WO2021177141A1 - 樹脂ビーズ、樹脂ビーズの製造方法、及び樹脂ビーズを用いた製品 - Google Patents

樹脂ビーズ、樹脂ビーズの製造方法、及び樹脂ビーズを用いた製品 Download PDF

Info

Publication number
WO2021177141A1
WO2021177141A1 PCT/JP2021/007183 JP2021007183W WO2021177141A1 WO 2021177141 A1 WO2021177141 A1 WO 2021177141A1 JP 2021007183 W JP2021007183 W JP 2021007183W WO 2021177141 A1 WO2021177141 A1 WO 2021177141A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin beads
resin
cellulose
suspension
cellulose derivative
Prior art date
Application number
PCT/JP2021/007183
Other languages
English (en)
French (fr)
Inventor
安部 隆士
Original Assignee
大日精化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=73022498&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2021177141(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 大日精化工業株式会社 filed Critical 大日精化工業株式会社
Priority to US17/905,233 priority Critical patent/US11998630B2/en
Priority to BR112022017335-0A priority patent/BR112022017335B1/pt
Priority to CN202180018067.6A priority patent/CN115210298B/zh
Priority to EP21764155.4A priority patent/EP4116357A4/en
Priority to KR1020227034009A priority patent/KR102537880B1/ko
Publication of WO2021177141A1 publication Critical patent/WO2021177141A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/731Cellulose; Quaternized cellulose derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0216Solid or semisolid forms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0216Solid or semisolid forms
    • A61K8/022Powders; Compacted Powders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/025Explicitly spheroidal or spherical shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/12Face or body powders for grooming, adorning or absorbing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/14Mixed esters, e.g. cellulose acetate-butyrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/284Alkyl ethers with hydroxylated hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • C08J2301/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/14Mixed esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/26Cellulose ethers
    • C08J2301/28Alkyl ethers

