WO2021227821A1 - 定位方法及装置 - Google Patents

定位方法及装置 Download PDF

Info

Publication number
WO2021227821A1
WO2021227821A1 PCT/CN2021/089066 CN2021089066W WO2021227821A1 WO 2021227821 A1 WO2021227821 A1 WO 2021227821A1 CN 2021089066 W CN2021089066 W CN 2021089066W WO 2021227821 A1 WO2021227821 A1 WO 2021227821A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
measurement value
carrier
reference signal
prs
Prior art date
Application number
PCT/CN2021/089066
Other languages
English (en)
French (fr)
Inventor
张振宇
任斌
达人
李刚
方荣一
孙韶辉
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US17/925,325 priority Critical patent/US20230180172A1/en
Priority to EP21803338.9A priority patent/EP4152774A4/en
Publication of WO2021227821A1 publication Critical patent/WO2021227821A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0036Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information

Definitions

  • This application relates to the field of communication technology, and in particular to a positioning method and device.
  • the 3rd Generation Partnership Project (3GPP) defines a variety of terminal (User Equipment, UE) positioning methods that measure its own positioning reference signal of the 3GPP wireless communication system, such as Observed Time Difference of Arrival ,OTDOA), Uplink Observed Time Difference Of Arrival (UTDOA) and so on. These methods are characterized by positioning based on the positioning reference signal (Positioning Reference Signal, PRS) of the wireless communication system itself, and can work in an environment where no reference signal outside the network can be received. But the common problem of these positioning methods is low positioning accuracy.
  • PRS Positioning Reference Signal
  • the embodiments of the present application provide positioning methods and devices to improve positioning accuracy.
  • a positioning method provided in an embodiment of the present application includes:
  • the ambiguity of the whole cycle is determined by the positioning measurement value provided by the receiving end of the positioning reference signal; wherein the positioning measurement value includes the virtual phase measurement value constructed by the receiving end using the carrier phase measurement value, and the carrier phase
  • the measured value is obtained by measuring the carrier positioning reference signal C-PRS by the receiving end, and the positioning reference signal includes the C-PRS sent by the transmitting end of the positioning reference signal through at least two carrier frequencies;
  • the terminal position is determined by the ambiguity of the whole circle.
  • the ambiguity of the whole cycle is determined by the positioning measurement value provided by the receiving end of the positioning reference signal; wherein the positioning measurement value includes the virtual phase measurement value constructed by the receiving end using the carrier phase measurement value,
  • the carrier phase measurement value is obtained by measuring the carrier positioning reference signal C-PRS by the receiving end, and the positioning reference signal includes the C-PRS sent by the transmitting end of the positioning reference signal through at least two carrier frequencies.
  • determining the whole-cycle ambiguity through the positioning measurement value provided by the receiving end of the positioning reference signal which specifically includes: determining the first whole-cycle ambiguity by the virtual phase measurement value obtained by the structure and the TOA measurement value; Use EKF to calculate the first full-cycle ambiguity to determine the second full-cycle ambiguity; use the second full-cycle ambiguity to determine the third full-cycle ambiguity;
  • the terminal position is determined by the third full-circle ambiguity.
  • the target terminal i and the reference terminal j when the transmitting end transmits the first C-PRS and the second C-PRS through the first carrier frequency and the second carrier frequency, respectively, the following Formula to determine the first full week ambiguity
  • ⁇ 1 is the carrier wavelength of the first C-PRS
  • ⁇ 2 is the carrier wavelength of the second C-PRS
  • Is the single differential TOA measurement error and These are the single differential phase measurement errors of the first carrier and the second carrier, respectively.
  • the calculating the first full-cycle ambiguity by using EKF to determine the second full-cycle ambiguity specifically includes:
  • the third full-cycle ambiguity of the first carrier of the m-th base station is determined by the following formula And the third full-cycle ambiguity of the second carrier
  • a positioning method provided in an embodiment of the present application includes:
  • the positioning reference signal Measuring the positioning reference signal to obtain a positioning measurement value, where the positioning measurement value includes a virtual phase measurement value obtained by constructing a carrier phase measurement value obtained by measuring the C-PRS;
  • the positioning measurement value is sent to a positioning server, so that the positioning server locates the terminal according to the positioning measurement value.
  • a positioning method provided in an embodiment of the present application includes:
  • the positioning reference signal includes C-PRS sent through at least two carrier frequencies
  • the positioning reference signal so that the receiving end of the positioning reference signal measures the positioning reference signal according to the configuration information to obtain a positioning measurement value, and sends the positioning measurement value to a positioning server, and the The positioning server positions the terminal according to the positioning measurement value; wherein the positioning measurement value includes a virtual phase measurement value obtained by the receiving end constructed by the carrier phase measurement value obtained by measuring the C-PRS.
  • a positioning device provided in an embodiment of the present application includes:
  • Memory used to store program instructions
  • the processor is configured to call the program instructions stored in the memory, and execute according to the obtained program:
  • the ambiguity of the whole cycle is determined by the positioning measurement value provided by the receiving end of the positioning reference signal; wherein the positioning measurement value includes the virtual phase measurement value constructed by the receiving end using the carrier phase measurement value, and the carrier phase
  • the measured value is obtained by measuring the carrier positioning reference signal C-PRS by the receiving end, and the positioning reference signal includes the C-PRS sent by the transmitting end of the positioning reference signal through at least two carrier frequencies;
  • the terminal position is determined by the ambiguity of the whole circle.
  • the processor is specifically configured to:
  • the virtual phase measurement value obtained by the structure and the TOA measurement value are used to determine the first full-cycle ambiguity;
  • the EKF is used to calculate the first full-cycle ambiguity to determine the second full-cycle ambiguity;
  • the second full week ambiguity determine the third full week ambiguity;
  • the terminal position is determined by the third full-circle ambiguity.
  • the target terminal i and the reference terminal j when the transmitting end transmits the first C-PRS and the second C-PRS through the first carrier frequency and the second carrier frequency, respectively, the The processor is specifically configured to determine the first full-week ambiguity through the following formula
  • ⁇ 1 is the carrier wavelength of the first C-PRS
  • ⁇ 2 is the carrier wavelength of the second C-PRS
  • Is the single differential TOA measurement error and These are the single differential phase measurement errors of the first carrier and the second carrier, respectively.
  • the processor is specifically configured to:
  • the processor is specifically configured to determine the third full-cycle ambiguity of the first carrier of the m-th base station by using the following formula And the third full-cycle ambiguity of the second carrier
  • a positioning device provided in an embodiment of the present application includes:
  • Memory used to store program instructions
  • the processor is configured to call the program instructions stored in the memory, and execute according to the obtained program:
  • the positioning reference signal Measuring the positioning reference signal to obtain a positioning measurement value, where the positioning measurement value includes a virtual phase measurement value obtained by constructing a carrier phase measurement value obtained by measuring the C-PRS;
  • the positioning measurement value is sent to a positioning server, so that the positioning server locates the terminal according to the positioning measurement value.
  • a positioning device provided in an embodiment of the present application includes:
  • Memory used to store program instructions
  • the processor is configured to call the program instructions stored in the memory, and execute according to the obtained program:
  • the positioning reference signal includes C-PRS sent through at least two carrier frequencies
  • the positioning reference signal so that the receiving end of the positioning reference signal measures the positioning reference signal according to the configuration information to obtain a positioning measurement value, and sends the positioning measurement value to a positioning server, and the The positioning server positions the terminal according to the positioning measurement value; wherein the positioning measurement value includes a virtual phase measurement value obtained by the receiving end constructed by the carrier phase measurement value obtained by measuring the C-PRS.
  • another positioning device provided in an embodiment of the present application includes:
  • the whole-cycle ambiguity determination unit is used to determine the whole-cycle ambiguity based on the positioning measurement value provided by the receiving end of the positioning reference signal; wherein, the positioning measurement value includes the structure obtained by the receiving end using the carrier phase measurement value
  • the virtual phase measurement value, the carrier phase measurement value is obtained by the receiving end measuring the carrier positioning reference signal C-PRS, and the positioning reference signal includes the transmitting end of the positioning reference signal passing at least two carrier frequencies C-PRS sent;
  • the position determining unit is configured to determine the position of the terminal according to the ambiguity of the whole circumference.
  • another positioning device provided by an embodiment of the present application includes:
  • a receiving unit configured to receive a positioning reference signal sent by a sending end of a positioning reference signal, where the positioning reference signal includes the C-PRS sent by the sending end through at least two carrier frequencies;
  • the positioning measurement unit is configured to measure the positioning reference signal to obtain a positioning measurement value, and the positioning measurement value includes a virtual phase measurement value obtained by constructing a carrier phase measurement value obtained by measuring the C-PRS ;
  • the sending unit is configured to send the positioning measurement value to the positioning server for positioning the terminal.
  • another positioning device provided in an embodiment of the present application includes:
  • the first sending unit is configured to send configuration information of a positioning reference signal, where the positioning reference signal includes C-PRS sent through at least two carrier frequencies;
  • the second sending unit is configured to send the positioning reference signal so that the receiving end of the positioning reference signal measures the positioning reference signal according to the configuration information to obtain a positioning measurement value, and sends the positioning measurement value To the positioning server, the positioning server locates the terminal according to the positioning measurement value; wherein, the positioning measurement value includes the carrier phase measurement value obtained by the receiving end through the measurement of the C-PRS for constructing Obtained virtual phase measurement value.
  • Another embodiment of the present application provides a computing device, which includes a memory and a processor, wherein the memory is used to store program instructions, and the processor is used to call the program instructions stored in the memory, according to the obtained program Perform any of the above methods.
  • Another embodiment of the present application provides a computer storage medium, the computer storage medium stores computer-executable instructions, and the computer-executable instructions are used to make the computer execute any of the foregoing methods.
  • Figure 1 is a schematic diagram of C-PRS in two cases provided by the embodiments of the application;
  • FIG. 2 is a schematic diagram of the positioning process of applying the method of fast searching the carrier phase to locate the whole circle ambiguity according to an embodiment of the application;
  • FIG. 3 is a schematic flowchart of a positioning method on the positioning server side according to an embodiment of the application
  • FIG. 4 is a schematic flowchart of a positioning method on the receiving end provided by an embodiment of the application.
  • FIG. 5 is a schematic flowchart of a positioning method on the sender side according to an embodiment of the application
  • FIG. 6 is a schematic structural diagram of a positioning device provided by an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a positioning device on the side of a positioning server according to an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a positioning device on the receiving end side according to an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a positioning device on the receiving end provided by an embodiment of the application.
  • an embodiment of the present application proposes a UE positioning method based on the phase measurement value of the carrier signal of the 3GPP radio communication system itself.
  • the signal transmitter in the 3GPP wireless communication system such as a base station (BS) or UE or vehicle
  • BS base station
  • UE UE
  • C-PRS carrier phase Positioning Reference Signal
  • the receiving end obtains positioning measurement values by receiving PRS and C-PRS, including Time of Arrival (TOA)/Time Difference of Arrival (TDOA) and carrier phase measurement values.
  • TOA Time of Arrival
  • TDOA Time Difference of Arrival
  • This method uses the 3GPP wireless communication system itself to send positioning reference signals and carrier reference signals for positioning. It can work when the Global Navigation Satellite System (GNSS) satellite signal is weak or cannot be received, and it can accurately determine the location of the UE. .
  • GNSS Global Navigation Satellite System
  • the positioning reference signal PRS described in the embodiments of this application represents all reference signals that can be used to measure TOA.
  • it includes PRS, CSI-RS, and channel sounding reference signals that can be used for traditional OTDOA/UTDOA positioning.
  • Signal, SRS etc.
  • the Extended Kalman Filter is an efficient recursive filter that can optimally estimate the target state under the condition of a nonlinear model.
  • the EKF algorithm is usually applied in the field of positioning. In global navigation satellite system positioning, it is widely used to estimate the whole week ambiguity and its variance.
  • the EKF-based ambiguity estimation is generally used in the field of satellite positioning.
  • the existing EKF scheme only uses single-frequency carrier phase measurement values, and the EKF algorithm may not be able to correctly estimate the ambiguity of the whole cycle in scenarios where the user moves at a high speed and the measurement noise is large. Based on this situation, the embodiment of the present application proposes a method of combining multiple carrier frequencies (sub-carrier frequencies) into a virtual carrier to be applied to the EKF algorithm, so as to further improve the stability and accuracy of the EKF algorithm.
  • the whole-cycle ambiguity is an important unknown parameter when using carrier phase technology for positioning.
  • the embodiment of the present application can quickly and accurately solve this parameter, and then determine the position of the user.
  • c is the speed of light
  • b r and b t are the clock offsets of the receiver and transmitter respectively
  • is the carrier wavelength of C-PRS
  • the basic method of UE positioning based on wireless communication carrier phase measurement includes:
  • the transmitting end (BS or UE) transmits PRS and C-PRS on a pre-configured or pre-defined carrier frequency.
  • C-PRS can usually be a sinusoidal carrier signal or different sub-carriers of a carrier.
  • the BS is the sender.
  • Each BS transmits PRS and C-PRS on a pre-configured or predefined carrier frequency. Different adjacent cells will send C-PRS in different subcarriers;
  • the UE For uplink positioning methods, such as UTDOA, the UE is the sender.
  • the UE also transmits PRS and C-PRS on a pre-configured or pre-defined carrier frequency. Different UEs will send C-PRS in different subcarriers;
