WO2021169676A1 - 信息传输方法及装置 - Google Patents

信息传输方法及装置 Download PDF

Info

Publication number
WO2021169676A1
WO2021169676A1 PCT/CN2021/072713 CN2021072713W WO2021169676A1 WO 2021169676 A1 WO2021169676 A1 WO 2021169676A1 CN 2021072713 W CN2021072713 W CN 2021072713W WO 2021169676 A1 WO2021169676 A1 WO 2021169676A1
Authority
WO
WIPO (PCT)
Prior art keywords
ecp
measurement value
positioning measurement
downlink
positioning
Prior art date
Application number
PCT/CN2021/072713
Other languages
English (en)
French (fr)
Inventor
任斌
达人
任晓涛
李刚
李辉
赵铮
张振宇
方荣一
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US17/802,526 priority Critical patent/US20230100877A1/en
Priority to EP21759754.1A priority patent/EP4114074A4/en
Publication of WO2021169676A1 publication Critical patent/WO2021169676A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/021Calibration, monitoring or correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0244Accuracy or reliability of position solution or of measurements contributing thereto
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0249Determining position using measurements made by a non-stationary device other than the device whose position is being determined
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals

Definitions

  • This application relates to the field of communication technology, and in particular to information transmission methods and devices.
  • GNSS integrity monitoring typical technologies mainly include integrity monitoring methods, such as satellite monitoring system (Satellite Based Augmentation System, SBAS)-based mechanism and ground-based monitoring system (Ground Based Augmentation System, GBAS)
  • SBAS satellite Based Augmentation System
  • GBAS ground-based monitoring system
  • RAIM Receiver Autonomous Integrity Monitoring
  • RAIM uses the redundant information of GNSS to perform calculations inside the user's receiver to achieve integrity monitoring. Integrity monitoring can be divided into two categories: first, it only monitors whether the integrity is satisfied, without the function of error correction; second, in addition to monitoring whether the integrity is satisfied, it also has the function of error correction.
  • the current 3GPP standard protocol architecture has not introduced the concept of location integrity, but only defines the quality of service (QoS) requirements for location services.
  • QoS requirements include the accuracy requirements for the horizontal position and the accuracy requirements for the vertical position under a certain confidence interval (Confidence Level).
  • the current 3GPP standard protocol framework does not have the concept of the integrity of the positioning service, and therefore, there is no integrity monitoring function of the downlink 3GPP based on the wireless communication (RAT-dependent) positioning network. Therefore, it is impossible to eliminate the influence of factors such as the time offset of the base station, the failure of the base station transmitter, the multipath channel, and the non-line of sight (NLOS) channel.
  • the embodiments of this application provide information transmission methods and devices to realize the integrity monitoring of the downlink 3GPP RAT-dependent positioning network, thereby eliminating the time offset of the base station, the failure of the base station transmitter, the multipath channel and the indirect path channel and other factors Impact.
  • a signal transmission method provided in an embodiment of the present application includes:
  • ECP error correction parameter
  • the downlink positioning reference signal PRS parameter configuration information is obtained, based on the downlink PRS parameter configuration information, the downlink PRS from the base station is measured, the error correction parameter ECP is generated, and the ECP is sent, thereby realizing downlink 3GPP RAT-dependent positioning
  • the integrity monitoring of the network eliminates the influence of factors such as the time offset of the base station, the failure of the base station transmitter, the multipath channel and the indirect path channel.
  • the ECP includes the following three types:
  • Type 1 The correction value used to correct the first positioning measurement value of each downlink PRS beam of the candidate base station
  • Type 2 used to indicate the estimated value of the error range of the first positioning measurement value of each downlink PRS beam of the candidate base station;
  • Type 3 An identifier used to determine whether the downlink PRS sent by each downlink PRS beam of the candidate base station meets the integrity monitoring condition.
  • the method further includes: receiving an ECP sent by a preset IM reference device, and combining the ECPs of a plurality of preset IM reference devices to obtain a synthesized ECP;
  • Sending the ECP specifically includes: sending the synthesized ECP.
  • sending the ECP specifically includes: sending the ECP to a location management function LMF entity or terminal.
  • sending the ECP specifically includes: sending the ECP to a preset IM reference device, and the preset IM reference device combines the ECPs from multiple preset IM reference devices to obtain a synthesized ECP.
  • an information transmission method provided in an embodiment of the present application includes:
  • the error correction parameter ECP is received; wherein the ECP is determined based on the downlink PRS corresponding to the downlink PRS parameter configuration information.
  • the ECP includes the following three types:
  • Type 1 The correction value used to correct the first positioning measurement value of each downlink PRS beam of the candidate base station
  • Type 2 used to indicate the estimated value of the error range of the first positioning measurement value of each downlink PRS beam of the candidate base station;
  • Type 3 An identifier used to determine whether the downlink PRS sent by each downlink PRS beam of the candidate base station meets the preset integrity monitoring condition.
  • the method further includes:
  • the terminal location is determined.
  • the following manner is adopted to determine the second positioning measurement value based on the first positioning measurement value reported by the terminal:
  • TDOA_v2 TDOA_v1–ECP_TDOA_Error
  • TDOA_v1 represents the first positioning measurement value
  • ECP_TDOA_Error represents the correction value
  • TDOA_v2+ represents the second positioning measurement value
  • the following manner is adopted to determine the second positioning measurement value based on the first positioning measurement value reported by the terminal:
  • the first positioning measurement value is used as the second positioning measurement value.
  • the second positioning measurement value is determined based on the first positioning measurement value reported by the terminal in the following manner:
  • the first positioning measurement value is used as the second positioning measurement value.
  • the method further includes:
  • an information transmission method provided in an embodiment of the present application includes:
  • the method further includes:
  • the method further includes:
  • the ECP includes the following three types:
  • Type 1 The correction value used to correct the first positioning measurement value of each downlink PRS beam of the candidate base station
  • Type 2 used to indicate the estimated value of the error range of the first positioning measurement value of each downlink PRS beam of the candidate base station;
  • Type 3 An identifier used to determine whether the downlink PRS sent by each downlink PRS beam of the candidate base station meets the preset integrity monitoring conditions.
  • a second positioning measurement value is determined based on the ECP and the first positioning measurement value in the following manner:
  • TDOA_v2 TDOA_v1–ECP_TDOA_Error
  • TDOA_v1 represents the first positioning measurement value
  • ECP_TDOA_Error represents the correction value corresponding to the ECP
  • TDOA_v2 represents the second positioning measurement value
  • a second positioning measurement value is determined based on the ECP and the first positioning measurement value in the following manner:
  • the first positioning measurement value is used as the second positioning measurement value.
  • a second positioning measurement value is determined based on the ECP and the first positioning measurement value in the following manner:
  • the first positioning measurement value is used as the second positioning measurement value.
  • an information transmission method provided in an embodiment of the present application includes:
  • the downlink PRS is sent to the terminal and the preset IM reference device.
  • an information transmission device provided in an embodiment of the present application includes:
  • Memory used to store program instructions
  • the processor is configured to call the program instructions stored in the memory, and execute according to the obtained program:
  • ECP error correction parameter
  • the ECP includes the following three types:
  • Type 1 The correction value used to correct the first positioning measurement value of each downlink PRS beam of the candidate base station
  • Type 2 used to indicate the estimated value of the error range of the first positioning measurement value of each downlink PRS beam of the candidate base station;
  • Type 3 An identifier used to determine whether the downlink PRS sent by each downlink PRS beam of the candidate base station meets the integrity monitoring condition.
  • the processor is further configured to: receive the ECP sent by a preset IM reference device, and combine and calculate the ECPs of a plurality of preset IM reference devices to obtain a synthesized ECP;
  • Sending the ECP specifically includes: sending the synthesized ECP.
  • sending the ECP specifically includes: sending the ECP to a location management function LMF entity or terminal.
  • sending the ECP specifically includes: sending the ECP to a preset IM reference device, and the preset IM reference device combines the ECPs from multiple preset IM reference devices to obtain a synthesized ECP.
  • an information transmission device provided in an embodiment of the present application includes:
  • Memory used to store program instructions
  • the processor is configured to call the program instructions stored in the memory, and execute according to the obtained program:
  • the error correction parameter ECP is received; wherein the ECP is determined based on the downlink PRS corresponding to the downlink PRS parameter configuration information.
  • the ECP includes the following three types:
  • Type 1 The correction value used to correct the first positioning measurement value of each downlink PRS beam of the candidate base station
  • Type 2 used to indicate the estimated value of the error range of the first positioning measurement value of each downlink PRS beam of the candidate base station;
  • Type 3 An identifier used to determine whether the downlink PRS sent by each downlink PRS beam of the candidate base station meets the preset integrity monitoring condition.
  • the processor is further configured to:
  • the terminal location is determined.
  • the following manner is adopted to determine the second positioning measurement value based on the first positioning measurement value reported by the terminal:
  • TDOA_v2 TDOA_v1–ECP_TDOA_Error
  • TDOA_v1 represents the first positioning measurement value
  • ECP_TDOA_Error represents the correction value
  • TDOA_v2 represents the second positioning measurement value
  • the following manner is adopted to determine the second positioning measurement value based on the first positioning measurement value reported by the terminal:
  • the first positioning measurement value is used as the second positioning measurement value.
  • the second positioning measurement value is determined based on the first positioning measurement value reported by the terminal in the following manner:
  • the first positioning measurement value is used as the second positioning measurement value.
  • the processor is further configured to:
  • an information transmission device provided in an embodiment of the present application includes:
  • Memory used to store program instructions
  • the processor is configured to call the program instructions stored in the memory, and execute according to the obtained program:
  • the processor is further configured to:
  • the processor is further configured to:
  • the ECP includes the following three types:
  • Type 1 The correction value used to correct the first positioning measurement value of each downlink PRS beam of the candidate base station
  • Type 2 used to indicate the estimated value of the error range of the first positioning measurement value of each downlink PRS beam of the candidate base station;
  • Type 3 An identifier used to determine whether the downlink PRS sent by each downlink PRS beam of the candidate base station meets the preset integrity monitoring condition.
  • a second positioning measurement value is determined based on the ECP and the first positioning measurement value in the following manner:
  • TDOA_v2 TDOA_v1–ECP_TDOA_Error
  • TDOA_v1 represents the first positioning measurement value
  • ECP_TDOA_Error represents the correction value corresponding to the ECP
  • TDOA_v2 represents the second positioning measurement value
  • a second positioning measurement value is determined based on the ECP and the first positioning measurement value in the following manner:
  • the first positioning measurement value is used as the second positioning measurement value.
  • a second positioning measurement value is determined based on the ECP and the first positioning measurement value in the following manner:
  • the first positioning measurement value is used as the second positioning measurement value.
  • an information transmission device provided in an embodiment of the present application includes:
  • Memory used to store program instructions
  • the processor is configured to call the program instructions stored in the memory, and execute according to the obtained program:
  • the downlink PRS is sent to the terminal and the preset IM reference device.
  • another information transmission apparatus provided in an embodiment of the present application includes:
  • An acquiring unit configured to acquire downlink positioning reference signal PRS parameter configuration information
  • the measuring unit is configured to measure the downlink PRS from the base station based on the downlink PRS parameter configuration information, and generate an error correction parameter ECP;
  • the sending unit is used to send the ECP.
  • another information transmission device provided in an embodiment of the present application includes:
  • a sending unit configured to send downlink positioning reference signal PRS parameter configuration information
  • the receiving unit is configured to receive an error correction parameter ECP, where the ECP is determined based on the downlink PRS corresponding to the downlink PRS parameter configuration information.
  • another information transmission device provided in an embodiment of the present application includes:
  • the obtaining unit is configured to obtain downlink positioning reference signal PRS parameter configuration information from the positioning management function LMF entity;
  • the measuring unit is configured to measure the downlink PRS based on the downlink PRS parameter configuration information to obtain the first positioning measurement value.
  • another information transmission device provided in an embodiment of the present application includes:
  • the obtaining unit is configured to obtain downlink positioning reference signal PRS parameter configuration information from the positioning management function LMF entity;
  • the sending unit is configured to send the downlink PRS to the terminal and the preset IM reference device based on the downlink PRS parameter configuration information.
  • Another embodiment of the present application provides a computing device, which includes a memory and a processor, wherein the memory is used to store program instructions, and the processor is used to call the program instructions stored in the memory, according to the obtained program Perform any of the above methods.
  • Another embodiment of the present application provides a computer storage medium, the computer storage medium stores computer-executable instructions, and the computer-executable instructions are used to make the computer execute any of the foregoing methods.
  • FIG. 1 is a schematic diagram of a network-assisted integrity monitoring and UE-assisted positioning solution provided by an embodiment of the application;
  • Figure 2 is a schematic diagram of a UE-assisted integrity monitoring and UE-based positioning solution provided by an embodiment of the application;
  • FIG. 3 is a schematic diagram of network-assisted integrity monitoring and UE-assisted positioning combined with UE-assisted positioning provided by an embodiment of the application;
  • FIG. 4 is a schematic flowchart of an information transmission method on the IM reference device side according to an embodiment of this application;
  • FIG. 5 is a schematic flowchart of an information transmission method on the LMF entity side provided by an embodiment of this application;
  • FIG. 6 is a schematic flowchart of an information transmission method on the UE side according to an embodiment of the application.
  • FIG. 7 is a schematic flowchart of an information transmission method on the base station side according to an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of an information transmission device on the network side according to an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of an information transmission device on the terminal side according to an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of an information transmission apparatus on the IM reference device side according to an embodiment of the application.
  • 11 is a schematic structural diagram of an information transmission device on the entity side of the LMF provided by an embodiment of the application;
  • FIG. 12 is a schematic structural diagram of an information transmission apparatus on the UE side according to an embodiment of the application.
  • FIG. 13 is a schematic structural diagram of an information transmission device on the base station side according to an embodiment of the application.
  • 3GPP version 16 (Rel-16) nor past versions have requirements for "Integrity Monitoring (IM)".
  • IM Integrity Monitoring
  • NR New Radio
  • version 17 (Rel-17) positioning enhancement work project will implement integrity monitoring as a work goal.
  • the Rel-16 version only satisfies the positioning accuracy, and does not introduce the "integrity" service quality requirements.
  • “Integrity” refers to the degree of trust in the accuracy of the positioning data provided by the positioning system, and the ability to provide users with timely and effective warnings when the positioning system does not meet the expected operating conditions. It is suitable for affecting the safety of life and property. Various scenarios of legal liability.
  • the embodiment of the present application proposes a integrity monitoring solution for downlink RAT-dependent positioning.
  • the embodiments of this application provide information transmission methods and devices to realize the integrity monitoring of the downlink 3GPP RAT-dependent positioning network, thereby eliminating the time offset of the base station, the failure of the base station transmitter, the multipath channel and the indirect path channel and other factors Impact.
  • the method and the device are based on the same application concept. Since the method and the device have similar principles for solving the problem, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • NR downlink positioning reference signal Positioning Reference Signal, PRS
  • PRS Positioning Reference Signal
  • IM integrity monitoring
  • RIMS Reference Equipment
  • TRP Transmit and Receive Point
  • ECP Error Correction Parameter
  • ECP may be a correction parameter used to eliminate the error of the measurement value obtained by the terminal (User Terminal, UE) by measuring the downlink PRS, or it may be the downlink PRS beam of a certain TRP, or all the downlink PRSs of a certain TRP are not suitable for use. Indication information for RAT-dependent positioning.
  • the IM reference device sends the ECP to the LMF or UE.
  • the LMF or UE can use the ECP provided by the IM reference device to eliminate the influence of errors in the process of calculating the location of the UE, so as to meet the integrity monitoring conditions.
  • the IM reference device is located at a known location in the positioning network, and may be a separately installed network device different from the base station and the UE, may also be a reference UE with a known location, or a reference base station with a known location.
  • a integrity monitoring network can be formed, so that all IM reference devices in the network are connected to each other, so as to improve the reliability of integrity monitoring and speed up the integrity monitoring. speed.
  • the IM reference device obtains downlink PRS parameter configuration information from a Location Management Function (LMF) entity or a base station.
  • LMF Location Management Function
  • the downlink PRS parameter configuration information includes, for example, transmission time-frequency domain resources, bandwidth, quasi-co-location (Quasi Co-Location, QCL) beam indication information, and the like.
  • PRS includes but is not limited to NR PRS, synchronization signal (Synchronization Signal, SS)/Physical Broadcast Channel (Physical Broadcast Channel, PBCH) block (SS/PBCH block, SSB), channel state information reference signal (Channel-state information RS) , CSI-RS) and so on.
  • SS Synchronization Signal
  • PBCH Physical Broadcast Channel
  • SSB Channel state information reference signal
  • Channel-state information RS Channel state information reference signal
  • CSI-RS channel state information reference signal
  • PRS can be used in all NR frequency ranges, including the first frequency range (Frequency Range 1 (410 MHz-7125MHz), FR1) and the second frequency range (Frequency Range 2 (24250MHz-52600MHz), FR2).
