WO2021180039A1 - 控制搬运机器人的方法、装置、立式支架及搬运机器人 - Google Patents

控制搬运机器人的方法、装置、立式支架及搬运机器人 Download PDF

Info

Publication number
WO2021180039A1
WO2021180039A1 PCT/CN2021/079571 CN2021079571W WO2021180039A1 WO 2021180039 A1 WO2021180039 A1 WO 2021180039A1 CN 2021079571 W CN2021079571 W CN 2021079571W WO 2021180039 A1 WO2021180039 A1 WO 2021180039A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable
guide
assembly
column frame
frame
Prior art date
Application number
PCT/CN2021/079571
Other languages
English (en)
French (fr)
Inventor
高明
孔哲
李再金
Original Assignee
深圳市海柔创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202020281914.0U external-priority patent/CN212291487U/zh
Priority claimed from CN202020281973.8U external-priority patent/CN212502233U/zh
Priority claimed from CN202020281284.7U external-priority patent/CN211732704U/zh
Priority claimed from CN202020282146.0U external-priority patent/CN211813282U/zh
Priority claimed from CN202010158838.9A external-priority patent/CN111232524B/zh
Priority claimed from CN202022500566.4U external-priority patent/CN213567912U/zh
Priority claimed from CN202022498181.9U external-priority patent/CN213567988U/zh
Priority claimed from CN202011205346.7A external-priority patent/CN112357441A/zh
Priority claimed from CN202022866645.7U external-priority patent/CN213922618U/zh
Priority to JP2022552453A priority Critical patent/JP7402996B2/ja
Priority to KR1020227031145A priority patent/KR20220137974A/ko
Application filed by 深圳市海柔创新科技有限公司 filed Critical 深圳市海柔创新科技有限公司
Priority to EP21767988.5A priority patent/EP4101790A4/en
Publication of WO2021180039A1 publication Critical patent/WO2021180039A1/zh
Priority to US17/929,418 priority patent/US20220411186A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • B65G1/1373Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses
    • B65G1/1378Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses the orders being assembled on fixed commissioning areas remote from the storage areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/12Storage devices mechanical with separate article supports or holders movable in a closed circuit to facilitate insertion or removal of articles the articles being books, documents, forms or the like
    • B65G1/127Storage devices mechanical with separate article supports or holders movable in a closed circuit to facilitate insertion or removal of articles the articles being books, documents, forms or the like the circuit being confined in a vertical plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • B65G1/1373Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses
    • B65G1/1375Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses the orders being assembled on a commissioning stacker-crane or truck
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/008Manipulators for service tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • B25J13/089Determining the position of the robot with reference to its environment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0004Braking devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0091Shock absorbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/1005Programme-controlled manipulators characterised by positioning means for manipulator elements comprising adjusting means
    • B25J9/101Programme-controlled manipulators characterised by positioning means for manipulator elements comprising adjusting means using limit-switches, -stops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • B25J9/1666Avoiding collision or forbidden zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/0492Storage devices mechanical with cars adapted to travel in storage aisles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G17/00Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface
    • B65G17/12Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface comprising a series of individual load-carriers fixed, or normally fixed, relative to traction element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/063Automatically guided
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/0755Position control; Position detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/08Masts; Guides; Chains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting

Definitions

  • This application relates to the field of intelligent storage, and in particular to a method, a device, a vertical support and a handling robot for controlling a handling robot.
  • Smart warehousing is a link in the logistics process.
  • the application of smart warehousing ensures the speed and accuracy of data input in all aspects of cargo warehouse management, ensuring that companies can accurately and timely grasp the true data of inventory, and reasonably maintain and control corporate inventory.
  • Through scientific coding it is also convenient to manage the batch and shelf life of the stocked goods.
  • the handling robot plays an important role in the intelligent warehousing.
  • the handling robot can accept instructions to pick up and place and carry goods at a designated location, which improves the efficiency of handling in the warehouse.
  • the height of the fixed column of the handling robot is fixed, and the conveying device can only move up and down within the stroke set by the fixed column.
  • the conveying device cannot carry the goods. It is relatively inconvenient to use; and the height of the handling robot cannot be adjusted, which makes it difficult to transport and shuttle in different spaces.
  • the embodiments of the present application provide a method, a device, a vertical support, and a handling robot for controlling a handling robot.
  • the lifting height range of the handling device is larger and the application range is wider.
  • the present application provides a method for controlling a handling robot.
  • the handling robot includes a vertical support and a handling device.
  • the vertical support includes a fixed column frame and a movable column frame.
  • the movable column frame, the movable column frame is movably arranged on the fixed column frame, the conveying device is used for conveying goods, and the method includes:
  • the conveying device is driven to move relative to the movable column frame, and/or the movable column frame is driven to move relative to the fixed column frame.
  • the present application provides a device for controlling a handling robot.
  • the handling robot includes a vertical support and a handling device.
  • the vertical support includes a fixed column frame and a movable column frame.
  • the movable column frame, the movable column frame is movably arranged on the fixed column frame, the conveying device is fixed to the movable column frame, and the conveying device is used for conveying goods, and the device includes:
  • Movement instruction receiving module used to receive movement instructions
  • the driving module is used to drive the handling device to move relative to the movable column frame, and/or to drive the movable column frame to move relative to the fixed column frame
  • this application provides a handling robot, including:
  • the vertical support includes a fixed upright frame and a movable upright frame, the movable upright frame is movably arranged on the fixed upright frame;
  • a conveying device movably arranged on the movable column frame
  • a drive assembly for driving the transport device to move relative to the movable column frame, and/or to drive the movable column frame to move relative to the fixed column frame;
  • At least one processor At least one processor
  • a memory the memory is in communication connection with the at least one processor, the memory stores instructions executable by the at least one processor, and the instructions are executed by the at least one processor so that the at least one processor The processor can execute the above-mentioned method.
  • the present application provides a vertical support for a handling robot, and the handling robot includes a chassis, a cargo storage device, and a handling device,
  • the vertical support includes: a column assembly for installing a storage device and a handling device, the column assembly includes a fixed column frame and a movable column frame, one end of the fixed column frame is used to be installed on the chassis of the handling robot, so The movable upright frame is installed on the fixed upright frame, and the movable upright frame can be raised and lowered within a preset stroke relative to the fixed upright frame.
  • the present application provides a handling robot, including a mobile chassis, a drive assembly, a column assembly, and a handling device;
  • the first end of the upright assembly is connected to the mobile chassis, and the upright assembly extends toward the vertical direction, the upright assembly and the drive assembly are both connected to the handling device, and the drive assembly is used to drive
  • the conveying device is raised and lowered relative to the upright assembly.
  • the embodiments of the present application provide a method, a device, a vertical support, and a handling machine for controlling a handling robot.
  • the handling device can be lifted and lowered by a movable column frame, and when the handling position specified by the user is higher than the top of the movable column frame, it is driven
  • the components can drive the handling device and the movable column frame to rise relative to the fixed column frame, so that the handling device can reach the handling position specified by the user.
  • the handling robot can be used in a wider range.
  • Fig. 1 is a schematic structural diagram of a handling robot according to an embodiment of the present application
  • FIG. 2 is a schematic diagram from another angle of FIG. 1;
  • Figure 3 is a schematic view of the structure of the fixed column frame in Figure 1;
  • Fig. 4 is a schematic diagram of a part of the structure of Fig. 3;
  • Figure 5 is a schematic diagram of the structure of the movable column frame in Figure 1;
  • FIG. 6 is a schematic diagram of a part of the structure of FIG. 5;
  • Fig. 7 is a schematic structural diagram of the fork mounting assembly in Fig. 1;
  • FIG. 8 is a schematic diagram of a part of the structure of FIG. 1;
  • Fig. 9 is a partial enlarged view of part J of Fig. 8.
  • Fig. 10 is a schematic diagram of a part of the structure of Fig. 1;
  • Fig. 11 is a partial structural diagram of Fig. 10;
  • FIG. 12 is a schematic structural diagram of another part of FIG. 10;
  • FIG. 13 is a schematic diagram of the structure of part K in FIG. 8;
  • Fig. 14 is a schematic structural diagram of the braking device of Fig. 13;
  • Figure 15 is a cross-sectional view of the braking device of Figure 14;
  • 16 is a flowchart of the first embodiment of the method for controlling a handling robot according to the present application.
  • FIG. 17 is a detailed flowchart of the ascending part of step S2 in the first embodiment of the method for controlling a handling robot according to the present application;
  • step S2 is another detailed flowchart of the ascending part of step S2 in the first embodiment of the method for controlling a handling robot according to the present application;
  • step S2 is another detailed flowchart of the ascending part of step S2 in the first embodiment of the method for controlling a handling robot according to the present application;
  • step S2 is a detailed flowchart of the descending part of step S2 in the first embodiment of the method for controlling a handling robot according to the present application;
  • step S2 is another detailed flowchart of the descending part of step S2 in the first embodiment of the method for controlling a handling robot according to the present application;
  • step S2 is another detailed flowchart of the descending part of step S2 in the first embodiment of the method for controlling a handling robot according to the present application;
  • FIG. 23 is a flowchart of a second embodiment of the method for controlling a handling robot according to the present application.
  • FIG. 24 is a flowchart of a third embodiment of the method for controlling a handling robot according to the present application.
  • FIG. 25 is a schematic diagram of an embodiment of a device for controlling a handling robot according to the present application.
  • Figure 26 is a detailed schematic diagram of some of the modules in Figure 25;
  • FIG. 27 is a schematic structural diagram of an embodiment of a handling robot of the present application.
  • FIG. 28 is a structural perspective view of a handling robot provided by one of the embodiments of the application, in which the mobile chassis of the handling robot is not shown;
  • Fig. 29 is an exploded view of the structure of the handling robot of Fig. 28;
  • Figure 30 is a side view of the main shock absorber of the handling robot of Figure 28;
  • FIG. 31 is a schematic structural diagram of a handling robot provided by an embodiment of the application.
  • FIG. 32 is a schematic structural diagram from another angle of the handling robot provided by an embodiment of the application.
  • FIG. 33 is a schematic structural diagram of a neutral support of a handling robot provided by an embodiment of the application.
  • FIG. 34 is a schematic structural diagram of a first fixed column in a handling robot provided by an embodiment of the application.
  • FIG. 35 is a schematic structural diagram of a first movable column in a handling robot provided by an embodiment of the application.
  • Fig. 36 is a schematic diagram of the internal structure of A-A along the Z axis in Fig. 32;
  • Fig. 37 is a schematic diagram of the internal structure of B-B along the Z axis in Fig. 32;
  • Fig. 38 is a schematic diagram of the internal structure of C-C along the Z axis in Fig. 32;
  • FIG. 39 is a schematic structural diagram of a first guide wheel set in a handling robot provided by an embodiment of the application.
  • 40 is a schematic diagram of the structure of the first guide wheel set and the handling device in the handling robot provided by an embodiment of the application;
  • Fig. 41 is a partial schematic diagram at D in Fig. 31;
  • Fig. 42 is a partial schematic diagram 1 at E in Fig. 31;
  • Fig. 43 is a second partial schematic diagram at E in Fig. 31;
  • Figure 44 is a schematic diagram of the internal structure of F-F in Figure 33 along the Z axis;
  • Fig. 45 is a schematic diagram of the internal structure of G-G along the Z axis in Fig. 33;
  • Fig. 46 is a partial schematic diagram from another angle in Fig. 35;
  • Fig. 47 is a schematic diagram of the internal structure of H-H along the Z axis in Fig. 33;
  • Fig. 48 is a schematic diagram of the internal structure of I-I along the Z axis in Fig. 33;
  • FIG. 49 is a schematic structural diagram of a third guide wheel group in the handling robot provided by an embodiment of the application.
  • 50 is a schematic diagram of the structure of the column assembly and the driving mechanism of the handling robot provided by an embodiment of the application;
  • FIG. 51 is a schematic structural diagram of a driving mechanism in a handling robot provided by an embodiment of the application.
  • FIG. 52 is a schematic structural diagram of a handling robot provided by an embodiment of the application.
  • FIG. 53 is a schematic structural diagram from another angle of the handling robot provided by an embodiment of the application.
  • FIG. 54 is a schematic structural diagram of a neutral support of a handling robot provided by an embodiment of the application.
  • Fig. 55 is a schematic diagram of the internal structure of the A1-A1 section in Fig. 54 along the Z axis;
  • Fig. 56 is a schematic diagram of the internal structure of the B1-B1 section in Fig. 54 along the Z axis;
  • FIG. 57 is a schematic structural diagram of a first fixed column in the handling robot provided by an embodiment of the application.
  • FIG. 58 is a schematic structural diagram of a first movable column in a handling robot provided by an embodiment of the application.
  • Fig. 59 is a partial schematic view in another direction of Fig. 58;
  • Fig. 60 is a schematic diagram of the internal structure of the C1-C1 section in Fig. 54 along the Z axis;
  • Fig. 61 is a schematic diagram of the internal structure of the section D1-D1 in Fig. 54 along the Z axis;
  • FIG. 62 is a schematic structural diagram of a third guide wheel group in the handling robot provided by an embodiment of the application.
  • FIG. 63 is a schematic structural diagram of a handling robot provided by an embodiment of the application.
  • FIG. 64 is a schematic structural diagram from another angle of the handling robot provided by an embodiment of the application.
  • FIG. 65 is a schematic structural diagram of a neutral support of a handling robot provided by an embodiment of the application.
  • FIG. 66 is a schematic structural diagram of a first fixed column in a handling robot provided by an embodiment of the application.
  • FIG. 67 is a schematic structural diagram of a first movable column in a handling robot provided by an embodiment of the application.
  • FIG. 68 is a schematic diagram of a partial structure from another angle in FIG. 67;
  • Fig. 69 is a partial enlarged view 1 of A2 in Fig. 63;
  • FIG. 70 is a schematic structural diagram of a handling device in a handling robot provided by an embodiment of the application.
  • Fig. 71 is a partial enlarged view 2 of A2 in Fig. 63;
  • FIG. 72 is a schematic structural diagram of a handling robot provided by an embodiment of the application.
  • FIG. 73 is a schematic structural diagram from another angle of the handling robot provided by an embodiment of the application.
  • FIG. 74 is a schematic structural diagram of a neutral support of a handling robot provided by an embodiment of the application.
  • FIG. 75 is a schematic structural diagram of a first fixed column in a handling robot provided by an embodiment of the application.
  • FIG. 76 is a schematic structural diagram of a first movable column in a handling robot provided by an embodiment of the application.
  • Fig. 77 is a schematic diagram of the internal structure of the A3-A3 section along the Z axis in Fig. 73;
  • Fig. 78 is a schematic diagram of the internal structure of the section B3-B3 in Fig. 73 along the Z axis;
  • Fig. 79 is a schematic diagram of the internal structure of the section C3-C3 in Fig. 73 along the Z axis;
  • FIG. 80 is a schematic structural diagram of a guide wheel set in a handling robot provided by an embodiment of the application.
  • FIG. 81 is a schematic structural diagram of a guide wheel set and a handling device in a handling robot provided by an embodiment of the application;
  • Fig. 82 is a partial schematic diagram at D3 in Fig. 72;
  • Fig. 83 is a partial schematic diagram 1 at E3 in Fig. 72;
  • Fig. 84 is a second partial schematic diagram at E3 in Fig. 72.
  • the handling robot 100 can be applied to an intelligent warehousing system, an intelligent logistics system, an intelligent sorting system, etc.
  • an intelligent warehousing system an intelligent logistics system
  • an intelligent sorting system etc.
  • the application of the handling robot 100 to an intelligent warehousing system is taken as an example for detailed description.
  • the handling robot 100 in one of the embodiments of the present application includes a mobile chassis (also called a chassis, not shown), a vertical support (not shown), and a handling device (not shown) And a drive assembly (not marked),
  • the vertical support includes a column assembly 100
  • the column assembly 100 includes a fixed column frame 10 and a movable column frame 20, one end of the fixed column frame 10 is installed on the mobile chassis, and the movable column frame 20 is movably installed on the fixed column
  • the movable pillar frame 20 can move relative to the fixed pillar frame 10 along the length direction of the fixed pillar frame 10, wherein the movable pillar frame 20 can be raised and lowered within a preset stroke.
  • the conveying device is connected to the movable column frame 20, and the conveying device can move relative to the movable column frame along the length direction of the movable column frame 20.
  • the driving assembly is connected to the conveying device, and the driving assembly is used to drive the conveying device to move relative to the movable column frame 20 and/or to drive the movable column frame 20 to move relative to the fixed column frame 10.
  • the mobile chassis carries a fixed column frame 10, a movable column frame 20, a conveying device (not shown in the figure), and a drive assembly.
  • the mobile chassis is used to realize the movement of the handling robot 100 on the ground, and the handling device is used to realize the picking and placing of goods by the handling robot 100.
  • the fixed column frame 10 includes a first fixed column 11, a second fixed column 12, and a fixed cross beam 13. Are connected, and the first fixed post 11 and the second fixed post 12 are arranged at a preset interval.
  • the two ends of the fixed cross beam 13 are respectively connected to the other end of the first fixed post 11 and the second fixed post 12, wherein
  • the fixed post 11 and the second fixed post 12 are respectively provided with a first receiving groove 111 and a second receiving groove 121.
  • the movable column frame 20 is movably installed between the first fixed column 11 and the second fixed column 12, and the movable column frame 20 moves along the first fixed column 11 and the second fixed column 12.
  • the specific value of the aforementioned preset distance is not limited, but the distance between the central axis of the first fixed post 11 and the second fixed post 12 can be adjusted according to actual needs.
  • the movable column frame 20 includes a first movable column 21, a second movable column 22, and a movable beam group 23.
  • the first movable column 21 is received in the first receiving groove 111, and the first movable column 21 can move along the inside 111 of the first accommodating groove, the second movable column 22 is accommodated in the second accommodating groove 121, the second movable column 22 can move along the second accommodating groove, the two ends of the movable beam group 23 are respectively connected with the first movable column
  • the pillar 21 and the second movable pillar 22 are connected so that the first movable pillar 21 and the second movable pillar 22 move synchronously.
  • first movable post 21 and the second movable post 22 are also symmetrically arranged at another preset distance, and the distance between the first movable post 21 and the second movable post 22 is smaller than that of the first fixed post 11 and the second fixed post 12. The spacing between.
  • the movable cross beam group 23 includes a top cross beam 231 and a bottom cross beam 232.
  • the top cross beam 231 and the bottom cross beam 232 are respectively located at two ends of the movable column frame 20. Specifically, both ends of the top cross beam 231 are connected to the first movable column 21 and the second movable column respectively.
  • One end of the upright post 22 is connected, and two ends of the bottom cross beam 232 are respectively connected to the other end of the first movable post 21 and the second movable post 22.
  • the bottom cross beam 232 is composed of a first bending plate 2321, a second bending plate 2322 and a cross beam bar 2323.
  • the two ends of the cross beam bar 2323 are respectively connected to one end of the first bending plate 2321 and the second bending plate 2322.
  • the other ends of the first bending plate 2321 and the second bending plate 2322 are connected to one end of the first movable column 21 and the second movable column 22, respectively.
  • the vertical support further includes a guide assembly 30, the guide assembly includes 30 includes a guide block 31 and a guide rail 32, the guide block 31 includes a first guide block 311 and a second guide block 312 , The guide rail 32 includes a first guide rail 321 and a second guide rail 322.
  • first guide block 311 and the second guide block 312 are respectively installed at the bottom of the first receiving groove 111 and the second receiving groove 121, and the first guide rail 321 and the second guide rail 322 are respectively installed on the first movable column 21 and the second
  • the guide block 31 and the guide rail 32 slide relatively, so that the movable column frame 20 can be raised and lowered relative to the fixed column frame 10 within a preset stroke.
  • the movable column frame 20 can expand and contract with respect to the fixed column frame 10 within a preset stroke set by the guide rail 32.
  • the above-mentioned preset stroke is determined by the guide rail 32.
  • the guide block 31 is located at the end of the fixed column frame 20 away from the mobile chassis, and is close to the top of the fixed column frame 20 to prevent moving the column frame. When 20 is not extended to the highest point, the guide block 31 is separated from the guide rail 32.
  • the first guide block 311 and the second guide block 312 are respectively installed on the side walls of the first movable column 21 and the second movable column 22, and the first guide rail 321 and the second guide rail 322 are respectively disposed on the first movable post 21 and the second movable post 22.
  • the guide block 31 and the guide rail 32 slide relatively, so that the movable column frame 20 can be raised and lowered relative to the fixed column frame 10 within a preset stroke.
  • the first guide block 311 and the second guide block 312 are respectively disposed at one end of the first movable column 21 and the second movable column 22 close to the mobile chassis, so that the movable column frame 20 is not moved to the preset stroke.
  • the guide block 31 is always matched with the guide rail 32 without being separated.
  • the vertical support further includes a main shock absorber 40.
  • the main shock absorber 40 is installed at one end of the fixed column frame 10 close to the mobile chassis, and is located below the movable column frame 20. When the movable column frame 20 drops to the lowest point of the preset lifting stroke, the movable column frame 20 and the main shock absorber Piece 40 abuts.
  • the main shock absorber 40 is used to buffer the impact force generated when the movable column frame 20 descends.
  • the reference plane is the plane in contact with the chassis or the plane where the vertical support is fixedly installed, and the vertical distance from the center of gravity of the two objects to the plane is taken as the reference plane. For comparison, objects that are close to the reference plane are located below objects that are far from the reference plane.
  • the fixed column frame 10 further includes a limit baffle 113
  • the limit baffle 113 includes a first limit baffle 1131 and a second limit baffle 1132, the first limit baffle 1131 and the second limit baffle 1131.
  • the limit baffle 1132 is respectively installed at one end of the first fixed post 11 and the second fixed post 12.
  • the first limit baffle 1131 and the second limit baffle 1132 can be detachably installed with the main shock absorber 40.
  • the main shock absorber 40 may be a spring, a shock absorber, or even a silicone buffer sheet.
  • the main shock absorber 40 uses a shock absorber.
  • both the first limit baffle 1131 and the second limit baffle 1132 are provided with through holes (not marked), and the telescopic end of the shock absorber extends out of the through hole and is used to abut against the movable column frame 20 catch.
  • the telescopic end is squeezed and gradually shrinks inward, thereby gradually reducing the impact force generated when the movable column frame 20 descends to prevent the movable column frame 20 and the fixed column frame 10 directly collide rigidly.
  • the vertical support further includes a fork mounting assembly 50
  • the fork mounting assembly 50 includes a first slider 51, a second slider 52 and a connecting block 53
  • the first movable The side of the column 21 away from the first fixed column 11 is provided with a first slide rail 211
  • the side of the second movable column 22 away from the second fixed column 12 is provided with a second slide rail 221
  • the first slider 51 is movably mounted on the A sliding rail 211
  • the second sliding block 52 is movably installed on the second sliding rail 221
  • two ends of the connecting block 53 are detachably connected with the first sliding block 51 and the second sliding block 52
  • the connecting block 53 is provided with There are baffles 531.
  • the handling device is installed on the fork mounting assembly 50, and the handling device can be raised or lowered synchronously through the fork mounting assembly 50, so that the handling robot can carry the goods.
  • the vertical support further includes a secondary shock absorber 60, which is mounted on the movable column frame 20 at one end away from the mobile chassis to prevent the fork from installing the assembly There is a violent collision between 50 and the movable column frame 20.
  • the auxiliary shock absorber 60 may be a spring, a shock absorber, or even a silicone buffer sheet.
  • the auxiliary shock absorber 60 uses a shock absorber.
  • the first movable column 21 and the second movable column 22 are provided with an opening cover 24 at one end away from the mobile chassis.
  • the opening cover 24 is provided at one end of the first slide rail 211 and the second slide rail 221, the opening cover 24
  • An end facing the mobile chassis is provided with a through opening, the shock absorber is installed in the opening cover 24, and the telescopic end of the shock absorber passes through the through hole for abutting against the fork mounting assembly 50.
  • first sliding block 51 and the second sliding block 52 respectively rise to the highest point along the first sliding rail 211 and the second sliding rail 221, the first sliding block 211 and the second sliding block 221 respectively and the auxiliary shock-absorbing member 60 Abut against each other to prevent the first sliding block 211 and the second sliding block 221 from rigidly colliding with the movable column frame 20.
  • the vertical support further includes a travel switch (not marked).
  • the travel switch is installed at one end of the movable pillar frame 20 close to the mobile chassis.
  • the limit switch The piece 531 abuts against the travel switch, and at this time, the fork mounting assembly 50 is lowered to the lower limit of the preset lifting stroke, that is, the lowest position that the fork mounting assembly 50 can be lowered to.
  • the above-mentioned drive assembly (not labeled), it includes a traction assembly 70 and a retractable assembly 80, wherein the traction assembly 70 includes a traction rope 71 and a guide wheel In the group 72, one end of the traction rope 71 wraps around the guide wheel group 72 and is tied to the retractable assembly 80.
  • the retractable assembly 80 retracts or releases the traction rope 71 so that the movable column frame 20 is raised and lowered relative to the fixed column frame 10.
  • the other end of the traction rope 71 is directly or indirectly tied to the movable column frame 20, so that the movable column frame 20 receives the traction force of the traction rope 71 for lifting .
  • the other end of the traction rope 71 is tied to the fork mounting assembly 50.
  • the traction rope 71 it can be a wire rope made of steel wire or a nylon rope.
  • the traction rope 71 is selected as a wire rope to ensure that the traction rope 71 is not transported by the fork when the fork mounting assembly 50 rises or falls. The cargo was too heavy and broke.
  • the guide wheel group 72 it includes a top pulley 721, a bottom pulley 722, and a main pulley 723.
  • the top pulley 721 is detachably installed at the end of the movable column frame 20 away from the mobile chassis, and the bottom pulley 722 is detachably installed on the movable column frame 20.
  • the other end of the main pulley 723 is installed on the end of the fixed column frame 10 away from the mobile chassis.
  • the top pulley 721 is installed on the top cross beam 231
  • the bottom pulley 722 is installed on the bottom cross beam 232
  • the main pulley 723 is installed on the fixed cross beam 13
  • one end of the traction rope 71 goes around the top pulley 721 and the bottom pulley in turn.
  • the 722 and the main pulley 723 are tied to the retracting assembly 80
  • the other end of the traction rope 71 is tied to the fork mounting assembly 50.
  • the guide wheel set 72 further includes a tension wheel 724.
  • the tension wheel 724 is detachably installed at the end of the movable column frame 20 away from the mobile chassis, and the tension wheel 724 is located between the top pulley 721 and the bottom pulley 722. between. Specifically, the tension wheel 724 is against the traction rope 71, that is, one end of the traction rope 71 first goes around the top pulley 721 and then passes through the tension pulley 724 and then around the bottom pulley 722, so as to prevent the traction rope 71 from being over-tensioned and directly collapsed. Off.
  • the retractable assembly 80 includes a bobbin 81, a transmission shaft 82, a speed control box 83, and a motor 84.
  • the bobbin 81 is used to wind the traction rope 71, and the output shaft of the motor 84 and The input end of the speed control box 83 is connected, and the output end of the speed control box 83 is connected to the transmission shaft 82.
  • the speed control box 83 is used to adjust the speed of the transmission shaft 82, and one end of the transmission shaft 82 is connected to the bobbin 81.
  • the motor 84 operates to rotate the transmission shaft 82 and drive the bobbin 81 to rotate clockwise or counterclockwise to release or close the traction rope 71, thereby controlling the lifting and lowering of the fork mounting assembly 50 and the movable column frame 20 is telescopic relative to the fixed column frame 10.
  • the fork mounting assembly 50 and the movable column frame 20 are in the initial position, that is, at the lowest position of the preset stroke.
  • the spool begins to gather the traction rope 71, and the fork mounting assembly tied to one end of the traction rope 71 gradually rises.
  • the auxiliary shock absorber 60 and The fork mounting assembly 50 abuts, and the end of the fork mounting assembly 50 rises at this time.
  • the fork mounting assembly 50 rises against the movable column frame 20 relative to the fixed column frame 10, and when the guide block is about to separate from the guide rail, the movable column frame 20 rises to the highest point .
  • the motor reverses the spool releases the traction rope, and the movable column frame 20 gradually descends along the axial direction of the fixed column frame 10.
  • the movable column frame 20 abuts against the main shock absorber 40, the movable column frame 20 stops descending, the spool continues to release the traction line 61, and the fork mounting assembly 50 begins to descend.
  • the fork mounting assembly 50 touches the travel switch, the fork mounting assembly 50 drops to the lowest point, and the control motor stops rotating at this time.
  • the vertical support further includes a storage device (not labeled), and the storage device is installed on the fixed column frame 10.
  • the fixed column frame 10 is provided with a plurality of installation beams (not labeled) at a predetermined interval distance.
  • the storage device is installed on the installation beam, and the storage device is used to store the goods transported by the transport device.
  • the handling device includes a pallet and a handling component.
  • the pallet is used to store goods
  • the handling component is used to push out the goods stored on the storage device, or pull the goods on the storage device onto the pallet for transportation.
  • the device transports goods to storage devices at different heights.
  • the handling robot 100 further includes a first detector 101.
  • the first detector 101 is installed at an end of the movable column frame 20 away from the mobile chassis.
  • the first detector 101 is connected to the driving assembly.
  • the first detector 101 is used to detect the distance between the movable column frame 20 and the building above it.
  • the first detector 101 is installed on the top beam 231 of the movable column frame 20, and the first detector 101 is connected to the motor 84 of the driving assembly.
  • the first detector 101 can move with the movable column frame 20 and detect the movable column in real time. The distance between the top of the frame 20 and the building above it.
  • the first detector 101 controls the motor 84 of the drive assembly to suspend work to prevent the movable column frame 20 from continuing. It moves toward the building above it to cause a collision to avoid damage caused by the handling robot 100 and a safety accident.
  • the handling robot further includes a second detector (not shown), the second detector is connected to the motor 84 of the drive assembly, and the second detector is used to detect that the movable column frame 20 is relatively along the length of the fixed column frame 10
  • the two extreme positions are moved to control the motor 84 to stop and start.
  • the two extreme positions are the upper limit position of the movable column frame 20 moving away from the mobile chassis along the length direction of the fixed column frame 10, and the lower limit position of the movable column frame 20 moving towards the mobile chassis along the length direction of the fixed column frame 10 .
  • the second detector may be a ranging sensor, which can be directly installed on the end of the fixed column frame 10 close to the mobile chassis and opposite to the bottom surface of the movable column frame 20, or the second detector It can be a travel switch group, the travel switch group includes a first travel switch and a second travel switch, the first travel switch is installed at one end of the fixed column frame 10 close to the mobile chassis, and the second travel switch is installed on the fixed column frame 10 away from the mobile chassis At one end of the movable column frame 20, the end corresponding to the first limit switch is provided with a bump. When the movable column frame 20 moves to the lower limit position, the bump triggers the first limit switch. When the movable column frame 20 moves to the upper limit position , The bump triggers the second limit switch.
  • the travel switch group includes a first travel switch and a second travel switch
  • the first travel switch is installed at one end of the fixed column frame 10 close to the mobile chassis
  • the second travel switch is installed on the fixed column frame 10 away from the mobile chassis
  • the handling robot 100 further includes a sensing device (not shown in the figure).
  • the sensing device is used to sense whether there is an obstacle in front of the handling robot 100.
  • the sensing device may be a photoelectric sensor or other sensors, or a camera detection sensor. It can also be a combination of the two. It is understandable that the sensing device can be installed on the vertical support of the handling robot, or on the mobile chassis of the handling robot, or on other positions of the handling robot, as long as it does not affect the handling of goods and activities of the handling device. Just lift the column frame.
  • the handling robot 100 further includes a braking device 90, the braking device 90 is used to brake the movable column frame 20, so that the movable column frame 20 stops moving relative to the fixed column frame 10 .
  • the braking device 90 By providing the braking device 90, on the one hand, emergency braking can be realized during the carrying work of the carrying robot 100, and on the other hand, the driving assembly of the carrying robot 100 can be prevented from being started by mistake.
  • the brake device 90 includes a brake disc 91, a guide base 92 and a stopper 93.
  • the brake disc 91 is connected to the drive assembly.
  • the output end of the drive assembly can drive the brake disc 91 to rotate, and the brake disc 91 can brake the output end of the drive assembly.
  • the brake disc 91 is provided with at least one pin hole 9101 to guide the base 92 is installed on the fixed column frame 10, the guide base 92 is provided with a slot 9201, the stopper 93 is movably inserted into the slot 9201, the stopper 93 can move along the slot 9201, so that one end of the stopper 93 is inserted into or out of the pin Hole 9101, thereby preventing the rotation of the brake disc 91 or releasing the restriction on the brake disc 91.
  • the brake disc 91 realizes the braking of the output end of the drive assembly, so that the drive assembly stops driving.
  • the brake disc 91 is connected to the spool 81 and is arranged coaxially with the spool 81, the brake disc 91 can rotate with the spool 81, and at least one pin hole 9101 runs along the brake disc 91 is arranged on the circumferential side wall, that is, the pin hole 9101 is radially arranged on the brake disc 91, and the stopper 93 is arranged on one side of the circumferential side wall of the brake disc 91.
  • the stopper One end of 93 can be aligned with any one of the pin holes 9101 on the side wall of the brake disc 91 and inserted into the pin hole 9101.
  • the braking device 90 also includes a cam 94.
  • the cam 94 is located on the side of the guide base 92 away from the brake disc 91.
  • the end of the stopper 93 away from the brake disc 91 is rotatably connected to the cam 94.
  • the wheel surface of the cam 94 is connected to the guide base 92.
  • the side facing away from the brake disc 91 abuts, so that when the cam 94 rotates, the stopper 93 is driven to move along the slot 9201.
  • the brake device 90 also includes an elastic member 95.
  • One end of the elastic member 95 is connected to the stopper 93, and the other end of the elastic member 95 is connected to the guide base 92 or the fixed column frame 10.
  • the elastic member 95 is used to provide the cam 94 and the guide base 92 Abut against each other, and the elastic force that keeps the stopper 93 at rest.
  • the elastic member 95 is a compression spring.
  • the elastic member 95 may also be other components with elastic force, such as a leaf spring.
  • the stopper 93 includes a first plug 931, a connecting rod 932 and a second plug 933.
  • the first pin 931 is movably inserted into the slot 9201.
  • One end of the first pin 931 away from the brake disc 91 is connected to the cam 94, one end of the connecting rod 932 is connected to the other end of the first pin 931, and the middle part between the two ends of the first pin 931
  • a retaining ring 9311 is convexly provided.
  • the groove wall of the slot 9201 is convexly provided with an abutting portion 9202.
  • the abutting portion 9202 is located between the retaining ring 9311 and the cam 94.
  • the elastic member 95 is sleeved on the first plug 931, and the elastic member 95 Abutting between the retaining ring 9311 and the abutting portion 9202, that is, the elastic member 95 is elastically compressed between the retaining ring 9311 and the abutting portion 9202, and the elastic member 95 always maintains an elastic compression state.
  • the other end of the connecting rod 932 is connected to one end of the second plug 933, and the first plug 931 can move along the slot 9201 so that the other end of the second plug 933 is inserted into or removed from the pin hole 9101.
  • both the first plug 931 and the second plug 933 are perpendicular to the connecting rod 932.
  • the braking device 90 also includes a guide 96 installed on the fixed column frame 10, the guide 96 is provided with a guide groove 9601, the connecting rod 932 passes through the guide groove 9601, and the connecting rod 932 can slide along the guide groove 9601 to prevent When the first pin 931 moves along the slot 9201, the first pin 931 rotates.
  • the stopper 93 may also have other shapes and structures, for example, a straight pin structure.
  • the cam 94 is provided with a spanner 941, and the cam 94 can be driven to rotate by turning the spanner 941, so that the driving assembly stops working. It can be understood that, according to actual conditions, the cam 94 can also be set to drive the motor to drive the cam 94 to rotate, so as to realize the braking of the movable column frame 20.
  • the braking device 90 also includes a third detector 97, which is used to detect whether one end of the stopper 93 is inserted into the pin hole 9101, and the third detector 97 is connected to the motor 84 of the drive assembly to control the motor 84 Start and stop.
  • the third detector 97 is a travel switch.
  • the travel switch is mounted on the guide base 92.
  • the protrusion of the travel switch is set toward one side of the wrench 941.
  • the wrench 941 In contact with the protrusion of the travel switch, when the wrench 941 is rotated so that the second pin 933 is inserted into the pin hole 9101, the wrench 941 is separated from the protrusion of the travel switch.
  • the embodiment of the present application provides a method for controlling a handling robot.
  • the structure and function of the handling robot are the same as the above-mentioned handling robot.
  • the method includes:
  • Step S1 Receive a movement instruction
  • Motion instructions refer to a series of motion control instructions carried out by the handling robot to carry goods, such as: controlling the handling device to rise or fall relative to the movable column frame, or control the movable column frame to rise or fall relative to the fixed column frame, or, At the same time, the lifting or lowering of the handling device and the movable column frame is controlled.
  • Step S2 According to the movement instruction, drive the transport device to move relative to the movable column frame, and/or drive the movable column frame to move relative to the fixed column frame.
  • the movement instruction carries the movement direction and the movement height.
  • the handling robot After receiving the movement instruction, the handling robot drives the handling device and/or the movable column frame to move according to the movement direction until the handling device reaches the movement height.
  • the movement instruction may be an instruction that carries the final height.
  • the handling robot may first identify the current height of its handling device according to the current height and the required height indicated by the movement instruction. To determine the direction and distance of movement, and then control the movement of the handling device. It is understandable that according to the movement instruction, the handling device and/or the movable column frame are driven to move, and there is no restriction on the movement sequence, that is, the handling device can be driven relative to the movable column frame first, and then the movable column frame is driven relative to the fixed frame.
  • Movement of the upright frame it can also be that the movable upright frame is driven to move relative to the fixed upright frame, and then the handling device is driven to move relative to the movable upright frame; it can also be that the handling device and the movable upright frame move at the same time.
  • the movement instruction includes a first ascending instruction.
  • step S2 includes
  • Step S21a Acquire the first designated ascent height according to the first ascending instruction
  • the first designated lifting height refers to the height difference between the designated conveying position and the current position of the conveying device after the user designates the conveying device to rise to the designated conveying position according to his own needs.
  • the handling robot can calculate the height that the handling device needs to rise from the specified position through the server, and then the server converts the required height to the corresponding control signal and feeds it back to the handling robot, and the handling robot according to the corresponding parameters in the obtained control signal Carry out the ascent to reach the specified ascent height.
  • Step S22a drive the conveying device to move upward relative to the movable column frame
  • Step S23a before the conveying device moves to the top of the movable column frame, when the conveying device moves to the first specified rising height, the lifting of the conveying device is stopped.
  • Step S24a After the conveying device moves to the top of the movable column frame, and the conveying device has not moved to the first specified rising height, the conveying device and the movable column frame are driven to move upwards relative to the fixed column frame at the same time, until the conveying device reaches the first specified height Ascent height.
  • the designated carrying position When the designated carrying position is not higher than the top of the movable column frame, it means that the designated carrying position is within the movable range of the carrying device relative to the movable column frame, and the handling device can be directly controlled to rise relative to the movable column frame until the carrying device Move the first designated ascent height, then stop lifting the conveying device.
  • the movable column frame can be controlled to rise relative to the fixed column frame.
  • the handling device rises to the specified handling position, that is, the first specified rising height, the movable column frame stops rise.
  • the movement instruction further includes a second ascending instruction.
  • S2 includes:
  • Step S21b Acquire a second designated ascent height according to the second ascent instruction
  • Step S22b Drive the movable column frame to move upward relative to the fixed column frame until its top exceeds the second specified rising height and then stop, and then drive the conveying device to move upward relative to the movable column frame until the conveying device reaches the second specified rising height.
  • this embodiment first drives the movable column frame to move, and then drives the conveying device to move.
  • the conveying device may not move relative to the movable column frame, or may follow the movable column frame to move.
  • the conveying device may not move relative to the movable column frame, or may follow the movable column frame to move.
  • the way of setting the drive components of the moving robot can also be different.
  • the handling robot is equipped with two independent drive components. One drive component is used to drive the movable column frame to rise relative to the fixed column frame.
  • the traction in the above embodiment can be adopted.
  • the rope, bobbin, motor and other components are combined to drive.
  • the other drive assembly is used to drive the conveying device to rise relative to the movable column frame.
  • a cylinder drive method can be used.
  • the cylinder is installed on the movable column frame, and the cylinder The protruding end is connected with the conveying device.
  • Two sets of independent drive components are used for separate control, and the two do not affect each other.
  • the movement instruction further includes a third ascending instruction.
  • the third ascending method of the handling device is as follows:
  • Step S21c Acquire the third designated ascent height according to the third ascending instruction
  • Step S22c Drive the movable column frame and the conveying device to move upward at the same time, until the conveying device reaches the third specified ascending height.
  • the movable column frame of the handling robot and the handling device move upwards at the same time until the handling device reaches the third specified rising height.
  • the movable column frame and the conveying device can be raised at different speeds, or they can be raised synchronously at the same speed.
  • the drive assembly stops driving, so that the conveying device is at the user's place. At the designated transportation location.
  • the movement instruction includes a first descending instruction.
  • the first descending manner of the handling device is as follows:
  • Step S21d Acquire the first designated descending height according to the first descending instruction
  • the designated descending height means that the user designates the conveying device to descend to the designated conveying position according to his own needs, and the height difference between the designated conveying position and the current position of the conveying device.
  • the handling robot can calculate the required drop height of the handling device from the specified position through the server, and then the server converts the required drop height into a corresponding control signal to feed back to the handling robot, and the handling robot according to the corresponding parameters in the obtained control signal Perform a descent to reach the specified descent height.
  • Step S22d Drive the conveying device and the movable column frame to move downward relative to the fixed column frame at the same time;
  • Step S23d before the movable column frame moves to the bottom of the fixed column frame, when the conveying device is lowered to the first designated descending height, the movable column frame and the conveying device are controlled to stop moving.
  • the handling device and the movable column frame are still in a synchronized movement state.
  • the handling device is lowered to the specified handling position, That is, when the conveying device is lowered to the first designated descending height, the driving assembly stops driving, so that the conveying device and the movable column frame stop descending.
  • Step S24d After the movable column frame moves to the bottom of the fixed column frame, when the conveying device has not descended to the first designated lowering height, the conveying device is controlled to move downward relative to the movable column frame until the conveying device moves to the first designated descending height high.
  • the conveying device is at the top position of the movable column frame.
  • the conveying position designated by the user is lower than the top of the movable column frame, the conveying device has not been lowered to the designated conveying position, that is, it has not moved to the first designated lowering height, and the conveying device needs to be lowered until the conveying device moves to the first Specify the descending height.
  • the movement instruction further includes a second descending instruction.
  • the second descending mode of the handling device is as follows:
  • Step S21e Acquire a second designated descending height according to the second descending instruction
  • Step S22e Drive the conveying device to move downward relative to the movable column frame first, and then drive the movable column frame to move downward relative to the fixed column frame. Before the conveying device moves to the bottom of the movable column frame, the conveying device moves to the second designation When the height is lowered, the descent will stop.
  • the handling robot needs to be equipped with two mutually independent drive components, so that the handling device and the movable column frame can move relative to the fixed column frame at the same time.
  • the two lifting methods are the same, but the difference is that the two sets of driving components are used to control the conveying device and the movable column frame to descend, which will not be repeated here.
  • Step S23e After the conveying device moves to the bottom of the movable column frame, and the conveying device has not moved to the second specified lowering height, the movable column frame and the conveying device are driven to descend synchronously until the conveying device reaches the second lowering height.
  • the movement instruction further includes a third descending instruction.
  • the third descending mode of the handling device is as follows:
  • Step S21f Acquire the third designated descending height according to the third descending instruction
  • Step S22f Drive the movable column frame to move downward first relative to the fixed column frame, and then drive the conveying device to move downward relative to the movable column frame. Before the conveying device moves to the bottom of the movable column frame, the conveying device moves to the third designation When descending height, stop descending;
  • Step S23f After the conveying device moves to the bottom of the movable column frame, and the conveying device has not moved to the third specified lowering height, the movable column frame and the conveying device are driven to descend synchronously until the conveying device reaches the third lowering height.
  • the conveying device can be raised and lowered by the movable column frame, and when the conveying position designated by the user is higher than the top of the movable column frame, the driving assembly can drive the conveying device and the movable column frame to rise relative to the fixed column frame.
  • the handling device can reach the handling position specified by the user, and at the same time, with the different lifting methods of the handling device, the handling robot can be used in a wider range.
  • the embodiment of the present application also provides a method for controlling a handling robot. Please refer to FIG. 23.
  • the present embodiment is different from the previous embodiment. The point is that it also includes the following method steps:
  • Step S3 Control the handling components to carry goods.
  • the server sends a conveying signal to the conveying device, and the conveying device receives the conveying signal, and then the conveying component conveys the goods.
  • step S3 is specifically: controlling the handling component to push out the goods on the pallet.
  • the handling component pushes out the goods on the pallet, which can be pushed to the storage device or to the external storage device.
  • step S3 is specifically: controlling the handling component to pull the goods on the storage device to the pallet.
  • the handling component pulls the goods on the storage device to the pallet, so that the handling device can transport the goods to different height handling positions.
  • the conveying device can be raised and lowered by the movable column frame, and when the conveying position designated by the user is higher than the top of the movable column frame, the driving assembly can drive the conveying device and the movable column frame to rise relative to the fixed column frame. Therefore, the handling device can reach the handling position designated by the user, and at the same time, it can cooperate with the handling device to carry the goods, which is convenient to realize the automatic and efficient handling of the goods, and is more convenient to use.
  • the embodiment of the present application also provides a method for controlling a handling robot. Please refer to FIG. 24.
  • the method includes:
  • Step S1 Receive a movement instruction
  • Step S2 According to the movement instruction, drive the handling device to move relative to the movable column frame, and/or drive the movable column frame to move relative to the fixed column frame;
  • Step S4 Receive a movement command, where the movement command is carried to the target position;
  • the server can send a movement instruction to the mobile chassis of the handling robot, and the mobile chassis moves to the designated place according to the received movement instruction, where the movement instruction includes the target In addition to the location, it also includes the driving path of the handling robot to the target location.
  • the handling robot can communicate with the server through a wireless network, or communicate with the server through a wired way.
  • Step S5 Drive the movable chassis to move to the target position.
  • the handling robot can perform obstacle avoidance operations, specifically as follows: First, during the movement of the handling robot, judge whether there are obstacles in the traveling direction of the handling robot; if If it exists, get the first height of the obstacle from the ground; second, get the second height of the top of the handling robot from the ground, and the third height of the top of the handling robot from the ground when the movable mast is fully retracted; third, Whether the judgment can pass: judge whether the second height is greater than the first height; if it is greater than the first height, judge whether the third height is less than the ground clearance; if the third height is less than the first height, reduce the height of the top of the handling robot from the ground , Until it is less than the first height; fourth, the handling robot passes through obstacles.
  • the handling robot is controlled to bypass the obstacle, that is, to re-plan a new route to the target position and move.
  • the obstacles and the ground clearance of the obstacles obtained by the handling robot may be obtained from a pre-stored three-dimensional map, or may be obtained by installing a sensing device such as a sensor or a camera on the handling robot.
  • the three-dimensional map can be obtained through a server, or the data of the relevant map can be stored in the storage medium of the transport robot in advance.
  • step S4 and step S5 may be before step S1.
  • the handling robot can move to a target position after receiving a movement instruction, and carry out cargo handling, which can realize multi-position handling of cargo and is more intelligent in use.
  • the device 100a for controlling the handling robot is applied to the handling robot.
  • the handling robot includes a vertical support and a handling device.
