WO2021093560A1 - 时钟偏差确定方法及装置 - Google Patents

时钟偏差确定方法及装置 Download PDF

Info

Publication number
WO2021093560A1
WO2021093560A1 PCT/CN2020/123668 CN2020123668W WO2021093560A1 WO 2021093560 A1 WO2021093560 A1 WO 2021093560A1 CN 2020123668 W CN2020123668 W CN 2020123668W WO 2021093560 A1 WO2021093560 A1 WO 2021093560A1
Authority
WO
WIPO (PCT)
Prior art keywords
clock deviation
base station
reference base
downlink
configuration signaling
Prior art date
Application number
PCT/CN2020/123668
Other languages
English (en)
French (fr)
Inventor
任斌
达人
李刚
于大飞
郑占旗
张振宇
孙韶辉
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2021093560A1 publication Critical patent/WO2021093560A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for determining clock deviation.
  • the 3rd Generation Partnership Project (3GPP) defines a variety of user terminal (User Terminal, UE) positioning methods by measuring the positioning reference signal (Positioning Reference Signal, PRS) of the 3GPP wireless communication system, such as downlink Link Observed Time Difference Of Arrival (OTDOA), Uplink Time Difference Of Arrival (UTDOA), etc.
  • PRS Positioning Reference Signal
  • OTDOA Uplink Time Difference Of Arrival
  • UTDOA Uplink Time Difference Of Arrival
  • UTDOA Uplink Time Difference Of Arrival
  • the embodiments of the present application provide a method and device for determining clock deviations, which are used to reduce clock deviations between base stations, thereby improving positioning accuracy.
  • the method for determining clock deviation includes:
  • the configuration signaling of the first downlink positioning reference signal PRS is obtained, and the first downlink PRS from the reference base station and the non-reference base station is received and measured based on the configuration signaling of the first downlink PRS;
  • the first downlink PRS determines and sends the first clock deviation between the reference base station and the non-reference base station, so that the node that receives the first clock deviation confirms the second clock deviation based on the first clock deviation Clock deviation reduces the clock deviation between base stations, thereby improving positioning accuracy.
  • the first clock deviation is sent to a positioning management function LMF entity or a non-reference base station.
  • the method for determining the clock deviation provided in the embodiment of the present application includes:
  • a second clock deviation is determined.
  • the method before determining the second clock deviation based on the first clock deviation, the method further includes: obtaining configuration signaling of the second downlink positioning reference signal PRS, and receiving based on the configuration signaling of the second downlink PRS And measure the second downlink PRS from the reference base station and the non-reference base station; determine the first positioning measurement value based on the second downlink PRS;
  • the method further includes: correcting the first positioning measurement value based on the second clock deviation to obtain a second positioning measurement value.
  • the method further includes:
  • determining the second clock deviation based on the first clock deviation specifically includes:
  • the predefined criteria includes one or a combination of the following calculation criteria: arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • the first clock deviation is received by the positioning management function LMF entity by receiving the first clock deviation reported by the first UE, and forwarding the first clock deviation to the second UE.
  • the method for determining clock deviation provided in the embodiment of the present application includes:
  • a second clock deviation is determined.
  • determining the second clock deviation based on the first clock deviation specifically includes:
  • the first clock deviation is forwarded to the second terminal, and the second terminal determines the second clock deviation based on the first clock deviation.
  • the method further includes:
  • the first positioning measurement value reported by the second terminal is corrected to obtain the second positioning measurement value.
  • the method further includes:
  • the method further includes: based on the second clock deviation, correcting the clock deviation of the non-reference base station relative to the reference base station.
  • the method before sending the configuration signaling of the first downlink PRS to the first terminal and sending the configuration signaling of the second downlink PRS to the second terminal, the method further includes: receiving the configuration signaling of the first downlink PRS signal Make the configuration signaling of the second downlink PRS signal; send the first downlink PRS signal to the first terminal based on the configuration signaling of the first downlink PRS signal;
  • the method further includes: sending a second downlink PRS signal to the second terminal based on the configuration signaling of the second downlink PRS signal.
  • the receiving the configuration signaling of the first downlink PRS signal and the configuration signaling of the second downlink PRS signal specifically includes:
  • the configuration signaling of the first downlink PRS signal and the configuration signaling of the second downlink PRS signal sent by the positioning management function LMF entity are received.
  • determining the second clock deviation based on the first clock deviation specifically includes:
  • a second clock deviation is determined.
  • the predefined criteria includes one or a combination of the following calculation criteria: arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • the method further includes:
  • a clock deviation determination device provided in an embodiment of the present application includes:
  • the first unit is used to obtain the configuration signaling of the first downlink positioning reference signal PRS, and to receive and measure the first downlink PRS from the reference base station and the non-reference base station based on the configuration signaling of the first downlink PRS ;
  • the second unit is configured to determine and send the first clock deviation between the reference base station and the non-reference base station based on the first downlink PRS, so that the node that receives the first clock deviation is based on the first clock deviation One clock deviation, confirm the second clock deviation.
  • the device for determining clock deviation provided in the embodiment of the present application includes:
  • the third unit is used to receive the first clock deviation between the reference base station and the non-reference base station; wherein, the first clock deviation is the first clock deviation from the reference base station and the non-reference base station by the first terminal through measurement. Determined by the downlink positioning reference signal PRS;
  • the fourth unit is configured to determine a second clock deviation based on the first clock deviation.
  • the device for determining clock deviation provided in an embodiment of the present application includes:
  • a sending unit configured to send configuration signaling of the first downlink PRS to the first terminal, and send configuration signaling of the second downlink PRS to the second terminal;
  • a receiving unit configured to receive the first clock deviation between the reference base station and the non-reference base station reported by the first terminal and/or the second terminal;
  • the determining unit is configured to determine a second clock deviation based on the first clock deviation.
  • a terminal on the terminal side (applicable to a reference terminal and also to a target terminal), includes a transceiver, a processor, and a memory:
  • Transceiver used to receive and send data under the control of the processor
  • the processor is used to read the program in the memory and execute the following process:
  • the processor is specifically configured to:
  • the first clock deviation is reported to the positioning management function LMF entity or the non-reference base station through the transceiver.
  • the terminal provided in the embodiment of the present application serves as a target terminal, it includes a transceiver, a processor, and a memory:
  • Transceiver used to receive and send data under the control of the processor
  • the processor is also used to read the program in the memory and execute the following process:
  • the first clock deviation between the reference base station and the non-reference base station is received by the transceiver; wherein, the first clock deviation is the first downlink from the reference base station and the non-reference base station by the first terminal through measurement. Determined by the line positioning reference signal PRS;
  • a second clock deviation is determined.
  • the processor is further configured to:
  • the configuration signaling of the second downlink positioning reference signal PRS Based on the first clock deviation, before determining the second clock deviation, obtain the configuration signaling of the second downlink positioning reference signal PRS, and receive and measure the configuration signaling from the reference base station and the non-reference signal based on the configuration signaling of the second downlink PRS.
  • the second downlink PRS of the base station determine the first positioning measurement value based on the second downlink PRS;
  • the processor is further configured to:
  • the processor is specifically configured to:
  • a second clock deviation is determined.
  • the predefined criteria includes one or a combination of the following calculation criteria: arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • the first clock deviation is received by the positioning management function LMF entity by receiving the first clock deviation reported by the first UE, and forwarding the first clock deviation to the second UE.
  • a device for determining clock deviation includes a transceiver, a processor, and a memory:
  • Transceiver used to receive and send data under the control of the processor
  • the processor is used to read the program stored in the memory and execute the following process:
  • a second clock deviation is determined.
  • the processor is specifically configured to:
  • the first clock deviation is forwarded to the second terminal, and the second terminal determines the second clock deviation based on the first clock deviation.
  • the processor is further configured to:
  • the first positioning measurement value reported by the second terminal is corrected to obtain the second positioning measurement value.
  • the processor is further configured to:
  • the processor is further configured to:
  • the clock deviation of the non-reference base station relative to the reference base station is corrected.
  • the processor is further configured to:
  • the configuration signaling of the first downlink PRS signal and the configuration signaling of the second downlink PRS signal are received through the transceiver; based on the configuration signaling of the first downlink PRS signal, the first downlink is sent to the first terminal PRS signal;
  • the transceiver is specifically used for:
  • the configuration signaling of the first downlink PRS signal and the configuration signaling of the second downlink PRS signal sent by the positioning management function LMF entity are received.
  • the processor is specifically configured to:
  • a second clock deviation is determined.
  • the predefined criteria includes one or a combination of the following calculation criteria: arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • the processor is further configured to:
  • Another embodiment of the present application provides a computer storage medium, the computer storage medium stores computer-executable instructions, and the computer-executable instructions are used to make the computer execute any of the foregoing methods.
  • This application obtains the configuration signaling of the first downlink positioning reference signal PRS, and receives and measures the first downlink PRS from the reference base station and the non-reference base station based on the configuration signaling of the first downlink PRS;
  • the first downlink PRS determines and sends the first clock deviation between the reference base station and the non-reference base station, so that the node that receives the first clock deviation confirms the second clock based on the first clock deviation Deviation, thereby realizing the calibration scheme of the clock deviation between the base stations, reducing the clock deviation between the base stations, thereby improving the positioning accuracy.
  • FIG. 1 is a schematic diagram of a clock deviation calibration solution for LMF processing provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of a clock deviation calibration solution for the LMF to notify the target UE according to an embodiment of the application;
  • FIG. 3 is a schematic diagram of a solution for correcting clock offset of a non-reference base station according to an embodiment of the application
  • FIG. 4 is a schematic flowchart of a method for determining a clock deviation on the side of a reference terminal and a target terminal according to an embodiment of the application;
  • FIG. 5 is a schematic flowchart of a method for determining a clock offset on the target terminal side according to an embodiment of the application
  • FIG. 6 is a schematic flowchart of a method for determining a clock offset applicable to the network side according to an embodiment of the application
  • FIG. 7 is a schematic structural diagram of a device for determining a clock deviation on the side of a reference terminal and a target terminal according to an embodiment of the application;
  • FIG. 8 is a schematic structural diagram of a device for determining a clock deviation on a target terminal side according to an embodiment of the application
  • FIG. 9 is a schematic structural diagram of a clock deviation determining device suitable for the network side according to an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a terminal provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a network side device provided by an embodiment of this application.
  • the PRS described in the embodiments of this application refers to all reference signals that can be used to measure Time of Arrival (TOA), including, for example, PRS that can be used for traditional OTDOA/UTDOA positioning, and channel state indication reference signals (Channel State Indication Reference Signal, CSI-RS), Sounding Reference Signal (Sounding Reference Signal, SRS), etc.
  • TOA Time of Arrival
  • PRS Physical Transport Stream
  • CSI-RS Channel State Indication Reference Signal
  • SRS Sounding Reference Signal
  • Non-differential method directly use TOA to calculate UE position without using differential technology.
  • Differential method First, the TOA is differentiated to eliminate some common deviations in the measured value, and then the TOA is used to calculate the UE position after the difference.
  • differential methods single differential and double differential.
  • Single differential mode select a certain sending end (or receiving end) as the reference end, and then make a difference between the measured value related to the other sending end (or receiving end) and the measured value related to the reference end.
  • the purpose of single differential is to eliminate the measurement deviation of a certain end (receiving end or sending end).
  • the 3GPP OTDOA positioning time difference of arrival (Time Difference Of Arrival, TDOA) (ie Reference Signal Time Difference (RSTD)) measurement value is the TOA measurement value between the UE and each base station and the UE It is obtained by performing difference with the TOA measurement value related to the base station.
  • the purpose of the difference is to eliminate the influence of UE clock deviation on positioning.
  • Double differential mode Differentiate the measured value after single differential mode again to eliminate measurement errors related to the sender and receiver at the same time, such as the clock deviation between the base station (BS) and the UE.
  • the dual differential technology can be used in downlink positioning scenarios. At this time, there are multiple transmitters (base stations) and two receivers, one of which is a reference receiver with a known location. The other receiving end is a UE whose location is unknown. At this time, the two receiving ends are connected to the positioning signal sent by the base station at the same time, and the double differential technology is used to eliminate the common errors related to the transmitting end and the receiving end in the measured values of the two receiving ends, and then the position of the receiving end of the unknown position is accurately calculated .
  • the double differential method can eliminate the influence of the time and frequency synchronization deviation between the base stations on the positioning accuracy.
  • the non-differential method is affected by the clock offset of the UE and the base station at the same time, and the UE clock offset is much larger than the base station clock offset, and is not adopted by 3GPP.
  • the double-differential method has the following disadvantages: first, it requires a reference receiver to be placed in a known location, which will have a negative impact on the implementation of the specific system; second, it requires the target UE and the reference UE to locate the downlink PRS signal at the same time Measure and report the positioning measurement value, which increases the processing complexity of the reference UE; third, the reference UE and when the target UE is in motion, there may be a reference UE handover problem for double differential.
  • the single differential method is currently used for the RSTD measurement value of 3GPP OTDOA positioning (the RSTD measurement value calculation method is the TOA measurement value of the target UE and all BSs, and the TOA measurement value of the UE and a reference BS is differentiated).
  • the single differential mode can eliminate the impact of UE clock deviation on positioning accuracy, but the clock deviation between base stations will directly affect the positioning accuracy of the single differential mode.
  • the time synchronization deviation between the base stations is the key to directly affect the positioning accuracy of the single-difference mode.
  • a method for time synchronization between base stations is that one base station monitors the PRS of a neighboring base station. Then, based on the detected arrival time of the PRS, the transmission time of the PRS, and the known distance between the two base stations, the clock deviation between the two base stations is estimated. The estimated clock deviation between the two base stations can be used to compensate for the influence of the clock deviation between the base stations on the OTDOA or UTDOA positioning algorithm.
  • the effectiveness of this method is limited as follows: due to resource usage restrictions, the PRS is only sent periodically; and the estimation accuracy of the clock deviation between two base stations estimated based on the single-transmitted PRS is limited.
  • the maximum clock deviation between base stations in a time division duplex (TDD) system is plus or minus 50 ns. This clock deviation will greatly affect the UE positioning accuracy of the OTDOA or UTDOA positioning technical solution.
  • the clock deviation between the base stations (that is, the time synchronization error) is one of the key issues that directly affect the positioning performance.
  • the technical solutions provided by the embodiments of the present application propose a method and device for clock deviation calibration based on TDOA measurement values.
  • the method and the device are based on the same application concept. Since the method and the device have similar principles for solving the problem, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the applicable system can be a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, and a wideband code division multiple access (WCDMA) system.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • Packet radio service general packet radio service, GPRS
  • LTE long term evolution
  • FDD frequency division duplex
  • LTE TDD LTE TDD
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G systems 5G systems
  • 5G New Radio (NR) systems etc.
  • the terminal device involved in the embodiments of the present application may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the terminal equipment may have different names.
  • the terminal equipment may be referred to as user equipment UE.
  • the wireless terminal device can communicate with one or more core networks via the RAN.
  • the wireless terminal device can be a mobile terminal device, such as a mobile phone (or called a "cellular" phone) and a computer with a mobile terminal device, for example, it can be a portable , Pocket, handheld, computer built-in or vehicle-mounted mobile devices that exchange language and/or data with the wireless access network.
  • Wireless terminal equipment can also be called system, subscriber unit, subscriber station, mobile station, mobile station, remote station, and access point , Remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), user device (user device), which are not limited in the embodiments of the present application.
  • the network device involved in the embodiment of the present application may be a base station, and the base station may include multiple cells.
  • a base station may also be called an access point, or may refer to a device in an access network that communicates with a wireless terminal device through one or more sectors on an air interface, or other names.
  • the network device can be used to convert the received air frame and the Internet protocol (IP) packet to each other, as a router between the wireless terminal device and the rest of the access network, where the rest of the access network can include the Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment involved in the embodiments of this application may be a network equipment (base transmitter station, BTS) in GSM or code division multiple access (code division multiple access, CDMA), or a bandwidth code division multiple access.
  • the network equipment (NodeB) in the (wide-band code division multiple access, WCDMA) can also be the evolved network equipment (evolutional node B, eNB or e-NodeB) in the long-term evolution system LTE, and the 5G network architecture (next generation)
  • the 5G base station in the system can also be home evolved node B (HeNB), relay node, femto, pico, etc., which are not limited in the embodiments of this application .
  • the first UE ie, the reference UE
  • the second UE ie, the target UE
  • the first positioning measurement value ie the TDOA measurement value
  • the first clock deviation between the reference base station and the non-reference base station is further calculated.
  • the UE needs to measure the time difference between the downlink reference signal of the two downlink base stations and the UE, obtain the TDOA measurement value, and establish two or more TDOA hyperbolic equations to solve the two hyperbolic curves
  • the intersection point of is used as the UE position to be solved.
  • a common base station in multiple TDOA hyperbolic equations is called a reference base station, and the remaining base stations are called a non-reference base station.
  • the target UE is a UE whose geographic location is unknown and needs to be calculated.
  • the reference UE is a UE whose geographic location is known and used to measure and determine the clock deviation between a reference base station and a non-reference base station.
  • the first UE and/or the second UE use one of the following three methods to report the first clock deviation to different objects and perform subsequent processing:
  • the first UE and/or the second UE report the first clock deviation feedback to the location management server, that is, the Location Management Function (LMF) entity.
  • the LMF determines the second clock deviation, and then the LMF is based on the first clock deviation.
  • the second clock deviation is to correct the first positioning measurement value TDOA (ie RSTD) fed back by the second UE to obtain the second positioning measurement value, and then perform positioning calculation based on the second positioning measurement value (for example: downlink positioning calculation based on OTDOA or Uplink positioning calculation based on UTDOA).
  • TDOA ie RSTD
  • UTDOA Uplink positioning calculation based on UTDOA
  • the first UE reports the first clock deviation feedback to the LMF, and the LMF forwards the first clock deviation to the second UE. Then the second UE determines the second clock deviation based on the first clock deviation, and the target UE targets the first clock deviation.
  • the positioning measurement value TDOA ie, RSTD
  • RSTD RSTD
  • the first UE and/or the second UE feed back the first clock deviation to the non-reference base station, and the non-reference base station determines the second clock deviation based on the first clock deviation, and the non-reference base station corrects its own relative clock deviation based on the second clock deviation.
  • the reference base station and the non-reference base station respectively send the downlink PRS signal to the second UE; the second UE further receives and measures the downlink PRS signal, and then performs downlink positioning calculation based on the downlink OTDOA.
  • the first UE can be a UE dedicated to positioning measurement, or a regular UE;
  • the positioning reference signal PRS can be any downlink signal, including but not limited to: NR PRS, NR carrier phase positioning reference signal (Carrier phase Positioning Reference Signal) , C-PRS), synchronization signal block (Synchronization Signal Block, SSB), and channel state indication reference signal (Channel State Indication Reference Signal, CSI-RS), etc.
  • LMF can be based on the first clock deviation fed back by multiple reference UEs, based on The predefined criterion determines the second clock deviation, where the predefined criterion includes but is not limited to calculation criteria such as arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • the embodiment of the present application includes the following three solutions.
  • Solution 1 Clock offset calibration solution processed by LMF, UE-assisted positioning.
  • the first UE ie, the reference UE
  • the second UE ie, the target UE
  • the first positioning measurement value ie the TDOA measurement value
  • the first clock deviation between the reference base station and the non-reference base station is further calculated based on the first positioning measurement value.
  • the first UE and/or the second UE adopts method 1 to implement the first clock deviation and subsequent processing after reporting:
  • Manner 1 The first UE and/or the second UE report the first clock deviation feedback to the LMF, and the LMF determines the second clock deviation. Based on the second clock deviation, the LMF feeds back the first positioning measurement value TDOA of the second UE (I.e., RSTD) performs correction and obtains the second positioning measurement value, and then performs positioning calculation based on the second positioning measurement value (for example: downlink positioning calculation based on OTDOA or uplink positioning calculation based on UTDOA).
  • TDOA first positioning measurement value of the second UE
  • the first UE may be a UE dedicated to positioning measurement, or a regular UE;
  • the positioning reference signal PRS may be any downlink signal, including but not limited to: NR PRS, NR C-PRS, SSB, CSI-RS, etc.;
  • the LMF may determine the second clock deviation based on the first clock deviation fed back by multiple reference UEs and based on a predefined criterion, where the predefined criterion includes but is not limited to arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • base station i is a reference base station
  • base station j is a non-reference base station.
  • the first UE a and the first UE b are reference UEs dedicated to positioning measurement; the second UE c is a target UE.
  • the method for determining the clock offset on the first UE (reference UE) side includes:
  • Step 1 The first UE receives the configuration signaling of the first downlink PRS signal
  • the first downlink PRS can be any downlink signal, including but not limited to NR PRS, NR C-PRS, SSB, and CSI-RS.
  • the configuration signaling can be dedicated positioning signaling from LMF or from Broadcast signaling, UE-specific RRC signaling or DCI signaling of the serving base station.
  • Step 2 The first UE obtains the first clock deviation between the reference base station and the non-reference base station by receiving and measuring the first downlink PRS signals of the reference base station and the non-reference base station.
  • Step 3 The first UE reports the first clock deviation to the LMF.
  • the method for determining the clock offset on the second UE (target UE) side includes:
  • Step 1 The second UE receives the configuration signaling of the first downlink PRS and the second downlink PRS; where the first downlink PRS and the second downlink PRS can be any downlink signals, including but not limited to NR PRS, NR C- For PRS, SSB and CSI-RS, the configuration signaling may be dedicated positioning signaling from the LMF, broadcast signaling from the serving base station, UE-specific RRC signaling or DCI signaling.
  • Step 2 The second UE obtains the first clock deviation between the reference base station and the non-reference base station by receiving and measuring the first downlink PRS signals of the reference base station and the non-reference base station.
  • Step 3 The second UE reports the first clock deviation to the LMF.
  • Step 4 The second UE obtains the first positioning measurement value TDOA (RSTD) by receiving and measuring the second downlink PRS signals of the reference base station and the non-reference base station.
  • RSTD first positioning measurement value
  • Step 5 The second UE reports the above-mentioned first positioning measurement value to the LMF.
  • the method for determining the clock offset between the reference base station and the non-reference base station side includes:
  • Step 1 The reference base station and the non-reference base station receive the configuration signaling of the first downlink PRS signal and the configuration signaling of the second downlink PRS signal;
  • any of the configuration signaling is dedicated positioning signaling from the LMF.
  • Step 2 The reference base station and the non-reference base station send the first downlink PRS signal to all first UEs and second UEs.
  • Step 3 The reference base station and the non-reference base station send the second downlink PRS signal to all second UEs.
  • the processing method on the LMF side includes:
  • Step 1 The LMF sends the configuration signaling of the first downlink PRS signal to the first UE and the second UE, sends the configuration signaling of the second downlink PRS signal to the second UE, and sends the first downlink to the reference base station and the non-reference base station.
  • the configuration signaling of the PRS signal is transmitted, and the configuration signaling of the second downlink PRS signal is sent to the reference base station and the non-reference base station; wherein, any of the above-mentioned configuration signaling can be sent at the same time, or can be sent sequentially.
  • the execution order of the steps in is not limited.
  • Step 2 The LMF receives the first clock deviation reported by the first UE and/or the second UE, and determines the second clock deviation based on the first clock deviation and a predefined criterion;
  • the predefined criteria include, but are not limited to, arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • Step 3 Based on the second clock deviation, the LMF corrects the first positioning measurement value TDOA (that is, RSTD) fed back by the target UE and obtains the second positioning measurement value.
  • TDOA that is, RSTD
  • Step 4 The LMF performs positioning based on the second positioning measurement value obtained after correction, for example: a positioning scheme based on OTDOA or UTDOA.
  • Solution 2 The LMF notifies the target UE of the clock offset calibration solution and UE-based positioning.
  • the first UE ie, the reference UE
  • the second UE ie, the target UE
  • obtain the first positioning measurement value ie, the TDOA measurement value
  • the first positioning measurement value ie, the TDOA measurement value
  • the first UE and/or the second UE adopts method 2) to implement the reporting of the first clock deviation and subsequent subsequent processing:
  • Manner 2 The first UE reports the first clock deviation feedback to the LMF, and then the LMF forwards the first clock deviation to the second UE, and then the second UE determines the second clock deviation based on the first clock deviation, and the target UE targets the first clock deviation.
  • a positioning measurement value TDOA ie, RSTD
  • RSTD positioning measurement value
  • the first UE may be a UE dedicated to positioning measurement, or a regular UE;
  • the positioning reference signal PRS may be any downlink signal, including but not limited to: NR PRS, NR C-PRS, SSB, CSI-RS, etc.;
  • the LMF may determine the second clock deviation based on the first clock deviation fed back by multiple reference UEs and based on a predefined criterion, where the predefined criterion includes but is not limited to arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • base station i is a reference base station
  • base station j is a non-reference base station.
  • the first UE a and the first UE b are reference UEs dedicated to positioning measurement; the second UE c is a target UE.
  • the method for determining the clock offset on the first UE (reference UE) side includes:
  • Step 1 The first UE receives the configuration signaling of the first downlink PRS signal
  • the first downlink PRS can be any downlink signal, including but not limited to NR PRS, NR C-PRS, SSB, and CSI-RS.
  • the configuration signaling can be dedicated positioning signaling from LMF or from Broadcast signaling, UE-specific RRC signaling or DCI signaling of the serving base station.
  • Step 2 The first UE obtains the first clock deviation between the reference base station and the non-reference base station by receiving and measuring the first downlink PRS signals of the reference base station and the non-reference base station.
  • Step 3 The first UE reports the first clock deviation to the LMF.
  • the method for determining the clock offset on the second UE (target UE) side includes:
  • Step 1 The second UE receives the configuration signaling of the second downlink PRS signal
  • the second downlink PRS can be any downlink signal, including but not limited to NR PRS, NR C-PRS, SSB, and CSI-RS.
  • the configuration signaling can be a positioning dedicated signaling from LMF or a service.
  • Step 2 The second UE obtains the first positioning measurement value TDOA (that is, RSTD) by receiving and measuring the second downlink PRS signals of the reference base station and the non-reference base station.
  • TDOA that is, RSTD
  • Step 3 The second UE receives the first clock deviation between the reference base station and the non-reference base station forwarded by the LMF, and determines the second clock deviation based on a predefined criterion, where the predefined criterion includes but is not limited to arithmetic average and selection of the best channel condition. Merit and weighted average.
  • Step 4 Based on the second clock deviation, the second UE corrects the first positioning measurement value TDOA (that is, RSTD) measured by Step2 and obtains the second positioning measurement value.
  • TDOA that is, RSTD
  • Step 5 The second UE performs downlink positioning based on the corrected second positioning measurement value, for example: UE-based OTDOA and/or carrier phase positioning scheme.
  • the method for determining the clock offset between the reference base station and the non-reference base station side includes:
  • Step 1 The reference base station and the non-reference base station receive the configuration signaling of the first downlink PRS signal and the configuration signaling of the second downlink PRS signal;
  • any of the configuration signaling is dedicated positioning signaling from the LMF.
  • Step 2 The reference base station and the non-reference base station send the first downlink PRS signal to all first UEs.
  • Step 3 The reference base station and the non-reference base station send the second downlink PRS signal to all second UEs.
  • the method for determining the clock deviation on the LMF side includes:
  • Step 1 The LMF sends the configuration signaling of the first downlink PRS signal to the first UE, sends the configuration signaling of the second downlink PRS signal to the second UE, and sends the first downlink PRS signal to the reference base station and non-reference base station.
  • the configuration signaling is to send the configuration signaling of the second downlink PRS signal to the reference base station and the non-reference base station; wherein, the above configuration signaling can be sent simultaneously or sequentially.
  • the execution order of each step in this step is not limited.
  • Step 2 The LMF receives the first clock deviation reported by the first UE, and forwards the first clock deviation to the second UE.
  • Solution 3 Non-reference base station corrected clock offset calibration solution, UE-assisted positioning.
  • the first UE ie, the reference UE
  • the second UE ie, the target UE
  • the first positioning measurement value ie the TDOA measurement value
  • the first clock deviation between the reference base station and the non-reference base station is further calculated based on the first positioning measurement value.
  • the first UE and/or the second UE adopts the aforementioned method 3) to implement the reporting of the first clock deviation and subsequent subsequent processing.
  • Manner 3 The first UE and/or the second UE feed back the first clock deviation to the non-reference base station, and the non-reference base station determines the second clock deviation based on the first clock deviation, and the non-reference base station corrects its own relative clock deviation based on the second clock deviation. Based on the second clock deviation of the reference base station, the reference base station and the non-reference base station respectively send the downlink PRS signal to the second UE; the second UE further receives and measures the downlink PRS signal, and then performs downlink positioning calculation based on the downlink OTDOA.
  • the first UE may be a UE dedicated to positioning measurement, or a regular UE;
  • the positioning reference signal PRS may be any downlink signal, including but not limited to: NR PRS, NR C-PRS, SSB, CSI-RS, etc.;
  • the LMF may be based on the first clock deviation fed back by multiple reference UEs, and further determine the second clock deviation based on a predefined criterion, where the predefined criterion includes, but is not limited to, arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • base station i is a reference base station
  • base station j is a non-reference base station.
  • the first UE a and the first UE b are reference UEs dedicated to positioning measurement; the second UE c is a target UE.
  • the method for determining the clock offset on the first UE (reference UE) side includes:
  • Step 1 The first UE receives the configuration signaling of the first downlink PRS signal
  • the first downlink PRS can be any downlink signal, including but not limited to NR PRS, NR C-PRS, SSB, and CSI-RS.
  • the configuration signaling can be dedicated positioning signaling from LMF or from Broadcast signaling, UE-specific RRC signaling or DCI signaling of the serving base station.
  • Step 2 At the first time (for example, time T1), the first UE obtains the first clock deviation between the reference base station and the non-reference base station by receiving and measuring the first downlink PRS signals of the reference base station and the non-reference base station.
  • Step 3 The first UE reports the above-mentioned first clock deviation to the non-reference base station.
  • the method for determining the clock offset on the second UE (target UE) side includes:
  • Step 1 The second UE receives the configuration signaling of the first downlink PRS and the configuration signaling of the second downlink PRS;
  • the first downlink PRS and the second downlink PRS can be any downlink signals, including but not limited to NR PRS, NR C-PRS, SSB, and CSI-RS.
  • the configuration signaling may be dedicated positioning signaling from LMF , It can also be broadcast signaling, UE-specific RRC signaling or DCI signaling from the serving base station.
  • Step 2 At the first time (for example, time T1), the second UE obtains the first clock deviation between the reference base station and the non-reference base station by receiving and measuring the first downlink PRS signals of the reference base station and the non-reference base station.
  • Step 3 The second UE reports the above-mentioned first clock deviation to the non-reference base station.
  • Step 4 At the second time (for example, time T2), the second UE receives and measures the second downlink PRS signal sent by the reference base station and the non-reference base station to obtain the first positioning measurement value TDOA (ie, RSTD).
  • TDOA ie, RSTD
  • Step 5 The second UE reports the above-mentioned first positioning measurement value TDOA to the LMF.
  • the method for determining the clock offset on the reference base station side includes:
  • Step 1 The reference base station receives the configuration signaling of the first downlink PRS signal and the configuration signaling of the second downlink PRS signal;
  • any of the configuration signaling is dedicated positioning signaling from the LMF.
  • Step 2 At time T1, the reference base station sends the first downlink PRS signal to all first UEs.
  • Step 3 At time T2, the reference base station sends the second downlink PRS signal to all second UEs.
  • the method for determining the clock offset on the non-reference base station side includes:
  • Step 1 The non-reference base station receives the configuration signaling of the first downlink PRS signal and the configuration signaling of the second downlink PRS signal;
  • any of the configuration signaling is dedicated positioning signaling from the LMF.
  • Step 2 At time T1, the non-reference base station sends the first downlink PRS signal to all first UEs.
  • Step 3 The non-reference base station receives the first clock deviation fed back by multiple reference UEs, and further determines the second clock deviation based on the first clock deviation and predefined criteria, where the predefined criteria include but are not limited to arithmetic average and channel selection conditions Optimal value and weighted average.
  • Step 4 The non-reference base station corrects its second clock deviation relative to the reference base station based on the above-mentioned second clock deviation;
  • Step 5 At time T2, the non-reference base station sends a second downlink PRS signal to all second UEs after correcting its second clock deviation relative to the reference base station.
  • the sending of the second downlink PRS signal to all the second UEs described in the embodiment of this application is only a preferred embodiment and is not limited to this. It is also possible to send the second downlink PRS to some second UEs. signal.
  • the method for determining the clock deviation on the LMF side includes:
  • Step 1 The LMF sends the configuration signaling of the first downlink PRS signal to the first UE and the second UE, sends the configuration signaling of the second downlink PRS signal to the second UE, and sends the first downlink to the reference base station and the non-reference base station.
  • the configuration signaling of the PRS signal is transmitted, and the configuration signaling of the second downlink PRS signal is sent to the reference base station and the non-reference base station; wherein, the above-mentioned configuration signaling can be sent simultaneously or sequentially.
  • the execution order of each step in this step is not limited.
  • Step 2 The LMF receives the second positioning measurement value TDOA (that is, RSTD) reported by the first UE.
  • TDOA that is, RSTD
  • Step 3 LMF performs downlink positioning based on the second positioning measurement value, for example: a positioning scheme based on OTDOA.
  • Embodiment 1 explains the first UE and LMF of the above scheme 1, where the first UE (ie, the reference UE) is a UE dedicated to positioning measurement, including UE a and UE b; the first positioning fed back by the target UE c
  • the measured value is TDOA (that is, RSTD);
  • the positioning reference signal PRS is NR PRS;
  • base station i is a reference base station, and base station j is a non-reference base station.
  • the method for determining the clock offset on the first UE (reference UE) side includes:
  • Step 1 The first UE a and the first UE b receive the configuration signaling of the first downlink PRS signal; where the first downlink PRS is NR PRS, and the configuration signaling may be dedicated positioning signaling from the LMF, It can also be broadcast signaling, UE-specific RRC signaling, or DCI signaling from the serving base station.
  • the configuration signaling may be dedicated positioning signaling from the LMF, It can also be broadcast signaling, UE-specific RRC signaling, or DCI signaling from the serving base station.
  • Step 2 The first UE a receives and measures the first downlink PRS signals of the reference base station i and the non-reference base station j to obtain the first clock deviation between the reference base station i and the non-reference base station j In the same way, the first UE b can obtain the first clock deviation between the reference base station i and the non-reference base station j
  • the TOA measurement value obtained by the reference UE (receiving end) a by measuring the PRS signal sent by the reference base station (transmitting end) i is then At time k, it can be expressed as follows:
  • b t,j is the clock deviation of the non-reference base station j (that is, the time synchronization error), Is the TOA measurement error corresponding to the non-reference base station j.
  • the single-differential TOA (ie TDOA) value of the reference UE a for the reference base station i and the non-reference base station j is:
  • the ideal distance difference can be calculated Substituting into the above formula (3), the estimated value of the first clock deviation between base station i and base station j at time k
  • K is a positive integer greater than or equal to 1.
  • the first clock offset value of the reference base station i and the non-reference base station j estimated by the reference UE b can be obtained Refer to formula (1) to formula (5) of embodiment 1 for the calculation process.
  • Step 3 The first UE a and the first UE b respectively calculate the above-mentioned first clock deviation estimated value with Report to LMF for LMF to perform clock offset calibration and subsequent UE positioning calculations.
  • the method for determining the clock deviation on the LMF side includes:
  • Step 1 The LMF sends the configuration signaling of the first downlink PRS signal to the first UE, sends the configuration signaling of the second downlink PRS signal to the second UE, and sends the first downlink PRS signal to the reference base station and non-reference base station.
  • Configuration signaling which sends the configuration signaling of the second downlink PRS signal to the reference base station and the non-reference base station; wherein, the above configuration signaling can be sent at the same time or in sequence.
  • the embodiments of this application execute each step in this step The order is not limited.
  • Step 2 LMF receives the estimated value of the first clock deviation reported by the first UE with Determine the second clock deviation based on predefined criteria among them, To refer to the estimated value of the first clock deviation reported by UE a, It refers to the estimated value of the first clock deviation reported by UE b.
  • LMF combines the first clock offset reported by the two first UEs (including reference UE a and reference UE b) to calculate a more accurate second clock offset between base station i and base station j: There are at least three calculation methods for the predefined criteria:
  • Arithmetic average for example:
  • the reference for the best channel conditions for example: Reference Signal Receive Power (RSRP) and/or Signal to Interference plus Noise Ratio (SINR) for the UE with the highest channel conditions
  • the clock deviation of the UE is used as the second clock deviation
  • the RSRP and/or SINR of the reference UE a are respectively greater than the RSRP and/or SINR of the reference UE b, that is, the RSRP of the reference UE a is greater than the RSRP of the reference UE b, and/or the SINR of the reference UE a is greater than that of the reference UE b SINR, then choose On the contrary, choose
  • Weighted average for example: Among them, f is a weighting coefficient between 0 and 1, and the value of f can be determined according to the channel conditions of UE a and UE b.
  • Option1 is used.
  • Step 3 LMF is based on the second clock deviation
  • the first positioning measurement value (TDOA) fed back for the target UE c Make corrections and get the second positioning measurement value
  • Step 4 LMF is based on the second positioning measurement value obtained after correction Perform downlink positioning for the target UE c to obtain the actual position of the target UE c, for example, adopt a positioning scheme based on OTDOA.
  • the maximum value of the clock deviation between the base stations of the existing TDD system is plus or minus 50 ns. After the above processing, the residual clock deviation can be made to be about 10 ns.
  • Embodiment 2 explains the first UE and the second UE of Scheme 2, where the first UE (ie, the reference UE) is a UE dedicated to positioning measurement, including UE a and UE b; the first UE measured by the target UE c A positioning measurement value is TDOA (that is, RSTD); the positioning reference signal PRS is NR PRS; base station i is a reference base station, and base station j is a non-reference base station.
  • TDOA that is, RSTD
  • PRS is NR PRS
  • base station i is a reference base station
  • base station j is a non-reference base station.
  • the method for determining the clock offset on the first UE (reference UE) side includes:
  • Step 1 The first UE a and the first UE b receive the configuration signaling of the first downlink PRS signal; where the first downlink PRS is NR PRS, and the configuration signaling may be dedicated positioning signaling from the LMF, It can also be broadcast signaling, UE-specific RRC signaling, or DCI signaling from the serving base station.
  • the configuration signaling may be dedicated positioning signaling from the LMF, It can also be broadcast signaling, UE-specific RRC signaling, or DCI signaling from the serving base station.
  • Step 2 The first UE a receives and measures the first downlink PRS signals of the reference base station i and the non-reference base station j to obtain the first clock deviation between the reference base station i and the non-reference base station j
  • the first UE b can obtain the first clock deviation between the reference base station i and the non-reference base station j Among them, the first clock deviation with Refer to formula (1) to formula (5) of embodiment 1 for the calculation process of.
  • Step 3 The first UE a and the first UE b respectively calculate the above-mentioned first clock deviation estimated value with Report to the LMF for the LMF to forward the first clock deviation to the second UE c.
  • the method for determining the clock offset on the second UE (target UE) side includes:
  • Step 1 The second UE c receives the configuration signaling of the second downlink PRS signal; where the second downlink PRS is NR PRS, and the configuration signaling can be dedicated positioning signaling from the LMF or from the serving base station Broadcast signaling, UE-specific RRC signaling or DCI signaling.
  • Step 2 The second UE c receives and measures the second downlink PRS signals of the reference base station and the non-reference base station to obtain the first positioning measurement value (ie, TDOA (RSTD)).
  • RSTD TDOA
  • Step 3 The second UE c receives the first UE a and the first UE b forwarded by the LMF and measured the first clock offset estimation value about the reference base station and the non-reference base station with And determine the second clock deviation based on predefined criteria
  • the second UE c can calculate a more accurate second clock deviation between base station i and base station j according to the first clock deviation measured by the two first UEs forwarded by LMF (ie, reference UE a and reference UE b): There are at least the following three calculation methods:
  • Arithmetic average for example:
  • Option2 Select the clock deviation of the reference UE with the best channel conditions (for example, the best channel conditions of the UE with the largest RSRP and/or SINR) as the second clock deviation
  • the RSRP and/or SINR of the reference UE a is greater than the RSRP and/or SINR of the reference UE b, that is, the RSRP of the reference UE a is greater than the RSRP of the reference UE b, and/or the SINR of the reference UE a is greater than the SINR of the reference UE b .
  • Weighted average for example: Among them, f is a weighting coefficient between 0 and 1, and the value of f can be determined according to the channel conditions of UE a and UE b.
  • Option2 is used.
  • Step 4 The second UE is based on the second clock deviation
  • the first positioning measurement value (TDOA) measured for Step2 make corrections and get the second positioning measurement value
  • TDOA first positioning measurement value
  • the second UE is based on the second clock deviation Use the following formula for the first positioning measurement (TDOA) Make corrections:
  • Step 5 The second UE performs downlink positioning based on the corrected second positioning measurement value, for example: a positioning scheme based on OTDOA.
  • the maximum value of the clock deviation between the base stations of the existing TDD system is plus or minus 50 ns. After the above processing, the residual clock deviation can be made to be about 10 ns.
  • Embodiment 3 explains the first UE and the non-reference base station of Scheme 3.
  • the first UE ie, the reference UE
  • the first UE is a UE dedicated to positioning and measurement, including UE a and UE b; the first UE fed back by the target UE c
  • the positioning measurement value is TDOA (that is, RSTD);
  • the positioning reference signal PRS is NR PRS;
  • base station i is a reference base station, and base station j is a non-reference base station.
  • the method for determining the clock offset on the first UE (reference UE) side includes:
  • Step 1 The first UE a and the first UE b receive the configuration signaling of the first downlink PRS signal; where the first downlink PRS is NR PRS, and the configuration signaling may be dedicated positioning signaling from the LMF, It can also be broadcast signaling, UE-specific RRC signaling, or DCI signaling from the serving base station.
  • the configuration signaling may be dedicated positioning signaling from the LMF, It can also be broadcast signaling, UE-specific RRC signaling, or DCI signaling from the serving base station.
  • Step 2 The first UE a receives and measures the first downlink PRS signals of the reference base station i and the non-reference base station j to obtain the first clock deviation between the reference base station i and the non-reference base station j
  • the first UE b can obtain the first clock deviation between the reference base station i and the non-reference base station j Refer to formula (1) to formula (5) of embodiment 1 for the calculation process.
  • Step 3 The first UE a and the first UE b respectively calculate the above-mentioned first clock deviation estimated value with Report to non-reference base station j.
  • the method for determining the clock offset on the non-reference base station side includes:
  • Step 1 The non-reference base station receives the configuration signaling of the first downlink PRS signal and the second downlink PRS signal; the configuration signaling is dedicated positioning signaling from the LMF.
  • Step 2 At time T1, the non-reference base station sends the first downlink PRS signal to all first UEs.
  • Step 3 The non-reference base station receives the first clock deviation fed back by multiple reference UEs, and determines the second clock deviation based on predefined criteria, where the predefined criteria include but are not limited to arithmetic average, selection of optimal channel condition values, and weighted average.
  • Non-reference base station j combines the first clock deviation reported by two first UEs (including reference UE a and reference UE b) to calculate a more accurate second clock deviation between base station i and base station j There are at least three calculation methods for the predefined criteria:
  • Arithmetic average for example:
  • Option2 Select the clock deviation of the reference UE with the best channel conditions (for example, the best channel conditions of the UE with the largest RSRP and/or SINR) as the second clock deviation
  • the RSRP and/or SINR of the reference UE a is greater than the RSRP and/or SINR of the reference UE b, that is, the RSRP of the reference UE a is greater than the RSRP of the reference UE b, and/or the SINR of the reference UE a is greater than the SINR of the reference UE b .
  • Weighted average for example: Among them, f is a weighting coefficient between 0 and 1, and the value of f can be determined according to the channel conditions of UE a and UE b.
  • Step 4 The non-reference base station is based on the above second clock deviation Correct the second clock deviation of itself relative to the reference base station i;