  • the receiving end measures the PRS and C-PRS according to the PRS and C-PRS configuration information; the positioning measurement value measured by the PRS can include TOA/TDOA (where TDOA is also called Reference Signal Time Difference, RSTD )) etc.; and the carrier phase measurement value (CP) measured by C-PRS;
  • TOA/TDOA where TDOA is also called Reference Signal Time Difference, RSTD )
  • CP carrier phase measurement value
  • the receiving end (BS or UE) reports the positioning measurement values (TOA/TDOA/CP, etc.) to a certain positioning server in the wireless communication system.
  • the positioning server determines the position of the UE with high accuracy according to the PRS and C-PRS configuration information, such as the position of the transmitting antenna of each cell, and the positioning measurement value provided by the receiving end.
  • Non-differential method directly use TOA and phase measurement values to calculate UE position without using differential technology.
  • Differential method First, the TOA and phase measurement values are differentiated to eliminate some common deviations in the measured values, and then the TOA and phase measurement values after the difference are used to calculate the UE position. There are two differential methods, single differential and double differential.
  • Single differential mode select a certain sending end (or receiving end) as the reference end, and then make a difference between the measured value related to the other sending end (or receiving end) and the measured value related to the reference end.
  • the purpose of single differential is to eliminate the measurement deviation of a certain end (receiving end or sending end).
  • the RSTD measurement value used for OTDOA positioning is the difference between the TOA measurement value between the UE and each BS and the TOA measurement value between the UE and a reference BS.
  • the purpose of the difference is to eliminate the UE clock offset. The impact on positioning.
  • Double differential mode Differentiate the measured value after the single differential mode again to eliminate measurement errors related to the transmitter and the receiver at the same time, such as the clock offset of the BS and the UE.
  • the dual differential technology can be used for downlink positioning scenarios. At this time, there are multiple transmitters (base stations) and two receivers, one of which is a reference receiver with a known location. The other receiving end is a UE whose location is unknown. At this time, the two receiving ends are connected to the positioning signal sent by the base station at the same time, and the double differential technology is used to eliminate the common errors related to the transmitter and the receiver in the measured values of the two receiving ends, and then the position of the receiving end of the unknown position is accurately calculated .
  • the first is that through linear combination, the measurement noise of the virtual carrier is relatively large. If the ambiguity of the entire cycle is searched for the wrong integer value, it will have a greater impact on the positioning;
  • the embodiments of the present application provide a method and device for locating a terminal position of an extended Kalman filter with multiple carrier frequencies.
  • the combination of multiple carrier frequencies is used to form a larger virtual wavelength, and the EKF algorithm is used to estimate the ambiguity of the whole cycle.
  • the ambiguity of the whole cycle of the true carrier phase is then converted back to improve the positioning accuracy. This avoids the problem that the EKF cannot converge due to the smaller wavelength, and also solves the problem that the virtual wavelength directly estimates the ambiguity error of the whole circle.
  • the method and the device are based on the same application conceived. Because the method and the device have similar principles for solving the problem, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the applicable system can be the global system of mobile communication (GSM) system, code division multiple access (CDMA) system, and wideband code division multiple access (WCDMA) general packet Wireless service (general packet radio service, GPRS) system, long term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD), general Mobile system (universal mobile telecommunication system, UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G system, 5G NR system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • General packet Wireless service general packet radio service
  • GPRS general packet Radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS general Mobile system
  • WiMAX worldwide interoperability for microwave access
  • the terminal device involved in the embodiments of the present application may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the terminal equipment may have different names.
  • the terminal equipment may be called a UE.
  • a wireless terminal device can communicate with one or more core networks via a radio access network (RAN).
  • the wireless terminal device can be a mobile terminal device, such as a mobile phone (or “cellular” phone) and a mobile phone.
  • the computer of the terminal device for example, may be a portable, pocket-sized, handheld, built-in computer or vehicle-mounted mobile device, which exchanges language and/or data with the wireless access network.
  • Wireless terminal equipment can also be called system, subscriber unit, subscriber station, mobile station, mobile, remote station, and access point , Remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), user device (user device), which are not limited in the embodiments of the present application.
  • the network device involved in the embodiment of the present application may be a base station, and the base station may include multiple cells.
  • a base station may also be called an access point, or may refer to a device in an access network that communicates with a wireless terminal device through one or more sectors on an air interface, or other names.
  • the network device can be used to convert the received air frame and Internet protocol (IP) packets to each other, as a router between the wireless terminal device and the rest of the access network, where the rest of the access network can include IP Communications network.
  • IP Internet protocol
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment involved in the embodiment of this application may be a network equipment (base transmitter station, BTS) in the global system for mobile communications (GSM) or code division multiple access (CDMA). ), it can also be a network device (NodeB) in wide-band code division multiple access (WCDMA), or an evolved network device in a long-term evolution (LTE) system (evolutional node B, eNB or e-NodeB), 5G base station in the 5G network architecture (next generation system), or home evolved node B (HeNB), relay node (relay node), home base station ( Femto), pico base station (pico), etc., are not limited in the embodiment of the present application.
  • BTS network equipment
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • NodeB wide-band code division multiple access
  • LTE long-term evolution
  • 5G base station in the 5G network architecture next generation system
  • HeNB home evolved node B
  • relay node relay node
  • Femto home
  • the sending end sends two (or more) C-PRSs of different frequencies
  • the receiving end constructs a virtual phase measurement value based on the two (or more) carrier phase measurement values
  • the positioning server passes EKF performs multi-period position tracking on the terminal to quickly search for the virtual full-cycle ambiguity of the virtual phase value, and further calculate the real full-cycle ambiguity and the actual phase measurement value, and finally calculate the UE position.
  • the C-PRS of different frequencies can be on different carriers, or can be different subcarriers of the same carrier.
  • Case 1 represents a case where the same carrier is selected and different sub-carriers are used as C-PRS.
  • Case 2 (CASE2) shows the case where carriers of different frequencies are selected as C-PRS.
  • C-PRS carrier reference signal
  • Receiving end use the carrier phase measurement value measured by the C-PRS sent by two (or more) carrier frequencies to construct a virtual phase measurement value with a very long virtual wavelength; in the orthogonal frequency division multiplexing technology ( Orthogonal Frequency Division Multiplexing, OFDM) system, in FDD mode, two (or more) subcarriers at different positions are selected for virtual wavelength construction.
  • OFDM Orthogonal Frequency Division Multiplexing
  • phase measurement value for example:
  • the non-differential phase measurement value and the subsequent single-differential phase measurement value is also calculated based on the non-differential measurement value. It is measured by the UE at the receiving end using a phase-locked loop.
  • the method for quickly determining the ambiguity of the whole circle proposed in the embodiment of the present application will be applicable to the above-mentioned “non-differential”, “single-differential” and “double-differential” methods. Since the EKF algorithm uses the single-difference carrier phase measurement value to calculate the full-period ambiguity, the embodiment of the present application takes single-difference as an example for description. Specifically, for example:
  • the method of quickly searching for carrier phase positioning during differential includes:
  • Step 1 The receiving end obtains the single differential TOA measurement value and the phase single differential measurement value
  • the single difference between the measured values of the target UE i and the reference UE j as an example, the TOA measurement value (also called TDOA) and the phase single difference measurement value after the single difference operation are:
  • the single differential clock skew of the receiver and transmitter Is the phase single differential measurement value in the unit of the first carrier frequency period, Is the phase single-differential measurement value in the unit of the second carrier frequency period, ⁇ 1 is the carrier wavelength of the first C-PRS, and ⁇ 2 is the carrier wavelength of the second C-PRS, and Are the single-difference unknown integer ambiguities of the first carrier and the second carrier, Is the single differential TOA measurement error, and These are the single differential phase measurement errors of the first carrier and the second carrier, respectively.
  • the superscript "ij" indicates that the single-difference operation is performed relative to the measured values of the two receiving ends i and j, and the subscript indicates the m-th base station that sends the positioning reference signal, that is
  • the clock deviation of the base station is eliminated in a single differential mode.
  • Reference receiver (reference UE): One (or more than one) reference UE receives the radio reference signal sent by the base station to obtain the TOA and carrier phase reference measurement values.
  • the TOA and carrier phase reference measurement values measured by the reference UE will be combined with the TOA and carrier phase measurement values measured by the target UE to form a differential measurement value for carrier phase positioning.
  • the position of the receiving antenna of the reference UE is known.
  • Target UE receiver The target UE also receives the radio reference signal sent by the base station to obtain TOA and carrier phase measurement values.
  • the TOA and carrier phase measurement values measured by the target UE will be combined with the TOA and carrier phase reference measurement values measured by the reference UE to form a differential measurement value for carrier phase positioning to determine the target UE position to be solved.
  • Step 2 The receiving end constructs a virtual single-differential phase measurement value with a longer virtual wavelength
  • ⁇ v ,N v,m and w v,m are carrier virtual wavelength, virtual whole-cycle ambiguity and virtual phase measurement error, respectively, and have:
  • Step 3 The positioning server quickly calculates the virtual ambiguity N v (that is, the ambiguity calculated for the first time, referred to as the first ambiguity);
  • the factors to be considered when selecting C-PRS transmission frequencies f 1 and f 2 are:
  • the virtual wavelength ⁇ v and virtual measurement error should also be considered at the same time
  • the two frequencies f 1 and f 2 should be arranged closer to produce a longer ⁇ v .
  • the configuration of f 1 and f 2 should not be too close to avoid making the virtual phase measurement error is too big.
  • Is a relatively independent zero-mean Gaussian noise with a covariance of ⁇ 2 , that is Will get In the OFDM system
  • two subcarriers at different positions can also be selected to construct the virtual wavelength. And the factors to be considered are the same as above.
  • Step 4 The positioning server uses the virtual and real phase measurement values to determine the ambiguity of the whole circle, which specifically includes the following steps 4a and 4b;
  • Step 4a The positioning server uses the virtual phase measurement value to determine the virtual full-cycle ambiguity (that is, the second-time calculated full-cycle ambiguity, referred to as the second full-cycle ambiguity);
  • the virtual single-differential measurement value Virtual wavelength ⁇ v , TOA measured value
  • the other parameters are combined to determine the ambiguity of the whole week.
  • the EKF is used to determine the ambiguity of the whole cycle, and the input value for the determination of the ambiguity of the whole cycle based on the EKF is set as the virtual carrier phase measurement value, and after the virtual ambiguity of the whole cycle, the difference with the prior art is:
  • the existing EKF state vector is:
  • the EKF state vector x will not include ⁇ z and ⁇ v z .
  • the UE position error ⁇ r is defined as:
  • UE velocity error ⁇ v is defined as:
  • v b (v x ,v y ,v z ) T and Represents the actual target UE speed and the estimated target UE speed respectively.
  • the existing covariance matrix is:
  • P ⁇ x (0) and P ⁇ y (0) are the maximum positioning error of the x-axis TOA and the maximum positioning error of the y-axis TOA, respectively. They are the maximum speed estimation error of the x-axis and the maximum speed estimation error of the y-axis.
  • is the standard deviation of phase measurement noise when single carrier.
  • ⁇ v is the virtual wavelength of the carrier.
  • the existing measurement noise matrix is:
  • R T and R L represent the covariance matrix of measurement noise w T and w L respectively;
  • E[w y ] 0; R T and Respectively represent the measurement noise w T and The covariance matrix.
  • the wave symbol ⁇ represents replacing the original differential carrier measurement error with the virtual carrier measurement error.
  • R T DR′ T D T ;
  • Step 4b The positioning server calculates the whole-cycle ambiguity of the true phase (that is, the whole-cycle ambiguity calculated for the third time, referred to as the third-round ambiguity);
  • Equation (7) means that in obtaining (That is, after the third full week of ambiguity),
  • the search space can be greatly reduced, and mainly depends on
  • the virtual measurement error can be made
  • the range of is basically close to the wavelength ⁇ 1.
  • Step 5 The positioning server uses the full-cycle ambiguity of the true phase (that is, the third full-cycle ambiguity) for positioning;
  • step 4 taking the transmission frequency f 1 as an example, through step 4, a series of true phase integer ambiguities can be obtained Combine phase measurements Perform the final position calculation of the terminal, for example, use the least square method or the Chan [2] algorithm to calculate the position.
  • FIG. 2 shows the positioning process of applying the fast carrier phase positioning ambiguity method according to an embodiment of the present application, which specifically includes:
  • the sender (BS or UE) informs the positioning server of the configuration information of the PRS and C-PRS;
  • BS For UE positioning methods based on downlink reference signals, such as OTDOA, BS is the transmitter;
  • the UE For UE positioning methods based on uplink reference signals, such as UTDOA, the UE is the transmitter;
  • the virtual wavelength and virtual measurement error should be considered when selecting the C-PRS transmission frequency.
  • the virtual measurement error should be an order of magnitude smaller than the TOA measurement error. Under this condition, the virtual wavelength can be increased as much as possible to reduce the search space of the virtual full-circle ambiguity.
  • Step 2 The positioning server informs the receiving end (BS or UE) of the PRS and C-PRS of the configuration information of the PRS and C-PRS;
  • Step 3 The sending end (BS or UE) sends PRS and C-PRS according to the configuration information of PRS and C-PRS, where C-PRS is sent on two or more carrier frequencies;
  • Step 4 The receiving end receives PRS and C-PRS according to the configuration information of PRS and C-PRS, and obtains TOA and carrier phase measurement values;
  • Step 5 The receiving end reports the positioning measurement value obtained after measuring the PRS and C-PRS to the positioning server. If the receiving end is a UE, the positioning measurement value reported by the receiving end can be TOA and carrier phase measurement values without differential, or TDOA and single differential carrier phase measurement values after single differential;
  • Step 6 and Step 7 First, the positioning server uses the method provided in the embodiment of the present application to quickly search for the ambiguity of the whole week, and then perform UE positioning.