  • RAT-dependent positioning includes all positioning technology solutions that use NR downlink PRS positioning, such as: Downlink-Time Difference of Arrival (DL-TDOA) positioning, Multi-cell Round Trip Time (Multi-cell Round Trip) Time, Multi-RTT) positioning, and downlink (Downlink, DL) angle of departure (AoD) positioning.
  • DL-TDOA Downlink-Time Difference of Arrival
  • Multi-cell Round Trip Multi-cell Round Trip Time
  • Multi-RTT Multi-RTT
  • AoD angle of departure
  • the IM reference device measures the downlink PRS of each downlink PRS beam from the base station based on the acquired downlink PRS parameter configuration information, and generates an Error Correction Parameter (ECP) for each base station or each downlink PRS beam.
  • ECP Error Correction Parameter
  • ECP can be a total calibration parameter caused by multiple error sources (for example: base station time offset, base station transmitter failure, etc.), or it can be a separate calibration parameter for a single error source, for example: base station time offset Separate corrections for mobile, multi-path channels and non-direct-radial NLOS channels.
  • the individual calibration of multipath channel and NLOS needs to meet specific conditions, that is, only when the actual location of the reference device and the target UE are close, and the multipath channel and NLOS channel conditions of the two are basically the same, can it be based on IM reference The integrity of the equipment is monitored.
  • ECP includes but is not limited to the following three types:
  • Type 1 The correction value used to correct the first positioning measurement value of each downlink PRS beam of the candidate base station, where the first positioning measurement value includes but is not limited to Time of Arrival (TOA) and Time Difference (Time Difference) of Arrival, TDOA (ie Reference Signal Time Difference (RSTD)) and UE Transceiving Time Difference (UE Rx-Tx time difference), etc.
  • TOA Time of Arrival
  • Time Difference Time Difference
  • TDOA ie Reference Signal Time Difference (RSTD)
  • UE Rx-Tx time difference UE Transceiving Time Difference
  • Type 2 Used to indicate the estimated value of the error range of the first positioning measurement value of each downlink PRS beam of the candidate base station.
  • Type 3 An identifier used to determine whether the downlink PRS sent by each downlink PRS beam of the candidate base station meets the integrity monitoring condition.
  • N is an integer greater than 1
  • all IM reference devices calculate their respective ECPs, and then transmit them to an IM reference device, and the IM reference device performs the combined calculation Get synthetic ECP.
  • the following processing may be performed to obtain a synthesized ECP:
  • Type 1 Average or weighted average of N ECP values
  • N ECP values do logical "AND” or logical "OR” operation.
  • the IM reference device sends the generated ECP to the LMF or UE.
  • N is an integer greater than 1.
  • this step is that the IM reference device performing the merge calculation sends the synthesized ECP to the LMF or UE.
  • the IM reference device can use at least two methods to send the ECP to the UE: first, send it to the LMF first, and then the LMF will forward it to the UE separately; second, broadcast it directly to the neighboring UE.
  • the IM reference device sends the generated ECP to the LMF to perform UE-assisted positioning calculation.
  • ECP can be used for LMF to calculate accurate UE position.
  • the IM reference device can send the ECP to the LMF in different ways, for example: through a wired connection, or the IM reference device is connected to the serving base station wirelessly, and then connected to the LMF via a wired connection from the serving base station.
  • the IM reference device For the UE-based (UE-based) downlink positioning method, the IM reference device first sends the generated ECP to the LMF, and the LMF forwards it to the UE separately; or directly broadcasts it to adjacent UEs for UE-based positioning calculate. Among them, ECP is used for UE to calculate accurate UE position.
  • This method requires the IM reference device to have the ability to send broadcast messages. For example: when the IM reference device is a reference UE, the reference UE broadcasts through the Sidelink of Vehicle to Everything (V2X). The advantage is that the time delay is smaller, and it is more suitable for the target with a smaller delay. Real-time positioning.
  • the LMF sends downlink PRS parameter configuration information to the base station, IM reference device, and UE, including sending time-frequency domain resources, bandwidth, QCL beam indication information, etc.
  • the LMF receives the first positioning measurement value reported by the UE, including but not limited to: RSTD (TDOA), RSRP, and the time difference between the receiving and sending of the UE.
  • RSTD TDOA
  • RSRP RSRP
  • LMF implements different processing:
  • the LMF receives the error correction parameters (ECP) reported by the IM reference device;
  • the LMF corrects the first positioning measurement value according to the received ECP or selects a valid first positioning measurement value to obtain the second positioning measurement value.
  • the ECP for type 1 is the correction value used to correct the first positioning measurement value (TDOA_v1) of each downlink PRS beam of the candidate base station, denoted as ECP_TDOA_Error, and correct it according to the following formula to obtain the corrected second positioning measurement value ( TDOA_v2):
  • TDOA_v2 TDOA_v1–ECP_TDOA_Error
  • the ECP for type 2 is the estimated error range of the TOA measurement value of each downlink PRS beam of the candidate base station.
  • the first positioning measurement value is used as the second positioning measurement value; otherwise , The first positioning measurement value is not regarded as the second positioning measurement value.
  • the ECP for type 3 is an indicator of whether the downlink PRS sent by the candidate base station meets the integrity monitoring condition.
  • the indicator of whether the downlink PRS meets the preset integrity monitoring condition is true (that is, the preset integrity monitoring condition is satisfied)
  • the first positioning measurement value is used as the second positioning measurement value; otherwise, the base station The corresponding first positioning measurement value is not regarded as the second positioning measurement value.
  • the LMF performs UE position calculation based on the second positioning measurement value and known base station position information, etc., to obtain the UE position.
  • the LMF further obtains a protection level (Protection Level, PL) through calculation, and compares it with a predefined threshold to determine whether the downlink positioning system is reliable (that is, whether the integrity condition is satisfied).
  • PL Protection Level
  • the LMF receives the UE location information reported by the UE.
  • the UE obtains downlink PRS parameter configuration information (including sending time-frequency domain resources, bandwidth, QCL beam indication information, etc.) and/or base station location information from the LMF.
  • the base station location information is only available in the case of UE-based positioning send.
  • the UE measures the downlink PRS based on the acquired downlink PRS parameter configuration information, and obtains the first positioning measurement value.
  • UE implements different processing:
  • the UE reports the first positioning measurement value to the LMF;
  • the UE receives the error correction parameters (ECP) reported by the IM reference device;
  • the UE Based on the ECP, the UE corrects the first positioning measurement value or selects a valid first positioning measurement value to obtain the second positioning measurement value.
  • the ECP for type 1 is the value used to calibrate the first positioning measurement value (TDOA_v1) of each downlink PRS beam of the candidate base station, denoted as ECP_TDOA_Error, and correct it according to the following formula to obtain the corrected second positioning measurement value (TDOA_v2 ):
  • TDOA_v2 TDOA_v1–ECP_TDOA_Error
  • the ECP for type 2 is the estimated error range of the TOA measurement value of each downlink PRS beam of the candidate base station.
  • the positioning measurement value is used as the second positioning measurement value; otherwise, the The positioning measurement value is not regarded as the second positioning measurement value.
  • the ECP for type 3 is an indicator of whether the downlink PRS sent by the candidate base station meets the integrity monitoring condition.
  • the indicator of whether the downlink PRS meets the preset integrity monitoring condition is true, the first location corresponding to the base station
  • the measurement value is regarded as the second positioning measurement value; otherwise, the positioning measurement value is not regarded as the second positioning measurement value.
  • the UE performs UE position calculation based on the second positioning measurement value and the acquired base station position information, etc., to obtain the UE position.
  • the UE further obtains the PL through calculation, and compares it with a predefined threshold to determine whether the downlink positioning system is reliable (that is, whether the integrity condition is satisfied).
  • the UE reports the location information of the UE to the LMF.
  • the base station obtains downlink PRS parameter configuration information from the LMF, including: sending time-frequency domain resources, bandwidth, QCL beam indication information, etc.
  • the base station sends a downlink PRS to the IM reference device and the UE.
  • Embodiment 1 Network-assisted integrity monitoring, UE-assisted positioning scheme.
  • Embodiment 1 is a network-assisted integrity monitoring and UE-assisted positioning solution.
  • the IM reference device is a separate network device different from the base station and the UE, or a reference base station, and is installed at a known location in the network.
  • the IM reference device obtains downlink PRS parameter configuration information from the LMF or base station, including: sending time-frequency domain resources, bandwidth, QCL beam indication information, etc.
  • PRS includes but is not limited to NR PRS, SSB, CSI-RS, etc., which can be used for FR1 and FR2.
  • the IM reference device detects the downlink PRS of each downlink PRS beam from the base station based on the acquired downlink PRS parameter configuration information, and generates an Error Correction Parameter (ECP) for each base station or each downlink PRS beam.
  • ECP Error Correction Parameter
  • ECP can be a total calibration parameter caused by multiple error sources (such as base station time offset, base station transmitter failure, etc.), or it can be a separate calibration parameter for a single error source, for example: for time offset, multiple Separate corrections for radial channels and non-direct radial NLOS, etc.
  • the individual correction of multipath channel and non-direct path NLOS needs to meet specific conditions, that is, only when the actual location of the reference device and the target UE are close, the multipath channel and non-direct path NLOS channel conditions of the two are basically the same. , To be able to perform integrity monitoring based on IM reference equipment.
  • ECP includes but is not limited to the following three types:
  • Type 1 Correction value of TOA measurement value of each downlink PRS beam of the candidate base station
  • Type 2 Estimated value of the TOA measurement error range of each downlink PRS beam of the candidate base station
  • Type 3 Identification of whether the downlink PRS sent by the candidate base station meets the integrity monitoring condition.
  • the IM reference device sends the generated ECP to the LMF.
  • the IM reference device sends the generated ECP to the LMF to perform UE-assisted positioning calculation.
  • ECP can be used for LMF to calculate accurate UE position.
  • the IM reference device can send ECP to the LMF in different ways, for example: through a wired connection, or the IM reference device is wirelessly connected to the serving base station, and then wired from the serving base station to the LMF.
  • the LMF sends downlink PRS parameter configuration information to the base station, IM reference device, and UE, including sending time-frequency domain resources, bandwidth, QCL beam indication information, etc.
  • the LMF receives the first positioning measurement value reported by the UE, including but not limited to: RSTD (TDOA), RSRP (Reference Signal Receiving Power, reference signal receiving power), and UE receiving and sending time difference.
  • RSTD TDOA
  • RSRP Reference Signal Receiving Power
  • UE receiving and sending time difference
  • LMF implements different processing:
  • the LMF receives the error correction parameters (ECP) reported by the IM reference device.
  • ECP error correction parameters
  • the LMF corrects the first positioning measurement value according to the received ECP or selects a valid first positioning measurement value to obtain the second positioning measurement value.
  • the ECP for type 1 is the correction value used to correct the first TDOA positioning measurement value (TDOA_v1) of each downlink PRS beam of the candidate base station, denoted as ECP_TDOA_Error, and correct it according to the following formula to obtain the corrected second TDOA positioning measurement Value (TDOA_v2):
  • TDOA_v2 TDOA_v1–ECP_TDOA_Error
  • the ECP for type 2 is the estimated value of the TOA measurement error range of each downlink PRS beam of the candidate base station.
  • the positioning measurement value is used as the second positioning measurement value; Otherwise, the positioning measurement value is not regarded as the second positioning measurement value.
  • the ECP for type 3 is an indicator of whether the downlink PRS sent by the candidate base station meets the integrity monitoring condition. If the indicator is true (that is, the integrity monitoring condition is satisfied), the first positioning measurement value corresponding to the base station is used as the second Positioning measurement value; otherwise, the positioning measurement value is not regarded as the second positioning measurement value.
  • the LMF performs UE position calculation based on the second positioning measurement value and known base station position information, etc., to obtain the UE position.
  • the UE obtains downlink PRS parameter configuration information (including sending time-frequency domain resources, bandwidth, QCL beam indication information, etc.) and/or base station location information from the LMF.
  • the base station location information is only available in the case of UE-based positioning send;
  • the UE measures the downlink PRS based on the acquired downlink PRS parameter configuration information to obtain the first positioning measurement value.
  • UE implements different processing:
  • the UE reports the first positioning measurement value to the LMF.
  • the base station obtains downlink PRS parameter configuration information from the LMF, including: sending time-frequency domain resources, bandwidth, QCL beam indication information, etc.
  • the base station sends a downlink PRS to the IM reference device and the UE.
  • Embodiment 2 UE-assisted integrity monitoring, UE-based positioning.
  • Embodiment 2 is a UE-assisted integrity monitoring and UE-based positioning solution.
  • the IM reference device is a reference UE and is installed at a known location in the network.
  • the IM reference device obtains downlink PRS parameter configuration information from the LMF or base station, including: sending time-frequency domain resources, bandwidth, QCL beam indication information, etc.
  • PRS includes but is not limited to NR PRS, SSB, CSI-RS, etc., which can be used for FR1 and FR2.
  • the IM reference device detects the downlink PRS of each downlink PRS beam from the base station based on the acquired downlink PRS parameter configuration information, and generates an Error Correction Parameter (ECP) for each base station or each downlink PRS beam.
  • ECP Error Correction Parameter
  • ECP can be a total calibration parameter caused by multiple error sources (such as base station time offset, base station transmitter failure, etc.), or it can be a separate calibration parameter for a single error source, such as: time offset, multiple Separate corrections for radial channels and non-direct radial NLOS, etc.
  • the individual correction of multipath channel and non-direct path NLOS needs to meet specific conditions, that is, only when the actual location of the reference device and the target UE are close, the multipath channel and non-direct path NLOS channel conditions of the two are basically the same. , To be able to perform integrity monitoring based on IM reference equipment.
  • ECP includes but is not limited to the following three types:
  • Type 1 Correction value of TOA measurement value of each downlink PRS beam of the candidate base station
  • Type 2 Estimated value of the TOA measurement error range of each downlink PRS beam of the candidate base station
  • Type 3 Identification of whether the downlink PRS sent by the candidate base station meets the integrity monitoring condition.
  • the IM reference device sends the generated ECP to the UE.
  • the IM reference device broadcasts the generated ECP to adjacent UEs to perform UE-based positioning calculations.
  • ECP is used for UE to calculate accurate UE position.
  • This method requires the IM reference device to have the ability to send broadcast messages. For example, when the IM reference device is a reference UE, the reference UE broadcasts through the V2X PC5 link. The advantage is that the time delay is smaller and it is more suitable for the target delay. Small real-time positioning.
  • the LMF sends downlink PRS parameter configuration information to the base station, IM reference device, and UE, including sending time-frequency domain resources, bandwidth, QCL beam indication information, etc.
  • the LMF receives the first positioning measurement value reported by the UE, including but not limited to: RSTD (TDOA), RSRP, and the time difference between the receiving and sending of the UE.
  • RSTD TDOA
  • RSRP RSRP
  • LMF implements different processing:
  • the LMF receives the UE location information reported by the UE.
  • the UE obtains downlink PRS parameter configuration information (including sending time-frequency domain resources, bandwidth, QCL beam indication information, etc.) and/or base station location information from the LMF.
  • the base station location information is only available in the case of UE-based positioning send.
  • the UE measures the downlink PRS based on the acquired downlink PRS parameter configuration information, and obtains the first positioning measurement value, including but not limited to: RSTD (TDOA), RSRP, and the UE receiving and sending time difference.
  • TDOA RSTD
  • RSRP RSRP
  • UE implements different processing:
  • the UE receives the error correction parameters (ECP) reported by the IM reference device;
  • the UE Based on the ECP, the UE corrects the first positioning measurement value or selects a valid first positioning measurement value to obtain the second positioning measurement value.
  • the ECP for type 1 is the correction value used to correct the first TDOA positioning measurement value (TDOA_v1) of each downlink PRS beam of the candidate base station, denoted as ECP_TDOA_Error, and correct it according to the following formula to obtain the corrected second TDOA positioning measurement Value (TDOA_v2):
  • TDOA_v2 TDOA_v1–ECP_TDOA_Error
  • the ECP for type 2 is the estimated value of the TOA measurement error range of each downlink PRS beam of the candidate base station.
  • the positioning measurement value is used as the second positioning measurement value; Otherwise, the positioning measurement value is not regarded as the second positioning measurement value.
  • the ECP for type 3 is an indicator of whether the downlink PRS sent by the candidate base station meets the integrity monitoring condition. If the indicator is true, that is, the integrity monitoring condition is met, the first positioning measurement value corresponding to the base station is used as the second positioning Measurement value; otherwise, the positioning measurement value is not regarded as the second positioning measurement value.
  • the UE performs UE position calculation based on the second positioning measurement value and the acquired base station position information, etc., to obtain the UE position.
  • the UE reports the location information of the UE to the LMF.
  • the base station obtains downlink PRS parameter configuration information from the LMF, including: sending time-frequency domain resources, bandwidth, QCL beam indication information, etc.
  • the base station sends a downlink PRS to the IM reference device and the UE.
  • Embodiment 3 Network assistance combines UE-assisted integrity monitoring and UE-assisted positioning.
  • Embodiment 3 is a network-assisted and UE-assisted integrity monitoring and UE-assisted positioning solution.
  • the IM reference device includes a reference base station and a reference UE, which are respectively installed in fixed positions in the network.
  • Embodiment 3 differs from Embodiment 1 in that there are two IM reference devices. Therefore, only the IM reference device is described below.
  • the processing steps of LMF, UE, and base station are exactly the same as those in Embodiment 1, and will not be repeated.
  • the IM reference device adds the processing of step 2.a after step 2.
  • IM reference equipment reference base station and reference UE
  • the IM reference device obtains downlink PRS parameter configuration information from the LMF or base station, including: sending time-frequency domain resources, bandwidth, QCL beam indication information, etc.
  • PRS includes but is not limited to NR PRS, SSB, CSI-RS, etc., which can be used for FR1 and FR2.
  • the IM reference device detects the downlink PRS of each downlink PRS beam from the base station based on the acquired downlink PRS parameter configuration information, and generates an Error Correction Parameter (ECP) for each base station or each downlink PRS beam.
  • ECP Error Correction Parameter