  • Step 5 At time T2, the non-reference base station sends a second downlink PRS signal to all second UEs after correcting its second clock deviation relative to the reference base station.
  • the maximum value of the clock deviation between the base stations of the TDD system is plus or minus 50ns.
  • a method for determining a clock offset provided by an embodiment of the present application includes:
  • the configuration signaling of the first downlink positioning reference signal PRS is obtained, and the first downlink PRS from the reference base station and the non-reference base station is received and measured based on the configuration signaling of the first downlink PRS;
  • the first downlink PRS determines and sends the first clock deviation between the reference base station and the non-reference base station, so that the node that receives the first clock deviation confirms the second clock deviation based on the first clock deviation Clock deviation reduces the clock deviation between base stations, thereby improving positioning accuracy.
  • the first clock deviation is sent to a positioning management function LMF entity or a non-reference base station.
  • a method for determining a clock deviation provided in an embodiment of the present application includes:
  • S201 Receive a first clock deviation between a reference base station and a non-reference base station; where the first clock deviation is measured by the first terminal from the reference base station and the non-reference base station for the first downlink positioning reference Determined by the signal PRS;
  • S202 Determine a second clock deviation based on the first clock deviation.
  • the method before determining the second clock deviation based on the first clock deviation, the method further includes: obtaining configuration signaling of the second downlink positioning reference signal PRS, and receiving based on the configuration signaling of the second downlink PRS And measure the second downlink PRS from the reference base station and the non-reference base station; determine the first positioning measurement value based on the second downlink PRS;
  • the method further includes: correcting the first positioning measurement value based on the second clock deviation to obtain a second positioning measurement value.
  • the method further includes:
  • determining the second clock deviation based on the first clock deviation specifically includes:
  • the predefined criteria includes one or a combination of the following calculation criteria: arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • the first clock deviation is received by the positioning management function LMF entity by receiving the first clock deviation reported by the first UE, and forwarding the first clock deviation to the second UE.
  • a method for determining clock deviation provided in an embodiment of the present application includes:
  • S301 Send a first downlink PRS configuration signaling to the first terminal, and send a second downlink PRS configuration signaling to the second terminal.
  • S302. Receive a first clock deviation between a reference base station and a non-reference base station reported by the first terminal and/or the second terminal;
  • determining the second clock deviation based on the first clock deviation specifically includes:
  • the first clock deviation is forwarded to the second terminal, and the second terminal determines the second clock deviation based on the first clock deviation.
  • the method further includes:
  • the first positioning measurement value reported by the second terminal is corrected to obtain the second positioning measurement value.
  • the method further includes:
  • the method further includes: based on the second clock deviation, correcting the clock deviation of the non-reference base station relative to the reference base station.
  • the method before sending the configuration signaling of the first downlink PRS to the first terminal and sending the configuration signaling of the second downlink PRS to the second terminal, the method further includes: receiving the configuration signaling of the first downlink PRS signal Make the configuration signaling of the second downlink PRS signal; send the first downlink PRS signal to the first terminal based on the configuration signaling of the first downlink PRS signal;
  • the method further includes: sending a second downlink PRS signal to the second terminal based on the configuration signaling of the second downlink PRS signal.
  • the receiving the configuration signaling of the first downlink PRS signal and the configuration signaling of the second downlink PRS signal specifically includes:
  • the configuration signaling of the first downlink PRS signal and the configuration signaling of the second downlink PRS signal sent by the positioning management function LMF entity are received.
  • determining the second clock deviation based on the first clock deviation specifically includes:
  • a second clock deviation is determined.
  • the predefined criteria includes one or a combination of the following calculation criteria: arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • the method further includes:
  • a method for determining a clock deviation provided in an embodiment of the present application includes:
  • a second clock deviation is determined; or, the first clock deviation is forwarded to a second terminal, and the second terminal determines the second clock deviation based on the first clock deviation.
  • the method further includes:
  • the first positioning measurement value reported by the second terminal is corrected to obtain the second positioning measurement value.
  • the method further includes:
  • determining the second clock deviation based on the first clock deviation specifically includes:
  • a second clock deviation is determined.
  • the predefined criteria includes one or a combination of the following calculation criteria: arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • the method further includes:
  • the method for determining clock offset includes:
  • the clock deviation of the non-reference base station relative to the reference base station is corrected.
  • the method further includes:
  • the second downlink PRS signal is sent to the second terminal based on the configuration signaling of the second downlink PRS signal.
  • the configuration signaling is dedicated positioning signaling from a positioning management function LMF entity.
  • determining the second clock deviation based on the first clock deviation specifically includes:
  • a second clock deviation is determined.
  • the predefined criteria includes one or a combination of the following calculation criteria: arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • a clock deviation determination device provided in an embodiment of the present application includes:
  • the first unit 11 is configured to obtain the configuration signaling of the first downlink positioning reference signal PRS, and receive and measure the first downlink from the reference base station and the non-reference base station based on the configuration signaling of the first downlink PRS PRS;
  • the second unit 12 is configured to determine and send a first clock deviation between the reference base station and the non-reference base station based on the first downlink PRS, so that the node that receives the first clock deviation is based on the The first clock deviation, confirm the second clock deviation.
  • the second unit 12 is specifically configured to:
  • the first clock deviation is sent to the location management function LMF entity or the non-reference base station.
  • another device for determining clock deviation provided in an embodiment of the present application includes:
  • the third unit 21 is configured to receive a first clock offset between a reference base station and a non-reference base station; wherein, the first clock offset is the first terminal from the reference base station and the non-reference base station by measuring the first clock offset Determined by a downlink positioning reference signal PRS;
  • the fourth unit 22 is configured to determine a second clock deviation based on the first clock deviation.
  • the fourth unit 22 is further configured to:
  • the fourth unit 22 is also used for:
  • the fourth unit 22 is further configured to:
  • the fourth unit 22 is specifically configured to:
  • a second clock deviation is determined.
  • the predefined criteria includes one or a combination of the following calculation criteria: arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • the third unit 21 is specifically configured to:
  • a clock deviation determination device provided in an embodiment of the present application includes:
  • the sending unit 31 is configured to send configuration signaling of the first downlink PRS to the first terminal, and send configuration signaling of the second downlink PRS to the second terminal;
  • the receiving unit 32 is configured to receive the first clock deviation between the reference base station and the non-reference base station reported by the first terminal and/or the second terminal;
  • the determining unit 33 is configured to determine a second clock deviation based on the first clock deviation.
  • the determining unit 33 is specifically configured to:
  • the first clock deviation is forwarded to the second terminal, and the second terminal determines the second clock deviation based on the first clock deviation.
  • the determining unit 33 is specifically configured to:
  • the first positioning measurement value reported by the second terminal is corrected to obtain the second positioning measurement value.
  • the determining unit 33 is further configured to:
  • the determining unit 33 is further configured to:
  • the clock deviation of the non-reference base station relative to the reference base station is corrected.
  • the sending unit 31 is further configured to:
  • the sending unit 901 is further configured to:
  • the sending unit 31 is further configured to:
  • the configuration signaling of the first downlink PRS signal and the configuration signaling of the second downlink PRS signal sent by the positioning management function LMF entity are received.
  • the determining unit 33 is specifically configured to:
  • a second clock deviation is determined.
  • the predefined criteria includes one or a combination of the following calculation criteria: arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • the sending unit 31 is further configured to:
  • a terminal (applicable to a reference terminal and also applicable to a target terminal) provided by an embodiment of the present application includes a transceiver 610, a processor 600, and a memory 620:
  • the transceiver 610 is used to receive and send data under the control of the processor 600;
  • the processor 600 is configured to read a program in the memory 620 and execute the following process:
  • processor 600 is specifically configured to:
  • the first clock deviation is reported to the location management function LMF entity or non-reference base station through the transceiver 610.
  • the terminal provided in the embodiment of the present application serves as a target terminal, it includes a transceiver 610, a processor 600, and a memory 620:
  • the transceiver 610 is used to receive and send data under the control of the processor
  • the processor 600 is also configured to read the program in the memory 620, and execute the following process:
  • the first clock deviation between the reference base station and the non-reference base station is received through the transceiver 610; wherein, the first clock deviation is the first clock deviation from the reference base station and the non-reference base station by the first terminal through measurement. Determined by the downlink positioning reference signal PRS;
  • a second clock deviation is determined.
  • processor 600 is further configured to:
  • the configuration signaling of the second downlink positioning reference signal PRS Based on the first clock deviation, before determining the second clock deviation, obtain the configuration signaling of the second downlink positioning reference signal PRS, and receive and measure the configuration signaling from the reference base station and the non-reference signal based on the configuration signaling of the second downlink PRS.
  • the second downlink PRS of the base station determine the first positioning measurement value based on the second downlink PRS;
  • the first positioning measurement value is corrected based on the second clock deviation to obtain the second positioning measurement value.
  • processor 600 is further configured to:
  • processor 600 is specifically configured to:
  • a second clock deviation is determined.
  • the predefined criteria includes one or a combination of the following calculation criteria: arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • the first clock deviation is received by the positioning management function LMF entity by receiving the first clock deviation reported by the first UE, and forwarding the first clock deviation to the second UE.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 600 and various circuits of the memory represented by the memory 620 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 610 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the user interface 630 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, etc.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 600 when performing operations.
  • the processor 600 may be a central processing unit (Center Processing Unit, CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable Logic device (Complex Programmable Logic Device, CPLD).
  • CPU Center Processing Unit
  • ASIC application specific integrated circuit
  • FPGA Field-Programmable Gate Array
  • CPLD complex Programmable Logic Device
  • an apparatus for determining a clock deviation includes a transceiver 501, a processor 504, and a memory 505:
  • the transceiver 501 is configured to receive and send data under the control of the processor 504;
  • the processor 504 is configured to read a program in the memory 505 and execute the following process:
  • a second clock deviation is determined.
  • the processor 504 is specifically configured to:
  • the first clock deviation is forwarded to the second terminal, and the second terminal determines the second clock deviation based on the first clock deviation.
  • processor 504 is further configured to:
  • the first positioning measurement value reported by the second terminal is corrected to obtain the second positioning measurement value.
  • processor 504 is further configured to:
  • processor 504 is further configured to:
  • the clock deviation of the non-reference base station relative to the reference base station is corrected.
  • processor 504 is further configured to:
  • the configuration signaling of the first downlink PRS signal and the configuration signaling of the second downlink PRS signal are received through the transceiver 501; based on the configuration signaling of the first downlink PRS signal, the first downlink is sent to the first terminal.
  • the second downlink PRS signal is sent to the second terminal through the transceiver 501.
  • the transceiver 501 is specifically configured to:
  • the configuration signaling of the first downlink PRS signal and the configuration signaling of the second downlink PRS signal sent by the positioning management function LMF entity are received.
  • the processor 504 is specifically configured to:
  • a second clock deviation is determined.
  • the predefined criteria includes one or a combination of the following calculation criteria: arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • processor 504 is further configured to:
  • bus architecture (represented by bus 506), bus 506 can include any number of interconnected buses and bridges, bus 506 will include one or more processors represented by processor 504 and memory represented by memory 505
  • the various circuits are linked together.
  • the bus 500 may also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further description will be given herein.
  • the bus interface 503 provides an interface between the bus 506 and the transceiver 501.
  • the transceiver 501 may be one element or multiple elements, such as multiple receivers and transmitters, and provide a unit for communicating with various other devices on a transmission medium.
  • the data processed by the processor 504 is transmitted on the wireless medium through the antenna 502, and further, the antenna 502 also receives the data and transmits the data to the processor 504.
  • the processor 504 is responsible for managing the bus 506 and general processing, and can also provide various functions, including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 505 may be used to store data used by the processor 504 when performing operations.
  • the processor 504 may be a central processing unit CPU, an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA), or a complex programmable logic device (Complex Programmable Logic). Device, CPLD).
  • ASIC application specific integrated circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic
  • the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including a number of instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • the embodiments of the present application provide a computing device, and the computing device may specifically be a desktop computer, a portable computer, a smart phone, a tablet computer, a personal digital assistant (Personal Digital Assistant, PDA), etc.
  • the computing device may include a central processing unit CPU, memory, input/output devices, etc.
  • input devices may include keyboards, mice, touch screens, etc.
  • output devices may include display devices, such as liquid crystal displays (LCD), cathode ray tubes (Cathode Ray Tube, CRT) etc.
  • LCD liquid crystal displays
  • CRT cathode Ray Tube
  • the memory may include read only memory (ROM) and random access memory (RAM), and provides the processor with program instructions and data stored in the memory.
  • ROM read only memory
  • RAM random access memory
  • the memory may be used to store the program of any of the methods provided in the embodiment of the present application.
  • the processor calls the program instructions stored in the memory, and the processor is configured to execute any of the methods provided in the embodiments of the present application according to the obtained program instructions.
  • the embodiment of the present application provides a computer storage medium for storing computer program instructions used by the device provided in the foregoing embodiment of the present application, which includes a program for executing any method provided in the foregoing embodiment of the present application.
  • the computer storage medium may be any available medium or data storage device that can be accessed by the computer, including but not limited to magnetic storage (such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (such as CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state drive (SSD)), etc.
  • magnetic storage such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage such as CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state drive (SSD)
  • the method provided in the embodiments of the present application can be applied to terminal equipment, and can also be applied to network equipment.
  • the terminal equipment can also be referred to as user equipment UE, mobile station (Mobile Station, referred to as "MS"), mobile terminal (Mobile Terminal), etc.
  • the terminal may have a radio access network (Radio Access).
  • Network RAN
  • the terminal can be a mobile phone (or called a "cellular" phone), or a mobile computer, etc., for example, the terminal can also be portable or pocket-sized.
  • Mobile devices such as portable, handheld, computer built-in or in-vehicle.
  • the network device may be a base station (for example, an access point), which refers to a device that communicates with a wireless terminal through one or more sectors on an air interface in an access network.
  • the base station can be used to convert received air frames and IP packets into each other, and act as a router between the wireless terminal and the rest of the access network, where the rest of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate the attribute management of the air interface.
  • the base station can be a base station (Base Transceiver Station, BTS) in GSM or CDMA, a base station (NodeB) in WCDMA, or an evolved base station (NodeB or eNB or e-NodeB, evolutional Node) in LTE. B), or it can be gNB in the 5G system, etc.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • e-NodeB evolutional Node
  • the above-mentioned method processing flow can be implemented by a software program, which can be stored in a storage medium, and when the stored software program is called, the above-mentioned method steps are executed.
  • the first UE ie, the reference UE
  • the second UE ie, the target UE
  • the first positioning measurement value ie the TDOA measurement value
  • the first clock deviation between the reference base station and the non-reference base station is further calculated.
  • the first UE and/or the second UE report the first clock deviation to different objects in three ways and perform subsequent processing:
  • the first UE and/or the second UE report the first clock deviation feedback to the LMF, the LMF determines the second clock deviation, and then the LMF based on the second clock deviation, the first positioning measurement value fed back by the second UE TDOA (ie RSTD) makes corrections and obtains the second positioning measurement value, and then performs positioning calculation based on the second positioning measurement value (for example: downlink positioning calculation based on OTDOA or uplink positioning calculation based on UTDOA).
  • RSTD the first positioning measurement value fed back by the second UE TDOA
  • the first UE reports the first clock deviation feedback to the LMF, and then the LMF forwards the second UE, and then the second UE determines the second clock deviation based on the first clock deviation, and the target UE refers to the first positioning measurement value TDOA (That is, RSTD) make corrections and obtain the second positioning measurement value, and then perform the OTDOA-based downlink positioning based on the second positioning measurement value obtained after the correction.
  • TDOA That is, RSTD
  • the first UE and/or the second UE feed back the first clock deviation to the non-reference base station, and the non-reference base station determines the second clock deviation, and then the non-reference base station corrects its own clock deviation relative to the reference base station based on the second clock deviation.
  • the reference base station and the non-reference base station respectively send the downlink PRS signal to the second UE; the second UE further receives and measures the downlink PRS signal, and then performs downlink positioning calculation based on the downlink OTDOA.
  • the first UE may be a UE dedicated to positioning measurement, or a regular UE;
  • the positioning reference signal PRS may be any downlink signal, including but not limited to: NR PRS, NR C-PRS, SSB, CSI-RS, etc.;
  • the LMF may determine the second clock deviation based on the first clock deviation fed back by multiple reference UEs and based on a predefined criterion, where the predefined criterion includes but is not limited to arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • the first UE (reference UE) in the three solutions provided by the embodiments of the present application, the LMF in solution 1, the second UE (target UE) in solution 2, and the non-reference base station in solution 3 perform the following steps respectively:
  • the first UE (reference UE) performs the following steps:
  • Step 1 The first UE receives the configuration signaling of the first downlink PRS signal; the first downlink PRS can be any downlink signal, including but not limited to NR PRS, NR C-PRS, SSB, and CSI-RS.
  • the configuration signaling may be dedicated positioning signaling from the LMF, broadcast signaling from the serving base station, UE-specific RRC signaling, or DCI signaling.
  • Step 2 The first UE receives and measures the first downlink PRS signals of the reference base station and the non-reference base station to obtain the first clock deviation between the reference base station and the non-reference base station.
  • Step 3 The first UE reports the first clock deviation to the LMF or non-reference base station.
  • the LMF in Scheme 1 performs the following steps:
  • Step 1 The LMF sends the configuration signaling of the first downlink PRS signal to the first UE, sends the configuration signaling of the second downlink PRS signal to the second UE, and sends the first downlink PRS signal to the reference base station and non-reference base station.
  • the configuration signaling is to send the configuration signaling of the second downlink PRS signal to the reference base station and the non-reference base station; wherein, the above configuration signaling can be sent simultaneously or sequentially.
  • Step 2 The LMF receives the first clock deviation reported by the first UE, and determines the second clock deviation based on predefined criteria, where the predefined criteria include but are not limited to arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • predefined criteria include but are not limited to arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • Step 3 Based on the second clock deviation, the LMF corrects the first positioning measurement value TDOA (that is, RSTD) fed back by the target UE and obtains the second positioning measurement value.
  • TDOA that is, RSTD
  • Step 4 LMF performs positioning calculation based on OTDOA based on the second positioning measurement value obtained after correction.
  • the second UE (target UE) in solution 2 performs the following steps:
  • Step 1 The second UE receives the configuration signaling of the second downlink PRS signal; the second downlink PRS can be any downlink signal, including but not limited to NR PRS, NR C-PRS, SSB, and CSI-RS.
  • the command can be dedicated positioning signaling from the LMF, broadcast signaling from the serving base station, UE-specific RRC signaling, or DCI signaling.
  • Step 2 The second UE receives and measures the second downlink PRS signals of the reference base station and the non-reference base station to obtain the first positioning measurement value TDOA (that is, RSTD).
  • TDOA that is, RSTD
  • Step 3 The second UE receives the first clock deviation between the reference base station and the non-reference base station forwarded by the LMF, and determines the second clock deviation based on a predefined criterion.
  • the predefined criterion includes but is not limited to arithmetic average and selection of the best channel condition. Merit and weighted average.
  • Step 4 Based on the second clock deviation, the second UE corrects the first positioning measurement value TDOA (ie, RSTD) measured by Step2 and obtains the second positioning measurement value.
  • TDOA first positioning measurement value
  • Step 5 The second UE performs positioning calculation based on OTDOA based on the second positioning measurement value obtained after correction.
  • the non-reference base station in scheme 3 performs the following steps:
  • Step 1 The non-reference base station receives the configuration signaling of the first downlink PRS signal and the second downlink PRS signal; the configuration signaling is dedicated positioning signaling from the LMF.
  • Step 2 At time T1, the non-reference base station sends the first downlink PRS signal to all first UEs.
  • Step 3 The non-reference base station receives the first clock deviation fed back by multiple reference UEs, and determines the second clock deviation based on predefined criteria.
  • the predefined criteria include, but are not limited to, arithmetic average, selection of the optimal value of channel conditions, and weighted average .
  • Step 4 The non-reference base station corrects its second clock deviation relative to the reference base station based on the above-mentioned second clock deviation;
  • Step 5 At time T2, the non-reference base station sends a second downlink PRS signal to all second UEs after correcting its second clock deviation relative to the reference base station.
  • the embodiment of the present application proposes a clock offset calibration solution between base stations based on the TDOA measurement value. It solves the problem that the accuracy of the positioning algorithm of the existing single-differential scheme is limited by the limited accuracy of the clock deviation measurement of the PRS signal, which causes the system positioning performance to decrease.
  • the maximum value of the clock deviation between the base stations of the existing TDD system is plus or minus 50 ns. After processing by the technical solution provided by the embodiment of the present application, the residual clock deviation can be made to be about 10 ns, or even about 1 ns.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Abstract

