WO2023186135A1 - 定位信息的确定方法、定位方法以及相关装置 - Google Patents

定位信息的确定方法、定位方法以及相关装置 Download PDF

Info

Publication number
WO2023186135A1
WO2023186135A1 PCT/CN2023/085643 CN2023085643W WO2023186135A1 WO 2023186135 A1 WO2023186135 A1 WO 2023186135A1 CN 2023085643 W CN2023085643 W CN 2023085643W WO 2023186135 A1 WO2023186135 A1 WO 2023186135A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
phase difference
phase
positioning reference
terminal device
Prior art date
Application number
PCT/CN2023/085643
Other languages
English (en)
French (fr)
Inventor
李成
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210336233.3A external-priority patent/CN116931034A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023186135A1 publication Critical patent/WO2023186135A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present application relates to the field of communication technology, and in particular to a method for determining positioning information, a positioning method and related devices.
  • phase-based positioning technology has been widely used in various satellite systems (such as Beidou, global positioning system (GPS)), and its positioning accuracy can reach centimeter level.
  • the basic principle of phase-based positioning technology is: the sending end device sends a carrier signal.
  • the carrier signal reaches the receiving end device after a certain propagation delay.
  • the phase difference between the phase of the carrier signal received by the receiving end device and the local oscillator signal of the receiving end device itself is called the phase of the carrier signal of the transmitting end device measured by the receiving end device.
  • This phase contains information about the propagation delay between the transmitter and the receiver. Therefore, the receiving end device can calculate the distance information between the sending and receiving ends based on the phase solution algorithm, and further performs positioning calculation to obtain the position of the sending end device.
  • phase-based positioning technology is a process of positioning using phase-based positioning technology in the satellite system.
  • phase-based positioning technology can be applied to other communication systems to improve positioning accuracy is an issue worth considering.
  • phase-based positioning technology can be applied to cellular communications systems.
  • This application provides a method for determining positioning information, a positioning method and related devices for improving positioning accuracy.
  • the first aspect of this application provides a method for determining positioning information, including:
  • the terminal device measures the positioning reference signal sent from at least one first network device to obtain at least one phase difference. Then, the terminal device sends first information to the second network device, where the first information includes at least one phase difference; or the first information is determined based on the at least one phase difference.
  • the terminal device measures the positioning reference signal sent from at least one first network device.
  • the at least one first network device includes a first network device that sends at least two positioning reference signals at two different times.
  • the terminal device can separately measure the at least two positioning reference signals to obtain the phase difference between the two phases.
  • the at least one first network device includes the first network device 1 and the first network device 2 .
  • the first network device 1 sends positioning reference signal 1
  • the first network device 2 sends positioning reference signal 2.
  • the at least one phase difference includes: the phase difference between the phase obtained by the terminal device by measuring the positioning reference signal 1 sent by the first network device 1 and the phase obtained by the terminal device by measuring the positioning reference signal 2 sent by the first network device 2 .
  • the terminal device sends the first information to the second network device.
  • the first information includes the at least one phase difference; or, the first information is based on the at least one phase difference.
  • the first information is used by the second network device to locate the terminal device.
  • the first information can be understood as positioning information provided by the terminal device to the second network device. It can be seen from this that the at least one phase difference can eliminate synchronization errors between the terminal device and the at least one first network device as well as synchronization errors between different first network devices. It is beneficial for the second network device to accurately locate the terminal device based on the first information. For example, in a cellular communication system, the technical solution of this application can enable the second network device to accurately position the terminal device. This avoids the problem of reduced positioning accuracy caused by synchronization errors between the terminal device and the at least one first network device and synchronization errors between different first network devices.
  • the second aspect of this application provides a positioning method, including:
  • the second network device receives the first information from the terminal device, and the first information includes at least one phase difference; or, the first information is determined based on the at least one phase difference; the at least one phase difference is measured by the terminal device. It is obtained from the positioning reference signal sent by the network device. Then, the second network device locates the terminal device according to the first information.
  • the second network device receives the first information from the terminal device, and the first information includes at least one phase difference; or, the first information is determined based on at least one phase difference.
  • the at least one first network device includes a first network device that sends at least two positioning reference signals at two different times.
  • the terminal device can separately measure the at least two positioning reference signals to obtain the phase difference between the two phases.
  • the at least one first network device includes the first network device 1 and the first network device 2 .
  • the first network device 1 sends positioning reference signal 1
  • the first network device 2 sends positioning reference signal 2.
  • the at least one phase difference includes: the phase difference between the phase obtained by the terminal device by measuring the positioning reference signal 1 sent by the first network device 1 and the phase obtained by the terminal device by measuring the positioning reference signal 2 sent by the first network device 2 .
  • the first information includes at least one phase difference; alternatively, the first information is determined based on at least one phase difference. It is beneficial to eliminate synchronization errors between the terminal device and the one or more first network devices as well as synchronization errors between different first network devices.
  • the second network device can accurately locate the terminal device in combination with the first information. For example, in a cellular communication system, the technical solution of this application can enable the second network device to accurately position the terminal device. This avoids the problem of reduced positioning accuracy caused by synchronization errors between the terminal device and the at least one first network device and synchronization errors between different first network devices.
  • At least one first network device includes a reference network device and at least one measurement network device; at least one phase difference includes at least one of the following:
  • phase difference between the phases obtained by the terminal device by measuring the positioning reference signal sent by the reference network device and the phase obtained by the terminal device by measuring at least one positioning reference signal sent by the measurement network device is not limited
  • phase difference between the phase of the channel first path obtained by the terminal equipment by measuring the positioning reference signal sent by the reference network device and the phase of the channel first path obtained by the terminal equipment by measuring at least one positioning reference signal sent by the measurement network device or,
  • the phase difference at the same frequency point is between the frequency domain channel coefficient obtained by the terminal device by measuring the positioning reference signal sent by the reference network device and the frequency domain channel coefficient obtained by the terminal device by measuring at least one positioning reference signal sent by the measurement network device.
  • the above provides a specific form of the at least one phase difference. That is, the error caused by the initial radio frequency phase of the terminal device itself and the synchronization error between the terminal device and different first network devices are eliminated through the phase difference.
  • the at least one first network device includes a reference network device and N measurement network equipment.
  • the at least one phase difference includes N phase differences 1.
  • the i-th phase difference 1 among the N phase differences 1 is the phase difference between the phase obtained by the terminal device by measuring the positioning reference signal sent by the reference network device and the phase obtained by the terminal device by measuring the positioning reference signal sent by the i-th measurement network device.
  • the i-th phase difference 1 is the channel between the phase of the channel first path obtained by the terminal equipment by measuring the positioning reference signal sent by the reference network device and the phase obtained by the terminal equipment by measuring the positioning reference signal sent by the i-th measurement network device.
  • the phase difference of the first path; or, the i-th phase difference 1 is the frequency domain channel coefficient obtained by the terminal equipment by measuring the positioning reference signal sent by the reference network device and the frequency domain channel coefficient obtained by the terminal equipment by measuring the positioning reference signal sent by the i-th measurement network device.