  • ECP can be a total calibration parameter caused by multiple error sources (such as base station time offset, base station transmitter failure, etc.), or it can be a separate calibration parameter for a single error source, for example: for time offset, multiple Separate corrections for radial channels and non-direct radial NLOS, etc.
  • the individual correction of multipath channel and non-direct path NLOS needs to meet specific conditions, that is, only when the actual location of the reference device and the target UE are close, the multipath channel and non-direct path NLOS channel conditions of the two are basically the same. , To be able to perform integrity monitoring based on IM reference equipment.
  • ECP includes but is not limited to the following three types:
  • Type 1 Correction value of TOA measurement value of each downlink PRS beam of the candidate base station
  • Type 2 Estimated value of the TOA measurement error range of each downlink PRS beam of the candidate base station
  • Type 3 Identification of whether the downlink PRS sent by the candidate base station meets the integrity monitoring condition.
  • the reference base station and the reference UE implement steps 1 and 2 respectively, they obtain their respective error correction parameters ECP, and then the reference UE sends its own ECP to the reference base station, and the reference base station combines and calculates the synthesized ECP.
  • ECP_v1 refer to the base station to obtain the first error correction parameter ECP_v1
  • ECP_v2 refer to the UE to obtain the second error correction parameter ECP_v2
  • ECP_v3 2 ECP values are averaged or weighted, and the obtained value is recorded as ECP_v3, for example:
  • ECP_v3 1/2*(ECP_v1+ECP_v2)
  • Type 2 Average or weighted average of 2 ECP values, and the obtained value is recorded as ECP_v3, for example:
  • ECP_v3 1/2*(ECP_v1+ECP_v2)
  • ECP_v3 Two ECP values are evaluated for logical "AND” or logical “OR” operation, and the obtained value is recorded as ECP_v3, for example:
  • ECP_v3 ECP_v1 AND ECP_v2
  • the IM reference device sends the generated ECP_v3 to the LMF.
  • the IM reference device sends the generated ECP to the LMF to perform UE-assisted positioning calculation.
  • ECP can be used for LMF to calculate accurate UE position.
  • the IM reference device can send the ECP to the LMF in different ways, for example: through a wired connection, or the IM reference device is wirelessly connected to the serving base station, and then wired from the serving base station to the LMF.
  • the embodiment of the present application introduces one or more integrity monitoring (IM) reference devices in the downlink RAT-dependent positioning network to measure the downlink PRS of each downlink PRS beam from the base station, and generate specific Error correction parameters (ECP) for each base station or each downlink PRS beam. Then the IM reference device sends the ECP to the LMF or UE, which is used to eliminate the influence of errors in the process of calculating the position of the UE, so as to meet the integrity monitoring condition.
  • IM integrity monitoring
  • ECP Error correction parameters
  • an information transmission method on the IM reference device side includes:
  • the downlink positioning reference signal PRS parameter configuration information is obtained, based on the downlink PRS parameter configuration information, the downlink PRS from the base station is measured, the error correction parameter ECP is generated, and the ECP is sent, thereby realizing downlink 3GPP RAT-dependent positioning
  • the integrity monitoring of the network eliminates the influence of factors such as the time offset of the base station, the failure of the base station transmitter, the multipath channel and the indirect path channel.
  • the ECP includes the following three types:
  • Type 1 The correction value used to correct the first positioning measurement value of each downlink PRS beam of the candidate base station
  • Type 2 used to indicate the estimated value of the error range of the first positioning measurement value of each downlink PRS beam of the candidate base station;
  • Type 3 An identifier used to determine whether the downlink PRS sent by each downlink PRS beam of the candidate base station meets the integrity monitoring condition.
  • the method further includes: receiving the ECP sent by the preset IM reference device, and preset multiple preset IM references The ECP of the equipment is combined and calculated to obtain the synthesized ECP;
  • Sending the ECP specifically includes: sending the synthesized ECP.
  • sending the ECP specifically includes: sending the ECP to a location management function LMF entity or terminal.
  • sending the ECP on the IM reference device side that does not perform merging calculation specifically includes: sending the ECP to the preset IM reference device, and the preset IM
  • the reference device combines the ECPs from multiple preset IM reference devices to obtain a synthesized ECP.
  • an information transmission method on the LMF entity side includes:
  • S201 Send downlink positioning reference signal PRS parameter configuration information
  • the ECP includes the following three types:
  • Type 1 The correction value used to correct the first positioning measurement value of each downlink PRS beam of the candidate base station
  • Type 2 used to indicate the estimated value of the error range of the first positioning measurement value of each downlink PRS beam of the candidate base station;
  • Type 3 An identifier used to determine whether the downlink PRS sent by each downlink PRS beam of the candidate base station meets the preset integrity monitoring conditions.
  • the method further includes:
  • the terminal location is determined.
  • the following manner is adopted to determine the second positioning measurement value based on the first positioning measurement value reported by the terminal:
  • TDOA_v2 TDOA_v1–ECP_TDOA_Error
  • TDOA_v1 represents the first positioning measurement value
  • ECP_TDOA_Error represents the correction value
  • TDOA_v2 represents the second positioning measurement value
  • the following manner is adopted to determine the second positioning measurement value based on the first positioning measurement value reported by the terminal:
  • the first positioning measurement value is used as the second positioning measurement value.
  • the second positioning measurement value is determined based on the first positioning measurement value reported by the terminal in the following manner:
  • the first positioning measurement value is used as the second positioning measurement value.
  • the method further includes:
  • an information transmission method on the UE side provided in an embodiment of the present application includes:
  • the method further includes:
  • the method further includes:
  • the ECP includes the following three types:
  • Type 1 The correction value used to correct the first positioning measurement value of each downlink PRS beam of the candidate base station
  • Type 2 used to indicate the estimated value of the error range of the first positioning measurement value of each downlink PRS beam of the candidate base station;
  • Type 3 An identifier used to determine whether the downlink PRS sent by each downlink PRS beam of the candidate base station meets the preset integrity monitoring condition.
  • a second positioning measurement value is determined based on the ECP and the first positioning measurement value in the following manner:
  • TDOA_v2 TDOA_v1–ECP_TDOA_Error
  • TDOA_v1 represents the first positioning measurement value
  • ECP_TDOA_Error represents the correction value corresponding to the ECP
  • TDOA_v2 represents the second positioning measurement value
  • a second positioning measurement value is determined based on the ECP and the first positioning measurement value in the following manner:
  • the first positioning measurement value is used as the second positioning measurement value.
  • a second positioning measurement value is determined based on the ECP and the first positioning measurement value in the following manner:
  • the first positioning measurement value is used as the second positioning measurement value.
  • an information transmission method on the base station side includes:
  • S402 Based on the downlink PRS parameter configuration information, send a downlink PRS to the terminal and a preset IM reference device.
  • an information transmission apparatus on the network side (which may be an IM reference device, an LMF entity, or a base station) provided by an embodiment of the present application includes:
  • the memory 520 is used to store program instructions
  • the processor 500 is configured to call program instructions stored in the memory, and execute corresponding functions according to the obtained program. specifically:
  • the processor 500 is configured to call the program instructions stored in the memory, and execute according to the obtained program:
  • ECP error correction parameter
  • the ECP is transmitted through the transceiver 510.
  • the ECP includes the following three types:
  • Type 1 The correction value used to correct the first positioning measurement value of each downlink PRS beam of the candidate base station
  • Type 2 used to indicate the estimated value of the error range of the first positioning measurement value of each downlink PRS beam of the candidate base station;
  • Type 3 An identifier used to determine whether the downlink PRS sent by each downlink PRS beam of the candidate base station meets the integrity monitoring condition.
  • the processor 500 is further configured to: receive the ECP sent by the preset IM reference device through the transceiver 510, and Preset the ECPs of multiple preset IM reference devices for combined calculation to obtain a synthesized ECP;
  • Sending the ECP specifically includes: sending the synthesized ECP.
  • sending the ECP specifically includes: sending the ECP to the location management function LMF entity or terminal through the transceiver 510.
  • sending the ECP on the IM reference device side that does not perform merging calculation specifically includes: sending the ECP to the preset IM reference device through the transceiver 510, and The preset IM reference device combines the ECPs from multiple preset IM reference devices to obtain a synthesized ECP.
  • the processor 500 is configured to call the program instructions stored in the memory, and execute according to the obtained program:
  • the error correction parameter ECP is received through the transceiver 510; wherein the ECP is determined based on the downlink PRS corresponding to the downlink PRS parameter configuration information.
  • the ECP includes the following three types:
  • Type 1 The correction value used to correct the first positioning measurement value of each downlink PRS beam of the candidate base station
  • Type 2 used to indicate the estimated value of the error range of the first positioning measurement value of each downlink PRS beam of the candidate base station;
  • Type 3 An identifier used to determine whether the downlink PRS sent by each downlink PRS beam of the candidate base station meets the preset integrity monitoring condition.
  • processor 500 is further configured to:
  • the terminal location is determined.
  • the processor 500 determines the second positioning measurement value based on the first positioning measurement value reported by the terminal in the following manner:
  • TDOA_v2 TDOA_v1–ECP_TDOA_Error
  • TDOA_v1 represents the first positioning measurement value
  • ECP_TDOA_Error represents the correction value
  • TDOA_v2 represents the second positioning measurement value
  • the processor 500 determines the second positioning measurement value based on the first positioning measurement value reported by the terminal in the following manner:
  • the first positioning measurement value is used as the second positioning measurement value.
  • the processor 500 determines the second positioning measurement value based on the first positioning measurement value reported by the terminal in the following manner:
  • the first positioning measurement value is used as the second positioning measurement value.
  • processor 500 is further configured to:
  • the terminal location information reported by the terminal is received through the transceiver 510.
  • the processor 500 is configured to call the program instructions stored in the memory, and execute according to the obtained program:
  • the transceiver 510 sends the downlink PRS to the terminal and the preset IM reference device based on the downlink PRS parameter configuration information.
  • the transceiver 510 is configured to receive and send data under the control of the processor 500.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 500 and various circuits of the memory represented by the memory 520 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 510 may be a plurality of elements, that is, include a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 can store data used by the processor 500 when performing operations.
  • the processor 500 may be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device). , CPLD).
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • FPGA field programmable gate array
  • CPLD complex programmable logic device
  • an information transmission device on the terminal side provided in an embodiment of the present application includes:
  • the memory 620 is used to store program instructions
  • the processor 600 is configured to call the program instructions stored in the memory, and execute according to the obtained program:
  • processor 600 is further configured to:
  • the first positioning measurement value is reported to the LMF entity through the transceiver 610.
  • processor 600 is further configured to:
  • the terminal location information is reported to the LMF entity through the transceiver 610.
  • the ECP includes the following three types:
  • Type 1 The correction value used to correct the first positioning measurement value of each downlink PRS beam of the candidate base station
  • Type 2 used to indicate the estimated value of the error range of the first positioning measurement value of each downlink PRS beam of the candidate base station;
  • Type 3 An identifier used to determine whether the downlink PRS sent by each downlink PRS beam of the candidate base station meets the preset integrity monitoring condition.
  • the processor 600 determines a second positioning measurement value based on the ECP and the first positioning measurement value in the following manner:
  • TDOA_v2 TDOA_v1–ECP_TDOA_Error
  • TDOA_v1 represents the first positioning measurement value
  • ECP_TDOA_Error represents the correction value corresponding to the ECP
  • TDOA_v2 represents the second positioning measurement value
  • the processor 600 determines a second positioning measurement value based on the ECP and the first positioning measurement value in the following manner:
  • the first positioning measurement value is used as the second positioning measurement value.
  • the processor 600 determines a second positioning measurement value based on the ECP and the first positioning measurement value in the following manner:
  • the first positioning measurement value is used as the second positioning measurement value.
  • the transceiver 610 is configured to receive and send data under the control of the processor 600.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 600 and various circuits of the memory represented by the memory 620 are linked together. The bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 610 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the user interface 630 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 600 when performing operations.
  • the processor 600 may be a CPU (central embedded device), ASIC (Application Specific Integrated Circuit, application-specific integrated circuit), FPGA (Field-Programmable Gate Array, field programmable gate array) or CPLD (Complex Programmable Logic Device) , Complex Programmable Logic Devices).
  • CPU central embedded device
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array, field programmable gate array
  • CPLD Complex Programmable Logic Device
  • Complex Programmable Logic Devices Complex Programmable Logic Devices
  • an information transmission apparatus on the IM reference device side provided in an embodiment of the present application includes:
  • the obtaining unit 11 is configured to obtain downlink positioning reference signal PRS parameter configuration information
  • the measuring unit 12 is configured to measure the downlink PRS from the base station based on the downlink PRS parameter configuration information, and generate an error correction parameter ECP;
  • the sending unit 13 is configured to send the ECP.
  • an information transmission device on the physical side of an LMF provided in an embodiment of the present application includes:
  • the sending unit 21 is configured to send downlink positioning reference signal PRS parameter configuration information
  • the receiving unit 22 is configured to receive an error correction parameter ECP, where the ECP is determined based on the downlink PRS corresponding to the downlink PRS parameter configuration information.
  • an information transmission apparatus on the UE side provided in an embodiment of the present application includes:
  • the obtaining unit 31 is configured to obtain downlink positioning reference signal PRS parameter configuration information from the positioning management function LMF entity;
  • the measuring unit 32 is configured to measure the downlink PRS based on the downlink PRS parameter configuration information to obtain the first positioning measurement value.
  • an information transmission apparatus on a base station side provided in an embodiment of the present application includes:
  • the obtaining unit 41 is configured to obtain downlink positioning reference signal PRS parameter configuration information from the positioning management function LMF entity;
  • the sending unit 42 is configured to send a downlink PRS to the terminal and a preset IM reference device based on the downlink PRS parameter configuration information.
  • the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • the embodiments of the present application provide a computing device, and the computing device may specifically be a desktop computer, a portable computer, a smart phone, a tablet computer, a personal digital assistant (Personal Digital Assistant, PDA), etc.
  • the computing device may include a central processing unit (CPU), a memory, an input/output device, etc.
  • the input device may include a keyboard, a mouse, a touch screen, etc.
  • an output device may include a display device, such as a liquid crystal display (Liquid Crystal Display, LCD), Cathode Ray Tube (CRT), etc.
  • the memory may include read only memory (ROM) and random access memory (RAM), and provides the processor with program instructions and data stored in the memory.
  • ROM read only memory
  • RAM random access memory
  • the memory may be used to store the program of any of the methods provided in the embodiment of the present application.
  • the processor calls the program instructions stored in the memory, and the processor is configured to execute any of the methods provided in the embodiments of the present application according to the obtained program instructions.
  • the embodiment of the present application provides a computer storage medium for storing computer program instructions used by the device provided in the foregoing embodiment of the present application, which includes a program for executing any method provided in the foregoing embodiment of the present application.
  • the computer storage medium may be any available medium or data storage device that can be accessed by the computer, including but not limited to magnetic storage (such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (such as CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state drive (SSD)), etc.
  • magnetic storage such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage such as CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state drive (SSD)
  • the method provided in the embodiments of the present application can be applied to terminal equipment, and can also be applied to network equipment.
  • the terminal equipment can also be called User Equipment (User Equipment, referred to as "UE"), Mobile Station (Mobile Station, referred to as “MS”), Mobile Terminal (Mobile Terminal), etc.
  • UE User Equipment
  • MS Mobile Station
  • Mobile Terminal Mobile Terminal
  • the terminal can be It has the ability to communicate with one or more core networks via a radio access network (RAN).
  • RAN radio access network
  • the terminal can be a mobile phone (or called a "cellular" phone), or a mobile computer, etc.
  • the terminal may also be a portable, pocket-sized, handheld, built-in computer or vehicle-mounted mobile device.
  • a base station for example, an access point included in a network device refers to a device that communicates with a wireless terminal through one or more sectors on an air interface in an access network.
  • the base station can be used to convert received air frames and IP packets into each other, and act as a router between the wireless terminal and the rest of the access network, where the rest of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate the attribute management of the air interface.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, a base station (NodeB) in WCDMA, or an evolved base station (NodeB or eNB or e-NodeB, evolutional NodeB) in LTE. B), or it can also be gNB in the 5G system.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • e-NodeB evolutional NodeB
  • the processing flow of the above method can be implemented by a software program, which can be stored in a storage medium, and when the stored software program is called, the steps of the above method are executed.
  • the embodiment of the present application proposes an integrity monitoring solution for downlink RAT-dependent positioning.
  • the embodiments of the present application can eliminate the influence of base station time offset, base station transmitter failure, multipath channel and non-direct path NLOS channel, etc., and significantly improve the reliability of the system.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了信息传输方法及装置,用以实现下行3GPP RAT-dependent定位网络的完好性监测,从而消除基站的时间偏移、基站发射机故障、多径信道和非直射径信道等因素的影响。本申请提供的一种信息传输方法,包括:获取下行定位参考信号PRS参数配置信息;基于所述下行PRS参数配置信息,测量来自基站的下行PRS,生成误差校正参数ECP;发送所述ECP。