本申请公开了时钟偏差确定方法及装置,用以降低基站之间的时钟偏差,从而提高定位精度。在终端侧,本申请实施例提供的一种时钟偏差确定方法,包括:获取第一下行定位参考信号PRS的配置信令,并基于所述第一下行PRS的配置信令接收并测量来自于参考基站和非参考基站的第一下行PRS;基于所述第一下行PRS确定并发送所述参考基站和所述非参考基站之间的第一时钟偏差,使得接收到所述第一时钟偏差的节点基于所述第一时钟偏差,确认第二时钟偏差。

Description

时钟偏差确定方法及装置
相关申请的交叉引用
本申请要求在2019年11月11日提交中国专利局、申请号为201911096985.1、申请名称为“时钟偏差确定方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及时钟偏差确定方法及装置。
背景技术
第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)定义了多种通过测量3GPP无线通信系统的自身定位参考信号(Positioning Reference Signal,PRS)的用户终端(User Terminal,UE)定位方法,例如下行链路观察到达时间差(Observed Time Difference Of Arrival,OTDOA),上行链路到达时间差(Uplink Time Difference Of Arrival,UTDOA)等等。这些方法的特点是基于无线通信系统自身的PRS定位,可在接收不到网络外部定位参考信号环境里工作。
发明内容
本申请实施例提供了时钟偏差确定方法及装置,用以降低基站之间的时钟偏差,从而提高定位精度。
在终端侧(适用于参考终端,也适用于目标终端),本申请实施例提供的一种时钟偏差确定方法,包括:
获取第一下行定位参考信号PRS的配置信令,并基于所述第一下行PRS的配置信令接收并测量来自于参考基站和非参考基站的第一下行PRS;
基于所述第一下行PRS确定并发送所述参考基站和所述非参考基站之间 的第一时钟偏差,使得接收到所述第一时钟偏差的节点基于所述第一时钟偏差,确认第二时钟偏差。
通过该方法,获取第一下行定位参考信号PRS的配置信令,并基于所述第一下行PRS的配置信令接收并测量来自于参考基站和非参考基站的第一下行PRS;基于所述第一下行PRS确定并发送所述参考基站和所述非参考基站之间的第一时钟偏差,使得接收到所述第一时钟偏差的节点基于所述第一时钟偏差,确认第二时钟偏差,降低了基站之间的时钟偏差,从而提高定位精度。
可选地,将所述第一时钟偏差发送给定位管理功能LMF实体或非参考基站。
相应地,在终端侧(适用于目标终端),本申请实施例提供的一种时钟偏差确定方法,包括:
接收参考基站和非参考基站之间的第一时钟偏差;其中,所述第一时钟偏差是第一终端通过测量来自于所述参考基站和所述非参考基站的第一下行定位参考信号PRS确定的;
基于所述第一时钟偏差,确定第二时钟偏差。
可选地,基于所述第一时钟偏差,确定第二时钟偏差之前,该方法还包括:获取第二下行定位参考信号PRS的配置信令,并基于所述第二下行PRS的配置信令接收并测量来自于参考基站和非参考基站的第二下行PRS;基于所述第二下行PRS确定第一定位测量值;
基于所述第一时钟偏差,确定第二时钟偏差之后,该方法还包括:基于所述第二时钟偏差,针对所述第一定位测量值进行修正,得到第二定位测量值。
可选地,该方法还包括:
基于所述第二定位测量值进行定位。
可选地,基于所述第一时钟偏差,确定第二时钟偏差,具体包括:
基于所述第一时钟偏差和预定义准则,确定第二时钟偏差;
可选地,所述预定义准则包括下列计算准则之一或组合:算术平均、选择信道条件最优值、加权平均。
可选地,所述第一时钟偏差,是由定位管理功能LMF实体通过接收第一UE上报的第一时钟偏差,并且把所述第一时钟偏差转发给第二UE的。
相应地,在网络侧,本申请实施例提供的一种时钟偏差确定方法,包括:
向第一终端发送第一下行PRS的配置信令,以及向第二终端发送第二下行PRS的配置信令;
接收第一终端和/或第二终端上报的参考基站和非参考基站之间的第一时钟偏差;
基于所述第一时钟偏差,确定第二时钟偏差。
可选地,基于所述第一时钟偏差,确定第二时钟偏差,具体包括:
将所述第一时钟偏差转发给第二终端,由第二终端基于所述第一时钟偏差确定第二时钟偏差。
可选地,该方法还包括:
基于所述第二时钟偏差,针对第二终端上报的第一定位测量值进行修正,得到第二定位测量值。
可选地,该方法还包括:
基于所述第二定位测量值进行定位。
可选地,该方法还包括:基于所述第二时钟偏差,修正非参考基站相对于参考基站的时钟偏差。
可选地,向第一终端发送第一下行PRS的配置信令,以及向第二终端发送第二下行PRS的配置信令之前,该方法还包括:接收第一下行PRS信号的配置信令和第二下行PRS信号的配置信令;基于所述第一下行PRS信号的配置信令,向第一终端发送第一下行PRS信号;
在修正了非参考基站相对于参考基站的时钟偏差之后,该方法还包括:基于所述第二下行PRS信号的配置信令,向第二终端发送第二下行PRS信号。
可选地,所述接收第一下行PRS信号的配置信令和第二下行PRS信号的 配置信令,具体包括:
接收来定位管理功能LMF实体发送的第一下行PRS信号的配置信令和第二下行PRS信号的配置信令。
可选地,基于所述第一时钟偏差,确定第二时钟偏差,具体包括:
基于所述第一时钟偏差和预定义准则,确定第二时钟偏差。
可选地,所述预定义准则包括下列计算准则之一或组合:算术平均、选择信道条件最优值、加权平均。
可选地,该方法还包括:
向参考基站和非参考基站发送第一下行PRS信号的配置信令,向参考基站和非参考基站发送第二下行PRS信号的配置信令。
与上述方法相对应地,在终端侧(适用于参考终端,也适用于目标终端),本申请实施例提供的一种时钟偏差确定装置,包括:
第一单元,用于获取第一下行定位参考信号PRS的配置信令,并基于所述第一下行PRS的配置信令接收并测量来自于参考基站和非参考基站的第一下行PRS;
第二单元,用于基于所述第一下行PRS确定并发送所述参考基站和所述非参考基站之间的第一时钟偏差,使得接收到所述第一时钟偏差的节点基于所述第一时钟偏差,确认第二时钟偏差。
相应地,在终端侧(适用于目标终端),本申请实施例提供的一种时钟偏差确定装置,包括:
第三单元,用于接收参考基站和非参考基站之间的第一时钟偏差;其中,所述第一时钟偏差是第一终端通过测量来自于所述参考基站和所述非参考基站的第一下行定位参考信号PRS确定的;
第四单元,用于基于所述第一时钟偏差,确定第二时钟偏差。
在网络侧,本申请实施例提供的一种时钟偏差确定装置,包括:
发送单元,用于向第一终端发送第一下行PRS的配置信令,以及向第二终端发送第二下行PRS的配置信令;
接收单元,用于接收第一终端和/或第二终端上报的参考基站和非参考基站之间的第一时钟偏差;
确定单元,用于基于所述第一时钟偏差,确定第二时钟偏差。
与上述方法相对应地,在终端侧(适用于参考终端,也适用于目标终端),本申请实施例提供的一种终端,包括收发机、处理器和存储器:
收发机,用于在处理器的控制下接收和发送数据;
处理器,用于读取存储器中的程序,执行下列过程:
获取第一下行定位参考信号PRS的配置信令,并基于所述第一下行PRS的配置信令接收并测量来自于参考基站和非参考基站的第一下行PRS;
基于所述第一下行PRS确定并发送所述参考基站和所述非参考基站之间的第一时钟偏差,使得接收到所述第一时钟偏差的节点基于所述第一时钟偏差,确认第二时钟偏差。
可选地,所述处理器具体用于:
通过所述收发机将所述第一时钟偏差上报给定位管理功能LMF实体或非参考基站。
相应地,当本申请实施例提供的终端作为目标终端时,包括收发机、处理器和存储器:
收发机,用于在处理器的控制下接收和发送数据;
处理器,还用于读取存储器中的程序,执行下列过程:
通过所述收发机接收参考基站和非参考基站之间的第一时钟偏差;其中,所述第一时钟偏差是第一终端通过测量来自于所述参考基站和所述非参考基站的第一下行定位参考信号PRS确定的;
基于所述第一时钟偏差,确定第二时钟偏差。
可选地,所述处理器还用于:
基于所述第一时钟偏差,确定第二时钟偏差之前,获取第二下行定位参考信号PRS的配置信令,并基于所述第二下行PRS的配置信令接收并测量来自于参考基站和非参考基站的第二下行PRS;基于所述第二下行PRS确定第 一定位测量值;
基于所述第二时钟偏差,针对所述第一定位测量值进行修正,得到第二定位测量值。
可选地,所述处理器还用于:
基于所述第二定位测量值进行定位。
可选地,所述处理器具体用于:
基于所述第一时钟偏差和预定义准则,确定第二时钟偏差。
可选地,所述预定义准则包括下列计算准则之一或组合:算术平均、选择信道条件最优值、加权平均。
可选地,所述第一时钟偏差,是由定位管理功能LMF实体通过接收第一UE上报的第一时钟偏差,并且把所述第一时钟偏差转发给第二UE的。
在网络侧,本申请实施例提供的一种时钟偏差确定装置,包括收发机、处理器和存储器:
收发机,用于在处理器的控制下接收和发送数据;
处理器,用于读取存储器中存储的程序,执行下列过程:
通过所述收发机向第一终端发送第一下行PRS的配置信令,以及向第二终端发送第二下行PRS的配置信令;
通过所述收发机接收第一终端和/或第二终端上报的参考基站和非参考基站之间的第一时钟偏差;
基于所述第一时钟偏差,确定第二时钟偏差。
可选地,所述处理器具体用于:
将所述第一时钟偏差转发给第二终端,由第二终端基于所述第一时钟偏差确定第二时钟偏差。
可选地,所述处理器还用于:
基于所述第二时钟偏差,针对第二终端上报的第一定位测量值进行修正,得到第二定位测量值。
可选地,所述处理器还用于:
基于所述第二定位测量值进行定位。
可选地,所述处理器还用于:
基于所述第二时钟偏差,修正非参考基站相对于参考基站的时钟偏差。
可选地,所述处理器还用于:
通过所述收发机接收第一下行PRS信号的配置信令和第二下行PRS信号的配置信令;基于所述第一下行PRS信号的配置信令,向第一终端发送第一下行PRS信号;
基于所述第二下行PRS信号的配置信令,通过所述收发机向第二终端发送第二下行PRS信号。
可选地,所述收发机具体用于:
接收来定位管理功能LMF实体发送的第一下行PRS信号的配置信令和第二下行PRS信号的配置信令。
可选地,所述处理器具体用于:
基于所述第一时钟偏差和预定义准则,确定第二时钟偏差。
可选地,所述预定义准则包括下列计算准则之一或组合:算术平均、选择信道条件最优值、加权平均。
可选地,所述处理器还用于:
向参考基站和非参考基站发送第一下行PRS信号的配置信令,向参考基站和非参考基站发送第二下行PRS信号的配置信令。
本申请另一实施例提供了一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述任一种方法。
本申请通过获取第一下行定位参考信号PRS的配置信令,并基于所述第一下行PRS的配置信令接收并测量来自于参考基站和非参考基站的第一下行PRS;基于所述第一下行PRS确定并发送所述参考基站和所述非参考基站之间的第一时钟偏差,使得接收到所述第一时钟偏差的节点基于所述第一时钟偏差,确认第二时钟偏差,从而实现了基站之间时钟偏差的校准方案,降低 了基站之间的时钟偏差,从而提高了定位精度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的LMF处理的时钟偏差校准方案示意图;
图2为本申请实施例提供的LMF通知目标UE的时钟偏差校准方案示意图;
图3为本申请实施例提供的非参考基站修正时钟偏差的方案示意图;
图4为本申请实施例提供的适用于参考终端和目标终端侧的一种时钟偏差确定方法的流程示意图;
图5为本申请实施例提供的目标终端侧的一种时钟偏差确定方法的流程示意图;
图6为本申请实施例提供的适用于网络侧的一种时钟偏差确定方法的流程示意图;
图7为本申请实施例提供的适用于参考终端和目标终端侧的一种时钟偏差确定装置的结构示意图;
图8为本申请实施例提供的目标终端侧的一种时钟偏差确定装置的结构示意图;
图9为本申请实施例提供的适用于网络侧的一种时钟偏差确定装置的结构示意图;
图10为本申请实施例提供的一种终端的结构示意图;
图11为本申请实施例提供的一种网络侧装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,本申请实施例中所述的PRS,表示所有可用于测量到达时间(Time of Arrival,TOA)的参考信号,例如包括可用于传统OTDOA/UTDOA定位的PRS、信道状态指示参考信号(Channel State Indication Reference Signal,CSI-RS)、探测参考信号(Sounding Reference Signal,SRS)等。
使用TOA进行定位可有以下几种基本方式:
非差分方式:直接使用TOA计算UE位置而不使用差分技术。
差分方式:首先对TOA进行差分,消除测量值中的一些共同的偏差,然后用于差分后TOA计算UE位置。差分方式又有以下单差分和双差分两种。
单差分方式:选某个发送端(或接收端)作为参考端,然后将由其它发送端(或接收端)相关的测量值与由参考端相关的测量值进行差分。单差分的目的是消除某一端(接收端或发送端)的测量偏差。例如,3GPP OTDOA定位的到达时间差(Time Difference Of Arrival,TDOA)(即参考信号时间差(Reference Signal Time Difference,RSTD))测量值,即为UE与各个基站所相关的TOA测量值与该UE与某参考基站所相关的TOA测量值进行差分所获得的,其差分目的是消除UE时钟偏差对定位的影响。
双差分方式:对单差分方式后的测量值再次差分,以同时消除与发送端和接收端有关的测量误差,例如基站(Base Station,BS)和UE的时钟偏差。例如,双差分技术可用于下行定位的场景。这时,有多个发送端(基站)和两个接收端,其中一个接收端为位置已知的参考接收端。另一个接收端为位置未知的UE。这时,两个接收端同时接基站所发送的定位信号,利用双差分技术去消除两个接收端的测量值中与发送端和接收端有关的共同误差,然后精确地计算出未知位置接收端的位置。采用双差分方式可消除基站之间的时 间和频率同步偏差对定位精度的影响。
综上所述,非差分方式同时受到UE和基站的时钟偏移影响,且UE时钟偏移远大于基站时钟偏移,未被3GPP采用。双差分方式存在如下缺点:第一,要求专门在一个已知的位置上安置一个参考接收端,对具体系统实现带来负面影响;第二,要求目标UE和参考UE同时针对下行PRS信号进行定位测量,并且上报定位测量值,增加了参考UE的处理复杂度;第三,参考UE并且在目标UE运动条件下,可能存在用于双差分的参考UE切换问题。单差分方式目前被用于3GPP OTDOA定位的RSTD测量值(RSTD测量值计算方法是目标UE与所有BS相关的TOA测量值,与该UE与某参考BS所相关的TOA测量值进行差分)。单差分方式可以消除UE时钟偏差对定位精度的影响,但是基站之间的时钟偏差将直接影响单差分方式的定位精度。
根据上述分析可知:对单差分方式,基站之间的时间同步偏差是直接影响单差分方式的定位精度的关键。一种基站之间的时间同步方法由一个基站监听一个相邻基站的PRS。然后,基于所检测的PRS到达时间,PRS的发送时间以及两个基站之间的已知距离,估计出两个基站之间的时钟偏差。所估计的两个基站之间的时钟偏差可用来补偿基站之间的时钟偏差对OTDOA或UTDOA定位算法的影响。该方法的有效性受到如下限制:由于资源使用限制,PRS仅定期发送;并且基于单次发送的PRS所估计的两个基站之间的时钟偏差的估计精度有限。时分双工(time division duplex,TDD)系统基站之间的时钟偏差最大值在正负50ns。该时钟偏差将会极大地影响OTDOA或UTDOA定位技术方案的UE定位精度。
因此,在无线通信的用户终端定位系统中,基站之间的时钟偏差(即时间同步误差)是直接影响定位性能的关键问题之一。本申请实施例提供的技术方案,提出了一种基于TDOA测量值的时钟偏差校准方法和装置。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
本申请实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例 如适用的系统可以是全球移动通信系统(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE TDD、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G系统以及5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。
本申请实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备UE。无线终端设备可以经RAN与一个或多个核心网进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiated protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本申请实施例中并不限定。
本申请实施例涉及的网络设备,可以是基站,该基站可以包括多个小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。 网络设备可用于将收到的空中帧与网际协议(internet protocol,IP)分组进行相互转换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本申请实施例涉及的网络设备可以是GSM或码分多址接入(code division multiple access,CDMA)中的网络设备(base transceiver station,BTS),也可以是带宽码分多址接入(wide-band code division multiple access,WCDMA)中的网络设备(NodeB),还可以是长期演进系统LTE中的演进型网络设备(evolutional node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站,也可是家庭演进基站(home evolved node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微基站(pico)等,本申请实施例中并不限定。
下面结合说明书附图对本申请各个实施例进行详细描述。需要说明的是,本申请实施例的展示顺序仅代表实施例的先后顺序,并不代表实施例所提供的技术方案的优劣。
本申请实施例提供的技术方案包括:
首先,第一UE(即参考UE)和/或第二UE(即目标UE)测量来自于参考基站和非参考基站的下行定位参考信号PRS,获取第一定位测量值(即TDOA测量值),进一步计算得到参考基站和非参考基站之间的第一时钟偏差。
需要说明的是,在OTDOA定位技术方案中,UE需要测量下行两个基站的下行参考信号到本UE的时间差,获得TDOA测量值,并且建立两个以上的TDOA双曲线方程,求解两条双曲线的交点作为待求解的UE位置。其中,多个TDOA双曲线方程中公共的基站称为参考基站,其余基站称为非参考基站。目标UE是地理位置未知的、需要进行位置计算的UE。参考UE是地理位置已知的、用于测量并确定参考基站和非参考基站之间时钟偏差的UE。
然后,第一UE和/或第二UE采用以下三种方式之一把第一时钟偏差分别上报给不同的对象并且进行后续处理:
方式1)、第一UE和/或第二UE把第一时钟偏差反馈上报给位置管理服 务器,即定位管理功能(Location Management Function,LMF)实体,由LMF确定第二时钟偏差,然后LMF基于第二时钟偏差,针对第二UE反馈的第一定位测量值TDOA(即RSTD)进行修正并得到第二定位测量值,然后基于第二定位测量值进行定位计算(例如:基于OTDOA的下行定位计算或者基于UTDOA的上行定位计算)。
方式2)、第一UE把第一时钟偏差反馈上报给LMF,LMF转发第一时钟偏差给第二UE,然后由第二UE基于第一时钟偏差确定第二时钟偏差,并且目标UE针对第一定位测量值TDOA(即RSTD)进行修正并得到第二定位测量值,然后基于修正后得到的第二定位测量值进行基于OTDOA的下行定位。
方式3)、第一UE和/或第二UE把第一时钟偏差反馈给非参考基站,由非参考基站基于第一时钟偏差确定第二时钟偏差,非参考基站基于第二时钟偏差修正自身相对于参考基站的第二时钟偏差,然后参考基站和非参考基站分别再向第二UE发送下行PRS信号;第二UE进一步接收并且测量下行PRS信号,然后基于下行OTDOA进行下行定位计算。
其中,第一UE可以是专用于定位测量的UE,也可以是常规UE;定位参考信号PRS可以是任意下行信号,包括但不限于:NR PRS、NR载波相位定位参考信号(Carrier phase Positioning Reference Signal,C-PRS)、同步信号块(Synchronization Signal Block,SSB)和信道状态指示参考信号(Channel State Indication Reference Signal,CSI-RS)等;LMF可以基于多个参考UE反馈的第一时钟偏差,基于预定义准则确定第二时钟偏差,其中,预定义准则包括但不限于算术平均、选择信道条件最优值和加权平均等计算准则。
根据第一UE和/或第二UE上报第一时钟偏差之后的处理方式不同,本申请实施例包括下面三个方案。
方案1:LMF处理的时钟偏差校准方案、UE-assisted定位。
在方案1中,第一UE和/或第二UE上报第一时钟偏差的后续处理采用方式1。
首先,第一UE(即参考UE)和/或第二UE(即目标UE)测量来自于参 考基站和非参考基站的下行定位参考信号PRS,获取第一定位测量值(即TDOA测量值),进一步基于第一定位测量值计算得到参考基站和非参考基站之间的第一时钟偏差。
然后,第一UE和/或第二UE采用方式1实现第一时钟偏差以及上报之后的后续处理:
方式1):第一UE和/或第二UE把第一时钟偏差反馈上报给LMF,由LMF确定第二时钟偏差,LMF基于第二时钟偏差,针对第二UE反馈的第一定位测量值TDOA(即RSTD)进行修正并得到第二定位测量值,然后基于第二定位测量值进行定位计算(例如:基于OTDOA的下行定位计算或者基于UTDOA的上行定位计算)。
其中,第一UE可以是专用于定位测量的UE,也可以是常规UE;定位参考信号PRS可以是任意下行信号,包括但不限于:NR PRS、NR C-PRS、SSB和CSI-RS等;LMF可以基于多个参考UE反馈的第一时钟偏差,基于预定义准则确定第二时钟偏差,其中,预定义准则包括但不限于算术平均、选择信道条件最优值和加权平均。
如图1所示,基站i为参考基站,基站j为非参考基站。第一UE a和第一UE b是专用于定位测量的参考UE;第二UE c是目标UE。
第一UE(参考UE)侧的时钟偏差确定方法包括:
Step 1:第一UE接收第一下行PRS信号的配置信令;
其中,第一下行PRS可以是任意下行信号,包括但不限于NR PRS、NR C-PRS、SSB和CSI-RS,该配置信令可以是来自于LMF的定位专用信令,也可以是来自服务基站的广播信令、UE专属RRC信令或者DCI信令。
Step 2:第一UE通过接收并测量参考基站和非参考基站的第一下行PRS信号,得到参考基站和非参考基站之间的第一时钟偏差。
Step 3:第一UE把该第一时钟偏差上报给LMF。
第二UE(目标UE)侧的时钟偏差确定方法包括:
Step 1:第二UE接收第一下行PRS和第二下行PRS的配置信令;其中, 第一下行PRS和第二下行PRS可以是任意下行信号,包括但不限于NR PRS、NR C-PRS、SSB和CSI-RS,该配置信令可以是来自于LMF的定位专用信令,也可以是来自服务基站的广播信令、UE专属RRC信令或者DCI信令。
Step 2:第二UE通过接收并测量参考基站和非参考基站的第一下行PRS信号,得到参考基站和非参考基站之间的第一时钟偏差。
Step 3:第二UE把该第一时钟偏差上报给LMF。
Step 4:第二UE通过接收并测量参考基站和非参考基站的第二下行PRS信号,得到第一定位测量值TDOA(RSTD)。
Step 5:第二UE把上述第一定位测量值上报给LMF。
参考基站和非参考基站侧的时钟偏差确定方法包括:
Step 1:参考基站和非参考基站接收第一下行PRS信号的配置信令和第二下行PRS信号的配置信令;
其中,任一所述配置信令是来自于LMF的定位专用信令。
Step 2:参考基站和非参考基站向全部第一UE和第二UE发送第一下行PRS信号。
Step 3:参考基站和非参考基站向全部第二UE发送第二下行PRS信号。
相应地,LMF侧的处理方法包括:
Step 1:LMF向第一UE和第二UE发送第一下行PRS信号的配置信令,向第二UE发送第二下行PRS信号的配置信令,向参考基站和非参考基站发送第一下行PRS信号的配置信令,向参考基站和非参考基站发送第二下行PRS信号的配置信令;其中,任一上述配置信令可以同时发送,也可以依次发送,本申请实施例对该步骤中的各个步骤的执行顺序不进行限定。