  • the at least one first network device includes a reference network device and a measurement network device 1, and the at least one phase difference includes at least one of the following: the terminal device measures the phase obtained by measuring the positioning reference signal sent by the reference network device and the terminal device The phase difference between the phases obtained from the positioning reference signal sent by the measurement network device 1 is measured.
  • the at least one first network device includes a reference network device, a measurement network device 1 and a measurement network device 2 .
  • the at least one phase difference includes: the phase difference between the phase obtained by the terminal device by measuring the positioning reference signal sent by the reference network device and the phase obtained by the terminal device by measuring the positioning reference signal sent by the measurement network device 1, and the phase difference between the terminal device and the positioning reference signal sent by the measurement network device 1.
  • the device measures the phase difference between the phase obtained by measuring the positioning reference signal sent by the reference network device and the phase obtained by the terminal device measuring the positioning reference signal sent by the measurement network device 2 .
  • At least one first network device includes a first network device; at least one phase difference includes at least one of the following:
  • the terminal device measures the phase difference between the phases obtained from the positioning reference signals sent by the first network device at different times; or,
  • the terminal equipment measures the phase difference between the phases of the channel first paths obtained from the positioning reference signals sent by the first network equipment at different times; or,
  • the terminal device measures the phase difference at the same frequency point of the frequency domain channel coefficients respectively obtained from the positioning reference signals sent by the first network device at different times.
  • the above provides a specific form of the at least one phase difference.
  • the terminal device reports the phase difference to eliminate the initial radio frequency phase of the terminal device itself and the synchronization error between the terminal device and the first network device.
  • the second network device determines the location of the terminal device at different times through the phase difference reported by the terminal device. This enables high-precision positioning of terminal equipment.
  • the at least one phase difference includes P phase differences 3.
  • the a-th phase difference 3 among the P phase differences 3 is the phase obtained by the terminal device measuring the positioning reference signal sent by the first network device at the a-th moment and the phase obtained by the terminal device measuring the positioning reference signal sent by the first network device at the a+1-th moment.
  • the a-th phase difference 3 is the phase of the channel first path obtained by the terminal device measuring the positioning reference signal sent by the first network device at the a-th moment and the phase of the channel first path obtained by the terminal device measuring the positioning reference signal sent by the first network device at the a+1-th moment.
  • the phase difference between the phases of the channel first path obtained by the signal is the phase obtained by the terminal device measuring the positioning reference signal sent by the first network device at the a-th moment and the phase obtained by the terminal device measuring the positioning reference signal sent by the first network device at the a+1-th moment.
  • the a-th phase difference 3 is the frequency domain channel coefficient obtained by the terminal device measuring the positioning reference signal sent by the first network device at the a-th time and the terminal device measuring the positioning reference signal sent by the first network device at the a+1-th time.
  • At least one first network device includes a reference network device and at least one measurement network device; the first information includes at least one of the following: at least one first cumulative phase Position difference, or at least a first equivalent distance change;
  • the at least one first accumulated phase difference includes at least one of the following:
  • At least one first equivalent distance change includes a change in time of a distance difference between the distance between the terminal device and the reference network device and the distance between the terminal device and the at least one measurement network device respectively.
  • the terminal device reports at least one of the following to the second network device: at least one first accumulated phase difference, or at least one first equivalent distance change.
  • the second network device locates the terminal device based on the first information reported by the terminal device. Compensation for synchronization errors between different first network devices is achieved, thereby achieving high-precision positioning of the terminal device.
  • the at least one first network device includes a reference network device and N measurement network devices; the at least one first accumulated phase difference includes N first accumulated phase differences.
  • the i-th first cumulative phase difference among the N first cumulative phase differences is the difference between the i-th phase difference 1 among the N first phase differences 1 and the i-th phase difference 2 among the N phase differences 2.
  • the i-th phase difference 1 among the N phase differences 1 is the phase obtained by the terminal device when measuring the positioning reference signal of the i-th measurement network device among the N measurement network devices at the first moment, and the phase obtained by the terminal device when measuring the reference network device at the first moment.
  • the phase difference between the phases obtained from the positioning reference signals sent at each moment; or, the i-th phase difference 1 among the N phase differences 1 is the terminal device measuring the i-th measurement network device among the N measurement network devices at the first moment
  • the phase difference 1 is the frequency domain channel coefficient obtained by the terminal device when measuring the positioning reference signal of the i-th measurement network device among the N measurement network devices at the first moment and the positioning reference sent by the terminal device measurement reference network device at the first moment.
  • the i-th phase difference 2 among the N phase differences 2 is the phase obtained by the terminal device when measuring the positioning reference signal sent by the i-th measurement network device among the N measurement network devices at the second moment, and the phase obtained by the terminal device measuring the reference network device at the The phase difference between the phases obtained from the positioning reference signals sent at the two moments.
  • the i-th phase difference 2 among the N phase differences 2 is the phase of the channel first path obtained by the terminal equipment when measuring the positioning reference signal of the i-th measurement network equipment among the N measurement network equipment at the second moment, and the phase of the channel first path measured by the terminal equipment.
  • the i-th phase difference 2 among the N phase differences 2 is the frequency domain channel coefficient obtained by the terminal equipment from measuring the positioning reference signal of the i-th measurement network equipment among the N measurement network equipment at the second moment and the terminal equipment measurement reference
  • the frequency domain channel coefficients obtained from the positioning reference signal sent by the network device at the second moment are at the same frequency. phase difference at the point.
  • N is an integer greater than or equal to 1
  • i is an integer greater than or equal to 1 and less than or equal to N.
  • the at least one first equivalent distance change includes N first equivalent distance changes, and the i-th first equivalent distance change among the N first equivalent distance changes is when the terminal device first The difference between the distance difference between the reference network device and the i-th measurement network device at time t1 and the distance difference between the terminal device and the reference network device and the i - th measurement network device at the second time t10 .
  • N is an integer greater than or equal to 1
  • i is an integer greater than or equal to 1.
  • At least one first equivalent distance variation is determined based on at least one first accumulated phase difference.
  • the at least one first equivalent distance variation may be determined in combination with the at least one first accumulated phase difference. For example, the terminal device determines the at least one first accumulated phase difference according to the at least one phase difference. Then, the terminal device determines the at least one first equivalent distance variation based on the at least one first accumulated phase difference and the wavelength used by the at least one first network device to send the positioning reference signal.
  • At least one first network device includes a reference network device and at least one measurement network device; the first information includes at least one of the following: at least one first cumulative phase difference rate, or, at least a first equivalent distance change rate;
  • At least one first accumulated phase difference rate includes at least one of the following:
  • phase difference in unit time between the phase of the channel first path obtained by the terminal equipment by measuring the positioning reference signal sent by the reference network device and the phase of the channel first path obtained by the terminal equipment by measuring at least one positioning reference signal sent by the measurement network device is measured
  • the terminal equipment measures the cumulative amount of the phase difference in unit time at the same frequency point between the positioning reference signal sent by the reference network device and the frequency domain channel coefficient obtained by at least one measurement network device sent by the positioning reference signal;
  • At least one first equivalent distance change rate includes a change amount in unit time of a distance difference between the distance between the terminal device and the reference network device and the distance between the terminal device and the at least one measurement network device.
