一方、93質量%以下であることによりちょう度の低下を抑制し、熱伝導性ペーストをより均一に拡がるようにすることが可能となる。
 <3.熱伝導性ペーストの製造方法>
 本実施の形態に係る熱伝導性ペーストの製造に関しては、均一に成分を混合できればその方法は特に限定されない。一般的な製造方法としては、プラネタリーミキサー、自転公転ミキサーなどにより混練りを行い、さらに三本ロールにて均一に混練りする方法がある。
 <4.熱伝導性シート及び熱伝導性シートの製造方法>
 本実施の形態に係る熱伝導性ペーストを用いて熱伝導性シートを製造することもできる。具体的には発熱部品や放熱部品等の表面に上記の熱伝導性ペーストを塗布し、熱伝導性ペーストを乾燥することで熱伝導性ペースト中の揮発性溶剤を揮発させることで、基油と、軟熱可塑性樹脂と、無機粉末充填剤と、を含有する熱伝導性シートを得る。
 熱伝導性ペーストを塗布する方法は、スクリーン印刷、グラビア印刷、オフセット印刷、フレキソ印刷、インクジェット印刷、ディスペンサ印刷等の従来公知の方法を使用することができる。
 熱伝導性ペーストの塗布は、ベタ状に塗布してもよいし、例えば、発熱部品及び/又は放熱部品の表面の形状に合わせて所定のパターンを形成するように塗布してもよい。
 熱伝導性ペーストを乾燥する方法は、自然乾燥であってもよいし、塗布面に対して風を供給して乾燥させてもよく、加熱して乾燥させてもよく、特に制限はされない。
 このような熱伝導性シートは適度に柔軟性を有しており、ハンドリング性が高く、例えば、熱伝導性シート単独で取り扱うこともできる。例えば、熱伝導性シート単独で輸送して、その輸送先で熱伝導性シートを介して発熱部品と放熱部品を接合するような使用も可能である。
 <5.放熱部品付発熱部品の製造方法の製造方法>
 本実施の形態に係る熱伝導性ペーストを用いて放熱部品付発熱部品を製造することもできる。具体的には発熱部品及び/又は放熱部品の表面に上記の熱伝導性ペーストを塗布し、熱伝導性ペーストを乾燥して熱伝導性シートを得て、熱伝導性シートを介して発熱部品とは放熱部品とを接着させる。このようにして放熱部品付発熱部品を製造することも可能である。
 以下、本発明の実施例及び比較例に基づいて、本発明をさらに説明するが、本発明は以下の実施例によって何ら限定されるものではない。
 1.熱伝導性ペーストの製造
 下記(A)~(F)に示す各材料を用い、下記表1に示す組成の熱伝導性ペーストを製造した。
 (構成成分)
(A)無機粉末充填剤
(A)-1:第1無機粉末充填剤
 アルミナ1:平均粒子径=40μm
 アルミナ2:平均粒子径=30μm
 アルミナ3:平均粒子径=50μm
 アルミナ4:平均粒子径=70μm
 アルミナ5:平均粒子径=110μm
 アルミナ6:平均粒子径=5μm
(A)-2:第2無機粉末充填剤
 アルミナ7:平均粒子径=8μm
 アルミナ8:平均粒子径=15μm
 アルミナ9:平均粒子径=20μm
 アルミナ10:平均粒子径=30μm
 アルミナ11:平均粒子径=3.4μm
 酸化亜鉛1:平均粒子径=10μm
(A)-3:第3無機粉末充填剤
 アルミナ12:平均粒子径=0.53μm
 アルミナ13:平均粒子径=0.83μm
 アルミナ14:平均粒子径=0.18μm
 アルミナ15:平均粒子径=5μm
 酸化亜鉛2:平均粒子径=0.60μm
 なお、各無機粉末充填剤の平均粒径は、粒子径分布測定装置(島津製作所製 SALD-7000)を用いてレーザー回折散乱法(JIS R 1629:1997に準拠)にて測定した。
(B)基油
(B)-1:ジペンタエリスリトールイソノナン酸エステル(エステル系基油)
(B)-2:トリメリット酸トリ(2-エチルヘキシル)エステル(エステル系基油)
(B)-3:トリメリット酸トリ(3,5,5-トリメチルヘキシル)エステル(エステル系基油)
(C):熱可塑性樹脂
(C)―1:エステルワックスとロジン誘導体の混合物。混合割合は、エステルワックス100質量部に対してロジン誘導体を150質量部とした熱可塑性樹脂を用いた。この熱可塑性樹脂の軟化点は110℃である。