Definitions

  • the present invention relates to resin beads containing a cellulose derivative as a main component, a method for producing the resin beads, and products such as cosmetics obtained by using the resin beads.
  • resin beads have been used in various fields such as matting agents, slipping agents, and blocking inhibitors because of their spherical properties. Further, various resin powders (resin particles) such as resin beads are used in order to improve properties such as extensibility of cosmetics for makeup.
  • resin powders resin particles
  • the constituent materials of resin beads to be blended in cosmetics are shifting from petroleum-derived synthetic materials to natural materials.
  • Patent Document 1 powdered cellulose useful as a scrubbing agent has been proposed (Patent Document 1). Further, cellulose derivative fine particles (Patent Document 2) used for diagnostic agents and spherical cellulose powder (Patent Document 3) used for cosmetics have been proposed. Further, porous cellulose particles (Patent Documents 4 and 5) used as a packing material for chromatography, biodegradable cellulose acetate particles having high sphericity (Patent Document 6), and the like have been proposed.
  • the powdered celluloses and the like proposed in Patent Documents 1, 2, 4, and 5 are not suitable for the particle size as an agent to be blended in cosmetics for makeup or skin care. Further, since the cellulose derivative fine particles proposed in Patent Document 2 need to use copper ammonia at the time of production, they are not necessarily suitable as a material for cosmetics for which heavy metals are desired to be reduced as much as possible. There wasn't.
  • the spherical cellulose powders and the like proposed in Patent Documents 3 to 6 have low sphericity and the particle surface is not so smooth. For this reason, even if it is blended with cosmetics, it cannot be said that the spread on the skin is so good, and it is easy to feel roughness. Furthermore, light scattering is likely to occur due to the roughness of the particle surface and the non-solid structure, and the texture is likely to change significantly as the powder gets wet or is used in a solution.
  • porous cellulose particles and the like proposed in Patent Documents 4 and 5 are porous, they easily adsorb water. For this reason, when blended in cosmetics, the cosmetics themselves tend to become unstable, so it cannot be said that they are necessarily suitable as materials for cosmetics.
  • the cellulose acetate particles proposed in Patent Document 6 have a dry tactile sensation, when used as a tactile sensation improver, they are not necessarily suitable as materials exhibiting a "moist tactile sensation" required in the market. I could't say that.
  • the cellulose acetate particles are easily hydrolyzed over time, and acetic acid generated by the hydrolysis gives off an offensive odor, so that it is not always suitable as a material for cosmetics.
  • the present invention has been made in view of the problems of the prior art, and the subject thereof is various kinds of cosmetics and the like, which are less likely to generate odors and have excellent tactile sensation and spread on the skin. It is an object of the present invention to provide various products such as resin particles made of petroleum-derived synthetic materials, resin beads that can be substituted, and cosmetics using the same. Further, an object of the present invention is to replace resin particles made of a synthetic material derived from petroleum, which can provide various products such as cosmetics which are less likely to generate odor and have excellent tactile sensation and spread on the skin. It is an object of the present invention to provide a possible method for producing resin beads.
  • the resin beads shown below are provided.
  • the volume average particle size is 50 ⁇ m or less, the sphericity is 0.7 to 1.0, the surface smoothness is 80 to 100%, and the content of acetyl group is 15 mass. % Or less, and the content of propionyl group is 10% by mass or more.
  • the resin bead according to any one of [1] to [6], wherein the resin bead contains at least one of an ultraviolet absorber and an ultraviolet scattering agent.
  • the resin beads are treated beads treated with at least one selected from the group consisting of silicone, fatty acid, fatty acid metal salt, amino acid, and amino acid metal salt.
  • the following method for producing resin beads is provided.
  • a method for producing resin beads which comprises a step of adding water to the suspension to shrink the oil droplets.
  • the organic solvent is at least one selected from the group consisting of a ketone solvent, an ester solvent, alcohols, glycols, an ether solvent, an alkyl halide, and an alkyl nitrate.
  • the dispersion stabilizer is a water-soluble polymer.
  • resin beads made of a synthetic material derived from petroleum which can provide various products such as cosmetics which are less likely to generate odor and have excellent tactile sensation and spread on the skin, can be replaced with resin beads. And various products such as cosmetics using the same can be provided.
  • a resin that can replace resin particles made of a synthetic material derived from petroleum which is less likely to generate an odor and can provide various products such as cosmetics having an excellent tactile sensation and spread on the skin.
  • a method for producing beads can be provided.
  • the present inventor describes various resin beads made of natural materials and methods for producing the same, which can provide various products such as cosmetics having excellent tactile sensation, spread on the skin, transparency, and product stability. investigated. As a result, it has been found that, by adopting the configuration shown below, it is possible to obtain resin beads substantially formed of a natural material and capable of providing various products such as cosmetics to which the above-mentioned various characteristics are imparted. .. That is, the resin beads of the present invention are resin beads formed of a resin containing a cellulose derivative as a main component.
  • the volume average particle size of the resin beads of the present invention is 50 ⁇ m or less, the sphericity is 0.7 to 1.0, the surface smoothness is 80 to 100%, and the acetyl group content is 25. It is mass% or less, and the content of propionyl group is 10 mass% or more.
  • the volume average particle size of the resin beads is 50 ⁇ m or less, preferably 0.5 to 40 ⁇ m, and more preferably 1 to 30 ⁇ m. By setting the volume average particle size within the above range, the slipperiness and soft focus required for the resin beads blended in cosmetics and the like can be effectively exhibited.
  • the sphericity of the resin beads is 0.7 or more and 1.0 or less, preferably 0.75 to 1.0 or less, more preferably 0.8 to 1.0 or less, and particularly preferably 0.85 to 0. It is 99 or less.
  • the sphericity which is an index of whether or not the resin beads are spherical, can be measured and calculated according to the procedure shown below.
  • SEM scanning electron microscope
  • the circularity C of each resin bead is calculated from the following formula (1).
  • the arithmetic mean value of the circularity C of 100 or more resin beads arbitrarily selected is defined as the sphericity.
  • C (4 ⁇ S 1 ) / (L 2 ) ⁇ ⁇ ⁇ (1)
  • S 1 indicates the area (projected area) of the resin beads occupied in the image
  • L indicates the length of the outer peripheral portion of the resin beads in the image. The closer the value of circularity C is to 1, the closer the shape of the particle is to a true sphere.
  • the surface smoothness of the resin beads is 80 to 100%, preferably 85 to 100%, and more preferably 90 to 99%. By setting the surface smoothness within the above range, it is possible to effectively exhibit the good tactile sensation and the elongation on the skin required for the resin beads blended in cosmetics and the like.
  • S 2 indicates the area (projected area) of the resin beads occupied in the image
  • S 3 is formed by the contours of the resin particles when the resin beads and a circle similar thereto are overlapped. It shows the total area of the beads, the area inside the contour of the overlapping circles, and the area outside.
  • cellulose esters may be partially hydrolyzed to produce free acids. For this reason, resin beads formed of cellulose esters may have a problem of free acid odor depending on the product to which they are applied.
  • resin beads formed of a resin containing a cellulose derivative as a main component the release of acetic acid caused by hydrolysis is suppressed by controlling (reducing) the content of acetyl group (CH 3 CO-), resulting in odor. Can be suppressed.
  • the content of the acetyl group of the resin beads of the present invention is 25% by mass or less, preferably 20% by mass or less, more preferably 15% by mass or less, and particularly preferably 10% by mass or less.
  • the content of acetyl groups in the resin beads can be adjusted, for example, by using a cellulose derivative having an acetyl group content within a predetermined range as a raw material.
  • a cellulose derivative having an acetyl group content within a predetermined range As the cellulose derivative, a commercially available cellulose derivative may be used as it is, or a cellulose derivative whose acetyl group content is adjusted by hydrolysis or esterification according to a conventional method may be used. Further, a plurality of resin beads having different acetyl group contents may be mixed and controlled so that the acetyl group content of the entire resin beads is within a predetermined range.
  • the content of the propionyl group (CH 3 CH 2 CO ⁇ ) of the resin beads is 10% by mass or more, preferably 15 to 60% by mass, and more preferably 20 to 50% by mass.
  • the resin beads have the "moist texture" required for the resin beads blended in cosmetics and the like.
  • the type of substituents in the ester portion of cellulose esters has a great influence on the tactile sensation of resin beads. Further, it is presumed that the tactile sensation of the resin beads is expressed by the unique properties of the substituent of the ester portion, the solubility of the cellulose esters in the organic solvent used in the production method described later, the orientation of the molecules in the suspension, and the like. Will be done. In particular, by appropriately setting the content of the propionyl group of the cellulose derivative used as a raw material, it is possible to develop a "moist touch".
  • the content of propionyl groups in the resin beads can be adjusted, for example, by using a cellulose derivative having a propionyl group content within a predetermined range as a raw material.
  • a cellulose derivative having a propionyl group content within a predetermined range As the cellulose derivative, a commercially available cellulose derivative may be used as it is, or a cellulose derivative whose content of propionyl group is adjusted by hydrolysis or esterification according to a conventional method may be used. Further, a plurality of resin beads having different propionyl group contents may be mixed and controlled so that the propionyl group content of the entire resin beads is within a predetermined range.
  • the solidity of the resin beads is preferably 70 to 100% by volume, more preferably 75 to 100% by volume, and particularly preferably 80 to 99% by volume. By setting the solidity within the above range, the transparency required for the resin beads blended in cosmetics and the like can be effectively exhibited. If the solidity of the resin beads is less than 70% by volume, light scattering occurs depending on the airspace, and the transparency tends to decrease. In addition, the amount of oil absorbed changes as the solidity decreases. Therefore, when resin beads having a low solidity are blended into a product such as a cosmetic product, the stability of the product may be slightly lowered.
  • the solidity of the resin beads can be measured and calculated according to the procedure shown below. First, the SEM image of the cross section of the resin beads taken with a scanning electron microscope (SEM) is image-analyzed, and the volume of the resin-filled portion of each resin bead is calculated. Then, the average value of the volumes of the resin-filled portions of 20 or more resin beads arbitrarily selected is defined as the solidity (volume%).
  • SEM scanning electron microscope
  • the resin constituting the resin beads of the present invention contains a cellulose derivative as a main component.
  • the resin constituting the resin beads preferably consists of only a cellulose derivative.
  • Cellulose derivatives are modified celluloses having three hydroxy groups in one unit.
  • the cellulose derivative may be one in which one hydroxy group in cellulose is substituted with a specific substituent, or two hydroxy groups may be substituted with a specific substituent, or three hydroxy groups.
  • the group may be substituted with a specific substituent.
  • the structure of the substituent may be linear, branched, or cyclic.
  • the cellulose derivative may be a salt.
  • As the cellulose derivative a known cellulose derivative can be appropriately selected and used in consideration of the purpose of use of the resin beads. Of these, cellulose esters used in products such as cosmetics as natural cellulose derivatives are preferable.
  • cellulose derivatives include methyl cellulose, ethyl cellulose, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, nitro cellulose, hydroxypropyl methyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose phthalate, hypromellose acetate succinate.
  • examples thereof include acid esters, carboxymethyl cellulose and cellulose glycolate ethers.
  • examples of cellulose acetate include acetyl cellulose, diacetyl cellulose, and triacetyl cellulose. These cellulose derivatives can be used alone or in combination of two or more.
  • cellulose esters include methyl cellulose, ethyl cellulose, acetyl cellulose, diacetyl cellulose, triacetyl cellulose, cellulose acetate butyrate, cellulose acetate propionate and the like. Of these, cellulose acetate, cellulose acetate propionate, ethyl cellulose, hydroxypropyl methyl cellulose and the like are preferable.
  • the resin beads may contain at least one of a pigment and a dye depending on the intended use.
  • a suspension may be prepared using an oil phase further containing at least one of the pigment and dye.
  • Pigments include metal oxides such as titanium dioxide, zinc oxide, petals (bengala), yellow iron oxide, and black iron oxide, as well as legal pigments Japanese names Yellow No. 4, Red No. 202, Blue No. 1, and carbon black. And so on.
  • extender pigments such as mica, talc, kaolin, and calcium carbonate can also be used.
  • the dye include Red No. 104, Yellow No. 5, Blue No. 1 and the like.
  • the resin beads preferably contain a pigment and at least one of a surfactant, a dispersant, and a polymer dispersant.
  • the pigment is preferably a treated pigment treated with at least one selected from the group consisting of silicones, fatty acids, fatty acid metal salts, amino acids, and amino acid metal salts.
  • the resin beads may contain at least one of an ultraviolet absorber and an ultraviolet scattering agent, depending on the intended use.
  • an ultraviolet absorber for example, a suspension may be prepared using an oil phase further containing at least one of the ultraviolet absorber and the ultraviolet scattering agent.
  • the ultraviolet absorber include fine particle titanium dioxide, fine particle zinc oxide, silicic acid-based ultraviolet absorber, and dibenzoylmethane-based ultraviolet absorber.
  • the resin beads are preferably treated beads treated with at least one selected from the group consisting of silicones, fatty acids, fatty acid metal salts, amino acids, and amino acid metal salts.
  • the method for producing resin beads of the present invention is the above-mentioned method for producing resin beads, and contains an oil phase (first liquid) containing a cellulose derivative and an organic solvent that dissolves the cellulose derivative, and a dispersion stabilizer. It has a step (suspension preparation step) of mixing with an aqueous phase (second liquid) to prepare a suspension containing oil droplets containing a cellulose derivative and an organic solvent.
  • the oil phase containing the cellulose derivative and the organic solvent that dissolves the cellulose derivative and the aqueous phase containing the dispersion stabilizer are mixed.
  • a suspension in which oil droplets containing a cellulose derivative and an organic solvent are dispersed in water can be obtained. Since the oil droplets exist in a dispersed state in water, the organic solvent in the oil droplets gradually moves into the water. Then, as the organic solvent moves, the oil droplets shrink, and the cellulose derivative dissolved in the organic solvent gradually precipitates. The precipitated cellulose derivative grows while maintaining a smooth surface as shown in FIG. Eventually, the precipitated cellulose derivative is immobilized to form substantially solid resin beads.
  • Whether or not the oil droplets have shrunk can be determined by analyzing an image observed with an optical microscope, an electron microscope, or the like. By causing such shrinkage of oil droplets, it is possible to obtain resin beads having a desired particle size, which has high sphericity (sphericity), is substantially solid, and has a smooth surface. .. Then, by using the resin beads thus obtained, it is possible to provide various products such as cosmetics, which are less likely to generate an odor and have an excellent tactile sensation and spread on the skin.
  • the organic solvent (first organic solvent) contained in the oil phase a known organic solvent capable of dissolving the cellulose derivative can be used.