  • the terminal device reports at least one of the following to the second network device: at least one first cumulative phase difference rate, or at least one first equivalent distance change rate.
  • the second network device locates the terminal device based on the first information reported by the terminal device. Compensation for synchronization errors between different first network devices is achieved, thereby achieving high-precision positioning of the terminal device.
  • the at least one first accumulated phase difference rate includes N first accumulated phase difference rates.
  • the N first accumulated phase difference rates are equal to the i-th first accumulated phase difference among the N first accumulated phase differences divided by the time interval between the first time t 1 and the second time t 10 .
  • the i-th first cumulative phase difference rate represents the phase difference between the phase obtained by the terminal device by measuring the positioning reference signal sent by the reference network device and the phase obtained by the terminal device by measuring the positioning reference signal sent by the i-th measurement network device. Cumulative amount per unit time.
  • the i-th first accumulated phase difference rate represents The phase difference between the phase of the channel first path obtained by the terminal device by measuring the positioning reference signal sent by the reference network device and the phase of the channel first path obtained by the terminal device by measuring the positioning reference signal sent by the i-th measurement network device is in unit time the cumulative amount.
  • the i-th first cumulative phase difference rate represents the frequency domain channel coefficient obtained by the terminal equipment by measuring the positioning reference signal sent by the reference network device and the frequency domain channel obtained by the terminal equipment by measuring the positioning reference signal sent by the i-th measurement network device. The cumulative amount of the phase difference of coefficients at the same frequency point per unit time.
  • the at least one first equivalent distance change rate includes N first equivalent distance change rates.
  • the i-th first equivalent distance change rate among the N first equivalent distance change rates is equal to the i-th first equivalent distance change amount among the N first equivalent distance change amounts divided by the first time t 1 The time interval to the second time t 10 .
  • the at least one first equivalent distance change rate is determined based on at least one first cumulative phase difference rate.
  • the at least one first equivalent distance change rate may be determined in conjunction with the at least one first accumulated phase difference rate. For example, the terminal device determines the at least one first accumulated phase difference rate according to the at least one phase difference. Then, the terminal device determines the at least one first equivalent distance variation through the at least one first accumulated phase difference rate and the wavelength used by the at least one first network device to send the positioning reference signal.
  • At least one first network device includes one first network device
  • the first information includes at least one of the following: at least one second cumulative phase difference; or, at least one second equivalent distance change;
  • At least one second cumulative phase difference includes at least one of the following:
  • the terminal device measures the accumulated amount of phase differences in time between the phases obtained by the positioning reference signals sent by the first network device at different times; or,
  • the terminal equipment measures the cumulative amount of the phase difference in time between the phases of the channel first path obtained by the positioning reference signal sent by the first network equipment at different times; or,
  • the terminal equipment measures the cumulative amount of the phase difference in time at the same frequency point of the frequency domain channel coefficients obtained from the positioning reference signals sent by the first network equipment at different times;
  • At least one second equivalent distance change includes a change in time of a distance difference between the terminal device and the first network device at different times.
  • the terminal device reports at least one of the following to the second network device: at least one second cumulative phase difference; or, at least one second equivalent distance change.
  • This method utilizes the characteristic that the time drift error contained in the phase difference changes linearly in time, and eliminates the influence of the time drift error in the form of differentiation through the phase difference.
  • the phase difference can eliminate the initial radio frequency phase of the terminal device itself and the synchronization error between the terminal device and the first network device.
  • the second accumulated phase difference can further eliminate the influence of time drift error.
  • the second network device can achieve high-precision positioning of the terminal device based on at least one second cumulative phase difference or at least one second equivalent distance change reported by the terminal device.
  • the at least one first network device includes a first network device
  • the at least one phase difference includes P phase differences 3.
  • the at least one second accumulated phase difference includes M second accumulated phase differences.
  • the a-th second cumulative phase difference among the M second cumulative phase differences is the difference between the a-th phase difference 3 among the P phase differences 3 and the a+1-th phase difference 3 among the P phase differences 3.
  • M is an integer greater than or equal to 1
  • a is an integer greater than or equal to 1.
  • the a-th phase difference 3 is between the phase obtained by the terminal device by measuring the positioning reference signal sent by the first network device at the a-th time and the phase obtained by the terminal device by measuring the positioning reference signal sent by the first network device at the a+1-th time. phase difference.
  • the a+1th phase difference 3 is the phase obtained by the terminal device measuring the positioning reference signal sent by the first network device at the a+1th moment and the phase obtained by the terminal device measuring the positioning reference signal sent by the first network device at the a+2th moment. The phase difference between the phases.
  • At least one second equivalent distance variation is determined based on at least one second cumulative phase difference.
  • the at least one second equivalent distance variation may be determined in combination with the at least one second accumulated phase difference. For example, the terminal device determines the at least one second accumulated phase difference according to the at least one phase difference. Then, the terminal device determines the at least one second equivalent distance variation based on the at least one second accumulated phase difference and the wavelength used by the at least one first network device to send the positioning reference signal.
  • At least one first network device includes a first network device; the first information includes at least one of the following: at least a second cumulative phase difference rate, or , at least one second equivalent distance change rate;
  • At least one second cumulative phase difference rate includes at least one of the following:
  • the terminal device measures the cumulative amount of the phase difference in unit time between the phases obtained from the positioning reference signals sent by the first network device at different times; or,
  • the terminal equipment measures the cumulative amount of the phase difference per unit time between the phases of the channel first paths obtained by positioning reference signals sent by the first network equipment at different times; or,
  • the terminal equipment measures the cumulative amount of the phase difference per unit time of the frequency domain channel coefficients obtained from the positioning reference signals sent by the first network equipment at different times at the same frequency point;
  • At least one second equivalent distance change rate is the change amount in unit time of the distance difference between the distances of the terminal device to the first network device at different times.
  • the terminal device reports at least one of the following to the second network device: at least one second cumulative phase difference rate, or at least one second equivalent distance change rate.
  • This method utilizes the characteristic that the time drift error contained in the phase difference changes linearly in time, and eliminates the influence of the time drift error in the form of differentiation through the phase difference.
  • the phase difference can eliminate the initial radio frequency phase of the terminal device itself and the synchronization error between the terminal device and the first network device.
  • the second accumulated phase difference rate can further eliminate the influence of time drift error.
  • the second network device can achieve high-precision positioning of the terminal device based on at least one second cumulative phase difference rate or at least one second equivalent distance change rate reported by the terminal device.
  • the at least one second accumulated phase difference rate includes M second accumulated phase difference rates.