  • the vertical support includes a fixed column frame 10 and The movable column frame 20, the conveying device is movably arranged on the movable column frame 20, the movable column frame 20 is movably arranged on the fixed column frame 10, the conveying device is fixed to the movable column frame 20, and the conveying device is used for conveying goods.
  • the device includes:
  • the movement instruction receiving module 101a is used to receive movement instructions
  • the driving module 102a is used to drive the handling device to move relative to the movable column frame 20 and/or to drive the movable column frame 20 to move relative to the fixed column frame 10.
  • the movement instruction receiving module 101a includes a first ascending instruction receiving unit 1011a, and the first ascending instruction receiving unit 1011a is configured to receive the first ascending instruction.
  • the device further includes a first designated ascending height obtaining module 103a, configured to obtain the first designated ascending height according to the first ascending instruction;
  • the driving module 102a is also used to drive the conveying device to move upward relative to the movable column frame 20; before the conveying device moves to the top of the movable column frame 20, when the conveying device moves to the first specified rising height, the lifting of the conveying device is stopped; After the device moves to the top of the movable column frame 20, and the conveying device has not moved to the first specified rising height, the conveying device and the movable column frame 20 are driven to move upwards relative to the fixed column frame 10 at the same time, until the conveying device reaches the first specified rising height .
  • the movement instruction receiving module 101a further includes a second ascending instruction receiving unit 1012a, and the second ascending instruction receiving unit 1012a is configured to receive the second ascending instruction.
  • the device further includes a second designated ascending height acquiring module 104a, configured to acquire the second designated ascending height according to the second ascending instruction;
  • the driving module 102a is also used to move the movable column frame 20 upwards relative to the fixed column frame 10 until the top of the movable column frame 20 exceeds the second specified rising height and then stop, and then drive the handling device to move upward relative to the movable column frame 20 until the handling device reaches the second Specify the ascent height.
  • the movement instruction receiving module 101a further includes a third ascending instruction receiving unit 1013a, and the third ascending instruction receiving unit 1013a is configured to receive a third ascending instruction.
  • the device further includes a third designated ascending height obtaining module 105a, configured to obtain the third designated ascending height according to the third ascending instruction;
  • the driving module 102a is also used to drive the movable column frame 20 and the conveying device to move upward at the same time, until the conveying device reaches the third specified rising height.
  • the movement instruction receiving module 101a further includes a first descending instruction receiving unit 1014a, and the first descending instruction receiving unit 1014a is configured to receive the first descending instruction.
  • the device also includes a first designated descending height acquiring module 106a, configured to acquire the first designated descending height according to the first descending instruction;
  • the driving module 102a is also used to drive the conveying device and the movable column frame 20 to move downward relative to the fixed column frame 10 at the same time; before the movable column frame 20 moves to the bottom of the fixed column frame 10, when the conveying device is lowered to the first specified descending height , Control the movable column frame 20 and the conveying device to stop moving; after the movable column frame 20 moves to the bottom of the fixed column frame 10, when the conveying device has not descended to the first specified descending height, the conveying device is controlled relative to the movable column frame 20 Move downwards until the handling device moves to the first designated lowering height.
  • the movement instruction receiving module 101a further includes a second descending instruction receiving unit 1015a, and the second descending instruction receiving unit 1015a is configured to receive the second descending instruction.
  • the device also includes a second designated descending height acquiring module 107a, configured to acquire the second designated descending height according to the second descending instruction;
  • the driving module 102a is also used to drive the conveying device to move downward relative to the movable column frame 20 first, and then to drive the movable column frame 20 to move downward relative to the fixed column frame 10.
  • the conveying device moves to the bottom of the movable column frame 20
  • the conveying device stops descending; it is also used to drive the movable column rack 20 and the conveying device after the conveying device has not moved to the second designated lowering height after the conveying device moves to the bottom of the movable column frame 20 Synchronously descend until the handling device reaches the second descending height.
  • the movement instruction receiving module 101a further includes a third descending instruction receiving unit 1016a, and the third descending instruction receiving unit 1016a is configured to receive a third descending instruction.
  • the device further includes a third designated descent height acquisition module 108a, configured to acquire the third designated descent height according to the third descent instruction;
  • the driving module 102a is also used to drive the movable column frame 20 to move downward relative to the fixed column frame 10 first, and then drive the conveying device to move downward relative to the movable column frame 20.
  • the conveying device moves to the bottom of the movable column frame 20
  • the conveying device stops descending; it is also used to drive the movable stand 20 and the conveying device when the conveying device has not moved to the third designated lowering height after the conveying device moves to the bottom of the movable column frame 20 Synchronously descend until the handling device reaches the third descending height.
  • the device further includes a cargo handling control module 109a, and the cargo handling control module 109a is used to control the handling components to carry cargo.
  • the cargo handling control module 109a includes a cargo pushing unit, and the cargo pushing unit is used to control the handling assembly to push the cargo on the pallet out.
  • the cargo handling control module 109a includes a cargo pulling back unit, and the cargo pulling back unit is used to control the handling assembly to pull the cargo on the storage device to the pallet.
  • the device further includes a movement command receiving module 110a, which is used to receive a movement command, where the movement command includes a target position.
  • the movement command also includes a travel path for the handling robot to move to the target position.
  • the mobile driving module 111a is used to drive the mobile chassis to move to the target position.
  • the device further includes an obstacle crossing module 112a.
  • the obstacle crossing module 112a is used to determine whether there is an obstacle in the traveling direction of the handling robot 100 during the movement of the handling robot 100; if so, obtain the obstacle.
  • the first height of the object from the ground obtain the current second height of the top of the handling robot 100 from the ground, and the third height of the top of the handling robot 100 from the ground when the movable column frame 20 is fully retracted; determine whether the second is greater than the first Height; if it is greater than the first height, determine whether the third height is less than the first height; if the third height is less than the first height, reduce the height of the handling robot from the ground until it is less than the first height; the handling robot passes the obstacle.
  • the obstacle crossing module 112a is also used to control the handling robot to move around when the third height of the top of the handling robot 100 from the ground is greater than or equal to the first height of the obstacle from the ground when the movable mast 20 is fully retracted. Opening obstacles means re-planning a new route to the target location and moving.
  • the obstacle crossing module 112a may also use other planes as the reference plane, which is not limited to the above description.
  • the embodiment of the present application also provides a handling robot 100. Please refer to FIG. 27.
  • the handling robot further includes at least one processor 200; and a memory 300 communicatively connected with the at least one processor 200,
  • one processor 200 is taken as an example.
  • the memory 300 stores instructions that can be executed by at least one processor 200, and the instructions are executed by the at least one processor 200, so that the at least one processor 200 can execute the above-mentioned method of controlling a transport robot in FIGS. 16 to 24.
  • the processor 200 and the memory 300 may be connected through a bus or in other ways. In FIG. 27, the connection through a bus is taken as an example.
  • the memory 300 can be used to store non-volatile software programs, non-volatile computer-executable programs, and modules, such as program instructions corresponding to the program distribution method in the embodiments of the present application /Modules, for example, the various modules shown in FIG. 25 and FIG. 26.
  • the processor 200 executes various functional applications and data processing of the server by running non-volatile software programs, instructions, and modules stored in the memory 300, that is, realizing the program distribution method of the foregoing method embodiment.
  • the memory 300 may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the program distribution device.
  • the memory 300 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 300 may optionally include a memory remotely provided with respect to the processor 200, and these remote memories may be connected to the program distribution apparatus via a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • One or more modules are stored in the memory 300, and when executed by one or more processors 200, the program distribution method in any of the foregoing method embodiments is executed, for example, the method steps in FIGS. 16 to 24 described above are executed, Realize the functions of each module and each unit in Figure 25 to Figure 26.
  • the embodiments of the present application also provide a non-volatile computer-readable storage medium.
  • the computer-readable storage medium stores computer-executable instructions.
  • the computer-executable instructions are executed by one or more processors, for example, the above description is executed.
  • the method steps in FIGS. 16 to 24 implement the functions of the modules in FIGS. 25 to 26.
  • the embodiments of the present application also provide a computer program product, which includes a calculation program stored on a non-volatile computer-readable storage medium.
  • the computer program includes program instructions.
  • the program instructions When the program instructions are executed by a computer, the computer executes any of the above methods.
  • the program distribution method in the embodiment for example, executes the method steps in FIGS. 16 to 24 described above to realize the functions of the modules in FIGS. 25 to 26.
  • the device embodiments described above are only illustrative, where the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units. It can be located in one place, or it can be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each implementation manner can be implemented by means of software plus a general hardware platform, and of course, it can also be implemented by hardware.
  • the program can be stored in a computer readable storage medium.
  • the storage medium can be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.
  • the handling robot 100 includes a mobile chassis (not shown), a vertical support, a drive assembly 20, and a first detector 101.
  • the mobile chassis carries the vertical support, the drive assembly 20, and the first detector 101. .
  • the mobile chassis is used to realize the movement of the handling robot 100 on the ground.
  • the vertical support includes a fixed column frame 11 and a second fixed column 12.
  • the fixed column frame 11 is installed on the mobile chassis, the second fixed column 12 is movably installed on the fixed column frame 11, and the second fixed column 12 can be along the length of the fixed column frame 11. The direction moves relative to the fixed column frame 11.
  • the drive assembly 20 is connected to the second fixed column 12, and the drive assembly 20 is used to drive the second fixed column 12 to move relative to the fixed column frame 11.
  • the first detector 101 is installed at an end of the second fixed column 12 away from the mobile chassis.
  • the first detector 101 is connected to the drive assembly 20.
  • the first detector 101 is used to detect the distance between the second fixed column 12 and the building above it. Among them, the first detector 101 can move with the second fixed column 12 and detect the distance between the top of the second fixed column 12 and the building above it in real time.
  • the first detector 101 controls the drive assembly 20 to suspend work, so as to prevent the second fixed column 12 from continuing to move toward the building above it and collide, and to avoid damage to the handling robot and safety accidents.
  • the first detector 101 is a distance measuring sensor, which may be an ultrasonic sensor, a laser distance measuring sensor, an infrared distance measuring sensor, or the like.
  • the mobile chassis is used to realize the movement of the handling robot 100 on the ground.
  • the mobile chassis includes a bottom plate, a driven wheel assembly and a driving wheel assembly, and the driven wheel set and the driving wheel assembly are both installed on the bottom plate.
  • the driven wheel assembly is a universal wheel
  • the driven wheel assembly includes at least three universal wheels
  • at least three universal wheels are symmetrically mounted on the bottom plate
  • two drive wheel assemblies are symmetrically mounted on the bottom plate
  • the driven wheel assembly and the drive wheel assembly The common supporting base plate can be rotated by different rotation speeds between the two driving wheel assemblies, so that the handling robot 100 is deflected toward the side of the lower rotation speed of the two driving wheel assemblies, so as to realize the steering of the handling robot 100.
  • two fixed column frames 11 are symmetrically installed on the mobile chassis, and the second fixed column 12 includes a movable vertical beam 121, a fixed cross beam 122 and a movable cross beam 123.
  • the two mobile vertical beams 121 are movably installed on the two fixed column frames 11, and the mobile vertical beam 121 can move relative to the fixed column frame 11 along the length direction of the fixed column frame 11.
  • Two ends of the fixed cross beam 122 are respectively fixed to one end of the two movable vertical beams 121 away from the mobile chassis.
  • the fixed cross beam 122 allows the two movable cross beams 123 to move along the length direction of the fixed column frame 11 at the same time.
  • Two ends of the movable cross beam 123 are respectively movably installed on the two movable vertical beams 121, and the movable cross beam 123 can move relative to the movable vertical beam 121 along the length direction of the movable vertical beam 121.
  • the driving component 20 is connected to the moving cross beam 123, and the driving component 20 can drive the moving cross beam 123 to move relative to the moving vertical beam 121 along the length direction of the moving vertical beam 121.
  • the moving beam 123 can drive the fixed beam 122 to move, so that the moving vertical beam 121 moves along the length of the fixed column frame 221 relative to the fixed column frame 221, that is, the drive assembly 20 can drive the moving beam 123 relative to the moving vertical beam.
  • the beam 121 moves, and/or drives the movable cross beam 123, the fixed cross beam 122, and the movable vertical beam 121 to move relative to the fixed column frame 11 at the same time.
  • the two opposite side walls of the two fixed column frames 11 are provided with first sliding grooves 1101, the first sliding grooves 1101 are arranged along the length direction of the fixed column frame 11, and the movable vertical beam 121 is at least partially accommodated in the first sliding grooves 1101,
  • the moving vertical beam 121 can move along the first chute 1101.
  • the two opposite side walls of the two moving vertical beams 121 are provided with second sliding grooves 1211.
  • the second sliding grooves 1211 are arranged along the length direction of the moving vertical beam 121. Slot 1211, the moving beam 123 can slide along the second sliding slot 1211.
  • the fixed column frame 11 and the movable vertical beam 121 are both arranged perpendicular to the bottom plate, and the fixed cross beam 122 and the movable cross beam 123 are both arranged perpendicular to the movable vertical beam 121.
  • the handling robot 100 also includes a main shock absorber 40, which is installed at one end of the fixed column frame 11 close to the mobile chassis, and is located below the second fixed column 12, the main shock absorber 40 is used to buffer the second fixed column 12 Impact force on the mobile chassis when descending.
  • the two fixed column frames 11 are respectively provided with a main shock absorber 40, and the main shock absorber 40 is accommodated in the first chute 1101.
  • the fixed column frame 11 is provided with a first baffle 111 at one end close to the mobile chassis.
  • the first baffle 111 and the first baffle 111 are arranged parallel to the bottom surface of the movable vertical beam 121, and one end of the main shock absorber 40 passes through the first baffle. 111 is also arranged opposite to the bottom surface of the second fixing column 12.
  • the part of the main shock absorber 40 passing through the first baffle 111 has an elastic recovery capability, which can directly abut the bottom surface of the movable vertical beam 121 to buffer the second fixed column 12.
  • the first baffle 111 plays a role of blocking.
  • the moving vertical beam 121 pushes one end of the main shock absorber 40 to be flush with the side of the first baffle 111 facing the second fixed column 12, the first baffle 111 It directly abuts the bottom surface of the moving vertical beam 121 to prevent the second fixed column 12 from continuing to move toward the moving chassis.
  • the first baffle 111 may be omitted, and the limit compression position of the main shock absorber 40 is the limit position of the second fixed column 12 moving away from the chassis.
  • the main shock absorber 40 is a hydraulic shock absorber, which includes a cylinder 41, a piston rod 42 and a first elastic member 43.
  • the cylinder 41 is installed on the fixed column frame 11, the outer side wall of the piston rod 42 is movably sleeved on the cylinder 41, the piston rod 42 can move relative to the cylinder 41 along its own length, and one end of the piston rod 42 passes through the first baffle 111 It is arranged opposite to the second fixed column 12, the first elastic member 43 elastically connects the cylinder 41 and the piston rod 42, and the first elastic member 43 is used to provide elastic potential energy for the piston rod 42 to abut against the second fixed column 12.
  • the piston rod 42 when the second fixed column 12 is separated from one end of the piston rod 42, the piston rod 42 can be quickly extended from the cylinder 41 under the elastic recovery action of the first elastic member 43 to cope with the handling process of the handling robot 100
  • the middle and second fixed column 12 rises and falls frequently.
  • the side of the piston rod 42 opposite to the moving vertical beam 121 is provided with a buffer pad 421, and the buffer pad 421 plays a further buffering role.
  • the buffer pad 421 may be made of nylon.
  • the fixed column frame 11 is further provided with a first fixed plate 112 at one end close to the mobile chassis.
  • the first fixed plate 112 is used to fix the main shock absorber 40.
  • the main shock absorber 40 also includes two fixing nuts 44.
  • the outer side wall of the cylinder 41 is provided with threads.
  • the cylinder 41 passes through the first fixing plate 112.
  • the two fixing nuts 44 are connected to the two sides of the first fixing plate 112, respectively.
  • the cylinder 41 is threadedly connected and abuts against the first fixing plate 112, so that the main shock absorber 40 is fixed to the first fixing plate 112.
  • the handling robot 100 also includes an auxiliary shock absorbing member 60.
  • the auxiliary shock absorbing member 60 is installed on the fixed beam 122 and located between the fixed beam 122 and the moving beam 123.
  • the auxiliary shock absorbing member 60 is used to buffer the moving beam. When 123 rises, the impact force on the fixed beam 122 is generated.
  • the two ends of the fixed cross beam 122 are respectively provided with a secondary shock absorber 60
  • the opposite side of the fixed cross beam 122 and the movable cross beam 123 is provided with a second baffle (not shown in the figure)
  • the second baffle and the movable cross beam 123 The top surface is arranged in parallel and fixedly connected to the fixed cross beam 122, and one end of the auxiliary shock absorber 60 passes through the second baffle and is disposed opposite to the top surface of the movable cross beam 123.
  • the part of the secondary shock absorber 60 that passes through the second baffle has an elastic recovery capability, and it can directly abut the top surface of the moving beam 123 to buffer the moving beam 123.
  • the second baffle plays a role of resisting.
  • the moving cross beam 123 abuts one end of the auxiliary shock-absorbing member 60 to be flush with the side of the second baffle facing the moving cross beam 123
  • the second baffle directly contacts the moving vertical beam 121
  • the top surfaces of the two abut against each other, so that the moving beam 123 can drive the fixed beam 122 to move, so that the moving vertical beam 121 moves relative to the fixed column frame 11 along the length direction of the fixed column frame 11.
  • the auxiliary shock absorbing member 60 is a hydraulic buffer, the fixed cross beam 122 is provided with a second fixing plate (not shown in the figure), and the auxiliary shock absorbing member 60 is fixed to the second fixing plate.
  • the fixed cross beam 122 may be omitted, and the auxiliary shock-absorbing member 60 is installed at an end of the movable vertical beam 121 away from the mobile chassis, and is located above the movable cross beam 122.
  • the handling robot also includes a second detector (not shown in the figure), which is connected to the drive assembly 20.
  • the second detector is used to detect two extreme positions of the second fixed column 12 relative to the movement along the length of the fixed column frame 11, To control the start and stop of the drive assembly 20.
  • the two extreme positions are the upper limit position of the movable vertical beam 121 moving away from the mobile chassis along the length direction of the fixed column frame 11, and the lower limit position of the movable vertical beam 121 moving toward the mobile chassis along the length direction of the fixed column frame 11. .
  • the second detector may be a ranging sensor, which may be directly installed on the end of the fixed column frame close to the mobile chassis and opposite to the bottom surface of the movable vertical beam 121, or the second detector may It is a travel switch group.
  • the travel switch group includes a first travel switch and a second travel switch.
  • the first travel switch is installed at one end of the fixed column frame 22 close to the mobile chassis, and the second travel switch is installed on the fixed column frame 22 far away from the mobile chassis.
  • the movable vertical beam 121 is provided with a bump at one end corresponding to the first travel switch. When the movable vertical beam 121 moves to the lower limit position, the bump triggers the first travel switch.
  • the movable vertical beam 121 moves to the upper limit position, The bump triggers the second limit switch.
  • the handling robot 100 further includes a braking device 90, and the braking device 90 is used to brake the second fixed column 12 so that the second fixed column 12 stops moving.
  • the braking device 90 By providing the braking device 90, on the one hand, emergency braking can be realized during the carrying work of the carrying robot 100, and on the other hand, the drive assembly 20 of the carrying robot 100 can be prevented from being started by mistake.
  • the driving assembly 20 includes a motor 21 and a transmission mechanism 22.
  • the transmission mechanism 22 is connected to the output shaft of the motor 21 and the second fixed column 12.
  • the motor 21 can drive the second fixed column 12 to move relative to the fixed column frame 11 through the transmission mechanism 22.
  • the braking device 90 is connected to the transmission mechanism 22, and the braking device 90 can brake the transmission mechanism 22 so as to realize the braking of the second fixed column 12.
  • the aforementioned first detector 101 is connected to the motor 21 of the drive assembly 20.
  • the transmission mechanism 22 includes a bobbin 221, a pulley block 222 and a rope 223.
  • the spool 221 is connected to the output shaft of the motor 21, the pulley block 222 is rotatably connected to the fixed column frame 11 and the second fixed column 12, one end of the rope 223 is fixed to the spool 221, and the other end of the rope 223 is connected to the pulley block 222.
  • the braking device 90 is connected to the bobbin 221, and the braking device 90 can brake the bobbin 221, so as to realize the braking of the second fixed post 12. Specifically, the other end of the rope 223 bypasses the pulley block 222 and is fixed to the moving beam 123.
  • a gear set can also be provided between the spool 221 and the motor 21, and the gear set is used to connect the output shaft of the motor 21 and the spool 221.
  • the gear set includes a first gear and a second gear. The first gear is connected to the output shaft of the motor 21, the second gear is meshed with the first gear, and the bobbin 221 is connected to the second gear and is coaxial with the second gear. set up.
  • the pulley block 222 includes a top pulley 2221, a bottom pulley 2222, and a main pulley 2223.
  • the top pulley 2221 is rotatably mounted on the end of the second fixed column 12 away from the mobile chassis
  • the bottom pulley 2222 is rotatably mounted on the end of the second fixed column 12 close to the mobile chassis.
  • the pulley 2223 is rotatably installed on the end of the fixed column frame 11 away from the mobile chassis.
  • the top pulley 2221 is installed on the fixed cross beam 122
  • the bottom pulley 2222 is installed on the end of the movable vertical beam 121 close to the mobile chassis
  • one end of the rope 223 is tied to the movable cross beam 123
  • the other end of the rope 223 sequentially bypasses the top pulley 2221 and the bottom.
  • the pulley 2222 and the main pulley 2223 are behind the bobbin 221.
  • the brake device 90 includes a brake disc 91, a guide base 92 and a stopper 93.
  • the structure of the braking device 90 may be the same as the structure of the braking device 90 in the foregoing embodiment. For details, refer to the description of the braking device 90 in the foregoing embodiment 1, and this embodiment will not be repeated here.
  • the brake disc 91 is connected to the bobbin 221 and arranged coaxially with the bobbin 221, and the brake disc 91 can rotate with the bobbin 221 together.
  • the brake disc 91 is provided with at least one pin hole 9101.
  • the guide base 92 is installed on the fixed column frame 11, and the guide base 92 is provided with a slot 9201, and the slot 9201 penetrates the guide base 92 along the length direction of the guide base 92.
  • the handling robot 100 also includes a storage device 6 and a handling device.
  • the storage device 6 is installed on the fixed column frame 11, the handling device is installed on the second fixed column 12, and the storage device 6 is used to store goods and carry The device is used for storing and storing goods in the storage device 6.
  • the cargo storage device 6 includes a plurality of layer plates 61 distributed at different heights, and a beam 62 for supporting each layer plate 61.
  • the multiple layer plates 61 are arranged at intervals along the length direction of the fixed column frame 11, and one layer plate 61 corresponds to one layer.
  • Cross beam 62 is arranged at intervals along the length direction of the fixed column frame 11, and one layer plate 61 corresponds to one layer.
  • the two ends of the beam 62 are respectively installed on two fixed column frames 11, the layer 61 has two ends distributed horizontally, one end of the layer 61 is fixed to the beam 62, and the other end of the layer 61 is suspended and away from the beam 62. 61 is used to place goods.
  • the handling device includes a fork bracket, a fork, and a rotary drive assembly (not shown). Among them, the fork and the rotary drive assembly are both installed in the fork bracket.
  • the fork bracket is installed on the second fixed column 12, and the driving assembly 20 can drive the second fixed column 12 to reciprocate relative to the fixed column frame 22 along the length direction of the fixed column frame 11, so that the conveying device is raised and lowered relative to the storage device 6 .
  • the fork is movably installed on the fork bracket, and the fork can be telescopically folded relative to the fork bracket.
  • the rotary drive assembly is installed between the fork and the fork bracket.
  • the fork is used to pick and place the goods and rotate to drive
  • the component is used to drive the fork to rotate so that the fork faces a preset direction to pick up or place the goods.
  • the fork bracket is installed on the moving beam 123 of the second fixed column 12.
  • the handling robot provided by the present application includes a mobile chassis 100, a driving assembly 400, a column assembly 200, a handling device 300 and at least one guiding structure.
  • the upright assembly 200 extends in the vertical direction, the upright assembly 200 and the mobile chassis 100 are rollingly connected by a guiding structure, and the mobile chassis 100 is connected with the driving assembly 400, which is used to drive the handling device 300 to rise or fall in the vertical direction;
  • the upright assembly 200 includes a fixed upright frame 210 and a movable upright frame 220 that roll through a guiding structure, and the driving assembly 400 is used to drive the movable upright frame 220 to rise or fall in a vertical direction relative to the fixed upright frame 210.
  • the mobile chassis 100 may include a bottom plate 110, a driving wheel assembly 120, and a driven wheel assembly 130. Both the column assembly 200 and the drive assembly 400 can be connected to the bottom plate 110, or the drive assembly 400 and the handling device 300 are both connected to the column assembly.
  • the upright assembly 200 is connected to the bottom plate 110.
  • the column assembly 200 extends in the vertical direction toward the upper side of the bottom plate 110, wherein the vertical direction of the extension direction of the column assembly 200 may also be referred to as the height direction of the handling robot (ie, the Z direction in FIG. 3).
  • the column assembly 200, the conveying device 300, and the driving assembly 400 are supported by the bottom plate 110, and the bottom plate 110 is driven to move by the driving wheel assembly 120, so as to realize the movement of the handling robot on the ground.
  • the handling robot may further include a plurality of storage shelves 600, the storage shelves 600 are located on the column assembly 200 and are arranged at intervals along the height direction of the column assembly 200.
  • the distance between adjacent storage shelves 600 may be the same, or the distance between adjacent storage shelves 600 may be different, and the position of the storage shelves 600 may be set according to requirements, which is not limited in this embodiment.
  • the storage shelf 600 is used to store goods, and the handling device 300 can store or pick up the goods on the storage shelf 600 or other shelves where goods are placed.
  • the conveying device 300 may be a device for storing and retrieving goods well known to those skilled in the art, such as a mechanical arm, a clamp-type fork, or a claw.
  • the handling device 300 may include a fork bracket (not shown in the figure), a fork (not shown in the figure), and a rotation driving device (not shown in the figure).
  • the fork and the rotary drive device are both installed on the fork bracket.
  • the drive assembly 400 is connected to the transport device 300, and the transport device 300 is driven to rise or fall in the vertical direction relative to the column assembly 200 through the drive assembly 400, or the drive assembly 400 drives the movable column frame 220 relative to the fixed column frame 210 rises or falls in the vertical direction.
  • the column assembly 200 and the conveying device 300 are roll-connected through the guiding structure, and/or the movable column frame 220 and the fixed column frame 210 are roll-connected through the guiding structure.
  • the shaking generated during the ascending or descending process of the handling device 300 and/or the movable column frame 220 is reduced, and the stability of the handling device 300 and/or the movable pillar frame 220 during the movement is improved, thereby improving the stability of the handling robot. It can reduce the abnormal noise generated during the use of the handling robot.
  • the guiding structure includes a first guiding assembly 50, the first guiding assembly 50 includes a first sliding groove 51 and inserted in the first sliding groove
  • the first guide wheel group 52 in 51, the first chute 51 is located on the column assembly 200, and the first chute 51 extends in the vertical direction; the first guide wheel group 52 is connected to the conveying device 300, and the first guide wheel group 52 rolls along the extending direction of the first sliding groove 51.
  • the guide wheel set 52 includes a guide rod 5201 and at least one first guide wheel 5202.
  • the guide wheel set 52 may also include at least a pair of second guide wheels 5203.
  • the guide rod 5201 is connected to the conveying device 300, and the first guide wheel 5202 Both the second guide wheel 5203 and the second guide wheel 5203 are connected to the guide rod 5201, and the first guide wheel 5202 and the second guide wheel 5203 rotate relative to the guide rod 5201; the first guide wheel 5202 and the second guide wheel 5203 are both located in the chute 51 , At least one first guide wheel 5202 and/or at least one second guide wheel 5203 abuts against the inner wall of the first chute 51, and each first guide wheel 5202 can abut against the same inner wall of the first chute 51 or a different inner wall. Then, each second guide wheel 5203 can also abut the same inner wall of the first slide groove 51 or a different inner wall, and the first guide wheel 5202 and the second guide wheel 5203 abut different inner walls of the first slide groove 51 respectively.
  • the guide rod 5201 is used to support the first guide wheel 5202 and the second guide wheel 5203, and the wheel surface of the first guide wheel 5202 and/or the wheel surface of the second guide wheel 5203 are respectively different from the inner wall of the first chute 51 Abutting to reduce the shaking generated during the movement of the conveying device 300.
  • the axis of the first guide wheel 5202 and the axis of the second guide wheel 5203 may be perpendicular to each other, and the axis of the first guide wheel 5202 and the axis of the second guide wheel 5203 are both perpendicular to the extending direction of the first sliding groove 51, In this way, it is avoided that the wheel surface of each first guide wheel 5202 and each second guide wheel 5203 influence each other.
  • the axis of the first guide wheel 5202 is along the X direction in FIG. 37
  • the axis of the second guide wheel 5203 is along the Y direction in FIG. 38
  • the extending direction of the first sliding groove 51 is along the Z direction in FIG. 36.
  • the conveying device 300 includes at least one connecting piece 310.
  • the connecting piece 310 is arranged in a one-to-one correspondence with the first guide assembly.
  • the guide rod 5201 includes a guide rod main body 5204 and at least one first extension part 5205 provided on the guide rod main body 5204.
  • the guide wheel 5203 is rotatably connected to the first extension part 5205, the first guide wheel 5202 is rotatably connected to the guide rod body 5204, and the guide rod 5204 is connected to the connecting member 310.
  • the guide rod main body 5204 extends in the vertical direction
  • the first extension portion 5205 is perpendicular to the guide rod main body 5204
  • the two opposite sides of the first extension portion 5205 are connected to the second guide wheels 5203.
  • the column assembly 200 includes a fixed column frame 210 and a movable column frame 220, the first chute 51 is located on the movable column frame 220, and the first end 210a of the fixed column frame is fixedly connected to the mobile chassis 100, and the fixed column frame 210 extends in the vertical direction, the movable column frame 220 is connected with the fixed column frame 210, and the transport device 300 is connected with the movable column frame 220 and moves in the vertical direction relative to the movable column frame 220.
  • the movable column frame 220 moves in a vertical direction relative to the fixed column frame 210.
  • the expansion and contraction of the column assembly 200 is realized, which is convenient for the handling device 300 to fetch goods at a higher position or store goods at a higher position.
  • the driving assembly 400 can be connected to the movable column frame 220, and the driving assembly 400 drives the movable column frame 220 to move along the extension direction of the fixed column frame 210, that is, the movable column frame 220 can be vertically aligned relative to the fixed column frame 210. Move up and down in the direction, thereby realizing the expansion and contraction of the column assembly 200.
  • the drive assembly 400 drives the transport device 300 to move relative to the movable column frame 220. When the transport device 300 moves to the top of the movable column frame 220, the drive assembly 400 drives the movable column frame 220 along the fixed position through the transport device 300. The extension direction of the column frame 210 moves.
  • the fixed column frame 210 includes a first fixed column 211 and a second fixed column 212, and both the first fixed column 211 and the second fixed column 212 are fixedly connected to the mobile chassis 100.
  • the movable pillar frame 220 includes a first movable pillar 221 and a second movable pillar 222.
  • the first movable pillar 221 is connected to the first fixed pillar 211
  • the second movable pillar 222 is connected to the second fixed pillar 212.
  • Both the first movable column 221 and the second movable column 222 have a first sliding groove 51.
  • first movable post 221 and the first fixed post 211 can be slidably connected by a first sliding groove and a sliding block, and the first movable post 221 and the first fixed post 211 can also be connected by a first guide wheel set 52 in a rolling connection.
  • the second movable post 222 and the second fixed post 212 can be connected in sliding motion through the first sliding groove and the sliding block, and the second movable post 222 and the second fixed post 212 can also be connected in a rolling connection through the first guide wheel set 52.
  • This embodiment is not limited here.
  • the conveying device 300 is located between the first movable column 221 and the second movable column 222, and the opposite sides of the conveying device 300 and the first movable column 221 and the second movable column 222 pass through different first guides.
  • the component 50 is connected in a rolling manner.
  • two opposite sides of the conveying device 300 have at least one connecting piece 310, and the connecting piece 310 of the first side 300a of the conveying device is connected to the first guide wheel set 52 in the first chute 51 of the first movable column 221.
  • the guide rod main body 5204 is connected.
  • the connecting member 310 on the second side of the conveying device is connected to the guide rod main body 5204 in the first guide wheel set 52 in the first chute 51 of the second movable column 222. In this way, the conveying device 300 is firmly connected to maintain the stability of the movement of the conveying device 300 relative to the movable column frame 220.
  • the structure of the rolling connection of the conveying device 300 and the first movable column 221 is the same as the structure of the rolling connection of the conveying device 300 and the second movable column 222.
  • this embodiment and the drawings use the connection of the first side 300a of the conveying device
  • the member 310 is connected with the guide rod main body 5204 in the first guide wheel set 52 in the first sliding groove 51 of the first movable column 221 for illustration.
  • the first chute 51 may include a first accommodating section 5101 and a second accommodating section 5102 extending along the extending direction of the first chute 51, the first accommodating section 5101 and the second accommodating section 5102 are in communication, and the second accommodating section 5101 is in communication with the second accommodating section 5102.
  • the width of the accommodating section 5102 (that is, the length in the Y direction in FIG. 38) is smaller than the width of the first accommodating section 5101, that is, the cross section of the first sliding groove 51 perpendicular to the extending direction of the first sliding groove 51 is convex.
  • the first guide wheel 5202 and the second guide wheel 5203 are located in the first accommodating section 5101, the guide rod main body 5204 is located in the second accommodating section 5102, and the first extension 5205 extends into the first accommodating section 5101. As a result, the first guide wheel 5202 and the second guide wheel 5203 are confined in the first receiving section 5101.
  • the wheel surfaces of the first guide wheel 5202 respectively abut the two first side surfaces 5206 opposite to the first receiving section 5101; and/or, the wheel surfaces of the second guide wheel 5203 are respectively opposite to the two first receiving sections 5101 The two sides 5207 abut against each other.
  • the upper part of the column assembly 200 has at least one limiting member 250
  • the connecting member 310 has at least one notch 311
  • the notch 311 is arranged in a one-to-one correspondence with the limiting member 250.
  • the notch 311 can match the limiting member 250.
  • the notch 311 is a rectangular notch matching the limiting member 250.
  • the limiting member 250 may also be one of a spring, a silicone sheet, or a rubber sheet.
  • the column assembly 200 has at least one first shock-absorbing member 240.
  • the notch 311 is in contact with the limiting member 250, the connecting member 310 and the first The shock absorber 240 abuts, and the first shock absorber 240 buffers the impact of the conveying device 300 on the column assembly 200.
  • the first shock absorbing member 240 may be located at the second end of the upper column assembly 200 of the column assembly 200, or the first shock absorbing member 240 may be located at the second end of the column assembly 200.
  • the first shock absorber 240 is a shock absorber. It can be understood that the first shock-absorbing member 240 may also be one of a spring, a silicone sheet, or a rubber sheet, which is not limited in this embodiment.
  • the first damping member 240 is located in the first sliding groove 51, and the limiting members 250 are respectively located on opposite sides of the first sliding groove 51. In this way, the conveying device 300 and the limiting member 250 can be smoothly contacted, and the impact on the goods on the conveying device 300 is avoided.
  • both the first sliding groove 51 of the first movable column 221 and the first sliding groove 51 of the second movable column 222 have a first shock-absorbing member 240. In this way, the impact of the conveying device 300 on the column assembly 200 can be balanced.
  • the fixed column frame 210 may include a fixed beam 213, the first end of the first fixed column 211 and the first end of the second fixed column 212 are both fixed to the mobile chassis 100, and the first fixed column 211 and the second fixed column 212 also pass The fixed beam 213 is connected.
  • the second end of the first fixed column 211 and the second end of the second fixed column 212 ie, the second end 210b of the fixed column frame
  • the second end of 211 and the second end of the second fixing post 212 can be connected by a fixed cross beam 213, or the fixed cross beam 213 is connected at a position close to the first fixed column The second end of 211 and the second end of the second fixing post 212.
  • Both the first fixed post 211 and the second fixed post 212 are perpendicular to the mobile chassis 100, the fixed cross beam 213 is perpendicular to the first fixed post 211, and the fixed cross beam 213 is perpendicular to the second fixed post 212.
  • the fixed column frame 210 has a support base 214, and the driving mechanism 400 is connected to the support base 214.
  • the guiding structure further includes a second guiding assembly 500.
  • the fixed upright frame 210 and the movable upright frame 220 are connected by rolling through the second guiding assembly 500, and the driving assembly 400
  • the movable column frame 220 is driven to move in a vertical direction relative to the fixed column frame 210, and the second guide assembly 500 guides the movable column frame 220 during the movement.
  • the second guide assembly 500 includes a second chute 510 and a second guide wheel set 520.
  • the second chute 510 extends in the vertical direction.
  • the second guide wheel set 520 is located in the second chute 510 and runs along the second The extension direction of the chute 510 moves, the second chute 510 is located on one of the fixed column frame 210 or the movable column frame 220, and the second guide wheel set 520 is located on the other of the fixed column frame 210 or the movable column frame 220.
  • the second slide groove 510 is located on the fixed column frame 210, and the second guide wheel set 520 is located on the movable column frame 220. It can be understood that the second slide groove 510 and the second The positions of the guide wheel set 520 can be interchanged, the second sliding groove 510 is located on the movable column frame 220, and the second guide wheel set 520 is located on the fixed column frame 210.
  • a second chute 510 may be opened on the fixed column frame 210, the second guide wheel set 520 is connected to the movable column frame 220, and the second guide wheel set 520 abuts the inner wall of the second chute 510, During the movement of the movable column frame 220, the second guide wheel set 520 rolls along the inner wall of the second chute 510, thereby reducing the shaking of the movable column frame 220, improving the stability of the column assembly 220, and reducing the use of the handling robot Abnormal noise during the process.
  • the movable column frame 220 is inserted into the second chute 510, that is, the movable column frame 220 is sleeved in the fixed column frame 210; 510 is located on the movable upright frame 220, and the fixed upright frame 210 is inserted into the second chute 510, that is, the fixed upright frame 210 is sleeved in the movable upright frame 220.
  • the space occupied by the column assembly 200 is reduced.
  • the fixed column frame 210 includes a first fixed column 211 and a second fixed column 212.
  • the first fixed column 211 and the second fixed column 212 are both connected to the mobile chassis 100.
  • the first fixed column 211 and the second fixed column 212 have a Two chute 510.
  • the movable pillar frame 220 includes a first movable pillar 221 and a second movable pillar 220, and the first fixed pillar 221 and the second fixed pillar 220 each have a second guide wheel set 520.
  • first fixed post 211 and the second fixed post 212 have the same structure
  • first movable post 221 and the second movable post 220 have the same structure
  • first fixed post 211 and the first movable post 221 have the same structure.
  • the attached drawings are taken as an example to illustrate the connection mode of the column assembly 200 and the second guide assembly 500.
  • the second guide wheel set 520 may include a guide base 521 and at least a pair of third guide wheels 522, and the second guide wheel set 520 may also have at least a pair of fourth guide wheels 523, each of the third guide wheels 522 And each fourth guide wheel 523 are rotatably disposed on the guide base 521, at least one third guide wheel 522 and/or at least one fourth guide wheel 523 abuts against the inner wall of the second chute 510, and each third guide wheel 522 abuts against the inner wall of the second sliding groove 510.
  • the guide wheels 522 may be in contact with the same inner wall or a different inner wall of the second slide groove 510, and each fourth guide wheel 523 may also be in contact with the same inner wall or a different inner wall of the second slide groove 510, and the third guide wheel 522 and The fourth guide wheels 523 abut against different inner walls of the second sliding groove 510 respectively.
  • the guiding base 521 is connected to the fixed column frame 210 or the movable column frame 220, and the guiding base 521 is used to support the third guiding wheels 522 and the fourth guiding wheels 523.
  • the wheel surface of the third guide wheel 522 and/or the wheel surface of the fourth guide wheel 523 respectively abut against different inner walls of the second sliding groove 510 to reduce the shaking of the movable column frame 220.
  • the axis of the third guide wheel 522 and the axis of the fourth guide wheel 523 may be perpendicular to each other, and the axis of the third guide wheel 522 and the axis of the fourth guide wheel 523 are both perpendicular to the extending direction of the second sliding groove 510, In this way, it is avoided that the wheel surface of each third guide wheel 522 and each fourth guide wheel 523 influence each other.
  • the axis of the third guide wheel 522 is along the Y direction in FIG. 46
  • the axis of the fourth guide wheel 523 is along the X direction in FIG. 46
  • the extending direction of the second sliding groove 510 is along the Z direction in FIG.
  • the opposite edges of the guide base 521 respectively have at least one support part 5211, the support part 5211 is perpendicular to the guide base 521, the third guide wheel 522 and the support part 5211 are arranged in one-to-one correspondence, and the third guide wheel 522 It is provided on the outside of the support part 5211.
  • at least one support portion 5211 is respectively provided on the opposite edge of the guide base 521 (that is, on the opposite side of the guide base 521), and the third guide wheel 522 can be connected to the outside of the support portion 5211 through a connecting shaft, thus, It is convenient to install the third guide wheel 522.
  • the plane where the third guide wheel 522 is located is perpendicular to the plane where the guide base 521 is located. That is, the plane where the third guide wheel 522 is located is the XZ plane in the figure, and the plane where the guide base 521 is located is the YZ plane in FIG. 46.
  • the guide base 521 has at least two second extensions 5212 extending toward the opposite outer sides of the guide base 521, the fourth guide wheel 523 is disposed on the second extension 5212, and the fourth guide The wheels 523 are arranged in a one-to-one correspondence with the second extension part 5212, wherein the fourth guide wheel 523 can be connected to the second extension part 5212 via a connecting shaft, thereby facilitating the installation of the fourth guide wheel 523.
  • the plane where the fourth guide wheel 523 is located is parallel to the plane where the guide base 521 is located. That is, the plane where the fourth guide wheel 523 is located and the plane where the guide base 521 is located are both the XZ plane in FIG. 46.
  • the second extension part 5212 and the support part 5211 are located on the same opposite sides of the guide base 521, and the second extension part 5212 is located between the support parts 5211 on the same side of the guide base 521, so that The third guide wheels 522 and the fourth guide wheels 523 are dispersedly arranged, thereby improving the stability of the column assembly 220.
  • the third guide wheel 522 is used as two pairs, and the fourth guide wheel 523 is used as a pair for description.
  • the structure of the second guide wheel set 520 is described.
  • the structure of the second sliding groove 510 will be described below in conjunction with the structure of the second guide wheel set 520.
  • the second chute 510 includes a third accommodating section 511 extending along the extension direction of the second chute 510, and the third accommodating section 511 has two opposing second chute side walls 5111 and two opposing sides.
  • the second guide wheel set 520 is located in the third accommodating section 511, each third guide wheel 522 is located between the two second sliding groove side walls 5111, and the wheel surface of each fourth guide wheel 523 is connected to the two second sliding grooves.
  • the side walls 5112 abut against each other.
  • the fourth guide wheel 523 is the main guide wheel
  • the third guide wheel 522 is the auxiliary guide wheel.
  • the second sliding groove 510 further includes a fourth receiving section 512 extending along the extending direction of the second sliding groove 510, and the width of the fourth receiving section 512 (that is, the length in the Y direction in FIG. 44) is smaller than that of the third receiving section 512.
  • the width of the section 511 (that is, the length in the Y direction in FIG. 44 ), the fourth accommodating section 512 and the third accommodating section 511 are connected.
  • Both the first movable column 221 and the second movable column 220 include a body 230, the body 230 is located in the fourth accommodating section 512, and a part of the body 230 extends into the third accommodating section 511 and is connected to the guide base 521.
  • the first movable post 221 is inserted into the second sliding groove 510 of the first fixed post 211 from the top of the first fixed post 211, and the second movable post 220 is inserted into the second fixed post 212 from the top of the second fixed post 212.
  • the second chute 510 of the column 212 By setting the width of the fourth accommodating section 512 to be smaller than the width of the third accommodating section 511, the second guide wheel set 520 is confined in the third accommodating section 511.
  • the second guide assembly 500 further includes at least one third guide wheel set 530, and the third guide wheel set 530 abuts against different side walls of the movable column frame 220.
  • the second guide wheel set 520 and the third guide wheel set 530 are respectively located on different side walls of the movable column frame 220.
  • the third guide wheel set 530 includes at least one fifth guide wheel 531.
  • the third guide wheel set 530 may also include at least one sixth guide wheel 532.
  • the sixth guide wheels 532 are respectively rotatably arranged on opposite sides of the fixed column frame 210, and the fifth guide wheel 531 and the sixth guide wheel 532 are located on the same opposite sides of the fixed column frame 210.
  • Part of the fifth guide wheel 531 extends into the fourth accommodating section 512, and the wheel surface of at least one fifth guide wheel 531 abuts on opposite sides of the main body 230, and/or part of the sixth guide wheel 532 extends to the first Inside the four accommodating sections 512, the wheel surface of at least one sixth guide wheel 532 abuts on two opposite sides of the main body 230 respectively.
  • the arrangement of the fifth guide wheel 531 and the sixth guide wheel 532 may be the same as the arrangement of the third guide wheel 522 and the second guide wheel 523.