  • the organic solvent include ester solvents such as methyl formate, ethyl formate, methyl acetate, ethyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethanol, n-butanol and the like.
  • Alcohols such as ethyl cellosolve, butyl cellosolve, ethylene glycol diethyl ether; glycol ether solvents such as dipropylene glycol monomethyl ether; glycol ester solvents such as propylene glycol monomethyl ether acetate; methylene chloride, chloroform, tetrachloroethane, etc. Chlorine-based solvent; nitromethane; propylene carbonate and the like can be used. These organic solvents can be used alone or in combination of two or more.
  • a ketone solvent As the organic solvent, a ketone solvent, an ester solvent, alcohols, glycols, an ether solvent, an alkyl halide, and an alkyl nitrate are preferable. Of these, methyl ethyl ketone, ethyl acetate, butanol, propylene glycol monobutyl ether, propyl acetate and propylene glycol monomethyl ether acetate are even more preferable.
  • the organic solvent in the oil droplets contained in the suspension gradually moves to the aqueous phase.
  • the organic solvent tends to move rapidly from the oil droplets to the aqueous phase, so that the resin beads formed by the shrinkage of the oil droplets do not easily form a spherical shape. Or, it may be difficult to form a smooth surface.
  • the aqueous phase tends to partially enter the oil droplets, and it may be difficult to form solid resin beads.
  • the solubility (water solubility) of the organic solvent in 100 g of water at 25 ° C. is 0.1 to 50.0 g, preferably 0.5 to 40.0 g, and 1.0 to 30.0 g. It is more preferable to have.
  • the amount of the organic solvent contained in the oil phase (first liquid) is preferably 2.0 times or more, preferably 2.5 to 15.0 times, based on the mass, with respect to the amount of the cellulose derivative. It is more preferable to have. If the amount of the organic solvent in the oil phase is too small, the cellulose derivative tends to rapidly precipitate when the organic solvent in the oil droplets moves to the aqueous phase. Therefore, it may be difficult for the obtained resin beads to have a spherical shape, or it may be difficult for a smooth surface to be formed.
  • the aqueous phase used in the suspension preparation step is a liquid (second liquid) in which the dispersion stabilizer is dissolved in water such as deionized water.
  • water-soluble polymers such as water-soluble cellulose, polyvinyl alcohol, and sodium polyacrylate; and inorganic salts such as hydroxyapatite, calcium tertiary phosphate, and calcium carbonate can be used.
  • These dispersion stabilizers can be used alone or in combination of two or more.
  • it is preferable to use a water-soluble polymer such as water-soluble cellulose, polyvinyl alcohol, and sodium polyacrylate.
  • the content of the dispersion stabilizer in the aqueous phase is preferably 30% by mass or less, and more preferably 1 to 20% by mass.
  • the aqueous phase preferably further contains a second organic solvent.
  • the organic solvent (first organic solvent) in the oil phase may rapidly move to the aqueous phase depending on the type. Therefore, by mixing the aqueous phase containing the second organic solvent with the oil phase, it is possible to suppress the rapid movement of the first organic solvent in the oil phase to the aqueous phase, resulting in more sphericity. It is possible to produce resin beads having a high surface and a smoother surface.
  • the second organic solvent the same one as the above-mentioned organic solvent (first organic solvent) used for the oil phase can be used, including a suitable one.
  • the first organic solvent and the second organic solvent may be of the same type or different types.
  • the oil phase and the aqueous phase are mixed to prepare a suspension.
  • the oil phase may be added to the agitated aqueous phase, or the aqueous phase may be added to the agitated oil phase.
  • an emulsifying device such as a disper or a homogenizer to adjust the particle size of the oil droplets formed.
  • the particle size of the formed oil droplets can be easily adjusted by adjusting the shearing force by changing the rotation speed of the homogenizer. As a result, the particle size of the obtained resin beads can be appropriately adjusted so as to be within a desired range.
  • the liquid volume of the aqueous phase is preferably 3.0 times or less, more preferably 0.2 to 2.8 times, based on the mass, with respect to the liquid volume of the oil phase.
  • the method for producing resin beads of the present invention further includes a step (shrinkage step) of adding water to the suspension to shrink the oil droplets.
  • a step shrinkage step
  • the amount of water added to the suspension is preferably 0.5 times or more, more preferably 1 to 40 times, based on the mass, with respect to the amount of water in the suspension.
  • the shrinkage step it is preferable to add water to the suspension over a certain period of time.
  • water By adding water over a certain period of time, it is possible to suppress the rapid movement of the organic solvent in the oil droplets to the aqueous phase, producing resin beads with higher sphericity and a smoother surface. can do.
  • the produced resin beads are filtered and washed to remove unnecessary components such as a dispersion stabilizer. Then, if necessary, washing is repeated a plurality of times, and then drying and crushing treatment are performed to obtain the desired resin beads.
  • the above-mentioned resin beads are made of a natural material having high sphericity (sphericity), a smooth surface, a moist tactile sensation, good stability over time, and less generation of offensive odor. It is a resin particle. Therefore, by containing the above resin beads, cosmetics and outer skins that are provided with excellent tactile sensation, spread to the skin, and product stability without using resin particles made of a synthetic material derived from petroleum.
  • Various products such as medicines, paints, molded products, films, coating agents, and resin compositions can be provided.
  • Example 1 An oil phase was prepared by dissolving 100 parts of cellulose acetate propionate (trade name "CAP-482-0.5", manufactured by Eastman Chemical Company) in 350 parts of ethyl acetate (water solubility: 8 g / 100 g). Further, 24 parts of polyvinyl alcohol was dissolved in 300 parts of ion-exchanged water to prepare an aqueous phase. The oil phase was added to the prepared aqueous phase, mixed, and stirred at 1,000 rpm for 3 minutes using a dissolver. Further, the mixture was stirred at 1800 rpm for 10 minutes using a dissolver to obtain a suspension in which oil droplets were uniformly dispersed. The volume average particle size of the oil droplets measured by observation and image analysis with an optical microscope was 15 ⁇ m.
  • FIG. 1 shows an electron micrograph showing the state of the cross section of the obtained resin beads.
  • Example 2 Cellulose acetate propionate (trade name "CAP-482-0.5", manufactured by Eastman Chemical Company) 100 parts, ethyl acetate (water solubility: 8 g / 100 g) 350 parts and methyl acetate (water solubility: 24.4 g /) 100 g)
  • the oil phase was prepared by dissolving in 50 parts. Further, 42 parts of polyvinyl alcohol was dissolved in 400 parts of ion-exchanged water to prepare an aqueous phase. The oil phase was added to the prepared aqueous phase, mixed, and stirred at 1,000 rpm for 3 minutes using a dissolver.
  • the mixture was stirred at 1,600 rpm for 10 minutes using a dissolver to obtain a suspension in which oil droplets were uniformly dispersed.
  • the volume average particle size of the oil droplets measured by observation and image analysis with an optical microscope was 18 ⁇ m.
  • resin particle dispersion While stirring the suspension obtained using the dissolver at 500 rpm, 5,000 parts of ion-exchanged water was injected over 60 minutes to obtain a resin particle dispersion (resin bead dispersion). After filtering and washing the resin particles, they were gelatinized in ion-exchanged water. Further, after filtration and washing, drying and crushing treatment were performed to obtain resin beads.
  • Example 3 An oil phase was prepared by dissolving 100 parts of cellulose acetate propionate (trade name "CAP-504-0.2", manufactured by Eastman Chemical Company) in 500 parts of ethyl acetate (water solubility: 8 g / 100 g). Further, 56 parts of polyvinyl alcohol was dissolved in 560 parts of ion-exchanged water, and then 40 parts of ethyl acetate was added to prepare an aqueous phase. The oil phase was added to the prepared aqueous phase, mixed, and stirred at 1,000 rpm for 3 minutes using a dissolver. Further, the mixture was stirred at 1,500 rpm for 10 minutes using a dissolver to obtain a suspension in which oil droplets were uniformly dispersed. The volume average particle size of the oil droplets measured by observation and image analysis with an optical microscope was 23 ⁇ m.
  • the mixture was stirred at 2,000 rpm for 10 minutes using a dissolver to obtain a suspension in which oil droplets were uniformly dispersed.
  • the volume average particle size of the oil droplets measured by observation and image analysis with an optical microscope was 12 ⁇ m.
  • Example 5 Resin beads were obtained in the same manner as in Example 1 above, except that 100 parts of cellulose acetate propionate was changed to 35 parts of diacetyl cellulose (trade name "CA-398-6", manufactured by Eastman Chemical Company). rice field. 30 parts of the obtained resin beads and 70 parts of the resin beads obtained in Example 3 were mixed to obtain the resin beads of Example 5.
  • Example 6 The resin beads obtained in Example 3 were partially hydrolyzed according to a conventional method, and then filtered, washed, dried, and crushed to obtain the resin beads of Example 6.
  • Example 7 An oil phase was prepared by dissolving 89 parts of cellulose acetate propionate (trade name "CAP-504-0.2", manufactured by Eastman Chemical Company) in 700 parts of 1-butanol (water solubility: 8 g / 100 g). 10 parts of fatty acid-treated fine particle titanium oxide (trade name "MT-100TV", manufactured by TAYCA) and 1 part of acrylic silicone dispersant (trade name "KP-578", manufactured by Shin-Etsu Chemical Co., Ltd.) were added and mixed and dispersed. , An oil phase in which fine particles of titanium oxide were dispersed was prepared. Further, 50 parts of polyacrylic acid was dissolved in 850 parts of ion-exchanged water to prepare an aqueous phase.
  • the oil phase was added to the prepared aqueous phase, mixed, and stirred at 1,000 rpm for 3 minutes using a dissolver. Further, the mixture was stirred at 2,500 rpm for 20 minutes using a dissolver to obtain a suspension in which oil droplets were uniformly dispersed.
  • the volume average particle size of the oil droplets measured by observation and image analysis with an optical microscope was 10 ⁇ m.
  • resin particle dispersion While stirring the suspension obtained using the dissolver at 500 rpm, 9,000 parts of ion-exchanged water was injected over 60 minutes to obtain a resin particle dispersion (resin bead dispersion). After filtering and washing the resin particles, they were gelatinized in ion-exchanged water. Further, after filtration and washing, drying and crushing treatment were performed to obtain resin beads.
  • Example 8 An oil phase was prepared by dissolving 80 parts of cellulose acetate propionate (trade name "CAP-482-0.5", manufactured by Eastman Chemical Company) in 400 parts of ethyl acetate (water solubility: 8 g / 100 g). 20 parts of amino acid-treated particle titanium oxide (trade name "NAI-titanium CR-50", manufactured by Miyoshi Kasei Co., Ltd.) was added and mixed and dispersed to prepare an oil phase in which titanium oxide was dispersed. Further, 32 parts of polyvinyl alcohol was dissolved in 400 parts of ion-exchanged water to prepare an aqueous phase.
  • the oil phase was added to the prepared aqueous phase, mixed, and stirred at 1,000 rpm for 3 minutes using a dissolver. Further, the mixture was stirred at 1,600 rpm for 10 minutes using a dissolver to obtain a suspension in which oil droplets were uniformly dispersed.
  • the volume average particle size of the oil droplets measured by observation and image analysis with an optical microscope was 14 ⁇ m.
  • Comparative Example 1 Cellulose fine particles (trade name "CELLULOBEADS D-5", manufactured by Daito Kasei Seisakusho Co., Ltd.) were used as the resin beads of Comparative Example 1.
  • An oil phase was prepared by dissolving 35 parts of diacetylcellulose (trade name "CA-398-6", manufactured by Eastman Chemical Company) in 350 parts of acetone (water solubility: ⁇ g / 100 g). Further, 15 parts of polyvinyl alcohol was dissolved in 300 parts of ion-exchanged water to prepare an aqueous phase. The oil phase was added to the prepared aqueous phase, mixed, and stirred at 1,000 rpm for 3 minutes using a dissolver. Further, the mixture was stirred at 1800 rpm for 10 minutes using a dissolver to obtain a suspension. The volume average particle size of the suspension measured by observation and image analysis with an optical microscope was 80 ⁇ m.
  • An oil phase was prepared by dissolving 35 parts of diacetylcellulose (trade name "CA-398-6", manufactured by Eastman Chemical Company) in 350 parts of ethyl acetate (water solubility: 8 g / 100 g). Further, 15 parts of polyvinyl alcohol was dissolved in 300 parts of ion-exchanged water to prepare an aqueous phase. The oil phase was added to the prepared aqueous phase, mixed, and stirred at 1,000 rpm for 3 minutes using a dissolver. Further, the mixture was stirred at 1,500 rpm for 10 minutes using a dissolver to obtain a suspension. The volume average particle size of the suspension measured by observation and image analysis with an optical microscope was 16 ⁇ m.
  • An oil phase was prepared by dissolving 35 parts of diacetylcellulose (trade name "CA-398-6", manufactured by Eastman Chemical Company) in 350 parts of ethyl acetate (water solubility: 8 g / 100 g). Further, 15 parts of polyvinyl alcohol was dissolved in 300 parts of ion-exchanged water to prepare an aqueous phase. The oil phase was added to the prepared aqueous phase, mixed, and stirred at 1,000 rpm for 3 minutes using a dissolver. Further, the mixture was stirred at 1,500 rpm for 10 minutes using a dissolver to obtain a suspension. The volume average particle size of the suspension measured by observation and image analysis with an optical microscope was 16 ⁇ m.
  • S 1 indicates the area (projected area) of the resin beads occupied in the image
  • L indicates the length of the outer peripheral portion of the resin beads in the image. The closer the value of circularity C is to 1, the closer the shape of the particle is to a true sphere.
  • S 2 indicates the area (projected area) of the resin beads occupied in the image
  • S 3 is formed by the contours of the resin particles when the resin beads and a circle similar thereto are overlapped. The total of the area and the area inside and outside the contour of the overlapping circles is shown.
  • the odor of the resin beads was sensory evaluated by a panel test of 5 people. 4.0 g of the resin beads and pure water having a water content of 10% of the resin beads were placed in a sealable glass bottle containing 30 mL, sealed, and subjected to an accelerated test in a constant temperature bath at 70 ° C. for 7 days. After cooling to room temperature, the lid was opened and the change in odor was confirmed. The odor of the resin beads before the acceleration test was compared as a reference odor, and the scores were given on a scale of 5 according to the evaluation criteria shown below, and the average score of 5 persons was calculated. The results are shown in Table 1. 5: I don't feel the change 4: I feel a little change 3: I feel a change 2: I feel a little strong change 1: I feel a strong change
  • Cosmetic-1 was produced by mixing various components conventionally used as raw materials for cosmetics. Specifically, first, each silicone-treated powder (mica, talc, fine particle titanium oxide, and barium sulfate) and each resin bead are blended in the blending amounts shown in Table 2 and mixed until uniform. To obtain a powder mixture. Next, a mixture (other components) obtained by mixing petrolatum, squalane, and glyceryl trioctanoate is added to the powder mixture, mixed until uniform, filled in a container, and press-molded as necessary for makeup. I got a charge of -1.
  • Cosmetics-2 which is a sun-cut emulsion.
  • silicone oil, UV protection agent, emulsifier, dispersant, isotridecyl isononanoate, and each resin bead were blended in the blending amounts shown in Table 3 and mixed to prepare an oil phase component.
  • purified water, dipropylene glycol, sodium chloride, and sodium citrate were blended in the blending amounts shown in Table 3 and mixed to prepare an aqueous phase component.
  • the aqueous phase component was added to the prepared oil phase component with stirring and emulsified to obtain Cosmetic-2.
  • the resin beads of the present invention have characteristics equal to or higher than those of resin beads formed of a synthetic material derived from petroleum. Therefore, if the resin beads of the present invention are used, even if the resin beads formed of a synthetic material derived from petroleum are not used, the resin beads have a good tactile sensation, spread well on the skin, have a transparent feeling, and are of good quality. It is possible to provide products such as stable cosmetics. Therefore, the resin beads of the present invention are useful as constituent materials for various products such as cosmetics, outer skin agents, paints, molded products, films, coating agents, and resin compositions.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Dispersion Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cosmetics (AREA)

