WO2021181678A1 - 半導体装置および電力変換装置 - Google Patents

半導体装置および電力変換装置 Download PDF

Info

Publication number
WO2021181678A1
WO2021181678A1 PCT/JP2020/011192 JP2020011192W WO2021181678A1 WO 2021181678 A1 WO2021181678 A1 WO 2021181678A1 JP 2020011192 W JP2020011192 W JP 2020011192W WO 2021181678 A1 WO2021181678 A1 WO 2021181678A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead frame
semiconductor device
frame
distance
plate portion
Prior art date
Application number
PCT/JP2020/011192
Other languages
English (en)
French (fr)
Inventor
穂隆 六分一
山本 圭
坂本 健
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/011192 priority Critical patent/WO2021181678A1/ja
Priority to DE112020006890.0T priority patent/DE112020006890T5/de
Priority to JP2020561842A priority patent/JP6851559B1/ja
Priority to CN202080098203.2A priority patent/CN115280496A/zh
Priority to US17/795,536 priority patent/US20230070214A1/en
Publication of WO2021181678A1 publication Critical patent/WO2021181678A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/315Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the encapsulation having a cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • H01L23/49513Lead-frames or other flat leads characterised by the die pad having bonding material between chip and die pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49548Cross section geometry
    • H01L23/49551Cross section geometry characterised by bent parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49109Connecting at different heights outside the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Definitions