(C)―2:アクリル樹脂(軟化点:105℃)
(C)―3:セルロース樹脂(軟化点:135℃)
(C)―4:エステル樹脂(軟化点:70℃)
(D):チクソトロピー調整剤
(D)-1:有機処理ベントナイト
(D)-2:有機処理セピオライト
(E)-1:エチレングリコールモノメチルエーテル
(溶解度パラメータが、9.0~12.0cal(1/2)/cm(3/2)の範囲内)
(E)-2:1-プロパノール           
(溶解度パラメータが、9.0~12.0cal(1/2)/cm(3/2)の範囲内)
(E)-3:メタノール              
(溶解度パラメータが、9.0~12.0cal(1/2)/cm(3/2)の範囲外)
(E)-4:酢酸ブチル              
(溶解度パラメータが、9.0~12.0cal(1/2)/cm(3/2)の範囲外)
(F)分散剤
(F)-1:酸系炭化水素ポリマー
(F)-2:高級脂肪酸エステル
1.熱伝導性ペーストの調製
 下記表に示す割合となるように、(B)基油に、(A)無機粉末充填剤、(C)熱可塑性樹脂、(D)チクソトロピー調整剤及び(F)分散剤を配合し、150℃に加熱した万能混合撹拌機の釜に入れ、30分間混錬しながら真空脱泡した。その後、70℃まで冷却した後、(E)揮発性溶剤を入れ、15分間混錬しながら真空脱泡し、冷却してから釜から取り出し、熱伝導性ペーストを得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 [ペースト化の可否]
 ペースト化の可否は、上記により調製した放熱樹脂ペーストを目視確認し、ペースト化の可否を判断した。ペースト化できた場合は「可」とし、ペースト化できなかった場合は「不可」とした。この結果を表1に示す。
 [粘度]
 実施例及び比較例の熱伝導性ペーストについて粘度を測定した、具体的には、マルコム社製の微量スパイラル粘度計(PCU-02V)を使用して室温でせん断速度せん断速度は6/sに設定をして、実施例及び比較例の熱伝導性ペーストの粘度を測定した。評価結果を表1に示す(表1中、「粘度」と表記)。
 2.熱伝導性シートの製造
 実施例及び比較例の熱伝導性ペーストを、厚み0.05mm、幅100mmの片面フッ素処理PETフィルムにスクリーン印刷により、塗布し、100℃に設定された加熱炉で1時間加熱を行い、揮発性溶剤を揮発させた。その後、熱可塑性樹脂を熔融状態にしてから、その上に同種の片面フッ素処理PETフィルムを、フッ素処理面を接触させて熱伝導性ペーストが挟持するように配置し、100℃に設定された加熱ロールの間を通した。冷却後、長さ100mmに切断し、PETフィルムを剥がして、膜厚が0.1mm及び0.5mmの熱伝導性シートを得た。
 [熱伝導率評価]
 製造した熱伝導性シートの熱伝導率は、過渡熱測定装置(ASTMD5470準拠)を用いて室温にて測定した。評価結果を表1に示す(表1中、「熱伝導率」と表記)。
 [展性評価]
 上記により製造した実施例及び比較例の熱伝導性ペーストの熱伝導性シートについて展性を評価した。具体的には、膜厚が0.5mmの熱伝導性シートを80℃の環境下で0.1Mpaの圧力を加えて押しつぶした時の熱伝導性シートの膜厚を測定した。評価結果を表1に示す(表1中、「展性」と表記。)。
 [熱伝導性シートの初期柔軟性評価]
 上記により製造した実施例及び比較例の熱伝導性ペーストの熱伝導性シートについて初期状態の柔軟性を確認した。具体的には、ポリイミドフィルムに配置した熱伝導性シートを折り曲げ、亀裂が入らず、柔軟性の良好なものを初期柔軟性「〇」とした。一方、折り曲げた後、亀裂が入り、柔軟性の不良なものを初期柔軟性「×」とした。評価結果を表3、4に示す(表中、「柔軟性」において「初期」と表記した。)。
 [熱伝導性シートの加熱後柔軟性評価]