Abstract

臭気が発生しにくく、優れた触感及び肌への伸びを有する化粧料等の各種製品を提供可能な、石油由来の合成系素材からなる樹脂粒子と代替可能な樹脂ビーズ、及びそれを用いた化粧料等の各種製品を提供する。セルロース誘導体を主成分とする樹脂で形成された樹脂ビーズである。セルロース誘導体が、セルロースアセテート、セルロースアセテートプロピオネート、エチルセルロース、及びヒドロキシプロピルメチルセルロースからなる群より選択される少なくとも一種であり、体積平均粒子径が、50μm以下であり、真球度が、0.7~1.0であり、表面平滑度が、80~100%であり、アセチル基の含有率が、15質量%以下であり、プロピオニル基の含有率が、10質量%以上である。また、この樹脂ビーズを含有する、化粧料、外皮用薬、塗料、成形体、フィルム、コーティング剤、及び樹脂組成物のいずれかの製品である。

Description

樹脂ビーズ、樹脂ビーズの製造方法、及び樹脂ビーズを用いた製品
 本発明は、セルロース誘導体を主成分とする樹脂ビーズ、この樹脂ビーズの製造方法、及びこの樹脂ビーズを用いて得られる化粧料などの製品に関する。
 従来、樹脂ビーズは、その球状特性から、艶消し剤、滑り剤、及びブロッキング防止剤等の様々な分野で用いられている。さらに、メーキャップ用の化粧料の伸展性等の特性を向上させるべく、樹脂ビーズ等の種々の樹脂粉体(樹脂粒子)が用いられている。しかし、近年、マイクロプラスチックによる海洋汚染等の問題などから、化粧料に配合される樹脂ビーズの構成材料が、石油由来の合成系素材から天然系素材へと移行しつつある。
 天然系素材からなる球状樹脂粒子としては、例えば、スクラブ剤として有用な粉末状セルロースが提案されている(特許文献1)。さらに、診断薬に用いられるセルロース誘導体微粒子(特許文献2)や、化粧料に用いられる球状セルロース粉体(特許文献3)が提案されている。また、クロマトグラフィー用の充填剤として用いられる多孔性セルロース粒子(特許文献4及び5)や、真球度が高い生分解性の酢酸セルロース粒子(特許文献6)等が提案されている。
特開2018-052909号公報 国際公開第2009/123148号 特開2013-221000号公報 国際公開第2016/013568号 国際公開第2015/029790号 特許第6609726号公報
 しかし、特許文献1、2、4、及び5で提案された粉末状セルロース等は、メーキャップ用又はスキンケア用の化粧料に配合する剤としては粒径が適当なものではなかった。また、特許文献2で提案されたセルロース誘導体微粒子は、製造時に銅アンモニアを用いる必要があるため、重金属類を可能な限り低減したい化粧料用の材料としては、必ずしも適当なものであるとはいえなかった。
 さらに、特許文献3~6で提案された球状セルロース粉体等は、真球度が低いとともに、粒子表面がさほど平滑ではない。このため、化粧料に配合しても肌に対する伸びがさほど良好であるとはいえず、ざらつきを感じやすいものであった。さらに、粒子表面の粗さや非中実構造に起因して光散乱が生じやすく、粉体の濡れや溶液中への使用に伴って質感が大きく変化しやすかった。
 また、特許文献4及び5で提案された多孔性セルロース粒子等は、多孔質であるために水分を吸着しやすい。このため、化粧料に配合すると化粧料自体が不安定化しやすくなるので、化粧料用の材料としては必ずしも適当なものであるとはいえなかった。
 さらに、特許文献6で提案された酢酸セルロース粒子は、乾いた触感があるため、触感改良剤として使用する場合、市場で要求される「しっとりとした触感」を示す材料には、必ずしも適当なものであるとはいえなかった。また、酢酸セルロース粒子は、経時的に加水分解しやすく、加水分解によって生じた酢酸が異臭を放つため、化粧料用の材料として必ずしも適当であるとはいえなかった。
 本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、臭気が発生しにくく、優れた触感及び肌への伸びを有する化粧料等の各種製品を提供可能な、石油由来の合成系素材からなる樹脂粒子と代替可能な樹脂ビーズ、及びそれを用いた化粧料等の各種製品を提供することにある。また、本発明の課題とするところは、臭気が発生しにくく、優れた触感及び肌への伸びを有する化粧料等の各種製品を提供可能な、石油由来の合成系素材からなる樹脂粒子と代替可能な樹脂ビーズの製造方法を提供することにある。
 すなわち、本発明によれば、以下に示す樹脂ビーズが提供される。
 [1]セルロース誘導体を主成分とする樹脂で形成された樹脂ビーズであって、前記セルロース誘導体が、セルロースアセテート、セルロースアセテートプロピオネート、エチルセルロース、及びヒドロキシプロピルメチルセルロースからなる群より選択される少なくとも一種であり、体積平均粒子径が、50μm以下であり、真球度が、0.7~1.0であり、表面平滑度が、80~100%であり、アセチル基の含有率が、15質量%以下であり、プロピオニル基の含有率が、10質量%以上である樹脂ビーズ。
 [2]前記セルロース誘導体が、セルロースアセテートプロピオネートである前記[1]に記載の樹脂ビーズ。
 [3]中実度が、70~100体積%である前記[1]又は[2]に記載の樹脂ビーズ。
 [4]前記樹脂ビーズが、顔料及び染料の少なくともいずれかを含有する前記[1]~[3]のいずれかに記載の樹脂ビーズ。
 [5]前記樹脂ビーズが、顔料と、界面活性剤及び分散剤及び高分子分散剤の少なくともいずれかと、を含有する前記[1]~[4]のいずれかに記載の樹脂ビーズ。
 [6]前記顔料が、シリコーン、脂肪酸、脂肪酸金属塩、アミノ酸、及びアミノ酸金属塩からなる群より選択される少なくとも一種で処理された処理顔料である前記[4]又は[5]に記載の樹脂ビーズ。
 [7]前記樹脂ビーズが、紫外線吸収剤及び紫外線散乱剤の少なくともいずれかを含有する前記[1]~[6]のいずれかに記載の樹脂ビーズ。
 [8]前記樹脂ビーズが、シリコーン、脂肪酸、脂肪酸金属塩、アミノ酸、及びアミノ酸金属塩からなる群より選択される少なくとも一種で処理された処理ビーズである前記[1]~[7]のいずれかに記載の樹脂ビーズ。
 また、本発明によれば、以下に示す樹脂ビーズの製造方法が提供される。
 [9]前記[1]~[8]のいずれかに記載の樹脂ビーズの製造方法であって、前記セルロース誘導体及び前記セルロース誘導体を溶解する、25℃における水100gに対する溶解度が0.1~50.0gである有機溶剤を含有する油相と、分散安定化剤を含有する水相と、を混合して、前記セルロース誘導体及び前記有機溶剤を含有する油滴を含む懸濁液を調製する工程と、前記懸濁液に水を添加して前記油滴を収縮させる工程と、を有する樹脂ビーズの製造方法。
 [10]前記懸濁液に30分以上かけて前記水を添加する前記[9]に記載の樹脂ビーズの製造方法。
 [11]前記懸濁液に添加する前記水の液量が、前記懸濁液の液量に対して、質量基準で0.5倍以上である前記[9]又は[10]に記載の樹脂ビーズの製造方法。
 [12]前記水相が、第2の有機溶剤をさらに含有する前記[9]~[11]のいずれかに記載の樹脂ビーズの製造方法。
 [13]前記水相の液量が、前記油相の液量に対して、質量基準で3.0倍以下である前記[9]~[12]のいずれかに記載の樹脂ビーズの製造方法。
 [14]前記有機溶剤が、ケトン系溶剤、エステル系溶剤、アルコール類、グリコール類、エーテル系溶剤、ハロゲン化アルキル、及びニトロ化アルキルからなる群より選択される少なくとも一種である前記[9]~[13]のいずれかに記載の樹脂ビーズの製造方法。
 [15]前記有機溶剤の液量が、前記セルロース誘導体の量に対して、質量基準で2.0倍以上である前記[9]~[14]のいずれかに記載の樹脂ビーズの製造方法。
 [16]前記分散安定化剤が、水溶性高分子である前記[9]~[15]のいずれかに記載の樹脂ビーズの製造方法。
 [17]前記水相中の前記分散安定化剤の含有量が、30質量%以下である前記[9]~[16]のいずれかに記載の樹脂ビーズの製造方法。
 さらに、本発明によれば、以下に示す製品が提供される。
 [18]樹脂ビーズを含有する、化粧料、外皮用薬、塗料、成形体、フィルム、コーティング剤、及び樹脂組成物のいずれかの製品であって、前記樹脂ビーズが、前記[1]~[8]のいずれかに記載の樹脂ビーズである製品。
 本発明によれば、臭気が発生しにくく、優れた触感及び肌への伸びを有する化粧料等の各種製品を提供可能な、石油由来の合成系素材からなる樹脂粒子と代替可能な樹脂ビーズ、及びそれを用いた化粧料等の各種製品を提供することができる。また、本発明によれば、臭気が発生しにくく、優れた触感及び肌への伸びを有する化粧料等の各種製品を提供可能な、石油由来の合成系素材からなる樹脂粒子と代替可能な樹脂ビーズの製造方法を提供することができる。
実施例1で製造した樹脂ビーズの表面の状態を示す電子顕微鏡写真である。 実施例1で製造した樹脂ビーズの断面の状態を示す電子顕微鏡写真である。
 以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。なお、本明細書中の各種物性値は、特に断りのない限り、常温(25℃)における値である。
 本発明者は、優れた触感、肌への伸び、透明性、及び製品安定性が付与された化粧料等の各種製品を提供しうる、天然系素材からなる樹脂ビーズ、及びその製造方法について種々検討した。その結果、以下に示す構成とすることで、天然系素材により実質的に形成された、上記各種の特性が付与された化粧料等の各種製品を提供可能な樹脂ビーズが得られることを見出した。すなわち、本発明の樹脂ビーズは、セルロース誘導体を主成分とする樹脂で形成された樹脂ビーズである。そして、本発明の樹脂ビーズの体積平均粒子径は50μm以下であり、真球度は0.7~1.0であり、表面平滑度は80~100%であり、アセチル基の含有率は25質量%以下であり、プロピオニル基の含有率は10質量%以上である。
 樹脂ビーズの体積平均粒子径は50μm以下であり、好ましくは0.5~40μm、さらに好ましくは1~30μmである。体積平均粒子径を上記の範囲とすることで、化粧料等に配合される樹脂ビーズに要求される滑り性やソフトフォーカス性を有効に発現させることができる。
 樹脂ビーズの真球度は0.7以上1.0以下であり、好ましくは0.75~1.0以下、さらに好ましくは0.8~1.0以下、特に好ましくは0.85~0.99以下である。真球度を上記の範囲としたことで、化粧料等に配合される樹脂ビーズに要求される良好な触感及び肌への伸びを有効に発現させることができる。
 樹脂ビーズが真球状であるか否の指標となる真球度は、以下に示す手順にしたがって測定及び算出することができる。まず、走査型電子顕微鏡(SEM)で撮影した樹脂ビーズのSEM画像を画像解析し、下記式(1)より、個々の樹脂ビーズの円形度Cを算出する。そして、任意に選択した100個以上の樹脂ビーズの円形度Cの相加平均値を真球度とする。
 C=(4πS)/(L)  ・・・(1)
 上記式(1)中、Sは、画像中に占める樹脂ビーズの面積(投影面積)を示し、Lは、画像中における樹脂ビーズの外周部の長さを示す。円形度Cの値が1に近いほど、粒子の形状は真球に近い。
 樹脂ビーズの表面平滑度は80~100%であり、好ましくは85~100%、さらに好ましくは90~99%である。表面平滑度を上記の範囲としたことで、化粧料等に配合される樹脂ビーズに要求される良好な触感及び肌への伸びを有効に発現させることができる。
 樹脂ビーズの表面平滑度は、以下に示す手順にしたがって測定することができる。すなわち、走査型電子顕微鏡(SEM)で撮影した樹脂ビーズのSEM画像(×5,000)を観察し、下記式(2)より、個々の樹脂ビーズの平滑度Mを算出する。そして、任意に選択した100個以上の樹脂ビーズの平滑度Mの相加平均値を表面平滑度とする。平滑度Mの値が1に近いほど、粒子の表面は平滑に近い。
 M=(1-(S)/(S))×100  ・・・(2)
 上記式(2)中、Sは、画像中に占める樹脂ビーズの面積(投影面積)を示し、Sは、樹脂ビーズとそれに近似した円を重ねた際に、樹脂粒子の輪郭で形成されたエリアと、重ねた円の輪郭より内側にある面積と外部にある面積の総和を示す。
 セルロース誘導体のなかでもセルロースエステル類は、一部加水分解して遊離酸を生ずることがある。このため、セルロースエステル類で形成された樹脂ビーズは、適応する製品によっては遊離酸の臭気が問題となる場合がある。セルロース誘導体を主成分とする樹脂で形成された樹脂ビーズについては、アセチル基(CHCO-)の含有率を制御する(低減する)ことで、加水分解によって生ずる酢酸の遊離を抑制し、臭気の発生を抑えることができる。具体的には、本発明の樹脂ビーズのアセチル基の含有率は25質量%以下であり、好ましくは20質量%以下、さらに好ましくは15質量%以下、特に好ましくは10質量%以下である。アセチル基の含有率を上記の範囲とすることで、経時的に発生する酢酸臭等の異臭を抑制し、化粧料等に好適に配合しうる樹脂ビーズとすることができる。
 樹脂ビーズ中のアセチル基の含有率は、例えば、アセチル基含有率が所定の範囲内のセルロース誘導体を原料として用いることで調整することができる。セルロース誘導体は、市販のセルロース誘導体をそのまま用いてもよいし、常法にしたがって加水分解又はエステル化してアセチル基の含有率を調整したものを用いてもよい。さらに、アセチル基含有率の異なる複数の樹脂ビーズを混合して、樹脂ビーズ全体のアセチル基含有率が所定の範囲内となるように制御してもよい。
 樹脂ビーズのプロピオニル基(CHCHCO-)の含有率は10質量%以上であり、好ましくは15~60質量%、さらに好ましくは20~50質量%である。プロピオニル基の含有率を上記の範囲とすることで、化粧料等に配合される樹脂ビーズに要求される「しっとりとした触感」を有する樹脂ビーズとすることができる。
 セルロース誘導体のなかでもセルロースエステル類は、エステル部分の置換基の種類が、樹脂ビーズの触感に大きな影響を及ぼす。また、樹脂ビーズの触感は、エステル部分の置換基固有の性質の他、後述する製造方法で用いる有機溶剤へのセルロースエステル類の溶解度や、懸濁液中の分子の配向性等によって発現すると推測される。なかでも、原料として用いるセルロース誘導体のプロピオニル基の含有率を適切に設定することで、「しっとりとした触感」を発現させることができる。
 樹脂ビーズ中のプロピオニル基の含有率は、例えば、プロピオニル基含有率が所定の範囲内のセルロース誘導体を原料として用いることで調整することができる。セルロース誘導体は、市販のセルロース誘導体をそのまま用いてもよいし、常法にしたがって加水分解又はエステル化してプロピオニル基の含有率を調整したものを用いてもよい。さらに、プロピオニル基含有率の異なる複数の樹脂ビーズを混合して、樹脂ビーズ全体のプロピオニル基含有率が所定の範囲内となるように制御してもよい。