  • the above-mentioned quick search single-difference method is used to determine the ambiguity of the whole week.
  • the specific steps include:
  • the EKF algorithm is used to track the virtual whole-week ambiguity, and finally the virtual whole-week ambiguity is output. Using the virtual whole-week ambiguity, continue to search for the real whole-week ambiguity (Equation (7)). Then, the UE position is calculated using the real ambiguity and the actual phase measurement value.
  • the foregoing embodiment only describes the process of positioning the user in one positioning period. Similarly, it can actually be applied to multiple positioning periods to track the user's motion trajectory. And due to the characteristics of the EKF algorithm, multi-cycle user trajectory tracking is more helpful to accurately determine the integer ambiguity, thereby further improving the positioning accuracy.
  • EKF uses the long virtual wavelength of the virtual phase measurement value to track the virtual whole-cycle ambiguity for multiple measurement cycles through TOA and virtual phase measurement value. , So as to quickly and accurately determine the ambiguity of the virtual whole week. Use the virtual full-week ambiguity to quickly search for the real full-week ambiguity. Then, the UE position is calculated using the real ambiguity and the actual phase measurement value.
  • the virtual wavelength of the virtual phase measurement value "structured" in the embodiment of the present application can be one magnitude larger than the actual wavelength, the stability of the EKF algorithm for whole-cycle ambiguity estimation is improved, and the EKF is avoided due to the shorter wavelength. The problem of ambiguity in the whole week cannot be searched correctly.
  • the embodiment of the present application backcalculates the whole-cycle ambiguity of the virtual carrier back to the form of a single carrier for positioning, thereby greatly reducing the positioning error and avoiding the increase in the measurement error when the virtual carrier is formed problem.
  • the positioning method on the positioning server side includes:
  • the positioning measurement value includes a virtual phase measurement value constructed by the receiving end using the carrier phase measurement value, and
  • the carrier phase measurement value is obtained by measuring the carrier positioning reference signal C-PRS by the receiving end, and the positioning reference signal includes the C-PRS sent by the transmitting end of the positioning reference signal through at least two carrier frequencies;
  • the determination of the ambiguity of the whole cycle through the positioning measurement value provided by the receiving end of the positioning reference signal specifically includes: the virtual phase measurement value obtained by the structure and the TOA measurement value to determine the first ambiguity of the whole cycle ( That is, the virtual phase measurement value found quickly); use EKF to calculate the first full-cycle ambiguity to determine the second full-cycle ambiguity (ie, the virtual phase measurement value output by EKF); use the second full-cycle ambiguity Ambiguity, determine the third full-cycle ambiguity (that is, the true phase measurement value);
  • the terminal position is determined by the third full-circle ambiguity.
  • the target terminal i and the reference terminal j when the transmitting end transmits the first C-PRS and the second C-PRS through the first carrier frequency and the second carrier frequency, respectively, the following Formula to determine the first full week ambiguity
  • ⁇ 1 is the carrier wavelength of the first C-PRS
  • ⁇ 2 is the carrier wavelength of the second C-PRS
  • Is the single differential TOA measurement error and These are the single differential phase measurement errors of the first carrier and the second carrier, respectively.
  • the first carrier is the carrier that transmits the first C-PRS
  • the second carrier is the carrier that transmits the second C-PRS, and the frequencies of the two carriers are different.
  • the third full-cycle ambiguity of the first carrier of the m-th base station is determined by the following formula And the third full-cycle ambiguity of the second carrier
  • the positioning method on the receiving end includes:
  • S401 Receive a positioning reference signal sent by a sending end of a positioning reference signal, where the positioning reference signal includes a carrier positioning reference signal C-PRS sent by the sending end through at least two carrier frequencies;
  • the positioning reference signal Measures the positioning reference signal to obtain a positioning measurement value, where the positioning measurement value includes a virtual phase measurement value obtained by constructing a carrier phase measurement value obtained by measuring the C-PRS;
  • the positioning method on the sender side provided in the embodiment of the present application includes:
  • S501 Send configuration information of a positioning reference signal, where the positioning reference signal includes C-PRS sent through at least two carrier frequencies.
  • the positioning device provided by the embodiment of the present application includes: a memory 620 and a processor 600, where the memory 620 is used to store program instructions, and a transceiver 610 is used to receive and send data under the control of the processor 600
  • the processor 600 is configured to call the program instructions stored in the memory 620, and execute any one of the above-mentioned positioning methods according to the obtained program.
  • the transceiver 610 is configured to receive and send data under the control of the processor 600.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 600 and various circuits of the memory represented by the memory 620 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 610 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 600 when performing operations.
  • the processor 600 may be a central processing unit (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device, CPLD).
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD complex programmable logic device
  • the positioning device may also include a user interface connected to the bus architecture.
  • the user interface may also be an interface that can externally and internally connect the required equipment.
  • the connected equipment includes but is not limited to a small keyboard , Display, speaker, microphone, joystick, etc.
  • the processor 600 is configured to call the program instructions stored in the memory and execute according to the obtained program:
  • the ambiguity of the whole cycle is determined by the positioning measurement value provided by the receiving end of the positioning reference signal; wherein the positioning measurement value includes the virtual phase measurement value constructed by the receiving end using the carrier phase measurement value, and the carrier phase
  • the measured value is obtained by measuring the carrier positioning reference signal C-PRS by the receiving end, and the positioning reference signal includes the C-PRS sent by the transmitting end of the positioning reference signal through at least two carrier frequencies;
  • the terminal position is determined by the ambiguity of the whole circle.
  • the processor 600 is specifically configured to: determine the first full-cycle ambiguity based on the virtual phase measurement value obtained by the structure and the TOA measurement value; and use the EKF to calculate the first full-cycle ambiguity , Determine the second full-cycle ambiguity; use the second full-cycle ambiguity to determine the third full-cycle ambiguity;
  • the terminal position is determined by the third full-circle ambiguity.
  • the The processor 600 is specifically configured to determine the first full-week ambiguity by using the following formula
  • ⁇ 1 is the carrier wavelength of the first C-PRS
  • ⁇ 2 is the carrier wavelength of the second C-PRS
  • Is the single differential TOA measurement error and These are the single differential phase measurement errors of the first carrier and the second carrier, respectively.
  • processor 600 is specifically configured to:
  • the processor 600 is specifically configured to determine the third full-cycle ambiguity of the first carrier of the m-th base station by using the following formula And the third full-cycle ambiguity of the second carrier
  • the processor 600 is configured to call the program instructions stored in the memory according to the obtained Program execution:
  • the positioning reference signal Measuring the positioning reference signal to obtain a positioning measurement value, where the positioning measurement value includes a virtual phase measurement value obtained by constructing a carrier phase measurement value obtained by measuring the C-PRS;
  • the positioning measurement value is sent to a positioning server, so that the positioning server locates the terminal according to the positioning measurement value.
  • the processor 600 is configured to call the program instructions stored in the memory, according to the obtained Program execution:
  • the positioning reference signal includes C-PRS sent through at least two carrier frequencies
  • the positioning reference signal so that the receiving end of the positioning reference signal measures the positioning reference signal according to the configuration information to obtain a positioning measurement value, and sends the positioning measurement value to a positioning server, and the The positioning server positions the terminal according to the positioning measurement value; wherein the positioning measurement value includes a virtual phase measurement value obtained by the receiving end constructed by the carrier phase measurement value obtained by measuring the C-PRS.
  • another positioning device on the positioning server side provided in an embodiment of the present application includes:
  • the whole-cycle ambiguity determination unit 71 is used to determine the whole-cycle ambiguity based on the positioning measurement value provided by the receiving end of the positioning reference signal; wherein, the positioning measurement value includes the structure obtained by the receiving end using the carrier phase measurement value
  • the carrier phase measurement value is obtained by measuring the carrier positioning reference signal C-PRS by the receiving end, and the positioning reference signal includes the transmitting end of the positioning reference signal through at least two carriers C-PRS sent by frequency;
  • the position determining unit 72 is configured to determine the position of the terminal according to the ambiguity of the entire circumference.
  • the whole-week ambiguity determination unit 71 is specifically configured to:
  • the virtual phase measurement value obtained by the structure and the TOA measurement value are used to determine the first full-cycle ambiguity;
  • the EKF is used to calculate the first full-cycle ambiguity to determine the second full-cycle ambiguity;
  • the second full week ambiguity determine the third full week ambiguity;
  • the terminal position is determined by the third full-circle ambiguity.
  • the target terminal i and the reference terminal j when the transmitting end transmits the first C-PRS and the second C-PRS through the first carrier frequency and the second carrier frequency, respectively, the The whole week ambiguity determination unit 71 is specifically used for:
  • ⁇ 1 is the carrier wavelength of the first C-PRS
  • ⁇ 2 is the carrier wavelength of the second C-PRS
  • Is the single differential TOA measurement error and These are the single differential phase measurement errors of the first carrier and the second carrier, respectively.
  • the whole-week ambiguity determination unit 71 is specifically configured to:
  • the full-cycle ambiguity determining unit 71 is specifically configured to determine the third full-cycle ambiguity of the first carrier of the m-th base station by using the following formula And the third full-cycle ambiguity of the second carrier
  • another positioning device on the receiving end side provided by an embodiment of the present application includes:
  • the receiving unit 81 is configured to receive a positioning reference signal sent by a sending end of a positioning reference signal, where the positioning reference signal includes the C-PRS sent by the sending end through at least two carrier frequencies;
  • the positioning measurement unit 82 is configured to measure the positioning reference signal to obtain a positioning measurement value, and the positioning measurement value includes a virtual phase measurement obtained by constructing a carrier phase measurement value obtained by measuring the C-PRS value;
  • the sending unit 83 is configured to send the positioning measurement value to a positioning server, so that the positioning server can position the terminal according to the positioning measurement value.
  • another positioning device on the receiving end side provided by an embodiment of the present application includes:
  • the first sending unit 91 is configured to send configuration information of a positioning reference signal, where the positioning reference signal includes C-PRS sent through at least two carrier frequencies;
  • the second sending unit 92 is configured to send the positioning reference signal, so that the receiving end of the positioning reference signal measures the positioning reference signal according to the configuration information to obtain a positioning measurement value, and compares the positioning measurement value Sent to the positioning server, the positioning server performs positioning of the terminal according to the positioning measurement value; wherein the positioning measurement value includes the carrier phase measurement value obtained by the receiving end through the measurement of the C-PRS. Constructed virtual phase measurement value.
  • the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including a number of instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • the embodiments of the present application provide a computing device, and the computing device may specifically be a desktop computer, a portable computer, a smart phone, a tablet computer, a personal digital assistant (Personal Digital Assistant, PDA), etc.
  • the computing device may include a central processing unit (CPU), a memory, an input/output device, etc.
  • the input device may include a keyboard, a mouse, a touch screen, etc.
  • an output device may include a display device, such as a liquid crystal display (Liquid Crystal Display, LCD), Cathode Ray Tube (CRT), etc.
  • the memory may include ROM and RAM, and provide the processor with program instructions and data stored in the memory.
  • the memory may be used to store the program of any of the methods provided in the embodiment of the present application.
  • the processor calls the program instructions stored in the memory, and the processor is configured to execute any of the methods provided in the embodiments of the present application according to the obtained program instructions.
  • the embodiment of the present application provides a computer storage medium for storing computer program instructions used by the device provided in the foregoing embodiment of the present application, which includes a program for executing any method provided in the foregoing embodiment of the present application.
  • the computer storage medium may be any available medium or data storage device that can be accessed by the computer, including but not limited to magnetic storage (such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (such as CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state disk (Solid State Disk, SSD)), etc.
  • magnetic storage such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage such as CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state disk (Solid State Disk, SSD)
  • the method provided in the embodiments of the present application can be applied to terminal equipment, and can also be applied to network equipment.
  • the terminal equipment can also be referred to as "UE", mobile station (Mobile Station, referred to as “MS”), mobile terminal (Mobile Terminal), etc.
  • the terminal can be equipped with a RAN and one or more cores. The ability to communicate on the Internet.
  • the terminal can be a mobile phone (or called a "cellular” phone), or a mobile computer, etc., for example, the terminal can also be portable, pocket-sized, handheld, built-in computer, or vehicle-mounted Mobile device.
  • the network device may be a base station (for example, an access point), which refers to a device that communicates with a wireless terminal through one or more sectors on an air interface in an access network.
  • the base station can be used to convert received air frames and IP packets into each other, and act as a router between the wireless terminal and the rest of the access network, where the rest of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate the attribute management of the air interface.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, a base station (NodeB) in WCDMA, or an evolved base station (NodeB or eNB or e-NodeB, evolutional NodeB) in LTE. B), or it can also be gNB in the 5G system.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • e-NodeB evolutional NodeB
  • the processing flow of the above method can be implemented by a software program, which can be stored in a storage medium, and when the stored software program is called, the steps of the above method are executed.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Devices For Checking Fares Or Tickets At Control Points (AREA)