Description

信息传输方法及装置
相关申请的交叉引用
本申请要求在2020年02月26日提交中国专利局、申请号为202010118425.8、申请名称为“信息传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及信息传输方法及装置。
背景技术
在第三代伙伴计划(3rd Generation Partnership Project,3GPP)标准协议架构之外的定位系统已经引入了完好性的概念。例如:全球导航卫星系统(Global Navigation Satellite System,GNSS)民航系统中的定位和导航应用。完好性是整个系统所提供的信息,用于度量定位准确性的可信度。GNSS的完好性监测(Integrity Monitoring,IM)的典型技术主要包括基于完好性监测方法,例如基于卫星监测系统(Satellite Based Augmentation System,SBAS)的机制和基于地面监测系统(Ground Based Augmentation System,GBAS)的机制,以及基于接收机自主完整性监测(Receiver Autonomous Integrity Monitoring,RAIM)的机制。RAIM通过利用GNSS的冗余信息,在用户接收机内部执行计算来实现完好性监测。完好性监测可以分为两大类:第一,只是监测是否满足完好性,而没有误差校正的功能;第二,除了监测是否满足完好性,还具有误差校正的功能。
但是,目前3GPP标准协议架构下还没有引入定位完好性的概念,只是定义了定位业务的服务质量(Quality of Service,QoS)要求。其中,QoS要求包含了在一定置信区间(Confidence Level)下,对水平位置的精度要求,以及对垂直位置的精度要求。
综上所述,目前3GPP标准协议架构下并没有定位业务完好性的概念,因此,也没有下行3GPP基于无线通信(RAT-dependent)定位网络的完好性监测功能。因此,无法消除基站的时间偏移、基站发射机故障、多径信道和非直射径(Non-Line Of Sight,NLOS)信道等因素的影响。
发明内容
本申请实施例提供了信息传输方法及装置,用以实现下行3GPP RAT-dependent定位网络的完好性监测,从而消除基站的时间偏移、基站发射机故障、多径信道和非直射径信道等因素的影响。
在网络侧,例如在IM参考设备侧,本申请实施例提供的一种信号传输方法包括:
获取下行定位参考信号PRS参数配置信息;
基于所述下行PRS参数配置信息,测量来自基站的下行PRS,生成误差校正参数ECP;
发送所述ECP。
通过该方法,获取下行定位参考信号PRS参数配置信息,基于所述下行PRS参数配置信息,测量来自基站的下行PRS,生成误差校正参数ECP,发送所述ECP,从而实现了下行3GPP RAT-dependent定位网络的完好性监测,消除了基站的时间偏移、基站发射机故障、多径信道和非直射径信道等因素的影响。
可选地,所述ECP包括以下三种类型:
类型1:用于校正候选基站的每个下行PRS波束的第一定位测量值的校正数值;
类型2:用于表示候选基站的每个下行PRS波束的第一定位测量值的误差范围的估计值;
类型3:用于判断候选基站的每个下行PRS波束发送的下行PRS是否满足完好性监测条件的标识。
可选地,该方法还包括:接收预设IM参考设备发送的ECP,并将预设多个预设IM参考设备的ECP进行合并计算,得到合成ECP;
发送所述ECP,具体包括:发送所述合成ECP。
可选地,发送所述ECP具体包括:将所述ECP发送给定位管理功能LMF实体或终端。
可选地,发送所述ECP具体包括:将所述ECP发送给预设IM参考设备,由该预设IM参考设备将来自多个预设IM参考设备的ECP进行合并计算,得到合成ECP。
在LMF实体侧,本申请实施例提供的一种信息传输方法,该方法包括:
发送下行定位参考信号PRS参数配置信息;
接收误差校正参数ECP;其中,所述ECP,是基于所述下行PRS参数配置信息对应的下行PRS确定的。
可选地,所述ECP包括以下三种类型:
类型1:用于校正候选基站的每个下行PRS波束的第一定位测量值的校正数值;
类型2:用于表示候选基站的每个下行PRS波束的第一定位测量值的误差范围的估计值;
类型3:用于判断候选基站的每个下行PRS波束发送的下行PRS是否满足预设的完好性监测条件的标识。
可选地,该方法还包括:
根据所述ECP,并基于终端上报的第一定位测量值,确定第二定位测量值;
基于所述第二定位测量值,确定终端位置。
可选地,对于所述ECP类型1,采用如下方式基于终端上报的第一定位测量值,确定第二定位测量值:
TDOA_v2=TDOA_v1–ECP_TDOA_Error
其中,TDOA_v1表示所述第一定位测量值,ECP_TDOA_Error表示所述 校正数值,TDOA_v2+表示所述第二定位测量值。
可选地,对于所述ECP类型2,采用如下方式基于终端上报的第一定位测量值,确定第二定位测量值:
当所述误差范围的估计值小于预设门限值时,将所述第一定位测量值作为第二定位测量值。
可选地,对于所述ECP类型3,采用如下方式基于终端上报的第一定位测量值,确定第二定位测量值:
当下行PRS是否满足预设的完好性监测条件的标识为真时,将所述第一定位测量值作为第二定位测量值。
可选地,该方法还包括:
接收终端上报的终端位置信息。
在终端侧,本申请实施例提供的一种信息传输方法,包括:
从定位管理功能LMF实体获取下行定位参考信号PRS参数配置信息;
基于所述下行PRS参数配置信息,测量下行PRS,得到第一定位测量值。
可选地,该方法还包括:
将所述第一定位测量值上报给所述LMF实体。
可选地,该方法还包括:
接收误差校正参数ECP;
基于所述ECP,以及所述第一定位测量值,确定第二定位测量值;
基于所述第二定位测量值,确定终端位置信息;
将所述终端位置信息上报给所述LMF实体。
可选地,所述ECP包括以下三种类型:
类型1:用于校正候选基站的每个下行PRS波束的第一定位测量值的校正数值;
类型2:用于表示候选基站的每个下行PRS波束的第一定位测量值的误差范围的估计值;
类型3:用于判断候选基站的每个下行PRS波束发送的下行PRS是否满 足预设的完好性监测条件的标识。
可选地,对于所述类型1,采用如下方式基于所述ECP,以及所述第一定位测量值,确定第二定位测量值:
TDOA_v2=TDOA_v1–ECP_TDOA_Error
其中,TDOA_v1表示所述第一定位测量值,ECP_TDOA_Error表示所述ECP对应的校正数值,TDOA_v2表示所述第二定位测量值。
可选地,对于所述类型2,采用如下方式基于所述ECP,以及所述第一定位测量值,确定第二定位测量值:
当所述误差范围的估计值小于预设门限值时,将所述第一定位测量值作为第二定位测量值。
可选地,对于所述类型3,采用如下方式基于所述ECP,以及所述第一定位测量值,确定第二定位测量值:
当下行PRS是否满足预设的完好性监测条件的标识为真时,将所述第一定位测量值作为第二定位测量值。
在基站侧,本申请实施例提供的一种信息传输方法,包括:
从定位管理功能LMF实体获取下行定位参考信号PRS参数配置信息;
基于所述下行PRS参数配置信息,向终端和预设的IM参考设备发送下行PRS。
在IM参考设备,本申请实施例提供的一种信息传输装置,包括:
存储器,用于存储程序指令;
处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
获取下行定位参考信号PRS参数配置信息;
基于所述下行PRS参数配置信息,测量来自基站的下行PRS,生成误差校正参数ECP;
发送所述ECP。
可选地,所述ECP包括以下三种类型:
类型1:用于校正候选基站的每个下行PRS波束的第一定位测量值的校 正数值;
类型2:用于表示候选基站的每个下行PRS波束的第一定位测量值的误差范围的估计值;
类型3:用于判断候选基站的每个下行PRS波束发送的下行PRS是否满足完好性监测条件的标识。
可选地,所述处理器还用于:接收预设IM参考设备发送的ECP,并将预设多个预设IM参考设备的ECP进行合并计算,得到合成ECP;
发送所述ECP,具体包括:发送所述合成ECP。
可选地,发送所述ECP具体包括:将所述ECP发送给定位管理功能LMF实体或终端。
可选地,发送所述ECP具体包括:将所述ECP发送给预设IM参考设备,由该预设IM参考设备将来自多个预设IM参考设备的ECP进行合并计算,得到合成ECP。
在LMF实体侧,本申请实施例提供的一种信息传输装置,包括:
存储器,用于存储程序指令;
处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
发送下行定位参考信号PRS参数配置信息;
接收误差校正参数ECP;其中,所述ECP,是基于所述下行PRS参数配置信息对应的下行PRS确定的。
可选地,所述ECP包括以下三种类型:
类型1:用于校正候选基站的每个下行PRS波束的第一定位测量值的校正数值;
类型2:用于表示候选基站的每个下行PRS波束的第一定位测量值的误差范围的估计值;
类型3:用于判断候选基站的每个下行PRS波束发送的下行PRS是否满足预设的完好性监测条件的标识。
可选地,所述处理器还用于:
根据所述ECP,并基于终端上报的第一定位测量值,确定第二定位测量值;
基于所述第二定位测量值,确定终端位置。
可选地,对于所述ECP类型1,采用如下方式基于终端上报的第一定位测量值,确定第二定位测量值:
TDOA_v2=TDOA_v1–ECP_TDOA_Error
其中,TDOA_v1表示所述第一定位测量值,ECP_TDOA_Error表示所述校正数值,TDOA_v2表示所述第二定位测量值。
可选地,对于所述ECP类型2,采用如下方式基于终端上报的第一定位测量值,确定第二定位测量值:
当所述误差范围的估计值小于预设门限值时,将所述第一定位测量值作为第二定位测量值。
可选地,对于所述ECP类型3,采用如下方式基于终端上报的第一定位测量值,确定第二定位测量值:
当下行PRS是否满足预设的完好性监测条件的标识为真时,将所述第一定位测量值作为第二定位测量值。
可选地,所述处理器还用于:
接收终端上报的终端位置信息。
在终端侧,本申请实施例提供的一种信息传输装置,包括:
存储器,用于存储程序指令;
处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
从定位管理功能LMF实体获取下行定位参考信号PRS参数配置信息;
基于所述下行PRS参数配置信息,测量下行PRS,得到第一定位测量值。
可选地,所述处理器还用于:
将所述第一定位测量值上报给所述LMF实体。
可选地,所述处理器还用于:
接收误差校正参数ECP;
基于所述ECP,以及所述第一定位测量值,确定第二定位测量值;
基于所述第二定位测量值,确定终端位置信息;
将所述终端位置信息上报给所述LMF实体。
可选地,所述ECP包括以下三种类型:
类型1:用于校正候选基站的每个下行PRS波束的第一定位测量值的校正数值;
类型2:用于表示候选基站的每个下行PRS波束的第一定位测量值的误差范围的估计值;
类型3:用于判断候选基站的每个下行PRS波束发送的下行PRS是否满足预设的完好性监测条件的标识。
可选地,对于所述类型1,采用如下方式基于所述ECP,以及所述第一定位测量值,确定第二定位测量值:
TDOA_v2=TDOA_v1–ECP_TDOA_Error
其中,TDOA_v1表示所述第一定位测量值,ECP_TDOA_Error表示所述ECP对应的校正数值,TDOA_v2表示所述第二定位测量值。
可选地,对于所述类型2,采用如下方式基于所述ECP,以及所述第一定位测量值,确定第二定位测量值:
当所述误差范围的估计值小于预设门限值时,将所述第一定位测量值作为第二定位测量值。
可选地,对于所述类型3,采用如下方式基于所述ECP,以及所述第一定位测量值,确定第二定位测量值:
当下行PRS是否满足预设的完好性监测条件的标识为真时,将所述第一定位测量值作为第二定位测量值。
在基站侧,本申请实施例提供的一种信息传输装置,包括:
存储器,用于存储程序指令;
处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
从定位管理功能LMF实体获取下行定位参考信号PRS参数配置信息;
基于所述下行PRS参数配置信息,向终端和预设的IM参考设备发送下行PRS。
在IM参考设备侧,本申请实施例提供的另一种信息传输装置,包括:
获取单元,用于获取下行定位参考信号PRS参数配置信息;
测量单元,用于基于所述下行PRS参数配置信息,测量来自基站的下行PRS,生成误差校正参数ECP;
发送单元,用于发送所述ECP。
在LMF实体侧,本申请实施例提供的另一种信息传输装置,包括:
发送单元,用于发送下行定位参考信号PRS参数配置信息;
接收单元,用于接收误差校正参数ECP;其中,所述ECP,是基于所述下行PRS参数配置信息对应的下行PRS确定的。
在终端侧,本申请实施例提供的另一种信息传输装置,包括:
获取单元,用于从定位管理功能LMF实体获取下行定位参考信号PRS参数配置信息;
测量单元,用于基于所述下行PRS参数配置信息,测量下行PRS,得到第一定位测量值。
在基站侧,本申请实施例提供的另一种信息传输装置,包括:
获取单元,用于从定位管理功能LMF实体获取下行定位参考信号PRS参数配置信息;
发送单元,用于基于所述下行PRS参数配置信息,向终端和预设的IM参考设备发送下行PRS。
本申请另一实施例提供了一种计算设备,其包括存储器和处理器,其中,所述存储器用于存储程序指令,所述处理器用于调用所述存储器中存储的程序指令,按照获得的程序执行上述任一种方法。
本申请另一实施例提供了一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述任一种方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的网络辅助的完好性监测、UE-assisted定位方案示意图;
图2为本申请实施例提供的UE辅助的完好性监测、UE-based定位方案示意图;
图3为本申请实施例提供的网络辅助结合UE辅助的完好性监测、UE-assisted定位示意图;
图4为本申请实施例提供的IM参考设备侧的一种信息传输方法的流程示意图;
图5为本申请实施例提供的LMF实体侧的一种信息传输方法的流程示意图;
图6为本申请实施例提供的UE侧的一种信息传输方法的流程示意图;
图7为本申请实施例提供的基站侧的一种信息传输方法的流程示意图;
图8为本申请实施例提供的网络侧的一种信息传输装置的结构示意图;
图9为本申请实施例提供的终端侧的一种信息传输装置的结构示意图;
图10为本申请实施例提供的IM参考设备侧的一种信息传输装置的结构示意图;
图11为本申请实施例提供的LMF实体侧的一种信息传输装置的结构示意图;
图12为本申请实施例提供的UE侧的一种信息传输装置的结构示意图;
图13为本申请实施例提供的基站侧的一种信息传输装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
3GPP版本16(Rel-16)以及过去的版本都没有关于“完好性监测(Integrity Monitoring,IM)”的要求。目前即将开展的3GPP新空口技术(New Radio,NR)版本17(Rel-17)定位增强功能的工作项目将实现完好性监测作为一个工作目标。Rel-16版本只满足了定位精度,并没有引入“完好性”的服务质量要求。“完好性”是对由定位系统提供的定位数据的准确性的信任度,以及在定位系统未满足预期操作条件时向用户提供及时有效的警告的能力度量,适用于影响生命财产安全,会带来法律责任的各类场景。在下行基于无线通信(RAT-dependent)的定位系统中,基站的时间偏移、基站发射机故障、多径信道和非直射径NLOS信道等是直接影响定位精度和完好性的关键问题之一。因此,本申请实施例提出了一种用于下行RAT-dependent定位的完好性监测方案。
本申请实施例提供了信息传输方法及装置,用以实现下行3GPP RAT-dependent定位网络的完好性监测,从而消除基站的时间偏移、基站发射机故障、多径信道和非直射径信道等因素的影响。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
下面结合说明书附图对本申请各个实施例进行详细描述。需要说明的是,本申请实施例的展示顺序仅代表实施例的先后顺序,并不代表实施例所提供的技术方案的优劣。
本申请实施例提供的技术方案除了监测系统是否满足完好性要求,还具有误差校正的功能。
本申请实施例提供的技术方案包括:
在利用NR下行定位参考信号(Positioning Reference Signal,PRS)定位的RAT-dependent定位网络中(例如,DL-TDOA定位,Multi-RTT定位,DL AoD定位),引入一个或者多个完好性监测(IM)参考设备(Reference and Integrity Monitoring Stations,RIMS),用于测量来自基站(Transmit and Receive Point,TRP)的每个下行PRS波束的下行PRS,并且生成针对每个基站或每个下行PRS波束的误差校正参数(Error Correction Parameter,ECP)。
其中,ECP可能是用于消除终端(User Terminal,UE)通过测量下行PRS获得测量值误差的校正参数,也可能是关于某个TRP的下行PRS波束,或某个TRP的所有下行PRS不适合用于RAT-dependent定位的指示信息。
然后,IM参考设备把ECP发送给LMF或者UE。
LMF或者UE可以利用IM参考设备提供的ECP在计算UE位置过程中消除误差的影响,从而满足完好性监测条件。
其中,IM参考设备位于定位网络中已知的位置,可以是不同于基站和UE的单独安装的网络设备,也可以是位置已知的参考UE,还可以是位置已知的参考基站。当在一个服务区域具有多个预设IM参考设备时,可以构成一个完好性监测网络,使得该网络中的全部IM参考设备相互连接,以提高完好性监测的可靠性,并且加快完好性监测的速度。
下面分别从不同的设备侧描述本申请实施例提供的技术方案:
IM参考设备:
1、IM参考设备从定位管理功能(Location Management Function,LMF)实体或者基站获取下行PRS参数配置信息。
其中,所述下行PRS参数配置信息,例如包括:发送时频域资源、带宽、准共址(Quasi Co-Location,QCL)波束指示信息等。
其中,PRS包括但不限于NR PRS、同步信号(Synchronization Signal,SS)/物理广播信道(Physical Broadcast Channel,PBCH)块(SS/PBCH block,SSB)、信道状态信息参考信号(Channel-state information RS,CSI-RS)等。
PRS可用于所有NR频率范围,包括第一频率范围(Frequency Range 1(410 MHz–7125MHz),FR1)和第二频率范围(Frequency Range 2(24250MHz–52600MHz),FR2)。
其中,RAT-dependent定位包括利用NR下行PRS定位的所有定位技术方案,例如:下行链路时间到达差(Downlink-Time Difference of Arrival,DL-TDOA)定位,多小区往返时间(Multi-cell Round Trip Time,Multi-RTT)定位,下行链路(Downlink,DL)离开角(Angle of Departure,AoD)定位。
2、IM参考设备基于获取的下行PRS参数配置信息,测量来自基站的每个下行PRS波束的下行PRS,生成针对每个基站或每个下行PRS波束的误差校正参数(Error Correction Parameter,ECP)。
其中,ECP可以是由多个误差源(例如:基站的时间偏移,基站发射机故障等)导致的合计校准参数,也可以是针对单个误差源的单独校准参数,例如:针对基站的时间偏移、多径信道和非直射径NLOS信道等的单独校正。
其中,多径信道和NLOS等的单独校正需要满足特定的条件,即只有当参考设备与目标UE的实际位置接近时,两者的多径信道和NLOS信道条件基本相同时,才能够基于IM参考设备进行完好性监测。
一般地,ECP包括但不限于以下三种类型:
类型1:用于校正候选基站的每个下行PRS波束的第一定位测量值的校正数值,其中,第一定位测量值包含但不限于到达时间(Time of Arrival,TOA)、到达时间差(Time Difference of Arrival,TDOA)(即参考信号时间差(Reference Signal Time Difference,RSTD))和UE收发时间差(UE Rx-Tx time difference)等。
类型2:用于表示候选基站的每个下行PRS波束的第一定位测量值的误差范围的估计值。
类型3:用于判断候选基站的每个下行PRS波束发送的下行PRS是否满足完好性监测条件的标识。
2.a、当系统中有N个IM参考设备时(N是大于1的整数),所有IM参考设备分别计算得到各自的ECP,然后传输给一个IM参考设备,由该IM参 考设备进行合并计算得到合成ECP。具体地,例如,针对上述三种ECP类型分别可以进行如下处理得到合成ECP:
针对类型1:N个ECP值求平均值或者加权平均值;
针对类型2:N个ECP值求平均值或者加权平均值;
针对类型3:N个ECP值做逻辑“与”或者逻辑“或”操作。
3、针对定位方法的不同,IM参考设备将生成的ECP发送到LMF或者UE。其中,当系统中有N个IM参考设备时(N是大于1的整数),该步骤是由进行合并计算的IM参考设备将合成的ECP发送到LMF或者UE。
其中,IM参考设备把ECP发送给UE至少可以采用两种方法:第一,先发送给LMF,由LMF单独转发给UE;第二,直接广播给相邻的UE。
3.1、针对UE辅助(UE-assisted)的下行定位方法,IM参考设备将生成的ECP发送到LMF,以进行UE-assisted的定位计算。其中,ECP可以用于LMF计算准确的UE位置。其中,IM参考设备向LMF发送ECP可以采用不同的方式,例如:通过有线连接,或者IM参考设备无线连接到服务基站,然后再从服务基站有线连接到LMF。
3.2、针对基于UE(UE-based)的下行定位方法,IM参考设备将生成的ECP先发送给LMF,由LMF单独转发给UE;或者直接广播给相邻的UE,以进行UE-based的定位计算。其中,ECP用于UE计算准确的UE位置。这种方法要求IM参考设备具有发送广播消息的能力。例如:当IM参考设备是参考UE时,参考UE通过车联万物(Vehicle to Everything,V2X)的副链路(Sidelink)进行广播,其优点是时间延迟更小,更适合目标时延较小的实时定位。
LMF:
1、LMF向基站、IM参考设备和UE发送下行PRS参数配置信息,包括:发送时频域资源、带宽、QCL波束指示信息等。
2、LMF接收UE上报的第一定位测量值,包括但不限于:RSTD(TDOA)、RSRP和UE收发时间差。
3、针对定位方法的不同,LMF实现不同的处理:
3.1、针对UE-assisted定位:
3.1.1、LMF接收IM参考设备上报的误差校正参数(ECP);
3.1.2、LMF根据接收到的ECP,针对第一定位测量值进行校正或者选择有效的第一定位测量值,得到第二定位测量值。
针对类型1的ECP是用于校正候选基站的每个下行PRS波束的第一定位测量值(TDOA_v1)的校正数值,记为ECP_TDOA_Error,按照下面公式进行修正,得到修正后的第二定位测量值(TDOA_v2):
TDOA_v2=TDOA_v1–ECP_TDOA_Error
针对类型2的ECP是候选基站的每个下行PRS波束的TOA测量值的误差范围估计值,当误差范围小于预定义门限值时,则该第一定位测量值作为第二定位测量值;否则,该第一定位测量值不作为第二定位测量值。
针对类型3的ECP是候选基站的发送的下行PRS是否满足完好性监测条件的标识。当下行PRS是否满足预设的完好性监测条件的标识为真(即满足所述预设的完好性监测条件)时,将所述第一定位测量值作为第二定位测量值;否则,该基站对应的第一定位测量值不作为第二定位测量值。
3.1.3、LMF基于第二定位测量值和已知的基站位置信息等进行UE位置解算,得到UE位置。此外,LMF在获得ECP以后,进一步通过计算获得保护值(Protection Level,PL),和预定义的门限值比较,判断该下行定位系统是否可靠(即是否满足完好性条件)。
3.2、针对UE-based定位:
3.2.1、LMF接收UE上报的UE位置信息。
UE:
1、UE从LMF获取下行PRS参数配置信息(包括:发送时频域资源、带宽、QCL波束指示信息等)和/或基站位置信息,其中,基站位置信息只有在UE-based定位情况下才会发送。
2、UE基于获取的下行PRS参数配置信息,测量下行PRS,获得第一定 位测量值。
3、针对定位方法的不同,UE实现不同的处理:
3.1、针对UE-assisted定位,UE把第一定位测量值上报LMF;
3.2、针对UE-based定位:
3.2.1、UE接收IM参考设备上报的误差校正参数(ECP);
3.2.2、UE基于ECP,针对第一定位测量值进行校正或者选择有效的第一定位测量值,得到第二定位测量值。
针对类型1的ECP是用于校正候选基站的每个下行PRS波束的第一定位测量值(TDOA_v1)的数值,记为ECP_TDOA_Error,按照下面公式进行修正,得到修正后的第二定位测量值(TDOA_v2):
TDOA_v2=TDOA_v1–ECP_TDOA_Error
针对类型2的ECP是候选基站的每个下行PRS波束的TOA测量值的误差范围估计值,当误差范围小于预定义门限值时,则该定位测量值作为第二定位测量值;否则,该定位测量值不作为第二定位测量值。
针对类型3的ECP是候选基站的发送的下行PRS是否满足完好性监测条件的标识,当下行PRS是否满足预设的完好性监测条件的标识为真时,则将该基站所对应的第一定位测量值作为第二定位测量值;否则,该定位测量值不作为第二定位测量值。
3.2.3、UE基于第二定位测量值和获取的基站位置信息等进行UE位置解算,得到UE位置。此外,UE在获得ECP以后,进一步通过计算获得PL,和预定义的门限值比较,判断该下行定位系统是否可靠(即是否满足完好性条件)。
3.2.4、UE把UE位置信息上报给LMF。
基站:
1、基站从LMF获取下行PRS参数配置信息,包括:发送时频域资源、带宽、QCL波束指示信息等。
2、基站向IM参考设备和UE发送下行PRS。
下面给出几个具体实施例的举例说明。
实施例1:网络辅助的完好性监测、UE-assisted定位方案。
如图1所示,实施例1是网络辅助的完好性监测、UE-assisted定位方案。该IM参考设备是不同于基站和UE的单独网络设备、或者参考基站,安装在网络中已知的位置。
IM参考设备:
1、IM参考设备从LMF或者基站获取下行PRS参数配置信息,包括:发送时频域资源、带宽、QCL波束指示信息等。其中,PRS包括但不限于NR PRS、SSB、CSI-RS等,可用于FR1和FR2。
2、IM参考设备基于获取的下行PRS参数配置信息,检测来自基站的每个下行PRS波束的下行PRS,生成针对每个基站或每个下行PRS波束的误差校正参数(Error Correction Parameter,ECP)。其中,ECP可以是由多个误差源(如基站时间偏移,基站发射机的故障等)导致的合计校准参数,也可以是针对单个误差源的单独校准参数,例如:针对时间偏移,多径信道和非直射径NLOS等的单独校正。其中,多径信道和非直射径NLOS等的单独校正需要满足特定的条件,即只有当参考设备与目标UE的实际位置接近时,两者的多径信道和非直射径NLOS信道条件基本相同时,才能够基于IM参考设备进行完好性监测。
一般地,ECP包括但不限于以下三种类型:
类型1:校正候选基站的每个下行PRS波束的TOA测量值的校正数值;
类型2:候选基站的每个下行PRS波束的TOA测量的误差范围的估计值;
类型3:候选基站的发送的下行PRS是否满足完好性监测条件的标识。
3、针对定位方法的不同,IM参考设备将生成的ECP发送到LMF。
3.1、针对UE辅助(UE-assisted)的下行定位方法,IM参考设备将生成的ECP发送到LMF,以进行UE-assisted的定位计算。其中,ECP可以用于LMF计算准确的UE位置。其中,IM参考设备向LMF发送ECP可以采用不同的方式,例如:通过有线连接,或者IM参考设备无线连接到服务基站,然 后从服务基站有线连接到LMF。
LMF:
1、LMF向基站、IM参考设备和UE发送下行PRS参数配置信息,包括:发送时频域资源、带宽、QCL波束指示信息等。
2、LMF接收UE上报的第一定位测量值,包括但不限于:RSTD(TDOA)、RSRP(Reference Signal Receiving Power,参考信号接收功率)和UE收发时间差,下面以TDOA为例进行说明。
3、针对定位方法的不同,LMF实现不同的处理:
3.1、针对UE-assisted定位:
3.1.1、LMF接收IM参考设备上报的误差校正参数(ECP)。
3.1.2、LMF根据接收到的ECP,针对第一定位测量值进行校正或者选择有效的第一定位测量值,得到第二定位测量值。
针对类型1的ECP是用于校正候选基站的每个下行PRS波束的第一TDOA定位测量值(TDOA_v1)的校正数值,记为ECP_TDOA_Error,按照下面公式进行修正,得到修正后的第二TDOA定位测量值(TDOA_v2):
TDOA_v2=TDOA_v1–ECP_TDOA_Error
针对类型2的ECP是候选基站的每个下行PRS波束的TOA测量的误差范围的估计值,当误差范围的估计值小于预定义门限值时,则该定位测量值作为第二定位测量值;否则,该定位测量值不作为第二定位测量值。
针对类型3的ECP是候选基站的发送的下行PRS是否满足完好性监测条件的标识,如果该标识为真(即满足完好性监测条件),则该基站所对应的第一定位测量值作为第二定位测量值;否则,该定位测量值不作为第二定位测量值。
3.1.3、LMF基于第二定位测量值和已知的基站位置信息等进行UE位置解算,得到UE位置。
UE:
1、UE从LMF获取下行PRS参数配置信息(包括:发送时频域资源、 带宽、QCL波束指示信息等)和/或基站位置信息,其中,基站位置信息只有在UE-based定位情况下才会发送;
2、UE基于获取的下行PRS参数配置信息,测量下行PRS,得到第一定位测量值。
3、针对定位方法的不同,UE实现不同的处理:
3.1、针对UE-assisted定位,UE把第一定位测量值上报LMF。
基站:
1、基站从LMF获取下行PRS参数配置信息,包括:发送时频域资源、带宽、QCL波束指示信息等。
2、基站向IM参考设备和UE发送下行PRS。
实施例2:UE辅助的完好性监测、UE-based定位。
如图2所示,实施例2是UE辅助的完好性监测、UE-based定位方案。该IM参考设备是参考UE,安装在网络中已知的位置。
IM参考设备:
1、IM参考设备从LMF或者基站获取下行PRS参数配置信息,包括:发送时频域资源、带宽、QCL波束指示信息等。其中,PRS包括但不限于NR PRS、SSB、CSI-RS等,可用于FR1和FR2。
2、IM参考设备基于获取的下行PRS参数配置信息,检测来自基站的每个下行PRS波束的下行PRS,生成针对每个基站或每个下行PRS波束的误差校正参数(Error Correction Parameter,ECP)。其中,ECP可以是由多个误差源(如基站时间偏移、基站发射机的故障等)导致的合计校准参数,也可以是针对单个误差源的单独校准参数,例如:针对时间偏移、多径信道和非直射径NLOS等的单独校正。其中,多径信道和非直射径NLOS等的单独校正需要满足特定的条件,即只有当参考设备与目标UE的实际位置接近时,两者的多径信道和非直射径NLOS信道条件基本相同时,才能够基于IM参考设备进行完好性监测。
一般地,ECP包括但不限于以下三种类型:
类型1:校正候选基站的每个下行PRS波束的TOA测量值的校正数值;
类型2:候选基站的每个下行PRS波束的TOA测量的误差范围的估计值;
类型3:候选基站的发送的下行PRS是否满足完好性监测条件的标识。
3、针对定位方法的不同,IM参考设备将生成的ECP发送到UE。
3.2、针对基于UE(UE-based)的下行定位方法,IM参考设备将生成的ECP广播到相邻的UE,以进行UE-based的定位计算。其中,ECP用于UE计算准确的UE位置。这种方法要求IM参考设备具有发送广播消息的能力,例如:当IM参考设备是参考UE时,参考UE通过V2X的PC5链路进行广播,其优点是时间延迟更小,更适合目标时延较小的实时定位。
LMF:
1、LMF向基站、IM参考设备和UE发送下行PRS参数配置信息,包括:发送时频域资源、带宽、QCL波束指示信息等。
2、LMF接收UE上报的第一定位测量值,包括但不限于:RSTD(TDOA)、RSRP和UE收发时间差。
3、针对定位方法的不同,LMF实现不同的处理:
3.2、针对UE-based定位:
3.2.1、LMF接收UE上报的UE位置信息。
UE:
1、UE从LMF获取下行PRS参数配置信息(包括:发送时频域资源、带宽、QCL波束指示信息等)和/或基站位置信息,其中,基站位置信息只有在UE-based定位情况下才会发送。
2、UE基于获取的下行PRS参数配置信息,测量下行PRS,获得第一定位测量值,包括但不限于:RSTD(TDOA)、RSRP和UE收发时间差,下面以TDOA为例进行说明。
3、针对定位方法的不同,UE实现不同的处理:
3.2、针对UE-based定位:
3.2.1、UE接收IM参考设备上报的误差校正参数(ECP);
3.2.2、UE基于ECP,针对第一定位测量值进行校正或者选择有效的第一定位测量值,得到第二定位测量值。
针对类型1的ECP是用于校正候选基站的每个下行PRS波束的第一TDOA定位测量值(TDOA_v1)的校正数值,记为ECP_TDOA_Error,按照下面公式进行修正,得到修正后的第二TDOA定位测量值(TDOA_v2):
TDOA_v2=TDOA_v1–ECP_TDOA_Error
针对类型2的ECP是候选基站的每个下行PRS波束的TOA测量的误差范围的估计值,当误差范围的估计值小于预定义门限值时,则该定位测量值作为第二定位测量值;否则,该定位测量值不作为第二定位测量值。
针对类型3的ECP是候选基站的发送的下行PRS是否满足完好性监测条件的标识,如果该标识为真,即满足完好性监测条件,则该基站所对应的第一定位测量值作为第二定位测量值;否则,该定位测量值不作为第二定位测量值。
3.2.3、UE基于第二定位测量值和获取的基站位置信息等进行UE位置解算,得到UE位置。
3.2.4、UE把UE位置信息上报给LMF。
基站:
1、基站从LMF获取下行PRS参数配置信息,包括:发送时频域资源、带宽、QCL波束指示信息等。
2、基站向IM参考设备和UE发送下行PRS。
实施例3:网络辅助结合UE辅助的完好性监测、UE-assisted定位。
如图3所示,实施例3是网络辅助结合UE辅助的完好性监测、UE-assisted定位方案。该IM参考设备包括1个参考基站和1个参考UE,分别安装在网络中固定的位置。
实施例3与实施例1的区别在于IM参考设备有两个,因此,下面只描述IM参考设备,LMF、UE和基站处理步骤与实施例1完全相同,不再赘述。
其中,IM参考设备在步骤2之后新增加了步骤2.a的处理。
IM参考设备(参考基站和参考UE):
1、IM参考设备从LMF或者基站获取下行PRS参数配置信息,包括:发送时频域资源、带宽、QCL波束指示信息等。其中,PRS包括但不限于NR PRS、SSB、CSI-RS等,可用于FR1和FR2。
2、IM参考设备基于获取的下行PRS参数配置信息,检测来自基站的每个下行PRS波束的下行PRS,生成针对每个基站或每个下行PRS波束的误差校正参数(Error Correction Parameter,ECP)。其中,ECP可以是由多个误差源(如基站时间偏移,基站发射机的故障等)导致的合计校准参数,也可以是针对单个误差源的单独校准参数,例如:针对时间偏移,多径信道和非直射径NLOS等的单独校正。其中,多径信道和非直射径NLOS等的单独校正需要满足特定的条件,即只有当参考设备与目标UE的实际位置接近时,两者的多径信道和非直射径NLOS信道条件基本相同时,才能够基于IM参考设备进行完好性监测。