  • This disclosure relates to semiconductor devices and power conversion devices.
  • the transfer mold type semiconductor device (hereinafter, simply referred to as a semiconductor device) has a first lead frame exposed from the first side surface of the sealing member and a sealing member due to the nature of being manufactured by a mold that moves in the vertical direction. It is provided with a second lead frame exposed from the second side surface facing the side opposite to the first side surface of the above.
  • a general semiconductor device includes a heat conductive member that is thermally connected to the semiconductor element and partly exposed from the sealing member in order to dissipate heat generated from the semiconductor element.
  • the heat conductive member is thermally connected to a metal cooler. Therefore, in a semiconductor device that requires a high withstand voltage, an insulation distance (that is, a space distance and a creepage distance) between each of the first and second lead frames exposed from the sealing member and the heat conductive member is secured. There is a need.
  • the first lead frame is bent in order to secure an insulation distance.
  • the first lead frame is inclined with respect to both portions between the portion exposed from the sealing member and the portion arranged between the semiconductor element and the heat conductive member.
  • the inclined portion is formed by bending. The length of the inclined portion is set according to the required insulation distance.
  • Patent Document 1 discloses a method for manufacturing a semiconductor device in which two lead terminals are overlapped with each other sandwiching a semiconductor chip.
  • the first lead frame and the second lead frame of the semiconductor device are generally formed from one plate-shaped member. Specifically, first, the first lead frame and the second lead frame are integrally formed by punching and bending a plate-shaped member. Then, after each part of the first lead frame and the second lead frame is sealed by the sealing member, the other parts of both members exposed from the sealing member are cut. As a result, the first lead frame and the second lead frame are separated.
  • the distance between the first lead frame and the second lead frame becomes longer as the length of the inclined portion of the first lead frame becomes longer. That is, in the conventional semiconductor device, it is difficult to further reduce the size while securing the insulation distance.
  • Patent Document 1 Even if the method for manufacturing a semiconductor device described in Patent Document 1 is to be applied to a package having a plurality of terminals, the semiconductor device having a large number of terminals is further miniaturized while ensuring an insulation distance. That is difficult.
  • a main object of the present invention is to provide a semiconductor device that can be miniaturized as compared with a conventional semiconductor device and a power conversion device including the semiconductor device while ensuring an insulation distance.
  • the semiconductor device is a seal that seals a semiconductor element, a first lead frame, a second lead frame, and a heat conductive member, and a semiconductor element, a first lead frame, a second lead frame, and a heat conductive member. It is equipped with a member.
  • the sealing member has a first side surface and a second side surface facing opposite sides in the first direction, and a lower surface extending along the first direction.
  • the first lead frame includes a first part exposed from the first side surface, a second part arranged on the lower surface side of the first part in the second direction intersecting the lower surface, and the first part and the second part. It includes a third part that is electrically connected to the part and is inclined with respect to each of the first part and the second part.
  • the second lead frame includes a fourth portion exposed from the second side surface and a fifth portion spaced apart from the second portion in the first and second directions.
  • the second, third, and fifth parts are sealed in a sealing member.
  • the semiconductor element is mounted on the upper surface of the second part.
  • the heat conductive member is arranged on the side opposite to the semiconductor element with respect to the second part and is thermally connected to the second part, and has a portion exposed from the lower surface.
  • the semiconductor device is arranged between the second part and the fifth part in at least the second direction, and is equipped with elements that form a part of a wiring circuit including the first lead frame and the second lead frame. Further equipped with an intermediate frame. The distance between the second part and the intermediate frame in the first direction is shorter than the distance between the upper surface of the first part and the upper surface of the second part in the second direction.
  • the present disclosure it is possible to provide a semiconductor device that can be miniaturized as compared with a conventional semiconductor device and a power conversion device including the semiconductor device while ensuring an insulation distance.
  • FIG. It is a top view of the semiconductor device which concerns on Embodiment 1.
  • FIG. It is a top view which shows the inside of the sealing member of the semiconductor device shown in FIG.
  • It is an end view seen from the line segment IV-IV in FIG. 2 is a partial plan view showing one step of the method for manufacturing the semiconductor device shown in FIGS. 2 to 5.
  • It is sectional drawing seen from the line segment VI-VI in FIG. 2 is a partial plan view showing one step after the step shown in FIG. 5 of the method for manufacturing a semiconductor device shown in FIGS. 2 to 5.
  • It is sectional drawing seen from the line segment VIII-VIII in FIG. 2 is a partial plan view showing one step after the step shown in FIG.
  • FIG. 7 of the method for manufacturing a semiconductor device shown in FIGS. 2 to 5. It is sectional drawing seen from the line segment XX in FIG. It is a partial plan view which shows the inside of the sealing member of the semiconductor device which concerns on Embodiment 2.
  • FIG. It is sectional drawing seen from the line segment XII-XII in FIG. It is an end view seen from the line segment XIII-XIII in FIG. 11 is a partial plan view showing one step of the method for manufacturing the semiconductor device shown in FIGS. 11 to 13. It is sectional drawing seen from the line segment XV-XV in FIG. 11 is a partial plan view showing one step after the step shown in FIG. 14 of the method for manufacturing a semiconductor device shown in FIGS. 11 to 13.
  • FIG. 11 It is sectional drawing seen from the line segment XVII-XVII in FIG. 11 is a partial plan view showing one step after the step shown in FIG. 16 of the method for manufacturing a semiconductor device shown in FIGS. 11 to 13. It is sectional drawing seen from the line segment XIX-XIX in FIG. 11 is a partial perspective view showing a modified example of the manufacturing method of the semiconductor device shown in FIGS. 11 to 13. 11 is a partial perspective view showing a modified example of the manufacturing method of the semiconductor device shown in FIGS. 11 to 13. It is sectional drawing of the semiconductor device which concerns on Embodiment 3. FIG. It is sectional drawing of the semiconductor device which concerns on Embodiment 4. FIG. It is sectional drawing of the semiconductor device which concerns on Embodiment 5. FIG.
  • the semiconductor device 100 includes a semiconductor element 1, a first lead frame 2, a second lead frame 3, an intermediate frame 4, an electronic component 5, a first wiring member 6, and a second wiring member. 7.
  • the heat conductive member 8 and the sealing member 9 are provided.
  • the sealing member 9 includes a semiconductor element 1, a first lead frame 2, a second lead frame 3, an intermediate frame 4, an electronic component 5, a first wiring member 6, and a second wiring.
  • the member 7 and the heat conductive member 8 are sealed.
  • the entire semiconductor element 1, electronic component 5, first wiring member 6, and second wiring member 7 are embedded inside the sealing member 9.
  • the first lead frame 2, the second lead frame 3, the intermediate frame 4, and the heat conductive member 8 have a surface exposed from the sealing member 9.
  • Each of the first lead frame 2, the second lead frame 3, the intermediate frame 4, the electronic component 5, the first wiring member 6, and the second wiring member 7 is a part of the wiring circuit formed inside the semiconductor device 100. It is an element that constitutes.
  • the semiconductor device 100 is applied to the power conversion device 200 described later and the semiconductor element 1 is the switching element of the main conversion circuit 201 of the power conversion device 200 (see FIG. 25), the first read frame 2 is the main conversion circuit 201.
  • the second lead frame 3 and the intermediate frame 4 form a part of the control circuit 203.
  • the sealing member 9 has a first side surface 9A, a second side surface 9B, a lower surface 9C, and an upper surface 9D.
  • the first side surface 9A and the second side surface 9B face each other in the first direction X.
  • the central portion of the first side surface 9A and the second side surface 9B protrudes outward from both ends of the first side surface 9A and the second side surface 9B, for example.
  • the lower surface 9C and the upper surface 9D face each other in the second direction Z.
  • the sealing member 9 is a composite material containing, for example, a filler such as a filler and a resin as main components.
  • the resin contained in the sealing member 9 is, for example, either an epoxy resin or a phenol resin.
  • the semiconductor element 1 is, for example, a vertical semiconductor element, and has an upper electrode and a lower electrode.
  • the upper electrode is electrically connected to the electronic component 5 via the first wiring member 6.
  • the lower electrode is electrically connected to the first lead frame 2 via a conductive joining member 10.
  • the semiconductor element 1 includes a diode used in a converter unit that converts input AC power into DC power, a bipolar transistor used in an inverter unit that converts DC power into AC power, an IGBT (Insulated Gate Bipolar Transistor), and a MOSFET (Metal Oxide Semiconductor Field Effect). Includes at least one selected from Transistor) and GTO (Gate Turn-Off Thiristor).
  • the semiconductor element 1 is arranged, for example, on the lower surface 9C side of the center of the semiconductor device 100 in the second direction Z.
  • the material constituting the joining member 10 includes, for example, solder or silver paste.
  • the first lead frame 2 extends along the first direction X.
  • the first lead frame 2 includes a first part 2a exposed from the sealing member 9, a second part 2b and a third part 2c sealed by the sealing member 9.
  • the first part 2a, the second part 2b, and the third part 2c are provided as the same member.
  • the longitudinal direction of the first part 2a is along the first direction X.
  • the first part 2a is exposed from the first side surface 9A located above the center of the sealing member 9 in the second direction Z.
  • the second part 2b is arranged on the lower surface 9C side of the first part 2a in the second direction Z, and is arranged on the second lead frame 3 side of the first part 2a in the first direction X.
  • the semiconductor element 1 is mounted on the second part 2b.
  • the second part 2b has an upper surface that is electrically connected to the lower electrode of the semiconductor element 1 and a lower surface that is thermally connected to the upper surface of the heat conductive member 8 via the joining member 10. There is.
  • the upper and lower surfaces are along the first direction X and the third direction Y and intersect the second direction Z.
  • the upper surface of the second portion 2b is arranged on the lower surface 9C side of the sealing member 9 with respect to the lower surface of the first portion 2a in the second direction Z.
  • the width of the second part 2b in the second direction Z is narrower than, for example, the widths of the first direction X and the third direction Y of the second part 2b.
  • the third part 2c is electrically connected between the first part 2a and the second part 2b, and is inclined with respect to each of the first part 2a and the second part 2b.
  • the first part 2a, the third part 2c, and the second part 2b are continuous in the first direction X.
  • One end of the first direction X of the first part 2a is exposed from the first side surface 9A of the sealing member 9.
  • the other end of the first direction X of the first part 2a is connected to one end of the first direction X of the third part 2c.
  • the other end of the first direction X of the third part 2c is connected to one end of the first direction X of the second part 2b.
  • the internal angle formed by the second part 2b and the third part 2c on the XZ plane is, for example, an obtuse angle.
  • the internal angle formed by the first part 2a and the third part 2c on the XZ plane is, for example, an obtuse angle.
  • the second lead frame 3 extends along the first direction X.
  • the second lead frame 3 includes a fourth part 3a exposed from the sealing member 9 and a fifth part 3b sealed by the sealing member 9.
  • the fourth part 3a and the fifth part 3b are provided as the same member.
  • the longitudinal direction of the fourth part 3a is along the first direction X.
  • the fifth part 3b is arranged on the first lead frame 2 side of the fourth part 3a in the first direction X.
  • the longitudinal direction of the fifth part 3b is along the first direction X.
  • the fourth part 3a and the fifth part 3b are continuous in the first direction X.
  • the height of the fourth part 3a with respect to the lower surface 9C of the sealing member 9 is equal to the height of the first part 2a with respect to the lower surface 9C of the sealing member 9.
  • the end surface of the fifth portion 3b located on the first lead frame 2 side in the first direction X is arranged, for example, on the second side surface 9B side of the connecting portion between the seventh portion 4a and the ninth portion 4c of the intermediate frame 4. ing.
  • the end face of the fifth part 3b located on the first lead frame 2 side in the first direction X is, for example, on the first lead frame 2 side of the connection part between the seventh part 4a and the ninth part 4c of the intermediate frame 4. It may be arranged in.
  • the intermediate frame 4 is sealed by the sealing member 9.
  • An electronic component 5 is mounted on the intermediate frame 4 as an element forming a part of the wiring circuit formed inside the semiconductor device 100.
  • the electronic component 5 is, for example, an IC (Integral Circuit) chip.
  • the electronic component 5 is fixed to the intermediate frame 4 via the joining member 11.
  • the material constituting the joining member 11 includes, for example, solder or silver paste.
  • the intermediate frame 4 is arranged between the second part 2b of the first lead frame 2 and the fifth part 3b of the second lead frame 3 in the second direction Z. As shown in FIG. 4, the entire intermediate frame 4 is arranged below the second lead frame 3 in the second direction Z. The entire intermediate frame 4 is arranged above the second portion 2b of the first lead frame 2 and below the first portion 2a in the second direction Z.
  • the intermediate frame 4 includes, for example, Part 7 4a, Part 8 4b, and Part 9 4c.
  • the seventh part 4a, the eighth part 4b, and the ninth part 4c are provided as the same member.
  • the seventh part 4a, the eighth part 4b, and the ninth part 4c are continuous in the first direction X.
  • the electronic component 5 is mounted in Part 7 4a.
  • the seventh part 4a has an upper surface that is at least thermally connected to the electronic component 5 via the joining member 11, and a lower surface that is spaced apart from the lower surface 9C in the second direction Z. ..
  • the upper and lower surfaces are along the first direction X and the third direction Y and intersect the second direction Z.
  • At least a part of the lower surface of the seventh part 4a faces the heat conductive member 8 via the sealing member 9.
  • the eighth part 4b is arranged above the seventh part 4a in the second direction Z.
  • the ninth part 4c electrically connects between the seventh part 4a and the eighth part 4b, and is inclined with respect to each of the seventh part 4a and the eighth part 4b.
  • the end face of the eighth part 4b located on the opposite side of the ninth part 4c in the first direction X is exposed from, for example, the second side surface 9B.
  • the eighth part 4b of the intermediate frame 4 extends outward from, for example, the second side surface 9B of the sealing member 9.
  • the entire 7th part 4a, 8th part 4b, and 9th part 4c are arranged above the 2nd part 2b of the 1st lead frame 2 and below the 1st part 2a in the second direction Z. ing.
  • the entire 7th part 4a, 8th part 4b, and 9th part 4c are arranged below the 2nd lead frame 3 in the second direction Z.
  • at least a part of the 7th part 4a is arranged between the 2nd part 2b and the 5th part 3b in the first direction X.
  • the upper surface of the seventh part 4a of the intermediate frame 4 is arranged above the upper surface of the second part 2b of the first lead frame 2.
  • the upper surface of the seventh portion 4a of the intermediate frame 4 is arranged below the lower surfaces of the fourth portion 3a and the fifth portion 3b of the second lead frame 3.
  • the lower surface of the seventh portion 4a of the intermediate frame 4 is arranged above the upper surface of the second portion 2b of the first lead frame 2, for example.
  • the end face of the intermediate frame 4 located on the first lead frame 2 side in the first direction X is closer to the second lead frame 3 than the end face of the second part 2b located on the second lead frame 3 side in the first direction X. Is located in.
  • the distance between the end face of the intermediate frame 4 located on the side of the first lead frame 2 in the first direction X and the end face of the second portion 2b located on the side of the second lead frame 3 in the first direction X is L1.
  • the distance L1 between the second part 2b in the first direction X and the seventh part 4a of the intermediate frame 4 is the distance h2 between the upper surface of the second part 2b and the upper surface of the first part 2a in the second direction Z. Shorter than. The distance L1 is shorter than the creepage distance of Part 3 2c on the XZ plane. The distance L1 is shorter than the distance h1 between the upper surface of the second part 2b and the upper surface of the seventh part 4a in the second direction Z. The distance L1 is shorter than the distance h3 between the second part 2b and the seventh part 4a in the second direction Z. The distance L1 is shorter than the distance L2 between the second part 2b and the second lead frame 3 in the first direction X. The distance L2 is longer than, for example, the distance h2. The distance h2 is, for example, 2 mm or more. Preferably, the distance h2 is 3 mm or more.
  • the shortest distance between the first lead frame 2 and the intermediate frame 4 is shorter than the shortest distance between the first lead frame 2 and the second lead frame 3.
  • the shortest distance between the first lead frame 2 and the intermediate frame 4 is the shortest distance between the second part 2b and the seventh part 4a.
  • the shortest distance between the first lead frame 2 and the second lead frame 3 is the shortest distance between the second part 2b and the fifth part 3b.
  • the first lead frame 2, the second lead frame 3, and the intermediate frame 4 are formed of one plate-shaped conductive member.
  • the first lead frame 2 is formed by punching and bending a plate-shaped conductive member.
  • the second lead frame 3 is formed by punching the conductive member.
  • the intermediate frame 4 is formed by punching and bending the conductive member.
  • a sagging surface 30 due to punching is formed on the end faces of the first lead frame 2, the second lead frame 3, and the intermediate frame 4 along the Z direction.
  • the sagging surface 30 formed on the intermediate frame 4 faces the opposite side in the second direction Z from the sagging surface 30 formed on each of the first lead frame 2 and the second lead frame 3.
  • the sagging surface 30 formed on the intermediate frame 4 faces upward, for example.
  • the sagging surface 30 formed on each of the first lead frame 2 and the second lead frame 3 faces downward, for example.
  • the sagging surface 30 formed on the intermediate frame 4 may face downward, and the sagging surface 30 formed on each of the first lead frame 2 and the second lead frame 3 may face upward.
  • the material constituting the first lead frame 2, the second lead frame 3, and the intermediate frame 4 may be any material having conductivity, and includes, for example, copper (Cu) or aluminum (Al).
  • the distance between the lower surface 9C of the sealing member 9 in the second direction Z and the first portion 2a of the first lead frame 2 is, for example, the lower surface 9C of the sealing member 9 and the second lead frame 3 in the second direction Z. Equal to the distance to Part 4 3a.
  • the first wiring member 6 electrically connects the upper electrode of the semiconductor element 1 and the electronic component 5.
  • the second wiring member 7 electrically connects the electronic component 5 and the fifth part 3b of the second lead frame 3.
  • the first wiring member 6 and the second wiring member 7 include, for example, at least one of a wire and a ribbon.
  • the first wiring member 6 and the second wiring member 7 are joined to each member by an ultrasonic ball bond method, a thermocompression bonding method, or a combination of both methods.