Abstract

本申请公开了定位方法及装置,用以提高定位精度。本申请提供的定位方法,包括:通过定位参考信号的接收端提供的定位测量值,确定整周模糊度;其中,所述定位测量值中包括接收端利用载波相位测量值所构造得到的虚拟相位测量值,载波相位测量值是接收端对C-PRS进行测量得到的,定位参考信号中包括定位参考信号的发送端通过至少两个载波频率发送的C-PRS;通过所述整周模糊度确定终端位置。

Description

定位方法及装置
相关申请的交叉引用
本申请要求在2020年05月15日提交中国专利局、申请号为202010412590.4、申请名称为“定位方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及定位方法及装置。
背景技术
第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)定义了多种通过测量3GPP无线通讯系统的自身定位参考信号的终端(User Equipment,UE)定位方法,例如观察到达时间差(Observed Time Difference Of Arrival,OTDOA),上行链路观察到达时间差(Uplink observed Time Difference Of Arrival,UTDOA)等等。这些方法的特点是基于无线通讯系统自身的定位参考信号(Positioning Reference Signal,PRS)定位,可在接收不到网络外部参考信号的环境里工作。但这些定位方法的共同问题是定位精度较低。
发明内容
本申请实施例提供了定位方法及装置,用以提高定位精度。
在定位服务器侧,本申请实施例提供的一种定位方法,包括:
通过定位参考信号的接收端提供的定位测量值,确定整周模糊度;其中,所述定位测量值中包括所述接收端利用载波相位测量值所构造得到的虚拟相位测量值,所述载波相位测量值是所述接收端对载波定位参考信号C-PRS进行测量得到的,所述定位参考信号中包括所述定位参考信号的发送端通过至少两个载波频率发送的C-PRS;
通过所述整周模糊度确定终端位置。
通过该方法,通过定位参考信号的接收端提供的定位测量值,确定整周模糊度;其中,所述定位测量值中包括所述接收端利用载波相位测量值所构造得到的虚拟相位测量值,所述载波相位测量值是所述接收端对载波定位参考信号C-PRS进行测量得到的,所述定位参考信号中包括所述定位参考信号的发送端通过至少两个载波频率发送的C-PRS;通过所述整周模糊度确定终端位置,从而可以提高定位精度,避免了较小波长造成EKF无法收敛的问题。
可选地,通过定位参考信号的接收端提供的定位测量值,确定整周模糊度,具体包括:通过所述构造得到的虚拟相位测量值,以及TOA测量值,确定第一整周模糊度;利用EKF对所述第一整周模糊度进行计算,确定第二整周模糊度;利用所述第二整周模糊度,确定第三整周模糊度;
通过所述第三整周模糊度确定终端位置。
可选地,对于第m个基站,目标终端i和参考终端j,当所述发送端通过第一载波频率和第二载波频率分别发送第一C-PRS和第二C-PRS时,通过如下公式确定所述第一整周模糊度
Figure PCTCN2021089066-appb-000001
Figure PCTCN2021089066-appb-000002
其中,
Figure PCTCN2021089066-appb-000003
λ 1是第一C-PRS的载波波长,λ 2是第二C-PRS的载波波长,
Figure PCTCN2021089066-appb-000004
是以第一载波频率周期为单位的相位单差分测量值,
Figure PCTCN2021089066-appb-000005
是以第二载波频率周期为单位的相位单差分测量值,
Figure PCTCN2021089066-appb-000006
表示以米为单位的单差分TOA测量值,
Figure PCTCN2021089066-appb-000007
是单差分TOA测量误差,
Figure PCTCN2021089066-appb-000008
Figure PCTCN2021089066-appb-000009
分别是第一载波和第二载波的单差分相位测量误差。
可选地,所述利用EKF对所述第一整周模糊度进行计算,确定第二整周模糊度,具体包括:
将参数
Figure PCTCN2021089066-appb-000010
输入EKF,确定第二整周模糊度
Figure PCTCN2021089066-appb-000011
其中,
Figure PCTCN2021089066-appb-000012
是第m个基站的载波的第二整周 模糊度。
可选地,通过如下公式确定第m个基站的第一载波的第三整周模糊度
Figure PCTCN2021089066-appb-000013
和第二载波的第三整周模糊度
Figure PCTCN2021089066-appb-000014
Figure PCTCN2021089066-appb-000015
Figure PCTCN2021089066-appb-000016
在接收端侧,本申请实施例提供的一种定位方法,包括:
接收定位参考信号的发送端发送的定位参考信号,所述定位参考信号中包括所述发送端通过至少两个载波频率发送的C-PRS;
对所述定位参考信号进行测量,得到定位测量值,所述定位测量值中包括通过对所述C-PRS进行测量得到的载波相位测量值进行构造得到的虚拟相位测量值;
将所述定位测量值发送给定位服务器,以使所述定位服务器根据所述定位测量值对终端进行定位。
在发送端侧,本申请实施例提供的一种定位方法,包括:
发送定位参考信号的配置信息,所述定位参考信号中包括通过至少两个载波频率发送的C-PRS;
发送所述定位参考信号,以使所述定位参考信号的接收端根据所述配置信息对所述定位参考信号进行测量得到定位测量值,并将所述定位测量值发送给定位服务器,由所述定位服务器根据所述定位测量值对终端进行定位;其中,所述定位测量值中包括所述接收端通过对所述C-PRS进行测量得到的载波相位测量值进行构造得到的虚拟相位测量值。
在定位服务器侧,本申请实施例提供的一种定位装置,包括:
存储器,用于存储程序指令;
处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
通过定位参考信号的接收端提供的定位测量值,确定整周模糊度;其中,所述定位测量值中包括所述接收端利用载波相位测量值所构造得到的虚拟相 位测量值,所述载波相位测量值是所述接收端对载波定位参考信号C-PRS进行测量得到的,所述定位参考信号中包括所述定位参考信号的发送端通过至少两个载波频率发送的C-PRS;
通过所述整周模糊度确定终端位置。
可选地,所述处理器具体用于:
通过所述构造得到的虚拟相位测量值,以及TOA测量值,确定第一整周模糊度;利用EKF对所述第一整周模糊度进行计算,确定第二整周模糊度;利用所述第二整周模糊度,确定第三整周模糊度;
通过所述第三整周模糊度确定终端位置。
可选地,对于第m个基站,目标终端i和参考终端j,当所述发送端通过第一载波频率和第二载波频率分别发送第一C-PRS和第二C-PRS时,所述处理器具体用于通过如下公式确定所述第一整周模糊度
Figure PCTCN2021089066-appb-000017
Figure PCTCN2021089066-appb-000018
其中,
Figure PCTCN2021089066-appb-000019
λ 1是第一C-PRS的载波波长,λ 2是第二C-PRS的载波波长,
Figure PCTCN2021089066-appb-000020
是以第一载波频率周期为单位的相位单差分测量值,
Figure PCTCN2021089066-appb-000021
是以第二载波频率周期为单位的相位单差分测量值,
Figure PCTCN2021089066-appb-000022
表示以米为单位的单差分到达时间TOA测量值,
Figure PCTCN2021089066-appb-000023
是单差分TOA测量误差,
Figure PCTCN2021089066-appb-000024
Figure PCTCN2021089066-appb-000025
分别是第一载波和第二载波的单差分相位测量误差。
可选地,所述处理器具体用于:
将参数
Figure PCTCN2021089066-appb-000026
输入EKF,确定第二整周模糊度
Figure PCTCN2021089066-appb-000027
其中,
Figure PCTCN2021089066-appb-000028
是第m个基站的载波的第二整周模糊度。
可选地,所述处理器具体用于通过如下公式确定第m个基站的第一载波的第三整周模糊度
Figure PCTCN2021089066-appb-000029
和第二载波的第三整周模糊度
Figure PCTCN2021089066-appb-000030
Figure PCTCN2021089066-appb-000031
Figure PCTCN2021089066-appb-000032
在接收端侧,本申请实施例提供的一种定位装置,包括:
存储器,用于存储程序指令;
处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
接收定位参考信号的发送端发送的定位参考信号,所述定位参考信号中包括所述发送端通过至少两个载波频率发送的C-PRS;
对所述定位参考信号进行测量,得到定位测量值,所述定位测量值中包括通过对所述C-PRS进行测量得到的载波相位测量值进行构造得到的虚拟相位测量值;
将所述定位测量值发送给定位服务器,以使所述定位服务器根据所述定位测量值对终端进行定位。
在发送端侧,本申请实施例提供的一种定位装置,包括:
存储器,用于存储程序指令;
处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
发送定位参考信号的配置信息,所述定位参考信号中包括至少通过两个载波频率发送的C-PRS;
发送所述定位参考信号,以使所述定位参考信号的接收端根据所述配置信息对所述定位参考信号进行测量得到定位测量值,并将所述定位测量值发送给定位服务器,由所述定位服务器根据所述定位测量值对终端进行定位;其中,所述定位测量值中包括所述接收端通过对所述C-PRS进行测量得到的载波相位测量值进行构造得到的虚拟相位测量值。
在定位服务器侧,本申请实施例提供的另一种定位装置,包括:
整周模糊度确定单元,用于通过定位参考信号的接收端提供的定位测量值,确定整周模糊度;其中,所述定位测量值中包括所述接收端利用载波相位测量值所构造得到的虚拟相位测量值,所述载波相位测量值是所述接收端 对载波定位参考信号C-PRS进行测量得到的,所述定位参考信号中包括所述定位参考信号的发送端通过至少两个载波频率发送的C-PRS;
位置确定单元,用于通过所述整周模糊度确定终端位置。
在接收端侧,本申请实施例提供的另一种定位装置,包括:
接收单元,用于接收定位参考信号的发送端发送的定位参考信号,所述定位参考信号中包括所述发送端通过至少两个载波频率发送的C-PRS;
定位测量单元,用于对所述定位参考信号进行测量,得到定位测量值,所述定位测量值中包括通过对所述C-PRS进行测量得到的载波相位测量值进行构造得到的虚拟相位测量值;
发送单元,用于将所述定位测量值发送给定位服务器,用于对终端进行定位。
在发送端侧,本申请实施例提供的另一种定位装置,包括:
第一发送单元,用于发送定位参考信号的配置信息,所述定位参考信号中包括通过至少两个载波频率发送的C-PRS;
第二发送单元,用于发送所述定位参考信号,以使所述定位参考信号的接收端根据所述配置信息对所述定位参考信号进行测量得到定位测量值,并将所述定位测量值发送给定位服务器,由所述定位服务器根据所述定位测量值对终端进行定位;其中,所述定位测量值中包括所述接收端通过对所述C-PRS进行测量得到的载波相位测量值进行构造得到的虚拟相位测量值。
本申请另一实施例提供了一种计算设备,其包括存储器和处理器,其中,所述存储器用于存储程序指令,所述处理器用于调用所述存储器中存储的程序指令,按照获得的程序执行上述任一种方法。
本申请另一实施例提供了一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述任一种方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的两种情况下的C-PRS示意图;
图2为本申请实施例提供的应用快速搜索载波相位定位整周模糊度方法的定位流程示意图;
图3为本申请实施例提供的定位服务器侧的定位方法的流程示意图;
图4为本申请实施例提供的接收端侧的定位方法的流程示意图;
图5为本申请实施例提供的发送端侧的定位方法的流程示意图;
图6为本申请实施例提供的定位装置的结构示意图;
图7为本申请实施例提供的定位服务器侧的定位装置的结构示意图;
图8为本申请实施例提供的接收端侧的定位装置的结构示意图;
图9为本申请实施例提供的接收端侧的定位装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
针对目前3GPP定义的、通过测量无线通讯系统本身参考信号来确定UE位置方法的定位精确度较低的问题,本申请实施例提出基于3GPP无线电通讯系统自身的载波信号相位测量值的UE定位方法。在这种方法里,3GPP无线通讯系统中信号的发送端(例如基站(BS)或UE或车辆)不仅发送PRS,而且还发送用于载波相位定位的载波定位参考信号(Carrier phase Positioning Reference Signal,C-PRS)。接收端通过接收PRS和C-PRS,获得定位测量值, 包括到达时间(Time of Arrival,TOA)/到达时间差(Time Difference of Arrival,TDOA)和载波相位测量值。这种方法利用3GPP无线通讯系统自身发送定位参考信号和载波参考信号定位,可在全球导航卫星系统(Global Navigation Satellite System,GNSS)卫星信号弱或接收不到时工作,高精度地确定UE的位置。
为了便于描述,本申请实施例中所述的定位参考信号PRS代表所有可用于测量TOA的参考信号,例如它包括可用于传统OTDOA/UTDOA定位的PRS、CSI-RS、信道探测参考信号(Sounding Reference Signal,SRS)等。
扩展卡尔曼滤波器(Extended Kalman Filter,EKF)是一种高效的递推滤波器,可以在非线性模型条件下对目标状态进行最优估计。EKF算法通常应用于定位领域。在全球导航卫星系统定位中,它被广泛用于估计整周模糊度及其方差。基于EKF的整周模糊度估计普遍用于卫星定位领域。但是现有EKF方案只使用单频点载波相位测量值,EKF算法在用户移动速度较大,以及测量噪声较大的场景中会出现无法正确估计整周模糊度的情况。基于此情况,本申请实施例提出了将多载频(子载频)组合为虚拟载波的方法应用于EKF算法中,进一步提高EKF算法的稳定性和精度。
其中,所述整周模糊度是利用载波相位技术定位时的一个重要的未知参数,本申请实施例可以快速准确的求解这个参数,继而进行用户位置确定。例如:
Figure PCTCN2021089066-appb-000033
其中,
Figure PCTCN2021089066-appb-000034
是发射端和接收端之间的几何距离,c是光速,b r和b t分别是接收机和发射机的时钟偏移,
Figure PCTCN2021089066-appb-000035
是以载波周期为单位的相位测量值,λ是C-PRS的载波波长,
Figure PCTCN2021089066-appb-000036
是未知的整周模糊度,
Figure PCTCN2021089066-appb-000037
是相位测量误差。
基于无线通信载波相位测量的UE定位基本方法包括:
发送端(BS或UE)在预配置或预定义载波频率发送PRS和C-PRS。C-PRS通常可以是正弦载波信号也可以是一个载波的不同子载波。
对于下行定位方法,例如OTDOA,BS为发送端。各BS在预配置或预 定义载波频率发送PRS和C-PRS。相邻不同小区将在不同的子载波中发送C-PRS;
对于上行定位方法,例如UTDOA,UE为发送端。UE还在预配置或预定义载波频率发送PRS和C-PRS。不同UE将在不同的子载波中发送C-PRS;
接收端(BS或UE)根据PRS和C-PRS配置信息测量PRS和C-PRS;PRS测量的定位测量值可包括TOA/TDOA(其中,TDOA又称为参考信号时间差(Reference Signal Time Difference,RSTD))等;以及由C-PRS测量到的载波相位测量值(CP);
接收端(BS或UE)将定位测量值(TOA/TDOA/CP等)报送到无线通讯系统中的某个定位服务器。定位服务器根据PRS和C-PRS配置信息,如各小区的发送天线的位置,以及接收端提供的定位测量值来高精度地确定UE的位置。
使用TOA和相位测量值进行定位可有以下几种基本方式:
非差分方式:直接使用TOA和相位测量值计算UE位置而不使用差分技术。
差分方式:首先对TOA和相位测量值进行差分,消除测量值中的一些共同的偏差,然后用于差分后TOA和相位测量值计算UE位置。差分方式又有单差分和双差分两种。
单差分方式:选某个发送端(或接收端)作为参考端,然后将由其它发送端(或接收端)相关的测量值与由参考端相关的测量值进行差分。单差分的目的是消除某一端(接收端或发送端)的测量偏差。例如,用于OTDOA定位的RSTD测量值即为UE与各个BS所相关的TOA测量值与该UE与某参考BS所相关的TOA测量值进行差分所获得的,其差分目的是消除UE时钟偏移对定位的影响。
双差分方式:对单差分方式后的测量值再次差分,以同时消除与发送端和接收端有关的测量误差,例如BS和UE的时钟偏移。例如,双差分技术可用于下行定位的场景。这时,有多个发送端(基站)和两个接收端,其中一 个接收端为位置已知的参考接收端。另一个接收端为位置未知的UE。这时,两个接收端同时接基站所发送的定位信号,利用双差分技术去消除两个接收端的测量值中与发送机和接收机有关的共同误差,然后精确地计算出未知位置接收端的位置。
但是,基于载波相位的终端位置解算算法存在两个主要缺点:
第一,在于通过线性组合,虚拟载波的测量噪声较大,若整周模糊度搜索到错误整周值,则会对定位造成较大的影响;
第二,使用单频点进行整周模糊度估计时,由于波长较短,使得整周模糊度在数值上表现很大,从而造成EKF算法难以收敛到正确的整周模糊度,导致算法失效。
因此,本申请实施例提供了一种多载频的扩展卡尔曼滤波器终端位置定位方法及装置。利用多载频的组合,构成较大的虚拟波长,并且使用EKF算法进行整周模糊度估计。在估计完毕后,再换算回真实载波相位的整周模糊度,从而提高定位精度。即避免了较小波长造成EKF无法收敛的问题,也解决了虚拟波长直接估计整周模糊度误差较大的问题。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