 樹脂ビーズの中実度は、70~100体積%であることが好ましく、75~100体積%であることがさらに好ましく、80~99体積%であることが特に好ましい。中実度を上記の範囲内とすることで、化粧料等に配合される樹脂ビーズに要求される透明性を有効に発現させることができる。樹脂ビーズの中実度が70体積%未満であると、空域によって光散乱が生じ、透明性が低下しやすくなる。また、中実度が低下すると吸油量も変化する。このため、中実度が低い樹脂ビーズを化粧料等の製品に配合すると、製品の安定性がやや低下することがある。
 樹脂ビーズの中実度は、以下に示す手順にしたがって測定及び算出することができる。まず、走査型電子顕微鏡(SEM)で撮影した樹脂ビーズの断面のSEM画像を画像解析し、個々の樹脂ビーズの、樹脂で満たされた部分の体積を算出する。そして、任意に選択した20個以上の樹脂ビーズの、樹脂で満たされた部分の体積の平均値を中実度(体積%)とする。
 本発明の樹脂ビーズを構成する樹脂は、セルロース誘導体を主成分とする。樹脂ビーズを構成する樹脂は、セルロース誘導体のみからなることが好ましい。セルロース誘導体は、1ユニット中に3つのヒドロキシ基を有するセルロースを変性したものである。セルロース誘導体は、セルロース中の1つのヒドロキシ基が特定の置換基で置換されたものであってもよく、2つのヒドロキシ基が特定の置換基で置換されたものであってもよく、3つのヒドロキシ基が特定の置換基で置換されたものであってもよい。置換基の構造は、直鎖状、分岐状、及び環状のいずれであってもよい。また、セルロース誘導体は塩であってもよい。セルロース誘導体としては、樹脂ビーズの使用目的を勘案し、公知のセルロース誘導体を適宜選択して用いることができる。なかでも、天然系のセルロース誘導体として化粧料等の製品に用いられているセルロースエステル類が好ましい。
 セルロース誘導体の具体例としては、メチルセルロース、エチルセルロース、セルロースアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート、ニトロセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースフタレート、ヒプロメロース酢酸エステルコハク酸エステル、カルボキシメチルセルロース、セルロースグリコール酸エーテル等を挙げることができる。なお、セルロースアセテートとしては、アセチルセルロース、ジアセチルセルロース、及びトリアセチルセルロースを挙げることができる。これらのセルロース誘導体は、1種単独で又は2種以上を組み合わせて用いることができる。
 セルロース誘導体のうち、セルロースエステル類の具体例としては、メチルセルロース、エチルセルロース、アセチルセルロース、ジアセチルセルロース、トリアセチルセルロース、セルロースアセテートブチレート、セルロースアセテートプロピオネートなどを挙げることができる。なかでも、セルロースアセテート、セルロースアセテートプロピオネート、エチルセルロース、ヒドロキシプロピルメチルセルロースなどが好ましい。
 樹脂ビーズは、用途に応じて、顔料及び染料の少なくともいずれかを含有していてもよい。顔料や染料を含有する樹脂ビーズを得るには、例えば、顔料及び染料の少なくともいずれかをさらに含有する油相を用いて懸濁液を調製すればよい。顔料としては、二酸化チタン、酸化亜鉛、弁柄(ベンガラ)、黄酸化鉄、黒酸化鉄等の金属酸化物の他、法定色素和名の黄色4号、赤色202号、青色1号、カーボンブラック等を挙げることができる。また、マイカ、タルク、カオリン、炭酸カルシウム等の体質顔料を用いることもできる。染料としては、赤色104号、黄色5号、青色1号等を挙げることができる。
 樹脂ビーズは、顔料と、界面活性剤及び分散剤及び高分子分散剤の少なくともいずれかと、を含有することが好ましい。また、顔料は、シリコーン、脂肪酸、脂肪酸金属塩、アミノ酸、及びアミノ酸金属塩からなる群より選択される少なくとも一種で処理された処理顔料であることが好ましい。
 樹脂ビーズは、用途に応じて、紫外線吸収剤及び紫外線散乱剤の少なくともいずれかを含有していてもよい。紫外線吸収剤や紫外線散乱剤を含有する樹脂ビーズを得るには、例えば、紫外線吸収剤及び紫外線散乱剤の少なくともいずれかをさらに含有する油相を用いて懸濁液を調製すればよい。紫外線吸収剤等としては、例えば、微粒子二酸化チタン、微粒子酸化亜鉛、ケイ皮酸系紫外線吸収剤、ジベンゾイルメタン系紫外線吸収剤などを挙げることができる。
 樹脂ビーズは、シリコーン、脂肪酸、脂肪酸金属塩、アミノ酸、及びアミノ酸金属塩からなる群より選択される少なくとも一種で処理された処理ビーズであることが好ましい。
 次に、上述の樹脂ビーズを製造する方法について説明する。本発明の樹脂ビーズの製造方法は、上述の樹脂ビーズの製造方法であり、セルロース誘導体及びセルロース誘導体を溶解する有機溶剤を含有する油相(第1の液体)と、分散安定化剤を含有する水相(第2の液体)と、を混合して、セルロース誘導体及び有機溶剤を含有する油滴を含む懸濁液を調製する工程(懸濁液調製工程)を有する。
 懸濁液調製工程では、セルロース誘導体及びセルロース誘導体を溶解する有機溶剤を含有する油相と、分散安定化剤を含有する水相とを混合する。油相と水相を混合し、必要に応じて撹拌することで、セルロース誘導体及び有機溶剤を含有する油滴が水中に分散した懸濁液を得ることができる。この油滴は水中に分散した状態で存在するため、油滴中の有機溶剤は水中へと徐々に移動する。そして、有機溶剤の移動に伴って油滴が収縮し、有機溶剤に溶解していたセルロース誘導体が徐々に析出する。析出したセルロース誘導体は、図1に示すような平滑な表面を維持しながら成長する。最終的には、析出したセルロース誘導体が固定化され、実質的に中実な樹脂ビーズが形成される。油滴の収縮が生じているか否かは、光学顕微鏡や電子顕微鏡等を用いて観察した画像を解析することで判断することができる。このような油滴の収縮が生ずることで、真球性(真球度)が高く、実質的に中実であり、平滑な表面を有する、所望とする粒子径の樹脂ビーズを得ることができる。そして、このようにして得られた樹脂ビーズを用いることで、臭気が発生しにくく、優れた触感及び肌への伸びを有する化粧料等の各種製品を提供することができる。
 油相に含まれる有機溶剤(第1の有機溶剤)としては、セルロース誘導体を溶解可能な公知の有機溶剤を用いることができる。有機溶剤の具体例としては、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤;エタノール、n-ブタノール等のアルコール類;エチルセロソルブ、ブチルセロソルブ、エチレングリコールジエチルエーテル等のエーテル系溶剤;ジプロピレングリコールモノメチルエーテル等のグリコールエーテル系溶剤;プロピレングリコールモノメチルエーテルアセテート等のグリコールエステル系溶剤;塩化メチレン、クロロホルム、テトラクロロエタン等の塩素系溶剤;ニトロメタン;炭酸プロピレン等を用いることができる。これらの有機溶剤は、1種単独で又は2種以上を組み合わせて用いることができる。
 有機溶剤としては、ケトン系溶剤、エステル系溶剤、アルコール類、グリコール類、エーテル系溶剤、ハロゲン化アルキル、ニトロ化アルキルが好ましい。なかでも、メチルエチルケトン、酢酸エチル、ブタノール、プロピレングリコールモノブチルエーテル、プロピルアセテート、プロピレングリコールモノメチルエーテルアセテートがさらに好ましい。
 懸濁液に含まれる油滴中の有機溶剤は、水相へと徐々に移動する。但し、有機溶剤の水溶解度が高すぎると、油滴から水相へと急激に有機溶剤が移動しやすくなるため、油滴が収縮して形成される樹脂ビーズが真球形状になりにくくなる場合や、平滑な表面が形成されにくくなる場合がある。また、有機溶剤の水溶解度が高すぎると、油滴に水相が部分的に入り込みやすくなり、中実な樹脂ビーズが形成されにくくなる場合もある。一方、有機溶剤の水溶解度が低すぎると、油滴から水相への有機溶剤の移動速度が低下するとともに、多量の水相を用いることが必要となる傾向にあるので、製造コストの面で不利になる場合がある。また、有機溶剤の水溶解度が低すぎると、樹脂ビーズ内に有機溶剤が残りやすくなる場合がある。このため、25℃における有機溶剤の水100gに対する溶解度(水溶解度)は、0.1~50.0gであり、0.5~40.0gであることが好ましく、1.0~30.0gであることがさらに好ましい。
 油相(第1の液体)に含有される有機溶剤の液量は、セルロース誘導体の量に対して、質量基準で2.0倍以上であることが好ましく、2.5~15.0倍であることがさらに好ましい。油相中の有機溶剤の液量が少なすぎると、油滴中の有機溶剤が水相へと移動した際に、セルロース誘導体が急速に析出しやすくなる。このため、得られる樹脂ビーズが真球形状になりにくくなる場合や、平滑な表面が形成されにくくなる場合がある。
 懸濁液調製工程で用いる水相は、分散安定化剤が脱イオン水等の水に溶解した液体(第2の液体)である。分散安定化剤としては、水溶性セルロース、ポリビニルアルコール、ポリアクリル酸ソーダなどの水溶性高分子;ハイドロキシアパタイト、第3リン酸カルシウム、炭酸カルシウムなどの無機塩類を用いることができる。これらの分散安定化剤は、1種単独で又は2種以上を組み合わせて用いることができる。これらの分散安定化剤のなかでも、水溶性セルロース、ポリビニルアルコール、ポリアクリル酸ソーダなどの水溶性高分子を用いることが好ましい。
 懸濁液中の油滴が移送中に破壊されたり、合一したりするのを抑制すべく、水相に用いる分散安定化剤の種類や濃度を適宜設定することが好ましい。水相中の分散安定化剤の含有量は、30質量%以下であることが好ましく、1~20質量%であることがさらに好ましい。
 水相は、第2の有機溶剤をさらに含有することが好ましい。油相中の有機溶剤(第1の有機溶剤)は、その種類により、水相へと急速に移動することがある。そこで、第2の有機溶剤を含有する水相を油相と混合することで、油相中の第1の有機溶剤の水相への急速な移動を抑制することが可能となり、より真球度が高く、表面がさらに平滑な樹脂ビーズを製造することができる。第2の有機溶剤としては、好適なものを含め、油相に用いる前述の有機溶剤(第1の有機溶剤)と同様のものを用いることができる。なお、第1の有機溶剤と第2の有機溶剤は、同種であってもよく、異種であってもよい。
 懸濁液調製工程では、油相と水相を混合して懸濁液を調製する。油相と水相を混合するには、撹拌下の水相に油相を添加してもよく、撹拌下の油相に水相を添加してもよい。必要に応じて、ディスパーやホモジナイザーなどの乳化装置を使用し、形成される油滴の粒径を調整することが好ましい。例えば、ホモジナイザーの回転数を変えてせん断力を調整することで、形成される油滴の粒子径を容易に調整することができる。その結果、得られる樹脂ビーズの粒子径を所望の範囲となるように適宜に調整することができる。
 水相の液量は、油相の液量に対して、質量基準で3.0倍以下とすることが好ましく、0.2~2.8倍とすることがさらに好ましい。水相の液量を上記の範囲とすることで、油滴中の有機溶剤の水相への急速な移動を抑制することができ、より真球度が高く、表面がさらに平滑な樹脂ビーズを製造することができる。
 本発明の樹脂ビーズの製造方法は、懸濁液に水を添加して油滴を収縮させる工程(収縮工程)をさらに有する。懸濁液に水を添加することで、懸濁液中の油滴をより速やかに収縮させることができる。懸濁液に追加する水の液量は、懸濁液の液量に対して、質量基準で0.5倍以上であることが好ましく、1~40倍であることがさらに好ましい。
 収縮工程では、ある程度の時間をかけて懸濁液に水を添加することが好ましい。ある程度の時間をかけて水を添加することで、油滴中の有機溶剤の水相への急速な移動を抑制することができ、より真球度が高く、表面がさらに平滑な樹脂ビーズを製造することができる。具体的には、30分以上かけて懸濁液に水を添加することが好ましく、45分以上かけて水を添加することがさらに好ましく、60~150分かけて水を添加することが特に好ましい。
 懸濁液調製工程の後は、例えば、生成した樹脂ビーズをろ過及び洗浄し、分散安定化剤等の不要な成分を除去する。次いで、必要に応じて洗浄を複数回繰り返した後、乾燥及び解砕処理すれば、目的とする樹脂ビーズを得ることができる。
 上述の樹脂ビーズは、真球性(真球度)が高く、平滑な表面を有し、しっとりとした触感を持ち、経時安定性が良好で異臭が生じにくい、天然系素材を構成材料とする樹脂粒子である。このため、上記の樹脂ビーズを含有させることで、石油由来の合成系素材からなる樹脂粒子を用いなくても、優れた触感、肌への伸び、及び製品安定性が付与された化粧料、外皮用薬、塗料、成形体、フィルム、コーティング剤、及び樹脂組成物等の各種製品を提供することができる。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。
<樹脂ビーズの製造>
(実施例1)
 セルロースアセテートプロピオネート(商品名「CAP-482-0.5」、イーストマンケミカル社製)100部を酢酸エチル(水溶解度:8g/100g)350部に溶解して油相を調製した。また、ポリビニルアルコール24部をイオン交換水300部に溶解して水相を調製した。調製した水相に油相を加えて混合し、ディゾルバーを用いて1,000rpmで3分間撹拌した。さらに、ディゾルバーを用いて1,800rpmで10分間撹拌して、油滴が均一に分散した懸濁液を得た。光学顕微鏡で観察及び画像解析して測定した油滴の体積平均粒子径は、15μmであった。
 ディゾルバーを用いて得られた懸濁液を500rpmで撹拌しながら、イオン交換水4,500部を75分かけて注入し、樹脂粒子分散液(樹脂ビーズ分散液)を得た。樹脂粒子をろ過及び洗浄した後、イオン交換水に解膠した。さらに、ろ過及び洗浄した後、乾燥及び解砕処理して樹脂ビーズを得た。得られた樹脂ビーズの表面の状態を示す電子顕微鏡写真を図1に示す。また、得られた樹脂ビーズの断面の状態を示す電子顕微鏡写真を図2に示す。
(実施例2)
 セルロースアセテートプロピオネート(商品名「CAP-482-0.5」、イーストマンケミカル社製)100部を酢酸エチル(水溶解度:8g/100g)350部及び酢酸メチル(水溶解度:24.4g/100g)50部に溶解して油相を調製した。また、ポリビニルアルコール42部をイオン交換水400部に溶解して水相を調製した。調製した水相に油相を加えて混合し、ディゾルバーを用いて1,000rpmで3分間撹拌した。さらに、ディゾルバーを用いて1,600rpmで10分間撹拌して、油滴が均一に分散した懸濁液を得た。光学顕微鏡で観察及び画像解析して測定した油滴の体積平均粒子径は、18μmであった。
 ディゾルバーを用いて得られた懸濁液を500rpmで撹拌しながら、イオン交換水5,000部を60分かけて注入し、樹脂粒子分散液(樹脂ビーズ分散液)を得た。樹脂粒子をろ過及び洗浄した後、イオン交換水に解膠した。さらに、ろ過及び洗浄した後、乾燥及び解砕処理して樹脂ビーズを得た。
(実施例3)