Step 2:LMF接收第一UE和/或第二UE上报的第一时钟偏差,基于第一时钟偏差和预定义准则确定第二时钟偏差;
其中,预定义准则包括但不限于算术平均、选择信道条件最优值和加权平均。
Step 3:LMF基于第二时钟偏差,针对目标UE反馈的第一定位测量值 TDOA(即RSTD)进行修正并得到第二定位测量值。
Step 4:LMF基于修正后得到的第二定位测量值进行定位,例如:基于OTDOA或UTDOA的定位方案。
方案2:LMF通知目标UE的时钟偏差校准方案、UE-based定位。
在方案2中,第一UE和/或第二UE上报第一时钟偏差的后续处理采用上述方式2)。
首先,第一UE(即参考UE)和/或第二UE(即目标UE)通过测量来自于参考基站和非参考基站的下行定位参考信号PRS,获取第一定位测量值(即TDOA测量值),进一步基于第一定位测量值计算得到参考基站和非参考基站之间的第一时钟偏差。
然后,第一UE和/或第二UE采用方式2)实现第一时钟偏差的上报以及之后的后续处理:
方式2):第一UE把第一时钟偏差反馈上报给LMF,然后LMF转发第一时钟偏差给第二UE,然后由第二UE基于第一时钟偏差确定第二时钟偏差,并且目标UE针对第一定位测量值TDOA(即RSTD)进行修正并得到第二定位测量值,然后基于修正后得到的第二定位测量值进行基于OTDOA的下行定位。
其中,第一UE可以是专用于定位测量的UE,也可以是常规UE;定位参考信号PRS可以是任意下行信号,包括但不限于:NR PRS、NR C-PRS、SSB和CSI-RS等;LMF可以基于多个参考UE反馈的第一时钟偏差,基于预定义准则确定第二时钟偏差,其中,预定义准则包括但不限于算术平均、选择信道条件最优值和加权平均。
如图2所示,基站i为参考基站,基站j为非参考基站。第一UE a和第一UE b是专用于定位测量的参考UE;第二UE c是目标UE。
第一UE(参考UE)侧的时钟偏差确定方法包括:
Step 1:第一UE接收第一下行PRS信号的配置信令;
其中,第一下行PRS可以是任意下行信号,包括但不限于NR PRS、NR  C-PRS、SSB和CSI-RS,该配置信令可以是来自于LMF的定位专用信令,也可以是来自服务基站的广播信令、UE专属RRC信令或者DCI信令。
Step 2:第一UE通过接收并测量参考基站和非参考基站的第一下行PRS信号,得到参考基站和非参考基站之间的第一时钟偏差。
Step 3:第一UE把该第一时钟偏差上报给LMF。
第二UE(目标UE)侧的时钟偏差确定方法包括:
Step 1:第二UE接收第二下行PRS信号的配置信令;
其中,第二下行PRS可以是任意下行信号,包括但不限于NR PRS、NR C-PRS、SSB和CSI-RS,该配置信令可以是来自于LMF的定位专用信令,也可以是来自服务基站的广播信令、UE专属RRC信令或者DCI信令。
Step 2:第二UE通过接收并测量参考基站和非参考基站的第二下行PRS信号,得到第一定位测量值TDOA(即RSTD)。
Step 3:第二UE接收LMF转发的关于参考基站和非参考基站的第一时钟偏差,并基于预定义准则确定第二时钟偏差,其中,预定义准则包括但不限于算术平均、选择信道条件最优值和加权平均。
Step 4:第二UE基于第二时钟偏差,针对Step2测量的第一定位测量值TDOA(即RSTD)进行修正并得到第二定位测量值。
Step 5:第二UE基于修正后得到的第二定位测量值进行下行定位,例如:基于UE-based的OTDOA和/或载波相位定位方案。
参考基站和非参考基站侧的时钟偏差确定方法包括:
Step 1:参考基站和非参考基站接收第一下行PRS信号的配置信令和第二下行PRS信号的配置信令;
其中,任一所述配置信令是来自于LMF的定位专用信令。
Step 2:参考基站和非参考基站向全部第一UE发送第一下行PRS信号。
Step 3:参考基站和非参考基站向全部第二UE发送第二下行PRS信号。
LMF侧的时钟偏差确定方法包括:
Step 1:LMF向第一UE发送第一下行PRS信号的配置信令,向第二UE 发送第二下行PRS信号的配置信令,向参考基站和非参考基站发送第一下行PRS信号的配置信令,向参考基站和非参考基站发送第二下行PRS信号的配置信令;其中,上述配置信令可以同时发送,也可以依次发送。本申请实施例中对本步骤中的各个步骤的执行顺序不进行限制。
Step 2:LMF接收第一UE上报的第一时钟偏差,并且转发第一时钟偏差给第二UE。
方案3:非参考基站修正的时钟偏差校准方案、UE-assisted定位。
在方案3中,第一UE和/或第二UE上报第一时钟偏差的后续处理采用上述方式3)。
首先,第一UE(即参考UE)和/或第二UE(即目标UE)测量来自于参考基站和非参考基站的下行定位参考信号PRS,获取第一定位测量值(即TDOA测量值),进一步基于第一定位测量值计算得到参考基站和非参考基站之间的第一时钟偏差。
然后,第一UE和/或第二UE采用上述方式3)实现第一时钟偏差的上报以及之后的后续处理。
方式3):第一UE和/或第二UE把第一时钟偏差反馈给非参考基站,由非参考基站基于第一时钟偏差确定第二时钟偏差,非参考基站基于第二时钟偏差修正自身相对于参考基站的第二时钟偏差,然后参考基站和非参考基站分别再向第二UE发送下行PRS信号;第二UE进一步通过接收并且测量下行PRS信号,然后基于下行OTDOA进行下行定位计算。
其中,第一UE可以是专用于定位测量的UE,也可以是常规UE;定位参考信号PRS可以是任意下行信号,包括但不限于:NR PRS、NR C-PRS、SSB和CSI-RS等;LMF可以基于多个参考UE反馈的第一时钟偏差,并进一步基于预定义准则确定第二时钟偏差,其中,预定义准则包括但不限于算术平均、选择信道条件最优值和加权平均。
如图3所示,基站i为参考基站,基站j为非参考基站。第一UE a和第一UE b是专用于定位测量的参考UE;第二UE c是目标UE。
第一UE(参考UE)侧的时钟偏差确定方法包括:
Step 1:第一UE接收第一下行PRS信号的配置信令;
其中,第一下行PRS可以是任意下行信号,包括但不限于NR PRS、NR C-PRS、SSB和CSI-RS,该配置信令可以是来自于LMF的定位专用信令,也可以是来自服务基站的广播信令、UE专属RRC信令或者DCI信令。
Step 2:在第一时刻(例如T1时刻),第一UE通过接收并测量参考基站和非参考基站的第一下行PRS信号,得到参考基站和非参考基站之间的第一时钟偏差。
Step 3:第一UE把上述第一时钟偏差上报给非参考基站。
第二UE(目标UE)侧的时钟偏差确定方法包括:
Step 1:第二UE接收第一下行PRS的配置信令和第二下行PRS的配置信令;
其中,第一下行PRS和第二下行PRS可以是任意下行信号,包括但不限于NR PRS、NR C-PRS、SSB和CSI-RS,该配置信令可以是来自于LMF的定位专用信令,也可以是来自服务基站的广播信令、UE专属RRC信令或者DCI信令。
Step 2:在第一时刻(例如T1时刻),第二UE通过接收并测量参考基站和非参考基站的第一下行PRS信号,得到参考基站和非参考基站之间的第一时钟偏差。
Step 3:第二UE把上述第一时钟偏差上报给非参考基站。
Step 4:在第二时刻(例如T2时刻),第二UE接收并测量参考基站和非参考基站发送的第二下行PRS信号,得到第一定位测量值TDOA(即RSTD)。
Step 5:第二UE把上述第一定位测量值TDOA上报给LMF。
相应地,参考基站侧的时钟偏差确定方法包括:
Step 1:参考基站接收第一下行PRS信号的配置信令和第二下行PRS信号的配置信令;
其中,任一所述配置信令是来自于LMF的定位专用信令。
Step 2:在T1时刻,参考基站向全部第一UE发送第一下行PRS信号。
Step 3:在T2时刻,参考基站向全部第二UE发送第二下行PRS信号。
相应地,非参考基站侧的时钟偏差确定方法包括:
Step 1:非参考基站接收第一下行PRS信号的配置信令和第二下行PRS信号的配置信令;
其中,任一所述配置信令是来自于LMF的定位专用信令。
Step 2:在T1时刻,非参考基站向全部第一UE发送第一下行PRS信号。
Step 3:非参考基站接收多个参考UE反馈的第一时钟偏差,进一步基于第一时钟偏差和预定义的准则确定第二时钟偏差,其中,预定义准则包括但不限于算术平均、选择信道条件最优值和加权平均。
Step 4:非参考基站基于上述第二时钟偏差,修正自身相对于参考基站的第二时钟偏差;
Step 5:在T2时刻,非参考基站在修正了自身相对于参考基站的第二时钟偏差之后,向全部第二UE发送第二下行PRS信号。
需要说明的是,本申请实施例所述的向全部第二UE发送第二下行PRS信号,仅是一个较佳的实施例,并不限于此,也可以向部分第二UE发送第二下行PRS信号。
LMF侧的时钟偏差确定方法包括:
Step 1:LMF向第一UE和第二UE发送第一下行PRS信号的配置信令,向第二UE发送第二下行PRS信号的配置信令,向参考基站和非参考基站发送第一下行PRS信号的配置信令,向参考基站和非参考基站发送第二下行PRS信号的配置信令;其中,上述配置信令可以同时发送,也可以依次发送。本申请实施例中对本步骤中的各个步骤的执行顺序不进行限制。
Step 2:LMF接收第一UE上报的第二定位测量值TDOA(即RSTD)。
Step 3:LMF基于第二定位测量值进行下行定位,例如:基于OTDOA的定位方案。
下面进一步给出具体实施例的详细说明。
实施例1:
实施例1针对上述方案1的第一UE和LMF进行解释说明,其中,第一UE(即参考UE)是专用于定位测量的UE,包括UE a和UE b;目标UE c反馈的第一定位测量值是TDOA(即RSTD);定位参考信号PRS是NR PRS;基站i为参考基站,基站j为非参考基站。
第一UE(参考UE)侧的时钟偏差确定方法包括:
Step 1:第一UE a和第一UE b接收第一下行PRS信号的配置信令;其中,第一下行PRS是NR PRS,该配置信令可以是来自于LMF的定位专用信令,也可以是来自服务基站的广播信令、UE专属RRC信令或者DCI信令。
Step 2:第一UE a接收并测量参考基站i和非参考基站j的第一下行PRS信号,得到参考基站i和非参考基站j之间的第一时钟偏差
Figure PCTCN2020123668-appb-000001
同理,可得第一UE b关于参考基站i和非参考基站j之间的第一时钟偏差
Figure PCTCN2020123668-appb-000002
设参考UE(接收端)a通过测量参考基站(发送端)i发送的PRS信号获得的TOA测量值为
Figure PCTCN2020123668-appb-000003
Figure PCTCN2020123668-appb-000004
在时刻k可以表达如下:
Figure PCTCN2020123668-appb-000005
其中,
Figure PCTCN2020123668-appb-000006
表示以米为单位的TOA测量值,
Figure PCTCN2020123668-appb-000007
是参考基站i和参考UE a之间的理想距离,可由已知的基站位置和参考UE a的位置得出。c是光速,取值为3.0*10^8(米/秒),b r,a和b t,i分别是UE a和参考基站i的时钟偏差(即时间同步误差),
Figure PCTCN2020123668-appb-000008
是参考基站i对应的TOA测量误差。
设参考UE a通过测量非参考基站j发送的PRS信号获得的TOA测量值为
Figure PCTCN2020123668-appb-000009
Figure PCTCN2020123668-appb-000010
其中,b t,j是非参考基站j的时钟偏差(即时间同步误差),
Figure PCTCN2020123668-appb-000011
是非参考基站j对应的TOA测量误差。
上面两式相减可得:在时刻k,参考UE a针对参考基站i和非参考基站j的单差分TOA(即TDOA)值为:
Figure PCTCN2020123668-appb-000012
其中,
Figure PCTCN2020123668-appb-000013
表示在时刻k、参考基站i和非参考基站j之间的时钟偏差,
Figure PCTCN2020123668-appb-000014
表示参考UE a与参考基站i以及参考基站j之间的理想距离差,其中,
Figure PCTCN2020123668-appb-000015
是参考基站i和参考UE a之间的理想距离,
Figure PCTCN2020123668-appb-000016
是参考基站j和参考UE a之间的理想距离;
Figure PCTCN2020123668-appb-000017
是单差分TOA测量误差,
Figure PCTCN2020123668-appb-000018
是参考基站j对应的TOA测量误差,
Figure PCTCN2020123668-appb-000019
是参考基站i对应的TOA测量误差。
对于参考UE a,已知自身的绝对位置以及距离基站i和基站j的理想距离
Figure PCTCN2020123668-appb-000020
Figure PCTCN2020123668-appb-000021
因此,可以计算得到理想距离差
Figure PCTCN2020123668-appb-000022
代入上面公式(3)可得在时刻k的基站i和基站j的第一时钟偏差估计值
Figure PCTCN2020123668-appb-000023
Figure PCTCN2020123668-appb-000024
可以通过多个时刻
Figure PCTCN2020123668-appb-000025
进行平均抑制噪声处理,得到参考UE a估计的参考基站i和非参考基站j的第一时钟偏差值
Figure PCTCN2020123668-appb-000026
Figure PCTCN2020123668-appb-000027
其中,K是大于等于1的正整数。
同理,可得参考UE b估计的参考基站i和非参考基站j的第一时钟偏差值
Figure PCTCN2020123668-appb-000028
计算过程参见实施例1的公式(1)到公式(5)。
Step 3:第一UE a和第一UE b分别把上述第一时钟偏差估计值
Figure PCTCN2020123668-appb-000029
Figure PCTCN2020123668-appb-000030
上报给LMF,用于LMF进行时钟偏差校准和后续UE定位计算。
LMF侧的时钟偏差确定方法包括:
Step 1:LMF向第一UE发送第一下行PRS信号的配置信令,向第二UE发送第二下行PRS信号的配置信令,向参考基站和非参考基站发送第一下行PRS信号的配置信令,向参考基站和非参考基站发送第二下行PRS信号的配置信令;其中,上述配置信令可以同时发送,也可以依次发送,本申请实施例对该步骤中的各个步骤的执行顺序不进行限定。
Step 2:LMF接收第一UE上报的第一时钟偏差估计值
Figure PCTCN2020123668-appb-000031
Figure PCTCN2020123668-appb-000032
基于预定义准则确定第二时钟偏差
Figure PCTCN2020123668-appb-000033
其中,
Figure PCTCN2020123668-appb-000034
为参考UE a上报的第一时钟偏差估计值,
Figure PCTCN2020123668-appb-000035
为参考UE b上报的第一时钟偏差估计值。
LMF联合两个第一UE(包括参考UE a和参考UE b)上报的第一时钟偏差,可以计算出更加准确的基站i和基站j之间的第二时钟偏差:
Figure PCTCN2020123668-appb-000036
预定义准则至少有以下三种计算方法:
Option1:算术平均,例如:
Figure PCTCN2020123668-appb-000037
Option2:选择信道条件最优(例如:参考信号接收功率(Reference Signal Receive Power,RSRP)和/或信干噪比(Signal to Interference plus Noise Ratio,SINR)最大的UE的信道条件最优)的参考UE的时钟偏差作为第二时钟偏差
Figure PCTCN2020123668-appb-000038
例如:参考UE a的RSRP和/或SINR分别大于参考UE b的RSRP和/或SINR,即参考UE a的RSRP大于参考UE b的RSRP,和/或,参考UE a的SINR大于参考UE b的SINR,则选择
Figure PCTCN2020123668-appb-000039
反之,选择
Figure PCTCN2020123668-appb-000040
Option3:加权平均,例如:
Figure PCTCN2020123668-appb-000041
其中,f是介于0到1之间的加权系数,可以根据UE a和UE b的信道条件来确定f取值。
在实施例1中,采用Option1。
Step 3:LMF基于第二时钟偏差
Figure PCTCN2020123668-appb-000042
针对目标UE c反馈的第一定位测量值(TDOA)
Figure PCTCN2020123668-appb-000043
进行修正,并得到第二定位测量值
Figure PCTCN2020123668-appb-000044
假设LMF接收到的目标UE c上报的参考基站i和非参考基站j的第一定位测量值(TDOA)
Figure PCTCN2020123668-appb-000045
为:
Figure PCTCN2020123668-appb-000046
LMF基于第二时钟偏差
Figure PCTCN2020123668-appb-000047
采用下面公式针对第一定位测量值(TDOA)
Figure PCTCN2020123668-appb-000048
进行修正:
Figure PCTCN2020123668-appb-000049
其中,假设
Figure PCTCN2020123668-appb-000050
Step 4:LMF基于修正后得到的第二定位测量值
Figure PCTCN2020123668-appb-000051
针对目标UE c进行下行定位获得目标UE c的实际位置,例如:采用基于OTDOA的定位方案。
现有TDD系统基站之间的时钟偏差最大值在正负50ns,通过上述处理之后,可以使得残余的时钟偏差在10ns左右。
实施例2:
实施例2针对方案2的第一UE和第二UE进行解释说明,其中,第一UE(即参考UE)是专用于定位测量的UE,包括UE a和UE b;目标UE c测量得到的第一定位测量值是TDOA(即RSTD);定位参考信号PRS是NR PRS;基站i为参考基站,基站j为非参考基站。
第一UE(参考UE)侧的时钟偏差确定方法包括:
Step 1:第一UE a和第一UE b接收第一下行PRS信号的配置信令;其中,第一下行PRS是NR PRS,该配置信令可以是来自于LMF的定位专用信令,也可以是来自服务基站的广播信令、UE专属RRC信令或者DCI信令。
Step 2:第一UE a接收并测量参考基站i和非参考基站j的第一下行PRS信号,得到参考基站i和非参考基站j之间的第一时钟偏差
Figure PCTCN2020123668-appb-000052
同理可得第一UE b关于参考基站i和非参考基站j之间的第一时钟偏差
Figure PCTCN2020123668-appb-000053
其中,第一时钟偏差
Figure PCTCN2020123668-appb-000054
Figure PCTCN2020123668-appb-000055
的计算过程参见实施例1的公式(1)到公式(5)。
Step 3:第一UE a和第一UE b分别把上述第一时钟偏差估计值
Figure PCTCN2020123668-appb-000056
Figure PCTCN2020123668-appb-000057
上报给LMF,用于LMF把该第一时钟偏差转发给第二UE c。
第二UE(目标UE)侧的时钟偏差确定方法包括:
Step 1:第二UE c接收第二下行PRS信号的配置信令;其中,第二下行PRS是NR PRS,该配置信令可以是来自于LMF的定位专用信令,也可以是来自服务基站的广播信令、UE专属RRC信令或者DCI信令。
Step 2:第二UE c接收并测量参考基站和非参考基站的第二下行PRS信号,得到第一定位测量值(即TDOA(RSTD))。
Step 3:第二UE c接收LMF转发的第一UE a和第一UE b测量得到的关于参考基站和非参考基站的第一时钟偏差估计值
Figure PCTCN2020123668-appb-000058
Figure PCTCN2020123668-appb-000059
并基于预定义的准则确定第二时钟偏差
Figure PCTCN2020123668-appb-000060
第二UE c根据LMF转发的两个第一UE(即参考UE a和参考UE b)测量得到的第一时钟偏差,可以计算出更加准确的基站i和基站j之间的第二时钟偏差:
Figure PCTCN2020123668-appb-000061
至少有以下三种计算方法:
Option1:算术平均,例如:
Figure PCTCN2020123668-appb-000062
Option2:选择信道条件最优(例如:RSRP和/或SINR最大的UE的信道条件最优)的参考UE的时钟偏差作为第二时钟偏差
Figure PCTCN2020123668-appb-000063
例如:参考UE a的RSRP和/或SINR大于参考UE b的RSRP和/或SINR,即参考UE a的RSRP大于参考UE b的RSRP,和/或,参考UE a的SINR大于参考UE b的SINR,则选择
Figure PCTCN2020123668-appb-000064
反之,选择
Figure PCTCN2020123668-appb-000065
Option3:加权平均,例如:
Figure PCTCN2020123668-appb-000066
其中,f是介于0到1之间的加权系数,可以根据UE a和UE b的信道条件来确定f取值。
在实施例2中,采用Option2。
Step 4:第二UE基于第二时钟偏差
Figure PCTCN2020123668-appb-000067
针对Step2测量的第一定位测量值(TDOA)
Figure PCTCN2020123668-appb-000068
进行修正,并得到第二定位测量值
Figure PCTCN2020123668-appb-000069
假设第二UE(目标UE)c测量的基站i和基站j的第一定位测量值(TDOA)
Figure PCTCN2020123668-appb-000070
为:
Figure PCTCN2020123668-appb-000071
第二UE基于第二时钟偏差
Figure PCTCN2020123668-appb-000072
采用下面公式针对第一定位测量值(TDOA)
Figure PCTCN2020123668-appb-000073
进行修正:
Figure PCTCN2020123668-appb-000074
其中,假设
Figure PCTCN2020123668-appb-000075
Step 5:第二UE基于修正后得到的第二定位测量值进行下行定位,例如: 基于OTDOA的定位方案。
现有TDD系统基站之间的时钟偏差最大值在正负50ns,通过上述处理之后,可以使得残余的时钟偏差在10ns左右。
实施例3:
实施例3针对方案3的第一UE和非参考基站进行解释说明,其中,第一UE(即参考UE)是专用于定位测量的UE,包括UE a和UE b;目标UE c反馈的第一定位测量值是TDOA(即RSTD);定位参考信号PRS是NR PRS;基站i为参考基站,基站j为非参考基站。
第一UE(参考UE)侧的时钟偏差确定方法包括:
Step 1:第一UE a和第一UE b接收第一下行PRS信号的配置信令;其中,第一下行PRS是NR PRS,该配置信令可以是来自于LMF的定位专用信令,也可以是来自服务基站的广播信令、UE专属RRC信令或者DCI信令。
Step 2:第一UE a接收并测量参考基站i和非参考基站j的第一下行PRS信号,得到参考基站i和非参考基站j之间的第一时钟偏差
Figure PCTCN2020123668-appb-000076
同理可得第一UE b关于参考基站i和非参考基站j之间的第一时钟偏差
Figure PCTCN2020123668-appb-000077
计算过程参见实施例1的公式(1)到公式(5)。
Step 3:第一UE a和第一UE b分别把上述第一时钟偏差估计值
Figure PCTCN2020123668-appb-000078
Figure PCTCN2020123668-appb-000079
上报给非参考基站j。
相应地,非参考基站侧的时钟偏差确定方法包括:
Step 1:非参考基站接收第一下行PRS信号和第二下行PRS信号的配置信令;该配置信令是来自于LMF的定位专用信令。