  • the wheel surface of the fifth guide wheel 531 and the wheel surface of the sixth guide wheel 532 may abut against different sides of the body 230 respectively, that is, the axis of the fifth guide wheel 531 may be perpendicular to the axis of the sixth guide wheel 532.
  • both the first fixed post 211 and the second fixed post 212 have a third guide wheel set 530, and the third guide wheel set 530 on the first fixed post 211 and the second fixed post 212 are symmetrical.
  • the first fixed post 211 and the second fixed post 212 both have a second guide wheel set 520, and the second guide wheel group 520 on the first fixed post 211 and the second fixed post 212 are symmetrical.
  • the body 230 has a guide groove 231 extending in a vertical direction
  • the sixth guide wheel 532 is located in the guide groove 231
  • the sixth guide wheel 532 abuts against the inner side wall 2311 opposite to the guide groove 231 and/or the first The five guide wheels 531 abut the bottom wall 2312 of the guide groove 231.
  • the sixth guide wheel 532 is located in the guide groove 231, and the fifth guide wheel 531 abuts against the bottom wall 2312 of the guide groove 231.
  • the fifth guide wheel 531 is the main guide wheel
  • the sixth guide wheel 532 is the auxiliary guide wheel.
  • the wheel surface of the sixth guide wheel 532 can abut the side wall of the guide groove 231. In order to reduce the shaking of the movable column frame 220.
  • the third guide wheel set 530 also includes at least two fixing plates 533.
  • the fifth guide wheel 531 and the sixth guide wheel 532 are connected to the fixing plate 533, and the fixing plate 533 is fixedly connected to the fixed column frame 210.
  • each third guide wheel set 530 is located at the upper part of the fixed column frame 210, and/or the guiding base 521 is located at the lower part of the movable column frame 220.
  • the movable column frame 220 is uniformly guided by the second guide wheel set 520 and the third guide wheel set 530.
  • the vertical frame in order to reduce the impact of the movable column frame 220 on the mobile chassis 100, the vertical frame further includes a second shock-absorbing member 800, which is fixedly connected to the fixed column frame 210 or the mobile chassis 100, The damping surface of the second shock absorbing member 800 faces the second guide wheel set 520, and when the body 230 moves toward the mobile chassis 100, the second guide wheel set 520 abuts the second shock absorbing member 800.
  • the guide base 521 has an abutting portion 5213, and the second shock-absorbing member 800 is located in the third receiving section 511.
  • the abutting portion 5213 and the second shock-absorbing member 800 800 pieces of abutment.
  • the second shock absorber 800 is a shock absorber. It can be understood that the second shock-absorbing member 800 may also be one of a spring, a silicone sheet, or a rubber sheet, which is not limited in this embodiment.
  • the indicator light 900 and/or the wireless module 1000 are also included.
  • the indicator light 900 is used to indicate the working status of the handling robot, and the wireless module 1000 is used for communication.
  • the wireless module 1000 and the indicator light 900 are both located on the fixed column frame 210, and the wireless module 1000 is located on the side of the fixed column frame 220 facing away from the mobile chassis 100.
  • the wireless module 1000 and the indicator light 900 may both be located on the fixed beam 213, the wireless module 1000 may be located on the top surface of the fixed beam 213, and the indicator light 900 may be located on the side of the fixed beam 213.
  • the movable column frame 220 may further include a movable cross beam 223, and the second end of the first movable column 221 and the second end of the second movable column 222 are connected by the movable cross beam 223. In this way, the synchronous movement of the first movable column 221 and the second movable column 222 is maintained.
  • the vertical support further includes a detection module 700 and a control module (not shown in the figure).
  • the detection module 700 is located on the movable beam 223.
  • the driving mechanism 400 and the detection module 700 are both electrically connected to the control module.
  • 700 is used to detect the distance between the movable column frame 230 and the object above it
  • the control module is used to control the movable column frame 220 to stop moving through the driving mechanism 400 when the distance is less than a preset value.
  • the object above the movable column frame 220 may be a beam, a longitudinal beam or the top of the warehouse.
  • the detection module 700 may be located on the side of the movable beam 223 facing away from the mobile chassis 100, so that it is convenient for the detection module 700 to detect the distance between the movable column frame 220 and the object above it.
  • the detection module 700 may be a ranging sensor.
  • the detection module 700 may be an ultrasonic sensor, a laser distance measuring sensor, or an infrared distance measuring sensor that is well known to those skilled in the art, which is not limited in this embodiment.
  • the driving mechanism 400 includes a retractable assembly 410 and at least one set of traction assembly 420.
  • the traction assembly 420 includes a traction rope 421 and a guide wheel group 422.
  • the traction rope 421 is wound around On the guide wheel group 422, the first end 421a of the traction rope is connected to the conveying device 300, and the second end 421b of the traction rope is connected to the retractable assembly 410.
  • the retractable assembly 410 retracts or releases the traction rope 421 to make the conveying device 300 It moves relative to the movable column frame 240.
  • the traction assembly 420 may be provided with two or more than two groups, and each traction assembly 420 is connected to opposite sides of the column assembly 200, respectively.
  • the traction rope 421 may be a steel wire rope made of steel wire, or a nylon rope.
  • the traction rope 421 is a steel wire rope, so that when the conveying device 300 rises or falls relative to the movable column frame 220, the conveying device 300 does not break due to the heavy goods being conveyed by the conveying device 300.
  • the guide wheel set 422 may include a top pulley 4221, a bottom pulley 4222, and a main pulley 4223.
  • the top pulley 4221 is detachably installed on the side of the second end of the movable column frame 220
  • the bottom pulley 4222 is detachably installed on the movable column.
  • the first end of the frame 220 faces the side of the fixed column frame 210
  • the main pulley 4223 is installed on the second end of the fixed column frame 210
  • the traction rope 421 sequentially bypasses the top pulley 4221, the bottom pulley 4222 and the main pulley 4223 and is tied to the retractable assembly 410.
  • the retractable assembly 410 may include a motor 411 and a bobbin 412.
  • the second end 421b of the traction rope is connected to the bobbin 412, and the traction rope 421 is wound on the bobbin 412.
  • the motor 411 is used to drive the bobbin 412.
  • the 412 rotates to make the bobbin 412 close or release the traction rope 421.
  • the retractable assembly 410 may include a motor 411, a bobbin 412, a transmission shaft 413, and a transmission wheel set 414.
  • the second end 421b of the traction rope is connected to the bobbin 412, and the traction rope 421 is wound around the winding drum 412. Thread barrel 412 on.
  • the transmission wheel set 414 includes a driving wheel 4141 and a driven wheel 4142 meshed with the driving wheel 4141.
  • the output shaft of the motor 411 is connected with the driving wheel 4141.
  • the driven wheel 4142 is sleeved on the transmission shaft 413.
  • the bobbin 412 and the traction rope 421 are arranged in one-to-one correspondence, and the bobbin 412 is sleeved on the transmission shaft 413.
  • the motor 411 drives the transmission shaft 413 to rotate through the transmission wheel set 414, and the transmission shaft 413 drives the bobbin 412 to rotate clockwise or counterclockwise to release or retract the traction 421, thereby controlling the handling device 300 to rise relative to the movable column frame 220 Or descend, and the movable column frame 220 rises or descends relative to the fixed column frame 210.
  • the handling robot provided by the present application includes a mobile chassis 100, a vertical support and a handling device 300; the vertical support includes a column assembly 200, a driving assembly 400 and a second guide assembly 500.
  • the mobile chassis 100 may include a bottom plate 110, a driving wheel assembly 120, and a driven wheel assembly 130. Both the column assembly 200 and the drive assembly 400 can be connected to the bottom plate 110, or the drive assembly 400 and the handling device 300 are both connected to the column assembly 200 , The column assembly 200 is connected to the bottom plate 110.
  • the column assembly 200 extends in a vertical direction toward the upper side of the bottom plate 110, wherein the extension direction of the column assembly 200 can also be referred to as the height direction of the handling robot (ie, the Z direction in FIG. 54 can also be referred to as the vertical direction).
  • the column assembly 200, the conveying device 300, and the driving assembly 400 are supported by the bottom plate 110, and the bottom plate 110 is driven to move by the driving wheel assembly 120, so as to realize the movement of the handling robot on the ground.
  • the handling robot may also include a plurality of storage shelves 600, and the storage shelves 600 have the same structure as in the foregoing embodiment, and will not be repeated here.
  • the column assembly 200 may be telescopic.
  • the upright assembly 200 may include a fixed upright frame 210 and a movable upright frame 220.
  • the fixed upright frame 210 extends in a vertical direction toward the upper side of the mobile chassis 100, the first end 210a of the fixed upright frame is connected to the mobile chassis 100, and the transport device 300 is connected to the movable column frame 220, and the driving assembly 400 drives the movable column frame 220 to move along the extension direction of the fixed column frame 210, that is, the movable column frame 220 can move up and down in the vertical direction relative to the fixed column frame 210, thereby achieving The expansion and contraction of the column assembly 200.
  • the present application further includes a second guide assembly 500.
  • the fixed upright frame 210 and the movable upright frame 220 are connected by the second guide assembly 500.
  • the driving assembly 400 drives the movable upright frame 220 to move along the extension direction of the fixed upright frame 210.
  • the guide assembly 500 guides the movable column frame 220 during the movement.
  • the second guide assembly 500 includes a sliding groove 510 and a third guide wheel group 520.
  • the sliding groove 510 extends in a vertical direction.
  • the third guide wheel group 520 is located in the sliding groove 510 and moves along the extending direction of the sliding groove 510.
  • the chute 510 is located on one of the fixed column frame 210 and the movable column frame 220, and the third guide wheel set 520 is located on the other of the fixed column frame 210 or the movable column frame 220.
  • the sliding groove 510 is located on the fixed column frame 210, and the third guide wheel set 520 is located on the movable column frame 220. It can be understood that the sliding groove 510 and the third guide wheel set 520 The positions of the chute are interchangeable, the sliding groove 510 is located on the movable column frame 220, and the third guide wheel set 520 is located on the fixed column frame 210.
  • a sliding groove 510 may be opened on the fixed column frame 210, the third guide wheel set 520 is connected to the movable column frame 220, and the third guide wheel set 520 abuts against the inner wall of the sliding groove 510, and the movable column frame 220 During the movement, the third guide wheel set 520 rolls along the inner wall of the chute 510, thereby reducing the shaking of the movable column frame 220, improving the stability of the column assembly 220, and reducing abnormal noise generated during the use of the handling robot.
  • the fixed column frame 210 includes a first fixed column 211 and a second fixed column 212, the first fixed column 211 and the second fixed column 212 are both connected to the mobile chassis 100, the first fixed column 211 and Each of the second fixing posts 212 has a sliding groove 510.
  • the movable pillar frame 220 includes a first movable pillar 221 and a second movable pillar 222, and the first movable pillar 221 and the second movable pillar 222 each have a third guide wheel set 520.
  • first fixed post 211 and the second fixed post 212 have the same structure
  • first movable post 221 and the second movable post 222 have the same structure
  • first fixed post 211 and the first movable post 221 have the same structure.
  • the attached drawings are taken as an example to illustrate the connection mode of the column assembly 200 and the second guide assembly 500.
  • the third guide wheel set 520 may include a guide base 521 and at least a pair of third guide wheels 522, and the third guide wheel set 520 may also include at least a pair of fourth guide wheels 523, each of the third guide wheels 522 and each fourth guide wheel 523 are rotatably disposed on the guide base 521, at least one third guide wheel 522 and/or at least one fourth guide wheel 523 abuts against the inner wall of the chute 510, and each third guide
  • the wheels 522 can be in contact with the same inner wall or a different inner wall of the sliding groove 510, and the fourth guide wheels 523 can also be in contact with the same inner wall or a different inner wall of the sliding groove 510.
  • the third guide wheel 522 and the fourth guide wheel 523 They are in contact with different inner walls of the sliding groove 510 respectively.
  • the guiding base 521 is connected to the fixed column frame 210 or the movable column frame 220, and the guiding base 521 is used to support the third guiding wheels 522 and the fourth guiding wheels 523.
  • the wheel surface of the third guide wheel 522 and/or the wheel surface of the fourth guide wheel 523 respectively abut against different inner walls of the sliding groove 510 to reduce the shaking of the movable column frame 220.
  • the axis of the third guide wheel 522 and the axis of the fourth guide wheel 523 may be perpendicular to each other, and the axis of the third guide wheel 522 and the axis of the fourth guide wheel 523 are both perpendicular to the extending direction of the sliding groove 510, thereby , To avoid the mutual influence of the wheel surface of each third guide wheel 522 and each fourth guide wheel 523.
  • the axis of the third guide wheel 522 is along the Y direction in FIG. 59
  • the axis of the fourth guide wheel 523 is along the X direction in FIG. 59
  • the extending direction of the sliding groove 510 is along the Z direction in FIG. 57.
  • the opposite edges of the guide base 521 respectively have at least one support part 5211, the support part 5211 is perpendicular to the guide base 521, the third guide wheel 522 and the support part 5211 are arranged in one-to-one correspondence, and the third guide wheel 522 It is provided on the outside of the support part 5211.
  • at least one support portion 5211 is respectively provided on the opposite edge of the guide base 521 (that is, on the opposite side of the guide base 521), and the third guide wheel 522 can be connected to the outside of the support portion 5211 through a connecting shaft, thus, It is convenient to install the third guide wheel 522.
  • the plane where the third guide wheel 522 is located is perpendicular to the plane where the guide base 521 is located. That is, the plane where the third guide wheel 522 is located is the XZ plane in the figure, and the plane where the guide base 521 is located is the YZ plane in the figure.
  • the guide base 521 has at least two extension portions 5212 respectively extending toward the opposite outer side of the guide base 521, the fourth guide wheel 523 is disposed on the extension portion 5212, and the fourth guide wheel 523 is connected to the extension portion 5212.
  • the parts 5212 are arranged in one-to-one correspondence, wherein the fourth guide wheel 523 can be connected to the extension part 5212 through a connecting shaft, thereby facilitating the installation of the fourth guide wheel 523.
  • the plane where the fourth guide wheel 523 is located is parallel to the plane where the guide base 521 is located. That is, the plane where the fourth guide wheel 523 is located and the plane where the guide base 521 is located are both the XZ plane in the figure.
  • the extension part 5212 and the support part 5211 are located on the same opposite sides of the guide base 521, and the extension part 5212 is located between the support parts 5211 on the same side of the guide base 521, so that the third guide The wheels 522 and the fourth guide wheels 523 are dispersedly arranged, thereby improving the stability of the column assembly 220.
  • the third guide wheel 522 is used as two pairs, and the fourth guide wheel 523 is used as a pair for description.
  • the structure of the third guide wheel set 520 is described.
  • the structure of the sliding groove 510 will be described below in conjunction with the structure of the third guide wheel set 520.
  • the sliding groove 510 includes a third receiving section 511 extending along the extending direction of the sliding groove 510, and the third receiving section 511 has two opposite first sliding groove side walls 5111 and two opposite second sliding grooves. Sidewall5112.
  • the third guide wheel set 520 is located in the third accommodating section 511, each third guide wheel 522 is located between the two first sliding groove side walls 5111, and the wheel surface of each fourth guide wheel 523 is connected to the two second sliding grooves.
  • the side walls 5112 abut against each other.
  • the fourth guide wheel 523 is the main guide wheel
  • the third guide wheel 522 is the auxiliary guide wheel.
  • the sliding groove 510 further includes a fourth accommodating section 512 extending along the extending direction of the sliding groove 510, and the width of the fourth accommodating section 512 (that is, the length in the Y direction in FIG. 55) is smaller than the width of the third accommodating section 511 (That is, the length in the Y direction in FIG. 55), the fourth accommodating section 512 is in communication with the third accommodating section 511.
  • Both the first movable column 221 and the second movable column 222 include a body 230, the body 230 is located in the fourth accommodating section 512, and a part of the body 230 extends into the third accommodating section 511 and is connected with the guide base 521.
  • the first movable pillar 221 is inserted into the sliding groove 510 of the first fixed pillar 211 from the top of the first fixed pillar 211, and the second movable pillar 222 is inserted into the second fixed pillar 212 from the top of the second fixed pillar 212. ⁇ chute 510.
  • the width of the fourth accommodating section 512 is smaller than the width of the third accommodating section 511, the third guide wheel set 520 is confined in the third accommodating section 511.
  • the second guide assembly 500 further includes at least one third guide wheel set 530
  • the third guide wheel set 530 includes at least one fifth guide wheel 531
  • the third guide wheel set 530 also includes at least one sixth guide wheel 532.
  • Each fifth guide wheel 531 is rotatably arranged on opposite sides of the fixed column frame 210
  • each sixth guide wheel 532 is rotatably arranged on the opposite side of the fixed column frame 210.
  • the fifth guide wheel 531 and the sixth guide wheel 532 are located on the same opposite sides of the fixed column frame 210.
  • Part of the fifth guide wheel 531 extends into the fourth accommodating section 512, and the wheel surface of at least one fifth guide wheel 531 abuts on opposite sides of the main body 230, and/or part of the sixth guide wheel 532 extends to the first Inside the four accommodating sections 512, the wheel surface of at least one sixth guide wheel 532 abuts on two opposite sides of the main body 230 respectively.
  • the arrangement of the fifth guide wheel 531 and the sixth guide wheel 532 may be the same as the arrangement of the third guide wheel 522 and the fourth guide wheel 523.
  • the wheel surface of the fifth guide wheel 531 and the wheel surface of the sixth guide wheel 532 may abut against different sides of the body 230 respectively, that is, the axis of the fifth guide wheel 531 may be perpendicular to the axis of the sixth guide wheel 532.
  • both the first fixed post 211 and the second fixed post 212 have a third guide wheel set 530, and the third guide wheel set 530 on the first fixed post 211 and the second fixed post 212 are symmetrical.
  • the first fixed post 211 and the second fixed post 212 both have a third guide wheel set 520, and the third guide wheel set 520 on the first fixed post 211 and the second fixed post 212 are symmetrical.
  • the body 230 has a guide groove 231 extending in a vertical direction
  • the sixth guide wheel 532 is located in the guide groove 231
  • the sixth guide wheel 532 abuts against the inner side wall 2311 opposite to the guide groove 231 and/or the first The five guide wheels 531 abut the bottom wall 2312 of the guide groove 231.
  • the sixth guide wheel 532 is located in the guide groove 231, and the fifth guide wheel 531 abuts against the bottom wall 2312 of the guide groove 231.
  • the fifth guide wheel 531 is the main guide wheel
  • the sixth guide wheel 532 is the auxiliary guide wheel.
  • the wheel surface of the sixth guide wheel 532 can abut the side wall of the guide groove 231. In order to reduce the shaking of the movable column frame 220.
  • the third guide wheel set 530 also includes at least two fixing plates 533.
  • the fifth guide wheel 531 and the sixth guide wheel 532 are connected to the fixing plate 533, and the fixing plate 533 is fixedly connected to the fixed column frame 210.
  • each third guide wheel set 530 is located at the upper part of the fixed column frame 210, and/or the guiding base 521 is located at the lower part of the movable column frame 220.
  • the movable column frame 220 is uniformly guided by the third guide wheel set 520 and the third guide wheel set 530.
  • the vertical support in order to reduce the impact of the movable column frame 220 on the mobile chassis 100, the vertical support further includes a shock-absorbing member 800, which is fixedly connected to the fixed column frame 210 or the mobile chassis 100, and the shock-absorbing member 800 The damping surface of ⁇ is facing the third guide wheel set 520.
  • the third guide wheel set 520 abuts against the damping member 800.
  • the guide base 521 has an abutting portion 5213, and the shock-absorbing member 800 is located in the third receiving section 511.
  • the abutting portion 5213 abuts the shock-absorbing member 800.
  • the shock absorber 800 is a shock absorber. It can be understood that the shock-absorbing member 800 may also be one of a spring, a silicone sheet, or a rubber sheet, which is not limited in this embodiment.
  • the fixed column frame 210 may include a fixed beam 213, the first end of the first fixed column 211 and the first end of the second fixed column 212 are both fixed to the mobile chassis 100, the first fixed column 211 and the second fixed column 212 (ie The second end 210b) of the fixed column frame is also connected by a fixed cross beam 213.
  • the second end of the first fixed post 211 and the second end of the second fixed post 212 may be connected by a fixed cross beam 213, or the connection position of the fixed cross beam 213 is close to the second end of the first fixed post 211 and the second fixed post 212. The second end.
  • Both the first fixed post 211 and the second fixed post 212 are perpendicular to the mobile chassis 100, the fixed cross beam 213 is perpendicular to the first fixed post 211, and the fixed cross beam 213 is perpendicular to the second fixed post 212.
  • the fixed column frame 210 has a support base 214, and the driving assembly 400 is connected to the support base 214.
  • the indicator light 900 and/or the wireless module 1000 are also included.
  • the indicator light 900 is used to indicate the working status of the handling robot, and the wireless module 1000 is used for communication.
  • the structure of the wireless module 1000 and the indicator light 900 is the same as that of the above-mentioned eighth embodiment, and will not be repeated here.
  • the vertical support further includes a detection module 700 and a control module (not shown in the figure).
  • the detection module 700 and the control module have the same structure as the above-mentioned eighth embodiment, which will not be repeated here.
  • the drive assembly 400 includes a retractable assembly 410 and at least one set of traction assembly 420.
  • the retractable assembly 410 and the traction assembly 420 have the same structure as the eighth embodiment described above, and will not be repeated here.
  • the handling robot provided by the present application includes a mobile chassis 100, a column assembly 200, a handling device 300, and a driving assembly 400.
  • the first end 200a of the upright assembly is connected to the mobile chassis 100, and the upright assembly 200 extends toward the vertical direction.
  • the upright assembly 200 and the driving assembly 400 are both connected to the handling device 300, and the driving assembly 400 is used to drive the handling device 300 relative to the upright assembly. 200 lifts.
  • first damping member 240 and at least one second damping member 250.
  • the first damping member 240 and the second damping member 250 are spaced in the vertical direction.
  • the first damping member 240 and the second damping member 250 The shock absorber 250 may be located at different heights of the column assembly 200, and the transport device 300 is located between the first shock absorber 240 and the second shock absorber 250.
  • the mobile chassis 100 may include a bottom plate 110, a driving wheel assembly 120, and a driven wheel assembly 130. Both the column assembly 200 and the drive assembly 400 can be connected to the bottom plate 110, or the drive assembly 400 and the handling device 300 are both connected to the column assembly 200 , The column assembly 200 is connected to the bottom plate 110.
  • the column assembly 200 extends in a vertical direction toward the upper side of the bottom plate 110, wherein the extension direction of the column assembly 200 may also be referred to as the height direction of the handling robot (ie, the Z direction in FIG. 65, which may also be referred to as the vertical direction).
  • the column assembly 200, the conveying device 300, and the driving assembly 400 are supported by the bottom plate 110, and the bottom plate 110 is driven to move by the driving wheel assembly 120, so as to realize the movement of the handling robot on the ground.
  • the handling robot may also include a plurality of storage shelves 600, and the storage shelves 600 are the same as the foregoing embodiment, and will not be repeated here.
  • the conveying device 300 is driven to ascend or descend with respect to the column assembly 200 by the driving assembly 400. So that the handling device 300 can take goods of different heights, or store goods at different heights. During the process of ascending or descending relative to the column assembly 200, the conveying device 300 is likely to collide with the top end of the column assembly 200 or the mobile chassis 100 rigidly, thereby affecting the stability of the conveying robot.
  • the conveying device 300 is located between the first shock-absorbing member 240 and the second shock-absorbing member 250. In this way, the conveying device 300 abuts against the first shock-absorbing member 240 or the second shock-absorbing member 250 during the ascending or descending process relative to the column assembly 200, so as to prevent the conveying device 300 from contacting the brackets during the up and down movement.
  • the column assembly 200 or the mobile chassis 100 undergoes a rigid collision, which improves the stability of the handling robot.
  • the first shock-absorbing member 240 may be located at the second end 200b of the column assembly or close to the second end 200b of the column assembly, and the second shock-absorbing member 250 may be located at The first end 200 a of the upright assembly is either close to the first end 200 a of the upright assembly, or the second shock-absorbing member 250 may be located on the mobile chassis 100.
  • the first shock-absorbing member 240 and the second shock-absorbing member 250 are located on the same vertical line.
  • the column assembly 200 may include a fixed column assembly 210 and a movable column assembly 220.
  • the first end of the fixed column assembly 210 is fixed to the mobile chassis 100, and the fixed column assembly 210 extends in the vertical direction and is movable.
  • the upright assembly 220 is connected to the fixed upright assembly 210, and the handling device 300 is connected to the movable upright assembly 220, and can move in a vertical direction relative to the movable upright assembly 220 (that is, the carrying device 300 rises or falls relative to the movable upright assembly 220).
  • the first shock absorbing member 240 is located at an end of the movable column assembly 220 away from the mobile chassis 300, and the second shock absorbing member 250 is located at the first end of the fixed column assembly 210.
  • the column assembly 200 may be telescopic.
  • the movable column assembly 220 moves in a vertical direction relative to the fixed column assembly 210.
  • the driving assembly 400 may be connected to the movable column assembly 220, and the driving assembly 400 drives the movable pillar assembly 220 to move along the extension direction of the fixed pillar assembly 210, that is, the movable pillar assembly 220 can move vertically relative to the fixed pillar assembly 210. Move up and down in the direction, thereby realizing the expansion and contraction of the column assembly 200.
  • the drive assembly 400 drives the transport device 300 to move relative to the movable column assembly 220. When the transport device 300 moves to the top of the movable column assembly 220, the drive assembly 400 drives the movable column assembly 220 through the transport device 300 to be fixed along the The extension direction of the column assembly 210 moves.
  • the fixed column assembly 210 includes two fixed columns and a fixed cross beam 213 connected between the two fixed columns.
  • the first end of the fixed column is connected to the mobile chassis 100.
  • the two fixed posts may be a first fixed post 211 and a second fixed post 212.
  • the movable column assembly 220 includes two movable columns.
  • the movable column is matched and connected with the fixed column.
  • the movable column has a sliding groove 260 extending in the vertical direction.
  • the piece 240 is located in the chute 260.
  • the two movable pillars may be a first movable pillar 221 and a second movable pillar 222.
  • the first movable pillar 221 is inserted on the first fixed pillar 211
  • the second movable pillar 222 is inserted on the second fixed pillar 212.
  • the slots 260 on the first movable column 221 and the slots 260 on the second movable column 222 are opposite to each other, and the two opposite sides of the conveying device 300 are inserted into the two chutes 260 respectively, so that the conveying device 300 It moves along the chute 260, thereby providing guidance for the conveying device 300.
  • the conveying device 300 may be slidably connected with the chute 260 or in a rolling connection.
  • a sliding block may be provided on the conveying device 300, and the sliding block is inserted into the sliding groove 260, so that the conveying device 300 can be slidably connected to the sliding groove 260.
  • the conveying device 300 may be provided with a roller assembly, and the conveying device 300 may be connected to the chute 260 in a rolling manner through the roller assembly.
  • the first movable column 221 and the first fixed column 211 may be slidably connected by a sliding groove and a sliding block, and the first movable column 221 and the first fixed column 211 are also The connection can be scrolled through the wheel assembly.
  • the second movable post 222 and the second fixed post 212 may be connected in a sliding manner through a sliding groove and a sliding block, and the second movable post 222 and the second fixed post 212 may also be connected in a rolling manner through a roller assembly. This embodiment is not limited here.
  • the fixed column has a support plate 215, the support plate 215 is located below the movable column, the first surface 215a of the support plate is connected to the upper surface of the mobile chassis 100, and the second shock absorber 250 is located on the first surface of the support plate. Two sides.
  • first fixed column 211 and the second fixed column 212 each have a support plate 215, and the support plate 215 is opposite to the first movable column 221 and the second movable column 222, so that the second shock-absorbing member 250 While buffering the rigid impact of the transport device 300 on the mobile chassis 100, the second shock-absorbing member 250 also buffers the first movable column 221 and the second movable column 222 to prevent the first movable column 221 and the second movable column 222 from opposing The rigid impact of the mobile chassis 100.
  • the movable column has an abutment portion 224
  • the second surface of the support plate or the mobile chassis 100 has a second shock-absorbing member 250
  • the movable column moves toward the mobile chassis 100 so that the abutment portion 224 and The second shock absorber 250 abuts.
  • the first shock absorber 240 may be one of a spring, a shock absorber, or a flexible plate
  • the second shock absorber 250 may be one of a spring, a shock absorber, or a flexible plate
  • the flexible board can be a rubber pad, a silicone pad, or the like.
  • the upper part of the movable column has at least one limiting member 230
  • the handling device 300 has at least one connecting member 310
  • the connecting member 310 has at least one notch. 311
  • the notch 311 and the limiting member 230 are arranged in a one-to-one correspondence.
  • the notch 311 can match the limiting member 230.
  • the notch 311 is a rectangular notch matching the limiting member 230.
  • the limiting member 230 may also be one of a spring, a silicone sheet, or a rubber sheet.
  • the limiting members 230 are respectively located on two opposite sides of the sliding groove 260. In this way, the conveying device 300 and the limiting member 230 are smoothly contacted, and the impact on the goods on the conveying device 300 is avoided.
  • the movable column assembly 220 further includes a movable beam 223, and the two movable columns are connected by the movable beam 223. That is, the first movable column 221 and the second movable column 222 are connected by the movable cross beam 223. One end of the first movable column 221 and the second movable column 222 away from the mobile chassis 100 is connected by a movable cross beam 223 to avoid the influence of the movable cross beam 223 on the stroke of the conveying device 300.
  • the indicator light 900 and/or the wireless module 1000 are also included.
  • the indicator light 900 is used to indicate the working status of the handling robot, and the wireless module 1000 is used for communication.
  • the structure of the wireless module 1000 and the indicator light 900 is the same as that of the above-mentioned eighth embodiment, and will not be repeated here.
  • the vertical support further includes a detection module 700 and a control module (not shown in the figure).
  • the detection module 700 and the control module have the same structure as the above-mentioned eighth embodiment, which will not be repeated here.
  • the drive assembly 400 includes a retractable assembly 410 and at least one set of traction assembly 420.
  • the retractable assembly 410 and the traction assembly 420 have the same structure as the eighth embodiment described above, and will not be repeated here.
  • the handling robot provided by the present application includes a mobile chassis 100, a column assembly 200, a handling device 300, and a driving assembly 400.
  • the first end 200a of the upright assembly is connected to the mobile chassis 100, and the upright assembly 200 extends toward the vertical direction.
  • the upright assembly 200 and the driving assembly 400 are both connected to the handling device 300, and the driving assembly 400 is used to drive the handling device 300 relative to the upright assembly. 200 lifts.
  • the column assembly 200 has a moving path for the conveying device 300 to move.
  • the moving path extends from the first end 200a of the column assembly to the second end 200b of the column assembly.
  • the conveying device 300 can move in the moving path, and the moving path is unobstructed. space.
  • the mobile chassis 100 may include a bottom plate 110, a driving wheel assembly 120, and a driven wheel assembly 130. Both the column assembly 200 and the drive assembly 400 can be connected to the bottom plate 110, or the drive assembly 400 and the handling device 300 are both connected to the column assembly 200 ,
  • the column assembly 200 is connected to the bottom plate 110.
  • the column assembly 200 extends in a vertical direction toward the upper side of the bottom plate 110, wherein the extension direction of the column assembly 200 may also be referred to as the height direction of the handling robot (ie, the Z direction in FIG. 33, which may also be referred to as the vertical direction).
  • the column assembly 200, the conveying device 300, and the driving assembly 400 are supported by the bottom plate 110, and the bottom plate 110 is driven to move by the driving wheel assembly 120, so as to realize the movement of the handling robot on the ground.
  • the handling robot may also include a plurality of storage shelves 600, and the storage shelves 600 are the same as the foregoing embodiment, and will not be repeated here.
  • the conveying device 300 is driven to ascend or descend with respect to the column assembly 200 by the driving assembly 400. So that the handling device 300 can take goods of different heights, or store goods at different heights.
  • a movement path for the handling device 300 may be provided on the pillar assembly 200, and the movement path is determined by The first end of the column assembly 200 extends to the second end of the column assembly 200, and the moving path is an unobstructed space, that is to say, when the handling device 300 moves in the moving path, it is not blocked by other parts of the handling robot . Therefore, the conveying device 300 can smoothly move back and forth between the first end 200a of the column assembly and the second end 200b of the column assembly, ensuring the maximum moving stroke of the conveying device 300 and improving the utilization rate of the column assembly 200.
  • the conveying device 300 and the driving assembly 400 are respectively located on opposite sides of the column assembly 200. In this way, while avoiding the drive assembly 400 from occupying the space in the moving path of the conveying device 300, the structure of the conveying robot is made more compact.
  • the driving assembly 400 and each storage shelf 600 are located on the same side of the column assembly 200.
  • the driving assembly 400 and each storage rack 600 are opposite to the conveying device 300. While avoiding each storage shelf 600 occupying the space in the moving path of the transporting device 300, it is convenient for the transporting device 300 to store or take goods on the storage shelf 600.
  • the drive assembly 400 is located between the storage shelf 600 and the mobile chassis 100, that is, the drive assembly 400 is located between the lowermost storage shelf 600 and the mobile chassis 100, that is, between two adjacent storage shelves 600. It is shielded by the driving assembly 400, so that it is convenient for the transport device 300 to store or pick up goods on the storage shelf 600 while having a relatively compact structure.
  • the driving assembly 400 is also connected with the mobile chassis 100.
  • the drive assembly 400 is relatively stable and fixed by moving the chassis 100.
  • the driving assembly 400 can add a counterweight to the mobile chassis 100, so that the mobile chassis 100 can move smoothly.
  • the handling robot provided in the present application further includes at least one first damping member 240 and at least one second damping member 250.
  • the first damping member 240 and the second damping member 250 are spaced apart in the vertical direction.
  • the shock absorber 240 and the second shock absorber 250 may be respectively located at different heights of the column assembly 200, and the transport device 300 is located between the first shock absorber 240 and the second shock absorber 250.
  • the conveying device 300 is likely to collide with the top end of the column assembly 200 or the mobile chassis 100 rigidly, thereby affecting the stability of the conveying robot.
  • the conveying device 300 is located between the first shock-absorbing member 240 and the second shock-absorbing member 250. In this way, the conveying device 300 abuts against the first shock-absorbing member 240 or the second shock-absorbing member 250 during the ascending or descending process relative to the column assembly 200, so as to prevent the conveying device 300 from contacting the brackets during the up and down movement.
  • the column assembly 200 or the mobile chassis 100 undergoes a rigid collision, which improves the stability of the handling robot.
  • the first shock-absorbing member 240 may be located at the second end 200b of the column assembly or close to the second end 200b of the column assembly, and the second shock-absorbing member 250 may be located at The first end 200 a of the upright assembly is either close to the first end 200 a of the upright assembly, or the second shock-absorbing member 250 may be located on the mobile chassis 100.
  • the first shock-absorbing member 240 and the second shock-absorbing member 250 are located on the same vertical line.
  • the handling robot provided by the present application includes a mobile chassis 100, a driving assembly 400, a column assembly 200, a handling device 300 and at least one guide assembly 50.
  • the first end of the upright assembly is connected to the mobile chassis 100, the upright assembly 200 extends in the vertical direction, the upright assembly 200 and the handling device 300 are connected by rolling through the guide assembly 50, and the handling device 300 moves in the vertical direction relative to the upright assembly 200 and guides The assembly 50 is used to guide the handling device 300 during the movement.
  • the mobile chassis 100 may include a bottom plate 110, a driving wheel assembly 120, and a driven wheel assembly 130. Both the column assembly 200 and the drive assembly 400 can be connected to the bottom plate 110, or the drive assembly 400 and the handling device 300 are both connected to the column assembly.
  • the upright assembly 200 is connected to the bottom plate 110.
  • the column assembly 200 extends in a vertical direction toward the upper side of the bottom plate 110, wherein the vertical direction of the extension direction of the column assembly 200 may also be referred to as the height direction of the handling robot (ie, the Z direction in FIG. 74).
  • the column assembly 200, the conveying device 300, and the driving assembly 400 are supported by the bottom plate 110, and the bottom plate 110 is driven to move by the driving wheel assembly 120, so as to realize the movement of the handling robot on the ground.
  • the handling robot may also include a plurality of storage racks 600, and the storage racks 600 are the same as the foregoing embodiment, and will not be repeated here.
  • the driving assembly 400 is connected to the conveying device 300, and the conveying device 300 is driven to move in a vertical direction relative to the column assembly 200 by the driving assembly 400 (that is, the conveying device 300 rises or falls relative to the column assembly 200).
  • the guide assembly 50 is used to roll-connect the column assembly 200 and the handling device 300, thereby reducing the shaking of the handling device 300, improving the stability of the handling device 300 during the movement, and reducing the use of the handling robot.
  • the guide assembly 50 includes a sliding groove 51 and a guide wheel group 52 inserted in the sliding groove 51.
  • the sliding groove 51 is located on the column assembly 200 and the sliding groove 51 extends in a vertical direction; the guide wheel group 52 and The conveying device 300 is connected, and the guide wheel set 52 rolls along the extending direction of the chute 51.
  • the guide wheel set 52 includes a guide rod 5201 and at least one first guide wheel 5202.
  • the guide wheel set 52 may also include at least a pair of second guide wheels 5203.
  • the guide rod 5201 is connected to the conveying device 300, and the first guide wheel 5202 Both the second guide wheel 5203 and the second guide wheel 5203 are connected to the guide rod 5201, and the first guide wheel 5202 and the second guide wheel 5203 rotate relative to the guide rod 5201; the first guide wheel 5202 and the second guide wheel 5203 are both located in the chute 51 , At least one first guide wheel 5202 and/or at least one second guide wheel 5203 abuts against the inner wall of the chute 51, each first guide wheel 5202 may abut the same inner wall of the chute 51 or a different inner wall, each The two guide wheels 5203 can also abut against the same inner wall or different inner walls of the sliding groove 51, and the first guide wheel 5202 and the second guide wheel 5203 abut against different inner walls of the sliding groove 51, respectively.
  • the guide rod 5201 is used to support the first guide wheel 5202 and the second guide wheel 5203, and the wheel surface of the first guide wheel 5202 and/or the wheel surface of the second guide wheel 5203 respectively abuts against different inner walls of the sliding groove 51 , In order to reduce the shaking generated during the movement of the conveying device 300.
  • the axis of the first guide wheel 5202 and the axis of the second guide wheel 5203 have an included angle. There is an angle between. As a result, it is ensured that the wheel surface of each first guide wheel 5202 and the wheel surface of each second guide wheel 5203 respectively abut different inner walls of the sliding groove 51.
  • the axis of the first guide wheel 5202 and the axis of the second guide wheel 5203 may be perpendicular to each other, and the axis of the first guide wheel 5202 and the axis of the second guide wheel 5203 are both perpendicular to the extending direction of the sliding groove 51, thereby , To prevent the wheel surface of each first guide wheel 5202 and each second guide wheel 5203 from influencing each other.
  • the axis of the first guide wheel 5202 is along the X direction in FIG. 7
  • the axis of the second guide wheel 5203 is along the Y direction in FIG. 8
  • the extending direction of the sliding groove 51 is along the Z direction in FIG. 77.
  • the conveying device 300 includes at least one connecting piece 310.
  • the connecting piece 310 is arranged in a one-to-one correspondence with the guide assembly 51.
  • the guide rod 5201 includes a guide rod main body 5204 and at least one extension 5205 provided on the guide rod main body 5204.
  • a second guide wheel 5203 The extension part 5205 is rotatably connected, the first guide wheel 5202 is rotatably connected to the main body 5204 of the guide rod, and the main body of the guide rod 5204 is connected to the connecting member 310.
  • the guide rod main body 5204 extends in a vertical direction
  • the extension part 5205 is perpendicular to the guide rod main body 5204
  • the two opposite sides of the extension part 5205 are connected to the second guide wheel 5203.
  • the upright assembly 200 includes a fixed upright frame 210 and a movable upright frame 220.
  • the chute 51 is located on the movable upright frame 220.
  • the first end 210a of the fixed upright frame is fixed to the mobile chassis 100, and the fixed upright frame 210 extends in the vertical direction.
  • the movable column frame 220 is connected with the fixed column frame 210, and the transport device 300 is connected with the movable column frame 220, and moves in a vertical direction relative to the movable column frame 220.
  • the movable column frame 220 moves in a vertical direction relative to the fixed column frame 210.
  • the expansion and contraction of the column assembly 200 is realized, which is convenient for the handling device 300 to fetch goods at a higher position or store goods at a higher position.
  • the driving assembly 400 can be connected to the movable column frame 220, and the driving assembly 400 drives the movable column frame 220 to move along the extension direction of the fixed column frame 210, that is, the movable column frame 220 can be vertically aligned relative to the fixed column frame 210. Move up and down in the direction, thereby realizing the expansion and contraction of the column assembly 200.
  • the drive assembly 400 drives the transport device 300 to move relative to the movable column frame 220. When the transport device 300 moves to the top of the movable column frame 220, the drive assembly 400 drives the movable column frame 220 along the fixed position through the transport device 300. The extension direction of the column frame 210 moves.
  • the fixed column frame 210 includes a first fixed column 211 and a second fixed column 212, and both the first fixed column 211 and the second fixed column 212 are fixedly connected to the mobile chassis 100.
  • the movable pillar frame 220 includes a first movable pillar 221 and a second movable pillar 222.
  • the first movable pillar 221 is connected to the first fixed pillar 211
  • the second movable pillar 222 is connected to the second fixed pillar 212.
  • Both the first movable column 221 and the second movable column 222 have a sliding groove 51.
  • first movable post 221 and the first fixed post 211 can be slidably connected by a sliding groove and a sliding block, and the first movable post 221 and the first fixed post 211 can also be connected in a rolling manner by the guide wheel set 52.
  • the second movable post 222 and the second fixed post 212 may be connected in a sliding manner through a sliding groove and a sliding block, and the second movable post 222 and the second fixed post 212 may also be connected in a rolling manner through the guide wheel set 52. This embodiment is not limited here.
  • the conveying device 300 is located between the first movable column 221 and the second movable column 222, and the opposite sides of the conveying device 300 and the first movable column 221 and the second movable column 222 pass through different guide assemblies 50, respectively. Scrolling connection.
  • two opposite sides of the conveying device 300 have at least one connecting member 310.
  • the connecting member 310 on the first side 300a of the conveying device and the guide rod main body 5204 in the guide wheel set 52 in the chute 51 of the first movable column 221 connect.
  • the connecting member 310 on the second side of the conveying device is connected to the guide rod main body 5204 in the guide wheel set 52 in the chute 51 of the second movable column 222. In this way, the conveying device 300 is firmly connected to maintain the stability of the movement of the conveying device 300 relative to the movable column frame 220.
  • the structure of the rolling connection of the conveying device 300 and the first movable column 221 is the same as the structure of the rolling connection of the conveying device 300 and the second movable column 222.
  • this embodiment and the drawings use the connection of the first side 300a of the conveying device
  • the member 310 is connected with the guide rod main body 5204 in the guide wheel set 52 in the chute 51 of the first movable column 221 for illustration.
  • the sliding groove 51 may include a first accommodating section 5101 and a second accommodating section 5102 extending along the extending direction of the chute 51, the first accommodating section 5101 is in communication with the second accommodating section 5102, and the second accommodating section 5102
  • the width (that is, the length in the Y direction in FIG. 79) is smaller than the width of the first accommodating section 5101, that is, the cross-sectional shape of the sliding groove 51 is a convex shape.
  • the first guide wheel 5202 and the second guide wheel 5203 are located in the first accommodating section 5101, the guide rod main body 5204 is located in the second accommodating section 5102, and the extension part 5205 extends into the first accommodating section 5101.
  • the first guide wheel 5202 and the second guide wheel 5203 are confined in the first receiving section 5101.
  • the wheel surfaces of the first guide wheel 5202 respectively abut the two first side surfaces 5206 opposite to the first receiving section 5101; and/or, the wheel surfaces of the second guide wheel 5203 are respectively opposite to the two first receiving sections 5101 The two sides 5207 abut against each other.
  • the upper part of the column assembly 200 has at least one limiting member 230
  • the connecting member 310 has at least one notch 311
  • the notch 311 and the limiting member 230 are arranged in one-to-one correspondence.
  • the notch 311 can match the limiting member 230.
  • the notch 311 is a rectangular notch matching the limiting member 230.
  • the limiting member 230 may also be one of a spring, a silicone sheet, or a rubber sheet.
  • the column assembly 200 has at least one shock-absorbing member 240.
  • the shock absorber 240 buffers the impact of the conveying device 300 on the column assembly 200.
  • the shock-absorbing member 240 may be located at the upper part of the column assembly 200, or the shock-absorbing member 240 may be located at the second end of the column assembly 200.
  • the shock absorber 240 is a shock absorber. It can be understood that the shock-absorbing member 240 can also be one of a spring, a silicone sheet, or a rubber sheet, which is not limited in this embodiment.
  • the shock-absorbing member 240 is located in the sliding groove 51, and the limiting member 230 is respectively located on two opposite sides of the sliding groove 51.
  • both the sliding groove 51 of the first movable column 221 and the sliding groove 51 of the second movable column 222 have a shock-absorbing member 240. In this way, the impact of the conveying device 300 on the column assembly 200 can be balanced.
  • the fixed column frame 210 may include a fixed beam 213, the first end of the first fixed column 211 and the first end of the second fixed column 212 are both fixed to the mobile chassis 100, and the first fixed column 211 and the second fixed column 212 also pass The fixed beam 213 is connected.
  • the second end of the first fixed column 211 and the second end of the second fixed column 212 ie, the second end 210b of the fixed column frame
  • the second end of 211 and the second end of the second fixing post 212 can be connected by a fixed cross beam 213, or the fixed cross beam 213 is connected at a position close to the first fixed column The second end of 211 and the second end of the second fixing post 212.
  • Both the first fixed post 211 and the second fixed post 212 are perpendicular to the mobile chassis 100, the fixed cross beam 213 is perpendicular to the first fixed post 211, and the fixed cross beam 213 is perpendicular to the second fixed post 212.
  • the fixed column frame 210 has a support base 214, and the driving assembly 400 is connected to the support base 214.
  • the indicator light 900 and/or the wireless module 1000 are also included.
  • the indicator light 900 is used to indicate the working status of the handling robot, and the wireless module 1000 is used for communication.
  • the structure of the wireless module 1000 and the indicator light 900 is the same as that of the above-mentioned eighth embodiment, and will not be repeated here.
  • the vertical support further includes a detection module 700 and a control module (not shown in the figure).
  • the detection module 700 and the control module have the same structure as the above-mentioned eighth embodiment, which will not be repeated here.
  • the drive assembly 400 includes a retractable assembly 410 and at least one set of traction assembly 420.
  • the retractable assembly 410 and the traction assembly 420 have the same structure as the eighth embodiment described above, and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Human Computer Interaction (AREA)
  • Warehouses Or Storage Devices (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