 セルロースアセテートプロピオネート(商品名「CAP-504-0.2」、イーストマンケミカル社製)100部を酢酸エチル(水溶解度:8g/100g)500部に溶解して油相を調製した。また、ポリビニルアルコール56部をイオン交換水560部に溶解させた後、酢酸エチル40部を加えて水相を調製した。調製した水相に油相を加えて混合し、ディゾルバーを用いて1,000rpmで3分間撹拌した。さらに、ディゾルバーを用いて1,500rpmで10分間撹拌して、油滴が均一に分散した懸濁液を得た。光学顕微鏡で観察及び画像解析して測定した油滴の体積平均粒子径は、23μmであった。
 ディゾルバーを用いて得られた懸濁液を500rpmで撹拌しながら、イオン交換水7,000部を65分かけて注入し、樹脂粒子分散液(樹脂ビーズ分散液)を得た。樹脂粒子をろ過及び洗浄した後、イオン交換水に解膠した。さらに、ろ過及び洗浄した後、乾燥及び解砕処理して樹脂ビーズを得た。
(参考例4)
 セルロースアセテートプロピオネート(商品名「CAP-504-0.2」、イーストマンケミカル社製)50部及び、ジアセチルセルロース(商品名「CA-398-10」、イーストマンケミカル社製)50部をイソプロピルアセテート(水溶解度:4g/100g)1000部に溶解して油相を調製した。また、ポリビニルアルコール300部をイオン交換水2700部に溶解させて水相を調製した。調製した水相に油相を加えて混合し、ディゾルバーを用いて1,000rpmで3分間撹拌した。さらに、ディゾルバーを用いて2,000rpmで10分間撹拌して、油滴が均一に分散した懸濁液を得た。光学顕微鏡で観察及び画像解析して測定した油滴の体積平均粒子径は、12μmであった。
 ディゾルバーを用いて得られた懸濁液を500rpmで撹拌しながら、イオン交換水22,000部を120分かけて注入し、樹脂粒子分散液(樹脂ビーズ分散液)を得た。樹脂粒子をろ過及び洗浄した後、イオン交換水に解膠した。さらに、ろ過及び洗浄した後、乾燥及び解砕処理して樹脂ビーズを得た。
(実施例5)
 セルロースアセテートプロピオネート100部を、ジアセチルセルロース(商品名「CA-398-6」、イーストマンケミカル社製)35部に変更したこと以外は、前述の実施例1と同様にして樹脂ビーズを得た。得られた樹脂ビーズ30部と、実施例3で得た樹脂ビーズ70部とを混合して、実施例5の樹脂ビーズを得た。
(実施例6)
 実施例3で得た樹脂ビーズを常法にしたがって一部加水分解した後、ろ過、洗浄、乾燥、及び解砕処理して、実施例6の樹脂ビーズを得た。
(実施例7)
 セルロースアセテートプロピオネート(商品名「CAP-504-0.2」、イーストマンケミカル社製)89部を1-ブタノール(水溶解度:8g/100g)700部に溶解して油相を調製した。脂肪酸処理した微粒子酸化チタン(商品名「MT-100TV」、テイカ社製)10部及び、アクリルシリコーン分散剤(商品名「KP-578」、信越化学社製)1部を加えて混合・分散し、微粒子酸化チタンが分散した油相を調製した。また、ポリアクリル酸50部をイオン交換水850部に溶解させ水相を調製した。調製した水相に油相を加えて混合し、ディゾルバーを用いて1,000rpmで3分間撹拌した。さらに、ディゾルバーを用いて2,500rpmで20分間撹拌して、油滴が均一に分散した懸濁液を得た。光学顕微鏡で観察及び画像解析して測定した油滴の体積平均粒子径は、10μmであった。
 ディゾルバーを用いて得られた懸濁液を500rpmで撹拌しながら、イオン交換水9,000部を60分かけて注入し、樹脂粒子分散液(樹脂ビーズ分散液)を得た。樹脂粒子をろ過及び洗浄した後、イオン交換水に解膠した。さらに、ろ過及び洗浄した後、乾燥及び解砕処理して樹脂ビーズを得た。
(実施例8)
 セルロースアセテートプロピオネート(商品名「CAP-482-0.5」、イーストマンケミカル社製)80部を酢酸エチル(水溶解度:8g/100g)400部に溶解して油相を調製した。アミノ酸処理した粒子酸化チタン(商品名「NAI-チタンCR-50」、三好化成社製)20部を加えて混合・分散し、酸化チタンが分散した油相を調製した。また、ポリビニルアルコール32部をイオン交換水400部に溶解させ水相を調製した。調製した水相に油相を加えて混合し、ディゾルバーを用いて1,000rpmで3分間撹拌した。さらに、ディゾルバーを用いて1,600rpmで10分間撹拌して、油滴が均一に分散した懸濁液を得た。光学顕微鏡で観察及び画像解析して測定した油滴の体積平均粒子径は、14μmであった。
 ディゾルバーを用いて得られた懸濁液を500rpmで撹拌しながら、イオン交換水8,000部を60分かけて注入し、樹脂粒子分散液(樹脂ビーズ分散液)を得た。樹脂粒子をろ過及び洗浄した後、イオン交換水に解膠した。さらに、ろ過及び洗浄した後、乾燥及び解砕処理して樹脂ビーズを得た。
(比較例1)
 セルロース微粒子(商品名「CELLULOBEADS D-5」、大東化成品社製)を比較例1の樹脂ビーズとした。
(比較例2)
 ジアセチルセルロース(商品名「CA-398-6」、イーストマンケミカル社製)35部をアセトン(水溶解度:∞g/100g)350部に溶解して油相を調製した。また、ポリビニルアルコール15部をイオン交換水300部に溶解して水相を調製した。調製した水相に油相を加えて混合し、ディゾルバーを用いて1,000rpmで3分間撹拌した。さらに、ディゾルバーを用いて1,800rpmで10分間撹拌して、懸濁液を得た。光学顕微鏡で観察及び画像解析して測定した懸濁液の体積平均粒子径は、80μmであった。
 ディゾルバーを用いて得られた懸濁液を500rpmで撹拌しながら、イオン交換水4,500部を45分かけて注入し、樹脂粒子懸濁液(樹脂ビーズ懸濁液)を得た。樹脂粒子をろ過及び洗浄した後、イオン交換水に解膠した。さらに、ろ過及び洗浄した後、乾燥及び解砕処理して樹脂ビーズを得た。
(比較例3)
 ジアセチルセルロース(商品名「CA-398-6」、イーストマンケミカル社製)35部を酢酸エチル(水溶解度:8g/100g)350部に溶解して油相を調製した。また、ポリビニルアルコール15部をイオン交換水300部に溶解して水相を調製した。調製した水相に油相を加えて混合し、ディゾルバーを用いて1,000rpmで3分間撹拌した。さらに、ディゾルバーを用いて1,500rpmで10分間撹拌して、懸濁液を得た。光学顕微鏡で観察及び画像解析して測定した懸濁液の体積平均粒子径は、16μmであった。
 ディゾルバーを用いてイオン交換水4,500部を500rpmで撹拌しながら、得られた懸濁液を10分かけて注入し、樹脂粒子懸濁液(樹脂ビーズ懸濁液)を得た。樹脂粒子をろ過及び洗浄した後、イオン交換水に解膠した。さらに、ろ過及び洗浄した後、乾燥及び解砕処理して樹脂ビーズを得た。
(比較例4)
 ジアセチルセルロース(商品名「CA-398-6」、イーストマンケミカル社製)35部を酢酸エチル(水溶解度:8g/100g)350部に溶解して油相を調製した。また、ポリビニルアルコール15部をイオン交換水300部に溶解して水相を調製した。調製した水相に油相を加えて混合し、ディゾルバーを用いて1,000rpmで3分間撹拌した。さらに、ディゾルバーを用いて1,500rpmで10分間撹拌して、懸濁液を得た。光学顕微鏡で観察及び画像解析して測定した懸濁液の体積平均粒子径は、16μmであった。
 ディゾルバーを用いて得られた懸濁液を500rpmで撹拌しながら、イオン交換水4,500部を一気に注入し、樹脂粒子分散液(樹脂ビーズ分散液)を得た。樹脂粒子をろ過及び洗浄した後、イオン交換水に解膠した。得られた樹脂ビーズを常法にしたがって一部加水分解した後、ろ過、洗浄、乾燥、及び解砕処理して、比較例4の樹脂ビーズを得た。
<樹脂ビーズの評価>
(体積平均粒子径)
 コールターカウンター(ベックマン・コールター社製)を使用して樹脂ビーズの体積平均粒子径を測定した。結果を表1に示す。
(真球度)
 走査型電子顕微鏡(SEM)で撮影した樹脂ビーズのSEM画像を画像解析し、下記式(1)より、個々の樹脂ビーズの円形度Cを算出する。そして、任意に選択した100個以上の樹脂ビーズの円形度Cの相加平均値を真球度とした。結果を表1に示す。
 C=(4πS)/(L)  ・・・(1)
 上記式(1)中、Sは、画像中に占める樹脂ビーズの面積(投影面積)を示し、Lは、画像中における樹脂ビーズの外周部の長さを示す。円形度Cの値が1に近いほど、粒子の形状は真球に近い。
(表面平滑度)
 走査型電子顕微鏡(SEM)で撮影した樹脂ビーズのSEM画像(×5,000)を観察し、下記式(2)より、個々の樹脂ビーズの平滑度Mを算出する。そして、任意に選択した100個以上の樹脂ビーズの平滑度Mの相加平均値を表面平滑度とした。結果を表1に示す。平滑度Mの値が1に近いほど、粒子の表面は平滑に近い。
 M=(1-(S)/(S))×100  ・・・(2)
 上記式(2)中、Sは、画像中に占める樹脂ビーズの面積(投影面積)を示し、Sは樹脂ビーズとそれに近似した円を重ねた際に、樹脂粒子の輪郭で形成されたエリアと、重ねた円の輪郭より内部にある面積と外部にある面積の総和を示す。
(中実度)
 走査型電子顕微鏡(SEM)で撮影した樹脂ビーズの断面のSEM画像を画像解析し、個々の樹脂ビーズの、樹脂で満たされた部分の体積を算出する。そして、任意に選択した20個以上の樹脂ビーズの、樹脂で満たされた部分の体積の平均値を中実度(体積%)とした。結果を表1に示す。
(アセチル基及びプロピオニル基の含有率)
 特表2006-523752号公報の記載内容(主として、段落[0136]~[0145]の記載内容)に準じて、樹脂ビーズのアセチル基の含有率及びプロピオニル基の含有率を測定及び算出した。結果を表1に示す。
(触感)
 樹脂ビーズの触感について、10人のパネルテストによる官能評価を行った。樹脂ビーズに触れ、「滑らかさ」、「肌への伸びの良さ」、及び「しっとり感」を総合的に判断し、以下に示す評価基準にしたがって5点満点で採点し、10人の平均点を算出した。結果を表1に示す。
 5:良い
 4:やや良い
 3:普通
 2:やや悪い
 1:悪い
(臭気(製品安定性))
 樹脂ビーズの臭気について、5人のパネルテストによる官能評価を行った。樹脂ビーズ4.0g、及び樹脂ビーズの水分量が10%となる量の純水を30mL容の密封可能なガラス瓶に入れ、密封して70℃の恒温槽で7日間促進試験を行った。室温まで冷却した後、蓋を開けて臭気の変化を確認した。促進試験前の樹脂ビーズの臭気を基準臭として比較し、以下に示す評価基準にしたがって5点満点で採点し、5人の平均点を算出した。結果を表1に示す。
 5:変化を感じない
 4:やや変化を感じる
 3:変化を感じる
 2:やや強い変化を感じる
 1:強い変化を感じる
Figure JPOXMLDOC01-appb-I000001
<化粧料の製造>
(化粧料-1)
 化粧料の原料として従来用いられている各種成分を混合して化粧料-1を製造した。具体的には、まず、シリコーン処理された各粉体(マイカ、タルク、微粒子酸化チタン、及び硫酸バリウム)と、各樹脂ビーズとを、表2に示す配合量で配合し、均一になるまで混合して粉体混合物を得た。次いで、ワセリン、スクワラン、及びトリオクタン酸グリセリルを混合して得た混合物(その他の成分)を粉体混合物に加え、均一なるまで混合した後、容器に充填し、必要に応じてプレス成型して化粧料-1を得た。
Figure JPOXMLDOC01-appb-I000002
(化粧料-2)
 化粧料の原料として従来用いられている各種成分を混合して、サンカット乳液である化粧料-2を製造した。具体的には、まず、シリコーンオイル、紫外線防御剤、乳化剤、分散剤、イソノナン酸イソトリデシル、及び各樹脂ビーズを表3に示す配合量で配合し、混合して油相成分を調製した。また、精製水、ジプロピレングリコール、塩化ナトリウム、及びクエン酸ナトリウムを表3に示す配合量で配合し、混合して水相成分を調製した。次いで、調製した油相成分に水相成分を撹拌しながら添加して乳化させ、化粧料-2を得た。
Figure JPOXMLDOC01-appb-I000003
<化粧料-1の評価>
(触感、肌への伸び)
 化粧料-1の触感及び肌への伸びについて、10人のパネルテストによる官能評価を行った。「触感の良さ」及び「肌への伸び」を判断し、以下に示す評価基準にしたがってそれぞれ5点満点で採点し、10人の平均点を算出した。結果を表4に示す。
 5:良い
 4:やや良い
 3:普通
 2:やや悪い
 1:悪い
(臭気(製品安定性))
 化粧料-1の臭気について、5人のパネルテストによる官能評価を行った。化粧料-1(粉体)4.0gを30mL容の密封可能なガラス瓶に入れ、密封して70℃の恒温槽で7日間促進試験を行った。室温まで冷却した後、蓋を開けて臭気の変化を確認した。促進試験前の粉体の臭気を基準臭として比較し、以下に示す評価基準にしたがって5点満点で採点し、5人の平均点を算出した。結果を表4に示す。
 5:変化を感じない
 4:やや変化を感じる
 3:変化を感じる
 2:やや強い変化を感じる
 1:強い変化を感じる
Figure JPOXMLDOC01-appb-I000004
<化粧料-2の評価>
(触感、肌への伸び、透明性)
 化粧料-2の触感、肌への伸び、及び透明性について、10人のパネルテストによる官能評価を行った。「触感の良さ」、「肌への伸び」、及び「透明性」を判断し、以下に示す評価基準にしたがってそれぞれ5点満点で採点し、10人の平均点を算出した。結果を表5に示す。
 5:良い
 4:やや良い
 3:普通
 2:やや悪い
 1:悪い
(臭気(製品安定性))
 化粧料-2の臭気について、5人のパネルテストによる官能評価を行った。化粧料-2(液体)4.0gを30mL容の密封可能なガラス瓶に入れ、密封して70℃の恒温槽で7日間促進試験を行った。室温まで冷却した後、蓋を開けて臭気の変化を確認した。促進試験前の液体の臭気を基準臭として比較し、以下に示す評価基準にしたがって5点満点で採点し、5人の平均点を算出した。結果を表5に示す。
 5:変化を感じない
 4:やや変化を感じる
 3:変化を感じる
 2:やや強い変化を感じる
 1:強い変化を感じる
Figure JPOXMLDOC01-appb-I000005
 表4及び5に示すように、実施例の樹脂ビーズを用いることで、触感、肌への伸び、透明性、及び製品安定性に優れた化粧料を製造できたことがわかる。また、実施例の樹脂ビーズを用いることで、化粧料だけでなく、外皮用薬、塗料、成形体、フィルム、コーティング剤、及び樹脂組成物などの各種製品に対しても、優れた触感、透明性、伸び、及び製品安定性などの特性を付与できることを確認した。
 本発明の樹脂ビーズは、石油由来の合成系素材で形成された樹脂ビーズと同等以上の特性を有する。このため、本発明の樹脂ビーズを用いれば、石油由来の合成系素材で形成された樹脂ビーズを用いなくても、良好な触感で、肌への伸びが良く、透明感があり、かつ、品質の安定した化粧品などの製品を提供することができる。したがって、本発明の樹脂ビーズは、例えば、化粧料、外皮用剤、塗料、成形体、フィルム、コーティング剤、及び樹脂組成物などの各種製品の構成材料として有用である。