Step 2:在T1时刻,非参考基站向全部第一UE发送第一下行PRS信号。
Step 3:非参考基站接收多个参考UE反馈的第一时钟偏差,基于预定义准则确定第二时钟偏差,其中,预定义准则包括但不限于算术平均、选择信道条件最优值和加权平均。
非参考基站j联合两个第一UE(包括参考UE a和参考UE b)上报的第 一时钟偏差,可以计算出更加准确的基站i和基站j之间的第二时钟偏差
Figure PCTCN2020123668-appb-000080
预定义准则至少有以下三种计算方法:
Option1:算术平均,例如:
Figure PCTCN2020123668-appb-000081
Option2:选择信道条件最优(例如:RSRP和/或SINR最大的UE的信道条件最优)的参考UE的时钟偏差作为第二时钟偏差
Figure PCTCN2020123668-appb-000082
例如:参考UE a的RSRP和/或SINR大于参考UE b的RSRP和/或SINR,即参考UE a的RSRP大于参考UE b的RSRP,和/或,参考UE a的SINR大于参考UE b的SINR,则选择
Figure PCTCN2020123668-appb-000083
反之,选择
Figure PCTCN2020123668-appb-000084
Option3:加权平均,例如:
Figure PCTCN2020123668-appb-000085
其中,f是介于0到1之间的加权系数,可以根据UE a和UE b的信道条件来确定f取值。
在实施例3中,采用Option3。
Step 4:非参考基站基于上述第二时钟偏差
Figure PCTCN2020123668-appb-000086
修正自身相对于参考基站i的第二时钟偏差;
Step 5:在T2时刻,非参考基站在修正了自身相对于参考基站的第二时钟偏差之后,向全部第二UE发送第二下行PRS信号。
TDD系统基站之间的时钟偏差最大值在正负50ns,通过上述处理,并结合较大的传输带宽和高精度的TOA估计算法(例如:BW=400MHz,TOA测量算法采用MUSIC算法),可以使得残余的时钟偏差在1ns左右。
综上所述,参见图4,在终端侧(适用于参考终端,也适用于目标终端),本申请实施例提供的一种时钟偏差确定方法,包括:
S101、获取第一下行定位参考信号PRS的配置信令,并基于所述第一下行PRS的配置信令接收并测量来自于参考基站和非参考基站的第一下行PRS;
S102、基于所述第一下行PRS确定并发送所述参考基站和所述非参考基站之间的第一时钟偏差,使得接收到所述第一时钟偏差的节点基于所述第一时钟偏差,确认第二时钟偏差。
通过该方法,获取第一下行定位参考信号PRS的配置信令,并基于所述 第一下行PRS的配置信令接收并测量来自于参考基站和非参考基站的第一下行PRS;基于所述第一下行PRS确定并发送所述参考基站和所述非参考基站之间的第一时钟偏差,使得接收到所述第一时钟偏差的节点基于所述第一时钟偏差,确认第二时钟偏差,降低了基站之间的时钟偏差,从而提高定位精度。
可选地,将所述第一时钟偏差发送给定位管理功能LMF实体或非参考基站。
相应地,参见图5,在终端侧(适用于目标终端),本申请实施例提供的一种时钟偏差确定方法,包括:
S201、接收参考基站和非参考基站之间的第一时钟偏差;其中,所述第一时钟偏差是第一终端通过测量来自于所述参考基站和所述非参考基站的第一下行定位参考信号PRS确定的;
S202、基于所述第一时钟偏差,确定第二时钟偏差。
可选地,基于所述第一时钟偏差,确定第二时钟偏差之前,该方法还包括:获取第二下行定位参考信号PRS的配置信令,并基于所述第二下行PRS的配置信令接收并测量来自于参考基站和非参考基站的第二下行PRS;基于所述第二下行PRS确定第一定位测量值;
基于所述第一时钟偏差,确定第二时钟偏差之后,该方法还包括:基于所述第二时钟偏差,针对所述第一定位测量值进行修正,得到第二定位测量值。
可选地,该方法还包括:
基于所述第二定位测量值进行定位。
可选地,基于所述第一时钟偏差,确定第二时钟偏差,具体包括:
基于所述第一时钟偏差和预定义准则,确定第二时钟偏差;
可选地,所述预定义准则包括下列计算准则之一或组合:算术平均、选择信道条件最优值、加权平均。
可选地,所述第一时钟偏差,是由定位管理功能LMF实体通过接收第一 UE上报的第一时钟偏差,并且把所述第一时钟偏差转发给第二UE的。
相应地,参见图6,在网络侧,本申请实施例提供的一种时钟偏差确定方法,包括:
S301、向第一终端发送第一下行PRS的配置信令,以及向第二终端发送第二下行PRS的配置信令;
S302、接收第一终端和/或第二终端上报的参考基站和非参考基站之间的第一时钟偏差;
S303、基于所述第一时钟偏差,确定第二时钟偏差。
可选地,基于所述第一时钟偏差,确定第二时钟偏差,具体包括:
将所述第一时钟偏差转发给第二终端,由第二终端基于所述第一时钟偏差确定第二时钟偏差。
可选地,该方法还包括:
基于所述第二时钟偏差,针对第二终端上报的第一定位测量值进行修正,得到第二定位测量值。
可选地,该方法还包括:
基于所述第二定位测量值进行定位。
可选地,该方法还包括:基于所述第二时钟偏差,修正非参考基站相对于参考基站的时钟偏差。
可选地,向第一终端发送第一下行PRS的配置信令,以及向第二终端发送第二下行PRS的配置信令之前,该方法还包括:接收第一下行PRS信号的配置信令和第二下行PRS信号的配置信令;基于所述第一下行PRS信号的配置信令,向第一终端发送第一下行PRS信号;
在修正了非参考基站相对于参考基站的时钟偏差之后,该方法还包括:基于所述第二下行PRS信号的配置信令,向第二终端发送第二下行PRS信号。
可选地,所述接收第一下行PRS信号的配置信令和第二下行PRS信号的配置信令,具体包括:
接收来定位管理功能LMF实体发送的第一下行PRS信号的配置信令和第 二下行PRS信号的配置信令。
可选地,基于所述第一时钟偏差,确定第二时钟偏差,具体包括:
基于所述第一时钟偏差和预定义准则,确定第二时钟偏差。
可选地,所述预定义准则包括下列计算准则之一或组合:算术平均、选择信道条件最优值、加权平均。
可选地,该方法还包括:
向参考基站和非参考基站发送第一下行PRS信号的配置信令,向参考基站和非参考基站发送第二下行PRS信号的配置信令。
例如,在定位管理服务器侧,例如LMF侧,本申请实施例提供的一种时钟偏差确定方法,包括:
接收第一终端和/或第二终端上报的参考基站和非参考基站之间的第一时钟偏差;
基于所述第一时钟偏差,确定第二时钟偏差;或者,将所述第一时钟偏差转发给第二终端,由第二终端基于所述第一时钟偏差确定第二时钟偏差。
可选地,该方法还包括:
基于所述第二时钟偏差,针对第二终端上报的第一定位测量值进行修正,得到第二定位测量值。
可选地,该方法还包括:
基于所述第二定位测量值进行定位。
可选地,基于所述第一时钟偏差,确定第二时钟偏差,具体包括:
基于所述第一时钟偏差和预定义准则,确定第二时钟偏差。
可选地,所述预定义准则包括下列计算准则之一或组合:算术平均、选择信道条件最优值、加权平均。
可选地,该方法还包括:
向第一终端发送第一下行PRS信号的配置信令,向第二终端发送第二下行PRS信号的配置信令,向参考基站和非参考基站发送第一下行PRS信号的配置信令,向参考基站和非参考基站发送第二下行PRS信号的配置信令。
在基站侧,例如在非参考基站侧,本申请实施例提供的一种时钟偏差确定方法,包括:
接收第一终端和/或第二终端上报的参考基站和非参考基站之间的第一时钟偏差;
基于所述第一时钟偏差,确定第二时钟偏差;
基于所述第二时钟偏差,修正非参考基站相对于参考基站的时钟偏差。
可选地,该方法还包括:
接收第一下行PRS信号的配置信令和第二下行PRS信号的配置信令;
基于所述第一下行PRS信号的配置信令,向第一终端发送第一下行PRS信号;
在修正了非参考基站相对于参考基站的时钟偏差之后,基于所述第二下行PRS信号的配置信令,向第二终端发送第二下行PRS信号。
可选地,所述配置信令是来自于定位管理功能LMF实体的定位专用信令。
可选地,基于所述第一时钟偏差,确定第二时钟偏差,具体包括:
基于所述第一时钟偏差和预定义准则,确定第二时钟偏差。
可选地,所述预定义准则包括下列计算准则之一或组合:算术平均、选择信道条件最优值、加权平均。
与上述各个方法相对应的,下面介绍一下本申请实施例提供的装置。
参见图7,在终端侧(适用于参考终端,也适用于目标终端),本申请实施例提供的一种时钟偏差确定装置,包括:
第一单元11,用于获取第一下行定位参考信号PRS的配置信令,并基于所述第一下行PRS的配置信令接收并测量来自于参考基站和非参考基站的第一下行PRS;
第二单元12,用于基于所述第一下行PRS确定并发送所述参考基站和所述非参考基站之间的第一时钟偏差,使得接收到所述第一时钟偏差的节点基于所述第一时钟偏差,确认第二时钟偏差。
可选地,所述第二单元12具体用于:
将所述第一时钟偏差发送给定位管理功能LMF实体或非参考基站。
相应地,参见图8,在终端侧(适用于目标终端),本申请实施例提供的另一种时钟偏差确定装置,包括:
第三单元21,用于接收参考基站和非参考基站之间的第一时钟偏差;其中,所述第一时钟偏差是第一终端通过测量来自于所述参考基站和所述非参考基站的第一下行定位参考信号PRS确定的;
第四单元22,用于基于所述第一时钟偏差,确定第二时钟偏差。
可选地,所述第四单元22还用于:
获取第二下行定位参考信号PRS的配置信令,并基于所述第二下行PRS的配置信令接收并测量来自于参考基站和非参考基站的第二下行PRS;基于所述第二下行PRS确定第一定位测量值;
所述第四单元22还用于:
基于所述第二时钟偏差,针对所述第一定位测量值进行修正,得到第二定位测量值。
可选地,所述第四单元22还用于:
基于所述第二定位测量值进行定位。
可选地,所述第四单元22具体用于:
基于所述第一时钟偏差和预定义准则,确定第二时钟偏差。
可选地,所述预定义准则包括下列计算准则之一或组合:算术平均、选择信道条件最优值、加权平均。
可选地,所述第三单元21具体用于:
通过接收第一终端上报的第一时钟偏差,并且把所述第一时钟偏差转发给第二终端的。
相应地,参见图9,在网络侧,例如LMF侧或基站侧,本申请实施例提供的一种时钟偏差确定装置,包括:
发送单元31,用于向第一终端发送第一下行PRS的配置信令,以及向第二终端发送第二下行PRS的配置信令;
接收单元32,用于接收第一终端和/或第二终端上报的参考基站和非参考基站之间的第一时钟偏差;
确定单元33,用于基于所述第一时钟偏差,确定第二时钟偏差。
可选地,所述确定单元33具体用于:
将所述第一时钟偏差转发给第二终端,由第二终端基于所述第一时钟偏差确定第二时钟偏差。
可选地,所述确定单元33具体用于:
基于所述第二时钟偏差,针对第二终端上报的第一定位测量值进行修正,得到第二定位测量值。
可选地,所述确定单元33还用于:
基于所述第二定位测量值进行定位。
可选地,所述确定单元33还用于:
基于所述第二时钟偏差,修正非参考基站相对于参考基站的时钟偏差。
可选地,所述发送单元31还用于:
接收第一下行PRS信号的配置信令和第二下行PRS信号的配置信令;基于所述第一下行PRS信号的配置信令,向第一终端发送第一下行PRS信号;
在修正了非参考基站相对于参考基站的时钟偏差之后,发送单元901还用于:
基于所述第二下行PRS信号的配置信令,向第二终端发送第二下行PRS信号。
可选地,所述发送单元31还用于:
接收来定位管理功能LMF实体发送的第一下行PRS信号的配置信令和第二下行PRS信号的配置信令。
可选地,所述确定单元33具体用于:
基于所述第一时钟偏差和预定义准则,确定第二时钟偏差。
可选地,所述预定义准则包括下列计算准则之一或组合:算术平均、选择信道条件最优值、加权平均。
可选地,所述发送单元31还用于:
向参考基站和非参考基站发送第一下行PRS的配置信令,向参考基站和非参考基站发送第二下行PRS的配置信令。
参见图10,本申请实施例提供的一种终端(适用于参考终端,也适用于目标终端),包括收发机610、处理器600和存储器620:
收发机610,用于在处理器600的控制下接收和发送数据;
处理器600,用于读取存储器620中的程序,执行下列过程:
获取第一下行定位参考信号PRS的配置信令,并基于所述第一下行PRS的配置信令接收并测量来自于参考基站和非参考基站的第一下行PRS;
基于所述第一下行PRS确定并发送所述参考基站和所述非参考基站之间的第一时钟偏差,使得接收到所述第一时钟偏差的节点基于所述第一时钟偏差,确认第二时钟偏差。
可选地,所述处理器600具体用于:
通过所述收发机610将所述第一时钟偏差上报给定位管理功能LMF实体或非参考基站。
除此之外,当本申请实施例提供的终端作为目标终端时,包括收发机610、处理器600和存储器620:
收发机610,用于在处理器的控制下接收和发送数据;
处理器600,还用于读取存储器620中的程序,执行下列过程:
通过所述收发机610接收参考基站和非参考基站之间的第一时钟偏差;其中,所述第一时钟偏差是第一终端通过测量来自于所述参考基站和所述非参考基站的第一下行定位参考信号PRS确定的;
基于所述第一时钟偏差,确定第二时钟偏差。
可选地,所述处理器600还用于:
基于所述第一时钟偏差,确定第二时钟偏差之前,获取第二下行定位参考信号PRS的配置信令,并基于所述第二下行PRS的配置信令接收并测量来自于参考基站和非参考基站的第二下行PRS;基于所述第二下行PRS确定第 一定位测量值;
基于所述第一时钟偏差,确定第二时钟偏差之后,基于所述第二时钟偏差,针对所述第一定位测量值进行修正,得到第二定位测量值。
可选地,所述处理器600还用于:
基于所述第二定位测量值进行定位。
可选地,所述处理器600具体用于:
基于所述第一时钟偏差和预定义准则,确定第二时钟偏差。
可选地,所述预定义准则包括下列计算准则之一或组合:算术平均、选择信道条件最优值、加权平均。
可选地,所述第一时钟偏差,是由定位管理功能LMF实体通过接收第一UE上报的第一时钟偏差,并且把所述第一时钟偏差转发给第二UE的。
其中,在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口630还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
可选的,处理器600可以是中央处理器(Center Processing Unit,CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。
参见图11,本申请实施例提供的一种时钟偏差确定装置,包括收发机501、处理器504和存储器505:
收发机501,用于在处理器504的控制下接收和发送数据;
处理器504,用于读取存储器505中的程序,执行下列过程:
通过所述收发机501向第一终端发送第一下行PRS的配置信令,以及向第二终端发送第二下行PRS的配置信令;
通过所述收发机501接收第一终端和/或第二终端上报的参考基站和非参考基站之间的第一时钟偏差;
基于所述第一时钟偏差,确定第二时钟偏差。
可选地,所述处理器504具体用于:
将所述第一时钟偏差转发给第二终端,由第二终端基于所述第一时钟偏差确定第二时钟偏差。
可选地,所述处理器504还用于:
基于所述第二时钟偏差,针对第二终端上报的第一定位测量值进行修正,得到第二定位测量值。
可选地,所述处理器504还用于:
基于所述第二定位测量值进行定位。
可选地,所述处理器504还用于:
基于所述第二时钟偏差,修正非参考基站相对于参考基站的时钟偏差。
可选地,所述处理器504还用于:
通过所述收发机501接收第一下行PRS信号的配置信令和第二下行PRS信号的配置信令;基于所述第一下行PRS信号的配置信令,向第一终端发送第一下行PRS信号;
基于所述第二下行PRS信号的配置信令,通过所述收发机501向第二终端发送第二下行PRS信号。
可选地,所述收发机501具体用于:
接收来定位管理功能LMF实体发送的第一下行PRS信号的配置信令和第二下行PRS信号的配置信令。
可选地,所述处理器504具体用于:
基于所述第一时钟偏差和预定义准则,确定第二时钟偏差。
可选地,所述预定义准则包括下列计算准则之一或组合:算术平均、选择信道条件最优值、加权平均。
可选地,所述处理器504还用于:
向参考基站和非参考基站发送第一下行PRS信号的配置信令,向参考基站和非参考基站发送第二下行PRS信号的配置信令。
在图11中,总线架构(用总线506来代表),总线506可以包括任意数量的互联的总线和桥,总线506将包括由处理器504代表的一个或多个处理器和存储器505代表的存储器的各种电路链接在一起。总线500还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口503在总线506和收发机501之间提供接口。收发机501可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器504处理的数据通过天线502在无线介质上进行传输,进一步,天线502还接收数据并将数据传送给处理器504。
处理器504负责管理总线506和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器505可以被用于存储处理器504在执行操作时所使用的数据。
可选的,处理器504可以是中央处理器CPU、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例提供了一种计算设备,该计算设备具体可以为桌面计算机、便携式计算机、智能手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)等。该计算设备可以包括中央处理器CPU、存储器、输入/输出设备等,输入设备可以包括键盘、鼠标、触摸屏等,输出设备可以包括显示设备,如液晶显示器(Liquid Crystal Display,LCD)、阴极射线管(Cathode Ray Tube,CRT)等。
存储器可以包括只读存储器(ROM)和随机存取存储器(RAM),并向处理器提供存储器中存储的程序指令和数据。在本申请实施例中,存储器可以用于存储本申请实施例提供的任一所述方法的程序。
处理器通过调用存储器存储的程序指令,处理器用于按照获得的程序指令执行本申请实施例提供的任一所述方法。
本申请实施例提供了一种计算机存储介质,用于储存为上述本申请实施例提供的装置所用的计算机程序指令,其包含用于执行上述本申请实施例提供的任一方法的程序。
所述计算机存储介质可以是计算机能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD)) 等。
本申请实施例提供的方法可以应用于终端设备,也可以应用于网络设备。
其中,终端设备也可称之为用户设备UE、移动台(Mobile Station,简称为“MS”)、移动终端(Mobile Terminal)等,可选的,该终端可以具备经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信的能力,例如,终端可以是移动电话(或称为“蜂窝”电话)、或具有移动性质的计算机等,例如,终端还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
网络设备可以为基站(例如,接入点),指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以是5G系统中的gNB等。本申请实施例中不做限定。
上述方法处理流程可以用软件程序实现,该软件程序可以存储在存储介质中,当存储的软件程序被调用时,执行上述方法步骤。
综上所述,本申请实施例提出的技术方案包括:
首先,第一UE(即参考UE)和/或第二UE(即目标UE)测量来自于参考基站和非参考基站的下行定位参考信号PRS,获取第一定位测量值(即TDOA测量值),进一步计算得到参考基站和非参考基站之间的第一时钟偏差。
然后,第一UE和/或第二UE采用三种方式把第一时钟偏差分别上报给不同的对象并且进行后续处理:
方式1)、第一UE和/或第二UE把第一时钟偏差反馈上报给LMF,由LMF确定第二时钟偏差,然后LMF基于第二时钟偏差,针对第二UE反馈的第一定位测量值TDOA(即RSTD)做修正并得到第二定位测量值,然后基于第二 定位测量值进行定位计算(例如:基于OTDOA的下行定位计算或者基于UTDOA的上行定位计算)。
方式2)、第一UE把第一时钟偏差反馈上报给LMF,然后LMF转发第二UE,然后由第二UE基于第一时钟偏差确定第二时钟偏差,并且目标UE针对第一定位测量值TDOA(即RSTD)做修正并得到第二定位测量值,然后基于修正后得到的第二定位测量值进行基于OTDOA的下行定位。
方式3)、第一UE和/或第二UE把第一时钟偏差反馈给非参考基站,由非参考基站确定第二时钟偏差,然后非参考基站基于第二时钟偏差修正自身相对于参考基站的第二时钟偏差,然后参考基站和非参考基站分别再向第二UE发送下行PRS信号;第二UE进一步接收并且测量下行PRS信号,然后基于下行OTDOA进行下行定位计算。
其中,第一UE可以是专用于定位测量的UE,也可以是常规UE;定位参考信号PRS可以是任意下行信号,包括但不限于:NR PRS、NR C-PRS、SSB和CSI-RS等;LMF可以基于多个参考UE反馈的第一时钟偏差,基于预定义准则确定第二时钟偏差,其中,预定义准则包括但不限于算术平均、选择信道条件最优值和加权平均。
本申请实施例提供的三种方案中的第一UE(参考UE)、方案1中的LMF、方案2中的第二UE(目标UE)和方案3中的非参考基站分别执行如下步骤:
第一UE(参考UE)执行如下步骤:
Step 1:第一UE接收第一下行PRS信号的配置信令;其中,第一下行PRS可以是任意下行信号,包括但不限于NR PRS、NR C-PRS、SSB和CSI-RS,该配置信令可以是来自于LMF的定位专用信令,也可以是来自服务基站的广播信令、UE专属RRC信令或者DCI信令。
Step 2:第一UE接收并测量参考基站和非参考基站的第一下行PRS信号,得到参考基站和非参考基站之间的第一时钟偏差。
Step 3:第一UE把该第一时钟偏差上报给LMF,或者非参考基站。
方案1中的LMF执行如下步骤:
Step 1:LMF向第一UE发送第一下行PRS信号的配置信令,向第二UE发送第二下行PRS信号的配置信令,向参考基站和非参考基站发送第一下行PRS信号的配置信令,向参考基站和非参考基站发送第二下行PRS信号的配置信令;其中,上述配置信令可以同时发送,也可以依次发送。
Step 2:LMF接收第一UE上报的第一时钟偏差,基于预定义的准则确定第二时钟偏差,其中,预定义准则包括但不限于算术平均、选择信道条件最优值和加权平均。
Step 3:LMF基于第二时钟偏差,针对目标UE反馈的第一定位测量值TDOA(即RSTD)做修正并得到第二定位测量值。
Step 4:LMF基于修正后得到的第二定位测量值进行基于OTDOA的定位计算。
方案2中的第二UE(目标UE)执行如下步骤:
Step 1:第二UE接收第二下行PRS信号的配置信令;其中,第二下行PRS可以是任意下行信号,包括但不限于NR PRS、NR C-PRS、SSB和CSI-RS,该配置信令可以是来自于LMF的定位专用信令,也可以是来自服务基站的广播信令、UE专属RRC信令或者DCI信令。
Step 2:第二UE接收并测量参考基站和非参考基站的第二下行PRS信号,得到第一定位测量值TDOA(即RSTD)。
Step 3:第二UE接收LMF转发的关于参考基站和非参考基站的第一时钟偏差,基于预定义的准则确定第二时钟偏差,其中,预定义准则包括但不限于算术平均、选择信道条件最优值和加权平均。
Step 4:第二UE基于第二时钟偏差,针对Step2测量的第一定位测量值TDOA(即RSTD)做修正并得到第二定位测量值。
Step 5:第二UE基于修正后得到的第二定位测量值进行基于OTDOA的定位计算。
方案3中的非参考基站执行如下步骤:
Step 1:非参考基站接收第一下行PRS信号和第二下行PRS信号的配置 信令;该配置信令是来自于LMF的定位专用信令。
Step 2:在T1时刻,非参考基站向全部第一UE发送第一下行PRS信号。
Step 3:非参考基站接收多个参考UE反馈的第一时钟偏差,基于预定义的准则确定第二时钟偏差,其中,预定义准则包括但不限于算术平均、选择信道条件最优值和加权平均。
Step 4:非参考基站基于上述第二时钟偏差,修正自身相对于参考基站的第二时钟偏差;
Step 5:在T2时刻,非参考基站在修正了自身相对于参考基站的第二时钟偏差之后,向全部第二UE发送第二下行PRS信号。
因此,本申请实施例提出了一种基于TDOA测量值的基站之间时钟偏差校准方案。解决了现有单差分方案的定位算法精度受限于PRS信号的时钟偏差测量精度有限,从而使得系统定位性能下降的问题。现有TDD系统基站之间的时钟偏差最大值在正负50ns,通过本申请实施例提供的技术方案处理之后,可以使得残余的时钟偏差在10ns左右,甚至在1ns左右。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (34)