  • the distance between the joint portion between the upper electrode of the semiconductor element 1 and the first wiring member 6 and the joint portion between the electronic component 5 and the first wiring member 6 is, for example, the upper electrode of the semiconductor element 1. It is shorter than the distance between the joint portion between the first wiring member 6 and the joint portion between the second lead frame 3 and the second wiring member 7.
  • the distance between the joint portion between the upper electrode of the semiconductor element 1 and the first wiring member 6 and the joint portion between the electronic component 5 and the first wiring member 6 is, for example, the upper electrode of the semiconductor element 1. It is shorter than the distance between the joint portion between the first wiring member 6 and the joint portion between the second lead frame 3 and the second wiring member 7.
  • the heat conductive member 8 is a portion of the semiconductor device 100 that is thermally connected to an external cooler.
  • the heat conductive member 8 electrically insulates the semiconductor element 1 and the first lead frame 2 from the cooler, but thermally connects the two.
  • the upper surface of the heat conductive member 8 is thermally connected to the lower surface of the second portion 2b of the first lead frame 2.
  • the lower surface of the heat conductive member 8 is exposed from the lower surface 9C of the sealing member 9.
  • the heat conductive member 8 is, for example, a laminate of a conductive member 8a having conductivity and thermal conductivity and an insulating member 8b having electrical insulation and high thermal conductivity.
  • the conductive member 8a is, for example, a metal foil or a metal plate.
  • the material constituting the conductive member 8a includes, for example, Cu or Al.
  • the insulating member 8b is, for example, a thermosetting resin mixed with a filler having high thermal conductivity.
  • the material constituting the filler contains, for example , at least one of silica (SiO 2 ), alumina (Al 2 O 3 ), and boron nitride (BN).
  • the width (thickness) of the conductive member 8a in the second direction Z is equal to, for example, the width (thickness) of the insulating member 8b in the second direction Z.
  • the thickness of the conductive member 8a of the heat conductive member 8 may be thicker than, for example, the width (thickness) of the insulating member 8b in the second direction Z.
  • Such a heat conductive member 8 has higher heat dissipation than the heat conductive member 8 in which the thickness of the conductive member 8a is about the same as the thickness of the insulating member 8b.
  • the insulation distance of the semiconductor device 100 including the relatively thick heat conductive member 8 is relatively large. It is longer than the insulation distance of the semiconductor device 100 including the thin heat conductive member 8.
  • the semiconductor device 100 includes, for example, a plurality of semiconductor elements 1, a plurality of first lead frames 2, a plurality of second lead frames 3, a plurality of intermediate frames 4, a plurality of electronic components 5, a plurality of first wiring members 6, and the like. And a plurality of second wiring members 7.
  • a plurality of sets of the configurations shown in FIGS. 2 to 4 are arranged in the third direction Y.
  • the manufacturing method of the semiconductor device 100 is as follows: a first step of punching, a first bending, and a second bending of the conductive member 20, and a semiconductor element 1, an electronic component 5, and a first wiring member on the conductive member 20 after the first step. After the second step and the second step of mounting the 6 and the second wiring member 7, the entire semiconductor element 1, the electronic component 5, the first wiring member 6 and the second wiring member 7 and a part of the conductive member 20 are sealed. It includes a third step of forming the sealing member 9 to be stopped, and a fourth step of cutting a part of the conductive member 20 exposed from the sealing member 9 after the third step.
  • the flat conductive member 20 is first prepared.
  • the conductive member 20 is punched.
  • the punch moves from below to above in the second direction Z to punch the conductive member 20.
  • the conductive member 20 shown in FIGS. 5 and 6 is formed.
  • the conductive member 20 includes a first plate portion 22, a second plate portion 23, and a third plate portion 24, and a frame portion 25 connecting them.
  • the first plate portion 22 is finally processed into the first lead frame 2.
  • the second plate portion 23 is finally processed into the second lead frame 3.
  • the third plate portion 24 is finally processed into the intermediate frame 4.
  • the first plate portion 22, the second plate portion 23, and the third plate portion 24 extend along the first direction X.
  • the frame portion 25 includes a first frame portion 25a connected to the first plate portion 22, a second frame portion 25b connected to the second plate portion 23 and the third plate portion 24, and a first frame portion 25a. It has a third frame portion 25c connecting the second frame portion 25b and the second frame portion 25b.
  • Each longitudinal direction of the first frame portion 25a and the second frame portion 25b is along the first direction X.
  • an opening 26 is formed in the second frame portion 25b. The opening 26 is arranged side by side with the second plate portion 23 and the third plate portion 24 at intervals in the first direction X.
  • One end of the first plate portion 22 in the first direction X is connected to the first frame portion 25a.
  • the other end of the first plate portion 22 in the first direction X is arranged at a distance from one end of the first plate portion 23 in the first direction X in the first direction X.
  • the second plate portion 23 is arranged so as to extend toward the first plate portion 22 side with respect to the second frame portion 25b in the first direction X.
  • the other end of the second plate portion 23 in the first direction X is connected to a part of the second frame portion 25b located on the side of the first plate portion 22 with respect to the opening 26.
  • the distance between the first plate portion 22 and the second plate portion 23 in the first direction X is set to be less than the above distance L2.
  • the third plate portion 24 is arranged so as to extend toward the side opposite to the first plate portion 22 with respect to the second frame portion 25b in the first direction X.
  • One end of the third plate portion 24 in the first direction X is connected to a part of the second frame portion 25b located on the side opposite to the first plate portion 22 with respect to the opening 26.
  • the second plate portion 23 and the third plate portion 24 are arranged so as not to face each other with the second frame portion 25b interposed therebetween in the first direction X.
  • a sagging surface 30 is formed at the lower end of the end surface (cut surface) of the conductive member 20 by the punching process.
  • the sagging surface 30 is arranged between the lower surface of the conductive member 20 and the sheared surface in the cut surface of the conductive member 20.
  • the first bending process is performed on the conductive member 20 shown in FIGS. 5 and 6.
  • the conductive member 20 shown in FIGS. 7 and 8 is formed.
  • the first plate portion 22 and the third plate portion 24 are bent in opposite directions to each other. As a result, the first portion 22a, the second portion 22b, and the third portion 22c are formed on the first plate portion 22. A seventh portion 24a, an eighth portion 24b, and a ninth portion 24c are formed on the third plate portion 24.
  • One end of the first direction X of the first portion 22a is connected to the first frame portion 25a.
  • the other end of the first direction X of the first portion 22a is connected to one end of the first direction X of the third portion 22c.
  • the other end of the first direction X of the third portion 22c is connected to one end of the first direction X of the second portion 22b.
  • the second portion 22b is arranged below the lower surface of the first portion 22a in the second direction Z.
  • the distance between the upper surface of the first portion 22a and the upper surface of the second portion 22b in the second direction Z, and the distance between the upper surface of the first portion 22a and the upper surface of the second plate portion 23 in the second direction Z are , The distance h2.
  • the third portion 22c connects the first portion 22a and the second portion 22b and is inclined with respect to each of the first portion 22a and the second portion 22b.
  • One end of the first direction X of the eighth part 24b is connected to the second frame part 25b.
  • the other end of the eighth portion 24b in the first direction X is connected to one end of the ninth portion 24c in the first direction X.
  • the other end of the first direction X of the ninth portion 24c is connected to one end of the first direction X of the seventh portion 24a.
  • the seventh portion 24a is arranged above the upper surface of the eighth portion 24b in the second direction Z.
  • the ninth portion 24c connects the seventh portion 24a and the eighth portion 24b and is inclined with respect to each of the seventh portion 24a and the eighth portion 24b.
  • the third plate portion 24 of the conductive member 20 is bent around the bending line C.
  • the folding line C is a virtual straight line that passes through the center of the first direction X of the second frame portion 25b and the opening 26 and extends along the third direction Y.
  • the third plate portion 24 is arranged below the first plate portion 22 and the second plate portion 23 in the second direction Z.
  • the sagging surface 30 of the third plate portion 24 faces the opposite side in the second direction Z from the sagging surfaces 30 of the first plate portion 22 and the second plate portion 23.
  • the sagging surface 30 of the third plate portion 24 faces upward, and the sagging surfaces 30 of the first plate portion 22 and the second plate portion 23 face downward.
  • the distance between the second portion 22b and the seventh portion 24a in the first direction X is the above distance L1.
  • the distance between the upper surface of the second portion 22b and the upper surface of the seventh portion 24a in the second direction Z is the above distance h1.
  • the distance between the upper surface of the first portion 22a and the upper surface of the second portion 22b in the second direction Z is the above distance h2.
  • the distance between the upper surface of the second portion 22b and the lower surface of the seventh portion 24a in the second direction Z is the above distance h3.
  • the distance between the second portion 22b and the second plate portion 23 in the first direction X is the above distance L2.
  • the distance h2 is, for example, 3 mm.
  • the distance between the upper surface of the seventh portion 24a and the eighth portion 24b in the second direction Z is, for example, 1.5 mm.
  • the semiconductor element 1 and the electronic component 5 are joined to the conductive member 20 shown in FIGS. 9 and 10 formed in the first step via the joining members 10 and 11.
  • the semiconductor element 1 is joined to the upper surface of the second portion 22b of the first plate portion 22 via a joining member 10.
  • the electronic component 5 is joined to the upper surface of the seventh portion 24a of the third plate portion 24 via the joining member 11.
  • the first wiring member 6 and the second wiring member 7 are formed.
  • the first wiring member 6 electrically connects the upper electrode of the semiconductor element 1 and the electronic component 5.
  • the second wiring member 7 electrically connects the electronic component 5 and the second plate portion 23.
  • an integral body including the semiconductor element 1, the electronic component 5, the first wiring member 6, the second wiring member 7, and the conductive member 20 shown in FIGS. 9 and 10 is formed. ..
  • the sealing member 9 is molded by transfer molding, compression molding, injection molding, or the like.
  • an integral body including the semiconductor element 1, the electronic component 5, the first wiring member 6, the second wiring member 7, and the conductive member 20 formed by the second step, and the heat conductive member 8 are placed in the mold. It is thrown in.
  • a part of the plate portion 24 located on the side of the second frame portion 25b, the second frame portion 25b, and the third frame portion 25c are arranged outside the mold.
  • the sealing member 9 is molded into the shapes shown in FIGS. 1 to 4.
  • the part, the second frame portion 25b, and the third frame portion 25c located on the second frame portion 25b side are exposed to the outside from the first side surface 9A and the second side surface 9B of the sealing member 9.
  • the lower surface of the heat conductive member 8 is exposed to the outside from the lower surface 9C of the sealing member 9.
  • the fourth step at least the first frame portion 25a, the second frame portion 25b, and the third frame portion 25c are removed.
  • the first plate portion 22 to the first lead frame 2, the second plate portion 23 to the second lead frame 3, and the third plate portion 24 to the intermediate frame 4 are formed.
  • the semiconductor device 100 is manufactured.
  • the first lead frame 402 is bent in order to secure an insulation distance.
  • the first lead frame 402 has a first part 402a arranged outside the sealing member and a second part 402b on which the semiconductor element is mounted.
  • the first lead frame 402 and the second lead frame 403 are preferably formed from one conductive member from the viewpoint of manufacturing cost.
  • the first lead frame 402 and the second lead frame 403 are formed by punching from one conductive member and only the first lead frame 402 is bent, the first lead frame
  • the shortest distance L3 between the 402 and the second lead frame 403 closest to the first lead frame 402 in the first direction X is the first part 402a and the first part 402a of the first lead frame 402 in the second direction Z.
  • the distance between the two parts 402b is h5 or more. This is because the so-called pattern shrinkage occurs due to the bending process.
  • FIG. 32 shows that the first lead frame 402 and the second lead frame 403 are formed by punching from one conductive member and only the first lead frame 402 is bent.
  • the shortest distance L4 between the first lead frame 402 and the second lead frame 403 located at the closest position is longer than the distances L3 and h5.
  • the distance h5 is set based on the required insulation distance. Therefore, in the semiconductor device as a comparative example, it is difficult to make the distances L3 and L4 shorter than the distance h5 from the viewpoint of the insulation distance.
  • the semiconductor device 100 is arranged between the second part of the first lead frame 2 and the fifth part 3b of the second lead frame 3 in the second direction Z, and the first lead frame 2 and The intermediate frame 4 is provided with elements that form a part of the wiring circuit including the second lead frame 3.
  • the distance L1 between the second part 2b in the first direction X and the seventh part 4a of the intermediate frame 4 is the distance h2 between the upper surface of the first part 2a and the upper surface of the second part 2b in the second direction Z. Shorter than.
  • the distance L1 can be shorter than the distance L3 in the comparative example.
  • the electronic component 5 mounted on the second lead frame is mounted on the intermediate frame 4 in the semiconductor device 100.
  • the second lead frame 3 can be downsized by the area for mounting the electronic component 5 as compared with the second lead frame of the comparative example.
  • the semiconductor device 100 can be downsized as compared with the comparative example when at least the same insulation distance as that of the comparative example is secured.
  • each of the first lead frame 2, the second lead frame 3, and the intermediate frame 4 has a sagging surface 30 formed by punching. ing.
  • the sagging surface formed on the intermediate frame faces the opposite side in the second direction from the sagging surface 30 formed on each of the first lead frame and the second lead frame.
  • Such a first lead frame 2, a second lead frame 3, and an intermediate frame 4 can be formed from one conductive member 20.
  • the first lead frame 2 can be formed from a first plate portion 22 that has been cut out and first bent.
  • the intermediate frame 4 can be formed from a third plate portion 24 that has been cut out, first bent, and second bent.
  • the third plate portion 24 is formed in the conductive member 20 so as to extend toward the side opposite to the first plate portion 22 with respect to the bending line C, and then is bent around the bending line C. Therefore, the distance L1 is not affected by the so-called pattern shrinkage that occurs between the first plate portion 22 and the second plate portion 23 during the first bending process. Therefore, in the semiconductor device 100, it is possible to secure the insulation distance and reduce the size as compared with the above comparative example, while suppressing the manufacturing cost.
  • the distance h2 between the upper surface of the first part 2a and the upper surface of the second part 2b in the second direction Z can be 2 mm or more.
  • the first portion 2a is exposed from the first side surface 9A located above the center of the sealing member 9 in the second direction Z. In this way, the insulation distance between the first portion 2a exposed from the sealing member 9 and the heat conductive member 8 becomes relatively long.
  • the insulation distance h2 is not limited by the distance L1, the insulation distance can be made relatively long while the miniaturization of the first direction X is realized.
  • the second lead frame 3 of the semiconductor device 100 may have a bent shape as in the first lead frame 2.
  • the fifth part 3b of the second lead frame 3 may be arranged on the lower surface 9C side of the fourth part 3a in the second direction Z.
  • the upper surface of the fifth part 3b is arranged on the same plane as the upper surface of the seventh part 4a of the intermediate frame 4 or above the upper surface.
  • the second lead frame 3 may further include a sixth part that electrically connects the fourth part 3a and the fifth part 3b.
  • the sixth part electrically connects between the first part 2a and the second part 2b, and is inclined with respect to each of the first part 2a and the second part 2b.
  • the semiconductor device 101 according to the second embodiment has basically the same configuration as the semiconductor device 100 according to the first embodiment, but has a second lead frame 3 and an intermediate frame. It differs from the semiconductor device 100 in that each sagging surface 30 of 4 faces the opposite side to the sagging surface 30 of the first lead frame 2.
  • the height of the first part 2a with respect to the lower surface 9C of the sealing member 9 is higher than the height of the fourth part 3a with respect to the lower surface 9C of the sealing member 9.
  • the distance h1 is longer than the distance h4 between the upper surface of the first portion 2a of the first lead frame 2 and the upper surface of the fourth portion 3a of the second lead frame 3 in the second direction Z.
  • the lower surface of the first portion 2a of the first lead frame 2 is arranged on the same plane as the upper surfaces of the fourth portion 3a and the fifth portion 3b of the second lead frame 3, or above the upper surface.
  • the upper surface of the seventh part 4a of the intermediate frame 4 is arranged above the lower surfaces of the fourth part 3a and the fifth part 3b of the second lead frame 3.
  • Each sagging surface 30 of the second lead frame 3 and the intermediate frame 4 faces upward, for example.
  • the sagging surface 30 of the first lead frame 2 faces downward, for example.
  • the sagging surfaces 30 of the second lead frame 3 and the intermediate frame 4 may face downward, and the sagging surfaces 30 of the first lead frame 2 may face upward.
  • the method for manufacturing the semiconductor device 101 according to the second embodiment has basically the same configuration as the method for manufacturing the semiconductor device 100 according to the first embodiment, but the second bending process is performed in the first step. It differs from the manufacturing method of the semiconductor device 100 in that it is performed on the two-plate portion 23 and the third plate portion 24.
  • the conductive member 21 shown in FIGS. 14 and 15 is formed by punching.
  • the conductive member 21 shown in FIGS. 14 and 15 has basically the same configuration as the conductive member 20 shown in FIGS. 5 and 6, but the second plate portion 23 has a second frame in the first direction X. It differs from the conductive member 20 in that it is arranged so as to extend toward the side opposite to the first plate portion 22 with respect to the portion 25b.
  • the other end of the second plate portion 23 in the first direction X is connected to a part of the second frame portion 25b located on the side opposite to the first plate portion 22 with respect to the opening 26. That is, the second plate portion 23 and the third plate portion 24 are arranged side by side in the second direction Y.
  • the first bending process is performed on the conductive member 21 shown in FIGS. 14 and 15. As a result, the conductive member 21 shown in FIGS. 16 and 17 is formed.
  • the first bending process on the conductive member 21 is performed in the same manner as the first bending process on the conductive member 20.
  • the second bending process for the conductive member 21 is basically the same as the second bending process for the conductive member 20, but is different from that in that the second plate portion 23 is bent together with the third plate portion 24.