  • the M second accumulated phase difference rates are equal to the a-th second accumulated phase difference among the M second accumulated phase differences divided by the time interval between time t a and time ta + 2 .
  • the at least one second equivalent distance change rate includes M second equivalent distance change rates.
  • the a-th second equivalent distance change rate among the M second equivalent distance change rates is equal to the M second equivalent distance change amounts divided by the time interval between time t a and time t a+2 .
  • At least one second equivalent distance changes The rate is determined based on at least one second accumulated phase difference rate.
  • the at least one second equivalent distance change rate may be determined in conjunction with the at least one second cumulative phase difference rate. For example, the terminal device determines the at least one second accumulated phase difference rate according to the at least one phase difference. Then, the terminal device determines the at least one second equivalent distance change rate through the at least one second cumulative phase difference rate and the wavelength used by the at least one first network device to send the positioning reference signal.
  • the first implementation manner of the present application to the tenth implementation manner of the present application in the eleventh implementation manner of the present application, the second network device performs positioning according to the first information terminal device, include:
  • the second network device positions the terminal device according to the first information and at least one phase deviation.
  • the at least one phase deviation includes at least one first network device obtained by calibrating the terminal device to measure the positioning reference signal sent by the at least one first network device. Phase deviations between different first network devices, at least one phase deviation is reported by the calibration terminal device.
  • the second network device can further position the terminal device in combination with the at least one phase deviation.
  • the at least one phase deviation is used to eliminate the influence of errors such as the initial radio frequency phase of the terminal device itself and synchronization errors between the terminal device and the plurality of first network devices.
  • the method further includes: the second network device receives the at least one phase deviation from the calibration terminal device.
  • the second network device locates the terminal device according to the first information.
  • the second network device positions the terminal device according to the first information and at least one accumulated phase deviation.
  • the at least one accumulated phase deviation includes at least one first network obtained by calibrating the terminal device to measure the positioning reference signal sent by at least one first network device.
  • the accumulated phase deviation in time between different first network devices in the device. At least one accumulated phase deviation is reported by the calibration terminal device.
  • the second network device may further position the terminal device in combination with at least one accumulated phase deviation.
  • the second network device locates the terminal device by combining the first information reported by the terminal device and the at least one accumulated phase deviation. Compensation for synchronization errors between different first network devices is achieved, thereby achieving high-precision positioning of the terminal device.
  • the method further includes: the second network device receives the at least one accumulated phase deviation from the calibration terminal device.
  • the third aspect of this application provides a terminal device, including:
  • a processing module configured to measure the positioning reference signal sent from at least one first network device to obtain at least one phase difference
  • the transceiver module is configured to send first information to the second network device, where the first information includes the at least one phase difference; or the first information is determined based on the at least one phase difference.
  • a fourth aspect of this application provides a second network device, including:
  • a transceiver module configured to receive first information from a terminal device, where the first information includes at least one phase difference; or, the first information is determined based on at least one phase difference; the at least one phase difference is measured by the terminal device at least one first Obtained from the positioning reference signal sent by the network device;
  • a processing module configured to locate the terminal device according to the first information.
  • At least one first network device includes a reference network device and at least one measurement network device; at least one phase difference includes at least one of the following:
  • phase difference between the phases obtained by the terminal device by measuring the positioning reference signal sent by the reference network device and the phase obtained by the terminal device by measuring at least one positioning reference signal sent by the measurement network device is not limited
  • phase difference between the phase of the channel first path obtained by the terminal equipment by measuring the positioning reference signal sent by the reference network device and the phase of the channel first path obtained by the terminal equipment by measuring at least one positioning reference signal sent by the measurement network device or,
  • the phase difference at the same frequency point is between the frequency domain channel coefficient obtained by the terminal device by measuring the positioning reference signal sent by the reference network device and the frequency domain channel coefficient obtained by the terminal device by measuring at least one positioning reference signal sent by the measurement network device.
  • At least one first network device includes a first network device; at least one phase difference includes at least one of the following:
  • the terminal device measures the phase difference between the phases obtained from the positioning reference signals sent by the first network device at different times; or,
  • the terminal equipment measures the phase difference between the phases of the channel first paths obtained from the positioning reference signals sent by the first network equipment at different times; or,
  • the terminal device measures the phase difference at the same frequency point of the frequency domain channel coefficients respectively obtained from the positioning reference signals sent by the first network device at different times.
  • At least one first network device includes a reference network device and at least one measurement network device; the first information includes at least one of the following: at least one first cumulative phase Difference, or at least a first equivalent distance change;
  • the at least one first accumulated phase difference includes at least one of the following:
  • At least one first equivalent distance change includes a change in time of a distance difference between the distance between the terminal device and the reference network device and the distance between the terminal device and the at least one measurement network device respectively.
  • At least one first equivalent distance variation is determined based on at least one first cumulative phase difference.
  • At least one first network device includes a reference network device and at least one measurement network device; the first information includes at least one of the following: at least one first cumulative phase difference rate, or, at least a first equivalent distance change rate;
  • At least one first accumulated phase difference rate includes at least one of the following:
  • phase difference in unit time between the phase of the channel first path obtained by the terminal equipment by measuring the positioning reference signal sent by the reference network device and the phase of the channel first path obtained by the terminal equipment by measuring at least one positioning reference signal sent by the measurement network device is measured
  • the terminal equipment measures the cumulative amount of the phase difference in unit time at the same frequency point between the positioning reference signal sent by the reference network device and the frequency domain channel coefficient obtained by at least one measurement network device sent by the positioning reference signal;
  • At least one first equivalent distance change rate includes a change amount in unit time of a distance difference between the distance between the terminal device and the reference network device and the distance between the terminal device and the at least one measurement network device.
  • the at least one first equivalent distance change rate is determined based on at least one first cumulative phase difference rate.
  • At least one first network device includes one first network device
  • the first information includes at least one of the following: at least one second cumulative phase difference; or, at least one second equivalent distance change;
  • At least one second cumulative phase difference includes at least one of the following:
  • the terminal device measures the accumulated amount of phase differences in time between the phases obtained by the positioning reference signals sent by the first network device at different times; or,
  • the terminal equipment measures the cumulative amount of the phase difference in time between the phases of the channel first path obtained by the positioning reference signal sent by the first network equipment at different times; or,
  • the terminal equipment measures the cumulative amount of the phase difference in time at the same frequency point of the frequency domain channel coefficients obtained from the positioning reference signals sent by the first network equipment at different times;
  • At least one second equivalent distance change includes a change in time of a distance difference between the terminal device and the first network device at different times.
  • At least one second equivalent distance variation is determined based on at least one second cumulative phase difference.