  1. 一种时钟偏差确定方法,其特征在于,该方法包括:
    获取第一下行定位参考信号PRS的配置信令,并基于所述第一下行PRS的配置信令接收并测量来自于参考基站和非参考基站的第一下行PRS;
    基于所述第一下行PRS确定并发送所述参考基站和所述非参考基站之间的第一时钟偏差,使得接收到所述第一时钟偏差的节点基于所述第一时钟偏差,确认第二时钟偏差。
  2. 根据权利要求1所述的方法,其特征在于,将所述第一时钟偏差发送给定位管理功能LMF实体或非参考基站。
  3. 一种时钟偏差确定方法,其特征在于,该方法包括:
    接收参考基站和非参考基站之间的第一时钟偏差;其中,所述第一时钟偏差是第一终端通过测量来自于所述参考基站和所述非参考基站的第一下行定位参考信号PRS确定的;
    基于所述第一时钟偏差,确定第二时钟偏差。
  4. 根据权利要求3所述的方法,其特征在于,基于所述第一时钟偏差,确定第二时钟偏差之前,该方法还包括:获取第二下行定位参考信号PRS的配置信令,并基于所述第二下行PRS的配置信令接收并测量来自于参考基站和非参考基站的第二下行PRS;基于所述第二下行PRS确定第一定位测量值;
    基于所述第一时钟偏差,确定第二时钟偏差之后,该方法还包括:基于所述第二时钟偏差,针对所述第一定位测量值进行修正,得到第二定位测量值。
  5. 根据权利要求4所述的方法,其特征在于,该方法还包括:
    基于所述第二定位测量值进行定位。
  6. 根据权利要求3所述的方法,其特征在于,基于所述第一时钟偏差,确定第二时钟偏差,具体包括:
    基于所述第一时钟偏差和预定义准则,确定第二时钟偏差。
  7. 根据权利要求6所述的方法,其特征在于,所述预定义准则包括下列计算准则之一或组合:算术平均、选择信道条件最优值、加权平均。
  8. 根据权利要求3所述的方法,其特征在于,所述第一时钟偏差是由定位管理功能LMF实体通过接收第一终端上报的第一时钟偏差,并且把所述第一时钟偏差转发给第二终端的。
  9. 一种时钟偏差确定方法,其特征在于,该方法包括:
    向第一终端发送第一下行PRS的配置信令,以及向第二终端发送第二下行PRS的配置信令;
    接收第一终端和/或第二终端上报的参考基站和非参考基站之间的第一时钟偏差;
    基于所述第一时钟偏差,确定第二时钟偏差。
  10. 根据权利要求9所述的方法,其特征在于,基于所述第一时钟偏差,确定第二时钟偏差,具体包括:
    将所述第一时钟偏差转发给第二终端,由第二终端基于所述第一时钟偏差确定第二时钟偏差。
  11. 根据权利要求9所述的方法,其特征在于,该方法还包括:
    基于所述第二时钟偏差,针对第二终端上报的第一定位测量值进行修正,得到第二定位测量值。
  12. 根据权利要求11所述的方法,其特征在于,该方法还包括:
    基于所述第二定位测量值进行定位。
  13. 根据权利要求9所述的方法,其特征在于,该方法还包括:基于所述第二时钟偏差,修正非参考基站相对于参考基站的时钟偏差。
  14. 根据权利要求13所述的方法,其特征在于,向第一终端发送第一下行PRS的配置信令,以及向第二终端发送第二下行PRS的配置信令之前,该方法还包括:接收第一下行PRS信号的配置信令和第二下行PRS信号的配置信令;基于所述第一下行PRS信号的配置信令,向第一终端发送第一下行PRS信号;
    在修正了非参考基站相对于参考基站的时钟偏差之后,该方法还包括:基于所述第二下行PRS信号的配置信令,向第二终端发送第二下行PRS信号。
  15. 根据权利要求14所述的方法,其特征在于,所述接收第一下行PRS信号的配置信令和第二下行PRS信号的配置信令,具体包括:
    接收来定位管理功能LMF实体发送的第一下行PRS信号的配置信令和第二下行PRS信号的配置信令。
  16. 根据权利要求9所述的方法,其特征在于,基于所述第一时钟偏差,确定第二时钟偏差,具体包括:
    基于所述第一时钟偏差和预定义准则,确定第二时钟偏差。
  17. 根据权利要求16所述的方法,其特征在于,所述预定义准则包括下列计算准则之一或组合:算术平均、选择信道条件最优值、加权平均。
  18. 根据权利要求9所述的方法,其特征在于,该方法还包括:
    向参考基站和非参考基站发送第一下行PRS的配置信令,向参考基站和非参考基站发送第二下行PRS的配置信令。
  19. 一种时钟偏差确定装置,其特征在于,包括:
    第一单元,用于获取第一下行定位参考信号PRS的配置信令,并基于所述第一下行PRS的配置信令接收并测量来自于参考基站和非参考基站的第一下行PRS;
    第二单元,用于基于所述第一下行PRS确定并发送所述参考基站和所述非参考基站之间的第一时钟偏差,使得接收到所述第一时钟偏差的节点基于所述第一时钟偏差,确认第二时钟偏差。
  20. 一种时钟偏差确定装置,其特征在于,包括:
    第三单元,用于接收参考基站和非参考基站之间的第一时钟偏差;其中,所述第一时钟偏差是第一终端通过测量来自于所述参考基站和所述非参考基站的第一下行定位参考信号PRS确定的;
    第四单元,用于基于所述第一时钟偏差,确定第二时钟偏差。
  21. 根据权利要求20所述的装置,其特征在于,所述第四单元还用于:
    获取第二下行定位参考信号PRS的配置信令,并基于所述第二下行PRS的配置信令接收并测量来自于参考基站和非参考基站的第二下行PRS;基于所述第二下行PRS确定第一定位测量值;
    基于所述第二时钟偏差,针对所述第一定位测量值进行修正,得到第二定位测量值。
  22. 根据权利要求20所述的装置,其特征在于,所述第四单元具体用于:
    基于所述第一时钟偏差和预定义准则,确定第二时钟偏差。
  23. 根据权利要求20所述的装置,其特征在于,所述预定义准则包括下列计算准则之一或组合:算术平均、选择信道条件最优值、加权平均。
  24. 根据权利要求20所述的装置,其特征在于,所述第三单元具体用于:
    通过接收第一终端上报的第一时钟偏差,并且把所述第一时钟偏差转发给第二终端的。
  25. 一种时钟偏差确定装置,其特征在于,包括:
    发送单元,用于向第一终端发送第一下行PRS的配置信令,以及向第二终端发送第二下行PRS的配置信令;
    接收单元,用于接收第一终端和/或第二终端上报的参考基站和非参考基站之间的第一时钟偏差;
    确定单元,用于基于所述第一时钟偏差,确定第二时钟偏差。
  26. 根据权利要求25所述的装置,其特征在于,所述确定单元具体用于:
    将所述第一时钟偏差转发给第二终端,由第二终端基于所述第一时钟偏差确定第二时钟偏差。
  27. 根据权利要求25所述的装置,其特征在于,所述确定单元具体用于:
    基于所述第二时钟偏差,针对第二终端上报的第一定位测量值进行修正,得到第二定位测量值。
  28. 根据权利要求25所述的装置,其特征在于,所述确定单元还用于:
    基于所述第二时钟偏差,修正非参考基站相对于参考基站的时钟偏差。
  29. 根据权利要求25所述的装置,其特征在于,所述确定单元具体用于:
    基于所述第一时钟偏差和预定义准则,确定第二时钟偏差。
  30. 根据权利要求25所述的装置,其特征在于,所述发送单元还用于:
    向参考基站和非参考基站发送第一下行PRS的配置信令,向参考基站和非参考基站发送第二下行PRS的配置信令。
  31. 一种终端,其特征在于,包括收发机、处理器和存储器:
    收发机,用于在处理器的控制下接收和发送数据;
    处理器,用于读取存储器中的程序,执行权利要求1至2任一项所述的方法。
  32. 一种终端,其特征在于,包括收发机、处理器和存储器:
    收发机,用于在处理器的控制下接收和发送数据;
    处理器,还用于读取所述存储器中的程序,执行权利要求3至8任一项所述的方法。
  33. 一种时钟偏差确定装置,其特征在于,包括:收发机、处理器和存储器:
    收发机,用于在处理器的控制下接收和发送数据;
    处理器,用于读取存储器中的程序,执行权利要求9至18任一项所述的方法。
  34. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行权利要求1或2所述的方法,或执行权利要求3至8任一项所述的方法,或执行权利要求9至18任一项所述的方法。
PCT/CN2020/123668 2019-11-11 2020-10-26 时钟偏差确定方法及装置 WO2021093560A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911096985.1A CN112788734B (zh) 2019-11-11 2019-11-11 时钟偏差确定方法及装置
CN201911096985.1 2019-11-11