 上記により製造した実施例及び比較例の熱伝導性ペーストの熱伝導性シートについて加熱後の柔軟性を確認した。具体的には、製造した熱伝導性シートを、ポリイミドフィルムに配置し、80℃に設定された加熱炉で10分間加熱し、熱伝導性シートポリイミドフィルムを密着させ、試験サンプルとした。次に、試験サンプルを250℃に加熱された電気炉内に縦置きし、4時間保持した。その後、試験サンプルを取り出して冷却した後、熱伝導性シートを150°程度10回屈曲させた後、当該シートの柔軟性を〇(クラック発生なし)、×(10回以下でクラック発生)の2基準で、柔軟性の有無を判断した。評価結果を表3、4に示す。
 [耐垂れ落ち性評価]
 上記の熱伝導性シートについて耐垂れ落ち性を評価した。具体的には、膜厚が0.5mmの熱伝導性シートを、ガラス基板上に配置し、80℃に設定された加熱炉で10分間加熱し、熱伝導性シートとガラス基板を密着させ、試験サンプルとした。次に、試験サンプルを150℃に加熱された電気炉内に縦置きし、4時間保持した。試験サンプルを取り出して冷却した後、熱伝導性シートを目視確認して、電気炉内に縦置した直後(初期)及び電気炉内に縦置きして4時間保持した後の垂れ落ちを「〇」(垂れ落ちなし)、「×」(垂れ落ちあり)の2基準で垂れ落ちの有無を判断した。評価結果を表3、4に示す(表中、「耐垂れ落ち性」において「初期」と「加熱後」表記)。
 [サイクル試験評価]
 アルミニウム板に、直径10mmに打ち抜いた0.5mm厚の熱伝導性シートを配置し、80℃に設定された加熱炉で10分間加熱し、熱伝導性シートとアルミニウム板を密着させた。その後、0.5mmのスペーサーを設けスライドガラスを被せ、熱伝導性シートを挟持し、試験サンプルとした。この試験サンプルを、0℃と100℃ (各30分)を交互に繰り返すようにセットされたヒートサイクル試験機の中に地面から垂直に配置し、1000サイクル試験を行った。1000サイクル後、熱伝導性シートが元の場所から移動した距離(mm)を測定した。評価結果を表3、4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3、4から分かるように、実施例1~37の熱伝導性ペーストであれば、ペースト化が可能であることが分かる。また、実施例1~37の熱伝導性ペーストは、粘度が200Pa・s以下であることから、スクリーン印刷等の従来公知の塗布方法を用いても良好に塗布することができることが分かる。
 さらに実施例1~37の熱伝導性ペーストは、塗布後に揮発性溶剤を揮発させることで半固体状態の熱伝導性シートを作成することができた。このことから、基油と、軟化点が50℃以上150℃以下の熱可塑性樹脂と、揮発性溶剤を含有し、揮発性溶剤のFedorsの推算法で得られる溶解度パラメータが、9.0~12.0cal(1/2)/cm(3/2)の範囲である熱伝導性ペーストであれば、従来公知の塗布方法を用いても良好に塗布することが可能であり、揮発性溶剤が揮発されることで熱伝導性シートを形成できることが分かる。
 さらに、実施例1~37の熱伝導性ペーストは、250℃4時間保持後における「流動性」及び「耐垂れ落ち性」が良好であり、さらに、サイクル評価試験で元の場所から移動した距離も小さいものであった。このことから、実施例1~37の熱伝導性ペーストはポンプアウトの発生も効果的に抑制できることが分かる。
 また、基油100質量部に対して揮発性溶剤を15質量部の割合で含有する実施例31では、ペースト化が可能であり、粘度が200Pa・s以下ではあるため、スクリーン印刷等の従来公知の塗布方法を用いて塗布することができるものである。しかしながら、粘度の上限が近く、例えば、基油100質量部に対して揮発性溶剤を10質量部未満割合で含有する熱伝導性ペーストであると、スクリーン印刷等の従来公知の塗布方法を用いて塗布することが相対的に困難となる傾向となることが分かる。
 なお、「軟化点が50℃以上150℃以下の熱可塑性樹脂」の種類を変更させた実施例35~37についても、同様に良好に塗布することができるものであり、かつポンプアウトの発生も効果的に抑制できることが分かる。
 一方、Fedorsの推算法で得られる溶解度パラメータが、9.0~12.0cal(1/2)/cm(3/2)の範囲外である比較例1、2の熱伝導性ペーストでは、ペースト化することができず、そもそも塗布して熱伝導性シートを作成することができないものであった。
 