  • the second plate portion 23 and the third plate portion 24 are bent around the bending line C. As a result, the second plate portion 23 and the third plate portion 24 are arranged below the first plate portion 22 in the second direction Z.
  • each sagging surface 30 of the second plate portion 23 and the third plate portion 24 faces the opposite side in the second direction Z from the sagging surface 30 of the first plate portion 22.
  • the sagging surfaces 30 of the second plate portion 23 and the third plate portion 24 face upward, and the sagging surfaces 30 of the first plate portion 22 face downward.
  • the distance between the second portion 22b and the seventh portion 24a in the first direction X is the above distance L1.
  • the distance between the upper surface of the second portion 22b and the upper surface of the seventh portion 24a in the second direction Z is the above distance h1.
  • the distance between the upper surface of the first portion 22a and the upper surface of the second portion 22b in the second direction Z is the above distance h2.
  • the distance between the upper surface of the second portion 22b and the lower surface of the seventh portion 24a in the second direction Z is the above distance h3.
  • the distance between the second portion 22b and the second plate portion 23 in the first direction X is the above distance L2.
  • the distance between the upper surface of the second portion 22b and the upper surface of the second plate portion 23 in the second direction Z is the above distance h4.
  • the second step, the third step, and the fourth step are performed in the same manner as those in the manufacturing method of the semiconductor device 100. As described above, the semiconductor device 101 is manufactured.
  • the semiconductor device 101 Since the semiconductor device 101 has basically the same configuration as the semiconductor device 100, the same effect as that of the semiconductor device 100 can be obtained.
  • the second lead frame 3 of the semiconductor device 101 may also have the sixth part formed by the first bending process.
  • Embodiment 3 The method for manufacturing the semiconductor device according to the third embodiment has basically the same configuration as the method for manufacturing the semiconductor device 100 according to the first embodiment, but in the second bending process, the turnaround line C is the center. It differs from the manufacturing method of the semiconductor device 100 in that the twisting process as shown in FIGS. 20 and 21 is performed instead of the bending process.
  • the twisting process is performed on at least the third plate portion 24.
  • the third plate portion 24 is twisted and inverted around the twist center line C.
  • the second plate portion 23 is not twisted.
  • the width of the frame portion 25 connecting the second plate portion 23 and the third plate portion 24 in the first direction X is compared with the width of the second plate portion 23 and the third plate portion 24 in the first direction X. , Narrow enough.
  • the height of the eighth part 4b of the intermediate frame 4 with respect to the lower surface 9C of the sealing member 9 is the height of the first part 2a of the first lead frame 2 with respect to the lower surface 9C of the sealing member 9. And equal to the height of the fourth part 3a of the second lead frame 3.
  • the semiconductor device manufactured by the method for manufacturing the semiconductor device according to the third embodiment has basically the same configuration as the semiconductor device 100, the same effect as that of the semiconductor device 100 can be obtained.
  • twisting process may be performed on the second plate portion 23 and the third plate portion 24 that have been subjected to the first bending process. Such twisting is suitable for manufacturing the semiconductor device 100 including the second lead frame 3 including the sixth part.
  • each sagging surface of the second lead frame 3 and the intermediate frame 4 faces the opposite side to the sagging surface of the first lead frame 2.
  • the semiconductor device 102 according to the fourth embodiment has basically the same configuration as the semiconductor device 100 according to the first embodiment, but the first part 2a of the first lead frame 2 has. It differs from the semiconductor device 100 in that it is exposed from the upper surface 9D of the sealing member 9.
  • the upper surface of the fourth part 3a of the second lead frame 3 is also exposed from the upper surface 9D of the sealing member 9.
  • the second lead frame 3 includes a fourth part 3a, a fifth part 3b, and a sixth part 3c.
  • the fifth part 3b and the sixth part 3c are embedded inside the sealing member 9.
  • the second wiring member 7 is joined to the upper surface of the fifth part 3b or the upper surface of the sixth part 3c.
  • the height of the upper surface of the fifth portion 3b with respect to the lower surface 9C of the sealing member 9 is equal to or higher than the height of the upper surface of the seventh portion 4a of the intermediate frame 4 with respect to the lower surface 9C.
  • the height of the upper surface of the fifth portion 3b with respect to the lower surface 9C of the sealing member 9 is the seventh of the intermediate frame 4 with respect to the lower surface 9C. It is higher than the height of the upper surface of the portion 4a. That is, the upper surface of the fifth part 3b is arranged above the upper surface of the seventh part 4a.
  • the upper surface of the fifth part 3b is arranged above the upper surface of the electronic component 5 mounted on the upper surface of the seventh part 4a, for example.
  • the fourth part 3a of the second lead frame 3 is arranged side by side with the eighth part 4b of the intermediate frame 4 in the third direction Y.
  • the fifth part 3b of the second lead frame 3 is arranged side by side with the seventh part 4a of the intermediate frame 4 in the third direction Y.
  • the sixth part 3c of the second lead frame 3 is arranged side by side with the ninth part 4c of the intermediate frame 4 in the third direction Y.
  • the semiconductor device 102 according to the fourth embodiment has basically the same configuration as the semiconductor device 100, the same effect as that of the semiconductor device 100 can be obtained.
  • the distance h2 of the semiconductor device 102 is longer than the distance h2 of the semiconductor device 100.
  • the distance L1 of the semiconductor device 102 is equivalent to the distance L1 of the semiconductor device 100. Therefore, when the semiconductor device 102 and the semiconductor device 100 having the same dimensions are compared, the insulation distance of the semiconductor device 102 is longer than the insulation distance of the semiconductor device 100.
  • the method for manufacturing the semiconductor device 102 has basically the same configuration as the manufacturing method for the semiconductor device 100, but the mold configuration used in the third step is the mold used for the manufacturing method for the semiconductor device 100. Is different.
  • a method for preventing burrs made of the sealing material (for example, resin burrs) from being formed on the upper surface 9D of the sealing member 9 is adopted.
  • the films are placed on the portion where the upper surface 9D of the sealing member 9 inside the mold is molded, the surfaces to be exposed on each of the first plate portion 22 and the second plate portion 23 come into contact with the film. Is placed in.
  • the adhesive tape is adhered to the surface to be exposed in each of the first plate portion 22 and the second plate portion 23, these are put into the inside of the mold.
  • the film and the adhesive tape are separated from the sealing member 9 after the molding of the sealing member 9 is completed.
  • the materials that make up the film and adhesive tape include, for example, polyimide.
  • the upper surface of the eighth part 4b of the intermediate frame 4 may also be exposed from the upper surface 9D of the sealing member 9.
  • the semiconductor device 102 shown in FIG. 23 can be manufactured, for example, by performing a first bending process and a second bending process on at least the second plate portion 23 and the third plate portion 24 in the first step.
  • the second bending process may be a bending process or a twisting process.
  • FIG. 24 is a partial cross-sectional view of the conductive member 20 that has been bent in the second bending process of the method for manufacturing the semiconductor device 102 shown in FIG. 23.
  • the second bending process By performing the second bending process on each of the first plate portion 22, the second plate portion 23, and the third plate portion 24, each of the first plate portion 22, the second plate portion 23, and the third plate portion 24 is formed.
  • the exposed surfaces of are coplanar.
  • the semiconductor device 102 can also be manufactured by twisting the second plate portion 23 and the third plate portion 24 in the second bending process.
  • the semiconductor device 103 according to the fifth embodiment has basically the same configuration as the semiconductor device 100 according to the first embodiment, but the intermediate frame 4 is connected to the second lead frame 3. In that respect, it is different from the semiconductor device 100.
  • the intermediate frame 4 is connected to the fifth part 3b of the second lead frame 3. That is, all the frames arranged on the second side surface 9B side are formed by the first bending process and the second bending process.
  • the intermediate frame 4 shown in FIG. 25 is composed of only the seventh part 4a of the intermediate frame 4 shown in FIG.
  • the thickness of the conductive member 8a of the heat conductive member 8 is thicker than, for example, the thickness of the insulating member 8b.
  • the thickness of the conductive member 8a of the heat conductive member 8 is, for example, 2 mm or more.
  • the material constituting the member 8a in the same manner contains, for example, Al.
  • such a heat conductive member 8 has higher heat dissipation than the heat conductive member 8 in which the thickness of the conductive member 8a is about the same as the thickness of the insulating member 8b.
  • the insulation distance of the semiconductor device 103 including the relatively thick heat conductive member 8 is relatively large. It is longer than the insulation distance of the semiconductor device 103 including the thin heat conductive member 8.
  • the semiconductor device 103 according to the fifth embodiment has basically the same configuration as the semiconductor device 100, the same effect as that of the semiconductor device 100 can be obtained.
  • the method for manufacturing the semiconductor device 103 has basically the same configuration as the manufacturing method for the semiconductor device 100, but the second plate portion 23 and the third plate portion 24 are integrally formed in the first step. Therefore, it is different from the manufacturing method of the semiconductor device 100.
  • the second bending process is performed as a twisting process.
  • the semiconductor device 103 in which the intermediate frame 4 is connected to the second lead frame 3 can also be manufactured by performing the second bending process as the bending process.
  • the semiconductor device 104 according to the sixth embodiment has basically the same configuration as the semiconductor device 100 according to the first embodiment, but the upper surface 9D of the sealing member 9 is provided with irregularities. It is different from the semiconductor device 100 in that it is used.
  • the distance between the upper surface of the sealing member 9 and each member sealed by the sealing member 9 in the second direction Z is set to be equal to or greater than the shortest distance for realizing the required dielectric strength.
  • the upper surface 9D on the region located between the third part 2c of the first lead frame 2 and the second lead frame 3 and the intermediate frame 4 in the first direction X is the first part 2a of the first lead frame 2.
  • 3rd part 2c, 2nd lead frame 3 and the upper surface 9D on the intermediate frame 4 are recessed.
  • the semiconductor device 104 according to the sixth embodiment has basically the same configuration as the semiconductor device 100, the same effect as that of the semiconductor device 100 can be obtained.
  • the volume and weight of the sealing member 9 are reduced as compared with the case where the upper surface 9D is flat.
  • the weight and volume of the semiconductor device 104 are reduced as compared with the case where the upper surface 9D is a flat surface.
  • the semiconductor device 105 according to the seventh embodiment has basically the same configuration as the semiconductor device 100 according to the first embodiment, but the seventh part 4a of the intermediate frame 4 is a third. It differs from the semiconductor device 100 in that it extends along the three directions Y.
  • the seventh part 4a of the intermediate frame 4 extends along the third direction Y that intersects the first direction X in which the seventh part 4a, the eighth part 4b, and the ninth part 4c are connected.
  • the shape of the intermediate frame 4 is, for example, an L-shape.
  • the distance in the first direction X between the first lead frame 2 and the portion of the seventh portion 4a extending along the third direction Y is L1.
  • the semiconductor device 105 according to the seventh embodiment has basically the same configuration as the semiconductor device 100, the same effect as that of the semiconductor device 100 can be obtained.
  • the method for manufacturing the semiconductor device 105 has basically the same configuration as the manufacturing method for the semiconductor device 100, but the third plate portion 24 formed by the punching process in the first step is formed along the third direction Y. It differs from the manufacturing method of the semiconductor device 100 in that it has an extending portion.
  • the punching process in the first step forms a third plate portion 24 having a portion 27 extending in the first direction X and a portion 28 extending along the third direction Y.
  • the portion 27 of the third plate portion 24 extending in the first direction X is arranged so as to extend toward the side opposite to the first plate portion 22 with respect to the second frame portion 25b in the first direction X.
  • One end of the first direction X of the portion 27 extending in the first direction X is connected to a part of the second frame portion 25b located on the side opposite to the first plate portion 22 with respect to the opening 26.
  • the other end of the first direction X of the portion 27 extending in the first direction X is connected to one end of the third direction Y of the portion 28 extending along the third direction Y.
  • the portion 28 extending along the third direction Y is arranged between the first plate portion 22 and the second plate portion 23 in the first direction X.
  • the third plate portion 24 is formed with the seventh portion 24a, the eighth portion 24b, and the ninth portion 24c.
  • the seventh portion 24a is composed of a part of the portion 27 extending in the first direction X and the entire portion 28 extending along the third direction Y.
  • the seventh portion 24a is arranged above the upper surface of the eighth portion 24b in the second direction Z.
  • the third plate portion 24 is bent around the bending line C. As a result, the third plate portion 24 is arranged below the first plate portion 22 and the second plate portion 23 in the second direction Z. A portion of the seventh portion 24a of the third plate portion 24 that extends along the third direction is arranged between the first plate portion 22 and the second plate portion 23 in the first direction X.
  • Embodiment 8 the semiconductor devices 100 to 105 according to the above-described embodiments 1 to 7 are applied to a power conversion device.
  • the present disclosure is not limited to a specific power conversion device, the case where the present disclosure is applied to a three-phase inverter will be described below as the eighth embodiment.
  • FIG. 31 is a block diagram showing a configuration of a power conversion system to which the power conversion device according to the present embodiment is applied.
  • the power conversion system shown in FIG. 31 includes a power supply 150, a power conversion device 200, and a load 300.
  • the power supply 150 is a DC power supply and supplies DC power to the power converter 200.
  • the power supply 150 can be composed of various things, for example, a DC system, a solar cell, a storage battery, a rectifier circuit connected to an AC system, or an AC / DC converter. May be good. Further, the power supply 150 may be configured by a DC / DC converter that converts the DC power output from the DC system into a predetermined power.
  • the power conversion device 200 is a three-phase inverter connected between the power supply 150 and the load 300, converts the DC power supplied from the power supply 150 into AC power, and supplies AC power to the load 300. As shown in FIG. 31, the power conversion device 200 has a main conversion circuit 201 that converts DC power into AC power and outputs it, and a control circuit 203 that outputs a control signal for controlling the main conversion circuit 201 to the main conversion circuit 201. And have.
  • the load 300 is a three-phase electric motor driven by AC power supplied from the power converter 200.
  • the load 300 is not limited to a specific application, and is an electric motor mounted on various electric devices.
  • the load 300 is used as an electric motor for a hybrid vehicle, an electric vehicle, a railroad vehicle, an elevator, or an air conditioner.
  • the main conversion circuit 201 includes a switching element and a freewheeling diode (not shown), and when the switching element switches, the DC power supplied from the power supply 150 is converted into AC power and supplied to the load 300.
  • the main conversion circuit 201 is a two-level three-phase full bridge circuit, and has six switching elements and each switching element. It can consist of six anti-parallel freewheeling diodes. At least one of each switching element and each freewheeling diode of the main conversion circuit 201 is a switching element or freewheeling diode included in the semiconductor device 202 corresponding to any of the semiconductor devices of the above-described first to seventh embodiments.
  • the six switching elements are connected in series for each of the two switching elements to form an upper and lower arm, and each upper and lower arm constitutes each phase (U phase, V phase, W phase) of the full bridge circuit. Then, the output terminals of each upper and lower arm, that is, the three output terminals of the main conversion circuit 201 are connected to the load 300.
  • the main conversion circuit 201 includes a drive circuit (not shown) for driving each switching element
  • the drive circuit may be built in the semiconductor device 202, or a drive circuit may be provided separately from the semiconductor device 202. It may be provided.
  • the drive circuit generates a drive signal for driving the switching element of the main conversion circuit 201 and supplies the drive signal to the control electrode of the switching element of the main conversion circuit 201.
  • a drive signal for turning on the switching element and a drive signal for turning off the switching element are output to the control electrodes of each switching element.
  • the drive signal When the switching element is kept on, the drive signal is a voltage signal (on signal) equal to or higher than the threshold voltage of the switching element, and when the switching element is kept off, the drive signal is a voltage equal to or lower than the threshold voltage of the switching element. It becomes a signal (off signal).
  • the control circuit 203 controls the switching element of the main conversion circuit 201 so that the desired power is supplied to the load 300. Specifically, the time (on time) at which each switching element of the main conversion circuit 201 should be in the on state is calculated based on the power to be supplied to the load 300.
  • the main conversion circuit 201 can be controlled by PWM control that modulates the on-time of the switching element according to the voltage to be output. Then, a control command (control signal) is output to the drive circuit included in the main conversion circuit 201 so that an on signal is output to the switching element that should be turned on at each time point and an off signal is output to the switching element that should be turned off. Is output.
  • the drive circuit outputs an on signal or an off signal as a drive signal to the control electrode of each switching element according to this control signal.
  • At least one of the semiconductor devices 100 to 105 according to the first to seventh embodiments is applied as the semiconductor device 202 constituting the main conversion circuit 201, so that an insulation distance is secured.
  • it can be miniaturized as compared with a power conversion device including a conventional semiconductor device.
  • the present disclosure is not limited to this, and can be applied to various power conversion devices.
  • a two-level power conversion device is used, but a three-level or multi-level power conversion device may be used, and when power is supplied to a single-phase load, the present disclosure is provided to a single-phase inverter. You may apply it.
  • the present disclosure can be applied to a DC / DC converter or an AC / DC converter.
  • the power conversion device to which the present disclosure is applied is not limited to the case where the above-mentioned load is an electric motor. It can also be used as a power conditioner for a photovoltaic power generation system, a power storage system, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Lead Frames For Integrated Circuits (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