一种控制搬运机器人(100)的方法、装置、立式支架及搬运机器人(100),搬运机器人(100)包括立式支架及搬运装置,立式支架包括固定立柱架(10)和活动立柱架(20),搬运装置活动设置于活动立柱架(20),活动立柱架(20)活动设置于固定立柱架(10),搬运装置用于搬运货物,控制搬运机器人(100)的方法包括:接收运动指令;根据运动指令,驱使搬运装置相对于活动立柱架(20),和/或,活动立柱架(20)相对于固定立柱架(10)运动。由此,搬运机器人(100)既可通过控制搬运装置相对于固定立柱架(10)运动来提升高度,也可通过控制活动立柱架(20)相对于固定立柱架(10)上升来提升高度,使得搬运装置可升降高度等于固定立柱架(10)的行程和活动立柱架(20)的行程之和,搬运装置升降高度的范围覆盖更大,使用范围更广泛。

Description

控制搬运机器人的方法、装置、立式支架及搬运机器人
本申请要求于2020年03月09日提交中国专利局,申请号为202010158838.9,申请名称为“一种控制搬运机器人的方法、装置及搬运机器人”的中国申请专利申请;2020年03月09日提交中国专利局,申请号为202020282146.0,申请名称为“一种立式支架”的中国申请专利申请;2020年03月09日提交中国专利局,申请号为202020281914.0,申请名称为“一种立式支架”的中国申请专利申请;2020年03月09日提交中国专利局,申请号为202020281284.7,申请名称为“一种搬运机器人”的中国申请专利申请;2020年03月09日提交中国专利局,申请号为202020281973.8,申请名称为“一种搬运机器人”的中国申请专利申请;2020年11月02日提交中国专利局,申请号为202022501920.5,申请名称为“搬运机器人”的中国申请专利申请;2020年11月02日提交中国专利局,申请号为202022500566.4,申请名称为“立式支架和搬运机器人”的中国申请专利申请;2020年11月02日提交中国专利局,申请号为202022498181.9,申请名称为“搬运机器人”的中国申请专利申请;2020年11月02日提交中国专利局,申请号为202011205346.7,申请名称为“搬运机器人”的中国申请专利申请;2020年12月02日提交中国专利局,申请号为202022860411.1,申请名称为“搬运机器人”的中国申请专利申请;2020年12月02日提交中国专利局,申请号为202022866645.7,申请名称为“搬运机器人”的中国申请专利申请的优先权,其与本申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及智能仓储领域,尤其涉及一种控制搬运机器人的方法、装置、立式支架及搬运机器人。
背景技术
智能仓储是物流过程的一个环节,智能仓储的应用,保证了货物仓库管理各个环节数据输入的速度和准确性,确保企业及时准确地掌握库存的真实数据,合理保持和控制企业库存。通过科学的编码,还可方便地对库存货物的批次、保质期等进行管理。利用SNHGES系统的库位管理功能,更可以及时掌握所有库存货物当前所在位置,有利于提高仓库管理的工作效率。其中,搬运机器人在智能仓储中扮演着重要的角色,搬运机器人能够接受指令到指定位置取放、搬运货物,提高了仓库中搬运的效率。
目前,搬运机器人的固定立柱高度固定,搬运装置只能在固定立柱所设定的行程内进行升降,而当需要搬运的货物高于固定立柱的高度时,搬运装置无法对该些货物进行搬运,使用起来较为不便;并且搬运机器人高度无法调节对于运输以及穿梭于不同空间时会有很大困难。
发明内容
本申请实施例提供一种控制搬运机器人的方法、装置、立式支架及搬运机器人,搬运装置升降高度的范围覆盖更大,使用范围更广泛。
第一方面,本申请提供了一种控制搬运机器人的方法,所述搬运机器人包括立式支架及搬运装置,所述立式支架包括固定立柱架和活动立柱架,所述搬运装置活动设置于所述活动立柱架,所述活动立柱架活动设置于所述固定立柱架,所述搬运装置用于搬运货物,所述方法包括:
接收运动指令;
根据所述运动指令,驱使所述搬运装置相对于所述活动立柱架运动,和/或,驱使所述活动立柱架相对于所述固定立柱架运动。
第二方面,本申请提供了一种控制搬运机器人的装置,所述搬运机器人包括立式支架及搬运装置,所述立式支架包括固定立柱架和活动立柱架,所述搬运装置活动设置于所述活动立柱架,所述活动立柱架活动设置于所述固定立柱架,所述搬运装置固定于所述活动立柱架,并且所述搬运装置用于搬运货物,所述装置包括:
运动指令接收模块,用于接收运动指令;
驱动模块,用于驱使所述搬运装置相对于所述活动立柱架运动,和/或,驱使所述活动立柱架相对于所述固定立柱架运动
第三方面,本申请提供了一种搬运机器人,包括:
立式支架,包括固定立柱架和活动立柱架,所述活动立柱架活动设置于所述固定立柱架;
搬运装置,活动设置于所述活动立柱架;
驱动组件,用于驱使所述搬运装置相对于所述活动立柱架运动,和/或,驱使所述活动立柱架相对于所述固定立柱架运动;
至少一个处理器;以及
存储器,所述存储器与所述至少一个处理器通信连接,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述的方法。
第四方面,本申请提供了一种立式支架,用于搬运机器人,所述搬运机器人包括底盘、储货装置和搬运装置,
立式支架包括:立柱组件,用于安装储货装置和搬运装置,所述立柱组件包括固定立柱架及活动立柱架,所述固定立柱架的一端用于安装于所述搬运机器人的底盘,所述活动立柱架安装于所述固定立柱架,且所述活动立柱架可相对于所述固定立柱架在预设行程内升降。
第五方面,本申请提供了一种搬运机器人,包括移动底盘、驱动组件、立柱组件和搬运装置;
所述立柱组件的第一端与所述移动底盘连接,且所述立柱组件朝向竖直方向延伸,所述立柱组件和所述驱动组件均与所述搬运装置连接,所述驱动组件用于驱动所述搬运装置相对于所述立柱组件升降。
本申请实施例提供一种控制搬运机器人的方法、装置、立式支架及搬运 机器,搬运装置可通过活动立柱架进行升降,并且当用户所指定的搬运位置高于活动立柱架的顶部时,驱动组件可驱动搬运装置以及活动立柱架相对于固定立柱架上升,从而使搬运装置达到用户所指定的搬运位置,同时配合搬运装置的不同升降方式,使得搬运机器人的使用范围更广泛。
附图说明
图1是本申请其中一个实施例的搬运机器人的结构示意图;
图2是图1的另一角度的示意图;
图3是图1中固定立柱架的结构示意图;
图4是图3的部分结构的示意图;
图5是图1中的活动立柱架的结构示意图;
图6是图5的部分结构的示意图;
图7是图1中货叉安装组件的结构示意图;
图8是图1的部分结构的示意图;
图9是图8的J部的局部放大图;
图10是图1部分结构的示意图;
图11是图10的部分结构示意图;
图12是图10的另一部分的结构示意图;
图13是图8的K部的结构示意图;
图14是图13的制动装置的结构示意图;
图15是图14的制动装置的剖视图;
图16是本申请控制搬运机器人的方法第一实施例的流程框图;
图17是本申请控制搬运机器人的方法第一实施例的步骤S2的上升部分的详细流程图;
图18是本申请控制搬运机器人的方法第一实施例的步骤S2的上升部分的又一详细流程图;
图19是本申请控制搬运机器人的方法第一实施例的步骤S2的上升部分的再一详细流程图;
图20是本申请控制搬运机器人的方法第一实施例的步骤S2的下降部分的详细流程图;
图21是本申请控制搬运机器人的方法第一实施例的步骤S2的下降部分的又一详细流程图;
图22是本申请控制搬运机器人的方法第一实施例的步骤S2的下降部分的再一详细流程图;
图23是本申请控制搬运机器人的方法第二实施例的流程框图;
图24是本申请控制搬运机器人的方法第三实施例的流程框图;
图25是本申请控制搬运机器人的装置实施例的示意图;
图26是图25部分模块的详细示意图;
图27是本申请搬运机器人实施例的结构示意图;
图28为本申请其中一实施例提供的一种搬运机器人的结构立体图,其中,搬运机器人的移动底盘未示出;
图29为图28的搬运机器人结构分解图;
图30为图28的搬运机器人的主减震件的侧视图;
图31为本申请实施例提供的搬运机器人的结构示意图;
图32为本申请实施例提供的搬运机器人另一角度的结构示意图;
图33为本申请实施例提供的搬运机器人中立式支架的结构示意图;
图34为本申请实施例提供的搬运机器人中第一固定柱的结构示意图;
图35为本申请实施例提供的搬运机器人中第一活动柱的结构示意图;
图36为图32中A-A沿Z轴方向的内部结构示意图;
图37为图32中B-B沿Z轴方向的内部结构示意图;
图38为图32中C-C沿Z轴方向的内部结构示意图;
图39为本申请实施例提供的搬运机器人中第一导向轮组的结构示意图;
图40为本申请实施例提供的搬运机器人中第一导向轮组和搬运装置的结构示意图;
图41为图31中D处的局部示意图;
图42为图31中E处的局部示意图一;
图43为图31中E处的局部示意图二;
图44为图33中F-F沿Z轴方向的内部结构示意图;
图45为图33中G-G沿Z轴方向的内部结构示意图;
图46为图35中另一个角度的局部示意图;
图47为图33中H-H沿Z轴方向的内部结构示意图;
图48为图33中I-I沿Z轴方向的内部结构示意图;
图49为本申请实施例提供的搬运机器人中第三导向轮组的结构示意图;
图50为本申请实施例提供的搬运机器人中立柱组件和驱动机构的结构示意图;
图51为本申请实施例提供的搬运机器人中驱动机构的结构示意图;
图52为本申请实施例提供的搬运机器人的结构示意图;
图53为本申请实施例提供的搬运机器人另一角度的结构示意图;
图54为本申请实施例提供的搬运机器人中立式支架的结构示意图;
图55为图54中A1-A1剖面沿Z轴方向的内部结构示意图;
图56为图54中B1-B1剖面沿Z轴方向的内部结构示意图;
图57为本申请实施例提供的搬运机器人中第一固定柱的结构示意图;
图58为本申请实施例提供的搬运机器人中第一活动柱的结构示意图;
图59为图58另一个方向的局部示意图;
图60为图54中C1-C1剖面沿Z轴方向的内部结构示意图;
图61为图54中D1-D1剖面沿Z轴方向的内部结构示意图;
图62为本申请实施例提供的搬运机器人中第三导向轮组的结构示意图;
图63为本申请实施例提供的搬运机器人的结构示意图;
图64为本申请实施例提供的搬运机器人另一角度的结构示意图;
图65为本申请实施例提供的搬运机器人中立式支架的结构示意图;
图66为本申请实施例提供的搬运机器人中第一固定柱的结构示意图;
图67为本申请实施例提供的搬运机器人中第一活动柱的结构示意图;
图68为图67中另一角度的局部结构示意图;
图69为图63中A2处的局部放大图一;
图70为本申请实施例提供的搬运机器人中搬运装置的结构示意图;
图71为图63中A2处的局部放大图二;
图72为本申请实施例提供的搬运机器人的结构示意图;
图73为本申请实施例提供的搬运机器人另一角度的结构示意图;
图74为本申请实施例提供的搬运机器人中立式支架的结构示意图;
图75为本申请实施例提供的搬运机器人中第一固定柱的结构示意图;
图76为本申请实施例提供的搬运机器人中第一活动柱的结构示意图;
图77为图73中A3-A3剖面沿Z轴方向的内部结构示意图;
图78为图73中B3-B3剖面沿Z轴方向的内部结构示意图;
图79为图73中C3-C3剖面沿Z轴方向的内部结构示意图;
图80为本申请实施例提供的搬运机器人中导向轮组的结构示意图;
图81为本申请实施例提供的搬运机器人中导向轮组和搬运装置的结构示意图;
图82为图72中D3处的局部示意图;
图83为图72中E3处的局部示意图一;
图84为图72中E3处的局部示意图二。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
第一实施例
搬运机器人100可应用于智能仓储系统、智能物流系统、智能分拣系统等,在本申请实施例中,以搬运机器人100应用于智能仓储系统为例进行详细说明。
如图1和图2所示,本申请其中一个实施例的搬运机器人100,包括移动底盘(也可称为底盘,图未示)、立式支架(未标示)、搬运装置(图未示)以及驱动组件(未标示),立式支架包括立柱组件100,立柱组件100包括固定立柱架10以及活动立柱架20,固定立柱架10的一端安装于移动底盘,活动立柱架20活动安装于固定立柱架10,且活动立柱架20可沿固定立柱架10 的长度方向相对于固定立柱架10移动,其中,活动立柱架20可在预设行程内升降。搬运装置连接活动立柱架20,并且搬运装置可沿活动立柱架20的长度方向相对于活动立柱架移动。驱动组件连接搬运装置,驱动组件用于驱动搬运装置相对于活动立柱架20运移动,和/或,驱动活动立柱架20相对于固定立柱架10运动。其中,移动底盘承载固定立柱架10、活动立柱架20、搬运装置(图未示)以及驱动组件。移动底盘用于实现搬运机器人100在地面移动,搬运装置用于实现搬运机器人100对货物的拾取与放置。
请参看图3与图4,对于固定立柱架10,其包括第一固定柱11、第二固定柱12以及固定横梁13,第一固定柱11与第二固定柱12的一端用于与移动底盘相连接,且第一固定柱11与第二固定柱12以预设间距设置,固定横梁13的两端分别与第一固定柱11以及第二固定柱12的另一端相连接,其中,第一固定柱11以及第二固定柱12分别设有第一收容槽111以及第二收容槽121。活动立柱架20可活动地安装于第一固定柱11与第二固定柱12之间,活动立柱架20沿第一固定柱11与第二固定柱12运动。
可理解的,上述预设间距的具体数值不作限定,可是依据实际需要而调整第一固定柱11与第二固定柱12的中心轴线的距离。
请参看图5-6,对于活动立柱架20,其包括第一活动柱21、第二活动柱22以及活动横梁组23,第一活动柱21收容于第一收容槽内111,第一活动柱21可沿第一收容槽内111移动,第二活动柱22收容于第二收容槽121内,第二活动柱22可沿第二收容槽移动,活动横梁组23的两端分别与第一活动柱21以及第二活动柱22连接,以使第一活动柱21与第二活动柱22同步移动。其中,第一活动柱21与第二活动柱22亦以另一预设间距对称设置,且第一活动柱21以及第二活动柱22的间距小于第一固定柱11以及第二固定柱12之间的间距。
活动横梁组23包括顶横梁231以及底横梁232,顶横梁231以及底横梁232分别位于活动立柱架20的两端,具体的,顶横梁231的两端分别与第一活动柱21以及第二活动立柱22的一端连接,底横梁232的两端分别与第一活动柱21以及第二活动立柱22的另一端连接。其中,底横梁232由第一折弯板2321、第二折弯板2322以及横梁条2323所组成,横梁条2323的两端分别与第一折弯板2321以及第二折弯板2322的一端连接,第一折弯板2321以及第二折弯板2322的另一端分别与第一活动柱21以及第二活动柱22的一端连接。
请参看图3和图5,在一些实施例中,立式支架还包括导向组件30,导向组件包括30包括导向块31以及导轨32,导向块31包括第一导向块311以及第二导向块312,导轨32包括第一导轨321以及第二导轨322。其中,第一导向块311以及第二导向块312分别安装于第一收容槽111以及第二收容槽121的槽底,第一导轨321以及第二导轨322分别设置于第一活动柱21以及第二活动柱22的侧壁上,导向块31与导轨32相对滑动,以使活动立柱架20可相对于固定立柱架10在预设行程内升降。由此,活动立柱架20可在 导轨32设定的预设行程内相对于固定立柱架10进行伸缩。
这里要说明的是,上述预设行程由导轨32所决定,在本实施例中,导向块31位于固定立柱架20远离移动底盘的一端,并且靠近固定立柱架20的顶端,以防止活动立柱架20未伸长至最高处时导向块31与导轨32相分离。
在一些实施例中,第一导向块311以及第二导向块312分别安装于第一活动柱21以及第二活动柱22的侧壁上,第一导轨321以及第二导轨322分别设置于第一收容槽111以及第二收容槽121的槽底,导向块31与导轨32相对滑动,以使活动立柱架20可相对于固定立柱架10在预设行程内升降。在此实施例中,第一导向块311以及第二导向块312分别设置于第一活动柱21以及第二活动柱22靠近移动底盘的一端,以使活动立柱架20未活动至预设行程的最高处时,导向块31始终与导轨32相配合而不脱离。
请参看图4,立式支架还包括主减震件40。主减震件40安装于固定立柱架10靠近移动底盘的一端,并位于活动立柱架20的下方,当活动立柱架20下降至预设升降行程的最低点时,活动立柱架20与主减震件40相抵接。主减震件40用于缓冲活动立柱架20下降时产生的冲击力。
这里要说明的是,主减震件40位于活动立柱架20的下方,是以与底盘相接触的平面或者立式支架固定安装的平面为参考平面,以两物体的重心到该平面的垂直距离进行比较,离该参考平面近的物体则位于离该参考平面远的物体的下方。
在一些实施例中,固定立柱架10还包括限位挡板113,限位挡板113包括第一限位挡板1131以及第二限位挡板1132,第一限位挡板1131以及第二限位挡板1132分别安装于第一固定柱11以及第二固定柱12的一端,第一限位挡板1131以及第二限位挡板1132均可拆卸地安装有主减震件40。当活动立柱架20的一端与主减震件40相抵接时,活动立柱架20下降至预设行程的最低点。可理解的,主减震件40可以是弹簧,也可以是避震器,甚至是硅胶缓冲片,优先地,主减震件40采用避震器。具体的,使用时,第一限位挡板1131以及第二限位挡板1132均设置有通孔(未标示),避震器的伸缩端伸出通孔,并用于与活动立柱架20相抵接。当活动立柱架20下降时且与避震器的伸缩端相抵接时,伸缩端受挤压并逐渐向内收缩,从而逐渐降低活动立柱架20下降时所产生的冲击力,以防止活动立柱架20与固定立柱架10直接发生刚性碰撞。
请参看图6与图7,在一些实施例中,立式支架还包括货叉安装组件50,货叉安装组件50包括第一滑块51、第二滑块52以及连接块53,第一活动柱21远离第一固定柱11的一侧设置有第一滑轨211,第二活动柱22远离第二固定柱12的一侧设置有第二滑轨221,第一滑块51活动安装于第一滑轨211,第二滑块52活动安装于第二滑轨221,连接块53的两端分别的与第一滑块51以及第二滑块52可拆卸地连接,且连接块53上设有挡片531。具体的,使用时,货叉安装组件50受到沿着固定立柱架10的轴向方向的拉力时,第一滑块51以及第二滑块52分别沿着第一滑轨211以及第二滑轨221滑动, 以使货叉安装组件50于预设升降行程内上升或下降。在本实施例中,搬运装置安装于货叉安装组件50,搬运装置可以通过货叉安装组件50同步进行上升或下降,以便于搬运机器人实现搬运货物。
如图8和图9所示,在一些实施例中,立式支架还包括副减震件60,副减震件60安装于活动立柱架20远离移动底盘的一端,用以防止货叉安装组件50与活动立柱架20之间产生猛烈碰撞。同样的,副减震件60可以是弹簧,也可以是避震器,甚至是硅胶缓冲片,优先地,副减震件60采用避震器。
使用时,第一活动柱21以及第二活动柱22远离移动底盘的一端设置有开口罩24,具体的,开口罩24设置于第一滑轨211以及第二滑轨221的一端,开口罩24朝向移动底盘的一端设置有通口,避震器安装于开口罩24内,且避震器的伸缩端穿过通口,用以与货叉安装组件50相抵接。当第一滑块51以及第二滑块52分别沿着第一滑轨211以及第二滑轨221上升至最高处时,第一滑块211以及第二滑块221分别与副减震件60相抵接,以防止第一滑块211与第二滑块221与活动立柱架20刚性碰撞。
在一些实施例中,立式支架还包括行程开关(未标示),行程开关安装于活动立柱架20靠近移动底盘的一端,当货叉安装组件50下降至活动立柱架20的最低处时,挡片531与行程开关相抵接,此时货叉安装组件50下降至预设升降行程的下限位,即货叉安装组件50所能下降到的最低位置。
请参看图2、8、10-13,在一些实施例中,对于上述的驱动组件(未标示),其包括牵引组件70以及收放组件80,其中,牵引组件70包括牵引绳71以及导轮组72,牵引绳71的一端绕着导轮组72并系于收放组件80上,收放组件80收拢或释放牵引绳71,以使活动立柱架20相对于固定立柱架10升降。可理解的,为了能实现活动立柱架20相对于固定立柱架10升降,牵引绳71的另一端直接或间接系于活动立柱架20,以使活动立柱架20受到牵引绳71的牵引力以进行升降。在本实施例中,牵引绳71的另一端系于货叉安装组件50,当货叉安装组件50上升至活动立柱架20的顶端,收放组件80继续收拢牵引绳71,此时货叉安装组件50顶着活动立柱架20同步上升,由此牵引绳71间接完成了对活动立柱架20的牵引。
对于牵引绳71,其可以是由钢丝制成的钢丝绳,亦可以是尼龙绳,优先地,牵引绳71选用钢丝绳,以确保货叉安装组件50上升或下降时,牵引绳71不因货叉搬运的货物过重而崩断。
对于导轮组72,其包括顶滑轮721、底滑轮722以及主滑轮723,顶滑轮721可拆卸地安装于活动立柱架20远离移动底盘的一端,底滑轮722可拆卸地安装于活动立柱架20的另一端,主滑轮723安装于固定立柱架10远离移动底盘的一端。具体的,在本实施例中,顶滑轮721安装于顶横梁231,底滑轮722安装于底横梁232,主滑轮723安装于固定横梁13,牵引绳71的一端依次绕过顶滑轮721、底滑轮722以及主滑轮723后系于收放组件80,牵引绳71的另一端系于货叉安装组件50。由此,当收放组件80收拢牵引绳71时,牵引绳71可直接牵引货叉安装组件50升降。
在一些实施例中,导轮组72还包括张紧轮724,张紧轮724可拆卸地安装于活动立柱架20远离移动底盘的一端,且张紧轮724位于顶滑轮721与底滑轮722之间。具体的,张紧轮724顶着牵引绳71,即牵引绳71的一端先绕过顶滑轮721后经由张紧轮724后再绕着底滑轮722,以防止牵引绳71过度绷紧而直接崩断。
请参看图13,在一些实施例中,收放组件80包括绕线筒81、传动轴82、调速箱83以及电机84,绕线筒81用于缠绕牵引绳71,电机84的输出轴与调速箱83的输入端连接,调速箱83的输出端与传动轴82相连接,调速箱83用于调节传动轴82的转速,传动轴82的一端与绕线筒81相连接。具体的,使用时,电机84运作,以使传动轴82转动,带动绕线筒81顺时针或逆时针转动,以释放或收拢牵引绳71,从而控制货叉安装组件50升降,以及活动立柱架20相对于固定立柱架10伸缩。
在具体使用的过程中,货叉安装组件50以及活动立柱架20处于初始位置,即位于预设行程的最低位置处。当启动电机,绕线筒开始收拢牵引绳71,系于牵引绳71一端的货叉安装组件逐渐上升,当货叉安装组件50上升至预设升降行程的最高处时,副减震件60与货叉安装组件50相抵接,此时货叉安装组件50的结束上升。当电机继续工作,绕线筒继续绕线,此时货叉安装组件50顶着活动立柱架20相对于固定立柱架10上升,待导向块即将与导轨分离时,活动立柱架20上升至最高点。另一方面,电机反转时,绕线筒释放牵引绳,活动立柱架20沿着固定立柱架10的轴向逐渐下降,当活动立柱架20与主减震件40相抵接时,活动立柱架20停止下降,绕线筒继续释放牵引线61,货叉安装组件50开始下降,当货叉安装组件50碰触行程开关时,货叉安装组件50下降至最低点,此时控制电机停止转动。
在一些实施例中,立式支架还包括存储装置(未标示),存储装置安装于固定立柱架10上,具体的,固定立柱架10以预设间隔距离设置有若干安装横梁(未标示),存储装置安装于安装横梁,存储装置用于存储搬运装置搬运的货物。
在一些实施例中,搬运装置包括托板以及搬运组件,托板用于存放货物,搬运组件用于将存储装置上存放货物推出,或者,将存储装置上的货物拉至托板上,以便搬运装置将货物搬运至不同高度位置的存储装置。
请复参图1,在一些实施例中,搬运机器人100还包括第一检测器101,第一检测器101安装于活动立柱架20远离移动底盘的一端,第一检测器101与驱动组件连接,第一检测器101用于检测活动立柱架20与其上方的建筑物体的距离。
具体的,第一检测器101安装于活动立柱架20的顶横梁231,第一检测器101与驱动组件的电机84连接,第一检测器101可随活动立柱架20运动,并实时检测活动立柱架20的顶端与其上方的建筑物体的距离,当第一检测器101检测出的实时距离小于预设值时,第一检测器101控制驱动组件的电机84暂停工作,以防止活动立柱架20继续朝向其上方的建筑物运动而发生碰 撞,避免搬运机器人100造成损坏以及发生安全事故。
在一些实施例中,搬运机器人还包括第二检测器(图未示),第二检测器连接驱动组件的电机84,第二检测器用于检测活动立柱架20相对沿固定立柱架10的长度方向移动的两个极限位置,以控制电机84停启。其中,两个极限位置分别为活动立柱架20沿固定立柱架10的长度方向远离移动底盘运动的上极限位置,以及活动立柱架20沿固定立柱架10的长度方向朝向移动底盘运动的下极限位置。在具体实施过程中,第二检测器可以是测距传感器,该测距传感器可直接安装于固定立柱架10靠近移动底盘的一端,并与活动立柱架20的底面相对,或者,第二检测器可以是行程开关组,该行程开关组包括第一行程开关和第二行程开关,第一行程开关安装于固定立柱架10靠近移动底盘的一端,第二行程开关安装于固定立柱架10远离移动底盘的一端,活动立柱架20与第一行程开关对应的一端设置有凸块,当活动立柱架20运动至下极限位置时,凸块触发第一行程开关,当活动立柱架20运动至上极限位置时,凸块触发第二行程开关。
在一些实施例中,搬运机器人100还包括感应装置(图未示),感应装置用于感应搬运机器人100的前方是否存在障碍物,感应装置可以是光电传感器等传感器,也可以是摄像头探测感应,还可以是两者的结合使用。可理解的,感应装置可以是安装于搬运机器人的立式支架上,也可以是安装于搬运机器人的移动底盘上,还可以安装于搬运机器人的其它位置上,只要不影响搬运装置搬运货物以及活动立柱架的升降即可。
请参看图13-15,在一些实施例中,搬运机器人100还包括制动装置90,制动装置90用于对活动立柱架20进行制动,使得活动立柱架20相对固定立柱架10停止移动。通过设置制动装置90,一方面,可在搬运机器人100进行搬运工作的过程中实现紧急制动,另一方面,可防止搬运机器人100的驱动组件误启。
制动装置90包括制动盘91、导向底座92以及止动件93。
制动盘91与驱动组件连接,驱动组件的输出端可驱动制动盘91转动,并且制动盘91可制动驱动组件的输出端,制动盘91设有至少一个销孔9101,导向底座92安装于固定立柱架10,导向底座92设有插槽9201,止动件93活动插入插槽9201,止动件93可沿插槽9201移动,以使得止动件93的一端插入或脱离销孔9101,从而阻止制动盘91转动或解除对制动盘91的限制。其中,当止动件93的一端插入销孔9101时,制动盘91实现对驱动组件的输出端的制动,使得驱动组件停止驱动。
在本实施例中,制动盘91与绕线筒81连接并与绕线筒81同轴设置,制动盘91可随绕线筒81一同转,并且,至少一个销孔9101沿制动盘91的圆周侧壁设置,也即销孔9101径向设置于制动盘91,止动件93设置于制动盘91的圆周侧壁的一侧,在制动盘91转动时,止动件93的一端可对准制动盘91侧壁上的其中任意一个销孔9101并插入该销孔9101。
制动装置90还包括凸轮94,凸轮94位于导向底座92背离制动盘91的 一侧,止动件93远离制动盘91的一端与凸轮94转动连接,凸轮94的轮面与导向底座92背向制动盘91的一面相抵,以使得凸轮94转动时带动止动件93沿插槽9201移动。
制动装置90还包括弹性件95,弹性件95的一端连接止动件93,弹性件95的另一端连接导向底座92或固定立柱架10,弹性件95用于提供使凸轮94与导向底座92相抵接,以及使止动件93保持静止的弹性力。其中,弹性件95为压簧,当然弹性件95也可以为其他具有弹性力的部件,例如,片簧等。
在本实施例中,止动件93包括第一插销931、连接杆932以及第二插销933。第一插销931活动插入插槽9201,第一插销931远离制动盘91的一端与凸轮94连接,连接杆932的一端连接第一插销931的另一端,第一插销931两端之间的中部凸设有挡圈9311,插槽9201的槽壁凸设有抵接部9202,抵接部9202位于挡圈9311与凸轮94之间,弹性件95套设于第一插销931,并且弹性件95抵接于挡圈9311和抵接部9202之间,也即弹性件95弹性压缩于挡圈9311和抵接部9202之间,弹性件95始终保持弹性压缩状态。连接杆932的另一端连接第二插销933的一端,第一插销931可沿插槽9201移动,以使得第二插销933的另一端插入或脱离销孔9101。优选地,第一插销931和第二插销933均与连接杆932垂直设置。
制动装置90还包括引导件96,引导件96安装于固定立柱架10,引导件96设有导槽9601,连接杆932穿过导槽9601,连接杆932可沿导槽9601滑动,以防止第一插销931沿插槽9201移动时第一插销931发生转动。
在一些实施例中,止动件93也可以为其他形状结构,例如,一字型插销结构。
凸轮94上设有扳手941,可通过扳动扳手941带动凸轮94转动,以使得驱动组件停止工作。可以理解的是,根据实际情况,也可以设置凸轮94驱动电机驱动凸轮94转动,以实现对活动立柱架20的制动。
制动装置90还包括第三检测器97,第三检测器97用于检测止动件93的一端是否插入销孔9101,第三检测器97与驱动组件的电机84连接,以控制电机84的启停。
具体地,第三检测器97为行程开关,行程开关安装于导向底座92,行程开关的凸块朝向扳手941的一侧设置,当转动扳手941使得第二插销933脱离销孔9101时,扳手941与行程开关的凸块接触,当转动扳手941使得第二插销933插入销孔9101时,扳手941与行程开关的凸块分离。
第二实施例
本申请实施例提供一种控制搬运机器人的方法,该搬运机器人的结构和功能与上述搬运机器人相同,对于搬运机器人的结构和功能可参阅上述实施例,此处不再一一赘述,具体的,请参阅图16,该方法包括:
步骤S1:接收运动指令;
运动指令是指搬运机器人为实现搬运货物而进行的一系列运动的控制指令,例如:控制搬运装置相对于活动立柱架上升或下降,或者控制活动立柱架相对于固定立柱架上升或下降,或者,同时控制搬运装置和活动立柱架上升或下降。
步骤S2:根据运动指令,驱使搬运装置相对于活动立柱架运动,和/或,驱使活动立柱架相对于固定立柱架运动。
该运动指令携带运动方向和运动高度,搬运机器人在接收该运动指令之后,根据运动方向来驱动搬运装置和/或活动立柱架运动,直至搬运装置到达运动高度。
在一些实施例中,运动指令可以是携带最终到达高度的指令,则搬运机器人在接收到运动指令之后,可以根据先识别其搬运装置当前高度,根据当前高度与运动指令指示的所需要到达的高度来确定运动方向和运动距离,然后再控制搬运装置运动。可理解的,根据运动指令,驱使搬运装置和/或者活动立柱架运动,其并无运动顺序的限制,即可以是先驱使搬运装置相对于活动立柱架运动,然后再驱使活动立柱架相对于固定立柱架运动;也可以是先驱使活动立柱架相对于固定立柱架运动,再驱使搬运装置相对于活动立柱架运动;还可以是搬运装置和活动立柱架同时运动。
在一些实施例中,运动指令包括第一上升指令,如图17所示,步骤S2包括
步骤S21a:根据第一上升指令,获取第一指定上升高度;
第一指定上升高度是指用户依据自身需要指定搬运装置上升至指定的搬运位置之后,该指定搬运位置距离搬运装置当前所处位置的高度差值。其中,搬运机器人可以通过服务器计算搬运装置距离该指定位置所需上升的高度,随后服务器将所需上升的高度转换成相应的控制信号反馈至搬运机器人,搬运机器人根据所得的控制信号内对应的参数进行上升,从而达到指定上升高度。
步骤S22a:驱使搬运装置相对于活动立柱架向上运动;
步骤S23a:在搬运装置运动至活动立柱架的顶部之前,搬运装置运动至第一指定上升高度时,则停止抬升搬运装置。
步骤S24a:当搬运装置运动至活动立柱架的顶部之后,搬运装置尚未运动至第一指定上升高度,则驱动搬运装置和活动立柱架同时相对于固定立柱架向上运动,直至搬运装置到达第一指定上升高度。
当指定搬运位置不高于活动立柱架的顶部时,则说明指定搬运位置处于搬运装置相对于于活动立柱架可移动的行程范围内,可直接控制搬运装置相对于活动立柱架上升,直至搬运装置运动第一指定上升高度,则停止抬升搬运装置。
而当指定搬运位置高于活动立柱架的顶部时,由于指定搬运位置已超出搬运装置可于活动立柱架内移动的最高位置,此时仅通过移动搬运装置是无法达到用户的所需的搬运位置,因此,搬运装置在移动至活动立柱架的最高 位置后,控制活动立柱架可相对于固定立柱架上升,当搬运装置上升至指定搬运位置,即上升第一指定上升高度时,活动立柱架停止上升。
在一些实施例中,运动指令还包括第二上升指令,如图18所示,S2包括:
步骤S21b:根据第二上升指令,获取第二指定上升高度;
步骤S22b:驱使活动立柱架相对于固定立柱架向上运动,直到其顶部超过第二指定上升高度后停止,随后驱使搬运装置相对于活动立柱架向上运动,直至搬运装置到达第二指定上升高度。
本实施例与上述实施例不同之处在于:本实施例先驱动活动立柱架运动,后驱动搬运装置运动。当然,在驱动活动立柱架运动时,搬运装置可以相对于活动立柱架不动,也可以跟随活动立柱架运动。当然,为了实现在驱动活动立柱架运动时,搬运装置可以相对于活动立柱架不动,也可以跟随活动立柱架运动。搬机机器人对驱动组件的设置方式也可以不相同,例如:搬运机器人设置两相互独立的驱动组件,一驱动组件用于驱动活动立柱架相对于固定立柱架上升,可以采用上述实施例中的牵引绳、绕线筒以及电机等部件组合起来驱动,另一驱动组件用于驱动搬运装置相对于活动立柱架上升,可以采用例如气缸驱动的方式,此时气缸安装于活动立柱架上,且气缸的伸出端与搬运装置相连接。两组独立的驱动组件用于单独控制,两者相互不影响。
在一些实施例中,运动指令还包括第三上升指令,如图19所示,搬运装置的第三种上升方式如下:
步骤S21c:根据第三上升指令,获取第三指定上升高度;
步骤S22c:驱使活动立柱架及搬运装置同时向上运动,直至搬运装置达到第三指定上升高度。
可理解的,搬运机器人的活动立柱架及搬运装置同时向上运动,直至搬运装置达到第三指定上升高度。其中,活动立柱架以及搬运装置可以是以不同的速度进行上升,也可以是以相同的速度同步上升,当搬运装置到达第三指定上升高度是,驱动组件停止驱动,以使搬运装置处于用户所指定的搬运位置处。
在一些实施例中,运动指令包括第一下降指令,如图20所示,搬运装置的第一种下降方式如下:
步骤S21d:根据第一下降指令,获取第一指定下降高度;
指定下降高度是指用户依据自身需要指定搬运装置下降至指定的搬运位置,该指定搬运位置距离搬运装置当前所处位置的高度差值。其中,搬运机器人可以通过服务器计算搬运装置距离该指定位置所需下降的高度,随后服务器将所需下降的高度转换成相应的控制信号反馈至搬运机器人,搬运机器人根据所得的控制信号内对应的参数进行下降,从而达到指定下降高度。
步骤S22d:驱动搬运装置和活动立柱架同时相对于固定立柱架向下运动;
步骤S23d:在活动立柱架运动至固定立柱架的底部之前,搬运装置下降至第一指定下降高度时,则控制活动立柱架和搬运装置停止运动。
可理解的,当用户指定的搬运位置处于活动立柱架还可相对于固定立柱架下降的行程中时,搬运装置与活动立柱架仍处于同步移动的转态,当搬运装置下降至指定搬运位置,即搬运装置下降至第一指定下降高度时,驱动组件停止驱动,以使搬运装置与活动立柱架停止下降。
步骤S24d:在活动立柱架运动至固定立柱架的底部之后,搬运装置尚未下降至第一指定下降高度时,则控制搬运装置相对于活动立柱架向下运动,直至搬运装置运动至第一指定下降高度。
可理解的,当活动立柱架运动至固定立柱架的底部之后,活动立柱架的底部受固定立柱架底部的抵制,活动立柱架无法相对于固定立柱架下降,即活动立柱架下降至最低位置,而此时搬运装置处于活动立柱架的顶部位置。当用户所指定的搬运位置低于活动立柱架的顶部时,搬运装置尚未下降至指定搬运位置,也即尚未运动至第一指定下降高度,搬运装置还需进行下降,直至搬运装置运动至第一指定下降高度。
在一些实施例中,运动指令还包括第二下降指令,如图21所示,搬运装置的第二种下降方式如下:
步骤S21e:根据第二下降指令,获取第二指定下降高度;
步骤S22e:驱动搬运装置相对于活动立柱架先向下运动,后再驱动活动立柱架相对于固定立柱架向下运动,当搬运装置运动至活动立柱架的底部之前,搬运装置运动至第二指定下降高度,则停止下降。
采用此种下降方式,搬运机器人需设置两相互独立的驱动组件,以使得搬运装置和活动立柱架可同时相对于固定立柱架进行移动,此两相互独立的驱动组件的结构与上述搬运装置的第二种上升方式相同,不同之处在于,此两组驱动组件分别用于控制搬运装置以及活动立柱架进行下降,此处不再进行赘述。
步骤S23e:当搬运装置运动至活动立柱架的底部之后,搬运装置尚未运动至第二指定下降高度,则驱动活动立柱架以及搬运装置同步下降,直至搬运装置到达第二下降高度。
在一些实施例中,运动指令还包括第三下降指令,如图22所示,搬运装置的第三种下降方式如下:
步骤S21f:根据第三下降指令,获取第三指定下降高度;
步骤S22f:驱动活动立柱架相对于固定立柱架先向下运动,后再驱动搬运装置相对于活动立柱架向下运动,当搬运装置运动至活动立柱架的底部之前,搬运装置运动至第三指定下降高度,则停止下降;
步骤S23f:当搬运装置运动至活动立柱架的底部之后,搬运装置尚未运动至第三指定下降高度,则驱动活动立柱架以及搬运装置同步下降,直至搬运装置到达第三下降高度。
在本实施例中,搬运装置可通过活动立柱架进行升降,并且当用户所指定的搬运位置高于活动立柱架的顶部时,驱动组件可驱动搬运装置以及活动立柱架相对于固定立柱架上升,从而使搬运装置达到用户所指定的搬运位置, 同时配合搬运装置的不同升降方式,使得搬运机器人的使用范围更广泛。
第三实施例
本申请实施例还提供一种控制搬运机器人的方法,请参阅图23,对于搬运机器人的结构和功能可参阅上述实施例,此处不再进行赘述,其中,本实施例与上一实施例不同之处在于,还包括以下方法步骤:
步骤S3:控制搬运组件搬运货物。
当搬运装置通过上述实施例的方式到达指定的搬运位置后,服务器发送搬运信号至搬运装置,搬运装置接收到该搬运信号,随后搬运组件搬运货物。
在一些实施例中,步骤S3具体为:控制搬运组件将位于托板上的货物推出。
当用户控制搬运装置执行出货操作时,搬运组件将位于托板上的货物推出,可以是推送至存储装置上,也可以是推送至外界设置储货装置上。
在一些实施例中,步骤S3具体为:控制搬运组件将位于存储装置上的货物拉至托板。
当用户控制搬运装置执行取货操作时,搬运组件将位于存储装置上的货物拉至托板,以便搬运装置将货物运送至不同高度的搬运位置处。
在本实施例中,搬运装置可通过活动立柱架进行升降,并且当用户所指定的搬运位置高于活动立柱架的顶部时,驱动组件可驱动搬运装置以及活动立柱架相对于固定立柱架上升,从而使搬运装置达到用户所指定的搬运位置,同时配合搬运装置进行搬运货物,便于实现自动及高效搬运货物,使用起来更为方便。
第四实施例
本申请实施例还提供一种控制搬运机器人的方法,请参阅图24,对于搬运机器人的结构和功能可参阅上述实施例,此处不再进行赘述,方法包括:
步骤S1:接收运动指令;
步骤S2:根据运动指令,驱使搬运装置相对于活动立柱架运动,和/或,驱使活动立柱架相对于固定立柱架运动;
步骤S4:接收移动命令,其中,移动命令携待目标位置;
当用户需要将搬运机器人移动至指定的地点进行搬运货物时,可通过服务器发送移动指令至搬运机器人的移动底盘,移动底盘依据接收到的移动指令移动至指定的地点,其中,移动指令除了包括目标位置以外,还包括搬运机器人行驶至该目标位置的行驶路径,搬运机器人可以是通过无线网络的方式与服务器进行通讯,也可以是通过有线的方式与服务器进行通讯。
步骤S5:驱动可移动底盘移动至目标位置。
值得说明的是,在搬运机器人移动的过程中,搬运机器人可以执行避障操作,具体为:第一,在搬运机器人移动的过程中,判断搬运机器人行驶路径中行进方向上是否存在障碍物;若存在,则获取障碍物距离地面的第一高 度;第二,获取搬运机器人顶部当前距离地面的第二高度,以及,在活动立柱架完全收回时搬运机器人顶部距离地面的第三高度;第三,判断能否通过:判断第二高度是否大于第一高度;若大于第一高度,则判断第三高度是否小于离地高度;若第三高度小于第一高度,则降低搬运机器人顶部距离地面的高度,直至其小于第一高度;第四,搬运机器人通过障碍物。当然,若第三高度大于或者等于第一高度,则控制搬运机器人绕开障碍物,即重新规划到达该目标位置的新路线,并进行移动。
可理解的,搬运机器人所获取的障碍物以及障碍物的离地高度,可以是从预先存储的三维地图中获取得到,也可以是通过在搬运机器人上设置例如传感器或摄像头等感应装置获得。其中,三维地图的获取,可以是通过服务器进行获取,也可以事先将相关地图的数据存载在搬运机器人的存储介质上。
在一些实施例中,步骤S4和步骤S5可以是在步骤S1之前。
在本实施例中,搬运机器人可以通过接收到移动指令后移动至目标位置,并进行货物的搬运,可实现多位置搬运货物,使用起来更为智能化。
第五实施例
请参阅图25-26,本申请控制搬运机器人的装置实施例的示意图,控制搬运机器人的装置100a,应用于搬运机器人,搬运机器人包括立式支架及搬运装置,立式支架包括固定立柱架10和活动立柱架20,搬运装置活动设置于活动立柱架20,活动立柱架20活动设置于固定立柱架10,搬运装置固定于活动立柱架20,并且搬运装置用于搬运货物,装置包括:
运动指令接收模块101a,用于接收运动指令;
驱动模块102a,用于驱使搬运装置相对于活动立柱架20运动,和/或,驱使活动立柱架20相对于固定立柱架10运动。
在一些实施例中,运动指令接收模块101a包括第一上升指令接收单元1011a,第一上升指令接收单元1011a用于接收第一上升指令。
装置还包括第一指定上升高度获取模块103a,用于根据第一上升指令,获取第一指定上升高度;
驱动模块102a还用于驱使搬运装置相对于活动立柱架20向上运动;在搬运装置运动至活动立柱架20的顶部之前,搬运装置运动至第一指定上升高度时,则停止抬升搬运装置;当搬运装置运动至活动立柱架20的顶部之后,搬运装置尚未运动至第一指定上升高度,则驱动搬运装置和活动立柱架20同时相对于固定立柱架10向上运动,直至搬运装置到达第一指定上升高度。
在一些实施例中,运动指令接收模块101a还包括第二上升指令接收单元1012a,第二上升指令接收单元1012a用于接收第二上升指令。
装置还包括第二指定上升高度获取模块104a,用于根据第二上升指令,获取第二指定上升高度;
驱动模块102a还用于活动立柱架20相对于固定立柱架10向上运动,直到其顶部超过第二指定上升高度后停止,随后驱使搬运装置相对于活动立柱 架20向上运动,直至搬运装置到达第二指定上升高度。
在一些实施例中,运动指令接收模块101a还包括第三上升指令接收单元1013a,第三上升指令接收单元1013a用于接收第三上升指令。
装置还包括第三指定上升高度获取模块105a,用于根据第三上升指令,获取第三指定上升高度;
驱动模块102a还用于驱使活动立柱架20及搬运装置同时向上运动,直至搬运装置达到第三指定上升高度。
在一些实施例中,运动指令接收模块101a还包括第一下降指令接收单元1014a,第一下降指令接收单元1014a用于接收第一下降指令。
装置还包括第一指定下降高度获取模块106a,用于根据第一下降指令,获取第一指定下降高度;
驱动模块102a还用于驱动搬运装置和活动立柱架20同时相对于固定立柱架10向下运动;在活动立柱架20运动至固定立柱架10的底部之前,搬运装置下降至第一指定下降高度时,则控制活动立柱架20和搬运装置停止运动;在活动立柱架20运动至固定立柱架10的底部之后,搬运装置尚未下降至第一指定下降高度时,则控制搬运装置相对于活动立柱架20向下运动,直至搬运装置运动至第一指定下降高度。
在一些实施例中,运动指令接收模块101a还包括第二下降指令接收单元1015a,第二下降指令接收单元1015a用于接收第二下降指令。
装置还包括第二指定下降高度获取模块107a,用于根据第二下降指令,获取第二指定下降高度;
驱动模块102a还用于驱动搬运装置相对于活动立柱架20先向下运动,后再驱动活动立柱架20相对于固定立柱架10向下运动,当搬运装置运动至活动立柱架20的底部之前,搬运装置运动至第二指定下降高度,则停止下降;还用于当搬运装置运动至活动立柱架20的底部之后,搬运装置尚未运动至第二指定下降高度,则驱动活动立柱架20以及搬运装置同步下降,直至搬运装置到达第二下降高度。
在一些实施例中,运动指令接收模块101a还包括第三下降指令接收单元1016a,第三下降指令接收单元1016a用于接收第三下降指令。
装置还包括第三指定下降高度获取模块108a,用于根据第三下降指令,获取第三指定下降高度;
驱动模块102a还用于驱动活动立柱架20相对于固定立柱架10先向下运动,后再驱动搬运装置相对于活动立柱架20向下运动,当搬运装置运动至活动立柱架20的底部之前,搬运装置运动至第三指定下降高度,则停止下降;还用于当搬运装置运动至活动立柱架20的底部之后,搬运装置尚未运动至第三指定下降高度,则驱动活动立柱架20以及搬运装置同步下降,直至搬运装置到达第三下降高度。
在一些实施例中,装置还包括货物搬运控制模块109a,货物搬运控制模块109a用于控制搬运组件搬运货物。
进一步地,货物搬运控制模块109a包括货物推出单元,货物推出单元用于控制搬运组件将位于托板上的货物推出。
进一步地,货物搬运控制模块109a包括货物拉回单元,货物拉回单元用于控制搬运组件将位于存储装置上的货物拉至托板。
在一些实施例中,装置还包括移动命令接收模块110a,移动命令接收模块用于接收移动命令,其中,移动命令包括目标位置,当然,移动命令还包括搬运机器人移动至该目标位置的行驶路径。
移动驱动模块111a,用于驱动移动底盘移动至目标位置。
在一些实施例中,装置还包括越障模块112a,越障模块112a用于在搬运机器人100移动的过程中,判断搬运机器人100行驶路径中行进方向上是否存在障碍物;若存在,则获取障碍物距离地面的第一高度;获取搬运机器人100顶部当前距离地面的第二高度,以及,在活动立柱架20完全收回时搬运机器人100顶部的距离地面的第三高度;判断第二是否大于第一高度;若大于第一高度,则判断第三高度是否小于第一高度;若第三高度小于第一高度,则降低搬运机器人距离地面的高度,直至其小于第一高度;搬运机器人通过障碍物。
在一些实施例中,越障模块112a还用于,当活动立柱架20完全收回时搬运机器人100顶部的距离地面的第三高度大于或等于障碍物距离地面的第一高度时,控制搬运机器人绕开障碍物,即重新规划到达该目标位置的新路线,并进行移动。
可理解的,上述越障模块112a除了以地面作为参考平面以外,亦可以以其它平面作为参考平面,不局限于上述的表述。
第六实施例
本申请实施例还提供了一种搬运机器人100,请参阅图27,搬运机器人除了上述的机械结构之外,还包括至少一个处理器200;以及,与至少一个处理器200通信连接的存储器300,图27中以其以一个处理器200为例。存储器300存储有可被至少一个处理器200执行的指令,指令被至少一个处理器200执行,以使至少一个处理器200能够执行上述图16至图24的控制搬运机器人的方法。处理器200和存储器300可以通过总线或者其他方式连接,图27中以通过总线连接为例。
存储器300作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本申请实施例中的节目分发方法对应的程序指令/模块,例如,附图25和附图26所示的各个模块。处理器200通过运行存储在存储器300中的非易失性软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例节目分发方法。
存储器300可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据节目 分发装置的使用所创建的数据等。此外,存储器300可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器300可选包括相对于处理器200远程设置的存储器,这些远程存储器可以通过网络连接至节目分发装置。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
一个或者多个模块存储在存储器300中,当被一个或者多个处理器200执行时,执行上述任意方法实施例中的节目分发方法,例如,执行以上描述的图16至图24的方法步骤,实现图25至图26中的各模块和各单元的功能。
上述产品可执行本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。
本申请实施例还提供了一种非易失性计算机可读存储介质,计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,例如,执行以上描述的图16至图24的方法步骤,实现图25至图26中的各模块的功能。
本申请实施例还提供了一种计算机程序产品,包括存储在非易失性计算机可读存储介质上的计算程序,计算机程序包括程序指令,当程序指令被计算机执行时时,使计算机执行上述任意方法实施例中的节目分发方法,例如,执行以上描述的图16至图24的方法步骤,实现图25至图26中的各模块的功能。
需要说明的是,以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序来指令相关的硬件来完成,的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
第七实施例
请参看图28至图30,搬运机器人100包括移动底盘(图未示)、立式支架、驱动组件20以及第一检测器101,移动底盘承载立式支架、驱动组件20以及第一检测器101。移动底盘用于实现搬运机器人100在地面移动。立式支架包括固定立柱架11和第二固定柱12,固定立柱架11安装于移动底盘, 第二固定柱12活动安装于固定立柱架11,第二固定柱12可沿固定立柱架11的长度方向相对于固定立柱架11移动。驱动组件20连接第二固定柱12,驱动组件20用于驱动第二固定柱12相对于固定立柱架11移动。第一检测器101安装于第二固定柱12远离移动底盘的一端,第一检测器101与驱动组件20连接,第一检测器101用于检测第二固定柱12与其上方的建筑物体的距离。其中,第一检测器101可随第二固定柱12运动,并实时检测第二固定柱12的顶端与其上方的建筑物体的距离,当第一检测器101检测出的实时距离小于预设值时,第一检测器101控制驱动组件20暂停工作,以防止第二固定柱12继续朝向其上方的建筑物运动而发生碰撞,避免搬运机器人造成损坏以及发生安全事故。
第一检测器101为测距传感器,其可以是超声波传感器、激光测距传感器或着红外线测距传感器等。
移动底盘用于实现搬运机器人100在地面移动,移动底盘包括底板、从动轮组件和驱动轮组件,从动轮组和驱动轮组件均安装于底板。具体地,从动轮组件为万向轮,从动轮组件包括至少三个万向轮,至少三个万向轮对称安装于底板,两个驱动轮组件对称安装于底板,从动轮组件和驱动轮组件共同支承底板,可通过两个驱动轮组件之间的转速不同,从而使搬运机器人100朝两个驱动轮组件中转速较小的一个的一侧偏转,以实现搬运机器人100的转向。
请参阅图29,两个固定立柱架11对称安装于移动底盘,第二固定柱12包括移动竖梁121、固定横梁122和移动横梁123。两个移动竖梁121活动安装于两个固定立柱架11,移动竖梁121可沿固定立柱架11的长度方向相对固定立柱架11移动。固定横梁122的两端分别固定于两个移动竖梁121远离移动底盘的一端,固定横梁122使得两个移动横梁123可同时沿固定立柱架11的长度方向移动。移动横梁123的两端分别活动安装于两个移动竖梁121,移动横梁123可沿移动竖梁121的长度方向相对移动竖梁121移动。驱动组件20连接移动横梁123,驱动组件20可驱动移动横梁123沿移动竖梁121的长度方向相对移动竖梁121移动,其中,当移动横梁123沿移动竖梁121的长度方向运动至与固定横梁122相抵持时,移动横梁123可带动固定横梁122运动,使得移动竖梁121沿固定立柱架221的长度方向相对固定立柱架221移动,也即,驱动组件20可驱动移动横梁123相对于移动竖梁121移动,和/或,驱动移动横梁123、固定横梁122和移动竖梁121同时相对于固定立柱架11运动。
两个固定立柱架11的相对两侧壁均设置有第一滑槽1101,第一滑槽1101沿固定立柱架11的长度方向设置,移动竖梁121至少部分收容于第一滑槽1101内,移动竖梁121可沿第一滑槽1101移动。两个移动竖梁121的相对两侧壁均设置有第二滑槽1211,第二滑槽1211沿移动竖梁121的长度方向设置,移动横梁123的两端分别活动安装于两个第二滑槽1211,移动横梁123可沿第二滑槽1211滑动。通过以上设置,使得第二固定柱12整体可沿预设轨迹 相对固定立柱架11运动。优选地,固定立柱架11和移动竖梁121均垂直于底板设置,固定横梁122和移动横梁123均垂直于移动竖梁121设置。
搬运机器人100还包括主减震件40,主减震件40安装于固定立柱架11靠近移动底盘的一端,并位于第二固定柱12的下方,主减震件40用于缓冲第二固定柱12下降时对移动底盘产生的冲击力。具体地,两个固定立柱架11分别设置有一个主减震件40,主减震件40收容于第一滑槽1101内。固定立柱架11靠近移动底盘的一端设置有第一挡板111,第一挡板111第一挡板111与移动竖梁121的底面平行设置,主减震件40的一端穿过第一挡板111并与第二固定柱12的底面相对设置。主减震件40穿过第一挡板111的部分具有弹性回复能力,其可直接与移动竖梁121的底面相抵,以对第二固定柱12起缓冲作用。其中,第一挡板111起挡护作用,当移动竖梁121将主减震件40的一端抵至与第一挡板111面向第二固定柱12的一面平齐时,第一挡板111直接与移动竖梁121的底面相抵,以防止第二固定柱12继续朝向移动底盘的方向运动。
在一些其他实施例中,第一挡板111可以省略,主减震件40的极限压缩位置即为第二固定柱12远离底盘运动的极限位置。
请一并参阅图30,主减震件40为液压缓冲器,其包括缸体41、活塞杆42和第一弹性件43。缸体41安装于固定立柱架11,活塞杆42的外侧壁活动套设于缸体41,活塞杆42可相对缸体41沿自身长度方向运动,活塞杆42的一端穿过第一挡板111并与第二固定柱12相对设置,第一弹性件43弹性连接缸体41和活塞杆42,第一弹性件43用于提供使得活塞杆42抵向第二固定柱12的弹性势能。其中,当第二固定柱12脱离活塞杆42的一端后,在第一弹性件43的弹性回复作用下可使得活塞杆42快速地从缸体41内伸出,以应对搬运机器人100在搬运过程中第二固定柱12频繁地上下升降。优化地,活塞杆42与移动竖梁121相对的一面设置有缓冲垫421,缓冲垫421起进一步的缓冲作用,在具体实施过程中,缓冲垫421可以是尼龙材质。
固定立柱架11靠近移动底盘的一端还设置有第一固定板112,第一固定板112用于固定主减震件40。主减震件40还包括两个固定螺母44,缸体41的外侧壁设置有螺纹,缸体41穿过第一固定板112,两个固定螺母44分别于第一固定板112的两侧与缸体41螺纹连接并相互抵向第一固定板112,使得主减震件40固定于第一固定板112。
请继续参阅图29,搬运机器人100还包括副减震件60,副减震件60安装于固定横梁122,并位于固定横梁122和移动横梁123之间,副减震件60用于缓冲移动横梁123上升时对固定横梁122产生的冲击力。具体地,固定横梁122的两端分别设置有一个副减震件60,固定横梁122与移动横梁123相对的一面设置有第二挡板(图未标示),第二挡板与移动横梁123的顶面平行设置并与固定横梁122固定连接,副减震件60的一端穿过第二挡板并与移动横梁123的顶面相对设置。副减震件60穿过第二挡板的部分具有弹性回复能力,其可直接与移动横梁123的顶面相抵,以对移动横梁123起缓冲作用。 其中,第二挡板起抵持作用,当移动横梁123将副减震件60的一端抵至与第二挡板面向移动横梁123的一面平齐时,第二挡板直接与移动竖梁121的顶面相抵,以使得移动横梁123可带动固定横梁122运动,从而使得移动竖梁121沿固定立柱架11的长度方向相对固定立柱架11移动。
副减震件60为液压缓冲器,固定横梁122设置有第二固定板(图未标示),副减震件60固定于第二固定板。
在一些其他实施例中,固定横梁122可以省略,副减震件60安装于移动竖梁121远离移动底盘的一端,并位于移动横梁122的上方。
搬运机器人还包括第二检测器(图未示),第二检测器连接驱动组件20,第二检测器用于检测第二固定柱12相对沿固定立柱架11的长度方向移动的两个极限位置,以控制驱动组件20的启停。其中,两个极限位置分别为移动竖梁121沿固定立柱架11的长度方向远离移动底盘运动的上极限位置,以及移动竖梁121沿固定立柱架11的长度方向朝向移动底盘运动的下极限位置。在具体实施过程中,第二检测器可以是测距传感器,该测距传感器可直接安装于固定立柱架靠近移动底盘的一端,并与移动竖梁121的底面相对,或者,第二检测器可以是行程开关组,该行程开关组包括第一行程开关和第二行程开关,第一行程开关安装于固定立柱架22靠近移动底盘的一端,第二行程开关安装于固定立柱架22远离移动底盘的一端,移动竖梁121与第一行程开关对应的一端设置有凸块,当移动竖梁121运动至下极限位置时,凸块触发第一行程开关,当移动竖梁121运动至上极限位置时,凸块触发第二行程开关。
请结合图29、图14和图15,搬运机器人100还包括制动装置90,制动装置90用于对第二固定柱12进行制动,使得第二固定柱12停止移动。通过设置制动装置90,一方面,可在搬运机器人100进行搬运工作的过程中实现紧急制动,另一方面,可防止搬运机器人100的驱动组件20误启。
驱动组件20包括电机21和传动机构22,传动机构22连接电机21的输出轴和第二固定柱12,电机21可通过传动机构22驱动第二固定柱12相对于固定立柱架11移动。制动装置90连接传动机构22,制动装置90可对传动机构22进行制动,从而实现对第二固定柱12的制动。其中,上述的第一检测器101与驱动组件20的电机21连接。
传动机构22包括绕线筒221、滑轮组222和绳索223。绕线筒221与电机21的输出轴连接,滑轮组222转动连接于固定立柱架11和第二固定柱12,绳索223的一端固定于绕线筒221,绳索223的另一端绕过滑轮组222连接于第二固定柱12。制动装置90连接绕线筒221,制动装置90可对绕线筒221进行制动,从而实现对第二固定柱12的制动。具体地,绳索223的另一端绕过滑轮组222固定于移动横梁123。
绕线筒221与电机21之间还可以设置齿轮组,齿轮组用于连接电机21的输出轴和绕线筒221。例如,齿轮组包括第一齿轮和第二齿轮,其中,第一齿轮连接电机21的输出轴,第二齿轮与第一齿轮齿轮啮合,绕线筒221连接第二齿轮并与第二齿轮同轴设置。
滑轮组222包括顶滑轮2221、底滑轮2222以及主滑轮2223,顶滑轮2221转动安装于第二固定柱12远离移动底盘的一端,底滑轮2222转动安装于第二固定柱12靠近移动底盘的一端,主滑轮2223转动安装于固定立柱架11远离移动底盘的一端。具体地,顶滑轮2221安装于固定横梁122,底滑轮2222安装于移动竖梁121靠近移动底盘的一端,绳索223的一端系于移动横梁123,绳索223的另一端依次绕过顶滑轮2221、底滑轮2222和主滑轮2223后系于绕线筒221。由此,当绕线筒221收拢绳索223时,绳索223可直接牵引移动横梁123升降。
制动装置90包括制动盘91、导向底座92以及止动件93。制动装置90的结构可以与上述实施例中的制动装置90的结构相同,具体参见上述实施例一中对于制动装置90的描述,本实施例在此不再一一赘述。
制动盘91与绕线筒221连接并与绕线筒221同轴设置,制动盘91可随绕线筒221一同转。制动盘91设有至少一个销孔9101。
导向底座92安装于固定立柱架11,导向底座92设有插槽9201,插槽9201沿导向底座92的长度方向贯通导向底座92。
请继续参阅图27,搬运机器人100还包括储货装置6以及搬运装置,储货装置6安装于固定立柱架11,搬运装置安装于第二固定柱12,储货装置6用于存放货物,搬运装置用于将货物存取于储货装置6。
储货装置6包括分布在不同高度的多个层板61,以及用于支承各层板61的横梁62,多个层板61沿固定立柱架11的长度方向间隔设置,一个层板61对应一个横梁62。
横梁62的两端分别安装于两个固定立柱架11,层板61具有沿水平分布的两端,层板61的一端固定于横梁62,层板61的另一端悬空并且远离横梁62,层板61用于放置货物。
搬运装置包括货叉托架,货叉,以及旋转驱动组件(图未示)。其中,货叉和旋转驱动组件均安装于货叉托架。
货叉托架安装于第二固定柱12,驱动组件20可驱动第二固定柱12沿固定立柱架11的长度方向相对于固定立柱架22往复移动,以使得搬运装置相对于储货装置6升降。货叉活动安装于货叉托架,货叉可相对货叉托架可进行伸缩折叠,旋转驱动组件安装于货叉与货叉托架之间,货叉用于对货物进行取放,旋转驱动组件用于驱动货叉旋转,以使得货叉朝向预设方向以对货物进行拾取或放置。具体地,货叉托架安装于第二固定柱12的移动横梁123。
第八实施例