Claims (18)

  1.  セルロース誘導体を主成分とする樹脂で形成された樹脂ビーズであって、
     前記セルロース誘導体が、セルロースアセテート、セルロースアセテートプロピオネート、エチルセルロース、及びヒドロキシプロピルメチルセルロースからなる群より選択される少なくとも一種であり、
     体積平均粒子径が、50μm以下であり、
     真球度が、0.7~1.0であり、
     表面平滑度が、80~100%であり、
     アセチル基の含有率が、15質量%以下であり、
     プロピオニル基の含有率が、10質量%以上である樹脂ビーズ。
  2.  前記セルロース誘導体が、セルロースアセテートプロピオネートである請求項1に記載の樹脂ビーズ。
  3.  中実度が、70~100体積%である請求項1又は2に記載の樹脂ビーズ。
  4.  前記樹脂ビーズが、顔料及び染料の少なくともいずれかを含有する請求項1~3のいずれか一項に記載の樹脂ビーズ。
  5.  前記樹脂ビーズが、顔料と、界面活性剤及び分散剤及び高分子分散剤の少なくともいずれかと、を含有する請求項1~4のいずれか一項に記載の樹脂ビーズ。
  6.  前記顔料が、シリコーン、脂肪酸、脂肪酸金属塩、アミノ酸、及びアミノ酸金属塩からなる群より選択される少なくとも一種で処理された処理顔料である請求項4又は5に記載の樹脂ビーズ。
  7.  前記樹脂ビーズが、紫外線吸収剤及び紫外線散乱剤の少なくともいずれかを含有する請求項1~6のいずれか一項に記載の樹脂ビーズ。
  8.  前記樹脂ビーズが、シリコーン、脂肪酸、脂肪酸金属塩、アミノ酸、及びアミノ酸金属塩からなる群より選択される少なくとも一種で処理された処理ビーズである請求項1~7のいずれか一項に記載の樹脂ビーズ。
  9.  請求項1~8のいずれか一項に記載の樹脂ビーズの製造方法であって、
     前記セルロース誘導体及び前記セルロース誘導体を溶解する、25℃における水100gに対する溶解度が0.1~50.0gである有機溶剤を含有する油相と、分散安定化剤を含有する水相と、を混合して、前記セルロース誘導体及び前記有機溶剤を含有する油滴を含む懸濁液を調製する工程と、
     前記懸濁液に水を添加して前記油滴を収縮させる工程と、
    を有する樹脂ビーズの製造方法。
  10.  前記懸濁液に30分以上かけて前記水を添加する請求項9に記載の樹脂ビーズの製造方法。
  11.  前記懸濁液に添加する前記水の液量が、前記懸濁液の液量に対して、質量基準で0.5倍以上である請求項9又は10に記載の樹脂ビーズの製造方法。
  12.  前記水相が、第2の有機溶剤をさらに含有する請求項9~11のいずれか一項に記載の樹脂ビーズの製造方法。
  13.  前記水相の液量が、前記油相の液量に対して、質量基準で3.0倍以下である請求項9~12のいずれか一項に記載の樹脂ビーズの製造方法。
  14.  前記有機溶剤が、ケトン系溶剤、エステル系溶剤、アルコール類、グリコール類、エーテル系溶剤、ハロゲン化アルキル、及びニトロ化アルキルからなる群より選択される少なくとも一種である請求項9~13のいずれか一項に記載の樹脂ビーズの製造方法。
  15.  前記有機溶剤の液量が、前記セルロース誘導体の量に対して、質量基準で2.0倍以上である請求項9~14のいずれか一項に記載の樹脂ビーズの製造方法。
  16.  前記分散安定化剤が、水溶性高分子である請求項9~15のいずれか一項に記載の樹脂ビーズの製造方法。
  17.  前記水相中の前記分散安定化剤の含有量が、30質量%以下である請求項9~16のいずれか一項に記載の樹脂ビーズの製造方法。
  18.  樹脂ビーズを含有する、化粧料、外皮用薬、塗料、成形体、フィルム、コーティング剤、及び樹脂組成物のいずれかの製品であって、
     前記樹脂ビーズが、請求項1~8のいずれか一項に記載の樹脂ビーズである製品。

     
PCT/JP2021/007183 2020-03-04 2021-02-25 樹脂ビーズ、樹脂ビーズの製造方法、及び樹脂ビーズを用いた製品 WO2021177141A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/905,233 US11998630B2 (en) 2020-03-04 2021-02-25 Resin beads, method for producing resin beads and product using resin beads
BR112022017335-0A BR112022017335B1 (pt) 2020-03-04 2021-02-25 Grânulos de resina, método para produção de grânulos de resina e produto utilizando os mesmos
CN202180018067.6A CN115210298B (zh) 2020-03-04 2021-02-25 树脂珠、树脂珠的制造方法、以及使用了树脂珠的制品
EP21764155.4A EP4116357A4 (en) 2020-03-04 2021-02-25 RESIN BEADS, THEIR MANUFACTURING METHOD AND PRODUCT USING THEM
KR1020227034009A KR102537880B1 (ko) 2020-03-04 2021-02-25 수지 비드, 수지 비드의 제조 방법 및 수지 비드를 사용한 제품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-036983 2020-03-04
JP2020036983A JP6779400B1 (ja) 2020-03-04 2020-03-04 樹脂ビーズ、樹脂ビーズの製造方法、及び樹脂ビーズを用いた製品

Publications (1)

Publication Number Publication Date
WO2021177141A1 true WO2021177141A1 (ja) 2021-09-10

Family

ID=73022498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007183 WO2021177141A1 (ja) 2020-03-04 2021-02-25 樹脂ビーズ、樹脂ビーズの製造方法、及び樹脂ビーズを用いた製品

Country Status (6)

Country Link
US (1) US11998630B2 (ja)
EP (1) EP4116357A4 (ja)
JP (1) JP6779400B1 (ja)
KR (1) KR102537880B1 (ja)
CN (1) CN115210298B (ja)
WO (1) WO2021177141A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6779400B1 (ja) 2020-03-04 2020-11-04 大日精化工業株式会社 樹脂ビーズ、樹脂ビーズの製造方法、及び樹脂ビーズを用いた製品
JP6872068B1 (ja) * 2020-09-01 2021-05-19 大日精化工業株式会社 樹脂ビーズ、樹脂ビーズの製造方法、及び樹脂ビーズを用いた製品
JP6921293B1 (ja) * 2020-12-23 2021-08-18 大日精化工業株式会社 樹脂ビーズ、樹脂ビーズの製造方法、及び樹脂ビーズを用いた製品

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH039726B2 (ja) 1984-01-31 1991-02-12 Matsushita Electric Ind Co Ltd
JP2002205917A (ja) * 2001-01-12 2002-07-23 Kanebo Ltd 化粧料
JP2006131875A (ja) * 2004-10-08 2006-05-25 Asahi Glass Si-Tech Co Ltd 撥水性無機粉体又は撥水性樹脂ビーズの製造方法
WO2009123148A1 (ja) 2008-03-31 2009-10-08 旭化成せんい株式会社 セルロース誘導体微粒子、その分散液、その分散体及び診断薬
JP2013221000A (ja) 2012-04-16 2013-10-28 Daito Kasei Kogyo Kk 球状セルロース粉体及びそれを含有する化粧料
JP2014224183A (ja) * 2013-05-15 2014-12-04 川研ファインケミカル株式会社 アシルカルボキシメチルセルロース、及びアシルカルボキシメチルセルロースを含有する化粧料
WO2015029790A1 (ja) 2013-09-02 2015-03-05 Jnc株式会社 多孔性セルロース粒子の製造方法および多孔性セルロース粒子
WO2016013568A1 (ja) 2014-07-22 2016-01-28 株式会社ダイセル 多孔質セルロース媒体の製造方法
JP2018052909A (ja) 2016-05-16 2018-04-05 日本製紙株式会社 化粧用組成物
WO2019156116A1 (ja) * 2018-02-07 2019-08-15 株式会社ダイセル セルロースアセテート粒子、化粧品組成物及びセルロースアセテート粒子の製造方法