一般地,ECP包括但不限于以下三种类型:
类型1:校正候选基站的每个下行PRS波束的TOA测量值的校正数值;
类型2:候选基站的每个下行PRS波束的TOA测量的误差范围的估计值;
类型3:候选基站的发送的下行PRS是否满足完好性监测条件的标识。
2.a、参考基站和参考UE分别实现了步骤1和步骤2之后,分别获得各自的误差校正参数ECP,然后参考UE把自身的ECP发送给参考基站,由参考基站合并计算得到合成ECP。例如:参考基站获取第一误差校正参数ECP_v1,参考UE获取第二误差校正参数ECP_v2,然后根据三种ECP类型分别进行处理:
类型1:2个ECP值求平均值或者加权平均值,得到的值记为ECP_v3,例如:
ECP_v3=1/2*(ECP_v1+ECP_v2);
类型2:2个ECP值求平均值或者加权平均值,得到的值记为ECP_v3,例如:
ECP_v3=1/2*(ECP_v1+ECP_v2);
类型3:2个ECP值求逻辑“与(AND)”或者逻辑“或(OR)”操作,得到的值记为ECP_v3,例如:
ECP_v3=ECP_v1AND ECP_v2
3、针对定位方法的不同,IM参考设备将生成的ECP_v3发送到LMF。
3.1、针对UE辅助(UE-assisted)的下行定位方法,IM参考设备将生成的ECP发送到LMF,以进行UE-assisted的定位计算。其中,ECP可以用于LMF计算准确的UE位置。其中,IM参考设备向LMF发送ECP可以采用不同的方式,例如:通过有线连接,或者IM参考设备无线连接到服务基站,然后从服务基站有线连接到LMF。
综上所述,本申请实施例在下行RAT-dependent定位网络中引入一个或者多个完好性监测(IM)参考设备,用于测量来自基站的每个下行PRS波束的下行PRS,并且生成针对每个基站或每个下行PRS波束的误差校正参数(ECP)。然后IM参考设备把ECP发送给LMF或者UE,用于在计算UE位置过程中消除误差影响,从而满足完好性监测条件。
需要说明的是,本申请实施例中所述的完好性监测条件,可以根据实际需要而定,本申请实施例不进行限制。
参见图4,本申请实施例提供的IM参考设备侧的一种信息传输方法包括:
S101、获取下行定位参考信号PRS参数配置信息;
S102、基于所述下行PRS参数配置信息,测量来自基站的下行PRS,生成误差校正参数ECP;
S103、发送所述ECP。
通过该方法,获取下行定位参考信号PRS参数配置信息,基于所述下行PRS参数配置信息,测量来自基站的下行PRS,生成误差校正参数ECP,发送所述ECP,从而实现了下行3GPP RAT-dependent定位网络的完好性监测,消除了基站的时间偏移、基站发射机故障、多径信道和非直射径信道等因素的影响。
可选地,所述ECP包括以下三种类型:
类型1:用于校正候选基站的每个下行PRS波束的第一定位测量值的校正数值;
类型2:用于表示候选基站的每个下行PRS波束的第一定位测量值的误差范围的估计值;
类型3:用于判断候选基站的每个下行PRS波束发送的下行PRS是否满足完好性监测条件的标识。
可选地,当存在多个预设IM参考设备时,在进行合并计算的IM参考设备侧,该方法还包括:接收预设IM参考设备发送的ECP,并将预设多个预设IM参考设备的ECP进行合并计算,得到合成ECP;
发送所述ECP,具体包括:发送所述合成ECP。
可选地,发送所述ECP具体包括:将所述ECP发送给定位管理功能LMF实体或终端。
可选地,当存在多个预设IM参考设备时,在不进行合并计算的IM参考设备侧,发送所述ECP具体包括:将所述ECP发送给预设IM参考设备,由该预设IM参考设备将来自多个预设IM参考设备的ECP进行合并计算,得到合成ECP。
参见图5,本申请实施例提供的LMF实体侧的一种信息传输方法包括:
S201、发送下行定位参考信号PRS参数配置信息;
S202、接收误差校正参数ECP;其中,所述ECP,是基于所述下行PRS参数配置信息对应的下行PRS确定的。
可选地,所述ECP包括以下三种类型:
类型1:用于校正候选基站的每个下行PRS波束的第一定位测量值的校正数值;
类型2:用于表示候选基站的每个下行PRS波束的第一定位测量值的误差范围的估计值;
类型3:用于判断候选基站的每个下行PRS波束发送的下行PRS是否满 足预设的完好性监测条件的标识。
可选地,该方法还包括:
根据所述ECP,并基于终端上报的第一定位测量值,确定第二定位测量值;
基于所述第二定位测量值,确定终端位置。
可选地,对于所述ECP类型1,采用如下方式基于终端上报的第一定位测量值,确定第二定位测量值:
TDOA_v2=TDOA_v1–ECP_TDOA_Error
其中,TDOA_v1表示所述第一定位测量值,ECP_TDOA_Error表示所述校正数值,TDOA_v2表示所述第二定位测量值。
可选地,对于所述ECP类型2,采用如下方式基于终端上报的第一定位测量值,确定第二定位测量值:
当所述误差范围的估计值小于预设门限值时,将所述第一定位测量值作为第二定位测量值。
可选地,对于所述ECP类型3,采用如下方式基于终端上报的第一定位测量值,确定第二定位测量值:
当下行PRS是否满足预设的完好性监测条件的标识为真时,将所述第一定位测量值作为第二定位测量值。
可选地,该方法还包括:
接收终端上报的终端位置信息。
参见图6,本申请实施例提供的UE侧的一种信息传输方法包括:
S301、从定位管理功能LMF实体获取下行定位参考信号PRS参数配置信息;
S302、基于所述下行PRS参数配置信息,测量下行PRS,得到第一定位测量值。
可选地,该方法还包括:
将所述第一定位测量值上报给所述LMF实体。
可选地,该方法还包括:
接收误差校正参数ECP;
基于所述ECP,以及所述第一定位测量值,确定第二定位测量值;
基于所述第二定位测量值,确定终端位置信息;
将所述终端位置信息上报给所述LMF实体。
可选地,所述ECP包括以下三种类型:
类型1:用于校正候选基站的每个下行PRS波束的第一定位测量值的校正数值;
类型2:用于表示候选基站的每个下行PRS波束的第一定位测量值的误差范围的估计值;
类型3:用于判断候选基站的每个下行PRS波束发送的下行PRS是否满足预设的完好性监测条件的标识。
可选地,对于所述类型1,采用如下方式基于所述ECP,以及所述第一定位测量值,确定第二定位测量值:
TDOA_v2=TDOA_v1–ECP_TDOA_Error
其中,TDOA_v1表示所述第一定位测量值,ECP_TDOA_Error表示所述ECP对应的校正数值,TDOA_v2表示所述第二定位测量值。
可选地,对于所述类型2,采用如下方式基于所述ECP,以及所述第一定位测量值,确定第二定位测量值:
当所述误差范围的估计值小于预设门限值时,将所述第一定位测量值作为第二定位测量值。
可选地,对于所述类型3,采用如下方式基于所述ECP,以及所述第一定位测量值,确定第二定位测量值:
当下行PRS是否满足预设的完好性监测条件的标识为真时,将所述第一定位测量值作为第二定位测量值。
参见图7,本申请实施例提供的基站侧的一种信息传输方法包括:
S401、从定位管理功能LMF实体获取下行定位参考信号PRS参数配置信 息;
S402、基于所述下行PRS参数配置信息,向终端和预设的IM参考设备发送下行PRS。
参见图8,本申请实施例提供的网络侧(可以是IM参考设备,也可以是LMF实体,也可以是基站)的一种信息传输装置包括:
存储器520,用于存储程序指令;
处理器500,用于调用所述存储器中存储的程序指令,按照获得的程序执行相应的功能。具体地:
一、若该装置为IM参考设备,则:
处理器500,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
通过收发机510获取下行定位参考信号PRS参数配置信息;
基于所述下行PRS参数配置信息,测量来自基站的下行PRS,生成误差校正参数ECP;
通过收发机510发送所述ECP。
可选地,所述ECP包括以下三种类型:
类型1:用于校正候选基站的每个下行PRS波束的第一定位测量值的校正数值;
类型2:用于表示候选基站的每个下行PRS波束的第一定位测量值的误差范围的估计值;
类型3:用于判断候选基站的每个下行PRS波束发送的下行PRS是否满足完好性监测条件的标识。
可选地,当存在多个预设IM参考设备时,在进行合并计算的IM参考设备侧,所述处理器500还用于:通过收发机510接收预设IM参考设备发送的ECP,并将预设多个预设IM参考设备的ECP进行合并计算,得到合成ECP;
发送所述ECP,具体包括:发送所述合成ECP。
可选地,发送所述ECP具体包括:通过收发机510将所述ECP发送给定 位管理功能LMF实体或终端。
可选地,当存在多个预设IM参考设备时,在不进行合并计算的IM参考设备侧,发送所述ECP具体包括:通过收发机510将所述ECP发送给预设IM参考设备,由该预设IM参考设备将来自多个预设IM参考设备的ECP进行合并计算,得到合成ECP。
二、若该装置为LMF实体,则:
处理器500,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
通过收发机510发送下行定位参考信号PRS参数配置信息;
通过收发机510接收误差校正参数ECP;其中,所述ECP,是基于所述下行PRS参数配置信息对应的下行PRS确定的。
可选地,所述ECP包括以下三种类型:
类型1:用于校正候选基站的每个下行PRS波束的第一定位测量值的校正数值;
类型2:用于表示候选基站的每个下行PRS波束的第一定位测量值的误差范围的估计值;
类型3:用于判断候选基站的每个下行PRS波束发送的下行PRS是否满足预设的完好性监测条件的标识。
可选地,所述处理器500还用于:
根据所述ECP,并基于终端上报的第一定位测量值,确定第二定位测量值;
基于所述第二定位测量值,确定终端位置。
可选地,对于所述ECP类型1,所述处理器500采用如下方式基于终端上报的第一定位测量值,确定第二定位测量值:
TDOA_v2=TDOA_v1–ECP_TDOA_Error
其中,TDOA_v1表示所述第一定位测量值,ECP_TDOA_Error表示所述校正数值,TDOA_v2表示所述第二定位测量值。
可选地,对于所述ECP类型2,所述处理器500采用如下方式基于终端上报的第一定位测量值,确定第二定位测量值:
当所述误差范围的估计值小于预设门限值时,将所述第一定位测量值作为第二定位测量值。
可选地,对于所述ECP类型3,所述处理器500采用如下方式基于终端上报的第一定位测量值,确定第二定位测量值:
当下行PRS是否满足预设的完好性监测条件的标识为真时,将所述第一定位测量值作为第二定位测量值。
可选地,所述处理器500还用于:
通过收发机510接收终端上报的终端位置信息。
三、若该装置为基站,则:
处理器500,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
通过收发机510从定位管理功能LMF实体获取下行定位参考信号PRS参数配置信息;
通过收发机510基于所述下行PRS参数配置信息,向终端和预设的IM参考设备发送下行PRS。
收发机510,用于在处理器500的控制下接收和发送数据。
其中,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机510可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。处理器500负责管理总线架构和通常的处理,存储器520可以存储处理器500在执行操作时所使用的数据。
处理器500可以是中央处埋器(CPU)、专用集成电路(Application Specific  Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。
参见图9,本申请实施例提供的终端侧的一种信息传输装置包括:
存储器620,用于存储程序指令;
处理器600,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
通过收发机610从定位管理功能LMF实体获取下行定位参考信号PRS参数配置信息;
基于所述下行PRS参数配置信息,测量下行PRS,得到第一定位测量值。
可选地,所述处理器600还用于:
通过收发机610将所述第一定位测量值上报给所述LMF实体。
可选地,所述处理器600还用于:
通过收发机610接收误差校正参数ECP;
基于所述ECP,以及所述第一定位测量值,确定第二定位测量值;
基于所述第二定位测量值,确定终端位置信息;
通过收发机610将所述终端位置信息上报给所述LMF实体。
可选地,所述ECP包括以下三种类型:
类型1:用于校正候选基站的每个下行PRS波束的第一定位测量值的校正数值;
类型2:用于表示候选基站的每个下行PRS波束的第一定位测量值的误差范围的估计值;
类型3:用于判断候选基站的每个下行PRS波束发送的下行PRS是否满足预设的完好性监测条件的标识。
可选地,对于所述类型1,所述处理器600采用如下方式基于所述ECP,以及所述第一定位测量值,确定第二定位测量值:
TDOA_v2=TDOA_v1–ECP_TDOA_Error
其中,TDOA_v1表示所述第一定位测量值,ECP_TDOA_Error表示所述 ECP对应的校正数值,TDOA_v2表示所述第二定位测量值。
可选地,对于所述类型2,所述处理器600采用如下方式基于所述ECP,以及所述第一定位测量值,确定第二定位测量值:
当所述误差范围的估计值小于预设门限值时,将所述第一定位测量值作为第二定位测量值。
可选地,对于所述类型3,所述处理器600采用如下方式基于所述ECP,以及所述第一定位测量值,确定第二定位测量值:
当下行PRS是否满足预设的完好性监测条件的标识为真时,将所述第一定位测量值作为第二定位测量值。
收发机610,用于在处理器600的控制下接收和发送数据。
其中,在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口630还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
可选的,处理器600可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件)。
参见图10,本申请实施例提供的IM参考设备侧的一种信息传输装置包括:
获取单元11,用于获取下行定位参考信号PRS参数配置信息;
测量单元12,用于基于所述下行PRS参数配置信息,测量来自基站的下行PRS,生成误差校正参数ECP;
发送单元13,用于发送所述ECP。
参见图11,本申请实施例提供的LMF实体侧的一种信息传输装置包括:
发送单元21,用于发送下行定位参考信号PRS参数配置信息;
接收单元22,用于接收误差校正参数ECP;其中,所述ECP,是基于所述下行PRS参数配置信息对应的下行PRS确定的。
参见图12,本申请实施例提供的UE侧的一种信息传输装置包括:
获取单元31,用于从定位管理功能LMF实体获取下行定位参考信号PRS参数配置信息;
测量单元32,用于基于所述下行PRS参数配置信息,测量下行PRS,得到第一定位测量值。
参见图13,本申请实施例提供的基站侧的一种信息传输装置包括:
获取单元41,用于从定位管理功能LMF实体获取下行定位参考信号PRS参数配置信息;
发送单元42,用于基于所述下行PRS参数配置信息,向终端和预设的IM参考设备发送下行PRS。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例提供了一种计算设备,该计算设备具体可以为桌面计算机、便携式计算机、智能手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)等。该计算设备可以包括中央处理器(Center Processing Unit,CPU)、存储器、输入/输出设备等,输入设备可以包括键盘、鼠标、触摸屏等,输出设备可以包括显示设备,如液晶显示器(Liquid Crystal Display,LCD)、阴极射线管(Cathode Ray Tube,CRT)等。
存储器可以包括只读存储器(ROM)和随机存取存储器(RAM),并向处理器提供存储器中存储的程序指令和数据。在本申请实施例中,存储器可以用于存储本申请实施例提供的任一所述方法的程序。
处理器通过调用存储器存储的程序指令,处理器用于按照获得的程序指令执行本申请实施例提供的任一所述方法。
本申请实施例提供了一种计算机存储介质,用于储存为上述本申请实施例提供的装置所用的计算机程序指令,其包含用于执行上述本申请实施例提供的任一方法的程序。
所述计算机存储介质可以是计算机能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本申请实施例提供的方法可以应用于终端设备,也可以应用于网络设备。
其中,终端设备也可称之为用户设备(User Equipment,简称为“UE”)、移动台(Mobile Station,简称为“MS”)、移动终端(Mobile Terminal)等,可选的,该终端可以具备经无线接入网(Radio Access Network,RAN)与一 个或多个核心网进行通信的能力,例如,终端可以是移动电话(或称为“蜂窝”电话)、或具有移动性质的计算机等,例如,终端还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
网络设备包括的基站(例如,接入点),指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以是5G系统中的gNB等。本申请实施例中不做限定。
上述方法处理流程可以用软件程序实现,该软件程序可以存储在存储介质中,当存储的软件程序被调用时,执行上述方法步骤。
综上所述,本申请实施例提出了一种用于下行RAT-dependent定位的完好性监测方案。相对于无完好性监测的现有技术,本申请实施例可以消除基站的时间偏移、基站发射机故障、多径信道和非直射径NLOS信道等的影响,显著提高系统的可靠性。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通 过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (46)