 

Claims (14)

  1.  基油組成物と、無機粉末充填剤と、を含む熱伝導性ペーストであって、
     前記基油組成物は、基油と、軟化点が50℃以上150℃以下の熱可塑性樹脂と、揮発性溶剤と、を含有し、
     該揮発性溶剤のFedorsの推算法で得られる溶解度パラメータが、9.0~12.0cal(1/2)/cm(3/2)である
     熱伝導性ペースト。
  2.  前記基油100質量部に対して前記揮発性溶剤を10質量部以上200質量部以下の割合で含有する
     請求項1に記載の熱伝導性ペースト。
  3.  前記無機粉末充填剤は、平均粒子径が10μm以上100μm以下の範囲にある第1無機粉末充填剤と、該第1無機粉末充填剤とは平均粒子径が異なる第2無機粉末充填剤と、該第1無機粉末充填剤及び該第2無機粉末充填剤とは平均粒子径が異なる第3無機粉末充填剤と、を含有し、
     前記無機粉末充填剤の平均粒径が以下の関係式(1)、(2)を満たす
     請求項1又は2に記載の熱伝導性ペースト。
     D/D<0.70・・・(1)
     D/D<0.60・・・(2)
    [式中:Dは第1無機粉末充填剤の平均粒径を表し、Dは第2無機粉末充填剤の平均粒径を表し、Dは第3無機粉末充填剤の平均粒径を表す。]
  4.  前記第2無機粉末充填剤の平均粒子径は1μm以上50μm以下の範囲であり、
     前記第3無機粉末充填剤の平均粒子径は0.1μm以上5μm以下の範囲である
     請求項3に記載の熱伝導性ペースト。
  5.  無機粉末充填剤100質量部に対し、前記第1無機粉末充填剤を40質量部以上80質量部以下の割合で含有し、前記第2無機粉末充填剤を10質量部以上50質量部以下の割合で含有し、前記第3無機粉末充填剤を10質量部以上40質量部以下の割合で含有する
     請求項3又は4に記載の熱伝導性ペースト。
  6.  前記無機粉末充填剤が、銅、アルミニウム、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム及び炭化ケイ素から選ばれる少なくとも1種以上を含有する
     請求項1から5のいずれかに記載の熱伝導性ペースト。
  7.  無機粉末充填剤100質量部に対し、前記基油と前記熱可塑性樹脂との合計が5.3質量部以上33.3質量部以下の割合である
     請求項1から6のいずれかに記載の熱伝導性ペースト。
  8.  前記基油100質量部に対し、前記熱可塑性樹脂を50質量部以上200質量部以下の割合で含有する
     請求項1から7のいずれかに記載の熱伝導性ペースト。
  9.  前記基油は、鉱油、合成炭化水素油、ジエステル、ポリオールエステル及びフェニルエーテルから選ばれる少なくとも1種以上を含有する
     請求項1から8のいずれかに記載の熱伝導性ペースト。
  10.  前記熱可塑性樹脂は、エステル樹脂、アクリル樹脂、ロジン樹脂及びセルロース樹脂から選ばれる少なくとも1種以上である
     請求項1から9のいずれかに記載の熱伝導性ペースト。
  11.  さらにチクソトロピー調整剤を含有し、該チクソトロピー調整剤は、ベントナイト、マイカ、カオリン、セピオライト、サポナイト、及びヘクトライトから選ばれる少なくとも1種以上を含有する
     請求項1から10のいずれかに記載の熱伝導性ペースト。
  12.  前記基油100質量部に対し、前記チクソトロピー調整剤を1質量部以上10質量部以下の割合で含有する
     請求項11に記載の熱伝導性ペースト。
  13.  発熱部品及び/又は放熱部品の表面に請求項1から12のいずれかに記載の熱伝導性ペーストを塗布し、該熱伝導性ペーストを乾燥して熱伝導性シートを得る
     熱伝導性シートの製造方法。
  14.  発熱部品と放熱部品とが熱伝導性シートを介して接着させる放熱部品付発熱部品の製造方法であって、
     発熱部品及び/又は放熱部品の表面に請求項1から12のいずれかに記載の熱伝導性ペーストを塗布し、該熱伝導性ペーストを乾燥して熱伝導性シートを得て、該熱伝導性シートを介して前記発熱部品と前記放熱部品とを接着させる
     放熱部品付発熱部品の製造方法。
     