本申请实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G系统以及5G NR系统等。这多种系统中均包括终端设备和网络设备。
本申请实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为UE。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiated protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本申请实施例中并不限定。
本申请实施例涉及的网络设备,可以是基站,该基站可以包括多个小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(internet protocol,IP)分组进行相互转换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP通信网络。网络设备还可协调对空中接口的属性管理。例如,本申请实施例涉及的网络设备可以是全球移动通信系统(global system for mobile communications,GSM)或码分多址接入(code division multiple access,CDMA)中的网络设备(base transceiver station,BTS),也可以是带宽码分多址接入(wide-band code division multiple access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的 演进型网络设备(evolutional node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站,也可是家庭演进基站(home evolved node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本申请实施例中并不限定。
下面结合说明书附图对本申请各个实施例进行详细描述。需要说明的是,本申请实施例的展示顺序仅代表实施例的先后顺序,并不代表实施例所提供的技术方案的优劣。
本申请实施例提供的技术方案中,发送端发送两个(或多个)不同频率的C-PRS,接收端基于两个(或多个)载波相位测量值构造虚拟相位测量值,定位服务器通过EKF对终端进行多周期的位置跟踪,从而快速搜索出虚拟相位值的虚拟整周模糊度,并进一步计算出真实整周模糊度和实际的相位测量值,最终计算出UE位置。
其中,不同频率的C-PRS可以在不同的载波上,也可以是同一个载波的不同子载波。例如:FDD模式下,也可以采用带宽(Bandwidth,BW)=100MHz载波的第一个和最后一个资源单元(Resource Element,RE)来发送C-PRS,或者是BW=100MHz载波的第一个RE和最后一个RE的PRS作为C-PRS。
如图1所示,情况1(CASE1)表示了选取同一载波,不同子载波作为C-PRS的情况。情况2(CASE2)表示了选取不同频率的载波作为C-PRS的情况。
具体方案概述如下:
发送端:利用3GPP无线通讯系统可配置自身发送的载波参考信号(C-PRS)的特点,配置了两个或多个载波频率发送C-PRS(或同一个载波的不同子载波作为C-PRS)。
接收端:利用由两个(或多个)载波频率发送的C-PRS所测量的载波相位测量值,构造出一个具有很长虚拟波长的虚拟相位测量值;在正交频分复用技术(Orthogonal Frequency Division Multiplexing,OFDM)系统,FDD模式下,选择2个(或多个)不同位置的子载波进行虚拟波长的构造。
定位服务器端:
第一,根据接收端上报的虚拟波长和虚拟相位测量值,进行进一步计算。利用虚拟相位测量值的虚拟波长的很长的特点,大大地减少虚拟整周模糊度的搜索空间。通过TOA和虚拟相位测量值,快速搜索虚拟整周模糊度(可以称为第一整周模糊度);
第二,将接收端上报的虚拟相位测量值,以及快速搜索到的虚拟整周模糊度,输入至EKF算法模块,并最终输出虚拟整周模糊度(可以称为第二整周模糊度)。
第三,利用最终输出的虚拟整周模糊度(即第二整周模糊度),计算出真实整周模糊度(可以称为第三整周模糊度);然后,利用真实整周模糊度和实际的相位测量值计算出UE位置。
其中,关于实际的相位测量值,例如:
Figure PCTCN2021089066-appb-000038
上式中
Figure PCTCN2021089066-appb-000039
即为非差分相位测量值,后续的单差分相位测量值也是根据非差分测量值计算得到的,
Figure PCTCN2021089066-appb-000040
是接收端UE侧使用锁相环测量得到的。
本申请实施例提出的快速确定整周模糊度的方法将适用于上述“非差分”,“单差分”和“双差分”的各种方式。由于EKF算法使用单差分载波相位测量值进行整周期模糊度计算,因此本申请实施例以单差分为例进行说明。具体地,例如:
假设由两个载波频率发送C-PRS,第一载波发送第一C-PRS,第二载波发送第二C-PRS,差分时快速搜索载波相位定位的方法包括:
步骤1:接收端获取单差分TOA测量值和相位单差分测量值;
以第m基站为例,目标UE i和参考UE j的测量值的单差分为例,单差分运算后的TOA测量值(又也被称为TDOA)和相位单差分测量值为:
Figure PCTCN2021089066-appb-000041
Figure PCTCN2021089066-appb-000042
Figure PCTCN2021089066-appb-000043
其中,
Figure PCTCN2021089066-appb-000044
表示以米为单位的单差分TOA测量值,
Figure PCTCN2021089066-appb-000045
是发射端和UE以及参考UE的单差分几何距离,c是光速,
Figure PCTCN2021089066-appb-000046
接收机和发射机的单差分时钟偏移,
Figure PCTCN2021089066-appb-000047
是以第一载波频率周期为单位的相位单差分测量值,
Figure PCTCN2021089066-appb-000048
是以第二载波频率周期为单位的相位单差分测量值,λ 1是第一C-PRS的载波波长,λ 2是第二C-PRS的载波波长,
Figure PCTCN2021089066-appb-000049
Figure PCTCN2021089066-appb-000050
分别是第一载波和第二载波的单差分未知整周模糊度,
Figure PCTCN2021089066-appb-000051
是单差分TOA测量误差,
Figure PCTCN2021089066-appb-000052
Figure PCTCN2021089066-appb-000053
分别是第一载波和第二载波的单差分相位测量误差。
其中,上标“ij”表示单差分运算是相对两个接收端i和j测量值之间进行的,下标表示第m个发送定位参考信号的基站,即
Figure PCTCN2021089066-appb-000054
如果假设BS是发射端,UE是接收端,则在单个差分方式中基站的时钟偏差被消除。
参考接收机(参考UE):一个(也可有多个)参考UE接收基站发送的无线参考信号,以获取TOA和载波相位参考测量值。参考UE测量得到的TOA和载波相位参考测量值,将与目标UE测量得到的TOA和载波相位测量值一起,构成用于载波相位定位的差分测量值。参考UE的接收天线位置已知。
目标UE接收机(目标UE):目标UE也接收基站发送的无线参考信号,获取TOA和载波相位测量值。目标UE测量得到的TOA和载波相位测量值,将与参考UE测量得到的TOA和载波相位参考测量值一起,构成用于载波相位定位的差分测量值,以确定待求解的目标UE位置。
步骤2:接收端构造具有较长虚拟波长的虚拟单差分相位测量值;
分别用λ 2/(λ 21)和-λ 1/(λ 21),乘以上述等式(2)和(3)的等号两边,然后将它们加在一起,同样可以形成虚拟单差分相位测量值
Figure PCTCN2021089066-appb-000055
Figure PCTCN2021089066-appb-000056
其中,λ v,N v,m和w v,m分别是载波虚拟波长、虚拟整周模糊度和虚拟相位 测量误差,且有:
Figure PCTCN2021089066-appb-000057
Figure PCTCN2021089066-appb-000058
Figure PCTCN2021089066-appb-000059
Figure PCTCN2021089066-appb-000060
步骤3:定位服务器快速计算虚拟整周模糊度N v(即第一次计算的整周模糊度,简称第一整周模糊度);
由上述等式(1)可以得到
Figure PCTCN2021089066-appb-000061
Figure PCTCN2021089066-appb-000062
带入上述等式(5),可得以下虚拟整周模糊度
Figure PCTCN2021089066-appb-000063
的关系式:
Figure PCTCN2021089066-appb-000064
本申请实施例中,选择C-PRS传输频率f 1和f 2时所需考虑的因素:
选择C-PRS传输频率f 1和f 2时,同样应同时考虑虚拟波长λ v和虚拟测量误差
Figure PCTCN2021089066-appb-000065
应将两个频率f 1和f 2配置得较相近以产生较长的λ v。但f 1和f 2的配置不能太接近,以避免使虚拟相位测量误差
Figure PCTCN2021089066-appb-000066
过大。假设单差分相位测量误差
Figure PCTCN2021089066-appb-000067
Figure PCTCN2021089066-appb-000068
是相对独立的零均值高斯噪声,协方差为σ 2,即
Figure PCTCN2021089066-appb-000069
将得到
Figure PCTCN2021089066-appb-000070
在OFDM系统,FDD模式下,也可以选择2个不同位置的子载波进行虚拟波长的构造。并且需要考虑的因素与上述相同。
步骤4:定位服务器使用虚拟和真实相位测量值进行整周模糊度确定,具体包括下面的步骤4a和步骤4b;
步骤4a:定位服务器使用虚拟相位测量值,进行虚拟整周模糊度(即第二次计算的整周模糊度,简称第二整周模糊度)确定;
在获得
Figure PCTCN2021089066-appb-000071
之后,将虚拟单差分测量值
Figure PCTCN2021089066-appb-000072
虚拟波长λ v、TOA测量值
Figure PCTCN2021089066-appb-000073
等参数联合起来,进行整周模糊度确定。具体使用EKF进行整周模糊度的确定,将基于EKF进行整周模糊度确定的输入值设为虚拟载波相位测量值,以 及虚拟整周模糊度后,与现有技术的差异之处在于:
1、初始状态向量的改变:
现有的EKF状态向量是:
Figure PCTCN2021089066-appb-000074
其中:
δr=(δx,δy,δz) T为3D UE位置误差;
δv=(δv x,δv y,δv z) T为3D UE速度误差;
Figure PCTCN2021089066-appb-000075
为单差分整数模糊度,表示定位UE i,参考UE j相对于基站m的模糊度单差分形式。
如果仅考虑2D定位,EKF状态向量x将不包括δz和δv z
UE位置误差δr定义为:
Figure PCTCN2021089066-appb-000076
其中r b=(x b,y b,z b) T
Figure PCTCN2021089066-appb-000077
分别表示真实的目标UE位置和估计的目标UE位置。UE速度误差δv定义为:
Figure PCTCN2021089066-appb-000078
其中v b=(v x,v y,v z) T
Figure PCTCN2021089066-appb-000079
分别表示真实的目标UE速度和估计的目标UE速度。
本申请实施例中的EKF状态向量为:
Figure PCTCN2021089066-appb-000080
Figure PCTCN2021089066-appb-000081
为虚拟单差分整数模糊度,表示定位UE i,参考UE j相对于基站m的模糊度单差分形式。
2、将EKF算法中的波长λ替换为虚拟波长λ v
3、修改初始化协方差矩阵;
现有的协方差矩阵为:
Figure PCTCN2021089066-appb-000082
其中,P δx(0),P δy(0)分别为x轴TOA最大定位误差,和y轴TOA最大定位误差。
Figure PCTCN2021089066-appb-000083
分别为x轴最大速度估计误差,和y轴最大速度估计误差。
Figure PCTCN2021089066-appb-000084
σ为单载波时的相位测量噪声的标准差。
本申请实施例中更新后的协方差矩阵为:
Figure PCTCN2021089066-appb-000085
Figure PCTCN2021089066-appb-000086
为虚拟载波的标准差。λ v为载波的虚拟波长。
4、测量噪声矩阵R;
现有的测量噪声矩阵为:
Figure PCTCN2021089066-appb-000087
Figure PCTCN2021089066-appb-000088
其中,E[w y]=0;R T和R L分别表示测量噪声w T和w L的协方差矩阵;
Figure PCTCN2021089066-appb-000089
定位UE i到基站m的TOA测量噪声,
Figure PCTCN2021089066-appb-000090
(单位:米);
定位UE i到基站m的相位测量噪声
Figure PCTCN2021089066-appb-000091
(单位:米);
Figure PCTCN2021089066-appb-000092
参考UE j到基站m的TOA测量噪声,
Figure PCTCN2021089066-appb-000093
(单位:米);
参考UE j到基站m的相位测量噪声
Figure PCTCN2021089066-appb-000094
单位:米)。
其中,
R T=DR′ TD T;R L=DR′ LD T
Figure PCTCN2021089066-appb-000095
Figure PCTCN2021089066-appb-000096
Figure PCTCN2021089066-appb-000097
本申请实施例中的噪声测量噪声矩阵为:
Figure PCTCN2021089066-appb-000098
Figure PCTCN2021089066-appb-000099
其中,E[w y]=0;R T
Figure PCTCN2021089066-appb-000100
分别表示测量噪声w T
Figure PCTCN2021089066-appb-000101
的协方差矩阵。波浪符号~代表将原差分载波测量误差替换为虚拟载波测量误差。
R T=DR′ TD T
Figure PCTCN2021089066-appb-000102
Figure PCTCN2021089066-appb-000103
Figure PCTCN2021089066-appb-000104
Figure PCTCN2021089066-appb-000105
其中,
Figure PCTCN2021089066-appb-000106
为UE虚拟载波测量误差的标准差。其大小为
Figure PCTCN2021089066-appb-000107
Figure PCTCN2021089066-appb-000108
为参考UE虚拟载波测量误差的标准差。依上式同理可得。
在经过EKF算法计算后,得到虚拟整周模糊度(即第二整周模糊度)
Figure PCTCN2021089066-appb-000109
步骤4b:定位服务器计算真实相位的整周模糊度(即第三次计算的整周模糊度,简称第三整周模糊度);
以到第m个基站的虚拟载波相位模糊度
Figure PCTCN2021089066-appb-000110
为例,在获得
Figure PCTCN2021089066-appb-000111
之后,同样也可以使用
Figure PCTCN2021089066-appb-000112
进一步搜索
Figure PCTCN2021089066-appb-000113
Figure PCTCN2021089066-appb-000114
然后用
Figure PCTCN2021089066-appb-000115
和/或
Figure PCTCN2021089066-appb-000116
以进行更 精确的定位。
Figure PCTCN2021089066-appb-000117
可以通过使用上述方程式(2)和(6)来搜索;而
Figure PCTCN2021089066-appb-000118
可以通过使用上述方程式(3)和(6)来搜索。例如,由式(2)和(6)可得:
Figure PCTCN2021089066-appb-000119
式(7)表示在获得
Figure PCTCN2021089066-appb-000120
(即第三整周模糊度)之后,
Figure PCTCN2021089066-appb-000121
的搜索空间可以大大减少,并主要取决于
Figure PCTCN2021089066-appb-000122
合理选择C-PRS传输频率f 1和f 2时,可使虚拟测量误差
Figure PCTCN2021089066-appb-000123
的范围与波长λ 1基本相近。
步骤5:定位服务器使用真实相位的整周模糊度(即第三整周模糊度)进行定位;
重复上述步骤4,以传输频率f 1为例,通过步骤4,可以得到一系列真实相位的整周模糊度
Figure PCTCN2021089066-appb-000124
结合相位测量值
Figure PCTCN2021089066-appb-000125
进行最终的终端的位置计算,例如使用最小二乘法或Chan[2]算法进行位置计算。
例如,图2示出了本申请实施例提供的应用快速搜索载波相位定位整周模糊度方法的定位流程,具体包括:
步骤1、发送端(BS或UE)除了配置发送传统的PRS之外,还根据本申请实施例的要求,配置了两个或多个载波频率发送载波相位定位的C-PRS;在FDD模式下,也可以采用例如BW=100MHz载波的第一个和最后一个RE来发送C-PRS。发送端(BS或UE)将PRS和C-PRS的配置信息告诉定位服务器;