  1. 一种信息传输方法,其特征在于,所述方法包括:
    获取下行定位参考信号PRS参数配置信息;
    基于所述下行PRS参数配置信息,测量来自基站的下行PRS,生成误差校正参数ECP;
    发送所述ECP。
  2. 根据权利要求1所述的方法,其特征在于,所述ECP包括以下三种类型:
    类型1:用于校正候选基站的每个下行PRS波束的第一定位测量值的校正数值;
    类型2:用于表示候选基站的每个下行PRS波束的第一定位测量值的误差范围的估计值;
    类型3:用于判断候选基站的每个下行PRS波束发送的下行PRS是否满足完好性监测条件的标识。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:接收多个预设IM参考设备发送的ECP,并将多个预设IM参考设备的ECP进行合并计算,得到合成ECP;
    所述发送所述ECP,具体包括:发送所述合成ECP。
  4. 根据权利要求1~3中任一所述的方法,其特征在于,所述发送所述ECP具体包括:将所述ECP发送给定位管理功能LMF实体或终端。
  5. 根据权利要求1所述的方法,其特征在于,所述发送所述ECP具体包括:将所述ECP发送给预设IM参考设备,由所述预设IM参考设备将来自多个预设IM参考设备的ECP进行合并计算,得到合成ECP。
  6. 一种信息传输方法,其特征在于,所述方法包括:
    发送下行定位参考信号PRS参数配置信息;
    接收误差校正参数ECP;其中,所述ECP是基于所述下行PRS参数配置 信息对应的下行PRS确定的。
  7. 根据权利要求6所述的方法,其特征在于,所述ECP包括以下三种类型:
    类型1:用于校正候选基站的每个下行PRS波束的第一定位测量值的校正数值;
    类型2:用于表示候选基站的每个下行PRS波束的第一定位测量值的误差范围的估计值;
    类型3:用于判断候选基站的每个下行PRS波束发送的下行PRS是否满足预设的完好性监测条件的标识。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    根据所述ECP,并基于终端上报的第一定位测量值,确定第二定位测量值;
    基于所述第二定位测量值,确定终端位置。
  9. 根据权利要求8所述的方法,其特征在于,对于所述ECP的所述类型1,采用如下方式基于终端上报的第一定位测量值,确定第二定位测量值:
    TDOA_v2=TDOA_v1–ECP_TDOA_Error
    其中,TDOA_v1表示所述第一定位测量值,ECP_TDOA_Error表示所述校正数值,TDOA_v2表示所述第二定位测量值。
  10. 根据权利要求8所述的方法,其特征在于,对于所述ECP的所述类型2,采用如下方式基于终端上报的第一定位测量值,确定第二定位测量值:
    当所述误差范围的估计值小于预设门限值时,将所述第一定位测量值作为第二定位测量值。
  11. 根据权利要求8所述的方法,其特征在于,对于所述ECP的所述类型3,采用如下方式基于终端上报的第一定位测量值,确定第二定位测量值:
    当下行PRS是否满足预设的完好性监测条件的标识为真时,将所述第一定位测量值作为第二定位测量值。
  12. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    接收终端上报的终端位置信息。
  13. 一种信息传输方法,其特征在于,所述方法包括:
    从定位管理功能LMF实体获取下行定位参考信号PRS参数配置信息;
    基于所述下行PRS参数配置信息,测量下行PRS,得到第一定位测量值。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    将所述第一定位测量值上报给所述LMF实体。
  15. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    接收误差校正参数ECP;
    基于所述ECP,以及所述第一定位测量值,确定第二定位测量值;
    基于所述第二定位测量值,确定终端位置信息;
    将所述终端位置信息上报给所述LMF实体。
  16. 根据权利要求15所述的方法,其特征在于,所述ECP包括以下三种类型:
    类型1:用于校正候选基站的每个下行PRS波束的第一定位测量值的校正数值;
    类型2:用于表示候选基站的每个下行PRS波束的第一定位测量值的误差范围的估计值;
    类型3:用于判断候选基站的每个下行PRS波束发送的下行PRS是否满足预设的完好性监测条件的标识。
  17. 根据权利要求16所述的方法,其特征在于,对于所述类型1,采用如下方式基于所述ECP,以及所述第一定位测量值,确定第二定位测量值:
    TDOA_v2=TDOA_v1–ECP_TDOA_Error
    其中,TDOA_v1表示所述第一定位测量值,ECP_TDOA_Error表示所述ECP对应的校正数值,TDOA_v2表示所述第二定位测量值。
  18. 根据权利要求16所述的方法,其特征在于,对于所述类型2,采用如下方式基于所述ECP,以及所述第一定位测量值,确定第二定位测量值:
    当所述误差范围的估计值小于预设门限值时,将所述第一定位测量值作 为第二定位测量值。
  19. 根据权利要求16所述的方法,其特征在于,对于所述类型3,采用如下方式基于所述ECP,以及所述第一定位测量值,确定第二定位测量值:
    当下行PRS是否满足预设的完好性监测条件的标识为真时,将所述第一定位测量值作为第二定位测量值。
  20. 一种信息传输方法,其特征在于,该方法包括:
    从定位管理功能LMF实体获取下行定位参考信号PRS参数配置信息;
    基于所述下行PRS参数配置信息,向终端和预设的IM参考设备发送下行PRS。
  21. 一种信息传输装置,其特征在于,该装置包括:
    存储器,用于存储程序指令;
    处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
    获取下行定位参考信号PRS参数配置信息;
    基于所述下行PRS参数配置信息,测量来自基站的下行PRS,生成误差校正参数ECP;
    发送所述ECP。
  22. 根据权利要求21所述的装置,其特征在于,所述ECP包括以下三种类型:
    类型1:用于校正候选基站的每个下行PRS波束的第一定位测量值的校正数值;
    类型2:用于表示候选基站的每个下行PRS波束的第一定位测量值的误差范围的估计值;
    类型3:用于判断候选基站的每个下行PRS波束发送的下行PRS是否满足完好性监测条件的标识。
  23. 根据权利要求21所述的装置,其特征在于,所述处理器还用于:接收预设IM参考设备发送的ECP,并将预设多个预设IM参考设备的ECP进行合并计算,得到合成ECP;
    执行所述发送所述ECP,所述处理器被配置为用于:发送所述合成ECP。
  24. 根据权利要求21~23中任一所述的装置,其特征在于,执行所述发送所述ECP,所述处理器被配置为用于:将所述ECP发送给定位管理功能LMF实体或终端。
  25. 根据权利要求21所述的装置,其特征在于,执行所述发送所述ECP,所述处理器被配置为用于:将所述ECP发送给预设IM参考设备,由该预设IM参考设备将来自多个预设IM参考设备的ECP进行合并计算,得到合成ECP。
  26. 一种信息传输装置,其特征在于,所述装置包括:
    存储器,用于存储程序指令;
    处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
    发送下行定位参考信号PRS参数配置信息;
    接收误差校正参数ECP;其中,所述ECP是基于所述下行PRS参数配置信息对应的下行PRS确定的。
  27. 根据权利要求26所述的装置,其特征在于,所述ECP包括以下三种类型:
    类型1:用于校正候选基站的每个下行PRS波束的第一定位测量值的校正数值;
    类型2:用于表示候选基站的每个下行PRS波束的第一定位测量值的误差范围的估计值;
    类型3:用于判断候选基站的每个下行PRS波束发送的下行PRS是否满足预设的完好性监测条件的标识。
  28. 根据权利要求27所述的装置,其特征在于,所述处理器还用于:
    根据所述ECP,并基于终端上报的第一定位测量值,确定第二定位测量值;
    基于所述第二定位测量值,确定终端位置。
  29. 根据权利要求28所述的装置,其特征在于,对于所述ECP的所述类型1,所述处理器被配置为采用如下方式基于终端上报的第一定位测量值,确 定第二定位测量值:
    TDOA_v2=TDOA_v1–ECP_TDOA_Error
    其中,TDOA_v1表示所述第一定位测量值,ECP_TDOA_Error表示所述校正数值,TDOA_v2表示所述第二定位测量值。
  30. 根据权利要求28所述的装置,其特征在于,对于所述ECP的所述类型2,所述处理器被配置为采用如下方式基于终端上报的第一定位测量值,确定第二定位测量值:
    当所述误差范围的估计值小于预设门限值时,将所述第一定位测量值作为第二定位测量值。
  31. 根据权利要求28所述的装置,其特征在于,对于所述ECP的所述类型3,所述处理器被配置为采用如下方式基于终端上报的第一定位测量值,确定第二定位测量值:
    当下行PRS是否满足预设的完好性监测条件的标识为真时,将所述第一定位测量值作为第二定位测量值。
  32. 根据权利要求26或27所述的装置,其特征在于,所述处理器还被配置为:
    接收终端上报的终端位置信息。
  33. 一种信息传输装置,其特征在于,该装置包括:
    存储器,用于存储程序指令;
    处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
    从定位管理功能LMF实体获取下行定位参考信号PRS参数配置信息;
    基于所述下行PRS参数配置信息,测量下行PRS,得到第一定位测量值。
  34. 根据权利要求33所述的装置,其特征在于,所述处理器还被配置为用于:
    将所述第一定位测量值上报给所述LMF实体。
  35. 根据权利要求33所述的装置,其特征在于,所述处理器还用于:
    接收误差校正参数ECP;
    基于所述ECP,以及所述第一定位测量值,确定第二定位测量值;
    基于所述第二定位测量值,确定终端位置信息;
    将所述终端位置信息上报给所述LMF实体。
  36. 根据权利要求35所述的装置,其特征在于,所述ECP包括以下三种类型:
    类型1:用于校正候选基站的每个下行PRS波束的第一定位测量值的校正数值;
    类型2:用于表示候选基站的每个下行PRS波束的第一定位测量值的误差范围的估计值;
    类型3:用于判断候选基站的每个下行PRS波束发送的下行PRS是否满足预设的完好性监测条件的标识。
  37. 根据权利要求36所述的装置,其特征在于,对于所述类型1,所述处理器被配置为用于采用如下方式基于所述ECP,以及所述第一定位测量值,确定第二定位测量值:
    TDOA_v2=TDOA_v1–ECP_TDOA_Error
    其中,TDOA_v1表示所述第一定位测量值,ECP_TDOA_Error表示所述ECP对应的校正数值,TDOA_v2表示所述第二定位测量值。
  38. 根据权利要求36所述的装置,其特征在于,对于所述类型2,所述处理器被配置为用于采用如下方式基于所述ECP,以及所述第一定位测量值,确定第二定位测量值:
    当所述误差范围的估计值小于预设门限值时,将所述第一定位测量值作为第二定位测量值。
  39. 根据权利要求36所述的装置,其特征在于,对于所述类型3,所述处理器被配置为用于采用如下方式基于所述ECP,以及所述第一定位测量值,确定第二定位测量值:
    当下行PRS是否满足预设的完好性监测条件的标识为真时,将所述第一定位测量值作为第二定位测量值。
  40. 一种信息传输装置,其特征在于,该装置包括:
    存储器,用于存储程序指令;
    处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
    从定位管理功能LMF实体获取下行定位参考信号PRS参数配置信息;
    基于所述下行PRS参数配置信息,向终端和预设的IM参考设备发送下行PRS。
  41. 一种信息传输装置,其特征在于,所述装置包括:
    获取单元,用于获取下行定位参考信号PRS参数配置信息;
    测量单元,用于基于所述下行PRS参数配置信息,测量来自基站的下行PRS,生成误差校正参数ECP;
    发送单元,用于发送所述ECP。
  42. 一种信息传输装置,其特征在于,所述装置包括:
    发送单元,用于发送下行定位参考信号PRS参数配置信息;
    接收单元,用于接收误差校正参数ECP;其中,所述ECP,是基于所述下行PRS参数配置信息对应的下行PRS确定的。
  43. 一种信息传输装置,其特征在于,所述装置包括:
    获取单元,用于从定位管理功能LMF实体获取下行定位参考信号PRS参数配置信息;
    测量单元,用于基于所述下行PRS参数配置信息,测量下行PRS,得到第一定位测量值。
  44. 一种信息传输装置,其特征在于,所述装置包括:
    获取单元,用于从定位管理功能LMF实体获取下行定位参考信号PRS参数配置信息;
    发送单元,用于基于所述下行PRS参数配置信息,向终端和预设的IM参考设备发送下行PRS。
  45. 一种计算设备,其特征在于,包括:
    存储器,用于存储程序指令;
    处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行权利要求1至20任一项所述的方法。
  46. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行权利要求1至20任一项所述的方法。
PCT/CN2021/072713 2020-02-26 2021-01-19 信息传输方法及装置 WO2021169676A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/802,526 US20230100877A1 (en) 2020-02-26 2021-01-19 Information transmission method and device
EP21759754.1A EP4114074A4 (en) 2020-02-26 2021-01-19 METHOD AND DEVICE FOR TRANSMITTING INFORMATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010118425.8A CN113316182A (zh) 2020-02-26 2020-02-26 信息传输方法及装置
CN202010118425.8 2020-02-26