半導体装置(100)は、半導体素子(1)、第1リードフレーム(2)、第2リードフレーム(3)、および熱伝導部材(8)と、これらを封止する封止部材(9)とを備える。第1リードフレームは、封止部材の第1側面(9A)から露出している第1部(2a)と、封止部材の下面(9C)と交差する第2方向(Z)において第1部よりも下面側に配置されている第2部(2b)と、第1部と第2部とを接続しており、かつ第1部および第2部の各々に対して傾斜している第3部(2c)とを含む。第2リードフレームは、封止部材の第2側面(9B)から露出している第4部(3a)と、第2部と間隔を隔てて配置されている第5部(3b)とを含む。半導体素子は、第2部の上面に搭載されている。上記半導体装置は、少なくとも第2方向において第2部と第5部との間に配置されており、かつ第1および第2リードフレームを含む配線回路の一部を構成する要素が搭載されている中間フレーム(4)をさらに備える。第1方向(X)における第2部と中間フレームとの間の距離(L1)は、第2方向における第1部の上面と第2部の上面との間の距離(h1)よりも短い。

Description

半導体装置および電力変換装置
 本開示は、半導体装置および電力変換装置に関する。
 トランスファーモールド型の半導体装置(以下、単に半導体装置とよぶ)は、上下方向に可動する金型によって製造される性質上、封止部材の第1側面から露出した第1リードフレームと、封止部材の第1側面とは反対側を向いた第2側面から露出した第2リードフレームとを備えている。
 また、一般的な半導体装置は、半導体素子から発生した熱を放熱するために、半導体素子と熱的に接続されておりかつ一部が封止部材から露出している熱伝導部材を備えており、該熱伝導部材が金属製の冷却器と熱的に接続される。そのため、高い耐圧が要求される半導体装置では、封止部材から露出している第1および第2リードフレームの各々と熱伝導部材との間の絶縁距離(すなわち空間距離および沿面距離)を確保する必要がある。
 一般的な半導体装置では、第1リードフレームの一部が半導体素子と熱伝導部材との間に配置されている。そのため、このような半導体装置では、絶縁距離を確保するために第1リードフレームが曲げ加工されている。具体的には、第1リードフレームには、封止部材から露出している部分と半導体素子と熱伝導部材の間に配置されている部分との間に、両部分に対して傾斜している傾斜部が曲げ加工により形成されている。上記傾斜部の長さは、要求される絶縁距離に応じて設定される。
 なお、特開平6-196692号公報(特許文献1)には、2つのリード端子が半導体チップを挟んで重なり合った半導体装置を製造する方法が開示されている。
特開平6-196692号公報
 半導体装置の第1リードフレームおよび第2リードフレームは、一般的に1つの板状部材から形成される。具体的には、まず、第1リードフレームおよび第2リードフレームは、板状部材に対する打ち抜き加工および曲げ加工により一体的に成形される。その後、第1リードフレームおよび第2リードフレームの各一部が封止部材により封止された後、封止部材から露出した両部材の他の一部が切断される。これにより、第1リードフレームと第2リードフレームとは別体とされる。
 この場合、第1リードフレームと第2リードフレームとの間の距離は、第1リードフレームの上記傾斜部の長さが長くなるほど、長くなる。つまり、従来の半導体装置では、絶縁距離を確保しながら、さらなる小型化を図ることは困難である。
 また、上記特許文献1に記載の半導体装置の製造方法によっても、複数の端子を持つパッケージに適用しようとした場合、端子数の多い半導体装置においては絶縁距離を確保しながら、さらなる小型化を図ることは困難である。
 本発明の主たる目的は、絶縁距離を確保しながら、従来の半導体装置と比べて小型化され得る半導体装置および該半導体装置を備える電力変換装置を提供することにある。
 本開示に係る半導体装置は、半導体素子、第1リードフレーム、第2リードフレーム、および熱伝導部材と、半導体素子、第1リードフレーム、第2リードフレーム、および熱伝導部材を封止する封止部材とを備える。封止部材は、第1方向において互いに反対側を向いた第1側面および第2側面と、第1方向に沿って延びる下面とを有している。第1リードフレームは、第1側面から露出している第1部と、下面と交差する第2方向において第1部よりも下面側に配置されている第2部と、第1部と第2部とを電気的に接続しており、かつ第1部および第2部の各々に対して傾斜している第3部とを含む。第2リードフレームは、第2側面から露出している第4部と、第1方向および第2方向において第2部と間隔を隔てて配置されている第5部とを含む。第2部、第3部、および第5部は、封止部材に封止されている。半導体素子は、第2部の上面に搭載されている。熱伝導部材は、第2部に対して半導体素子とは反対側に配置されて第2部と熱的に接続されており、下面から露出している部分を有している。上記半導体装置は、少なくとも第2方向において第2部と第5部との間に配置されており、かつ第1リードフレームおよび第2リードフレームを含む配線回路の一部を構成する要素が搭載されている中間フレームをさらに備える。第1方向における第2部と中間フレームとの間の距離は、第2方向における第1部の上面と第2部の上面との間の距離よりも短い。
 本開示によれば、絶縁距離を確保しながら、従来の半導体装置と比べて小型化され得る半導体装置および該半導体装置を備える電力変換装置を提供することができる。
実施の形態1に係る半導体装置の平面図である。 図1に示される半導体装置の封止部材の内部を示す平面図である。 図2中の線分III-IIIから視た断面図である。 図2中の線分IV-IVから視た端面図である。 図2~図5に示される半導体装置の製造方法の一工程を示す部分平面図である。 図5中の線分VI-VIから視た断面図である。 図2~図5に示される半導体装置の製造方法の、図5に示される工程後の一工程を示す部分平面図である。 図7中の線分VIII-VIIIから視た断面図である。 図2~図5に示される半導体装置の製造方法の、図7に示される工程後の一工程を示す部分平面図である。 図9中の線分X-Xから視た断面図である。 実施の形態2に係る半導体装置の封止部材の内部を示す部分平面図である。 図11中の線分XII-XIIから視た断面図である。 図11中の線分XIII-XIIIから視た端面図である。 図11~図13に示される半導体装置の製造方法の一工程を示す部分平面図である。 図14中の線分XV-XVから視た断面図である。 図11~図13に示される半導体装置の製造方法の、図14に示される工程後の一工程を示す部分平面図である。 図16中の線分XVII-XVIIから視た断面図である。 図11~図13に示される半導体装置の製造方法の、図16に示される工程後の一工程を示す部分平面図である。 図18中の線分XIX-XIXから視た断面図である。 図11~図13に示される半導体装置の製造方法の変形例を示す部分斜視図である。 図11~図13に示される半導体装置の製造方法の変形例を示す部分斜視図である。 実施の形態3に係る半導体装置の断面図である。 実施の形態4に係る半導体装置の断面図である。 実施の形態5に係る半導体装置の断面図である。 実施の形態5に係る半導体装置の製造方法の一工程を示す部分断面図である。 実施の形態6に係る半導体装置の断面図である。 実施の形態7に係る半導体装置の封止部材の内部を示す平面図である。 図27に示される半導体装置の製造方法の一工程を示す部分平面図である。 図27に示される半導体装置の製造方法の、図28に示される工程後の一工程を示す部分平面図である。 図27に示される半導体装置の製造方法の、図29に示される工程後の一工程を示す部分平面図である。 実施の形態8に係る電力変換装置を適用した電力変換システムの構成を示すブロック図である。 従来の半導体装置の製造方法により形成された第1リードフレームおよび第2リードフレームを示す断面図である。 従来の半導体装置の製造方法により形成された第1リードフレームおよび第2リードフレームを示す断面図である。
 以下、図面を参照して、本実施の形態について説明する。以下の説明では、便宜上、互いに交差する第1方向X,第2方向Z、および第3方向Yが用いられる。
 実施の形態1.
 <半導体装置の構成>
 図1~図4に示されるように、半導体装置100は、半導体素子1、第1リードフレーム2、第2リードフレーム3、中間フレーム4、電子部品5、第1配線部材6、第2配線部材7、熱伝導部材8、および封止部材9を備える。
 図1~図4に示されるように、封止部材9は、半導体素子1、第1リードフレーム2、第2リードフレーム3、中間フレーム4、電子部品5、第1配線部材6、第2配線部材7、および熱伝導部材8を封止している。半導体素子1、電子部品5、第1配線部材6、および第2配線部材7の全体は、封止部材9の内部に埋め込まれている。第1リードフレーム2、第2リードフレーム3、中間フレーム4、および熱伝導部材8は、封止部材9から露出している面を有している。
 第1リードフレーム2、第2リードフレーム3、中間フレーム4、電子部品5、第1配線部材6、および第2配線部材7の各々は、半導体装置100の内部に形成される配線回路の一部を構成する要素である。半導体装置100が後述する電力変換装置200に適用され、半導体素子1が電力変換装置200(図25参照)の主変換回路201のスイッチング素子である場合、第1リードフレーム2は主変換回路201の一部を構成し、第2リードフレーム3および中間フレーム4は制御回路203の一部を構成する。
 封止部材9は、第1側面9A、第2側面9B、下面9C、および上面9Dを有している。第1側面9Aおよび第2側面9Bは、第1方向Xにおいて互いに反対側を向いている。第1方向Xと交差する第2方向Zにおいて、第1側面9Aおよび第2側面9Bの中央部は、例えば第1側面9Aおよび第2側面9Bの両端部よりも外側に突出している。下面9Cおよび上面9Dは、第2方向Zにおいて互いに反対側を向いている。封止部材9は、例えばフィラー等の充填材と樹脂とを主成分とした複合材である。封止部材9に含まれる樹脂は、例えばエポキシ樹脂およびフェノール樹脂のいずれかである。
 半導体素子1は、例えば縦型の半導体素子であり、上部電極と下部電極とを有している。上部電極は、第1配線部材6を介して電子部品5と電気的に接続されている。下部電極は、導電性を有する接合部材10を介して第1リードフレーム2と電気的に接続されている。半導体素子1は、入力交流電力を直流電力に変換するコンバータ部に用いるダイオード、直流電力を交流電力に変換するインバータ部に用いるバイポーラトランジスタ、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal Oxide SemIConductor Field Effect Transistor)、およびGTO(Gate Turn-Off Thyristor)から選択される少なくとも1つを含む。半導体素子1は、例えば第2方向Zにおける半導体装置100の中央よりも下面9C側に配置されている。接合部材10を構成する材料は、例えばはんだまたは銀ペーストを含む。
 図2~図4に示されるように、第1リードフレーム2は、第1方向Xに沿って延びている。第1リードフレーム2は、封止部材9から露出している第1部2aと、封止部材9に封止されている第2部2bおよび第3部2cを含む。第1部2a、第2部2b、および第3部2cは、同一部材として設けられている。
 図2~図4に示されるように、第1部2aの長手方向は、第1方向Xに沿っている。第1部2aは、封止部材9の第2方向Zの中心よりも上方に位置する第1側面9Aから露出している。第2部2bは、第2方向Zにおいて第1部2aよりも下面9C側に配置されており、かつ第1方向Xにおいて第1部2aよりも第2リードフレーム3側に配置されている。第2部2bには、半導体素子1が搭載されている。
 第2部2bは、接合部材10を介して、半導体素子1の下部電極と電気的に接続されている上面と、熱伝導部材8の上面と熱的に接続されている下面とを有している。上面および下面は、第1方向Xおよび第3方向Yに沿っており、第2方向Zと交差する。第2部2bの上面は、第2方向Zにおいて第1部2aの下面よりも封止部材9の下面9C側に配置されている。第2部2bの第2方向Zの幅は、例えば第2部2bの第1方向Xおよび第3方向Yの各幅よりも狭い。
 第3部2cは、第1部2aおよび第2部2bの間を電気的に接続しており、かつ第1部2aおよび第2部2bの各々に対して傾斜している。第1部2a、第3部2c、および第2部2bは、第1方向Xに連なっている。第1部2aの第1方向Xの一端は、封止部材9の第1側面9Aから露出している。第1部2aの第1方向Xの他端は、第3部2cの第1方向Xの一端と接続されている。第3部2cの第1方向Xの他端は、第2部2bの第1方向Xの一端と接続されている。
 図3および図4に示されるように、XZ面上において第2部2bと第3部2cとが成す内角は、例えば鈍角である。図3および図4に示されるように、XZ面上において第1部2aと第3部2cとが成す内角は、例えば鈍角である。
 図2~図4に示されるように、第2リードフレーム3は、第1方向Xに沿って延びている。第2リードフレーム3は、封止部材9から露出している第4部3aと、封止部材9に封止されている第5部3bとを含む。第4部3aおよび第5部3bは、同一部材として設けられている。
 図2~図4に示されるように、第4部3aの長手方向は、第1方向Xに沿っている。第5部3bは、第1方向Xにおいて第4部3aよりも第1リードフレーム2側に配置されている。第5部3bの長手方向は、第1方向Xに沿っている。第4部3aおよび第5部3bは、第1方向Xに連なっている。封止部材9の下面9Cに対する第4部3aの高さは、封止部材9の下面9Cに対する第1部2aの高さと等しい。
 第1方向Xにおいて第1リードフレーム2側に位置する第5部3bの端面は、例えば中間フレーム4の第7部4aと第9部4cとの接続部よりも第2側面9B側に配置されている。なお、第1方向Xにおいて第1リードフレーム2側に位置する第5部3bの端面は、例えば中間フレーム4の第7部4aと第9部4cとの接続部よりも第1リードフレーム2側に配置されていてもよい。
 図2~図4に示されるように、中間フレーム4は、封止部材9により封止されている。中間フレーム4には、半導体装置100の内部に形成される上記配線回路の一部を構成する要素として、電子部品5が搭載されている。電子部品5は、例えばIC(Integral Circuit)チップである。電子部品5は、接合部材11を介して中間フレーム4に固定されている。接合部材11を構成する材料は、例えばはんだまたは銀ペーストを含む。
 中間フレーム4は、第2方向Zにおいて、第1リードフレーム2の第2部2bと第2リードフレーム3の第5部3bとの間に配置されている。図4に示されるように、中間フレーム4の全体は、第2方向Zにおいて第2リードフレーム3よりも下方に配置されている。中間フレーム4の全体は、第2方向Zにおいて第1リードフレーム2の第2部2bよりも上方であって第1部2aよりも下方に配置されている。
 図2~図4に示されるように、中間フレーム4は、例えば第7部4a、第8部4b、および第9部4cを含む。第7部4a、第8部4b、および第9部4cは、同一部材として設けられている。第7部4a、第8部4b、および第9部4cは、第1方向Xに連なっている。
 第7部4aには、電子部品5が搭載されている。第7部4aは、接合部材11を介して電子部品5と少なくとも熱的に接続されている上面と、第2方向Zにおいて下面9Cと間隔を隔てて配置されている下面とを有している。上面および下面は、第1方向Xおよび第3方向Yに沿っており、第2方向Zと交差する。第7部4aの下面の少なくとも一部は、封止部材9を介して熱伝導部材8と対向している。第8部4bは、第2方向Zにおいて第7部4aよりも上方に配置されている。第9部4cは、第7部4aおよび第8部4bの間を電気的に接続しており、かつ第7部4aおよび第8部4bの各々に対して傾斜している。第1方向Xにおいて第9部4cとは反対側に位置する第8部4bの端面は、例えば第2側面9Bから露出している。中間フレーム4の第8部4bは、例えば封止部材9の第2側面9Bよりも外側に延びている。
 第7部4a、第8部4b、および第9部4cの全体は、第2方向Zにおいて第1リードフレーム2の第2部2bよりも上方であって第1部2aよりも下方に配置されている。第7部4a、第8部4b、および第9部4cの全体は、第2方向Zにおいて第2リードフレーム3よりも下方に配置されている。第7部4a、第8部4b、および第9部4cのうち、少なくとも第7部4aの一部が第1方向Xにおいて第2部2bと第5部3bとの間に配置されている。
 中間フレーム4の第7部4aの上面は、第1リードフレーム2の第2部2bの上面よりも上方に配置されている。中間フレーム4の第7部4aの上面は、第2リードフレーム3の第4部3aおよび第5部3bの下面よりも下方に配置されている。中間フレーム4の第7部4aの下面は、例えば第1リードフレーム2の第2部2bの上面よりも上方に配置されている。
 第1方向Xにおいて第1リードフレーム2側に位置する中間フレーム4の端面は、第1方向Xにおいて第2リードフレーム3側に位置する第2部2bの端面よりも、第2リードフレーム3側に配置されている。第1方向Xにおいて第1リードフレーム2側に位置する中間フレーム4の端面と第1方向Xにおいて第2リードフレーム3側に位置する第2部2bの端面との間の距離がL1である。
 第1方向Xにおける第2部2bと中間フレーム4の第7部4aとの間の距離L1は、第2方向Zにおける第2部2bの上面と第1部2aの上面との間の距離h2よりも短い。上記距離L1は、XZ平面上での第3部2cの沿面距離よりも短い。上記距離L1は、第2方向Zにおける第2部2bの上面と第7部4aの上面との間の距離h1よりも短い。上記距離L1は、第2方向Zにおける第2部2bと第7部4aとの間の距離h3よりも短い。上記距離L1は、第1方向Xにおける第2部2bと第2リードフレーム3との間の距離L2よりも短い。上記距離L2は、例えば上記距離h2よりも長い。上記距離h2は、例えば2mm以上である。好ましくは、上記距離h2は、3mm以上である。
 第1リードフレーム2と中間フレーム4との最短距離は、第1リードフレーム2と第2リードフレーム3との最短距離よりも短い。第1リードフレーム2と中間フレーム4との最短距離は、第2部2bと第7部4aとの間の最短距離である。第1リードフレーム2と第2リードフレーム3との最短距離は、第2部2bと第5部3bとの間の最短距離である。
 第1リードフレーム2、第2リードフレーム3、および中間フレーム4は、1つの板状の導電部材から形成されている。第1リードフレーム2は、板状の導電部材が打ち抜き加工および曲げ加工されることにより、形成されている。第2リードフレーム3は、上記導電部材が打ち抜き加工されることにより、形成されている。中間フレーム4は、上記導電部材が打ち抜き加工および曲げ加工されることにより、形成されている。
 第1リードフレーム2、第2リードフレーム3、および中間フレーム4の各々のZ方向に沿った端面には、打ち抜き加工に起因したダレ面30が形成されている。中間フレーム4に形成されたダレ面30は、第1リードフレーム2および第2リードフレーム3の各々に形成されたダレ面30と、第2方向Zにおいて反対側を向いている。中間フレーム4に形成されたダレ面30は、例えば上方を向いている。第1リードフレーム2および第2リードフレーム3の各々に形成されたダレ面30は、例えば下方を向いている。なお、中間フレーム4に形成されたダレ面30が下方を向いており、第1リードフレーム2および第2リードフレーム3の各々に形成されたダレ面30が上方を向いていてもよい。
 第1リードフレーム2、第2リードフレーム3、および中間フレーム4を構成する材料は、導電性を有する任意の材料であればよいが、例えば銅(Cu)またはアルミニウム(Al)を含む。