  • At least one first network device includes a first network device; the first information includes at least one of the following: at least a second cumulative phase difference rate, or , at least one second equivalent distance change rate;
  • At least one second cumulative phase difference rate includes at least one of the following:
  • the terminal device measures the cumulative amount of the phase difference in unit time between the phases obtained from the positioning reference signals sent by the first network device at different times; or,
  • the terminal equipment measures the cumulative amount of the phase difference per unit time between the phases of the channel first paths obtained by positioning reference signals sent by the first network equipment at different times; or,
  • the terminal equipment measures the cumulative amount of the phase difference per unit time of the frequency domain channel coefficients obtained from the positioning reference signals sent by the first network equipment at different times at the same frequency point;
  • At least one second equivalent distance change rate is the change amount in unit time of the distance difference between the distances of the terminal device to the first network device at different times.
  • At least one second equivalent distance change rate is determined based on at least one second cumulative phase difference rate.
  • the processing module is specifically used for:
  • the terminal device is positioned according to the first information and at least one phase deviation.
  • the at least one phase deviation includes different first networks in at least one first network device obtained by calibrating the terminal device to measure the positioning reference signal sent by at least one first network device. Phase deviation between devices, at least one phase deviation is reported by the calibration terminal device.
  • the transceiver module is also used for:
  • the at least one phase deviation is received from the calibration terminal device.
  • the processing module is specifically used for:
  • the terminal device is positioned according to the first information and at least one cumulative phase deviation.
  • the at least one cumulative phase deviation includes calibrating the different first network devices in the at least one first network device obtained by measuring the positioning reference signal sent by the at least one first network device. A cumulative amount of phase deviations between network devices over time. At least one accumulated phase deviation is reported by the calibration terminal device.
  • the transceiver module is also used for:
  • the at least one accumulated phase deviation is received from the calibration terminal device.
  • a fifth aspect of the present application provides a communication device.
  • the communication device includes a processor.
  • the processor is used to call and run the computer program stored in the memory, so that the processor implements any one of the implementation methods from the first aspect to the second aspect.
  • the communication device further includes a transceiver; the processor is also used to control the transceiver to send and receive signals.
  • the communication device includes a memory, and a computer program is stored in the memory.
  • a sixth aspect of the present application provides a computer program product including instructions, which, when run on a computer, causes the computer to execute any one of the implementations of the first to second aspects.
  • a seventh aspect of the present application provides a computer-readable storage medium that includes computer instructions.
  • the computer instructions When the computer instructions are run on a computer, they cause the computer to execute any one of the implementations of the first to second aspects.
  • An eighth aspect of the present application provides a chip device, including a processor, connected to a memory, and calling a program stored in the memory, so that the processor executes any one of the above-mentioned implementations of the first to second aspects. .
  • a ninth aspect of the present application provides a communication system, which includes a terminal device as in the third aspect and a second network device as in the fourth aspect.
  • the terminal device measures the positioning reference signal sent from at least one first network device to obtain at least one phase difference. Then, the terminal device sends the first information to the second network device, where the first information includes the at least one phase difference; or the first information is determined based on the at least one phase difference.
  • the at least one phase difference can eliminate synchronization errors between the terminal device and the first network device and synchronization errors between different first network devices. It is beneficial for the second network device to accurately locate the terminal device based on the first information. For example, in a cellular communication system, the technical solution of this application can enable the second network device to accurately position the terminal device. This avoids the problem of reduced positioning accuracy caused by synchronization errors between the terminal device and the first network device and synchronization errors between different first network devices.
  • Figure 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is another schematic diagram of the communication system according to the embodiment of the present application.
  • FIG. 3 is another schematic diagram of the communication system according to the embodiment of the present application.
  • Figure 4A is a schematic diagram of transmitting and receiving positioning reference signals according to an embodiment of the present application.
  • Figure 4B is a schematic diagram of a principle in which a terminal device measures the phase obtained from a positioning reference signal sent by a first network device according to an embodiment of the present application;
  • Figure 4C is a schematic diagram of a terminal device obtaining a transmission path between the terminal device and the first network device through the channel between the terminal device and the first network device according to an embodiment of the present application;
  • Figure 4D is a schematic diagram of the transmission path between the terminal equipment and the base station according to the embodiment of the present application.
  • Figure 5 is a schematic diagram of a scenario in which a terminal device is positioned based on phase positioning technology according to an embodiment of the present application
  • Figure 6 is a schematic diagram of a method for determining positioning information and a positioning method according to an embodiment of the present application
  • Figure 7 is a schematic diagram of another scenario in which a terminal device is positioned based on phase positioning technology according to an embodiment of the present application.
  • Figure 8 is a schematic diagram of another scenario in which a terminal device is positioned based on phase positioning technology according to an embodiment of the present application
  • Figure 9 is a schematic diagram of another scenario in which a terminal device is positioned based on phase positioning technology according to an embodiment of the present application.
  • Figure 10 is a schematic diagram of another scenario in which a terminal device is positioned based on phase positioning technology according to an embodiment of the present application;
  • Figure 11 is a schematic diagram of the time when the terminal device measures the positioning reference signal according to the embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • Figure 13 is another structural schematic diagram of a communication device according to an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • Figure 15 is another schematic structural diagram of a communication device according to an embodiment of the present application.
  • Embodiments of the present application provide a method for determining positioning information, a positioning method and related devices to improve positioning accuracy.
  • At least one of a, b, or c can represent: a, b, c; a and b; a and c; b and c; or a, b, and c.
  • a, b, c can be single or multiple.
  • the technical solution of this application can be applied to various communication systems.
  • 5G fifth generation mobile communication
  • NR new radio
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • 5G network for example, 6G mobile communication system
  • V2X vehicle to everything
  • D2D device to device
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • the communication system includes a terminal device 101, an access network device 102, an access and mobility management function (AMF) 103, and a location management function (LMF) 104.
  • AMF access and mobility management function
  • LMF location management function
  • the terminal device 101 is connected to the access network device 102 through an interface, the access network device is connected to the AMF 103 through an interface, and the AMF 104 is connected to the LMF 104 through an interface.
  • the LMF 104 is used for positioning calculation and management of the location of the terminal device 101 .
  • the terminal device 101 is connected to the access network device 103 through the new radio universal terrestrial radio access network and the user equipment direct wireless interface (new radio the radio interface between universal terrestrial radio access network and the user equipment, NR-Uu) interface.
  • the access network equipment 102 and the AMF 103 are connected through a next generation control plane (NG-C) interface.
  • AMF103 and LMF104 are connected through the NL1 interface.
  • the NL1 interface is between LMF104 and AMF103 and is used as a transmission link for LTE positioning protocol (LPP) and NR positioning protocol annex (NRRPa).
  • LPF LTE positioning protocol
  • NRRPa NR positioning protocol annex
  • FIG. 1 only shows an example in which the communication system includes the access network device 102. In practical applications, the communication system can also include more access network equipment.
  • the technical solution of this application is implemented between the terminal device 101, multiple access network devices and the LMF 104 to realize the positioning of the terminal device 101 by the LMF 104, which is not specifically limited by this application.
  • LMF is the name in the current communication system.
  • the name of the LMF may change with the evolution of the communication system.
  • This application does not limit the name of the LMF.
  • the LMF may be called a positioning management device, and the positioning management device is used to perform positioning calculations on the position of the terminal device.