参见图31至图41所示,本申请提供的搬运机器人,包括移动底盘100、驱动组件400、立柱组件200、搬运装置300和至少一个导向结构。
立柱组件200沿竖直方向延伸,立柱组件200与移动底盘100通过导向结构滚动连接,移动底盘100与驱动组件400连接,驱动组件400用于驱动搬运装置300沿竖直方向上升或下降;
和/或,立柱组件200包括通过导向结构滚动的固定立柱架210和活动立柱架220,驱动组件400用于驱动活动立柱架220相对于固定立柱架210沿竖直方向上升或下降。
在具体实现时,移动底盘100可以包括底板110、驱动轮组件120和从动轮组件130,立柱组件200和驱动组件400均可与底板110连接,或者驱动组件400和搬运装置300均连接在立柱组件200上,立柱组件200连接在底板110上。立柱组件200沿竖直方向朝向底板110的上方延伸,其中,立柱组件200的延伸方向竖直方向也可以称为搬运机器人的高度方向(即图3中Z方向)。通过底板110支撑立柱组件200、搬运装置300和驱动组件400,通过驱动轮组件120带动底板110移动,以实现搬运机器人在地面移动。
搬运机器人还可以包括多个存储货架600,存储货架600位于立柱组件200上,且沿立柱组件200的高度方向间隔设置。其中,相邻的存储货架600之间的间距可以相同,或者相邻的存储货架600之间的间距不同,可以根据需求对于存储货架600的位置进行设置,本实施例在此不加以限定。
其中,存储货架600用于存放货物,搬运装置300可以在存储货架600或者其它放置货物的货架上存放或者拿取货物。其中,搬运装置300可以为机械臂、抱夹式货叉或者卡爪等本领域技术人员熟知的存取货物的装置。示例性的,搬运装置300可以包括货叉托架(图中未示出)、货叉(图中未示出)、和旋转驱动装置(图中未示出)。其中,货叉和旋转驱动装置均安装于货叉托架上。
在本申请中,驱动组件400与搬运装置300连接,通过驱动组件400驱动搬运装置300相对于立柱组件200沿竖直方向上升或下降,或者,驱动组件400驱动活动立柱架220相对于固定立柱架210沿竖直方向上升或下降。但是,在搬运装置300或活动立柱架220移动的过程中,稳定性较差,容易产生晃动。因此,本申请中通过导向结构滚动连接立柱组件200和搬运装置300,和/或,通过导向结构滚动连接活动立柱架220和固定立柱架210。由此,以减小搬运装置300和/或活动立柱架220上升或下降过程中产生的晃动,提高搬运装置300和/或活动立柱架220在移动过程中的稳定性,从而提高搬运机器人的稳定性,减小搬运机器人使用过程中产生的异响。
下面,结合附图对立柱组件200与移动底盘100通过导向结构滚动连接进行说明。
请继续参见图32、图33、图35至图41所示,在本申请中,导向结构包括第一导向组件50,第一导向组件50包括第一滑槽51和插设于第一滑槽51内的第一导向轮组52,第一滑槽51位于立柱组件200上,且第一滑槽51沿竖直方向延伸;第一导向轮组52与搬运装置300连接,第一导向轮组52沿第一滑槽51的延伸方向滚动。
具体的,导向轮组52包括导向杆5201和至少一个第一导向轮5202,导向轮组52还可以包括至少一对第二导向轮5203,导向杆5201与搬运装置300连接,第一导向轮5202和第二导向轮5203均与导向杆5201连接,且第一导 向轮5202和第二导向轮5203均相对于导向杆5201转动;第一导向轮5202和第二导向轮5203均位于滑槽51内,至少一个第一导向轮5202和/或至少一个第二导向轮5203与第一滑槽51的内壁抵接,各第一导向轮5202可以与第一滑槽51相同的内壁或者不同的内壁抵接,各第二导向轮5203也可以与第一滑槽51相同的内壁或者不同的内壁抵接,第一导向轮5202和第二导向轮5203分别与第一滑槽51的不同内壁抵接。
其中,导向杆5201用于支撑第一导向轮5202和第二导向轮5203,通过第一导向轮5202的轮面和/或第二导向轮5203的轮面分别与第一滑槽51的不同内壁抵接,以减小搬运装置300移动过程中产生的晃动。
在本申请中,第一导向轮5202的轴线与第二导向轮5203的轴线之间具有夹角,第一导向轮5202的轴线和第二导向轮5203的轴线均与第一滑槽51的延伸方向之间具有夹角。由此,保证各第一导向轮5202的轮面和各第二导向轮5203的轮面分别与第一滑槽51的不同内壁抵接。
可选的,第一导向轮5202的轴线与第二导向轮5203的轴线可以相互垂直,第一导向轮5202的轴线和第二导向轮5203的轴线均与第一滑槽51的延伸方向垂直,由此,避免各第一导向轮5202的轮面和各第二导向轮5203相互影响。其中,第一导向轮5202的轴线沿图37中X方向,第二导向轮5203的轴线沿图38中Y方向,第一滑槽51的延伸方向沿图36中Z方向。
搬运装置300包括至少一个连接件310,连接件310与第一导向组件一一对应设置,导向杆5201包括导向杆主体5204和设置在导向杆主体5204上的至少一个第一延伸部5205,第二导向轮5203可转动的连接在第一延伸部5205上,第一导向轮5202可转动的连接在导向杆主体5204上,导向杆5204主体与连接件310连接。
具体的,导向杆主体5204沿竖直方向延伸,第一延伸部5205与导向杆主体5204垂直,第一延伸部5205相对的两侧均连接第二导向轮5203。
下面,结合立柱组件200对于第一导向轮组52中第一导向轮5202和第二导向轮5203的位置进行说明。
请继续参见图31至图41所示,立柱组件200包括固定立柱架210和活动立柱架220,第一滑槽51位于活动立柱架220上,固定立柱架的第一端210a固接于移动底盘100上,且固定立柱架210朝向竖直方向延伸,活动立柱架220与固定立柱架210连接,搬运装置300与活动立柱架220连接,且相对于活动立柱架220沿竖直方向移动。
可选的,活动立柱架220相对于与固定立柱架210沿竖直方向移动。由此,实现了立柱组件200的伸缩,这样便于搬运装置300能取到较高位置的货物,或者在较高的位置存放货物。
在一些实施例中,驱动组件400可以与活动立柱架220连接,驱动组件400驱动活动立柱架220沿固定立柱架210的延伸方向移动,即活动立柱架220相对于固定立柱架210可沿竖直方向上下移动,由此,实现立柱组件200的伸缩。在另一些实施例中,驱动组件400驱动搬运装置300相对于活动立 柱架220移动,当搬运装置300移动至活动立柱架220的顶端时,驱动组件400通过搬运装置300驱动活动立柱架220沿固定立柱架210的延伸方向移动。
在本申请中,固定立柱架210包括第一固定柱211和第二固定柱212,第一固定柱211和第二固定柱212均与移动底盘100固接。
活动立柱架220包括第一活动柱221和第二活动柱222,第一活动柱221与第一固定柱211连接,第二活动柱222与第二固定柱212连接。第一活动柱221和第二活动柱222均具有第一滑槽51。
其中,第一活动柱221与第一固定柱211可以通过第一滑槽和滑块实现滑动连接,第一活动柱221与第一固定柱211也可以通过第一导向轮组52滚动连接。第二活动柱222与第二固定柱212可以通过第一滑槽和滑块实现滑动连接,第二活动柱222与第二固定柱212也可以通过第一导向轮组52滚动连接。本实施例在此不加以限制。
在本实施例中,搬运装置300位于第一活动柱221和第二活动柱222之间,搬运装置300的相对两侧分别与第一活动柱221和第二活动柱222通过不同的第一导向组件50滚动连接。
具体的,搬运装置300的相对两侧均具有至少一个连接件310,搬运装置第一侧300a的连接件310与第一活动柱221的第一滑槽51内的第一导向轮组52中的导向杆主体5204连接。相应的,搬运装置第二侧的连接件310与第二活动柱222的第一滑槽51内的第一导向轮组52中的导向杆主体5204连接。由此,以稳固连接搬运装置300,保持搬运装置300相对于活动立柱架220移动的稳定性。
其中,搬运装置300与第一活动柱221滚动连接的结构和搬运装置300与第二活动柱222滚动连接的结构相同,为了便于描述,本实施例和附图以搬运装置第一侧300a的连接件310与第一活动柱221的第一滑槽51内的第一导向轮组52中的导向杆主体5204连接作为说明。
在本申请中,第一滑槽51可以包括沿第一滑槽51延伸方向延伸的第一容纳段5101和第二容纳段5102,第一容纳段5101与第二容纳段5102连通,且第二容纳段5102的宽度(即图38中Y方向的长度)小于第一容纳段5101的宽度,即第一滑槽51与第一滑槽51的延伸方向垂直的截面为凸字型。第一导向轮5202和第二导向轮5203位于第一容纳段5101内,导向杆主体5204位于第二容纳段5102内,第一延伸部5205延伸至第一容纳段5101内。由此将第一导向轮5202和第二导向轮5203限制在第一容纳段5101内。
第一导向轮5202的轮面分别与第一容纳段5101相对的两个第一侧面5206抵接;和/或,第二导向轮5203的轮面分别与第一容纳段5101相对的两个第二侧面5207抵接。
参见图31至图43所示,在一些实施例中,立柱组件200的上部具有至少一个限位件250,连接件310上具有至少一个缺口311,缺口311与限位件250一一对应设置,当搬运装置300移动至立柱组件200的第二端时,缺口 311与限位件250抵接。
在具体实现时,缺口311可以与限位件250相匹配,示例性的,限位件250为矩形时,缺口311为与限位件250相匹配的矩形缺口。当搬运装置300移动至立柱组件200的上部时,缺口311与限位件250抵接,以避免搬运装置300移出立柱组件200。限位件250也可以为弹簧、硅胶片或橡胶板片的一者。
为了避免搬运装置300对立柱组件200产生冲击,在一些实施例中,立柱组件200上具有至少一个第一减震件240,当缺口311与限位件250抵接时,连接件310与第一减震件240抵接,通过第一减震件240缓冲搬运装置300对立柱组件200的冲击。
在具体实现时,第一减震件240可以位于立柱组件200的上部立柱组件200的第二端,或者,第一减震件240位于立柱组件200的第二端。其中,第一减震件240为避震器。可以理解的是,第一减震件240还可以为弹簧、硅胶片或橡胶板片的一者,本实施例在此不加以限制。
在一些实施例中,第一减震件240位于第一滑槽51内,限位件250分别位于第一滑槽51相对的两侧。由此,以使搬运装置300与限位件250平稳接触,避免对搬运装置300上的货物造成冲击。
在本申请中,第一活动柱221的第一滑槽51内和第二活动柱222的第一滑槽51内均具有第一减震件240。由此,以平衡搬运装置300对立柱组件200的冲击。
固定立柱架210可以包括固定横梁213,第一固定柱211的第一端和第二固定柱212的第一端均与移动底盘100固接,第一固定柱211和第二固定柱212还通过固定横梁213连接。其中,第一固定柱211的第二端和第二固定柱212的第二端(即固定立柱架的第二端210b)可以通过固定横梁213连接,或者固定横梁213连接位置靠近第一固定柱211的第二端和第二固定柱212的第二端。第一固定柱211和第二固定柱212均与移动底盘100垂直,固定横梁213与第一固定柱211垂直,固定横梁213与第二固定柱212垂直。其中,固定立柱架210上具有支撑座214,驱动机构400连接在支撑座214上。
下面,结合附图对活动立柱架220与固定立柱架210通过导向结构滚动连接进行说明。
参见图31至图35、图44至图49所示,本申请中,导向结构还包括第二导向组件500,固定立柱架210和活动立柱架220通过第二导向组件500滚动连接,驱动组件400驱动活动立柱架220相对于固定立柱架210沿竖直方向移动,第二导向组件500为活动立柱架220移动的过程中进行导向。
具体的,第二导向组件500包括第二滑槽510和第二导向轮组520,第二滑槽510沿竖直方向延伸,第二导向轮组520位于第二滑槽510内并沿第二滑槽510的延伸方向移动,第二滑槽510位于固定立柱架210或活动立柱架220的一者上,第二导向轮组520位于固定立柱架210或活动立柱架220 的另一者上。
为了便于描述,在本申请中,以第二滑槽510位于固定立柱架210上,第二导向轮组520位于活动立柱架220上进行说明,可以理解的是,第二滑槽510和第二导向轮组520的位置可以互换,第二滑槽510位于活动立柱架220上,第二导向轮组520位于固定立柱架210上。
具体的,可以在固定立柱架210上开设第二滑槽510,将第二导向轮组520连接在活动立柱架220上,且第二导向轮组520与第二滑槽510的内壁抵接,活动立柱架220移动的过程中,第二导向轮组520沿着第二滑槽510的内壁滚动,从而减小活动立柱架220产生的晃动,提高立柱组件220的稳定性,减小搬运机器人使用过程中产生的异响。
在本申请中,当第二滑槽510位于固定立柱架210上,活动立柱架220插设于第二滑槽510内,即活动立柱架220套在固定立柱架210内;当第二滑槽510位于活动立柱架220上,固定立柱架210插设于第二滑槽510内,即固定立柱架210套在活动立柱架220内。由此,减小立柱组件200占用的空间。
固定立柱架210包括第一固定柱211和第二固定柱212,第一固定柱211和第二固定柱212均与移动底盘100连接,第一固定柱211和第二固定柱212上均具有第二滑槽510。活动立柱架220包括第一活动柱221和第二活动柱220,第一固定柱221和第二固定柱220上均具有第二导向轮组520。
需要说明的是,第一固定柱211和第二固定柱212的结构相同,第一活动柱221和第二活动柱220的结构相同,本实施例以第一固定柱211和第一活动柱221的附图为例对于立柱组件200和第二导向组件500的连接方式进行说明。
在具体实现时,第二导向轮组520可以包括导向基座521和至少一对第三导向轮522,第二导向轮组520还可以至少一对第四导向轮523,各第三导向轮522和各第四导向轮523均可转动的设置在导向基座521上,至少一个第三导向轮522和/或至少一个第四导向轮523与第二滑槽510的内壁抵接,各第三导向轮522可以与第二滑槽510相同的内壁或者不同的内壁抵接,各第四导向轮523也可以与第二滑槽510相同的内壁或者不同的内壁抵接,第三导向轮522和第四导向轮523分别与第二滑槽510的不同内壁抵接。
其中,导向基座521与固定立柱架210或活动立柱架220连接,导向基座521用于支撑各第三导向轮522和各第四导向轮523。通过第三导向轮522的轮面和/或第四导向轮523的轮面分别与第二滑槽510的不同内壁抵接,以减小活动立柱架220产生的晃动。
在本申请中,第三导向轮522的轴线与第四导向轮523的轴线之间具有夹角,第三导向轮522的轴线和第四导向轮523的轴线均与第二滑槽510的延伸方向之间具有夹角。由此,保证各第三导向轮522的轮面和各第四导向轮523的轮面分别与第二滑槽510的不同内壁抵接
可选的,第三导向轮522的轴线与第四导向轮523的轴线可以相互垂直, 第三导向轮522的轴线和第四导向轮523的轴线均与第二滑槽510的延伸方向垂直,由此,避免各第三导向轮522的轮面和各第四导向轮523相互影响。其中,第三导向轮522的轴线沿图46中Y方向,第四导向轮523的轴线沿图46中X方向,第二滑槽510的延伸方向沿图4中Z方向。
在一些实施例中,导向基座521相对的边缘分别具有至少一个支撑部5211,支撑部5211与导向基座521垂直,第三导向轮522与支撑部5211一一对应设置,第三导向轮522设置在支撑部5211的外侧。其中,在导向基座521相对的边缘(即导向基座521相对的侧边上)分别设置至少一个支撑部5211,第三导向轮522可以通过连接轴连接在支撑部5211的外侧,由此,便于安装第三导向轮522。其中,第三导向轮522所在的平面与导向基座521所在的平面垂直。即第三导向轮522所在的平面为图中XZ面,导向基座521所在的平面为图46中YZ面。
在另一些实施例中,导向基座521上具有至少两个分别朝向导向基座521相对的外侧延伸的第二延伸部5212,第四导向轮523设置在第二延伸部5212上,第四导向轮523与第二延伸部5212一一对应设置,其中,第四导向轮523可以通过连接轴连接在第二延伸部5212上,由此,便于安装第四导向轮523。第四导向轮523所在的平面与导向基座521所在的平面平行。即第四导向轮523所在的平面和导向基座521所在的平面均为图46中XZ面。
本申请提供的搬运机器人,第二延伸部5212和支撑部5211均位于导向基座521同一相对的两侧,第二延伸部5212位于导向基座521同侧的支撑部5211之间,这样,使第三导向轮522和第四导向轮523分散设置,由此,提高立柱组件220的稳定性。在本实施例的附图中,以第三导向轮522为两对,第四导向轮523为一对进行说明。
上述实施例中对于第二导向轮组520的结构进行了说明,下面结合第二导向轮组520的结构,对于第二滑槽510的结构进行说明。
在本申请中,第二滑槽510包括沿第二滑槽510的延伸方向延伸的第三容纳段511,第三容纳段511具有相对的两个第二滑槽侧壁5111和相对的两个第二滑槽侧壁5112。
第二导向轮组520位于第三容纳段511内,各第三导向轮522位于两个第二滑槽侧壁5111之间,各第四导向轮523的轮面分别与两个第二滑槽侧壁5112抵接。由此,第四导向轮523为主导向轮,第三导向轮522为辅助导向轮,当活动立柱架220产生晃动时,第三导向轮522的轮面可以与第二滑槽侧壁5111抵接,以减小活动立柱架220的晃动。
在一些实施例中,第二滑槽510还包括沿第二滑槽510延伸方向延伸的第四容纳段512,第四容纳段512的宽度(即图44中Y方向的长度)小于第三容纳段511的宽度(即图44中Y方向的长度),第四容纳段512与第三容纳段511连通。第一活动柱221和第二活动柱220均包括本体230,本体230位于第四容纳段512内,部分本体230延伸至第三容纳段511内且与导向基座521连接。在安装时,第一活动柱221从第一固定柱211的顶部插于第一 固定柱211的第二滑槽510内,第二活动柱220从第二固定柱212的顶部插于第二固定柱212的第二滑槽510内。通过将第四容纳段512的宽度设置为小于第三容纳段511的宽度,由此将第二导向轮组520限制在第三容纳段511内。
在本申请中,第二导向组件500还包括至少一个第三导向轮组530,第三导向轮组530与活动立柱架220的不同侧壁抵接。其中,第二导向轮组520和第三导向轮组530分别位于活动立柱架220的不同侧壁。
第三导向轮组530包括至少一个第五导向轮531,第三导向轮组530还可以包括至少一个第六导向轮532,各第五导向轮531分别可转动的设置在固定立柱架210相对的两侧,各第六导向轮532分别可转动的设置在固定立柱架210相对的两侧,且第五导向轮531和第六导向轮532位于固定立柱架210同一相对的两侧。部分第五导向轮531延伸至第四容纳段512内,且至少一个第五导向轮531的轮面分别与本体230相对的两侧抵接,和/或,部分第六导向轮532延伸至第四容纳段512内,且至少一个第六导向轮532的轮面分别与本体230相对的两侧抵接。
在一些实施例中,第五导向轮531和第六导向轮532的设置方式可以与第三导向轮522和第二导向轮523的设置方式相同。第五导向轮531的轮面与第六导向轮532的轮面可以分别与本体230的不同侧抵接,即第五导向轮531的轴线可以与第六导向轮532的轴线垂直。
在具体实现时,第一固定柱211和第二固定柱212上均具有第三导向轮组530,且第一固定柱211和第二固定柱212上的第三导向轮组530对称。同样,第一固定柱211和第二固定柱212上均具有第二导向轮组520,且第一固定柱211和第二固定柱212上的第二导向轮组520对称。
在一些实施例中,本体230具有沿竖直方向延伸的导向槽231,第六导向轮532位于导向槽231内,第六导向轮532与导向槽231相对的内侧壁2311抵接和/或第五导向轮531与导向槽231的底壁2312抵接。
在本实施例的附图中,第六导向轮532位于导向槽231内,第五导向轮531与导向槽231的底壁2312抵接。这样,第五导向轮531为主导向轮,第六导向轮532为辅助导向轮,当活动立柱架220产生晃动时,第六导向轮532的轮面可以与导向槽231的侧壁抵接,以减小活动立柱架220的晃动。
为了便于固定第五导向轮531和第六导向轮532,第三导向轮组530还包括至少两个固定板533,第五导向轮531和第六导向轮532连接在固定板533上,固定板533与固定立柱架210固接。
本申请中,各第三导向轮组530位于固定立柱架210的上部,和/或,导向基座521位于活动立柱架220的下部。由此,在第二导向轮组520沿着第二滑槽510的内壁滚动时,通过第二导向轮组520和第三导向轮组530对活动立柱架220进行均匀导向。
在一些实施例中,为了减小活动立柱架220对移动底盘100的冲击,立式支架还包括第二减震件800,第二减震件800与固定立柱架210或移动底 盘100固接,第二减震件800的减震面朝向第二导向轮组520,当本体230的朝向移动底盘100移动时,第二导向轮组520与第二减震件800抵接。
在具体实现时,导向基座521上具有抵接部5213,第二减震件800位于第三容纳段511内,当本体230的朝向移动底盘100移动时,抵接部5213与第二减震件800抵接。
其中,第二减震件800为避震器。可以理解的是,第二减震件800还可以为弹簧、硅胶片或橡胶板片的一者,本实施例在此不加以限制。
在本申请中,还包括指示灯900和/或无线模块1000,指示灯900用于指示搬运机器人工作状态,无线模块1000用于通讯。
具体的,无线模块1000和指示灯900均位于固定立柱架210上,无线模块1000位于固定立柱架220背离移动底盘100的一面上。其中,无线模块1000和指示灯900可以均位于固定横梁213上,无线模块1000可以位于固定横梁213的顶面,指示灯900可以位于固定横梁213的侧面。
本申请中,活动立柱架220还可以包括活动横梁223,第一活动柱221的第二端和第二活动柱222的第二端通过活动横梁223连接。由此,以保持第一活动柱221和第二活动柱222同步移动。
在一些实施例中,立式支架还包括检测模块700和控制模块(图中未示出),检测模块700位于活动横梁223上,驱动机构400和检测模块700均与控制模块电连接,检测模块700用于检测活动立柱架230与其上方的物体的之间的距离,控制模块用于在距离小于预设值时,通过驱动机构400控制活动立柱架220停止移动。由此,可防止活动立柱架220继续朝向其上方的建筑物运动而发生碰撞,避免立式支架造成损及发生安全事故。其中,活动立柱架220上方的物体可以为仓库的横梁、纵梁或者仓库的顶部。
在具体实现时,检测模块700可以位于活动横梁223背离移动底盘100的一面,这样,便于检测模块700检测活动立柱架220与其上方的物体的之间的距离。
可选的,检测模块700可以为测距传感器。具体的,检测模块700可以为超声波传感器、激光测距传感器或者红外线测距传感器等本领域技术人员熟知的测量距离传感器,本实施例在此不加以限制。
参见图31至图51所示,本申请提供的搬运机器人,驱动机构400包括收放组件410和至少一组牵引组件420,牵引组件420包括牵引绳421和导轮组422,牵引绳421绕设在导轮组422上,牵引绳的第一端421a与搬运装置300连接,牵引绳的第二端421b与收放组件410连接,收放组件410收拢或释放牵引绳421,以使搬运装置300相对于活动立柱架240移动。
其中,为了能使搬运装置300相对于活动立柱架220移动,牵引组件420可以设置两组或者两组以上,各牵引组件420分别连接在立柱组件200的相对两侧。
牵引绳421可以是由钢丝制成的钢丝绳,亦可以是尼龙绳。牵引绳421选用钢丝绳,以使搬运装置300相对于活动立柱架220上升或下降时,不因 搬运装置300搬运的货物过重而崩断。
在具体实现时,导轮组422可以包括顶滑轮4221、底滑轮4222和主滑轮4223,顶滑轮4221可拆卸地安装于活动立柱架220第二端的侧面,底滑轮4222可拆卸地安装于活动立柱架220第一端朝向固定立柱架210的侧面,主滑轮4223安装于固定立柱架210的第二端,牵引绳421依次绕过顶滑轮4221、底滑轮4222和主滑轮4223后系于收放组件410。由此,使搬运机器人整体布置结构简化、紧凑,提高了立柱组件200的利用率。
其中,收放组件410可以包括电机411以及绕线筒412,牵引绳的第二端421b与绕线筒412连接,且牵引绳421绕在绕线筒412上,电机411用于驱动绕线筒412转动,以使绕线筒412收拢或释放牵引绳421。
在一些实施例中,收放组件410可以包括电机411、绕线筒412、传动轴413和传动轮组414,牵引绳的第二端421b与绕线筒412连接,且牵引绳421绕在绕线筒412上。传动轮组414包括主动轮4141和与主动轮4141啮合的从动轮4142,电机411的输出轴与主动轮4141连接,从动轮4142套接在传动轴413上,绕线筒412设置至少一个,绕线筒412与牵引绳421一一对应设置,绕线筒412套接在传动轴413上。使用时,电机411通过传动轮组414驱动传动轴413转动,传动轴413带动绕线筒412顺时针或逆时针转动,以释放或收拢牵引421,从而控制搬运装置300相对于活动立柱架220上升或下降,以及活动立柱架220相对于固定立柱架210上升或下降。
第九实施例
参见图52至图56所示,本申请提供的搬运机器人,包括移动底盘100、立式支架和搬运装置300;立式支架包括立柱组件200、驱动组件400和第二导向组件500。
具体的,移动底盘100可以包括底板110、驱动轮组件120和从动轮组件130,立柱组件200和驱动组件400均可与底板110连接,或者驱动组件400和搬运装置300均连接在立柱组件200上,立柱组件200连接在底板110上。立柱组件200沿竖直方向朝向底板110的上方延伸,其中,立柱组件200的延伸方向也可以称为搬运机器人的高度方向(即图54中Z方向,也可称为竖直方向)。通过底板110支撑立柱组件200、搬运装置300和驱动组件400,通过驱动轮组件120带动底板110移动,以实现搬运机器人在地面移动。
搬运机器人还可以包括多个存储货架600,存储货架600与上述实施例中结构相同,此处不再赘述。
为了便于搬运装置300能取到较高位置的货物,或者在较高的位置存放货物,立柱组件200可以伸缩。具体的,立柱组件200可以包括固定立柱架210和活动立柱架220,固定立柱架210沿竖直方向朝向移动底盘100的上方延伸,固定立柱架的第一端210a与移动底盘100连接,搬运装置300连接在活动立柱架220上,驱动组件400驱动活动立柱架220沿固定立柱架210的延伸方向移动,即活动立柱架220相对于固定立柱架210可沿竖直方向上下 移动,由此,实现立柱组件200的伸缩。
但是,活动立柱架220沿固定立柱架210上下移动(也可称为上升或下降)的过程中,活动立柱架220容易产生晃动,导致立柱组件220的稳定性较差,使搬运机器人产生异响。基于此,本申请还包括第二导向组件500,固定立柱架210和活动立柱架220通过第二导向组件500连接,驱动组件400驱动活动立柱架220沿固定立柱架210的延伸方向移动,第二导向组件500为活动立柱架220移动的过程中进行导向。
具体的,第二导向组件500包括滑槽510和第三导向轮组520,滑槽510沿竖直方向延伸,第三导向轮组520位于滑槽510内并沿滑槽510的延伸方向移动,滑槽510位于固定立柱架210和活动立柱架220的一者上,第三导向轮组520位于固定立柱架210或活动立柱架220的另一者上。
为了便于描述,在本申请中,以滑槽510位于固定立柱架210上,第三导向轮组520位于活动立柱架220上进行说明,可以理解的是,滑槽510和第三导向轮组520的位置可以互换,滑槽510位于活动立柱架220上,第三导向轮组520位于固定立柱架210上。
具体的,可以在固定立柱架210上开设滑槽510,将第三导向轮组520连接在活动立柱架220上,且第三导向轮组520与滑槽510的内壁抵接,活动立柱架220移动的过程中,第三导向轮组520沿着滑槽510的内壁滚动,从而减小活动立柱架220产生晃动,提高立柱组件220的稳定性,减小搬运机器人使用过程中产生的异响。
在本申请中,当滑槽510位于固定立柱架210上,活动立柱架220插设于滑槽510内;当滑槽510位于活动立柱架220上,固定立柱架210插设于滑槽510内。由此,减小立柱组件200占用的空间。
参见图52至图59所示,固定立柱架210包括第一固定柱211和第二固定柱212,第一固定柱211和第二固定柱212均与移动底盘100连接,第一固定柱211和第二固定柱212上均具有滑槽510。活动立柱架220包括第一活动柱221和第二活动柱222,第一活动柱221和第二活动柱222上均具有第三导向轮组520。
需要说明的是,第一固定柱211和第二固定柱212的结构相同,第一活动柱221和第二活动柱222的结构相同,本实施例以第一固定柱211和第一活动柱221的附图为例对于立柱组件200和第二导向组件500的连接方式进行说明。
在具体实现时,第三导向轮组520可以包括导向基座521和至少一对第三导向轮522,第三导向轮组520还可以包括至少一对第四导向轮523,各第三导向轮522和各第四导向轮523均可转动的设置在导向基座521上,至少一个第三导向轮522和/或至少一个第四导向轮523与滑槽510的内壁抵接,各第三导向轮522可以与滑槽510相同的内壁或者不同的内壁抵接,各第四导向轮523也可以与滑槽510相同的内壁或者不同的内壁抵接,第三导向轮522和第四导向轮523分别与滑槽510的不同内壁抵接。
其中,导向基座521与固定立柱架210或活动立柱架220连接,导向基座521用于支撑各第三导向轮522和各第四导向轮523。通过第三导向轮522的轮面和/或第四导向轮523的轮面分别与滑槽510的不同内壁抵接,以减小活动立柱架220产生晃动。
在本申请中,第三导向轮522的轴线与第四导向轮523的轴线之间具有夹角,第三导向轮522的轴线和第四导向轮523的轴线均与滑槽510的延伸方向之间具有夹角。由此,保证各第三导向轮522的轮面和各第四导向轮523的轮面分别与滑槽510的不同内壁抵接。
可选的,第三导向轮522的轴线与第四导向轮523的轴线可以相互垂直,第三导向轮522的轴线和第四导向轮523的轴线均与滑槽510的延伸方向垂直,由此,避免各第三导向轮522的轮面和各第四导向轮523相互影响。其中,第三导向轮522的轴线沿图59中Y方向,第四导向轮523的轴线沿图59中X方向,滑槽510的延伸方向沿图57中Z方向。
在一些实施例中,导向基座521相对的边缘分别具有至少一个支撑部5211,支撑部5211与导向基座521垂直,第三导向轮522与支撑部5211一一对应设置,第三导向轮522设置在支撑部5211的外侧。其中,在导向基座521相对的边缘(即导向基座521相对的侧边上)分别设置至少一个支撑部5211,第三导向轮522可以通过连接轴连接在支撑部5211的外侧,由此,便于安装第三导向轮522。其中,第三导向轮522所在的平面与导向基座521所在的平面垂直。即第三导向轮522所在的平面为图中XZ面,导向基座521所在的平面为图中YZ面。
在另一些实施例中,导向基座521上具有至少两个分别朝向导向基座521相对的外侧延伸的延伸部5212,第四导向轮523设置在延伸部5212上,第四导向轮523与延伸部5212一一对应设置,其中,第四导向轮523可以通过连接轴连接在延伸部5212上,由此,便于安装第四导向轮523。第四导向轮523所在的平面与导向基座521所在的平面平行。即第四导向轮523所在的平面和导向基座521所在的平面均为图中XZ面。
本申请提供的立式支架,延伸部5212和支撑部5211均位于导向基座521同一相对的两侧,延伸部5212位于导向基座521同侧的支撑部5211之间,这样,使第三导向轮522和第四导向轮523分散设置,由此,提高立柱组件220的稳定性。在本实施例的附图中,以第三导向轮522为两对,第四导向轮523为一对进行说明。
上述实施例中对于第三导向轮组520的结构进行了说明,下面结合第三导向轮组520的结构,对于滑槽510的结构进行说明。
在本申请中,滑槽510包括沿滑槽510的延伸方向延伸的第三容纳段511,第三容纳段511具有相对的两个第一滑槽侧壁5111和相对的两个第二滑槽侧壁5112。
第三导向轮组520位于第三容纳段511内,各第三导向轮522位于两个第一滑槽侧壁5111之间,各第四导向轮523的轮面分别与两个第二滑槽侧壁 5112抵接。由此,第四导向轮523为主导向轮,第三导向轮522为辅助导向轮,当活动立柱架220产生晃动时,第三导向轮522的轮面可以与第一滑槽侧壁5111抵接,以减小活动立柱架220的晃动。
在一些实施例中,滑槽510还包括沿滑槽510延伸方向延伸的第四容纳段512,第四容纳段512的宽度(即图55中Y方向的长度)小于第三容纳段511的宽度(即图55中Y方向的长度),第四容纳段512与第三容纳段511连通。第一活动柱221和第二活动柱222均包括本体230,本体230位于第四容纳段512内,部分本体230延伸至第三容纳段511内且与导向基座521连接。在安装时,第一活动柱221从第一固定柱211的顶部插于第一固定柱211的滑槽510内,第二活动柱222从第二固定柱212的顶部插于第二固定柱212的滑槽510内。通过将第四容纳段512的宽度设置为小于第三容纳段511的宽度,由此将第三导向轮组520限制在第三容纳段511内。
参见图52至图62所示,在本申请中,第二导向组件500还包括至少一个第三导向轮组530,第三导向轮组530包括至少一个第五导向轮531,第三导向轮组530还包括至少一个第六导向轮532,各第五导向轮531分别可转动的设置在固定立柱架210相对的两侧,各第六导向轮532分别可转动的设置在固定立柱架210相对的两侧,且第五导向轮531和第六导向轮532位于固定立柱架210同一相对的两侧。部分第五导向轮531延伸至第四容纳段512内,且至少一个第五导向轮531的轮面分别与本体230相对的两侧抵接,和/或,部分第六导向轮532延伸至第四容纳段512内,且至少一个第六导向轮532的轮面分别与本体230相对的两侧抵接。
在一些实施例中,第五导向轮531和第六导向轮532的设置方式可以与第三导向轮522和第四导向轮523的设置方式相同。第五导向轮531的轮面与第六导向轮532的轮面可以分别与本体230的不同侧抵接,即第五导向轮531的轴线可以与第六导向轮532的轴线垂直。
在具体实现时,第一固定柱211和第二固定柱212上均具有第三导向轮组530,且第一固定柱211和第二固定柱212上的第三导向轮组530对称。同样,第一固定柱211和第二固定柱212上均具有第三导向轮组520,且第一固定柱211和第二固定柱212上的第三导向轮组520对称。
在一些实施例中,本体230具有沿竖直方向延伸的导向槽231,第六导向轮532位于导向槽231内,第六导向轮532与导向槽231相对的内侧壁2311抵接和/或第五导向轮531与导向槽231的底壁2312抵接。
在本实施例的附图中,第六导向轮532位于导向槽231内,第五导向轮531与导向槽231的底壁2312抵接。这样,第五导向轮531为主导向轮,第六导向轮532为辅助导向轮,当活动立柱架220产生晃动时,第六导向轮532的轮面可以与导向槽231的侧壁抵接,以减小活动立柱架220的晃动。
为了便于固定第五导向轮531和第六导向轮532,第三导向轮组530还包括至少两个固定板533,第五导向轮531和第六导向轮532连接在固定板533上,固定板533与固定立柱架210固接。
本申请中,各第三导向轮组530位于固定立柱架210的上部,和/或,导向基座521位于活动立柱架220的下部。由此,在第三导向轮组520沿着滑槽510的内壁滚动时,通过第三导向轮组520和第三导向轮组530对活动立柱架220进行均匀导向。
在一些实施例中,为了减小活动立柱架220对移动底盘100的冲击,立式支架还包括减震件800,减震件800与固定立柱架210或移动底盘100固接,减震件800的减震面朝向第三导向轮组520,当本体230朝向移动底盘100移动时,第三导向轮组520与减震件800抵接。
在具体实现时,导向基座521上具有抵接部5213,减震件800位于第三容纳段511内,当本体230朝向移动底盘100移动时,抵接部5213与减震件800抵接。
其中,减震件800为避震器。可以理解的是,减震件800还可以为弹簧、硅胶片或橡胶板片的一者,本实施例在此不加以限制。
固定立柱架210可以包括固定横梁213,第一固定柱211的第一端和第二固定柱212的第一端均与移动底盘100固接,第一固定柱211和第二固定柱212(即固定立柱架的第二端210b)还通过固定横梁213连接。其中,第一固定柱211的第二端和第二固定柱212的第二端可以通过固定横梁213连接,或者固定横梁213连接位置靠近第一固定柱211的第二端和第二固定柱212的第二端。第一固定柱211和第二固定柱212均与移动底盘100垂直,固定横梁213与第一固定柱211垂直,固定横梁213与第二固定柱212垂直。其中,固定立柱架210上具有支撑座214,驱动组件400连接在支撑座214上。
在本申请中,还包括指示灯900和/或无线模块1000,指示灯900用于指示搬运机器人工作状态,无线模块1000用于通讯。
具体的,无线模块1000和指示灯900和上述第八实施例的结构相同,此处不再赘述。
在一些实施例中,立式支架还包括检测模块700和控制模块(图中未示出),检测模块700和控制模块和上述第八实施例的结构相同,此处不再赘述。
本申请提供的搬运机器人,驱动组件400包括收放组件410和至少一组牵引组件420,收放组件410和牵引组件420和上述第八实施例的结构相同,此处不再赘述。
第十实施例
参见图63至图69所示,本申请提供的搬运机器人,包括移动底盘100、立柱组件200、搬运装置300和驱动组件400。
立柱组件的第一端200a与移动底盘100连接,且立柱组件200朝向竖直方向延伸,立柱组件200和驱动组件400均与搬运装置300连接,驱动组件400用于驱动搬运装置300相对于立柱组件200升降。
还包括至少一个第一减震件240和至少一个第二减震件250,第一减震 件240和第二减震件250在竖直方向上具有间距,第一减震件240和第二减震件250可以分别位于立柱组件200的不同高度,搬运装置300位于第一减震件240和第二减震件250之间。
具体的,移动底盘100可以包括底板110、驱动轮组件120和从动轮组件130,立柱组件200和驱动组件400均可与底板110连接,或者驱动组件400和搬运装置300均连接在立柱组件200上,立柱组件200连接在底板110上。立柱组件200沿竖直方向朝向底板110的上方延伸,其中,立柱组件200的延伸方向也可以称为搬运机器人的高度方向(即图65中Z方向,也可称为竖直方向)。通过底板110支撑立柱组件200、搬运装置300和驱动组件400,通过驱动轮组件120带动底板110移动,以实现搬运机器人在地面移动。
搬运机器人还可以包括多个存储货架600,存储货架600与上述实施例相同,此处不再赘述。
通过驱动组件400驱动搬运装置300相对于立柱组件200上升或者下降。以便于搬运装置300能取到不同高度的货物,或者在不同的高度存放货物。搬运装置300相对于立柱组件200上升或者下降的过程中,容易与立柱组件200的顶端或者移动底盘100发生刚性碰撞,从而影响搬运机器人的稳定性。
基于此,本申请中,通过设置至少一个第一减震件240和至少一个第二减震件250,第一减震件240和第二减震件250在竖直方向上具有间距,且分别位于立柱组件200的不同高度,搬运装置300位于第一减震件240和第二减震件250之间。这样,搬运装置300相对于立柱组件200上升或者下降的过程中,分别与第一减震件240或第二减震件250抵接,以避免搬运装置300在上下移动的过程中分别与支架的立柱组件200或移动底盘100发生刚性碰撞,提高搬运机器人的稳定性。
为了保证搬运装置300上升或者下降过程中,具有最大的移动行程,第一减震件240可以位于立柱组件的第二端200b或者靠近立柱组件的第二端200b,第二减震件250可以位于立柱组件的第一端200a或者靠近立柱组件的第一端200a,或者第二减震件250可以位于移动底盘100上。第一减震件240和第二减震件250位于同一条竖直线上。
本申请提供的搬运机器人,立柱组件200可以包括固定立柱组件210和活动立柱组件220,固定立柱组件210的第一端固接于移动底盘100上,且固定立柱组件210朝向竖直方向延伸,活动立柱组件220与固定立柱组件210连接,搬运装置300与活动立柱组件220连接,且可相对于活动立柱组件220沿竖直方向移动(即搬运装置300相对于活动立柱组件220上升或下降)。
其中,第一减震件240位于活动立柱组件220背离移动底盘300的一端,第二减震件250位于固定立柱组件210的第一端。
为了便于搬运装置300能取到较高位置的货物,或者在较高的位置存放货物,立柱组件200可以伸缩。活动立柱组件220相对于与固定立柱组件210沿竖直方向移动。在一些实施例中,驱动组件400可以与活动立柱组件220连接,驱动组件400驱动活动立柱组件220沿固定立柱组件210的延伸方向 移动,即活动立柱组件220相对于固定立柱组件210可沿竖直方向上下移动,由此,实现立柱组件200的伸缩。在另一些实施例中,驱动组件400驱动搬运装置300相对于活动立柱组件220移动,当搬运装置300移动至活动立柱组件220的顶端时,驱动组件400通过搬运装置300驱动活动立柱组件220沿固定立柱组件210的延伸方向移动。
为了能保证搬运装置300稳固的移动,固定立柱组件210包括两根固定柱和连接在两根固定柱之间的固定横梁213,固定柱第一端与移动底盘100连接。其中,两根固定柱可以为第一固定柱211和第二固定柱212。
活动立柱组件220包括两根活动柱,活动柱与固定柱匹配连接,活动柱上具有沿竖直方向延伸的滑槽260,两根活动柱上的滑槽260的槽口相对,第一减震件240位于滑槽260内。其中,两根活动柱可以为第一活动柱221和第二活动柱222,第一活动柱221插设于第一固定柱211上,第二活动柱222插设于第二固定柱212上。第一活动柱221上的滑槽260和第二活动柱222上的滑槽260的槽口相对,搬运装置300相对的两侧分别插设于两个滑槽260内,由此,搬运装置300沿滑槽260移动,由此,为搬运装置300提供导向。
为了提高搬运装置300移动的稳定性,搬运装置300可以与滑槽260滑动连接或者滚动连接。搬运装置300上可以设置滑块,滑块插设于滑槽260内,以实现搬运装置300可以与滑槽260滑动连接。搬运装置300上可以设置滚轮组件,搬运装置300可以与滑槽260通过滚轮组件滚动连接。
可以理解的是,为了保证活动立柱组件220移动的稳定性,第一活动柱221与第一固定柱211可以通过滑槽和滑块实现滑动连接,第一活动柱221与第一固定柱211也可以通过滚轮组件滚动连接。第二活动柱222与第二固定柱212可以通过滑槽和滑块实现滑动连接,第二活动柱222与第二固定柱212也可以通过滚轮组件滚动连接。本实施例在此不加以限制。
在一些实施例中,固定柱上具有支撑板215,支撑板215位于活动柱的下方,支撑板的第一面215a与移动底盘100的上表面连接,第二减震件250位于支撑板的第二面。
具体的,第一固定柱211和第二固定柱212上均具有支撑板215,且支撑板215分别与第一活动柱221和第二活动柱222相对,由此,第二减震件250在缓冲搬运装置300对于移动底盘100的刚性冲击的同时,第二减震件250也对第一活动柱221和第二活动柱222进行缓冲,以避免第一活动柱221和第二活动柱222对移动底盘100的刚性冲击。
在一些实施例中,活动柱上具有抵接部224,支撑板的第二面或移动底盘100的上具有第二减震件250,活动柱朝向移动底盘100移动,以使抵接部224与第二减震件250抵接。
具体的,第一减震件240可以为弹簧、避震器或柔性板的一者;第二减震件250为弹簧、避震器或柔性板的一者。其中,柔性板可以为橡胶垫、硅胶垫等。
参见图63、图70和图71所示,本申请提供的搬运机器人,活动柱的上部具有至少一个限位件230,搬运装置300上具有至少一个连接件310,连接件310上具有至少一个缺口311,缺口311与限位件230一一对应设置,当搬运装置300移动至立柱组件的第二端200b时,缺口311与限位件230抵接,连接件310与第一减震件240抵接。
在具体实现时,缺口311可以与限位件230相匹配,示例性的,限位件230为矩形时,缺口311为与限位件230相匹配的矩形缺口。当搬运装置300移动至立柱组件的第二端200b时,缺口311与限位件230抵接,以避免搬运装置300移出立柱组件200。限位件230也可以为弹簧、硅胶片或橡胶板片的一者。
在具体实现时,限位件230分别位于滑槽260相对的两侧。由此,以使搬运装置300与限位件230平稳接触,避免对搬运装置300上的货物造成冲击。
本申请提供的搬运机器人,活动立柱组件220还包括活动横梁223,两根活动柱通过活动横梁223连接。即第一活动柱221和第二活动柱222通过活动横梁223连接。第一活动柱221和第二活动柱222远离移动底盘100的一端通过活动横梁223连接,以避免活动横梁223对于搬运装置300行程的影响。
在本申请中,还包括指示灯900和/或无线模块1000,指示灯900用于指示搬运机器人工作状态,无线模块1000用于通讯。
具体的,无线模块1000和指示灯900和上述第八实施例的结构相同,此处不再赘述。
在一些实施例中,立式支架还包括检测模块700和控制模块(图中未示出),检测模块700和控制模块和上述第八实施例的结构相同,此处不再赘述。
本申请提供的搬运机器人,驱动组件400包括收放组件410和至少一组牵引组件420,收放组件410和牵引组件420和上述第八实施例的结构相同,此处不再赘述。
第十一实施例
参见图63至图71所示,本申请提供的搬运机器人,包括移动底盘100、立柱组件200、搬运装置300和驱动组件400。
立柱组件的第一端200a与移动底盘100连接,且立柱组件200朝向竖直方向延伸,立柱组件200和驱动组件400均与搬运装置300连接,驱动组件400用于驱动搬运装置300相对于立柱组件200升降。
立柱组件200上具有供搬运装置300移动的移动路径,移动路径由立柱组件的第一端200a延伸至立柱组件的第二端200b,搬运装置300可在移动路径中移动,移动路径内为无遮挡的空间。
具体的,移动底盘100可以包括底板110、驱动轮组件120和从动轮组件130,立柱组件200和驱动组件400均可与底板110连接,或者驱动组件 400和搬运装置300均连接在立柱组件200上,立柱组件200连接在底板110上。立柱组件200沿竖直方向朝向底板110的上方延伸,其中,立柱组件200的延伸方向也可以称为搬运机器人的高度方向(即图33中Z方向,也可称为竖直方向)。通过底板110支撑立柱组件200、搬运装置300和驱动组件400,通过驱动轮组件120带动底板110移动,以实现搬运机器人在地面移动。
搬运机器人还可以包括多个存储货架600,存储货架600与上述实施例相同,此处不再赘述。
通过驱动组件400驱动搬运装置300相对于立柱组件200上升或者下降。以便于搬运装置300能取到不同高度的货物,或者在不同的高度存放货物。为了避免搬运装置300相对于立柱组件200上升或者下降过程中受到搬运机器人上的其它部件的阻挡,在具体实现时,可以在立柱组件200上设置供搬运装置300移动的移动路径,该移动路径由立柱组件200的第一端延伸至立柱组件200的第二端,该移动路径内为无遮挡的空间,也就是说,搬运装置300在移动路径内移动时,未受到搬运机器人的其他部件的阻挡。由此,可以是搬运装置300顺畅的在立柱组件的第一端200a和立柱组件的第二端200b之间来回移动,保证搬运装置300最大的移动行程,以提高立柱组件200的利用率。
在一实施例中,搬运装置300和驱动组件400分别位于立柱组件200相对的两侧。这样,在避免驱动组件400占用搬运装置300的移动路径内的空间同时,使搬运机器人的结构更加紧凑。
具体的,驱动组件400和各存储货架600位于立柱组件200的同侧。相应的,驱动组件400和各存储货架600均与搬运装置300相对。在避免各存储货架600占用搬运装置300的移动路径内的空间同时,便于搬运装置300在存储货架600上存放或者拿取货物。
为了避免驱动组件400影响搬运装置300在存储货架600上存放或者拿取货物。在一些实施例中,驱动组件400位于存储货架600与移动底盘100之间,即驱动组件400位于最下方的存储货架600和移动底盘100之间,即相邻的两个存储货架600之间未被驱动组件400遮挡,这样,便于搬运装置300在存储货架600上存放或者拿取货物的同时,结构较为紧凑。
其中,驱动组件400还与移动底盘100连接。通过移动底盘100较为稳固的固定驱动组件400。同时,驱动组件400可以为移动底盘100增加配重,使移动底盘100能平稳的移动。
本申请提供的搬运机器人,还包括至少一个第一减震件240和至少一个第二减震件250,第一减震件240和第二减震件250在竖直方向上具有间距,第一减震件240和第二减震件250可以分别位于立柱组件200的不同高度,搬运装置300位于第一减震件240和第二减震件250之间。
搬运装置300相对于立柱组件200上升或者下降的过程中,容易与立柱组件200的顶端或者移动底盘100发生刚性碰撞,从而影响搬运机器人的稳定性。
基于此,本申请中,通过设置至少一个第一减震件240和至少一个第二减震件250,第一减震件240和第二减震件250在竖直方向上具有间距,且分别位于立柱组件200的不同高度,搬运装置300位于第一减震件240和第二减震件250之间。这样,搬运装置300相对于立柱组件200上升或者下降的过程中,分别与第一减震件240或第二减震件250抵接,以避免搬运装置300在上下移动的过程中分别与支架的立柱组件200或移动底盘100发生刚性碰撞,提高搬运机器人的稳定性。
为了保证搬运装置300上升或者下降过程中,具有最大的移动行程,第一减震件240可以位于立柱组件的第二端200b或者靠近立柱组件的第二端200b,第二减震件250可以位于立柱组件的第一端200a或者靠近立柱组件的第一端200a,或者第二减震件250可以位于移动底盘100上。第一减震件240和第二减震件250位于同一条竖直线上。
本申请其余结构与上述第十实施例相同,可参照上述第十实施例,此处不再一一赘述。
第十二实施例
参见图72至图82所示,本申请提供的搬运机器人,包括移动底盘100、驱动组件400、立柱组件200、搬运装置300和至少一个导向组件50。
立柱组件的第一端与移动底盘100连接,立柱组件200沿竖直方向延伸,立柱组件200和搬运装置300通过导向组件50滚动连接,搬运装置300相对于立柱组件200沿竖直方向移动,导向组件50用于为搬运装置300在移动过程中进行导向。
在具体实现时,移动底盘100可以包括底板110、驱动轮组件120和从动轮组件130,立柱组件200和驱动组件400均可与底板110连接,或者驱动组件400和搬运装置300均连接在立柱组件200上,立柱组件200连接在底板110上。立柱组件200沿竖直方向朝向底板110的上方延伸,其中,立柱组件200的延伸方向竖直方向也可以称为搬运机器人的高度方向(即图74中Z方向)。通过底板110支撑立柱组件200、搬运装置300和驱动组件400,通过驱动轮组件120带动底板110移动,以实现搬运机器人在地面移动。
搬运机器人还可以包括多个存储货架600,存储货架600和上述实施例相同,此处不再赘述。
在本申请中,驱动组件400与搬运装置300连接,通过驱动组件400驱动搬运装置300相对于立柱组件200沿竖直方向移动(即搬运装置300相对于立柱组件200上升或下降)。但是,在搬运装置300移动的过程中,稳定性较差,容易产生晃动。因此,本申请中通过导向组件50滚动连接立柱组件200和搬运装置300,由此,以减小搬运装置300的产生晃动,提高搬运装置300在移动过程中的稳定性,减小搬运机器人使用过程中产生的异响。
在本申请中,导向组件50包括滑槽51和插设于滑槽51内的导向轮组52,滑槽51位于立柱组件200上,且滑槽51沿竖直方向延伸;导向轮组52 与搬运装置300连接,导向轮组52沿滑槽51的延伸方向滚动。
具体的,导向轮组52包括导向杆5201和至少一个第一导向轮5202,导向轮组52还可以包括至少一对第二导向轮5203,导向杆5201与搬运装置300连接,第一导向轮5202和第二导向轮5203均与导向杆5201连接,且第一导向轮5202和第二导向轮5203均相对于导向杆5201转动;第一导向轮5202和第二导向轮5203均位于滑槽51内,至少一个第一导向轮5202和/或至少一个第二导向轮5203与滑槽51的内壁抵接,各第一导向轮5202可以与滑槽51相同的内壁或者不同的内壁抵接,各第二导向轮5203也可以与滑槽51相同的内壁或者不同的内壁抵接,第一导向轮5202和第二导向轮5203分别与滑槽51的不同内壁抵接。
其中,导向杆5201用于支撑第一导向轮5202和第二导向轮5203,通过第一导向轮5202的轮面和/或第二导向轮5203的轮面分别与滑槽51的不同内壁抵接,以减小搬运装置300移动过程中产生的晃动。
在本申请中,第一导向轮5202的轴线与第二导向轮5203的轴线之间具有夹角,第一导向轮5202的轴线和第二导向轮5203的轴线均与滑槽51的延伸方向之间具有夹角。由此,保证各第一导向轮5202的轮面和各第二导向轮5203的轮面分别与滑槽51的不同内壁抵接。
可选的,第一导向轮5202的轴线与第二导向轮5203的轴线可以相互垂直,第一导向轮5202的轴线和第二导向轮5203的轴线均与滑槽51的延伸方向垂直,由此,避免各第一导向轮5202的轮面和各第二导向轮5203相互影响。其中,第一导向轮5202的轴线沿图7中X方向,第二导向轮5203的轴线沿图8中Y方向,滑槽51的延伸方向沿图77中Z方向。
搬运装置300包括至少一个连接件310,连接件310与导向组件51一一对应设置,导向杆5201包括导向杆主体5204和设置在导向杆主体5204上的至少一个延伸部5205,第二导向轮5203可转动的连接在延伸部5205上,第一导向轮5202可转动的连接在导向杆主体5204上,导向杆5204主体与连接件310连接。
具体的,导向杆主体5204沿竖直方向延伸,延伸部5205与导向杆主体5204垂直,延伸部5205相对的两侧均连接第二导向轮5203。
下面,结合立柱组件200对于导向轮组52中第一导向轮5202和第二导向轮5203的位置进行说明。
立柱组件200包括固定立柱架210和活动立柱架220,滑槽51位于活动立柱架220上,固定立柱架的第一端210a固接于移动底盘100上,且固定立柱架210朝向竖直方向延伸,活动立柱架220与固定立柱架210连接,搬运装置300与活动立柱架220连接,且相对于活动立柱架220沿竖直方向移动。
可选的,活动立柱架220相对于与固定立柱架210沿竖直方向移动。由此,实现了立柱组件200的伸缩,这样便于搬运装置300能取到较高位置的货物,或者在较高的位置存放货物。
在一些实施例中,驱动组件400可以与活动立柱架220连接,驱动组件 400驱动活动立柱架220沿固定立柱架210的延伸方向移动,即活动立柱架220相对于固定立柱架210可沿竖直方向上下移动,由此,实现立柱组件200的伸缩。在另一些实施例中,驱动组件400驱动搬运装置300相对于活动立柱架220移动,当搬运装置300移动至活动立柱架220的顶端时,驱动组件400通过搬运装置300驱动活动立柱架220沿固定立柱架210的延伸方向移动。
在本申请中,固定立柱架210包括第一固定柱211和第二固定柱212,第一固定柱211和第二固定柱212均与移动底盘100固接。
活动立柱架220包括第一活动柱221和第二活动柱222,第一活动柱221与第一固定柱211连接,第二活动柱222与第二固定柱212连接。第一活动柱221和第二活动柱222均具有滑槽51。
其中,第一活动柱221与第一固定柱211可以通过滑槽和滑块实现滑动连接,第一活动柱221与第一固定柱211也可以通过导向轮组52滚动连接。第二活动柱222与第二固定柱212可以通过滑槽和滑块实现滑动连接,第二活动柱222与第二固定柱212也可以通过导向轮组52滚动连接。本实施例在此不加以限制。
在本实施例中,搬运装置300位于第一活动柱221和第二活动柱222之间,搬运装置300的相对两侧分别与第一活动柱221和第二活动柱222通过不同的导向组件50滚动连接。
具体的,搬运装置300的相对两侧均具有至少一个连接件310,搬运装置第一侧300a的连接件310与第一活动柱221的滑槽51内的导向轮组52中的导向杆主体5204连接。相应的,搬运装置第二侧的连接件310与第二活动柱222的滑槽51内的导向轮组52中的导向杆主体5204连接。由此,以稳固连接搬运装置300,保持搬运装置300相对于活动立柱架220移动的稳定性。
其中,搬运装置300与第一活动柱221滚动连接的结构和搬运装置300与第二活动柱222滚动连接的结构相同,为了便于描述,本实施例和附图以搬运装置第一侧300a的连接件310与第一活动柱221的滑槽51内的导向轮组52中的导向杆主体5204连接作为说明。
在本申请中,滑槽51可以包括沿滑槽51延伸方向延伸的第一容纳段5101和第二容纳段5102,第一容纳段5101与第二容纳段5102连通,且第二容纳段5102的宽度(即图79中Y方向的长度)小于第一容纳段5101的宽度,即滑槽51的横截面形状为凸字型。第一导向轮5202和第二导向轮5203位于第一容纳段5101内,导向杆主体5204位于第二容纳段5102内,延伸部5205延伸至第一容纳段5101内。由此将第一导向轮5202和第二导向轮5203限制在第一容纳段5101内。
第一导向轮5202的轮面分别与第一容纳段5101相对的两个第一侧面5206抵接;和/或,第二导向轮5203的轮面分别与第一容纳段5101相对的两个第二侧面5207抵接。
参见图72至图84所示,在一些实施例中,立柱组件200的上部具有至 少一个限位件230,连接件310上具有至少一个缺口311,缺口311与限位件230一一对应设置,当搬运装置300移动至立柱组件200的第二端时,缺口311与限位件230抵接。
在具体实现时,缺口311可以与限位件230相匹配,示例性的,限位件230为矩形时,缺口311为与限位件230相匹配的矩形缺口。当搬运装置300移动至立柱组件200的上部时,缺口311与限位件230抵接,以避免搬运装置300移出立柱组件200。限位件230也可以为弹簧、硅胶片或橡胶板片的一者。
为了避免搬运装置300对立柱组件200产生冲击,在一些实施例中,立柱组件200上具有至少一个减震件240,当缺口311与限位件230抵接时,连接件310与减震件240抵接,通过减震件240缓冲搬运装置300对立柱组件200的冲击。
在具体实现时,减震件240可以位于立柱组件200的上部,或者,减震件240位于立柱组件200的第二端。其中,减震件240为避震器。可以理解的是,减震件240还可以为弹簧、硅胶片或橡胶板片的一者,本实施例在此不加以限制。
在一些实施例中,减震件240位于滑槽51内,限位件230分别位于滑槽51相对的两侧。
在本申请中,第一活动柱221的滑槽51内和第二活动柱222的滑槽51内均具有减震件240。由此,以平衡搬运装置300对立柱组件200的冲击。
固定立柱架210可以包括固定横梁213,第一固定柱211的第一端和第二固定柱212的第一端均与移动底盘100固接,第一固定柱211和第二固定柱212还通过固定横梁213连接。其中,第一固定柱211的第二端和第二固定柱212的第二端(即固定立柱架的第二端210b)可以通过固定横梁213连接,或者固定横梁213连接位置靠近第一固定柱211的第二端和第二固定柱212的第二端。第一固定柱211和第二固定柱212均与移动底盘100垂直,固定横梁213与第一固定柱211垂直,固定横梁213与第二固定柱212垂直。其中,固定立柱架210上具有支撑座214,驱动组件400连接在支撑座214上。
在本申请中,还包括指示灯900和/或无线模块1000,指示灯900用于指示搬运机器人工作状态,无线模块1000用于通讯。
具体的,无线模块1000和指示灯900和上述第八实施例的结构相同,此处不再赘述。
在一些实施例中,立式支架还包括检测模块700和控制模块(图中未示出),检测模块700和控制模块和上述第八实施例的结构相同,此处不再赘述。
本申请提供的搬运机器人,驱动组件400包括收放组件410和至少一组牵引组件420,收放组件410和牵引组件420和上述第八实施例的结构相同,此处不再赘述。
需要说明的是,在本申请中,各实施例中有的零部件名称相同,但是零部件标号不同,且对应不同的图中的位置,具体以各实施例中的附图以及与附图对应描述进行理解。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (150)