 第2方向Zにおける封止部材9の下面9Cと第1リードフレーム2の第1部2aとの間の距離は、例えば第2方向Zにおける封止部材9の下面9Cと第2リードフレーム3の第4部3aとの間の距離と等しい。
 第1配線部材6は、半導体素子1の上部電極と電子部品5とを電気的に接続している。第2配線部材7は、電子部品5と第2リードフレーム3の第5部3bとを電気的に接続している。第1配線部材6および第2配線部材7は、例えばワイヤおよびリボンの少なくともいずれかを含む。この場合、第1配線部材6および第2配線部材7は、超音波ボールボンド方式、熱圧着方式、あるいは両方式の併用により、各部材に接合されている。
 第2方向Zにおいて、半導体素子1の上部電極と第1配線部材6との接合部分と電子部品5と第1配線部材6との接合部分との間の距離は、例えば半導体素子1の上部電極と第1配線部材6との接合部分と第2リードフレーム3と第2配線部材7との接合部分との間の距離よりも短い。
 第1方向Xにおいて、半導体素子1の上部電極と第1配線部材6との接合部分と電子部品5と第1配線部材6との接合部分との間の距離は、例えば半導体素子1の上部電極と第1配線部材6との接合部分と第2リードフレーム3と第2配線部材7との接合部分との間の距離よりも短い。
 熱伝導部材8は、半導体装置100において外部の冷却器と熱的に接続される部分である。熱伝導部材8は、半導体素子1および第1リードフレーム2と上記冷却器とを電気的に絶縁しながらも、両者を熱的に接続する。熱伝導部材8の上面は、第1リードフレーム2の第2部2bの下面と熱的に接続されている。熱伝導部材8の下面は、封止部材9の下面9Cから露出している。
 熱伝導部材8は、例えば導電性および熱伝導性を有する導電部材8aと、電気的絶縁性および高い熱伝導性を有する絶縁部材8bとの積層体である。導電部材8aは、例えば金属箔または金属板である。導電部材8aを構成する材料は、例えばCuまたはAlを含む。絶縁部材8bは、例えば高い熱伝導性を有するフィラーが混入された熱硬化性樹脂である。フィラーを構成する材料は、例えばシリカ(SiO2)、アルミナ(Al23)、窒化ホウ素(BN)の少なくともいずれかを含む。導電部材8aの第2方向Zの幅(厚み)は、例えば絶縁部材8bの第2方向Zの幅(厚み)と等しい。
 熱伝導部材8の導電部材8aの厚みは、例えば絶縁部材8bの第2方向Zの幅(厚み)よりも厚くてもよい。このような熱伝導部材8は、導電部材8aの厚みが絶縁部材8bの厚みと同程度である熱伝導部材8と比べて、高い放熱性を有している。さらに、上記距離h2が同等であって熱伝導部材8の厚みのみが異なる2つの半導体装置100を比較した場合、相対的に厚い熱伝導部材8を備える半導体装置100の絶縁距離は、相対的に薄い熱伝導部材8を備える半導体装置100の絶縁距離よりも長くなる。
 なお、半導体装置100は、例えば複数の半導体素子1、複数の第1リードフレーム2、複数の第2リードフレーム3、複数の中間フレーム4、複数の電子部品5、複数の第1配線部材6、および複数の第2配線部材7を備える。このような半導体装置100では、図2~図4に示される1組の構成が第3方向Yに複数組配置されている。
 <半導体装置の製造方法>
 半導体装置100の製造方法は、導電部材20に対する打ち抜き加工、第1曲げ加工、および第2曲げ加工する第1工程、第1工程後に導電部材20に半導体素子1、電子部品5、第1配線部材6および第2配線部材7を実装する第2工程、第2工程後に半導体素子1、電子部品5、第1配線部材6および第2配線部材7の全体と、導電部材20の一部とを封止する封止部材9を形成する第3工程、および第3工程後に、封止部材9から露出している導電部材20の一部を切断する第4工程とを備える。
 第1工程では、まず平板状の導電部材20が準備される。次に、導電部材20に対する打ち抜き加工が実施される。図5および図6に示される例では、パンチは第2方向Zの下方から上方に移動して導電部材20を打ち抜く。これにより、図5および図6に示される導電部材20が形成される。
 図5および図6に示されるように、導電部材20は、第1板部22、第2板部23、および第3板部24と、これらを接続している枠部25とを含む。第1板部22は、最終的に第1リードフレーム2に加工される。第2板部23は、最終的に第2リードフレーム3に加工される。第3板部24は、最終的に中間フレーム4に加工される。
 第1板部22、第2板部23、および第3板部24は、第1方向Xに沿って延びている。枠部25は、第1板部22と接続されている第1枠部25aと、第2板部23および第3板部24と接続されている第2枠部25bと、第1枠部25aと第2枠部25bとを接続している第3枠部25cとを有している。第1枠部25aおよび第2枠部25bの各長手方向は、第1方向Xに沿っている。第2枠部25bには、例えば開口部26が形成されている。開口部26は、第1方向Xにおいて第2板部23および第3板部24と間隔を隔てて並んで配置されている。
 第1板部22の第1方向Xの一端は、第1枠部25aに接続されている。第1板部22の第1方向Xの他端は、第1方向Xにおいて、第2板部23の第1方向Xの一端と間隔を隔てて配置されている。
 第2板部23は、第1方向Xにおいて、第2枠部25bに対して第1板部22側に向けて延びるように配置されている。第2板部23の第1方向Xの他端は、開口部26に対して第1板部22側に位置する第2枠部25bの一部分に接続されている。第1板部22と第2板部23との間の第1方向Xの間隔は、上記距離L2未満とされている。
 第3板部24は、第1方向Xにおいて、第2枠部25bに対して第1板部22とは反対側に向けて延びるように配置されている。第3板部24の第1方向Xの一端は、開口部26に対して第1板部22とは反対側に位置する第2枠部25bの一部分に接続されている。第2板部23および第3板部24は、第1方向Xにおいて第2枠部25bを挟んで互いに対向しないように配置されている。
 図6に示されるように、上記打ち抜き加工により、導電部材20の端面(切断面)の下方端部には、ダレ面30が形成される。ダレ面30は、導電部材20の下面と導電部材20の切断面内のせん断面との間に配置されている。
 次に、図5および図6に示される導電部材20に対する第1曲げ加工が実施される。これにより、図7および図8に示される導電部材20が形成される。
 図7および図8に示されるように、導電部材20のうち、第1板部22および第3板部24が互いに逆方向に曲げられる。これにより、第1板部22には、第1部分22a、第2部分22b、および第3部分22cが形成される。第3板部24には、第7部分24a、第8部分24b、および第9部分24cが形成される。
 第1部分22aの第1方向Xの一端は、第1枠部25aと接続されている。第1部分22aの第1方向Xの他端は、第3部分22cの第1方向Xの一端と接続されている。第3部分22cの第1方向Xの他端は、第2部分22bの第1方向Xの一端と接続されている。第2部分22bは、第2方向Zにおいて第1部分22aの下面よりも下方に配置されている。第2方向Zにおける第1部分22aの上面と第2部分22bの上面との間の距離、および第2方向Zにおける第1部分22aの上面と第2板部23の上面との間の距離は、上記距離h2となる。第3部分22cは、第1部分22aと第2部分22bとを接続しておりかつ第1部分22aおよび第2部分22bの各々に対して傾斜している。
 第8部分24bの第1方向Xの一端は、第2枠部25bと接続されている。第8部分24bの第1方向Xの他端は、第9部分24cの第1方向Xの一端と接続されている。第9部分24cの第1方向Xの他端は、第7部分24aの第1方向Xの一端と接続されている。第7部分24aは、第2方向Zにおいて第8部分24bの上面よりも上方に配置されている。第9部分24cは、第7部分24aと第8部分24bとを接続しておりかつ第7部分24aおよび第8部分24bの各々に対して傾斜している。
 次に、図7および図8に示される導電部材20に対する第2曲げ加工が実施される。これにより、図9および図10に示される導電部材20が形成される。
 図9および図10に示されるように、導電部材20のうち、第3板部24が折り曲げ線Cを中心として折り曲げられる。折り曲げ線Cは、第2枠部25bおよび開口部26の第1方向Xの中心を通り、かつ第3方向Yに沿って延びる仮想直線である。これにより、第3板部24は、第2方向Zにおいて第1板部22および第2板部23よりも下方に配置される。図10に示されるように、第3板部24のダレ面30は、第1板部22および第2板部23の各ダレ面30とは第2方向Zにおいて反対側を向く。第3板部24のダレ面30は上方を向き、第1板部22および第2板部23の各ダレ面30は下方を向く。
 第1方向Xにおける第2部分22bと第7部分24aとの間の距離は、上記距離L1となる。第2方向Zにおける第2部分22bの上面と第7部分24aの上面との間の距離は、上記距離h1となる。第2方向Zにおける第1部分22aの上面と第2部分22bの上面との間の距離は、上記距離h2となる。第2方向Zにおける第2部分22bの上面と第7部分24aの下面との間の距離は、上記距離h3となる。第1方向Xにおける第2部分22bと第2板部23との間の距離は、上記距離L2となる。上記距離h2は、例えば3mmである。第2方向Zにおける第7部分24aの上面と第8部分24bとの間の距離は、例えば1.5mmである。
 第2工程では、まず、上記第1工程において形成された図9および図10に示される導電部材20に、半導体素子1および電子部品5が接合部材10,11を介して接合される。半導体素子1は、第1板部22の第2部分22bの上面に接合部材10を介して接合される。電子部品5は、第3板部24の第7部分24aの上面に接合部材11を介して接合される。次に、第1配線部材6および第2配線部材7が形成される。第1配線部材6は、半導体素子1の上部電極と電子部品5とを電気的に接続する。第2配線部材7は、電子部品5と第2板部23とを電気的に接続する。このようにして、第2工程では、半導体素子1、電子部品5、第1配線部材6、第2配線部材7、ならびに図9および図10に示される導電部材20を含む一体物が形成される。
 第3工程では、トランスファー成型、コンプレッション成型、または射出成型等によって、封止部材9が成型される。まず、上記第2工程により形成された半導体素子1、電子部品5、第1配線部材6、第2配線部材7、および導電部材20を含む一体物と、熱伝導部材8とが金型内に投入される。このとき、導電部材20の第1部分22aにおいて第1枠部25a側に位置する一部、第1枠部25a、第2板部23において第2枠部25b側に位置する一部、第3板部24において第2枠部25b側に位置する一部、第2枠部25b、および第3枠部25cは、金型の外部に配置される。次に、流動性を有する封止材料が金型内に注入されて硬化する。これにより、封止部材9が図1~図4に示される形状に成型される。導電部材20の第1部分22aにおいて第1枠部25a側に位置する一部、第1枠部25a、第2板部23において第2枠部25b側に位置する一部、第3板部24において第2枠部25b側に位置する一部、第2枠部25b、および第3枠部25cは、封止部材9の第1側面9Aおよび第2側面9Bから外部に露出する。熱伝導部材8の下面は、封止部材9の下面9Cから外部に露出する。
 第4工程では、少なくとも第1枠部25a、第2枠部25b、および第3枠部25cが除去される。これにより、第1板部22から第1リードフレーム2が、第2板部23から第2リードフレーム3が、第3板部24から中間フレーム4が、形成される。なお、第1板部22、第2板部23、および第3板部24の各々のうち、第2側面9Bから外部に露出している一部が除去されてもよい。以上のようにして、半導体装置100が製造される。
 <作用効果>
 半導体装置100の作用効果を、半導体装置100と図32および図33に示される比較例との対比に基づき説明する。
 図32および図33に示されるように、比較例に係る半導体装置では、絶縁距離を確保するために第1リードフレーム402が曲げ加工されている。第1リードフレーム402は、封止部材の外部に配置される第1部402aと、半導体素子が搭載される第2部402bとを有している。第1リードフレーム402および第2リードフレーム403は、製造コストの観点から、1つの導電部材から形成されることが好ましい。
 図32に示されるように、第1リードフレーム402と第2リードフレーム403とが1つの導電部材から打ち抜き加工により形成され、かつ第1リードフレーム402のみが曲げ加工される場合、第1リードフレーム402と、第1方向Xにおいて第1リードフレーム402と最も近い位置にある第2リードフレーム403との間の最短距離L3は、第2方向Zにおける第1リードフレーム402の第1部402aと第2部402bとの間の距離h5以上となる。これは、曲げ加工によって、いわゆるパターンの引けが生じるためのである。特に、図33に示されるように、第1リードフレーム402と第2リードフレーム403とが1つの導電部材から打ち抜き加工および曲げ加工により形成される場合、第1リードフレーム402と、第1方向Xにおいて第1リードフレーム402と最も近い位置にある第2リードフレーム403との間の最短距離L4は、上記距離L3,h5よりも長くなる。上記距離h5は、要求される絶縁距離に基づき設定される。そのため、比較例としての半導体装置では、絶縁距離を観点で、上記距離L3,L4を上記距離h5よりも短くすることは困難であった。
 これに対し、半導体装置100は、第2方向Zにおいて第1リードフレーム2の第2部と第2リードフレーム3の第5部3bとの間に配置されており、かつ第1リードフレーム2および第2リードフレーム3を含む配線回路の一部を構成する要素が搭載されている中間フレーム4を備える。第1方向Xにおける第2部2bと中間フレーム4の第7部4aとの間の距離L1は、第2方向Zにおける第1部2aの上面と第2部2bの上面との間の距離h2よりも短い。
 つまり、上記距離h2が比較例の上記距離h4と等しいとすると、上記距離L1は、比較例の上記距離L3よりも短くされ得る。さらに、比較例においては第2リードフレームに搭載されていた電子部品5が、半導体装置100においては中間フレーム4に搭載されている。これにより、第2リードフレーム3は、上記比較例の第2リードフレームと比べて、電子部品5を搭載するための領域の分だけ小型化され得る。その結果、半導体装置100は、少なくとも上記比較例と同等の絶縁距離が確保された場合に、上記比較例と比べて小型化され得る。
 さらに、図3および図4に示されるように、半導体装置100では、第1リードフレーム2、第2リードフレーム3、および中間フレーム4の各々が、打ち抜き加工により形成されたダレ面30を有している。中間フレームに形成されたダレ面は、第1リードフレームおよび第2リードフレームの各々に形成されたダレ面30と、第2方向において反対側を向いている。このような第1リードフレーム2、第2リードフレーム3、および中間フレーム4は、1つの導電部材20から形成され得る。第1リードフレーム2は、切り抜き加工および第1曲げ加工が施された第1板部22から形成され得る。一方、中間フレーム4は、切り抜き加工、第1曲げ加工、および第2曲げ加工が施された第3板部24から形成され得る。第3板部24は、導電部材20において折り曲げ線Cに対して第1板部22とは反対側に向けて延びるように形成された後、折り曲げ線Cを中心として折り曲げられる。そのため、上記距離L1は、第1曲げ加工時に第1板部22と第2板部23との間で発生する、いわゆるパターンの引けの影響を受けない。よって、半導体装置100では、製造コストが抑えられていながらも、絶縁距離の確保と上記比較例に対する小型化とが実現され得る。
 半導体装置100では、第2方向Zにおける第1部2aの上面と第2部2bの上面との間の距離h2は2mm以上とされ得る。
 図3および図4に示されるように、半導体装置100では、第1部2aが封止部材9の第2方向Zの中心よりも上方に位置する第1側面9Aから露出している。このようにすれば、封止部材9から露出している第1部2aと熱伝導部材8との間の絶縁距離が比較的長くなる。半導体装置100では、上記距離h2の上限値が上記距離L1によって制限されないため、第1方向Xの小型化が実現されながらも、絶縁距離を比較的長くできる。
 なお、半導体装置100の第2リードフレーム3は、第1リードフレーム2と同様に、折り曲げられた形状を有していてもよい。第2リードフレーム3の第5部3bは、第2方向Zにおいて第4部3aよりも下面9C側に配置されていてもよい。第5部3bの上面は、中間フレーム4の第7部4aの上面と同一平面上あるいは該上面よりも上方に配置されている。第2リードフレーム3は、第4部3aと第5部3bとの間を電気的に接続する第6部をさらに含んでいても良い。第6部は、第1部2aおよび第2部2bの間を電気的に接続しており、かつ第1部2aおよび第2部2bの各々に対して傾斜している。
 実施の形態2.
 <半導体装置の構成>
 図11~図13に示されるように、実施の形態2に係る半導体装置101は、実施の形態1に係る半導体装置100と基本的に同様の構成を備えるが、第2リードフレーム3および中間フレーム4の各ダレ面30が第1リードフレーム2のダレ面30と反対側を向いている点で、半導体装置100とは異なる。
 封止部材9の下面9Cに対する第1部2aの高さは、封止部材9の下面9Cに対する第4部3aの高さよりも高い。上記距離h1は、第2方向Zにおける第1リードフレーム2の第1部2aの上面と第2リードフレーム3の第4部3aの上面との間の距離h4よりも長い。第1リードフレーム2の第1部2aの下面は、第2リードフレーム3の第4部3aおよび第5部3bの上面と同一平面上あるいは該上面よりも上方に配置されている。
 中間フレーム4の第7部4aの上面は、第2リードフレーム3の第4部3aおよび第5部3bの下面よりも上方に配置されている。
 第2リードフレーム3および中間フレーム4の各ダレ面30は、例えば上方を向いている。第1リードフレーム2のダレ面30は、例えば下方を向いている。なお、第2リードフレーム3および中間フレーム4の各ダレ面30が下方を向いており、第1リードフレーム2のダレ面30が上方を向いていてもよい。
 <半導体装置の製造方法>
 実施の形態2に係る半導体装置101を製造する方法は、実施の形態1に係る半導体装置100を製造する方法と基本的に同様の構成を備えるが、上記第1工程において第2曲げ加工が第2板部23および第3板部24に対して行われる点で、半導体装置100の製造方法とは異なる。
 第1工程では、まず、図14および図15に示される導電部材21が打ち抜き加工により形成される。図14および図15に示される導電部材21は、図5および図6に示される導電部材20と基本的に同様の構成を備えるが、第2板部23が第1方向Xにおいて、第2枠部25bに対して第1板部22とは反対側に向けて延びるように配置されている点で、導電部材20とは異なる。第2板部23の第1方向Xの他端は、開口部26に対して第1板部22とは反対側に位置する第2枠部25bの一部分に接続されている。つまり、第2板部23および第3板部24は、第2方向Yにおいて並んで配置されている。
 次に、図14および図15に示される導電部材21に対する第1曲げ加工が実施される。これにより、図16および図17に示される導電部材21が形成される。導電部材21に対する第1曲げ加工は、導電部材20に対する第1曲げ加工と同様に行われる。
 次に、図16および図17に示される導電部材21に対する第2曲げ加工が実施される。これにより、図18および図19に示される導電部材21が形成される。導電部材21に対する第2曲げ加工は、導電部材20に対する第2曲げ加工と基本的に同様に行われるが、第2板部23が第3板部24とともに折り曲げられる点で、それとは異なる。