PCT/JP2021/009673 2020-03-11 2021-03-10 熱伝導性ペースト WO2021182550A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180020417.2A CN115279838A (zh) 2020-03-11 2021-03-10 导热性膏
EP21767763.2A EP4120337A4 (en) 2020-03-11 2021-03-10 THERMOCONDUCTIVE PASTE
US17/910,607 US20230141794A1 (en) 2020-03-11 2021-03-10 Thermally conductive paste

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-041983 2020-03-11
JP2020041983 2020-03-11

Publications (1)

Publication Number Publication Date
WO2021182550A1 true WO2021182550A1 (ja) 2021-09-16

Family

ID=77671596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009673 WO2021182550A1 (ja) 2020-03-11 2021-03-10 熱伝導性ペースト

Country Status (5)

Country Link
US (1) US20230141794A1 (ja)
EP (1) EP4120337A4 (ja)
CN (1) CN115279838A (ja)
TW (1) TW202140678A (ja)
WO (1) WO2021182550A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024101031A1 (ja) * 2022-11-10 2024-05-16 住友金属鉱山株式会社 熱伝導性組成物及び放熱グリース

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089756A (ja) 1999-07-08 2001-04-03 Saint Gobain Performance Plastics Corp 相変化熱仲介材料
JP2004075760A (ja) 2002-08-13 2004-03-11 Denki Kagaku Kogyo Kk 熱伝導性樹脂組成物及びフェーズチェンジ型放熱部材
JP2007150349A (ja) 2007-02-09 2007-06-14 Shin Etsu Chem Co Ltd 熱軟化性熱伝導性部材
JP2008280516A (ja) * 2007-04-10 2008-11-20 Cosmo Sekiyu Lubricants Kk 高熱伝導性コンパウンド
JP4713161B2 (ja) 2005-01-07 2011-06-29 ポリマテック株式会社 熱伝導性グリス
CN105315968A (zh) * 2015-10-28 2016-02-10 苏州天脉导热科技有限公司 一种无硅相变导热膏及其制备方法
JP6627947B1 (ja) * 2018-10-26 2020-01-08 住友金属鉱山株式会社 熱伝導性グリース付き半導体モジュール及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3932125B2 (ja) * 2003-08-14 2007-06-20 信越化学工業株式会社 熱軟化性熱伝導性部材
KR101960996B1 (ko) * 2011-11-29 2019-03-21 미쯔비시 케미컬 주식회사 질화붕소 응집 입자, 그 입자를 함유하는 조성물, 및 그 조성물로 이루어지는 층을 갖는 삼차원 집적 회로
CN102964948B (zh) * 2012-11-15 2015-08-26 江苏元京电子科技有限公司 一种热固化导热散热涂料及其制备方法
CN103319829B (zh) * 2013-06-13 2015-06-03 深圳德邦界面材料有限公司 一种无硅型导热垫片及其制备方法
CN103497739B (zh) * 2013-10-09 2016-03-23 中国科学院深圳先进技术研究院 导热膏及其制备方法
CN105524469B (zh) * 2014-11-27 2017-02-22 比亚迪股份有限公司 一种导热胶料及其制备方法和应用
EP3299419B1 (en) * 2015-05-22 2021-07-07 Momentive Performance Materials Japan LLC Thermally conductive composition
CN105349013A (zh) * 2015-11-26 2016-02-24 苏州天脉导热科技有限公司 一种纳米碳浆及其制备方法