  1. 一种控制搬运机器人的方法,其特征在于,所述搬运机器人包括立式支架及搬运装置,所述立式支架包括固定立柱架和活动立柱架,所述搬运装置活动设置于所述活动立柱架,所述活动立柱架活动设置于所述固定立柱架,所述搬运装置用于搬运货物,所述方法包括:
    接收运动指令;
    根据所述运动指令,驱使所述搬运装置相对于所述活动立柱架运动,和/或,驱使所述活动立柱架相对于所述固定立柱架运动。
  2. 根据权利要求1所述的方法,其特征在于,所述运动指令包括第一上升指令;
    所述根据所述运动指令,驱使所述搬运装置相对于所述活动立柱架运动,和/或,驱使所述活动立柱架相对于所述固定立柱架运动的步骤包括:
    根据所述第一上升指令,获取第一指定上升高度;
    驱使所述搬运装置相对于所述活动立柱架向上运动;
    在所述搬运装置运动至所述活动立柱架的顶部之前,所述搬运装置运动至所述第一指定上升高度时,则停止抬升所述搬运装置。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    当所述搬运装置运动至所述活动立柱架的顶部之后,所述搬运装置尚未运动至所述第一指定上升高度,则驱动所述搬运装置和活动立柱架同时相对于所述固定立柱架向上运动,直至所述搬运装置到达所述第一指定上升高度。
  4. 根据权利要求1所述的方法,其特征在于,所述运动指令包括第二上升指令;
    所述根据所述运动指令,驱使所述搬运装置相对于所述活动立柱架运动,和/或,驱使所述活动立柱架相对于所述固定立柱架运动的步骤包括:
    根据所述第二上升指令,获取第二指定上升高度;
    驱使所述活动立柱架相对于固定立柱架向上运动,直到其顶部超过所述第二指定上升高度后停止,随后驱使所述搬运装置相对于活动立柱架向上运动,直至所述搬运装置到达所述第二指定上升高度。
  5. 根据权利要求1所述的方法,其特征在于,所述运动指令包括第三上升指令;
    所述根据所述运动指令,驱使所述搬运装置相对于所述活动立柱架运动,和/或,驱使所述活动立柱架相对于所述固定立柱架运动的步骤包括:
    根据所述第三上升指令,获取第三指定上升高度;
    驱使所述活动立柱架及所述搬运装置同时向上运动,直至所述搬运装置达到所述第三指定上升高度。
  6. 根据权利要求1所述的方法,其特征在于,所述运动指令包括第一下降指令;
    所述根据所述运动指令,驱使所述搬运装置相对于所述活动立柱架运动,和/或,驱使所述活动立柱架相对于所述固定立柱架运动的步骤,进一步包括:
    根据所述第一下降指令,获取第一指定下降高度;
    驱动所述搬运装置和活动立柱架同时相对于所述固定立柱架向下运动;
    在所述活动立柱架运动至所述固定立柱架的底部之前,所述搬运装置下降至所述第一指定下降高度时,则控制所述活动立柱架和所述搬运装置停止运动。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    在所述活动立柱架运动至所述固定立柱架的底部之后,所述搬运装置尚未下降至所述第一指定下降高度时,则控制所述搬运装置相对于活动立柱架向下运动,直至所述搬运装置运动至所述第一指定下降高度。
  8. 根据权利要求1所述的方法,其特征在于,所述运动指令包括第二下降指令;
    所述根据所述运动指令,驱使所述搬运装置相对于所述活动立柱架运动,和/或,驱使所述活动立柱架相对于所述固定立柱架运动的步骤,进一步包括:
    根据所述第二下降指令,获取第二指定下降高度;
    驱动所述搬运装置相对于活动立柱架先向下运动,后再驱动所述活动立柱架相对于固定立柱架向下运动,当所述搬运装置运动至所述活动立柱架的底部之前,所述搬运装置运动至所述第二指定下降高度,则停止下降;
    或者,当所述搬运装置运动至所述活动立柱架的底部之后,所述搬运装置尚未运动至所述第二指定下降高度,则驱动所述活动立柱架以及所述搬运装置同步下降,直至所述搬运装置到达所述第二下降高度。
  9. 根据权利要求1所述的方法,其特征在于,所述运动指令包括第三下降指令;
    所述根据所述运动指令,驱使所述搬运装置相对于所述活动立柱架运动,和/或,驱使所述活动立柱架相对于所述固定立柱架运动的步骤,进一步包括:
    根据所述第三下降指令,获取第三指定下降高度;
    驱动所述活动立柱架相对于固定立柱架先向下运动,后再驱动所述搬运装置相对于活动立柱架向下运动,当所述搬运装置运动至所述活动立柱架的底部之前,所述搬运装置运动至所述第三指定下降高度,则停止下降;
    或者,当所述搬运装置运动至所述活动立柱架的底部之后,所述搬运装置尚未运动至所述第三指定下降高度,则驱动所述活动立柱架以及所述搬运装置同步下降,直至所述搬运装置到达所述第三下降高度。
  10. 根据权利要求1-9中任意一项所述的方法,其特征在于,所述搬运装置包括托板以及搬运组件,所述搬运机器人还包括设置于固定立柱架的存储装置;
    所述方法还包括:控制所述搬运组件搬运货物。
  11. 根据权利要求10所述的方法,其特征在于,所述控制所述搬运组件搬运货物的步骤,进一步包括:
    控制所述搬运组件将位于所述托板上的货物推出。
  12. 根据权利要求10所述的方法,其特征在于,所述控制所述搬运组件 搬运货物的步骤,进一步包括:
    控制所述搬运组件将位于所述存储装置上的货物拉至所述托板。
  13. 根据权利要求1-9中任意一项所述的方法,其特征在于,所述搬运机器人还包括可移动底盘,所述固定立柱架安装于所述可移动底盘;
    所述方法还包括:
    接收移动命令,其中,所述移动命令包括目标位置;
    驱动所述移动底盘移动至所述目标位置。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    在所述搬运机器人移动的过程中,判断所述搬运机器人行驶路径中行进方向上是否存在障碍物;
    若存在,则获取所述障碍物距离地面的第一高度;
    获取所述搬运机器人顶部当前距离地面的第二高度,以及,在所述活动立柱架完全收回时所述搬运机器人顶部距离地面的第三高度;
    判断所述第二高度是否大于所述第一高度;
    若大于所述第一高度,则判断所述第三高度是否小于所述第一高度;
    若所述第三高度小于所述第一高度,则降低所述搬运机器距离地面的高度,直至其小于所述第一高度;
    所述搬运机器人通过所述障碍物。
  15. 根据权利要求14所述的方法,其特征在于,所述障碍物以及所述障碍物距离地面的的第一高度是从预先存储的三维地图中获取得到。
  16. 根据权利要求14所述的方法,其特征在于,所述搬运机器人还包括感应装置,所述感应装置安装于所述搬运机器人上;
    所述在所述搬运机器人移动的过程中,判断所述搬运机器人驶路径中行进方向上是否存在障碍物的步骤进一步包括:在所述搬运机器人移动的过程中,所述搬运机器人通过所述感应装置感应所述搬运机器人前方是否存在障碍物。
  17. 一种控制搬运机器人的装置,其特征在于,所述搬运机器人包括立式支架及搬运装置,所述立式支架包括固定立柱架和活动立柱架,所述搬运装置活动设置于所述活动立柱架,所述活动立柱架活动设置于所述固定立柱架,所述搬运装置固定于所述活动立柱架,并且所述搬运装置用于搬运货物,所述装置包括:
    运动指令接收模块,用于接收运动指令;
    驱动模块,用于驱使所述搬运装置相对于所述活动立柱架运动,和/或,驱使所述活动立柱架相对于所述固定立柱架运动。
  18. 一种搬运机器人,其特征在于,包括:
    立式支架,包括固定立柱架和活动立柱架,所述活动立柱架活动设置于所述固定立柱架;
    搬运装置,活动设置于所述活动立柱架;
    驱动组件,用于驱使所述搬运装置相对于所述活动立柱架运动,和/或, 驱使所述活动立柱架相对于所述固定立柱架运动;
    至少一个处理器;以及
    存储器,所述存储器与所述至少一个处理器通信连接,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-16中任一项所述的方法。
  19. 根据权利要求18所述的搬运机器人,其特征在于,所述搬运机器人还包括移动底盘,所述立式支架安装于所述移动底盘上;
    所述驱动组件包括收放组件、牵引绳以及导轮组,所述导轮组包括顶滑轮、底滑轮以及主滑轮;
    所述顶滑轮安装于所述活动立柱架远离所述移动底盘的一端,所述底滑轮安装于所述活动立柱架的另一端,所述主滑轮安装于所述固定立柱架远离所述移动底盘的一端,所述牵引绳的一端依次绕过所述顶滑轮、所述底滑轮以及所述主滑轮后系于所述收放组件,所述收放组件收拢或释放所述牵引绳,以驱动所述搬运装置相对于活动立柱架运移动,和/或,驱动所述搬运装置和活动立柱架相对于所述固定立柱架运动。
  20. 根据权利要求19所述的搬运机器人,其特征在于,还包括第一检测器,所述第一检测器安装于所述活动立柱架远离所述移动底盘的一端,所述第一检测器与所述驱动组件连接,所述第一检测器用于检测所述活动立柱架与其上方的建筑物体的距离。
  21. 根据权利要求20所述的搬运机器人,其特征于,还包括制动装置,所述制动装置用于对所述活动立柱架进行制动,使得所述活动立柱架相对所述固定立柱架停止移动。
  22. 根据权利要求21所述的搬运机器人,其特征于,
    所述制动装置包括制动盘、导向底座以及止动件;
    所述制动盘与所述驱动组件连接,所述驱动组件的输出端可驱动所述制动盘转动,并且所述制动盘可制动所述驱动组件的输出端,所述制动盘设有至少一个销孔,所述导向底座安装于所述固定立柱架,所述导向底座设有插槽,所述止动件活动插入所述插槽,所述止动件可沿所述插槽移动,以使得所述止动件的一端插入或脱离所述销孔,以阻止所述制动盘转动或解除对所述制动盘的限制。
  23. 根据权利要求19所述的搬运机器人,其特征在于,还包括主减震件;
    所述主减震件安装于所述固定立柱架靠近所述移动底盘的一端,并位于所述活动立柱架的下方;
    当所述活动立柱架下降至所述预设升降行程的最低点时,所述活动立柱架与所述主减震件相抵接。
  24. 一种立式支架,用于搬运机器人,所述搬运机器人包括底盘、储货装置和搬运装置,其特征在于,
    立式支架包括:立柱组件,用于安装储货装置和搬运装置,所述立柱组件包括固定立柱架及活动立柱架,所述固定立柱架的一端用于安装于所述搬 运机器人的底盘,所述活动立柱架安装于所述固定立柱架,且所述活动立柱架可相对于所述固定立柱架在预设行程内升降。
  25. 根据权利要求24所述的立式支架,其特征在于,还包括:
    主减震件,所述主减震件安装于所述固定立柱架,并位于所述活动立柱架的下方;
    驱动组件,用于驱动所述活动立柱架相对于所述固定立柱架上升或下降。
  26. 根据权利要求25所述的立式支架,其特征在于,所述固定立柱架包括第一固定柱、第二固定柱以及固定横梁,所述第一固定柱与所述第二固定柱的一端与所述底盘相连接,且所述第一固定立柱与所述第二固定柱以预设间距设置,所述固定横梁的两端分别与所述第一固定柱以及所述第二固定柱的另一端相连接,所述活动立柱架可活动地安装于所述第一固定柱与所述第二固定柱之间。
  27. 根据权利要求26所述的立式支架,其特征在于,所述活动立柱架包括第一活动柱、第二活动柱以及活动横梁组,所述第一固定柱以及所述第二固定柱分别设有第一收容槽以及第二收容槽,所述第一活动柱收容于所述第一收容槽内,所述第二活动柱收容于所述第二收容槽内,所述活动横梁组的两端分别与所述第一活动柱以及所述第二活动柱连接,以使所述第一活动柱与所述第二活动柱同步移动。
  28. 根据权利要求27所述的立式支架,其特征在于,还包括导向组件,所述导向组件包括导向块以及导轨,所述导向块包括第一导向块以及第二导向块,所述导轨包括第一导轨以及第二导轨;
    所述第一导向块以及所述第二导向块分别安装于所述第一收容槽以及所述第二收容槽的槽底,所述第一导轨以及所述第二导轨分别设置于所述第一活动柱以及所述第二活动柱的侧壁上;
    或者,所述第一导向块以及所述第二导向块分别安装于所述第一活动柱以及所述第二活动柱的侧壁上,所述第一导轨以及所述第二导轨分别设置于所述第一收容槽以及所述第二收容槽的槽底,所述导向块与所述导轨相对滑动,以使所述活动立柱架可相对于所述固定立柱架在预设行程内升降。
  29. 根据权利要求27所述的立式支架,其特征在于,所述固定立柱架还包括限位挡板,所述限位挡板包括第一限位挡板以及第二限位挡板,所述第一限位挡板以及所述第二限位挡板分别安装于所述第一固定柱以及所述第二固定柱的一端,所述第一限位挡板以及第二限位挡板均可拆卸地安装有所述主减震件。
  30. 根据权利要求27所述的立式支架,其特征在于,还包括货叉安装组件,所述货叉安装组件包括第一滑块、第二滑块以及连接块,所述第一活动柱远离所述第一固定柱的一侧设置有第一滑轨,所述第二活动柱远离所述第二固定柱的一侧设置有第二滑轨,所述第一滑块活动安装于所述第一滑轨,所述第二滑块活动安装于所述第二滑轨,所述连接块的两端分别的与所述第一滑块以及所述第二滑块可拆卸地连接;
    当所述货叉安装组件受到沿着所述固定立柱架的轴向方向的拉力时,所述第一滑块以及所述第二滑块分别沿着所述第一滑轨以及所述第二滑轨滑动,以使所述货叉安装组件于预设升降行程内上升或下降。
  31. 根据权利要求30所述的立式支架,其特征在于,还包括副减震件,所述第一活动柱以及所述第二活动柱远离所述底盘的一端设置有开口罩,所述开口罩朝向所述底盘的一端设置通口,所述副减震件安装于所述开口罩内,且所述副减震件的伸缩端穿过所述通口;
    当所述货叉安装组件上升至所述预设升降行程的最高点时,所述第一滑块以及所述第二滑块分别与所述副减震件相抵接。
  32. 根据权利要求25至31任一项所述的立式支架,其特征在于,所述驱动组件包括收放组件以及牵引组件,所述牵引组件包括牵引绳以及导轮组,所述牵引绳的一端绕着所述导轮组并系于所述收放组件上,所述收放组件收拢或释放所述牵引绳,以使所述活动立柱架相对于所述固定立柱架升降。
  33. 根据权利要求32所述的立式支架,其特征在于,所述收放组件包括电机以及绕线筒,所述电机用于驱动所述绕线筒转动,以使所述绕线筒收拢或释放所述牵引绳。
  34. 根据权利要求33所述的立式支架,其特征在于,所述导轮组包括顶滑轮、底滑轮以及主滑轮,所述活动横梁组包括顶横梁以及底横梁,所述顶横梁以及所述底横梁分别位于所述活动立柱架的两端,其中,所述顶滑轮安装于所述顶横梁,所述底滑轮安装于所述底横梁,所述主滑轮安装于所述固定横梁,所述牵引绳的一端系于所述货叉安装组件,所述牵引绳的另一端依次绕过所述顶滑轮、所述底滑轮以及所述主滑轮后系于所述收放组件。
  35. 根据权利要求32所述的立式支架,其特征在于,所述牵引组件的数量为两组,且两组所述牵引组件分别位于所述立式支架的两侧。
  36. 根据权利要求24所述的立式支架,其特征在于,还包括驱动组件;
    所述驱动组件包括收放组件以及牵引组件,所述牵引组件包括牵引绳以及导轮组,所述牵引绳的一端绕着所述导轮组并系于所述收放组件上,所述收放组件收拢或释放所述牵引绳,以使所述活动立柱架相对于所述固定立柱架升降。
  37. 根据权利要求36所述的立式支架,其特征在于,所述导轮组包括顶滑轮、底滑轮以及主滑轮,所述顶滑轮可拆卸地安装于所述活动立柱架远离所述底盘的一端,所述底滑轮可拆卸地安装于所述活动立柱架的另一端,所述主滑轮安装于所述固定立柱架远离所述底盘的一端,所述牵引绳的一端依次绕过所述顶滑轮、所述底滑轮以及所述主滑轮后系于所述收放组件。
  38. 根据权利要求37所述的立式支架,其特征在于,所述固定立柱架包括第一固定柱、第二固定柱以及固定横梁,所述第一固定柱与所述第二固定柱的一端分别与所述底盘相连接,且所述第一固定立柱与所述第二固定柱以预设间距设置,所述固定横梁的两端分别与所述第一固定柱以及所述第二固定柱的另一端相连接,所述活动立柱架可活动地安装于所述第一固定柱与所 述第二固定柱之间,其中,所述主滑轮安装于所述固定横梁。
  39. 根据权利要求38所述的立式支架,其特征在于,所述活动立柱架包括第一活动柱、第二活动柱、顶横梁以及底横梁,所述第一固定柱以及所述第二固定柱分别设有第一收容槽以及第二收容槽,所述第一活动柱收容于所述第一收容槽内,所述第二活动柱收容于所述第二收容槽内,所述顶横梁的两端分别与所述第一活动柱以及所述第二活动柱的一端连接,所述底横梁的两端分别与所述第一活动柱以及所述第二活动柱的另一端连接,其中,所述顶滑轮可拆卸地安装于所述顶横梁,所述底滑轮可拆卸地安装于所述底横梁。
  40. 根据权利要求39所述的立式支架,其特征在于,所述导轮组还包括张紧轮,所述张紧轮可拆卸地安装于所述活动立柱架远离所述底盘的一端,且所述张紧轮位于所述顶滑轮与所述底滑轮之间。
  41. 根据权利要求39所述的立式支架,其特征在于,还包括导向组件,所述导向组件包括导向块以及导轨,导向块包括第一导向块以及第二导向块,所述导轨包括第一导轨以及第二导轨;
    所述第一导向块以及所述第二导向块分别安装于所述第一收容槽以及所述第二收容槽的槽底,所述第一导轨以及所述第二导轨分别设置于所述第一活动柱以及所述第二活动柱的侧壁上;
    或者,所述第一导向块以及所述第二导向块分别安装于所述第一活动柱以及所述第二活动柱的侧壁上,所述第一导轨以及所述第二导轨分别设置于所述第一收容槽以及所述第二收容槽的槽底,所述导向块与所述导轨相对滑动,以使所述活动立柱架可相对于所述固定立柱架在预设行程内升降。
  42. 根据权利要求41所述的立式支架,其特征在于,还包括货叉安装组件,所述货叉安装组件包括第一滑块、第二滑块以及连接块,所述第一活动柱远离所述第一固定柱的一侧设置有第一滑轨,所述第二活动柱远离所述第二固定柱的一侧设置有第二滑轨,所述第一滑块活动安装于所述第一滑轨,所述第二滑块活动安装于所述第二滑轨,所述连接块的两端分别的与所述第一滑块以及所述第二滑块可拆卸地连接;
    当所述货叉安装组件受到沿着所述固定立柱架的轴向方向的拉力时,所述第一滑块以及所述第二滑块分别沿着所述第一滑轨以及所述第二滑轨滑动,以使所述货叉安装组件于预设升降行程内上升或下降。
  43. 根据权利要求42所述的立式支架,其特征在于,还包括行程开关,所述行程开关设置于所述活动立柱架靠近所述底盘的一端,所述连接块设有挡片,所述挡片用于与所述行程开关相抵接。
  44. 根据权利要求36至43任一项所述的立式支架,其特征在于,所述收放组件包括绕线筒、传动轴、调速箱以及电机,所述绕线筒用于缠绕所述牵引绳,所述电机的输出轴与所述调速箱的输入端连接,所述调速箱的输出端安装所述传动轴,所述传动轴用于带动所述绕线筒转动。
  45. 根据权利要求44所述的立式支架,其特征在于,所述牵引组件的数量为两组,所述绕线筒的数量为两个,且一所述绕线筒与所述传动轴的一端 连接。
  46. 根据权利要求24所述的立式支架,其特征在于,所述立式支架还包括:立柱组件、驱动组件和导向组件;
    所述立柱组件包括固定立柱架和活动立柱架,所述活动立柱架用于安装搬运装置,所述固定立柱架用于与所述移动底盘连接,且所述固定立柱架沿竖直方向延伸,所述驱动组件用于驱动所述活动立柱架沿所述固定立柱架的延伸方向移动;
    所述第二导向组件包括第二滑槽和第三导向轮组,所述第二滑槽沿竖直方向延伸,所述第三导向轮组位于所述第二滑槽内并沿所述第二滑槽的延伸方向移动,所述第二滑槽位于所述固定立柱架和所述活动立柱架的一者上,所述第三导向轮组位于另一者上。
  47. 根据权利要求46所述的立式支架,其特征在于,所述第三导向轮组与所述第二滑槽的不同内壁抵接。
  48. 根据权利要求47所述的立式支架,其特征在于,所述第三导向轮组包括导向基座和至少一对第三导向轮,所述导向基座与所述固定立柱架或所述活动立柱架连接,所述第三导向轮可转动的设置在所述导向基座上,至少一个所述第三导向轮的轮面与所述第二滑槽的内壁抵接。
  49. 根据权利要求48所述的立式支架,其特征在于,所述第三导向轮组还包括至少一对第四导向轮,所述第四导向轮可转动的设置在所述导向基座上,至少一所述第四导向轮的轮面与所述第二滑槽的内壁抵接,所述第三导向轮的轮面与所述第四导向轮的轮面分别与所述第二滑槽的不同内壁抵接。
  50. 根据权利要求49所述的立式支架,其特征在于,所述第三导向轮的轴线与所述第四导向轮的轴线之间具有夹角,所述第三导向轮的轴线和所述第四导向轮的轴线均与所述第二滑槽的延伸方向之间具有夹角。
  51. 根据权利要求49所述的立式支架,其特征在于,所述导向基座相对的边缘分别具有至少一个支撑部,所述第三导向轮设置在所述支撑部的外侧;和/或,所述导向基座上具有至少两个分别朝向所述导向基座相对的外侧延伸的延伸部,所述第四导向轮设置在所述延伸部上。
  52. 根据权利要求51所述的立式支架,其特征在于,所述延伸部和所述支撑部均位于所述导向基座同一相对的两侧,所述延伸部位于所述导向基座同侧的所述支撑部之间。
  53. 根据权利要求49至52任一项所述的立式支架,其特征在于,所述第二滑槽包括沿其延伸方向延伸的第三容纳段,所述第三容纳段具有相对的两个第一滑槽侧壁和相对的两个第二滑槽侧壁;
    所述第三导向轮组位于所述第三容纳段内,各所述第三导向轮位于两个所述滑槽侧壁之间,各所述第四导向轮的轮面分别与两个所述第二滑槽侧壁抵接。
  54. 根据权利要求53所述的立式支架,其特征在于,所述固定立柱架包括第一固定柱和第二固定柱,所述第一固定柱和所述第二固定柱均与所述移 动底盘连接,所述第一固定柱和所述第二固定柱上均具有所述第二滑槽;
    所述活动立柱架包括第一活动柱和第二活动柱,所述第一固定柱和/或所述第二固定柱上具有所述第三导向轮组。
  55. 根据权利要求54所述的立式支架,其特征在于,所述第二滑槽还包括沿其延伸方向延伸的第四容纳段,所述第四容纳段的宽度小于所述第三容纳段的宽度,所述第四容纳段与所述第三容纳段连通;
    所述第一活动柱和所述第二活动柱均包括本体,所述本体位于所述第四容纳段内,部分所述本体延伸至所述第三容纳段内且与所述导向基座连接。
  56. 根据权利要求55所述的立式支架,其特征在于,所述第二导向组件还包括至少一个第三导向轮组,所述第三导向轮组包括至少一个第五导向轮,各所述第五导向轮均可转动的设置在所述固定立柱架上,部分所述第五导向轮延伸至第四容纳段内,至少一所述第五导向轮的轮面与所述本体的侧壁抵接。
  57. 根据权利要求56所述的立式支架,其特征在于,所述第三导向轮组还包括至少一个第六导向轮,各所述第六导向轮均可转动的设置在所述固定立柱架上,部分所述第六导向轮延伸至第四容纳段内,至少一所述第六导向轮的轮面与所述本体的侧壁抵接。
  58. 根据权利要求57所述的立式支架,其特征在于,所述本体具有沿竖直方向延伸的导向槽,所述第六导向轮位于所述导向槽内,所述第六导向轮与所述导向槽相对的内侧壁抵接和/或所述第五导向轮与所述导向槽的底壁抵接。
  59. 根据权利要求58所述的立式支架,其特征在于,所述第三导向轮组还包括至少两个固定板,所述第五导向轮和所述第六导向轮连接在所述固定板上,所述固定板与所述固定立柱架固接。
  60. 根据权利要求56所述的立式支架,其特征在于,各所述第三导向轮组位于所述固定立柱架的上部,和/或,所述导向基座固定于所述本体的下部。
  61. 根据权利要求55所述的立式支架,其特征在于,还包括第二减震件,所述第二减震件与所述固定立柱架或所述移动底盘固接,当所述本体朝向所述移动底盘移动时,所述第三导向轮组与所述第二减震件抵接。
  62. 根据权利要求61所述的立式支架,其特征在于,所述导向基座上具有抵接部,所述第二减震件位于所述第三容纳段内,所述抵接部与所述第二减震件抵接。
  63. 根据权利要求62所述的立式支架,其特征在于,所述第二减震件为弹簧、避震器、硅胶片或橡胶板片中的至少一个。
  64. 一种搬运机器人,其特征在于,包括:
    立式支架,包括固定立柱架和活动立柱架,所述活动立柱架活动设置于所述固定立柱架;
    搬运装置,活动设置于所述活动立柱架;
    驱动组件,用于驱使所述搬运装置相对于所述活动立柱架运动,和/或, 驱使所述活动立柱架相对于所述固定立柱架运动。
  65. 根据权利要求64所述的搬运机器人,其特征在于,包括:
    移动底盘;
    所述固定立柱架安装于所述移动底盘;
    所述驱动组件连接所述活动立柱架;以及
    第一检测器,安装于所述活动立柱架远离所述移动底盘的一端,所述第一检测器与所述驱动组件连接,所述第一检测器用于检测所述活动立柱架与其上方的建筑物体的距离。
  66. 根据权利要求65所述的搬运机器人,其特征在于,
    还包括主减震件,所述主减震件安装于所述固定立柱架靠近所述移动底盘的一端,并位于所述活动立柱架的下方。
  67. 根据权利要求66所述的搬运机器人,其特征在于,
    所述主减震件包括缸体、活塞杆和第一弹性件,所述缸体安装于所述固定立柱架,所述活塞杆的外侧壁活动套设于所述缸体,所述活塞杆可相对所述缸体沿自身长度方向运动,所述活塞杆的一端与所述活动立柱架相对设置,所述第一弹性件弹性连接所述缸体和所述活塞杆,所述第一弹性件用于提供使得所述活塞杆抵向所述活动立柱架的弹性势能。
  68. 根据权利要求65所述的搬运机器人,其特征在于,
    所述活动立柱架包括移动竖梁和移动横梁,所述移动竖梁活动安装于所述固定立柱架,所述移动竖梁可沿所述固定立柱架的长度方向相对所述固定立柱架移动,所述移动横梁活动安装于所述移动竖梁,所述移动横梁可沿所述移动竖梁的长度方向相对所述移动竖梁移动,所述驱动组件连接所述移动横梁,所述驱动组件可驱动所述移动横梁移动;
    还包括副减震件,所述副减震件安装于所述移动竖梁远离所述移动底盘的一端,并位于所述移动横梁的上方。
  69. 根据权利要求65所述的搬运机器人,其特征在于,
    还包括第二检测器,所述第二检测器连接所述驱动组件,所述第二检测器用于检测所述活动立柱架相对沿所述固定立柱架的长度方向移动的两个极限位置,以控制所述驱动组件的启停。
  70. 根据权利要求65所述的搬运机器人,其特征在于,
    还包括制动装置,所述制动装置用于对所述活动立柱架进行制动,使得所述活动立柱架相对所述固定立柱架停止移动。
  71. 根据权利要求70所述的搬运机器人,其特征在于,
    所述驱动组件包括电机和传动机构,所述传动机构连接所述电机的输出轴和所述活动立柱架,所述电机可通过所述传动机构驱动所述活动立柱架相对于所述固定立柱架移动;
    所述制动装置连接所述传动机构,所述制动装置可对所述传动机构进行制动,从而实现对所述活动立柱架的制动。
  72. 根据权利要求71所述的搬运机器人,其特征在于,
    所述传动机构包括绕线筒、滑轮组和绳索,所述绕线筒和所述电机的输出轴连接,所述滑轮组转动连接于所述固定立柱架和活动立柱架,所述绳索的一端固定于所述绕线筒,所述绳索的另一端绕过所述滑轮组固定于所述活动立柱架;
    所述制动装置连接所述绕线筒,所述制动装置可对所述绕线筒进行制动,从而实现对所述活动立柱架的制动。
  73. 根据权利要求72所述的搬运机器人,其特征在于,
    所述制动装置包括制动盘、导向底座以及止动件;
    所述制动盘与所述绕线筒连接,所述制动盘设有至少一个销孔,所述导向底座安装于所述固定立柱架,所述导向底座设有插槽,所述止动件活动插入所述插槽,所述止动件可沿所述插槽移动,以使得所述止动件的一端插入或脱离所述销孔,从而阻止所述制动盘转动或解除对所述制动盘的限制。
  74. 根据权利要求73所述的搬运机器人,其特征在于,
    所述止动件包括第一插销、连接杆以及第二插销,所述第一插销的一端活动插入所述插槽,所述连接杆的一端连接所述第一插销的另一端,所述连接杆的另一端连接所述第二插销的一端,所述第一插销可沿所述插槽移动,以使得所述第二插销的另一端插入或脱离所述销孔。
  75. 根据权利要求74所述的搬运机器人,其特征在于,
    所述制动装置还包括凸轮,所述凸轮位于所述导向底座背离所述制动盘的一侧,所述第一插销的另一端与所述凸轮转动连接,所述凸轮的轮面与所述导向底座背向所述制动盘的一面相抵,以使得所述凸轮转动时带动所述第一插销沿所述插槽移动。
  76. 根据权利要求75所述的搬运机器人,其特征在于,
    所述制动装置还包括第二弹性件,所述第二弹性件的一端连接所述第一插销,所述第二弹性件的另一端连接所述导向底座或所述固定立柱架,所述第二弹性件用于提供使所述凸轮与所述导向底座相抵接,以及使所述第一插销保持静止的弹性力。
  77. 根据权利要求65至76任一项所述的搬运机器人,其特征在于,
    还包括存储货架,所述存储货架安装于所述固定立柱架,所述存储货架用于存放货物,所述搬运装置用于将货物存取于所述存储货架。
  78. 根据权利要求64所述的搬运机器人,其特征在于,包括:
    移动底盘;
    所述固定立柱架安装于所述移动底盘;
    搬运装置,所述搬运装置可沿所述活动立柱架的长度方向相对于所述活动立柱架移动。
  79. 根据权利要求78所述的搬运机器人,其特征在于,所述驱动组件包括收放组件、牵引绳以及导轮组,所述导轮组包括顶滑轮、底滑轮以及主滑轮;
    所述顶滑轮安装于所述活动立柱架远离所述移动底盘的一端,所述底滑 轮安装于所述活动立柱架的另一端,所述主滑轮安装于所述固定立柱架远离所述移动底盘的一端,所述牵引绳的一端依次绕过所述顶滑轮、所述底滑轮以及所述主滑轮后系于所述收放组件,所述收放组件收拢或释放所述牵引绳,以驱动所述搬运装置相对于活动立柱架运移动,和/或,驱动所述活动立柱架相对于所述固定立柱架运动。
  80. 根据权利要求79所述的搬运机器人,其特征在于,所述固定立柱架包括第一固定柱、第二固定柱以及固定横梁,所述第一固定柱与所述第二固定柱的一端分别与所述移动底盘相连接,所述固定横梁的两端分别与所述第一固定柱以及所述第二固定柱的另一端相连接,所述活动立柱架可活动地安装于所述第一固定柱与所述第二固定柱之间,其中,所述主滑轮安装于所述固定横梁;
    所述活动立柱架包括第一活动柱、第二活动柱、顶横梁以及底横梁,所述第一固定柱以及所述第二固定柱分别设有第一收容槽以及第二收容槽,所述第一活动柱收容于所述第一收容槽内,所述第二活动柱收容于所述第二收容槽内,所述顶横梁的两端分别与所述第一活动柱以及所述第二活动柱的一端连接,所述底横梁的两端分别与所述第一活动柱以及所述第二活动柱的另一端连接,其中,所述顶滑轮可拆卸地安装于所述顶横梁,所述底滑轮可拆卸地安装于所述底横梁。
  81. 根据权利要求79所述的搬运机器人,其特征在于,所述收放组件包括绕线筒、传动轴、调速箱以及电机,所述绕线筒用于缠绕所述牵引绳,所述电机的输出轴与所述调速箱的输入端连接,所述调速箱的输出端安装所述传动轴,所述传动轴用于带动所述绕线筒转动;
    所述导轮组还包括张紧轮,所述张紧轮可拆卸地安装于所述活动立柱架远离所述移动底盘的一端,且所述张紧轮位于所述顶滑轮与所述底滑轮之间。
  82. 根据权利要求78至81任一项所述的搬运机器人,其特征于,还包括第一检测器,所述第一检测器安装于所述活动立柱架远离所述移动底盘的一端,所述第一检测器与所述驱动组件连接,所述第一检测器用于检测所述活动立柱架与其上方的建筑物体的距离。
  83. 根据权利要求82所述的搬运机器人,其特征于,还包括制动装置,所述制动装置用于对所述活动立柱架进行制动,使得所述活动立柱架相对所述固定立柱架停止移动。
  84. 根据权利要求83所述的搬运机器人,其特征于,所述制动装置包括制动盘、导向底座以及止动件;
    所述制动盘与所述驱动组件连接,所述驱动组件的输出端可驱动所述制动盘转动,并且所述制动盘可制动所述驱动组件的输出端,所述制动盘设有至少一个销孔,所述导向底座安装于所述固定立柱架,所述导向底座设有插槽,所述止动件活动插入所述插槽,所述止动件可沿所述插槽移动,以使得所述止动件的一端插入或脱离所述销孔,以阻止所述制动盘转动或解除对所述制动盘的限制。
  85. 根据权利要求84所述的搬运机器人,其特征于,还包括凸轮,所述凸轮位于所述导向底座背离所述制动盘的一侧,所述止动件远离制动盘的一端与所述凸轮转动连接,所述凸轮的轮面与所述导向底座背向所述制动盘的一面相抵,以使得所述凸轮转动时带动所述止动件沿所述插槽移动;
    所述制动装置还包括弹性件,所述弹性件的一端连接所述止动件,所述弹性件的另一端连接所述导向底座或所述固定立柱架,所述弹性件用于提供使所述凸轮与所述导向底座相抵接,以及使所述止动件保持静止的弹性力。
  86. 根据权利要求78至81任一项所述的搬运机器人,其特征在于,还包括主减震件;
    所述主减震件安装于所述固定立柱架靠近所述移动底盘的一端,并位于所述活动立柱架的下方;
    当所述活动立柱架下降至所述预设升降行程的最低点时,所述活动立柱架与所述主减震件相抵接。
  87. 根据权利要求86所述的搬运机器人,其特征于,还包括货叉安装组件,所述货叉安装组件安装于所述活动立柱架,所述货叉安装组件可沿所述活动立柱架的长度方向相对所述活动立柱架运动,所述搬运装置安装于所述货叉安装组件;
    当所述货叉安装组件受到沿着所述固定立柱架的轴向方向的拉力时,可使得所述货叉安装组件于预设升降行程内上升或下降。
  88. 根据权利要求87所述的搬运机器人,其特征于,还包括副减震件,所述副减震件安装于所述活动立柱架远离所述移动底盘的一端;
    当所述货叉安装组件上升至所述预设升降行程的最高点时,所述货叉安装组件与所述副减震件相抵接。
  89. 一种搬运机器人,其特征在于,包括移动底盘、驱动组件、立柱组件和搬运装置;
    所述立柱组件的第一端与所述移动底盘连接,且所述立柱组件朝向竖直方向延伸,所述立柱组件和所述驱动组件均与所述搬运装置连接,所述驱动组件用于驱动所述搬运装置相对于所述立柱组件升降。
  90. 根据权利要求89所述的搬运机器人,其特征在于,还包括至少一个导向结构;
    所述立柱组件与所述移动底盘通过所述导向结构滚动连接,所述移动底盘与所述驱动组件连接,所述驱动组件用于驱动所述搬运装置沿竖直方向上升或下降;
    和/或,所述立柱组件包括通过所述导向结构滚动连接的固定立柱架和活动立柱架,所述驱动组件用于驱动所述活动立柱架相对于所述固定立柱架沿竖直方向上升或下降。
  91. 根据权利要求90所述的搬运机器人,其特征在于,所述导向结构包括第一导向组件,所述第一导向组件包括第一滑槽和插设于所述第一滑槽内的第一导向轮组,所述第一滑槽位于所述立柱组件上,且沿竖直方向延伸;
    所述第一导向轮组与所述搬运装置连接,所述第一导向轮组沿所述第一滑槽的延伸方向滚动。
  92. 根据权利要求91所述的搬运机器人,其特征在于,所述导向轮组包括导向杆和至少一个第一导向轮,所述导向杆与所述搬运装置连接,所述第一导向轮与所述导向杆连接,且相对于所述导向杆转动;所述第一导向轮位于所述第一滑槽内,至少一所述第一导向轮的轮面与所述第一滑槽的内壁抵接。
  93. 根据权利要求92所述的搬运机器人,其特征在于,所述导向轮组还包括至少一对第二导向轮,第二导向轮与所述导向杆连接,所述第二导向轮位于所述第一滑槽内,至少一所述第二导向轮的轮面与所述第一滑槽的内壁抵接,所述第一导向轮的轮面与所述第二导向轮的轮面分别与所述第一滑槽的不同内壁抵接。
  94. 根据权利要求93所述的搬运机器人,其特征在于,所述第一滑槽包括沿且延伸方向延伸的第一容纳段和第二容纳段,所述第一容纳段与所述第二容纳段连通,所述第一导向轮的轮面分别与所述第一容纳段相对的两个第一侧面抵接;和/或,所述第二导向轮的轮面分别与所述第一容纳段相对的两个第二侧面抵接。
  95. 根据权利要求94所述的搬运机器人,其特征在于,所述第二容纳段的宽度小于所述第一容纳段的宽度。
  96. 根据权利要求90所述的搬运机器人,其特征在于,所述导向结构包括第二导向组件,所述第二导向组件包括第二滑槽和第二导向轮组,所述第二滑槽沿竖直方向延伸,所述第二导向轮组位于第二滑槽内并沿所述第二滑槽的延伸方向移动,所述第二滑槽位于所述固定立柱架或所述活动立柱架的一者上,所述第二导向轮组位于另一者上。
  97. 根据权利要求96所述的搬运机器人,其特征在于,所述第二导向轮组与所述第二滑槽的内壁抵接。
  98. 根据权利要求97所述的搬运机器人,其特征在于,所述第二导向轮组包括导向基座和至少一对第三导向轮,所述导向基座与所述固定立柱架或所述活动立柱架连接,所述第三导向轮可转动的设置在所述导向基座上,至少一所述第三导向轮的轮面与所述第二滑槽的内壁抵接。
  99. 根据权利要求98所述的搬运机器人,其特征在于,所述第二导向轮组还包括至少一对第四导向轮,所述第四导向轮可转动的设置在所述导向基座上,至少一所述第四导向轮的轮面与所述第二滑槽的内壁抵接,所述第三导向轮的轮面与所述第四导向轮的轮面分别与所述第二滑槽的不同内壁抵接。
  100. 根据权利要求99所述的搬运机器人,其特征在于,所述导向基座相对的边缘分别具有至少一个支撑部,所述第三导向轮设置在所述支撑部的外侧;和/或,所述导向基座上具有至少两个分别朝向所述导向基座相对的外侧延伸的第二延伸部,所述第四导向轮设置在所述第二延伸部上。
  101. 根据权利要求100所述的搬运机器人,其特征在于,所述第二延伸 部和所述支撑部均位于所述导向基座同一相对的两侧,所述第二延伸部位于所述导向基座同侧的所述支撑部之间。
  102. 根据权利要求99至101任一项所述的搬运机器人,其特征在于,所述第二滑槽包括沿其延伸方向延伸的第三容纳段,所述第三容纳段具有相对的两个第一滑槽侧壁和相对的两个第二滑槽侧壁;
    所述第二导向轮组位于所述第三容纳段内,各所述第三导向轮位于两个所述第二滑槽侧壁之间,各所述第四导向轮的轮面分别与两个所述第二滑槽侧壁抵接。
  103. 根据权利要求102所述的搬运机器人,其特征在于,所述固定立柱架包括第一固定柱和第二固定柱,所述第一固定柱和所述第二固定柱均与所述移动底盘连接,所述第一固定柱和所述第二固定柱上均具有所述第二滑槽;
    所述活动立柱架包括第一活动柱和第二活动柱,所述第一固定柱和/或所述第二固定柱上具有所述第二导向轮组。
  104. 根据权利要求103所述的搬运机器人,其特征在于,所述第二滑槽还包括沿其延伸方向延伸的第四容纳段,所述第四容纳段的宽度小于所述第三容纳段的宽度,所述第四容纳段与所述第三容纳段连通;
    所述第一活动柱和所述第二活动柱均包括本体,所述本体位于所述第四容纳段内,部分所述本体延伸至所述第三容纳段内且与所述导向基座连接。
  105. 根据权利要求96所述的搬运机器人,其特征在于,所述第二导向组件还包括至少一个第三导向轮组,所述第三导向轮组与所述活动立柱架的不同侧壁抵接。
  106. 根据权利要求104所述的搬运机器人,其特征在于,所述第三导向轮组包括至少一个第五导向轮,各所述第五导向轮均可转动的设置在所述固定立柱架上,部分所述第三导向轮延伸至第二容纳段内,至少一所述第五导向轮的轮面与所述本体的侧壁抵接。
  107. 根据权利要求106所述的立式支架,其特征在于,所述第三导向轮组还包括至少一个第六导向轮,各所述第六导向轮均可转动的设置在所述固定立柱架上,部分所述第六导向轮延伸至第二容纳段内,至少一所述第六导向轮的轮面分别与所述本体的侧壁抵接。
  108. 根据权利要求93至95任一项所述的搬运机器人,其特征在于,所述搬运装置包括至少一个连接件,所述连接件与所述第一导向组件一一对应设置,所述导向杆包括导向杆主体和设置在所述导向杆主体上的至少一个延伸部,所述第二导向轮可转动的连接在所述延伸部上,所述第一导向轮可转动的连接在所述导向杆主体上,所述导向杆主体与所述连接件连接。
  109. 根据权利要求108所述的搬运机器人,其特征在于,所述立柱组件的上部具有至少一个限位件,所述连接件上具有至少一个缺口,所述缺口与所述限位件一一对应设置,当所述搬运装置移动至所述立柱组件的第二端时,所述缺口与所述限位件抵接。
  110. 根据权利要求109所述的搬运机器人,其特征在于,所述立柱组件 上具有至少一个第一减震件,当所述缺口与所述限位件抵接时,所述连接件与所述第一减震件抵接。
  111. 根据权利要110所述的搬运机器人,其特征在于,所述第一减震件位于所述第一滑槽内,所述限位件分别位于所述第一滑槽相对的两侧。
  112. 根据权利要求111所述的搬运机器人,其特征在于,还包括至少一个第二减震件,所述第一减震件和所述第二减震件在竖直方向上具有间距,所述搬运装置位于所述第一减震件和所述第二减震件之间。
  113. 根据权利要求89所述的搬运机器人,其特征在于,所述立柱组件上具有供所述搬运装置移动的移动路径,所述移动路径由所述立柱组件的第一端延伸至所述立柱组件的第二端,所述搬运装置可在所述移动路径中移动,所述移动路径内为无遮挡的空间。
  114. 根据权利要求113所述的搬运机器人,其特征在于,所述搬运装置和所述驱动组件分别位于所述立柱组件相对的两侧。
  115. 根据权利要求113所述的搬运机器人,其特征在于,还包括多个存储货架,所述存储货架位于所述立柱组件上,所述存储货架沿竖直方向间隔设置,所述驱动组件和各所述存储货架位于所述立柱组件的同侧。
  116. 根据权利要求115所述的搬运机器人,其特征在于,所述驱动组件位于所述存储货架与所述移动底盘之间,且与所述移动底盘连接。
  117. 根据权利要求113至116任一项所述的搬运机器人,其特征在于,所述驱动组件包括收放组件和至少一组牵引组件,牵引组件包括牵引绳和导轮组,所述牵引绳绕设在所述导轮组上,所述牵引绳的第一端与搬运装置连接,所述牵引绳的第二端与所述收放组件连接,所述收放组件收拢或释放牵引绳,以使所述搬运装置相对于所述立柱组件移动。
  118. 根据权利要求117所述的搬运机器人,其特征在于,所述导轮组包括顶滑轮、底滑轮和主滑轮,所述顶滑轮和所述底滑轮分别可拆卸安装于所述立柱组件的两端的侧面,所述主滑轮安装于所述立柱组件上,所述牵引绳依次绕过所述顶滑轮、所述底滑轮和所述主滑轮后系于所述收放组件上。
  119. 根据权利要求116所述的搬运机器人,其特征在于,所述立柱组件包括固定立柱架和活动立柱架,所述固定立柱架的第一端固接于所述移动底盘上,且所述固定立柱架朝向竖直方向延伸,所述活动立柱架与所述固定立柱架连接,所述搬运装置与所述活动立柱架连接,且可相对于所述活动立柱架沿竖直方向移动。
  120. 根据权利要求119所述的搬运机器人,其特征在于,所述活动立柱架相对于所述固定立柱架沿竖直方向移动,所述搬运装置可沿所述活动立柱架的第一端移动至所述活动立柱架的第二端。
  121. 根据权利要求119所述的搬运机器人,其特征在于,所述活动立柱架还包括活动横梁和两根活动柱,两根所述活动柱通过所述活动横梁连接。
  122. 根据权利要求121所述的搬运机器人,其特征在于,还包括检测模块和控制模块,所述检测模块位于所述活动横梁上,所述驱动组件和所述检 测模块均与所述控制模块连接,所述检测模块用于检测所述活动立柱架与其上方的物体的之间的距离,所述控制模块用于在所述距离小于预设值时,通过所述驱动组件控制所述活动立柱架停止移动。
  123. 根据权利要求89所述的搬运机器人,其特征在于,包括至少一个导向组件;
    所述立柱组件和所述搬运装置通过所述导向组件滚动连接,所述驱动组件驱动所述搬运装置相对于所述立柱组件沿竖直方向移动,所述导向组件用于为所述搬运装置进行导向。
  124. 根据权利要求123所述的搬运机器人,其特征在于,所述导向组件包括滑槽和插设于所述滑槽内的导向轮组,所述滑槽位于所述立柱组件上,且沿竖直方向延伸;
    所述导向轮组与所述搬运装置连接,所述导向轮组沿所述滑槽的延伸方向滚动。
  125. 根据权利要求124所述的搬运机器人,其特征在于,所述导向轮组包括导向杆和至少一个第一导向轮,所述导向杆与所述搬运装置连接,所述第一导向轮与所述导向杆连接,且相对于所述导向杆转动;所述第一导向轮位于所述滑槽内,至少一所述第一导向轮的轮面与所述滑槽的内壁抵接。
  126. 根据权利要求125所述的搬运机器人,其特征在于,所述导向轮组还包括至少一对第二导向轮,第二导向轮与所述导向杆连接,所述第二导向轮位于所述滑槽内,至少一所述第二导向轮的轮面与所述滑槽的内壁抵接,所述第一导向轮的轮面与所述第二导向轮的轮面分别与所述滑槽的不同内壁抵接。
  127. 根据权利要求125所述的搬运机器人,其特征在于,所述第一导向轮的轴线与所述第二导向轮的轴线之间具有夹角,所述第一导向轮的轴线和所述第二导向轮的轴线均与所述滑槽的延伸方向之间具有夹角。
  128. 根据权利要求125所述的搬运机器人,其特征在于,所述搬运装置包括至少一个连接件,所述连接件与所述导向组件一一对应设置,所述导向杆包括导向杆主体和设置在所述导向杆主体上的至少一个延伸部,所述第二导向轮可转动的连接在所述延伸部上,所述第一导向轮可转动的连接在所述导向杆主体上,所述导向杆主体与所述连接件连接。
  129. 根据权利要求128所述的搬运机器人,其特征在于,所述滑槽包括沿且延伸方向延伸的第一容纳段和第二容纳段,所述第一容纳段与所述第二容纳段连通,所述第一导向轮的轮面分别与所述第一容纳段相对的两个第一侧面抵接;和/或,所述第二导向轮的轮面分别与所述第一容纳段相对的两个第二侧面抵接。
  130. 根据权利要求129所述的搬运机器人,其特征在于,所述第二容纳段的宽度小于所述第一容纳段的宽度。
  131. 根据权利要求128至130任一项所述的搬运机器人,其特征在于,所述立柱组件的上部具有至少一个限位件,所述连接件上具有至少一个缺口, 所述缺口与所述限位件一一对应设置,当所述搬运装置移动至所述立柱组件的第二端时,所述缺口与所述限位件抵接。
  132. 根据权利要求131所述的搬运机器人,其特征在于,所述立柱组件上具有至少一个减震件,当所述缺口与所述限位件抵接时,所述连接件与所述减震件抵接。
  133. 根据权利要求132所述的搬运机器人,其特征在于,所述减震件位于所述立柱组件的第二端。
  134. 根据权利要求132所述的搬运机器人,其特征在于,所述减震件位于所述滑槽内,所述限位件分别位于所述滑槽相对的两侧。
  135. 根据权利要求132所述的搬运机器人,其特征在于,所述减震件为弹簧、避震器、硅胶片或橡胶板片中的至少一个;和/或,
    所述限位件为弹簧、硅胶片或橡胶板片中的至少一个。
  136. 根据权利要求128至130任一项所述的搬运机器人,其特征在于,所述立柱组件包括固定立柱架和活动立柱架,所述滑槽位于所述活动立柱架上,所述固定立柱架的第一端固接于所述移动底盘上,且所述固定立柱架朝向所述竖直方向延伸,所述活动立柱架与所述固定立柱架连接,所述搬运装置与所述活动立柱架连接,且相对于所述活动立柱架沿所述竖直方向移动。
  137. 根据权利要求136所述的搬运机器人,其特征在于,所述固定立柱架包括第一固定柱和第二固定柱,所述第一固定柱和所述第二固定柱均与所述移动底盘固接;
    所述活动立柱架包括第一活动柱和第二活动柱,所述第一活动柱与所述第一固定柱连接,所述第二活动柱与所述第二固定柱连接;
    所述第一活动柱和所述第二活动柱均具有所述滑槽。
  138. 根据权利要求137所述的搬运机器人,其特征在于,所述搬运装置位于所述第一活动柱和所述第二活动柱之间,所述连接件的数量为至少两个,所述搬运装置的相对两侧分别与所述第一活动柱和所述第二活动柱通过不同的所述导向组件滚动连接。
  139. 根据权利要求89所述的搬运机器人,其特征在于,还包括还包括至少一个第一减震件和至少一个第二减震件,所述第一减震件和所述第二减震件在竖直方向上具有间距,所述搬运装置位于所述第一减震件和所述第二减震件之间。
  140. 根据权利要求139所述的搬运机器人,其特征在于,所述第一减震件位于所述立柱组件的第二端,所述第二减震件位于所述立柱组件的第一端或者位于所述移动底盘上。
  141. 根据权利要求139所述的搬运机器人,其特征在于,所述立柱组件包括固定立柱组件和活动立柱组件,所述固定立柱组件的第一端固接于所述移动底盘上,且所述固定立柱组件朝向竖直方向延伸,所述活动立柱组件与所述固定立柱组件连接,所述搬运装置与所述活动立柱组件连接,且可相对于所述活动立柱组件沿竖直方向移动;
    所述第一减震件位于所述活动立柱组件背离所述移动底盘的一端,所述第二减震件位于所述固定立柱组件的第一端。
  142. 根据权利要求141所述的搬运机器人,其特征在于,所述活动立柱组件相对于与所述固定立柱组件沿竖直方向移动。
  143. 根据权利要求142所述的搬运机器人,其特征在于,所述固定立柱组件包括两根固定柱和连接在两根所述固定柱之间的固定横梁,所述固定柱第一端与所述移动底盘连接;
    所述活动立柱组件包括两根活动柱,所述活动柱与所述固定柱匹配连接,所述活动柱上具有沿竖直方向延伸的滑槽,两根所述活动柱上的所述滑槽的槽口相对,所述第一减震件位于所述滑槽内。
  144. 根据权利要求143所述的搬运机器人,其特征在于,所述固定柱上具有支撑板,所述支撑板位于所述活动柱的下方,所述支撑板的第一面与所述移动底盘的上表面连接,所述第二减震件位于所述支撑板的第二面。
  145. 根据权利要求139至144任一项所述的搬运机器人,其特征在于,所述第一减震件为弹簧、避震器或柔性板的一者;
    和/或,所述第二减震件为弹簧、避震器或柔性板的一者。
  146. 根据权利要求143所述的搬运机器人,其特征在于,所述活动柱的上部具有至少一个限位件,所述搬运装置上具有至少一个连接件,所述连接件上具有至少一个缺口,所述缺口与所述限位件一一对应设置,当所述搬运装置移动至所述立柱组件的第二端时,所述缺口与所述限位件抵接,所述连接件与所述第一减震件抵接。
  147. 根据权利要求146所述的搬运机器人,其特征在于,所述限位件分别位于所述滑槽相对的两侧。
  148. 根据权利要求144所述的搬运机器人,其特征在于,所述活动柱上具有抵接部,所述支撑板的第二面或所述移动底盘的上具有所述第二减震件,所述活动柱朝向所述移动底盘移动,以使所述抵接部与所述第二减震件抵接。
  149. 根据权利要求143所述的搬运机器人,其特征在于,所述活动立柱组件还包括活动横梁,两根所述活动柱通过所述活动横梁连接。
  150. 根据权利要求149所述的搬运机器人,其特征在于,还包括检测模块和控制模块,所述检测模块位于所述活动横梁上,所述驱动组件和所述检测模块均与所述控制模块连接,所述检测模块用于检测所述活动立柱组件与其上方的物体的之间的距离,所述控制模块用于在所述距离小于预设值时,通过所述驱动组件控制所述活动立柱组件停止移动。
PCT/CN2021/079571 2020-03-09 2021-03-08 控制搬运机器人的方法、装置、立式支架及搬运机器人 WO2021180039A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022552453A JP7402996B2 (ja) 2020-03-09 2021-03-08 搬送ロボットを制御する方法及び装置、並びに立設架台、搬送ロボット
EP21767988.5A EP4101790A4 (en) 2020-03-09 2021-03-08 METHOD AND DEVICE FOR CONTROLLING A PORTABLE ROBOT, VERTICAL CONSOLE AND PORTABLE ROBOT
KR1020227031145A KR20220137974A (ko) 2020-03-09 2021-03-08 운반 로봇 제어 방법, 장치, 수직형 브라켓 및 운반 로봇
US17/929,418 US20220411186A1 (en) 2020-03-09 2022-09-02 Method for controlling transport robot, vertical support, and transport robot