对于基于下行链路参考信号的UE定位方法,例如OTDOA,BS为发送端;
对于基于上行链路参考信号的UE定位方法,例如UTDOA,UE为发送端;
选择C-PRS传输频率时应同时考虑虚拟波长和虚拟测量误差。为了有效地使用虚拟相位测量来搜索虚拟整周模糊度,虚拟测量误差应比TOA测量误差小一个数量级。在满足这种条件下,可尽量增加虚拟波长以减少虚拟整周模糊度的搜索空间。
步骤2、定位服务器将PRS和C-PRS的配置信息告诉PRS和C-PRS的接收端(BS或UE);
步骤3、发送端(BS或UE)按照PRS和C-PRS的配置信息,发送PRS和C-PRS,其中C-PRS在两个或多个载波频率发送;
步骤4、接收端按照PRS和C-PRS的配置信息,接收PRS和C-PRS,获得TOA和载波相位测量值;
步骤5、接收端将测量PRS和C-PRS后所得的定位测量值报告给定位服务器。若接收端是UE,接收端所报告的定位测量值可以是没有经过差分的TOA和载波相位测量值,也可以是经过单差分后的TDOA和单差分载波相位测量值;
步骤6和步骤7:首先定位服务器利用本申请实施例提供的方法,快速搜索整周模糊度,然后进行UE定位。
若用单差分方式定位,利用上述快速搜索单差分方式确定整周模糊度。其具体步骤包括:
用由两个或多个载波(或多个子载波)频率发送的C-PRS所测量的单差分后的相位测量值,构造虚拟单差分相位测量值(如式(5)):
用TDOA测量值和虚拟单差分相位测量值,确定虚拟整周模糊度搜索空间,搜索虚拟整周模糊度(式(6));
使用EKF算法对虚拟整周模糊度进行跟踪,最终输出虚拟整周模糊度。利用虚拟整周模糊度,继续搜索真实整周模糊度(式(7))。然后,利用真实整周模糊度和实际的相位测量值计算UE位置。
上述实施例仅描述了一个定位周期用户进行定位的过程,同理,实际上可以适用于多个定位周期,进行用户的运动轨迹跟踪。并且由于EKF算法的特性,进行多周期的用户轨迹跟踪,更有助于精确的确定整模糊度,从而进一步提高定位精度。
综上所述,本申请实施例提供的技术方案中,EKF利用虚拟相位测量值的虚拟波长很长的特点,通过TOA和虚拟相位测量值,对虚拟整周模糊度进 行多个测量周期的跟踪,从而快速准确的确定虚拟整周模糊度。利用虚拟整周模糊度,快速搜索真实整周模糊度。然后,利用真实整周模糊度和实际的相位测量值计算UE位置。
由于本申请实施例“构造”的虚拟相位测量值的虚拟波长比实际波长可大一个数量极,因此提高了使用EKF算法进行整周模糊度估计时的稳定性,避免了由于波长较短,EKF无法正确搜索整周模糊度的问题。
在EKF进行整周模糊度估计后,本申请实施例将虚拟载波的整周期模糊度反算回单载波的形式进行定位,从而大大减少了定位误差,避免了构成虚拟载波时增大测量误差的问题。
参见图3,本申请实施例提供的定位服务器侧的定位方法包括:
S301、通过定位参考信号的接收端提供的定位测量值,确定整周模糊度;其中,所述定位测量值中包括所述接收端利用载波相位测量值所构造得到的虚拟相位测量值,所述载波相位测量值是所述接收端对载波定位参考信号C-PRS进行测量得到的,所述定位参考信号中包括所述定位参考信号的发送端通过至少两个载波频率发送的C-PRS;
S302、通过所述整周模糊度确定终端位置。
可选地,通过定位参考信号的接收端提供的定位测量值,确定整周模糊度,具体包括:通过所述构造得到的虚拟相位测量值,以及TOA测量值,确定第一整周模糊度(即快速搜索到的虚拟相位测量值);利用EKF对所述第一整周模糊度进行计算,确定第二整周模糊度(即EKF输出的虚拟相位测量值);利用所述第二整周模糊度,确定第三整周模糊度(即真实的相位测量值);
通过所述第三整周模糊度确定终端位置。
可选地,对于第m个基站,目标终端i和参考终端j,当所述发送端通过第一载波频率和第二载波频率分别发送第一C-PRS和第二C-PRS时,通过如下公式确定所述第一整周模糊度
Figure PCTCN2021089066-appb-000126
Figure PCTCN2021089066-appb-000127
其中,
Figure PCTCN2021089066-appb-000128
λ 1是第一C-PRS的载波波长,λ 2是第二C-PRS的载波波长,
Figure PCTCN2021089066-appb-000129
是以第一载波频率周期为单位的相位单差分测量值,
Figure PCTCN2021089066-appb-000130
是以第二载波频率周期为单位的相位单差分测量值,
Figure PCTCN2021089066-appb-000131
表示以米为单位的单差分TOA测量值,
Figure PCTCN2021089066-appb-000132
是单差分TOA测量误差,
Figure PCTCN2021089066-appb-000133
Figure PCTCN2021089066-appb-000134
分别是第一载波和第二载波的单差分相位测量误差。
其中,所述第一载波,即发送第一C-PRS的载波;所述第二载波,即发送第二C-PRS的载波,这两个载波的频率不同。
可选地,将参数
Figure PCTCN2021089066-appb-000135
输入EKF,确定第二整周模糊度
Figure PCTCN2021089066-appb-000136
其中,
Figure PCTCN2021089066-appb-000137
是第m个基站的载波的第二整周模糊度。
可选地,通过如下公式确定第m个基站的第一载波的第三整周模糊度
Figure PCTCN2021089066-appb-000138
和第二载波的第三整周模糊度
Figure PCTCN2021089066-appb-000139
Figure PCTCN2021089066-appb-000140
Figure PCTCN2021089066-appb-000141
参见图4,本申请实施例提供的接收端侧的定位方法包括:
S401、接收定位参考信号的发送端发送的定位参考信号,所述定位参考信号中包括所述发送端通过至少两个载波频率发送的载波定位参考信号C-PRS;
S402、对所述定位参考信号进行测量,得到定位测量值,所述定位测量值中包括通过对所述C-PRS进行测量得到的载波相位测量值进行构造得到的虚拟相位测量值;
S403、将所述定位测量值发送给定位服务器,以使所述定位服务器根据所述定位测量值对终端进行定位。
参见图5,本申请实施例提供的发送端侧的定位方法包括:
S501、发送定位参考信号的配置信息,所述定位参考信号中包括通过至少两个载波频率发送的C-PRS;
S502、发送所述定位参考信号,以使所述定位参考信号的接收端根据所述配置信息对所述定位参考信号进行测量得到定位测量值,并将所述定位测量值发送给定位服务器,由所述定位服务器根据所述定位测量值对终端进行定位;其中,所述定位测量值中包括所述接收端通过对所述C-PRS进行测量得到的载波相位测量值进行构造得到的虚拟相位测量值。
参见图6,本申请实施例提供的定位装置包括:存储器620和处理器600,其中,所述存储器620用于存储程序指令,收发机610,用于在处理器600的控制下接收和发送数据,所述处理器600用于调用所述存储器620中存储的程序指令,按照获得的程序执行上述任一种定位方法。
收发机610,用于在处理器600的控制下接收和发送数据。
其中,在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
处理器600可以是中央处理器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。
若所述定位装置是用户设备,则还可以包括与总线架构相连的用户接口,针对不同的用户设备,用户接口还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
具体地,若所述定位装置作为定位服务器侧的装置(也可以是定位服务 器本身),则处理器600,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
通过定位参考信号的接收端提供的定位测量值,确定整周模糊度;其中,所述定位测量值中包括所述接收端利用载波相位测量值所构造得到的虚拟相位测量值,所述载波相位测量值是所述接收端对载波定位参考信号C-PRS进行测量得到的,所述定位参考信号中包括所述定位参考信号的发送端通过至少两个载波频率发送的C-PRS;
通过所述整周模糊度确定终端位置。
可选地,所述处理器600具体用于:通过所述构造得到的虚拟相位测量值,以及TOA测量值,确定第一整周模糊度;利用EKF对所述第一整周模糊度进行计算,确定第二整周模糊度;利用所述第二整周模糊度,确定第三整周模糊度;
通过所述第三整周模糊度确定终端位置。
可选地,对于第m个基站,目标终端i和参考终端j,当所述发送端通过第一载波频率和第二载波频率分别发送第一C-PRS和第二C-PRS时,所述处理器600具体用于通过如下公式确定所述第一整周模糊度
Figure PCTCN2021089066-appb-000142
Figure PCTCN2021089066-appb-000143
其中,
Figure PCTCN2021089066-appb-000144
λ 1是第一C-PRS的载波波长,λ 2是第二C-PRS的载波波长,
Figure PCTCN2021089066-appb-000145
是以第一载波频率周期为单位的相位单差分测量值,
Figure PCTCN2021089066-appb-000146
是以第二载波频率周期为单位的相位单差分测量值,
Figure PCTCN2021089066-appb-000147
表示以米为单位的单差分TOA测量值,
Figure PCTCN2021089066-appb-000148
是单差分TOA测量误差,
Figure PCTCN2021089066-appb-000149
Figure PCTCN2021089066-appb-000150
分别是第一载波和第二载波的单差分相位测量误差。
可选地,所述处理器600具体用于:
将参数
Figure PCTCN2021089066-appb-000151
输入EKF,确定第二整周模糊度
Figure PCTCN2021089066-appb-000152
其中,
Figure PCTCN2021089066-appb-000153
是第m个基站的载波的第二整周 模糊度。
可选地,所述处理器600具体用于通过如下公式确定第m个基站的第一载波的第三整周模糊度
Figure PCTCN2021089066-appb-000154
和第二载波的第三整周模糊度
Figure PCTCN2021089066-appb-000155
Figure PCTCN2021089066-appb-000156
Figure PCTCN2021089066-appb-000157
若所述定位装置作为接收端侧的装置(也可以是接收端本身,接收端可以是基站也可以是终端),则处理器600,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
接收定位参考信号的发送端发送的定位参考信号,所述定位参考信号中包括所述发送端通过至少两个载波频率发送的C-PRS;
对所述定位参考信号进行测量,得到定位测量值,所述定位测量值中包括通过对所述C-PRS进行测量得到的载波相位测量值进行构造得到的虚拟相位测量值;
将所述定位测量值发送给定位服务器,以使所述定位服务器根据所述定位测量值对终端进行定位。
若所述定位装置作为发送端侧的装置(也可以是发送端本身,发送端可以是基站也可以是终端),则处理器600,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
发送定位参考信号的配置信息,所述定位参考信号中包括通过至少两个载波频率发送的C-PRS;
发送所述定位参考信号,以使所述定位参考信号的接收端根据所述配置信息对所述定位参考信号进行测量得到定位测量值,并将所述定位测量值发送给定位服务器,由所述定位服务器根据所述定位测量值对终端进行定位;其中,所述定位测量值中包括所述接收端通过对所述C-PRS进行测量得到的载波相位测量值进行构造得到的虚拟相位测量值。
参见图7,本申请实施例提供的定位服务器侧的另一定位装置包括:
整周模糊度确定单元71,用于通过定位参考信号的接收端提供的定位测量值,确定整周模糊度;其中,所述定位测量值中包括所述接收端利用载波相位测量值所构造得到的虚拟相位测量值,所述载波相位测量值是所述接收端对载波定位参考信号C-PRS进行测量得到的,所述定位参考信号中包括所述定位参考信号的发送端通过至少两个载波频率发送的C-PRS;
位置确定单元72,用于通过所述整周模糊度确定终端位置。
可选地,所述整周模糊度确定单元71具体用于:
通过所述构造得到的虚拟相位测量值,以及TOA测量值,确定第一整周模糊度;利用EKF对所述第一整周模糊度进行计算,确定第二整周模糊度;利用所述第二整周模糊度,确定第三整周模糊度;
通过所述第三整周模糊度确定终端位置。
可选地,对于第m个基站,目标终端i和参考终端j,当所述发送端通过第一载波频率和第二载波频率分别发送第一C-PRS和第二C-PRS时,所述整周模糊度确定单元71具体用于:
Figure PCTCN2021089066-appb-000158
其中,
Figure PCTCN2021089066-appb-000159
λ 1是第一C-PRS的载波波长,λ 2是第二C-PRS的载波波长,
Figure PCTCN2021089066-appb-000160
是以第一载波频率周期为单位的相位单差分测量值,
Figure PCTCN2021089066-appb-000161
是以第二载波频率周期为单位的相位单差分测量值,
Figure PCTCN2021089066-appb-000162
表示以米为单位的单差分TOA测量值,
Figure PCTCN2021089066-appb-000163
是单差分TOA测量误差,
Figure PCTCN2021089066-appb-000164
Figure PCTCN2021089066-appb-000165
分别是第一载波和第二载波的单差分相位测量误差。
可选地,所述整周模糊度确定单元71具体用于:
将参数
Figure PCTCN2021089066-appb-000166
输入EKF,确定第二整周模糊度
Figure PCTCN2021089066-appb-000167
其中,
Figure PCTCN2021089066-appb-000168
是第m个基站的载波的第二整周模糊度。
可选地,所述整周模糊度确定单元71具体用于通过如下公式确定第m个 基站的第一载波的第三整周模糊度
Figure PCTCN2021089066-appb-000169
和第二载波的第三整周模糊度
Figure PCTCN2021089066-appb-000170
Figure PCTCN2021089066-appb-000171
Figure PCTCN2021089066-appb-000172
参见图8,本申请实施例提供的接收端侧的另一定位装置包括:
接收单元81,用于接收定位参考信号的发送端发送的定位参考信号,所述定位参考信号中包括所述发送端通过至少两个载波频率发送的C-PRS;
定位测量单元82,用于对所述定位参考信号进行测量,得到定位测量值,所述定位测量值中包括通过对所述C-PRS进行测量得到的载波相位测量值进行构造得到的虚拟相位测量值;
发送单元83,用于将所述定位测量值发送给定位服务器,以使所述定位服务器根据所述定位测量值对终端进行定位。
参见图9,本申请实施例提供的接收端侧的另一定位装置包括:
第一发送单元91,用于发送定位参考信号的配置信息,所述定位参考信号中包括通过至少两个载波频率发送的C-PRS;
第二发送单元92,用于发送所述定位参考信号,以使所述定位参考信号的接收端根据所述配置信息对所述定位参考信号进行测量得到定位测量值,并将所述定位测量值发送给定位服务器,由所述定位服务器根据所述定位测量值对终端进行定位;其中,所述定位测量值中包括所述接收端通过对所述C-PRS进行测量得到的载波相位测量值进行构造得到的虚拟相位测量值。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本 申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例提供了一种计算设备,该计算设备具体可以为桌面计算机、便携式计算机、智能手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)等。该计算设备可以包括中央处理器(Center Processing Unit,CPU)、存储器、输入/输出设备等,输入设备可以包括键盘、鼠标、触摸屏等,输出设备可以包括显示设备,如液晶显示器(Liquid Crystal Display,LCD)、阴极射线管(Cathode Ray Tube,CRT)等。
存储器可以包括ROM和RAM,并向处理器提供存储器中存储的程序指令和数据。在本申请实施例中,存储器可以用于存储本申请实施例提供的任一所述方法的程序。
处理器通过调用存储器存储的程序指令,处理器用于按照获得的程序指令执行本申请实施例提供的任一所述方法。
本申请实施例提供了一种计算机存储介质,用于储存为上述本申请实施例提供的装置所用的计算机程序指令,其包含用于执行上述本申请实施例提供的任一方法的程序。
所述计算机存储介质可以是计算机能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(Solid State Disk,SSD))等。
本申请实施例提供的方法可以应用于终端设备,也可以应用于网络设备。
其中,终端设备也可称之为“UE”、移动台(Mobile Station,简称为“MS”)、移动终端(Mobile Terminal)等,可选的,该终端可以具备经RAN与一个或多个核心网进行通信的能力,例如,终端可以是移动电话(或称为“蜂窝”电话)、或具有移动性质的计算机等,例如,终端还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
网络设备可以为基站(例如,接入点),指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以是5G系统中的gNB等。本申请实施例中不做限定。
上述方法处理流程可以用软件程序实现,该软件程序可以存储在存储介质中,当存储的软件程序被调用时,执行上述方法步骤。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (18)