  • the positioning management device in the embodiment of the present application can be understood and applicable to the communication method provided by the embodiment of the present application.
  • FIG 2 is another schematic diagram of a communication system according to an embodiment of the present application.
  • the communication system includes a terminal device 201, a roadside unit (roadside unit, RSU) 202, RSU203 and RSU204.
  • the terminal equipment 201 and RSU202 to RSU204 are located outside the signal coverage range of the access network equipment.
  • the terminal device 201 communicates with the RSU through the proximity communication 5 (PC5) interface.
  • PC5 proximity communication 5
  • RSU is a roadside unit deployed on the roadside, supports sidelink communication and positioning-related protocols, and can provide wireless communication functions for terminal devices.
  • RSU can be various forms of roadside sites, access points, access base stations, and side link equipment.
  • RSU is a kind of terminal equipment.
  • RSU can act as access network equipment. That is to say, the RSU can be either a terminal device or an access network device, and there is no specific limitation in this application.
  • FIG 3 is another schematic diagram of a communication system according to an embodiment of the present application.
  • the communication system includes a terminal device 301 and an access network device 302.
  • the terminal device 301 is connected to the access network device 302 through an interface.
  • the terminal device 301 is connected to the access network device 302 through the NR-Uu interface.
  • the technical solution of this application is executed between the terminal device 301 and the access network device 302, thereby realizing the positioning of the terminal device 301 by the access network device 302.
  • FIG. 3 only shows an example in which the communication system includes the access network device 302.
  • the communication system can also include more access network equipment.
  • the technical solution of this application is implemented between the terminal device 101 and multiple access network devices to realize the positioning of the terminal device 301 by the access network device, which is not specifically limited by this application.
  • the terminal device may be a wireless terminal device capable of receiving network device scheduling and indication information.
  • a wireless end device may refer to a device that provides voice and/or data connectivity to a user, or a handheld device with wireless connectivity capabilities, or other processing device connected to a wireless modem.
  • Terminal equipment also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • Devices such as handheld devices with wireless connection capabilities, or vehicle-mounted devices.
  • terminal devices are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality Augmented reality (AR) equipment, factory robots, positioning equipment in industrial parks, industrial control Wireless terminals in (industrial control), wireless terminals in the Internet of Vehicles, wireless terminals in self-driving (self driving), wireless terminals in remote medical surgery, and wireless terminals in smart grids , wireless terminals in transportation safety, wireless terminals in smart cities, or wireless terminals in smart homes, etc.
  • wireless terminals in the Internet of Vehicles can be vehicle-mounted equipment, vehicle equipment, vehicle-mounted modules, vehicles, etc.
  • Wireless terminals in industrial control can be cameras, robots, etc.
  • Network devices can be devices in a wireless network.
  • a network device is a device deployed in a wireless access network to provide wireless communication functions for terminal devices.
  • the network device may be a radio access network (RAN) node that connects the terminal device to the wireless network, and may also be called an access network device.
  • RAN radio access network
  • Network equipment includes but is not limited to: evolved Node B (eNB), radio network controller (RNC), Node B (Node B, NB), base station controller (BSC) , base transceiver station (BTS), home base station (e.g., home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless fidelity (WIFI) system Access point (AP), wireless relay node, wireless backhaul node, transmission point (TP), etc. can also be network equipment in the 5G mobile communication system.
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver station
  • BTS home base station
  • BBU baseband unit
  • WIFI wireless fidelity
  • AP wireless relay node
  • TP transmission point
  • next generation base station (next generation NodeB, gNB), transmission reception point (TRP), transmission point (TP) in the new radio (NR) system; or 5G mobile communication system
  • the network device may also be a network node that constitutes a gNB or a transmission point.
  • BBU baseband unit
  • DU distributed unit
  • the network equipment shown above is a transceiver node.
  • the transceiver node may also be called a transmission and reception point (transmission and reception point, TRP).
  • gNB may include centralized units (CUs) and DUs.
  • the gNB may also include an active antenna unit (AAU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol (PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, media access control (MAC) layer and physical (physical, PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in the access network (radio access network, RAN), or the CU can be divided into network equipment in the core network (core network, CN), which is not limited in this application.
  • the communication system applicable to this application includes a terminal device, one or more first network devices, and a second network device. Some possible implementations of the first network device and the second network device are introduced below.
  • the first network device is the access network device
  • the second network device is the positioning management device.
  • the first network device and the second network device are both access network devices.
  • the second network device may be one of the one or more first network devices. That is, one of the network devices locates the terminal device.
  • the first network device is the RSU
  • the second network device is the positioning management device.
  • the first network device maps the positioning reference signal X 1 (K) in the frequency domain, and the positioning reference signal X 1 (K) undergoes inverse Fourier transform processing to obtain the time domain signal x 1 (t).
  • the time domain signal x 1 (t) is subjected to up-conversion processing to obtain the radio frequency signal x g (t).
  • the up-conversion process includes: the first network device multiplies or mixes the time domain signal x 1 (t) with the local array signal (or carrier signal, or carrier frequency signal) of the first network device.
  • the first network device transmits the radio frequency signal x g (t).
  • the signal received by the terminal device is y g (t).
  • the terminal device can multiply or mix the received signal y g (t) with the local array signal (or carrier signal, or carrier frequency signal) of the terminal device to obtain the baseband signal y 1 (t).
  • the phase obtained by the terminal equipment by measuring the positioning reference signal sent by the first network equipment is obtained by the terminal equipment by measuring the local array signal s g (t) (or carrier signal, or carrier frequency signal) received by the first network equipment.
  • the phase obtained by the terminal equipment by measuring the positioning reference signal sent by the first network equipment is obtained by the terminal equipment by measuring the local array signal s g (t) (or carrier signal, or carrier frequency signal) received by the first network equipment. phase.
  • the local array signal s g (t) (or carrier signal, or carrier frequency signal) of the first network device is used to carry the positioning reference signal X 1 (K).
  • the following introduces some possible implementation methods for the terminal device to measure the phase obtained by the positioning reference signal sent by a first network device.
  • Implementation method 1 The terminal equipment uses a phase-locked loop on the medium radio frequency to extract the received local array signal (or carrier signal, or carrier frequency signal) of the first network equipment and the local array signal (or carrier signal, or carrier frequency signal) of the terminal equipment. frequency signal), that is, phase measurement.
  • the terminal equipment uses code correlation technology or cross-correlation technology to obtain the local array signal (or carrier signal, or carrier frequency signal) of the first network equipment received by the terminal equipment and the local array signal (or carrier signal, or carrier frequency signal) of the terminal equipment. frequency signal).
  • the first network device transmits a radio frequency signal x g (t).
  • x g (t) arrives at the terminal device after a certain propagation delay.
  • the terminal device determines the received identity of the first network device through the radio frequency signal x g (t).
  • the terminal device measures the phase difference between the received local array signal s g (t) of the first network device and the terminal device's own local local array signal, which is called the first network device measured by the terminal device.