Applications Claiming Priority (22)

Application Number Priority Date Filing Date Title
CN202020282146.0U CN211813282U (zh) 2020-03-09 2020-03-09 一种立式支架
CN202020281284.7U CN211732704U (zh) 2020-03-09 2020-03-09 一种搬运机器人
CN202020281973.8 2020-03-09
CN202010158838.9 2020-03-09
CN202020282146.0 2020-03-09
CN202010158838.9A CN111232524B (zh) 2020-03-09 2020-03-09 一种控制搬运机器人的方法、装置及搬运机器人
CN202020281284.7 2020-03-09
CN202020281914.0U CN212291487U (zh) 2020-03-09 2020-03-09 一种立式支架
CN202020281973.8U CN212502233U (zh) 2020-03-09 2020-03-09 一种搬运机器人
CN202020281914.0 2020-03-09
CN202022500566.4U CN213567912U (zh) 2020-11-02 2020-11-02 立式支架和搬运机器人
CN202022498181.9U CN213567988U (zh) 2020-11-02 2020-11-02 搬运机器人
CN202022500566.4 2020-11-02
CN202022498181.9 2020-11-02
CN202022501920.5 2020-11-02
CN202011205346.7A CN112357441A (zh) 2020-11-02 2020-11-02 搬运机器人
CN202022501920 2020-11-02
CN202011205346.7 2020-11-02
CN202022866645.7U CN213922618U (zh) 2020-11-02 2020-12-02 搬运机器人
CN202022866645.7 2020-12-02
CN202022860411.1 2020-12-02
CN202022860411.1U CN213922617U (zh) 2020-11-02 2020-12-02 搬运机器人

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/929,418 Continuation US20220411186A1 (en) 2020-03-09 2022-09-02 Method for controlling transport robot, vertical support, and transport robot

Publications (1)

Publication Number Publication Date
WO2021180039A1 true WO2021180039A1 (zh) 2021-09-16

Family

ID=77670461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079571 WO2021180039A1 (zh) 2020-03-09 2021-03-08 控制搬运机器人的方法、装置、立式支架及搬运机器人

Country Status (5)

Country Link
US (1) US20220411186A1 (zh)
EP (1) EP4101790A4 (zh)
JP (1) JP7402996B2 (zh)
KR (1) KR20220137974A (zh)
WO (1) WO2021180039A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1456911A (en) * 1973-01-29 1976-12-01 Bushnell S W Portable lift
CN205398017U (zh) * 2016-03-09 2016-07-27 广西防城港核电有限公司 升降堆高车
CN206417822U (zh) * 2017-01-18 2017-08-18 中国人民解放军军事交通学院 智能仓储搬运设备
CN209618093U (zh) * 2019-02-01 2019-11-12 深圳市海柔创新科技有限公司 一种搬运机器人及其移动底盘
CN111232524A (zh) * 2020-03-09 2020-06-05 深圳市海柔创新科技有限公司 一种控制搬运机器人的方法、装置及搬运机器人

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3192616A1 (en) * 2016-01-14 2017-07-19 Magazino GmbH Robot to pick up and transport objects and method using such a robot
CN107021433A (zh) * 2017-05-31 2017-08-08 邵旦彪 一种用于牵引升降承载台上下升降驱动装置
DE202018006723U1 (de) 2017-11-14 2022-06-08 Hai Robotics Co., Ltd. Handhabungsroboter
WO2021179993A1 (zh) 2020-03-09 2021-09-16 深圳市海柔创新科技有限公司 搬运机器人、系统、方法及其装卸货装置、系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1456911A (en) * 1973-01-29 1976-12-01 Bushnell S W Portable lift
CN205398017U (zh) * 2016-03-09 2016-07-27 广西防城港核电有限公司 升降堆高车
CN206417822U (zh) * 2017-01-18 2017-08-18 中国人民解放军军事交通学院 智能仓储搬运设备
CN209618093U (zh) * 2019-02-01 2019-11-12 深圳市海柔创新科技有限公司 一种搬运机器人及其移动底盘
CN111232524A (zh) * 2020-03-09 2020-06-05 深圳市海柔创新科技有限公司 一种控制搬运机器人的方法、装置及搬运机器人

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4101790A4 *

Also Published As

Publication number Publication date
US20220411186A1 (en) 2022-12-29
EP4101790A4 (en) 2023-07-26
KR20220137974A (ko) 2022-10-12
JP7402996B2 (ja) 2023-12-21
JP2023515648A (ja) 2023-04-13
EP4101790A1 (en) 2022-12-14

Similar Documents

Publication Publication Date Title
TW202134148A (zh) 控制搬運機器人的方法、裝置及搬運機器人
CN105819329B (zh) 智能钢卷夹具
US9914626B2 (en) Order picker with a wiring mechanism
CN110759284A (zh) 一种具有缓冲功能的智能物流机器人
CN109573423A (zh) 一种货叉式立体仓库
WO2021180039A1 (zh) 控制搬运机器人的方法、装置、立式支架及搬运机器人
TWM618839U (zh) 立式支架
CN102513872A (zh) 一种发动机曲轴平移上下料机构
CN106429154A (zh) 一种密集堆叠式自动化立库
CN211813282U (zh) 一种立式支架
CN105836671A (zh) 一种全自动堆垛机
CN107512678B (zh) 一种多货位升降机
CN112357441A (zh) 搬运机器人
CN210710290U (zh) 一种升降电梯用配重装置
CN213922618U (zh) 搬运机器人
CN210000977U (zh) 重力式货架
CN211521487U (zh) 一种自动化单立柱堆垛机
TWM618836U (zh) 搬運機器人
JP2011080360A (ja) 駐車装置と昇降装置
CN209720648U (zh) 分离取货的重力式货架
CN205668918U (zh) 一种全自动堆垛机
CN110422525A (zh) 一种基于自动化立体仓库的轨道车设备
CN213567912U (zh) 立式支架和搬运机器人
CN220766398U (zh) 一种托盘提升机
CN211732704U (zh) 一种搬运机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767988

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022552453

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227031145

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021767988

Country of ref document: EP

Effective date: 20220905

NENP Non-entry into the national phase

Ref country code: DE