  1. 一种定位方法,其特征在于,该方法包括:
    通过定位参考信号的接收端提供的定位测量值,确定整周模糊度;其中,所述定位测量值中包括所述接收端利用载波相位测量值所构造得到的虚拟相位测量值,所述载波相位测量值是所述接收端对载波定位参考信号C-PRS进行测量得到的,所述定位参考信号中包括所述定位参考信号的发送端通过至少两个载波频率发送的C-PRS;
    通过所述整周模糊度确定终端位置。
  2. 根据权利要求1所述的方法,其特征在于,所述通过定位参考信号的接收端提供的定位测量值,确定整周模糊度,具体包括:
    通过所述构造得到的虚拟相位测量值,以及到达时间TOA测量值,确定第一整周模糊度;利用扩展卡尔曼滤波器EKF对所述第一整周模糊度进行计算,确定第二整周模糊度;利用所述第二整周模糊度,确定第三整周模糊度;
    通过所述第三整周模糊度确定终端位置。
  3. 根据权利要求2所述的方法,其特征在于,对于第m个基站,目标终端i和参考终端j,当所述发送端通过第一载波频率和第二载波频率分别发送第一C-PRS和第二C-PRS时,通过如下公式确定所述第一整周模糊度
    Figure PCTCN2021089066-appb-100001
    Figure PCTCN2021089066-appb-100002
    其中,
    Figure PCTCN2021089066-appb-100003
    λ 1是第一C-PRS的载波波长,λ 2是第二C-PRS的载波波长,
    Figure PCTCN2021089066-appb-100004
    是以第一载波频率周期为单位的相位单差分测量值,
    Figure PCTCN2021089066-appb-100005
    是以第二载波频率周期为单位的相位单差分测量值,
    Figure PCTCN2021089066-appb-100006
    表示以米为单位的单差分TOA测量值,
    Figure PCTCN2021089066-appb-100007
    是单差分TOA测量误差,
    Figure PCTCN2021089066-appb-100008
    Figure PCTCN2021089066-appb-100009
    分别是第一载波和第二载波的单差分相位测量误差。
  4. 根据权利要求3所述的方法,其特征在于,所述利用扩展卡尔曼滤波 器EKF对所述第一整周模糊度进行计算,确定第二整周模糊度,具体包括:
    将参数
    Figure PCTCN2021089066-appb-100010
    λ v
    Figure PCTCN2021089066-appb-100011
    输入EKF,确定第二整周模糊度
    Figure PCTCN2021089066-appb-100012
    其中,
    Figure PCTCN2021089066-appb-100013
    是第m个基站的载波的第二整周模糊度。
  5. 根据权利要求4所述的方法,其特征在于,通过如下公式确定第m个基站的第一载波的第三整周模糊度
    Figure PCTCN2021089066-appb-100014
    和第二载波的第三整周模糊度
    Figure PCTCN2021089066-appb-100015
    Figure PCTCN2021089066-appb-100016
    Figure PCTCN2021089066-appb-100017
  6. 一种定位方法,其特征在于,该方法包括:
    接收定位参考信号的发送端发送的定位参考信号,所述定位参考信号中包括所述发送端通过至少两个载波频率发送的载波定位参考信号C-PRS;
    对所述定位参考信号进行测量,得到定位测量值,所述定位测量值中包括通过对所述C-PRS进行测量得到的载波相位测量值进行构造得到的虚拟相位测量值;
    将所述定位测量值发送给定位服务器,以使所述定位服务器根据所述定位测量值对终端进行定位。
  7. 一种定位方法,其特征在于,该方法包括:
    发送定位参考信号的配置信息,所述定位参考信号中包括通过至少两个载波频率发送的载波定位参考信号C-PRS;
    发送所述定位参考信号,以使所述定位参考信号的接收端根据所述配置信息对所述定位参考信号进行测量得到定位测量值,并将所述定位测量值发送给定位服务器,由所述定位服务器根据所述定位测量值对终端进行定位;其中,所述定位测量值中包括所述接收端通过对所述C-PRS进行测量得到的载波相位测量值进行构造得到的虚拟相位测量值。
  8. 一种定位装置,其特征在于,包括:
    存储器,用于存储程序指令;
    处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
    通过定位参考信号的接收端提供的定位测量值,确定整周模糊度;其中,所述定位测量值中包括所述接收端利用载波相位测量值所构造得到的虚拟相位测量值,所述载波相位测量值是所述接收端对载波定位参考信号C-PRS进行测量得到的,所述定位参考信号中包括所述定位参考信号的发送端通过至少两个载波频率发送的C-PRS;
    通过所述整周模糊度确定终端位置。
  9. 根据权利要求8所述的装置,其特征在于,所述处理器具体用于:
    通过所述构造得到的虚拟相位测量值,以及到达时间TOA测量值,确定第一整周模糊度;利用扩展卡尔曼滤波器EKF对所述第一整周模糊度进行计算,确定第二整周模糊度;利用所述第二整周模糊度,确定第三整周模糊度;
    通过所述第三整周模糊度确定终端位置。
  10. 根据权利要求9所述的装置,其特征在于,对于第m个基站,目标终端i和参考终端j,当所述发送端通过第一载波频率和第二载波频率分别发送第一C-PRS和第二C-PRS时,所述处理器具体用于通过如下公式确定所述第一整周模糊度
    Figure PCTCN2021089066-appb-100018
    Figure PCTCN2021089066-appb-100019
    其中,
    Figure PCTCN2021089066-appb-100020
    λ 1是第一C-PRS的载波波长,λ 2是第二C-PRS的载波波长,
    Figure PCTCN2021089066-appb-100021
    是以第一载波频率周期为单位的相位单差分测量值,
    Figure PCTCN2021089066-appb-100022
    是以第二载波频率周期为单位的相位单差分测量值,
    Figure PCTCN2021089066-appb-100023
    表示以米为单位的单差分TOA测量值,
    Figure PCTCN2021089066-appb-100024
    是单差分TOA测量误差,
    Figure PCTCN2021089066-appb-100025
    Figure PCTCN2021089066-appb-100026
    分别是第一载波和第二载波的单差分相位测量误差。
  11. 根据权利要求10所述的装置,其特征在于,所述处理器具体用于:
    将参数
    Figure PCTCN2021089066-appb-100027
    λ v
    Figure PCTCN2021089066-appb-100028
    输入EKF,确定第二整周模糊度
    Figure PCTCN2021089066-appb-100029
    其中,
    Figure PCTCN2021089066-appb-100030
    是第m个基站的载波的第二整周 模糊度。
  12. 根据权利要求11所述的装置,其特征在于,所述处理器具体用于通过如下公式确定第m个基站的第一载波的第三整周模糊度
    Figure PCTCN2021089066-appb-100031
    和第二载波的第三整周模糊度
    Figure PCTCN2021089066-appb-100032
    Figure PCTCN2021089066-appb-100033
    Figure PCTCN2021089066-appb-100034
  13. 一种定位装置,其特征在于,包括:
    存储器,用于存储程序指令;
    处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
    接收定位参考信号的发送端发送的定位参考信号,所述定位参考信号中包括所述发送端通过至少两个载波频率发送的载波定位参考信号C-PRS;
    对所述定位参考信号进行测量,得到定位测量值,所述定位测量值中包括通过对所述C-PRS进行测量得到的载波相位测量值进行构造得到的虚拟相位测量值;
    将所述定位测量值发送给定位服务器,以使所述定位服务器根据所述定位测量值对终端进行定位。
  14. 一种定位装置,其特征在于,包括:
    存储器,用于存储程序指令;
    处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
    发送定位参考信号的配置信息,所述定位参考信号中包括至少通过两个载波频率发送的载波定位参考信号C-PRS;
    发送所述定位参考信号,以使所述定位参考信号的接收端根据所述配置信息对所述定位参考信号进行测量得到定位测量值,并将所述定位测量值发送给定位服务器,由所述定位服务器根据所述定位测量值对终端进行定位;其中,所述定位测量值中包括所述接收端通过对所述C-PRS进行测量得到的载波相位测量值进行构造得到的虚拟相位测量值。
  15. 一种定位装置,其特征在于,包括:
    整周模糊度确定单元,用于通过定位参考信号的接收端提供的定位测量值,确定整周模糊度;其中,所述定位测量值中包括所述接收端利用载波相位测量值所构造得到的虚拟相位测量值,所述载波相位测量值是所述接收端对载波定位参考信号C-PRS进行测量得到的,所述定位参考信号中包括所述定位参考信号的发送端通过至少两个载波频率发送的C-PRS;
    位置确定单元,用于通过所述整周模糊度确定终端位置。
  16. 一种定位装置,其特征在于,包括:
    接收单元,用于接收定位参考信号的发送端发送的定位参考信号,所述定位参考信号中包括所述发送端通过至少两个载波频率发送的载波定位参考信号C-PRS;
    定位测量单元,用于对所述定位参考信号进行测量,得到定位测量值,所述定位测量值中包括通过对所述C-PRS进行测量得到的载波相位测量值进行构造得到的虚拟相位测量值;
    发送单元,用于将所述定位测量值发送给定位服务器,以使所述定位服务器根据所述定位测量值对终端进行定位。
  17. 一种定位装置,其特征在于,包括:
    第一发送单元,用于发送定位参考信号的配置信息,所述定位参考信号中包括通过至少两个载波频率发送的载波定位参考信号C-PRS;
    第二发送单元,用于发送所述定位参考信号,以使所述定位参考信号的接收端根据所述配置信息对所述定位参考信号进行测量得到定位测量值,并将所述定位测量值发送给定位服务器,由所述定位服务器根据所述定位测量值对终端进行定位;其中,所述定位测量值中包括所述接收端通过对所述C-PRS进行测量得到的载波相位测量值进行构造得到的虚拟相位测量值。
  18. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行权利要求1至7任一项所述的方法。
PCT/CN2021/089066 2020-05-15 2021-04-22 定位方法及装置 WO2021227821A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/925,325 US20230180172A1 (en) 2020-05-15 2021-04-22 Positioning method and device
EP21803338.9A EP4152774A4 (en) 2020-05-15 2021-04-22 POSITIONING METHOD AND DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010412590.4 2020-05-15
CN202010412590.4A CN113691929B (zh) 2020-05-15 2020-05-15 定位方法及装置