  • the phase obtained from the transmitted positioning reference signal.
  • This phase contains information about the propagation delay between the sending and receiving ends (terminal equipment and access network equipment). Therefore, the terminal device can calculate the distance information between the transceiver and the receiving end based on the phase solution algorithm, and perform positioning solution to obtain the position of the terminal device.
  • the terminal device can obtain the phase by measuring the carrier signal of the first network device received by the terminal device. Therefore, the phase obtained by the above-mentioned terminal device measuring the positioning reference signal sent by the first network device may also be called a carrier phase. Then the phase difference in the following text can also be called the carrier phase difference.
  • Implementation method 2 As shown in Figure 4A, the terminal device obtains the positioning reference signal Y 1 (K) through the radio frequency signal y g (t). The terminal device performs channel estimation based on the positioning reference signal Y 1 (K) and the positioning reference signal X 1 (K) used by the first network device side to obtain frequency domain channel coefficients.
  • the frequency domain channel coefficient may be a frequency domain impulse response, a channel coefficient, or a channel frequency response (CFR).
  • the frequency domain channel coefficient can be expressed as H 1 (K).
  • the terminal equipment can extract the phase of the channel coefficient of a certain frequency point or a certain subcarrier in the frequency domain channel coefficient.
  • the terminal device can determine the frequency domain phase of the channel in the frequency domain through the channel between the terminal device and the first network device. Therefore, the phase obtained by the above-mentioned terminal device measuring the positioning reference signal sent by the first network device can also be called a frequency domain phase. Then the phase difference in the following text can also be called the frequency domain phase difference.
  • Implementation method 3 As shown in Figure 4A and Figure 4C, the terminal device obtains the positioning reference signal Y 1 (K) through the radio frequency signal y g (t). The terminal device performs channel estimation based on the positioning reference signal Y 1 (K) and the positioning reference signal X 1 (K) used by the first network device side to obtain frequency domain channel coefficients.
  • the frequency domain channel coefficients may be frequency domain impulse responses, channel coefficients, or channel frequency domain responses.
  • the frequency domain channel coefficient can be expressed as H 1 (K).
  • the terminal equipment processes the frequency domain channel coefficient H 1 (K) through fast Fourier transform (FFT) processing or inverse fast fourier transform (IFFT) processing to obtain the time domain channel coefficient (for example, Channel impulse response (CIR)).
  • FFT fast Fourier transform
  • IFFT inverse fast fourier transform
  • the terminal equipment extracts the phase of the channel coefficient corresponding to the first path of the channel from the time domain channel coefficient.
  • the terminal device can determine the time domain phase of the channel in the time domain or the phase of the first path of the channel through the channel between the terminal device and the first network device. Therefore, the phase obtained by the above-mentioned terminal device measuring the positioning reference signal sent by the first network device may also be called a time domain phase or a channel first path phase. Then the phase difference in the following text can also be called the time domain phase difference or the channel first path phase difference.
  • the line of sight (LOS) path or first path is the line of sight path between the terminal device and the base station, that is, the path from the first network device directly to the terminal device.
  • the nonline of sight (NLOS) path or reflection path is the non-line-of-sight path between the terminal equipment and the base station, that is, the path from the first network equipment to the terminal equipment through reflection.
  • the terminal device can perform positioning in conjunction with multiple first network devices. For example, as shown in Figure 5, the terminal device can measure the positioning reference signals sent by different TRPs to obtain multiple phases. The terminal device can construct a system of equations through multiple phases, and jointly solve it based on the position of the known TRP to obtain the distance from the terminal device to different TRPs and the position of the terminal device. Achieve high-precision positioning of terminal equipment.
  • phase-based positioning technology can achieve high-precision positioning, it is sensitive to synchronization errors between different stations (for example, between different TRPs) and synchronization errors between terminal equipment and stations.
  • satellite system Equipped with high-precision atomic clocks and relatively expensive ground calibration stations, the satellite system can eliminate the impact of synchronization errors when using phase-based positioning technology for positioning.
  • access network equipment and terminal equipment cannot be equipped with high-precision atomic clocks. Synchronization errors between different stations and synchronization errors between terminal equipment and stations will affect the phase measurement accuracy, resulting in limited positioning accuracy. .
  • This application provides corresponding technical solutions to improve positioning accuracy. For details, please refer to the relevant introduction of the embodiments below.
  • the name of the positioning reference signal may be positioning reference signal (PRS), sounding reference signal (Sounding reference signal, SRS), channel status information reference signal (channel status information reference signal, CSI-RS), Demodulation reference signal (de-modulation reference signal, DMRS), secondary synchronization signal (secondary synchronization signal, SSS), or primary synchronization signal (primary synchronization signal, PSS) is not specifically limited in this application.
  • PRS positioning reference signal
  • SRS sounding reference signal
  • SRS channel status information reference signal
  • CSI-RS channel status information reference signal
  • DMRS Demodulation reference signal
  • secondary synchronization signal secondary synchronization signal
  • PSS primary synchronization signal
  • the same measurement window can also be called the same measurement window instance (measurement window instance), and the same PRS processing window can also be called the same PRS processing window instance (PRS processing window instance).
  • the same measurement interval can also be called the same measurement gap instance.
  • the channel is derived based on the frequency domain RE occupied by the positioning reference signal resource.
  • the channel may also be called a channel response, or a time domain channel response, or a time domain channel coefficient, etc., which is not specifically limited in this application. Therefore, in this application, the first path of the channel may also be called the first path of the channel response, or the first path of the time domain channel response, or the first path of the time domain channel coefficient.
  • the first path may also be called the first path, or the first path, or the LOS path, which is not specifically limited in this application.
  • Figure 6 is a schematic diagram of a method for determining positioning information and a positioning method according to an embodiment of the present application. See Figure 6. Methods include:
  • At least one first network device sends a positioning reference signal to the terminal device.
  • the terminal device receives the positioning reference signal sent from at least one first network device.
  • the at least one first network device includes multiple first network devices.
  • the plurality of first network devices respectively send positioning reference signals to the terminal device at the first time.
  • the terminal device receives the positioning reference signals sent by the plurality of first network devices at the first moment. That is, the positioning reference signal sent by the at least one first network device includes positioning reference signals sent by multiple first network devices to the terminal device at the first moment.
  • the first moment includes: time domain symbols, time slots, sub-slots, sub-frames, system frames, measurement windows, measurement gaps, PRS processing windows, signal periods, or up and down Row switching cycle.
  • the time domain symbols may be orthogonal frequency division multiplexing (OFDM) symbols.
  • the multiple first network devices respectively send positioning reference signals to the terminal device at the first time, which means that the multiple first network devices send positioning reference signals to the terminal device at the same time.
  • the terminal device receives the positioning reference signals sent by the multiple first network devices at the first time, which means that the terminal receives the positioning reference signals sent by the multiple first network devices at the same time.