Publications (1)

Publication Number Publication Date
WO2021169676A1 true WO2021169676A1 (zh) 2021-09-02

Family

ID=77369923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072713 WO2021169676A1 (zh) 2020-02-26 2021-01-19 信息传输方法及装置

Country Status (4)

Country Link
US (1) US20230100877A1 (zh)
EP (1) EP4114074A4 (zh)
CN (1) CN113316182A (zh)
WO (1) WO2021169676A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023208164A1 (zh) * 2022-04-29 2023-11-02 大唐移动通信设备有限公司 信息传输方法、载波相位定位方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117014806A (zh) * 2022-04-29 2023-11-07 华为技术有限公司 通信方法和通信装置
CN115208490B (zh) * 2022-07-05 2023-04-25 四川创智联恒科技有限公司 5g网络中快速校准prs信道准确性的方法、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105472735A (zh) * 2015-12-10 2016-04-06 成都希盟泰克科技发展有限公司 一种基于lte移动端定位的时延估计误差补偿方法
CN110192117A (zh) * 2017-02-02 2019-08-30 高通股份有限公司 用于定位信号的获取的方法和/或系统
CN110346754A (zh) * 2018-04-03 2019-10-18 电信科学技术研究院有限公司 一种定位时刻获取方法及装置
CN110651512A (zh) * 2017-05-26 2020-01-03 高通股份有限公司 在第五代无线网络中用于定位移动装置的系统及方法
CN110719630A (zh) * 2018-07-12 2020-01-21 维沃移动通信有限公司 定位参考信号波束配置方法、终端设备和网络设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8838481B2 (en) * 2011-07-26 2014-09-16 Golba Llc Method and system for location based hands-free payment
AU2015401752B2 (en) * 2015-07-08 2019-06-20 Telefonaktiebolaget Lm Ericsson (Publ) Location information in communications networks
US10660109B2 (en) * 2016-11-16 2020-05-19 Qualcomm Incorporated Systems and methods to support multiple configurations for positioning reference signals in a wireless network
US10375669B2 (en) * 2017-08-04 2019-08-06 Qualcomm Incorporated Methods and systems for locating a mobile device using an asynchronous wireless network
CN110635876B (zh) * 2018-06-22 2020-11-06 维沃移动通信有限公司 Nr系统的定位参考信号配置、接收方法和设备
US10779126B2 (en) * 2018-07-13 2020-09-15 Qualcomm Incorporated Systems and methods for PRS muting in a fifth generation wireless network
CN110808820B (zh) * 2018-07-20 2021-09-17 大唐移动通信设备有限公司 一种定位参考信号传输方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105472735A (zh) * 2015-12-10 2016-04-06 成都希盟泰克科技发展有限公司 一种基于lte移动端定位的时延估计误差补偿方法
CN110192117A (zh) * 2017-02-02 2019-08-30 高通股份有限公司 用于定位信号的获取的方法和/或系统
CN110651512A (zh) * 2017-05-26 2020-01-03 高通股份有限公司 在第五代无线网络中用于定位移动装置的系统及方法
CN110346754A (zh) * 2018-04-03 2019-10-18 电信科学技术研究院有限公司 一种定位时刻获取方法及装置
CN110719630A (zh) * 2018-07-12 2020-01-21 维沃移动通信有限公司 定位参考信号波束配置方法、终端设备和网络设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4114074A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023208164A1 (zh) * 2022-04-29 2023-11-02 大唐移动通信设备有限公司 信息传输方法、载波相位定位方法及装置

Also Published As

Publication number Publication date
EP4114074A4 (en) 2023-07-26
EP4114074A1 (en) 2023-01-04
US20230100877A1 (en) 2023-03-30
CN113316182A (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
WO2021169676A1 (zh) 信息传输方法及装置
CN112584487B (zh) 信号传输方法及装置
WO2020164361A1 (zh) 一种定位方法、装置、系统、终端、lmf实体及介质
WO2021227821A1 (zh) 定位方法及装置
CN113316164B (zh) 信息传输方法及装置
EP3965438B1 (en) Methods and apparatuses for signal transmission, signal measurement reporting, and positioning
WO2020186959A1 (zh) 时钟偏移确定及其处理方法、装置、系统
WO2021093642A1 (zh) 时钟偏差确定方法及装置
CN113939012B (zh) 定位方法及装置
WO2021000951A1 (zh) 信号传输方法及装置
US20230221401A1 (en) Integrity for rat dependent positioning
CN114143800B (zh) 定位完好性检测方法、定位服务器、终端、装置及介质
WO2021093560A1 (zh) 时钟偏差确定方法及装置
WO2023226816A1 (zh) 定位方法、设备、基站、定位装置和处理器可读存储介质
WO2023241476A1 (zh) 定位完好性确定方法、装置及存储介质
WO2023227020A1 (zh) 一种信息处理方法、装置及可读存储介质
WO2024073923A1 (en) Methods and apparatus of positioning integrity computation
WO2022141592A1 (zh) 一种定位方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21759754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021759754

Country of ref document: EP

Effective date: 20220926