 図18および図19に示されるように、導電部材21のうち、第2板部23および第3板部24が折り曲げ線Cを中心として折り曲げられる。これにより、第2板部23および第3板部24は、第2方向Zにおいて第1板部22よりも下方に配置される。
 図19に示されるように、第2板部23および第3板部24の各ダレ面30は、第1板部22のダレ面30とは第2方向Zにおいて反対側を向く。第2板部23および第3板部24の各ダレ面30は上方を向き、第1板部22のダレ面30は下方を向く。
 第1方向Xにおける第2部分22bと第7部分24aとの間の距離は、上記距離L1となる。第2方向Zにおける第2部分22bの上面と第7部分24aの上面との間の距離は、上記距離h1となる。第2方向Zにおける第1部分22aの上面と第2部分22bの上面との間の距離は、上記距離h2となる。第2方向Zにおける第2部分22bの上面と第7部分24aの下面との間の距離は、上記距離h3となる。第1方向Xにおける第2部分22bと第2板部23との間の距離は、上記距離L2となる。第2方向Zにおける第2部分22bの上面と第2板部23の上面との間の距離は、上記距離h4となる。
 第2工程、第3工程、および第4工程は、半導体装置100の製造方法におけるそれらと同様に行われる。以上のようにして、半導体装置101が製造される。
 半導体装置101は、半導体装置100と基本的に同様の構成を備えるため、半導体装置100と同様の効果を奏することができる。
 なお、半導体装置101の第2リードフレーム3も、第1曲げ加工により形成された上記第6部を有していてもよい。
 実施の形態3.
 実施の形態3に係る半導体装置の製造方法は、実施の形態1に係る半導体装置100の製造方法と基本的に同様の構成を備えるが、上記第2曲げ加工において、折り返し線Cを中心とする折り曲げ加工に代えて、図20および図21に示されるようなねじり加工が行われる点で、半導体装置100の製造方法とは異なる。
 ねじり加工は、少なくとも第3板部24に対して行われる。図20および図21に示されるねじり加工では、第3板部24がねじり中心線Cを中心としてねじられて反転される。第2板部23は、ねじられない。第2板部23と第3板部24とを接続している枠部25の第1方向Xの幅は、第2板部23および第3板部24の第1方向Xの幅と比べて、十分に狭い。
 このようにして製造された半導体装置では、封止部材9の下面9Cに対する中間フレーム4の第8部4bの高さは、封止部材9の下面9Cに対する第1リードフレーム2の第1部2aおよび第2リードフレーム3の第4部3aの高さと等しくなる。
 実施の形態3に係る半導体装置の製造方法により製造された半導体装置は、半導体装置100と基本的に同様の構成を備えるため、半導体装置100と同様の効果を奏することができる。
 なお、ねじり加工は、第1曲げ加工が施された第2板部23および第3板部24に対して行われてもよい。このようなねじり加工は、上記第6部を含む第2リードフレーム3を備える半導体装置100を製造する場合に、好適である。このように製造された半導体装置では、半導体装置101と同様に、第2リードフレーム3および中間フレーム4の各ダレ面が第1リードフレーム2のダレ面とは反対側を向く。
 実施の形態4.
 図22に示されるように、実施の形態4に係る半導体装置102は、実施の形態1に係る半導体装置100と基本的に同様の構成を備えるが、第1リードフレーム2の第1部2aが封止部材9の上面9Dから露出している点で、半導体装置100とは異なる。
 第2リードフレーム3の第4部3aの上面も、封止部材9の上面9Dから露出している。第2リードフレーム3は、第4部3a、第5部3b、および第6部3cを含む。第5部3bおよび第6部3cは、封止部材9の内部に埋め込まれている。第2配線部材7は、第5部3bの上面または第6部3cの上面と接合されている。
 封止部材9の下面9Cに対する第5部3bの上面の高さは、下面9Cに対する中間フレーム4の第7部4aの上面の高さ以上である。好ましくは、第2配線部材7を形成する作業性(ボンディング性)を高める観点から、封止部材9の下面9Cに対する第5部3bの上面の高さは、下面9Cに対する中間フレーム4の第7部4aの上面の高さよりも高い。つまり、第5部3bの上面は第7部4aの上面よりも上方に配置されている。第5部3bの上面は、例えば第7部4aの上面に搭載された電子部品5の上面よりも上方に配置されている。
 第2リードフレーム3の第4部3aは、第3方向Yにおいて中間フレーム4の第8部4bと並んで配置されている。第2リードフレーム3の第5部3bは、第3方向Yにおいて中間フレーム4の第7部4aと並んで配置されている。第2リードフレーム3の第6部3cは、第3方向Yにおいて中間フレーム4の第9部4cと並んで配置されている。
 実施の形態4に係る半導体装置102は、半導体装置100と基本的に同様の構成を備えるため、半導体装置100と同様の効果を奏することができる。
 半導体装置102の上記距離h2は、半導体装置100の上記距離h2よりも長い。一方で、半導体装置102の上記距離L1は、半導体装置100の上記距離L1と同等である。そのため、寸法が同等の半導体装置102と半導体装置100とを比べたときに、半導体装置102の絶縁距離は半導体装置100の絶縁距離よりも長くなる。
 半導体装置102を製造する方法は、半導体装置100の製造方法と基本的に同様の構成を備えるが、上記第3工程で用いられる金型の構成が、半導体装置100の製造方法に用いられる金型とは異なる。
 好ましくは、第3工程では、封止材料により構成されたバリ(例えば樹脂バリ)が封止部材9の上面9D上に形成されることを防ぐための手法が採用される。例えば、金型の内部の封止部材9の上面9Dを成型する部分にフィルムが配置された後、第1板部22および第2板部23の各々において露出すべき面が該フィルムと接するように配置される。また、第1板部22および第2板部23の各々において露出すべき面に接着テープが接着された後、これらが金型の内部に投入される。フィルムおよび接着テープは、封止部材9の成型完了後、封止部材9から分離される。フィルムおよび接着テープを構成する材料は、例えばポリイミドを含む。
 図23に示されるように、半導体装置102では、中間フレーム4の第8部4bの上面も、封止部材9の上面9Dから露出していてもよい。
 図23に示される半導体装置102は、例えば上記第1工程において少なくとも第2板部23および第3板部24が第1曲げ加工および第2曲げ加工されることにより、製造され得る。第2曲げ加工は、折り曲げ加工であってもよいし、ねじり加工であってもよい。
 図24は、図23に示される半導体装置102を製造する方法の第2曲げ加工において折り曲げ加工された導電部材20の部分断面図である。第1板部22、第2板部23、および第3板部24の各々が第2曲げ加工されることにより、第1板部22、第2板部23、および第3板部24の各々の露出すべき面は同一平面上に配置される。
 なお、半導体装置102は、第2板部23および第3板部24が第2曲げ加工においてねじり加工されることによっても、製造され得る。
 実施の形態5.
 図25に示されるように、実施の形態5に係る半導体装置103は、実施の形態1に係る半導体装置100と基本的に同様の構成を備えるが、中間フレーム4が第2リードフレーム3と連なっている点で、半導体装置100とは異なる。
 中間フレーム4は、第2リードフレーム3の第5部3bと連なっている。つまり、第2側面9B側に配置された全てのフレームが第1曲げ加工および第2曲げ加工により形成されている。図25に示される中間フレーム4は、図4に示される中間フレーム4の第7部4aのみで構成されている。
 熱伝導部材8の導電部材8aの厚みは、例えば絶縁部材8bの厚みよりも厚い。熱伝導部材8の導電部材8aの厚みは、例えば2mm以上である。同で部材8aを構成する材料は、例えばAlを含む。上述のように、このような熱伝導部材8は、導電部材8aの厚みが絶縁部材8bの厚みと同程度である熱伝導部材8と比べて、高い放熱性を有している。さらに、上記距離h2が同等であって熱伝導部材8の厚みのみが異なる2つの半導体装置100を比較した場合、相対的に厚い熱伝導部材8を備える半導体装置103の絶縁距離は、相対的に薄い熱伝導部材8を備える半導体装置103の絶縁距離よりも長くなる。
 実施の形態5に係る半導体装置103は、半導体装置100と基本的に同様の構成を備えるため、半導体装置100と同様の効果を奏することができる。
 半導体装置103を製造する方法は、半導体装置100の製造方法と基本的に同様の構成を備えるが、上記第1工程において第2板部23と第3板部24とが一体として形成される点で、半導体装置100の製造方法とは異なる。
 図25に示される半導体装置103の製造方法では、第2曲げ加工がねじり加工として行われる。なお、第2曲げ加工が折り曲げ加工として行われることによっても、中間フレーム4が第2リードフレーム3と連なっている半導体装置103が製造され得る。
 実施の形態6.
 図26に示されるように、実施の形態6に係る半導体装置104は、実施の形態1に係る半導体装置100と基本的に同様の構成を備えるが、封止部材9の上面9Dに凹凸が設けられている点で、半導体装置100とは異なる。
 第2方向Zにおいて封止部材9の上面と封止部材9が封止する各部材との距離は、要求される絶縁耐力を実現するための最短距離以上に設定される。例えば、第1方向Xにおいて第1リードフレーム2の第3部2cと第2リードフレーム3および中間フレーム4との間に位置する領域上の上面9Dは、第1リードフレーム2の第1部2a、第3部2c、第2リードフレーム3および中間フレーム4上の上面9Dよりも凹んでいる。
 実施の形態6に係る半導体装置104は、半導体装置100と基本的に同様の構成を備えるため、半導体装置100と同様の効果を奏することができる。
 さらに、半導体装置104では、上面9Dが平面である場合と比べて、封止部材9の体積および重量が低減されている。その結果、半導体装置104では、上面9Dが平面である場合と比べて、半導体装置104の重量および体積が低減されている。
 実施の形態7.
 図27に示されるように、実施の形態7に係る半導体装置105は、実施の形態1に係る半導体装置100と基本的に同様の構成を備えるが、中間フレーム4の第7部4aが、第3方向Yに沿って延びている点で、半導体装置100とは異なる。
 中間フレーム4の第7部4aは、第7部4a、第8部4b、および第9部4cが連なっている第1方向Xと交差する第3方向Yに沿って延びている。第2方向Zから視て、中間フレーム4の形状は、例えばL字形状である。第1リードフレーム2と第7部4aの第3方向Yに沿って延びている部分との間の第1方向Xの距離が、L1である。
 実施の形態7に係る半導体装置105は、半導体装置100と基本的に同様の構成を備えるため、半導体装置100と同様の効果を奏することができる。
 半導体装置105を製造する方法は、半導体装置100の製造方法と基本的に同様の構成を備えるが、上記第1工程の打ち抜き加工により形成される第3板部24が第3方向Yに沿って延びる部分を有している点で、半導体装置100の製造方法とは異なる。
 図28に示されるように、第1工程での打ち抜き加工により、第1方向Xに延びる部分27と第3方向Yに沿って延びる部分28とを有する第3板部24が形成される。
 第3板部24の第1方向Xに延びる部分27は、第1方向Xにおいて、第2枠部25bに対して第1板部22とは反対側に向けて延びるように配置されている。第1方向Xに延びる部分27の第1方向Xの一端は、開口部26に対して第1板部22とは反対側に位置する第2枠部25bの一部分に接続されている。第1方向Xに延びる部分27の第1方向Xの他端は、第3方向Yに沿って延びる部分28の第3方向Yの一端と接続されている。第3方向Yに沿って延びる部分28は、第1方向Xにおいて、第1板部22と第2板部23との間に配置されている。
 次に、図28に示される導電部材20に対する第1曲げ加工が実施される。これにより、図29に示される導電部材20が形成される。
 図29に示されるように、第3板部24には、第7部分24a、第8部分24b、および第9部分24cが形成される。
 第7部分24aは、第1方向Xに延びる部分27の一部と、第3方向Yに沿って延びる部分28の全部とにより構成されている。第7部分24aは、第2方向Zにおいて第8部分24bの上面よりも上方に配置されている。
 次に、図29に示される導電部材20に対する第2曲げ加工が実施される。これにより、図30に示される導電部材20が形成される。
 図30に示されるように、導電部材20のうち、第3板部24が折り曲げ線Cを中心として折り曲げられる。これにより、第3板部24は、第2方向Zにおいて第1板部22および第2板部23よりも下方に配置される。第3板部24の第7部分24aのうち第3方向に沿って延びる部分は、第1方向Xにおいて第1板部22と第2板部23との間に配置される。
 実施の形態8.
 本実施の形態は、上述した実施の形態1~7に係る各半導体装置100~105を電力変換装置に適用したものである。本開示は特定の電力変換装置に限定されるものではないが、以下、実施の形態8として、三相のインバータに本開示を適用した場合について説明する。
 図31は、本実施の形態にかかる電力変換装置を適用した電力変換システムの構成を示すブロック図である。
 図31に示す電力変換システムは、電源150、電力変換装置200、負荷300から構成される。電源150は、直流電源であり、電力変換装置200に直流電力を供給する。電源150は種々のもので構成することが可能であり、例えば、直流系統、太陽電池、蓄電池で構成することができるし、交流系統に接続された整流回路やAC/DCコンバータで構成することとしてもよい。また、電源150を、直流系統から出力される直流電力を所定の電力に変換するDC/DCコンバータによって構成することとしてもよい。
 電力変換装置200は、電源150と負荷300の間に接続された三相のインバータであり、電源150から供給された直流電力を交流電力に変換し、負荷300に交流電力を供給する。電力変換装置200は、図31に示すように、直流電力を交流電力に変換して出力する主変換回路201と、主変換回路201を制御する制御信号を主変換回路201に出力する制御回路203とを備えている。
 負荷300は、電力変換装置200から供給された交流電力によって駆動される三相の電動機である。なお、負荷300は特定の用途に限られるものではなく、各種電気機器に搭載された電動機であり、例えば、ハイブリッド自動車や電気自動車、鉄道車両、エレベーター、もしくは、空調機器向けの電動機として用いられる。
 以下、電力変換装置200の詳細を説明する。主変換回路201は、スイッチング素子と還流ダイオードを備えており(図示せず)、スイッチング素子がスイッチングすることによって、電源150から供給される直流電力を交流電力に変換し、負荷300に供給する。主変換回路201の具体的な回路構成は種々のものがあるが、本実施の形態にかかる主変換回路201は2レベルの三相フルブリッジ回路であり、6つのスイッチング素子とそれぞれのスイッチング素子に逆並列された6つの還流ダイオードから構成することができる。主変換回路201の各スイッチング素子および各還流ダイオードの少なくともいずれかは、上述した実施の形態1~7のいずれかの半導体装置に相当する半導体装置202が有するスイッチング素子又は還流ダイオードである。6つのスイッチング素子は2つのスイッチング素子ごとに直列接続され上下アームを構成し、各上下アームはフルブリッジ回路の各相(U相、V相、W相)を構成する。そして、各上下アームの出力端子、すなわち主変換回路201の3つの出力端子は、負荷300に接続される。
 また、主変換回路201は、各スイッチング素子を駆動する駆動回路(図示なし)を備えているが、駆動回路は半導体装置202に内蔵されていてもよいし、半導体装置202とは別に駆動回路を備える構成であってもよい。駆動回路は、主変換回路201のスイッチング素子を駆動する駆動信号を生成し、主変換回路201のスイッチング素子の制御電極に供給する。具体的には、後述する制御回路203からの制御信号に従い、スイッチング素子をオン状態にする駆動信号とスイッチング素子をオフ状態にする駆動信号とを各スイッチング素子の制御電極に出力する。スイッチング素子をオン状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以上の電圧信号(オン信号)であり、スイッチング素子をオフ状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以下の電圧信号(オフ信号)となる。
 制御回路203は、負荷300に所望の電力が供給されるよう主変換回路201のスイッチング素子を制御する。具体的には、負荷300に供給すべき電力に基づいて主変換回路201の各スイッチング素子がオン状態となるべき時間(オン時間)を算出する。例えば、出力すべき電圧に応じてスイッチング素子のオン時間を変調するPWM制御によって主変換回路201を制御することができる。そして、各時点においてオン状態となるべきスイッチング素子にはオン信号を、オフ状態となるべきスイッチング素子にはオフ信号が出力されるよう、主変換回路201が備える駆動回路に制御指令(制御信号)を出力する。駆動回路は、この制御信号に従い、各スイッチング素子の制御電極にオン信号又はオフ信号を駆動信号として出力する。
 本実施の形態に係る電力変換装置では、主変換回路201を構成する半導体装置202として実施の形態1~7に係る半導体装置100~105の少なくともいずれかが適用されるため、絶縁距離を確保しながら、従来の半導体装置を備える電力変換装置と比べて小型化され得る。
 本実施の形態では、2レベルの三相インバータに本開示を適用する例を説明したが、本開示は、これに限られるものではなく、種々の電力変換装置に適用することができる。本実施の形態では、2レベルの電力変換装置としたが3レベルやマルチレベルの電力変換装置であっても構わないし、単相負荷に電力を供給する場合には単相のインバータに本開示を適用しても構わない。また、直流負荷等に電力を供給する場合にはDC/DCコンバータやAC/DCコンバータに本開示を適用することも可能である。
 また、本開示を適用した電力変換装置は、上述した負荷が電動機の場合に限定されるものではなく、例えば、放電加工機やレーザー加工機、又は誘導加熱調理器や非接触給電システムの電源装置として用いることもでき、さらには太陽光発電システムや蓄電システム等のパワーコンディショナーとして用いることも可能である。
 以上のように本開示の実施の形態について説明を行なったが、上述の実施の形態を様々に変形することも可能である。また、本開示の基本的範囲は上述の実施の形態に限定されるものではない。本開示の基本的範囲は、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むことが意図される。
1 半導体素子、2,402 第1リードフレーム、2a,402a 第1部、2b,402b 第2部、2c 第3部、3,403 第2リードフレーム、3a 第4部、3b 第5部、3c 第6部、4 中間フレーム、4a 第7部、4b 第8部、4c 第9部、5 電子部品、6 第1配線部材、7 第2配線部材、8 熱伝導部材、8a 導電部材、8b 絶縁部材、9 封止部材、9A 第1側面、9B 第2側面、9C 下面、9D 上面、10,11 接合部材、20,21 導電部材、22 第1板部、22a 第1部分、22b 第2部分、22c 第3部分、23 第2板部、24 第3板部、24a 第7部分、24b 第8部分、24c 第9部分、25 枠部、25a 第1枠部、25b 第2枠部、25c 第3枠部、26 開口部、30 ダレ面、100,101,102,103,104,202 半導体装置、150 電源、200 電力変換装置、201 主変換回路、203 制御回路、300 負荷。