Publications (1)

Publication Number Publication Date
WO2021093560A1 true WO2021093560A1 (zh) 2021-05-20

Family

ID=75749857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123668 WO2021093560A1 (zh) 2019-11-11 2020-10-26 时钟偏差确定方法及装置

Country Status (3)

Country Link
CN (1) CN112788734B (zh)
TW (1) TWI784342B (zh)
WO (1) WO2021093560A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170150383A1 (en) * 2015-11-19 2017-05-25 U-Blox A.G. Calculating a ranging measurement in a cellular communications network

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10772055B2 (en) * 2015-04-08 2020-09-08 Alcatel Lucent Base station synchronization
US10390324B2 (en) * 2015-05-25 2019-08-20 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive measurement report mapping for UE positioning
CN106341882A (zh) * 2015-07-17 2017-01-18 北京信威通信技术股份有限公司 一种lte系统的终端定位方法
WO2017012110A1 (zh) * 2015-07-23 2017-01-26 华为技术有限公司 一种定位方法及其装置
EP3386248B1 (en) * 2015-12-28 2020-04-22 Huawei Technologies Co., Ltd. Positioning network device and positioning method based on time difference of arrival
US10649064B2 (en) * 2017-02-02 2020-05-12 Qualcomm Incorporated Method and/or system for acquisition of a positioning signal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170150383A1 (en) * 2015-11-19 2017-05-25 U-Blox A.G. Calculating a ranging measurement in a cellular communications network

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "Further discussion of NR RAT-dependent DL Positioning", 3GPP DRAFT; R1-1901980, vol. RAN WG1, 1 March 2019 (2019-03-01), Athens Greece, pages 1 - 30, XP051599674 *
ERICSSON: "RAT dependent NR positioning solutions", 3GPP DRAFT; R1-1813592 RAT DEPENDENT NR POSITIONING SOLUTIONS, vol. RAN WG1, 2 November 2018 (2018-11-02), Spokane, United States, pages 1 - 17, XP051479931 *
LG ELECTRONICS: "Discussions on DL only based Positioning", 3GPP DRAFT; R1-1902099, vol. RAN WG1, 16 February 2019 (2019-02-16), Athens, Greece, pages 1 - 12, XP051599794 *

Also Published As

Publication number Publication date
CN112788734B (zh) 2022-06-07
TWI784342B (zh) 2022-11-21
TW202119851A (zh) 2021-05-16
CN112788734A (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
WO2021057175A1 (zh) 信号传输方法及装置
WO2021093642A1 (zh) 时钟偏差确定方法及装置
WO2021227821A1 (zh) 定位方法及装置
WO2020186959A1 (zh) 时钟偏移确定及其处理方法、装置、系统
WO2020220803A1 (zh) 信号传输、信号测量上报、定位方法及装置
WO2021000951A1 (zh) 信号传输方法及装置
WO2022001858A1 (zh) 定位方法及装置
WO2021104025A1 (zh) 信息传输方法及装置
WO2019228425A1 (zh) 一种定位方法及装置
KR20230134141A (ko) 신호 처리 방법 및 장치
WO2021093560A1 (zh) 时钟偏差确定方法及装置
WO2020199898A1 (zh) 一种定位测量值的确定方法及装置
WO2022151897A1 (zh) 信息指示方法、装置、终端设备、网络设备及存储介质
WO2023011001A1 (zh) 定时误差关联信息的发送方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886828

Country of ref document: EP

Kind code of ref document: A1