CN107641483A (zh) * 2017-07-17 2018-01-30 常州中英科技股份有限公司 一种高导热粘结片及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089756A (ja) 1999-07-08 2001-04-03 Saint Gobain Performance Plastics Corp 相変化熱仲介材料
JP2004075760A (ja) 2002-08-13 2004-03-11 Denki Kagaku Kogyo Kk 熱伝導性樹脂組成物及びフェーズチェンジ型放熱部材
JP4713161B2 (ja) 2005-01-07 2011-06-29 ポリマテック株式会社 熱伝導性グリス
JP2007150349A (ja) 2007-02-09 2007-06-14 Shin Etsu Chem Co Ltd 熱軟化性熱伝導性部材
JP2008280516A (ja) * 2007-04-10 2008-11-20 Cosmo Sekiyu Lubricants Kk 高熱伝導性コンパウンド
CN105315968A (zh) * 2015-10-28 2016-02-10 苏州天脉导热科技有限公司 一种无硅相变导热膏及其制备方法
JP6627947B1 (ja) * 2018-10-26 2020-01-08 住友金属鉱山株式会社 熱伝導性グリース付き半導体モジュール及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
R. F. FEDORS, POLYMER ENGINEERING SCIENCE, vol. 14, 1974, pages 147
See also references of EP4120337A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024101031A1 (ja) * 2022-11-10 2024-05-16 住友金属鉱山株式会社 熱伝導性組成物及び放熱グリース

Also Published As

Publication number Publication date
TW202140678A (zh) 2021-11-01
CN115279838A (zh) 2022-11-01
EP4120337A4 (en) 2024-04-10
EP4120337A1 (en) 2023-01-18
US20230141794A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
JP4993135B2 (ja) 熱伝導性シリコーン組成物
JP2009096961A (ja) リワーク性に優れた熱伝導性シリコーングリース組成物
JP4546086B2 (ja) 乾燥熱界面材料
TWI428395B (zh) A thermally conductive silicone grease composition and a hardened product thereof
TWI542641B (zh) Hardened organopolysiloxane composition and semiconductor device
JP2008038137A (ja) 熱伝導性シリコーングリース組成物およびその硬化物
JP5687167B2 (ja) 耐熱型熱伝導性グリース
CN107828105B (zh) 不含有机硅的凝胶状导热组合物
JP2007106809A (ja) 熱伝導性グリース組成物
JP2021080316A (ja) 熱伝導性組成物
JPWO2012067247A1 (ja) 高耐久性熱伝導性組成物及び低脱油性グリース
WO2021182550A1 (ja) 熱伝導性ペースト
JP7379940B2 (ja) 熱伝導性組成物
WO2021182548A1 (ja) 熱伝導性組成物
WO2021182549A1 (ja) 熱伝導性組成物
JP7347273B2 (ja) 熱伝導性組成物
JP2012052137A (ja) 熱伝導性シリコーングリース組成物
JP2022030766A (ja) 熱伝導性グリース
KR20240004493A (ko) 경화성 오르가노폴리실록산 조성물 및 반도체 장치
JP2005072220A (ja) 放熱部材
JP6848816B2 (ja) 熱伝導性グリース
JP7073939B2 (ja) 熱伝導性グリース
JP2021130772A (ja) 熱伝導性グリース
JP2021031641A (ja) 熱伝導性組成物
JP2006307030A (ja) 放熱性グリース状組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021767763

Country of ref document: EP

Effective date: 20221011

NENP Non-entry into the national phase

Ref country code: JP