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919183A (ja) 1972-06-13 1974-02-20
JPS5649957B2 (ja) 1973-08-17 1981-11-26
JPS5190352A (ja) 1975-02-06 1976-08-07 Shinkyujogoseijushiryushinoseizohoho
JPS6023773B2 (ja) 1978-08-23 1985-06-10 チッソ株式会社 セルロ−ス脂肪酸エステルの微小球状粒子の製造方法
JPS59219333A (ja) 1983-05-30 1984-12-10 Daicel Chem Ind Ltd 酢酸セルロ−ス球状微小粉末の製造法
JPS609726A (ja) 1983-06-29 1985-01-18 Masahiko Kamimori 可撓性管状体の製造法及びその装置
JPS60155245A (ja) 1984-01-24 1985-08-15 Daicel Chem Ind Ltd 酢酸セルロ−ス多孔質球状粒子及びその製造方法
US5244734A (en) 1985-04-19 1993-09-14 Kanebo Ltd. Fine cellulose particles and process for production thereof
JPS62253601A (ja) 1986-04-28 1987-11-05 Daicel Chem Ind Ltd セルロ−ス球状粒子の製造方法
JP2506682B2 (ja) 1986-09-09 1996-06-12 ダイセル化学工業株式会社 球状粒子の製造法
JPH082992B2 (ja) 1986-10-11 1996-01-17 ダイセル化学工業株式会社 多孔球状粒子の製法
ATE84806T1 (de) 1987-04-16 1993-02-15 Christian Bindschaedler Verfahren zur herstellung eines wasserunloeslichen polymerpulvers, das in einer fluessigen phase redispergiert werden kann und verfahren zur herstellung einer dispersion des polymerpulvers.
US5245024A (en) 1989-06-30 1993-09-14 Loyola University Of Chicago Cellulose chromatography support
JPH0394559U (ja) 1990-01-13 1991-09-26
JPH06254373A (ja) 1993-03-03 1994-09-13 Matsumoto Yushi Seiyaku Co Ltd 球状多孔性セルロース微粒子およびその製法
DE19522181C2 (de) 1995-06-19 1999-06-24 Fraunhofer Ges Forschung Verfahren zur Herstellung von sphärischen Mikropartikeln auf Celluloseacetat- bzw. Cellulose-Basis
JP3177587B2 (ja) 1996-12-26 2001-06-18 レンゴー株式会社 セルロース微粒子の製造方法
US6599620B2 (en) 1997-01-07 2003-07-29 Kaneka Corporation Cellulosic particles, spherical object comprising cross-linked polymer particles, and adsorbent for body fluid purification
KR100371415B1 (ko) 1997-12-04 2003-02-07 아사히 가세이 가부시키가이샤 셀룰로오스 분산체
JP3287798B2 (ja) 1997-12-17 2002-06-04 レンゴー株式会社 球状セルロース微粒子の製造方法
JP2931810B1 (ja) 1998-03-31 1999-08-09 日本たばこ産業株式会社 生分解性セルロースアセテート成形品およびたばこ用フィルタープラグ
JP2000309508A (ja) 1999-04-28 2000-11-07 Asahi Chem Ind Co Ltd 固形メーキャップ化粧料
JP2000309503A (ja) 1999-04-28 2000-11-07 Asahi Chem Ind Co Ltd セルロース微粒子を含む液状又はクリーム状化粧料
JP4807867B2 (ja) 2001-06-07 2011-11-02 信越化学工業株式会社 オルガノポリシロキサン粉体処理剤及びそれを用いて処理された表面処理粉体、並びにこの表面処理粉体を含有する化粧料
JP2003146829A (ja) 2001-11-12 2003-05-21 Asahi Kasei Corp 改質粉体および化粧料
JP4022085B2 (ja) 2002-02-27 2007-12-12 博隆 伊原 セルロース誘導体粒子及びその製造方法並びにそれを用いた化粧料
EP1491178B1 (en) 2002-03-11 2009-06-03 Kao Corporation Cosmetics
US7585905B2 (en) 2003-03-14 2009-09-08 Eastman Chemical Company Low molecular weight cellulose mixed esters and their use as low viscosity binders and modifiers in coating compositions
US7052540B2 (en) 2004-03-11 2006-05-30 Eastman Chemical Company Aqueous dispersions of carboxylated cellulose esters, and methods of making them
JP2005264120A (ja) 2004-03-22 2005-09-29 Sharp Corp ポリマー微粒子の製造方法。
JP2006328245A (ja) 2005-05-26 2006-12-07 Daicel Chem Ind Ltd 保湿性に優れた有機固体粒子およびその製造方法
WO2007000834A1 (ja) 2005-06-29 2007-01-04 Agc Si-Teck Co., Ltd. 撥水性粉粒体の製造方法
WO2008010524A1 (fr) 2006-07-19 2008-01-24 Asahi Kasei Chemicals Corporation Procédé servant à produire des granules élémentaires sphériques contenant un médicament aisément soluble dans l'eau
JP5390193B2 (ja) 2007-01-12 2014-01-15 旭化成せんい株式会社 セルロース微粒子並びにその分散液及び分散体
US8298585B2 (en) 2007-06-06 2012-10-30 Asahi Kasei Chemicals Corporation Cellulose-based fine core particle and process for producing the same
US8276664B2 (en) 2007-08-13 2012-10-02 Baker Hughes Incorporated Well treatment operations using spherical cellulosic particulates
JP5513088B2 (ja) 2008-12-05 2014-06-04 花王株式会社 セルロース粒子の製造方法
JP5500042B2 (ja) 2010-10-26 2014-05-21 コニカミノルタ株式会社 セルロースエステルの製造方法
CN102911379B (zh) 2011-08-04 2014-04-23 南通醋酸纤维有限公司 一种醋酸纤维素微球的制备方法及由该方法制备的产品
JP6032817B2 (ja) 2013-12-17 2016-11-30 信越化学工業株式会社 化粧料
JP6906279B2 (ja) 2016-07-12 2021-07-21 アイカ工業株式会社 化粧材
JP2017052961A (ja) 2016-10-21 2017-03-16 株式会社ダイセル セルロースアセテート粉体およびセルロースアセテート粉体の製造方法
JP2018127579A (ja) 2017-02-10 2018-08-16 富士ゼロックス株式会社 樹脂組成物および樹脂成形体
JP6898173B2 (ja) 2017-08-09 2021-07-07 株式会社ダイセル セルロースアセテートの製造方法、製造装置及びセルロースアセテート
JP7175717B2 (ja) 2018-11-07 2022-11-21 松本油脂製薬株式会社 セルロース複合粉体
WO2020121805A1 (ja) 2018-12-12 2020-06-18 株式会社ダイセル セルロースビーズの製造方法
JP2020132616A (ja) 2019-02-18 2020-08-31 大東化成工業株式会社 油性固形化粧料
EP3943530A4 (en) 2019-03-18 2022-10-26 Daicel Corporation CELLULOSIC ACETATE PARTICLES, COSMETIC COMPOSITION AND PROCESS FOR PRODUCTION OF CELLULOSIC ACETATE PARTICLES
JP7149885B2 (ja) * 2019-03-22 2022-10-07 株式会社ダイセル セルロース誘導体粒子、化粧品組成物及びセルロース誘導体粒子の製造方法
CN114080415B (zh) 2019-07-10 2022-06-28 大日精化工业株式会社 树脂珠的制造方法、树脂珠和使用了树脂珠的制品
EP4008744A4 (en) 2019-08-02 2023-09-13 Daicel Corporation POROUS CELLULOSE PARTICLES AND THEIR PRODUCTION METHOD
JP6779400B1 (ja) 2020-03-04 2020-11-04 大日精化工業株式会社 樹脂ビーズ、樹脂ビーズの製造方法、及び樹脂ビーズを用いた製品
JP6872068B1 (ja) * 2020-09-01 2021-05-19 大日精化工業株式会社 樹脂ビーズ、樹脂ビーズの製造方法、及び樹脂ビーズを用いた製品

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH039726B2 (ja) 1984-01-31 1991-02-12 Matsushita Electric Ind Co Ltd
JP2002205917A (ja) * 2001-01-12 2002-07-23 Kanebo Ltd 化粧料
JP2006131875A (ja) * 2004-10-08 2006-05-25 Asahi Glass Si-Tech Co Ltd 撥水性無機粉体又は撥水性樹脂ビーズの製造方法
WO2009123148A1 (ja) 2008-03-31 2009-10-08 旭化成せんい株式会社 セルロース誘導体微粒子、その分散液、その分散体及び診断薬
JP2013221000A (ja) 2012-04-16 2013-10-28 Daito Kasei Kogyo Kk 球状セルロース粉体及びそれを含有する化粧料
JP2014224183A (ja) * 2013-05-15 2014-12-04 川研ファインケミカル株式会社 アシルカルボキシメチルセルロース、及びアシルカルボキシメチルセルロースを含有する化粧料
WO2015029790A1 (ja) 2013-09-02 2015-03-05 Jnc株式会社 多孔性セルロース粒子の製造方法および多孔性セルロース粒子
WO2016013568A1 (ja) 2014-07-22 2016-01-28 株式会社ダイセル 多孔質セルロース媒体の製造方法
JP2018052909A (ja) 2016-05-16 2018-04-05 日本製紙株式会社 化粧用組成物
WO2019156116A1 (ja) * 2018-02-07 2019-08-15 株式会社ダイセル セルロースアセテート粒子、化粧品組成物及びセルロースアセテート粒子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4116357A4

Also Published As

Publication number Publication date
EP4116357A1 (en) 2023-01-11
US20230136180A1 (en) 2023-05-04
CN115210298A (zh) 2022-10-18
JP6779400B1 (ja) 2020-11-04
BR112022017335A2 (pt) 2022-10-11
EP4116357A4 (en) 2023-11-15
JP2021138641A (ja) 2021-09-16
CN115210298B (zh) 2023-10-17
KR20220140900A (ko) 2022-10-18
KR102537880B1 (ko) 2023-05-31
US11998630B2 (en) 2024-06-04

Similar Documents

Publication Publication Date Title
WO2021177141A1 (ja) 樹脂ビーズ、樹脂ビーズの製造方法、及び樹脂ビーズを用いた製品
JP6872068B1 (ja) 樹脂ビーズ、樹脂ビーズの製造方法、及び樹脂ビーズを用いた製品
JP6856801B2 (ja) 樹脂ビーズの製造方法、樹脂ビーズ、及び樹脂ビーズを用いた製品
TWI822928B (zh) 纖維素衍生物粒子、化妝品組成物及纖維素衍生物粒子之製造方法
WO2019156116A1 (ja) セルロースアセテート粒子、化粧品組成物及びセルロースアセテート粒子の製造方法
CA2259281C (fr) Particules de dioxyde de titane, leur procede de preparation et leur utilisation dans les cosmetiques, vernis et lasures
WO2021006269A1 (ja) 樹脂ビーズの製造方法、樹脂ビーズ、及び樹脂ビーズを用いた製品
JP2007077087A (ja) 真珠光沢顔料
WO2022137679A1 (ja) 樹脂ビーズ、樹脂ビーズの製造方法、及び樹脂ビーズを用いた製品
BR112022017335B1 (pt) Grânulos de resina, método para produção de grânulos de resina e produto utilizando os mesmos
WO2022176825A1 (ja) セルロースアシレート組成物及びその製造方法
JP7289962B2 (ja) セルロース誘導体粒子、化粧品組成物及びセルロース誘導体粒子の製造方法
JP2005154361A (ja) 美爪料
WO2023243349A1 (ja) 生分解性球状粒子及びその製造方法
US20240228741A9 (en) Cellulose acylate composition and production method therefor
JP2023162123A (ja) 複合粒子及び該複合粒子を含む外用剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764155

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022017335

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227034009

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021764155

Country of ref document: EP

Effective date: 20221004

ENP Entry into the national phase

Ref document number: 112022017335

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220830