Claims (12)

  1.  半導体素子、第1リードフレーム、第2リードフレーム、および熱伝導部材と、前記半導体素子、前記第1リードフレーム、前記第2リードフレーム、および前記熱伝導部材を封止する封止部材とを備え、
     前記封止部材は、第1方向において互いに反対側を向いた第1側面および第2側面と、前記第1方向に沿って延びる下面とを有し、
     前記第1リードフレームは、前記第1側面から露出している第1部と、前記下面と交差する第2方向において前記第1部よりも前記下面側に配置されている第2部と、前記第1部と前記第2部とを電気的に接続しており、かつ前記第1部および前記第2部の各々に対して傾斜している第3部とを含み、
     前記第2リードフレームは、前記第2側面から露出している第4部と、前記第1方向および前記第2方向において前記第2部と間隔を隔てて配置されている第5部とを含み、
     前記第2部、前記第3部、および前記第5部は、前記封止部材に封止されており、
     前記半導体素子は、前記第2部の上面に搭載されており、
     前記熱伝導部材は、前記第2部に対して前記半導体素子とは反対側に配置されて前記第2部と熱的に接続されており、前記下面から露出している部分を有し、
     少なくとも前記第2方向において前記第2部と前記第5部との間に配置されており、かつ前記第1リードフレームおよび前記第2リードフレームを含む配線回路の一部を構成する要素が搭載されている中間フレームをさらに備え、
     前記第1方向における前記第2部と前記中間フレームとの間の距離は、前記第2方向における前記第1部の上面と前記第2部の上面との間の距離よりも短い、半導体装置。
  2.  前記第1方向における前記第2部と前記中間フレームとの間の距離は、前記第2方向における前記第2部の上面と前記中間フレームの上面との間の距離よりも短い、請求項1に記載の半導体装置。
  3.  前記第2部と前記中間フレームとの間の最短距離は、前記第2部と前記第2リードフレームとの間の最短距離よりも短い、請求項1または2に記載の半導体装置。
  4.  前記第2方向における前記第1部の上面と前記第2部の上面との間の距離は、2mm以上である、請求項1~3のいずれか1項に記載の半導体装置。
  5.  前記第1部は、前記封止部材の前記第2方向の中心よりも上方に位置する前記第1側面から露出している、請求項1~4のいずれか1項に記載の半導体装置。
  6.  前記封止部材は、前記下面とは反対側に位置する上面をさらに有し、
     前記第1部の一部は、前記封止部材の前記上面から露出している、請求項1~5のいずれか1項に記載の半導体装置。
  7.  前記中間フレームは、前記第2リードフレームと連なっている、請求項1~6のいずれか1項に記載の半導体装置。
  8.  前記第1リードフレーム、前記第2リードフレーム、および前記中間フレームの各々は、打ち抜き加工により形成されたダレ面を有しており、
     前記中間フレームに形成された前記ダレ面は、前記第1リードフレームおよび前記第2リードフレームの各々に形成された前記ダレ面と、前記第2方向において反対側を向いている、請求項1~7のいずれか1項に記載の半導体装置。
  9.  前記第1リードフレーム、前記第2リードフレーム、および前記中間フレームの各々は、打ち抜き加工により形成されたダレ面を有しており、
     前記中間フレームおよび前記第2リードフレームの各々に形成された前記ダレ面は、前記第1リードフレームに形成された前記ダレ面と、前記第2方向において反対側を向いている、請求項1~7のいずれか1項に記載の半導体装置。
  10.  前記第1リードフレーム、前記第2リードフレーム、および前記中間フレームを構成する材料は、同一の材料である、請求項1~9のいずれか1項に記載の半導体装置。
  11.  前記半導体素子と前記配線回路の一部を構成する要素とを電気的に接続する第1配線部材と、
     前記配線回路の一部を構成する要素と前記第2リードフレームとを電気的に接続する第2配線部材とをさらに備え、
     前記配線回路の一部を構成する要素、前記第1配線部材、および前記第2配線部材は、前記封止部材により封止されている、請求項1~10のいずれか1項に記載の半導体装置。
  12.  請求項1~11のいずれか1項に記載の半導体装置を有し、入力される電力を変換して出力する主変換回路と、
     前記主変換回路を制御する制御信号を前記主変換回路に出力する制御回路と、
     を備えた電力変換装置。
PCT/JP2020/011192 2020-03-13 2020-03-13 半導体装置および電力変換装置 WO2021181678A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2020/011192 WO2021181678A1 (ja) 2020-03-13 2020-03-13 半導体装置および電力変換装置
DE112020006890.0T DE112020006890T5 (de) 2020-03-13 2020-03-13 Halbleitervorrichtung und leistungswandler
JP2020561842A JP6851559B1 (ja) 2020-03-13 2020-03-13 半導体装置および電力変換装置
CN202080098203.2A CN115280496A (zh) 2020-03-13 2020-03-13 半导体装置以及电力变换装置
US17/795,536 US20230070214A1 (en) 2020-03-13 2020-03-13 Semiconductor device and power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/011192 WO2021181678A1 (ja) 2020-03-13 2020-03-13 半導体装置および電力変換装置

Publications (1)

Publication Number Publication Date
WO2021181678A1 true WO2021181678A1 (ja) 2021-09-16

Family

ID=75154765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011192 WO2021181678A1 (ja) 2020-03-13 2020-03-13 半導体装置および電力変換装置

Country Status (5)

Country Link
US (1) US20230070214A1 (ja)
JP (1) JP6851559B1 (ja)
CN (1) CN115280496A (ja)
DE (1) DE112020006890T5 (ja)
WO (1) WO2021181678A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1093015A (ja) * 1996-09-11 1998-04-10 Hitachi Ltd 半導体装置
JP2000091499A (ja) * 1998-09-11 2000-03-31 Hitachi Ltd パワー半導体モジュール並びにそれを用いた電動機駆動システム
JP2013098199A (ja) * 2011-10-28 2013-05-20 Mitsubishi Electric Corp 電力用半導体装置および電力用半導体装置の製造方法
JP2015106685A (ja) * 2013-12-02 2015-06-08 三菱電機株式会社 パワーモジュール及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2752558B2 (ja) 1992-12-25 1998-05-18 ローム株式会社 電子部品の製造方法
US9716072B2 (en) * 2014-05-12 2017-07-25 Mitsubishi Electric Corporation Power semiconductor device and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1093015A (ja) * 1996-09-11 1998-04-10 Hitachi Ltd 半導体装置
JP2000091499A (ja) * 1998-09-11 2000-03-31 Hitachi Ltd パワー半導体モジュール並びにそれを用いた電動機駆動システム
JP2013098199A (ja) * 2011-10-28 2013-05-20 Mitsubishi Electric Corp 電力用半導体装置および電力用半導体装置の製造方法
JP2015106685A (ja) * 2013-12-02 2015-06-08 三菱電機株式会社 パワーモジュール及びその製造方法

Also Published As

Publication number Publication date
JP6851559B1 (ja) 2021-03-31
JPWO2021181678A1 (ja) 2021-09-16
DE112020006890T5 (de) 2022-12-22
US20230070214A1 (en) 2023-03-09
CN115280496A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
US9351423B2 (en) Semiconductor device and semiconductor device connection structure
JP5948106B2 (ja) パワー半導体モジュール及びそれを用いた電力変換装置
JP6952889B2 (ja) パワー半導体モジュール及びその製造方法並びに電力変換装置
JP6575739B1 (ja) 半導体装置、半導体装置の製造方法および電力変換装置
US11217514B2 (en) Power semiconductor device, method for manufacturing power semiconductor device, and power conversion device
JP7109347B2 (ja) 半導体装置および電力変換装置
WO2021181678A1 (ja) 半導体装置および電力変換装置
JPWO2020245890A1 (ja) パワーモジュール及び電力変換装置
JP7053897B2 (ja) 半導体装置、半導体装置の製造方法及び電力変換装置
WO2022049660A1 (ja) 半導体装置、電力変換装置、および移動体
JP7154422B2 (ja) 電力用半導体装置、電力用半導体装置の製造方法および電力変換装置
JP6811644B2 (ja) パワー半導体装置およびその製造方法、ならびに電力変換装置
JP7479771B2 (ja) 半導体装置、半導体装置の製造方法及び電力変換装置
WO2023175675A1 (ja) パワーモジュール半導体パッケージおよび半導体装置
WO2022138200A1 (ja) パワー半導体装置およびその製造方法ならびに電力変換装置
WO2024090278A1 (ja) 半導体装置、電力変換装置および半導体装置の製造方法
WO2024009458A1 (ja) 半導体装置および電力変換装置
JP7019024B2 (ja) 半導体装置及び電力変換装置
JP6680414B1 (ja) 半導体装置及び電力変換装置
JP2022067375A (ja) 電力用半導体装置およびその製造方法ならびに電力変換装置
WO2022054560A1 (ja) 半導体装置、半導体装置の製造方法および電力変換装置
WO2022239154A1 (ja) パワーモジュールおよび電力変換装置
JP2024013570A (ja) 半導体装置、半導体装置の製造方法および電力変換装置
CN117438404A (zh) 半导体装置、半导体装置的制造方法以及电力变换装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020561842

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924635

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20924635

Country of ref document: EP

Kind code of ref document: A1