Publications (1)

Publication Number Publication Date
WO2021227821A1 true WO2021227821A1 (zh) 2021-11-18

Family

ID=78526377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089066 WO2021227821A1 (zh) 2020-05-15 2021-04-22 定位方法及装置

Country Status (5)

Country Link
US (1) US20230180172A1 (zh)
EP (1) EP4152774A4 (zh)
CN (1) CN113691929B (zh)
TW (1) TWI778607B (zh)
WO (1) WO2021227821A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023143114A1 (zh) * 2022-01-30 2023-08-03 华为技术有限公司 通信方法和通信装置
WO2023184458A1 (zh) * 2022-03-31 2023-10-05 北京小米移动软件有限公司 多载频载波相位Carrierphase定位能力的确定方法和装置
WO2023184436A1 (zh) * 2022-03-31 2023-10-05 北京小米移动软件有限公司 一种信号处理方法/装置/设备及存储介质
WO2024019538A1 (en) * 2022-07-19 2024-01-25 Samsung Electronics Co., Ltd. Positioning via round-trip carrier-phase method with multiple-carriers
WO2024033799A1 (en) * 2022-08-10 2024-02-15 Lenovo (Singapore) Pte. Ltd. Integer ambiguity resolution for carrier phase-based positioning
WO2024033195A1 (en) * 2022-08-11 2024-02-15 Sony Group Corporation Carrier phase positioning technique
WO2024064449A1 (en) * 2022-09-21 2024-03-28 Qualcomm Incorporated Carrier phase measurement assisted position estimation
WO2024110950A1 (en) * 2023-02-06 2024-05-30 Lenovo (Singapore) Pte. Ltd. Carrier phase positioning measurement configuration enhancements for integer ambiguity resolution
WO2024113503A1 (en) * 2023-02-17 2024-06-06 Zte Corporation Systems and methods for carrier phase positioning

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11812404B2 (en) * 2021-08-12 2023-11-07 Qualcomm Incorporated Reference carrier phase for positioning reference signals
US20230098682A1 (en) * 2021-09-30 2023-03-30 Qualcomm Incorporated Assistance data for position estimation using carrier phase combination in a cellular positioning system
WO2023151434A1 (zh) * 2022-02-11 2023-08-17 华为技术有限公司 通信方法和通信装置
WO2023180970A1 (en) * 2022-03-23 2023-09-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Methods and apparatus of frequency domain phase measurement and positioning reporting
CN117178604A (zh) * 2022-03-31 2023-12-05 北京小米移动软件有限公司 一种信号处理方法、装置、设备及存储介质
WO2023186135A1 (zh) * 2022-03-31 2023-10-05 华为技术有限公司 定位信息的确定方法、定位方法以及相关装置
CN117204075A (zh) * 2022-04-08 2023-12-08 北京小米移动软件有限公司 上行定位方法、装置、设备及存储介质
CN117322094A (zh) * 2022-04-27 2023-12-29 北京小米移动软件有限公司 定位方法、装置、设备及存储介质
CN117014798A (zh) * 2022-04-29 2023-11-07 大唐移动通信设备有限公司 信息传输方法、载波相位定位方法及装置
CN115128652A (zh) * 2022-05-28 2022-09-30 北京远思久维科技有限公司 一种基于5g载波相位的定位方法
CN118020273A (zh) * 2022-09-09 2024-05-10 北京小米移动软件有限公司 一种基于载波相位的定位方法、装置、及存储介质
CN115767415A (zh) * 2022-10-26 2023-03-07 华为技术有限公司 发送与接收信息的方法及通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107655474A (zh) * 2017-10-11 2018-02-02 上海展扬通信技术有限公司 一种基于智能终端的导航方法及导航系统
CN109974705A (zh) * 2019-03-08 2019-07-05 桂林电子科技大学 一种扫地机器人的清扫路径的优化方法及系统
CN110062457A (zh) * 2018-01-19 2019-07-26 电信科学技术研究院有限公司 一种定位方法和相关设备
CN111435159A (zh) * 2019-01-11 2020-07-21 电信科学技术研究院有限公司 一种进行定位的方法和设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164395A (ja) * 2003-12-02 2005-06-23 Toyota Motor Corp 搬送波位相式gps測位装置及び方法
CN102353969B (zh) * 2011-09-02 2013-07-31 东南大学 精密单点定位技术中相位偏差的估计方法
US9405972B2 (en) * 2013-09-27 2016-08-02 Qualcomm Incorporated Exterior hybrid photo mapping
CN108051840B (zh) * 2017-11-03 2021-07-16 中国航空无线电电子研究所 一种基于gnss的含约束ekf相对定位方法
CN109307872A (zh) * 2018-02-28 2019-02-05 南京大学 一种低成本多点安全高精度定位监测的方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107655474A (zh) * 2017-10-11 2018-02-02 上海展扬通信技术有限公司 一种基于智能终端的导航方法及导航系统
CN110062457A (zh) * 2018-01-19 2019-07-26 电信科学技术研究院有限公司 一种定位方法和相关设备
CN111435159A (zh) * 2019-01-11 2020-07-21 电信科学技术研究院有限公司 一种进行定位的方法和设备
CN109974705A (zh) * 2019-03-08 2019-07-05 桂林电子科技大学 一种扫地机器人的清扫路径的优化方法及系统

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023143114A1 (zh) * 2022-01-30 2023-08-03 华为技术有限公司 通信方法和通信装置
WO2023184458A1 (zh) * 2022-03-31 2023-10-05 北京小米移动软件有限公司 多载频载波相位Carrierphase定位能力的确定方法和装置
WO2023184436A1 (zh) * 2022-03-31 2023-10-05 北京小米移动软件有限公司 一种信号处理方法/装置/设备及存储介质
WO2024019538A1 (en) * 2022-07-19 2024-01-25 Samsung Electronics Co., Ltd. Positioning via round-trip carrier-phase method with multiple-carriers
WO2024033799A1 (en) * 2022-08-10 2024-02-15 Lenovo (Singapore) Pte. Ltd. Integer ambiguity resolution for carrier phase-based positioning
WO2024033195A1 (en) * 2022-08-11 2024-02-15 Sony Group Corporation Carrier phase positioning technique
WO2024064449A1 (en) * 2022-09-21 2024-03-28 Qualcomm Incorporated Carrier phase measurement assisted position estimation
WO2024110950A1 (en) * 2023-02-06 2024-05-30 Lenovo (Singapore) Pte. Ltd. Carrier phase positioning measurement configuration enhancements for integer ambiguity resolution
WO2024113503A1 (en) * 2023-02-17 2024-06-06 Zte Corporation Systems and methods for carrier phase positioning

Also Published As

Publication number Publication date
EP4152774A1 (en) 2023-03-22
TW202145814A (zh) 2021-12-01
TWI778607B (zh) 2022-09-21
US20230180172A1 (en) 2023-06-08
CN113691929B (zh) 2022-07-26
CN113691929A (zh) 2021-11-23
EP4152774A4 (en) 2023-11-08

Similar Documents

Publication Publication Date Title
WO2021227821A1 (zh) 定位方法及装置
US20220321293A1 (en) Signal communication method and device
TWI801768B (zh) 時鐘偏差確定方法及裝置
WO2020186959A1 (zh) 时钟偏移确定及其处理方法、装置、系统
US20220330198A1 (en) Signal transmission method and apparatus
WO2020238639A1 (zh) 一种信息确定方法及装置
US20230262647A1 (en) Positioning method and apparatus
US20220407639A1 (en) Information communication method and device
WO2022028153A1 (zh) 用于定位的测量方法、装置和存储介质
US20220155401A1 (en) Method and device for determining positioning measurement
TWI784342B (zh) 時鐘偏差確定方法、計算設備及電腦存儲介質
WO2022151897A1 (zh) 信息指示方法、装置、终端设备、网络设备及存储介质
WO2023221931A1 (zh) 用于定位的方法和装置
WO2023011001A1 (zh) 定时误差关联信息的发送方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803338

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021803338

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021803338

Country of ref document: EP

Effective date: 20221215

NENP Non-entry into the national phase

Ref country code: DE