  • the same moment includes: the same time domain symbol, the same time slot, the same sub-time slot, the same subframe, the same frame, the same measurement window, the same measurement interval, the same PRS processing window, and the same reference signal period, or Or within the same uplink and downlink switching cycle, or within a period of time.
  • the length of the time interval includes 1ms (milliseconds), 2ms, 5ms, 10ms or 20ms, etc.
  • the plurality of first network devices include TRP1, TRP2, TRP3 and TRP4.
  • TRP1, TRP2, TRP3 and TRP4 respectively send positioning reference signals to the terminal device at the first moment.
  • the at least one first network device includes multiple first network devices.
  • the multiple first network devices respectively send positioning reference signals to the terminal device at multiple times.
  • the terminal device receives the positioning reference signals sent by the plurality of first network devices at multiple times. That is, the positioning reference signal sent by the at least one first network device includes positioning reference signals sent by the plurality of first network devices at multiple times.
  • the following article uses multiple moments including the first moment and the second moment as examples for introduction.
  • the second moment includes: time domain symbols, time slots, sub-slots, subframes, system frames, measurement windows, measurement intervals, PRS processing windows, reference signal periods, or uplink and downlink switching periods, or within a period of time.
  • the length of the time interval includes 1ms (milliseconds), 2ms, 5ms, 10ms or 20ms, etc.
  • the plurality of first network devices include TRP1, TRP2, TRP3 and TRP4.
  • TRP1, TRP2, TRP3 and TRP4 respectively send positioning reference signals to the terminal device at the first moment.
  • TRP1, TRP2, TRP3 and TRP4 respectively send positioning reference signals to the terminal device at the second moment.
  • the time intervals between any two adjacent moments among the three or more moments may be equal.
  • the first moment and the second moment are two adjacent moments.
  • the second moment and the third moment are two adjacent moments.
  • the time interval between the first moment and the second moment is equal to the time interval between the second moment and the third moment.
  • the third moment includes: time domain symbols, time slots, sub-slots, sub-frames, system frames, measurement windows, measurement intervals, PRS processing windows, reference signal periods, uplink and downlink switching periods, or within a period of time.
  • the length of the time interval includes 1ms (milliseconds), 2ms, 5ms, 10ms or 20ms, etc.
  • the at least one first network device includes a first network device.
  • the first network device sends positioning reference signals to the terminal device at multiple times.
  • the terminal device receives positioning reference signals from the first network device at multiple times. That is, the positioning reference signals sent by the at least one first network device include positioning reference signals sent by the first network device to the terminal device at multiple times.
  • the following article uses multiple moments including the first moment, the second moment and the third moment as examples for introduction.
  • the at least one first network device further includes more first network devices, and these first network devices respectively send positioning reference signals to the terminal device at multiple times.
  • the terminal device receives positioning reference signals sent from these first network devices to the terminal device at multiple times.
  • the time intervals between any two adjacent moments in the multiple moments may be equal.
  • the first moment and the second moment are two adjacent moments.
  • the second moment and the third moment are two adjacent moments.
  • the time interval between the first moment and the second moment is equal to the time interval between the second moment and the third moment.
  • positioning reference signals sent by different first network devices may be the same or different, which is not specifically limited in this application.
  • the terminal device measures the positioning reference signal sent from at least one first network device to obtain at least one phase difference.
  • the at least one first network device includes a reference network device and at least one measurement network device.
  • the terminal device may select one first network device from the at least one first network device as the reference network device, and the remaining first network devices serve as the at least one measurement network device.
  • the at least one phase difference includes: the phase of the carrier signal carrying the positioning reference signal of the reference network device received by the terminal device and the phase of the carrier signal carrying the at least one measurement network received by the terminal device.
  • the phase difference between the phase of the device's positioning reference signal and the carrier signal is the phase difference between the phase of the device's positioning reference signal and the carrier signal.
  • the at least one phase difference includes: the phase difference obtained by the terminal device based on the positioning reference signal sent by the reference network device and the measurement network device at the same time, and the same time may be the above-mentioned first time, the second time, or the third time, the same time includes: the same symbol, the same time slot, the same sub-time slot, the same subframe, the same frame, the same measurement window, the same measurement interval, the same A PRS processing window, the same reference signal period, the same uplink and downlink switching period, or within a period of time.
  • the length of the time interval includes 1ms (milliseconds), 2ms, 5ms, 10ms or 20ms, etc.
  • the terminal device measures the phase difference between the phase of the carrier signal of the positioning reference signal of the reference network device and the phase of the carrier signal of the positioning reference signal of at least one measurement network device.
  • This phase difference can be considered to be measured by the terminal device at the same time.
  • the terminal equipment operates in the same time domain symbol, the same time slot, the same subframe, the same frame, the same measurement window, the same measurement interval, the same PRS processing window, the same reference signal period, and the same upper and lower row switching period, or the length of a period of time.
  • the length of this time interval includes measurements within 1ms (milliseconds), 2ms, 5ms, 10ms or 20ms.
  • the at least one phase difference includes at least one of the following:
  • the terminal device measures the phase difference between the phases obtained from the positioning reference signals respectively sent by the reference network device and the at least one measurement network device at the same time.
  • the terminal device measures the phase difference between the phase of the channel first path obtained from the positioning reference signal respectively sent by the reference network device and the at least one measurement network device at the same time.
  • the terminal device measures the phase difference between the first path phase obtained from the positioning reference signal respectively sent by the reference network device and the at least one measurement network device at the same time.
  • the terminal device measures the phase difference at the same frequency point of the frequency domain channel coefficients obtained from the positioning reference signals respectively sent by the reference network device and the at least one measurement network device at the same time.
  • the at least one phase difference includes: a difference between a first phase difference and at least one second phase difference.
  • the first phase difference is the phase difference between the phase of the carrier signal carrying the positioning reference signal of the reference network device received by the terminal device and the phase of the carrier signal of the terminal device.
  • the at least one second phase difference includes a phase difference between the phase of the carrier signal carrying the positioning reference signal of the at least one measurement network device received by the terminal device and the phase of the carrier signal of the terminal device respectively.
  • the above-mentioned carrier signal may also be a carrier frequency signal or a local array signal, which is not specifically limited in this application.
  • the at least one phase difference includes at least one of the following:
  • the terminal equipment measures the phase obtained by measuring the positioning reference signal sent by the reference network equipment and the phase measured by the terminal equipment.
  • the terminal device measures the positioning reference signal sent by the reference network device to obtain the phase of the first path of the channel between the terminal device and the reference network device.
  • the terminal device measures the positioning reference signal sent by at least one measurement network device to obtain the phase of the channel first path between the terminal device and the at least one measurement network device. Then, the terminal device determines the at least one phase difference through the phase of the channel first path between the terminal device and the reference network device and the phase of the channel first path between the terminal device and the at least one measurement network device respectively.
  • the terminal device measures the frequency domain channel coefficient obtained from the positioning reference signal sent by the first network device, please refer to the relevant introduction of implementation mode 3 of step 601 mentioned above.
  • the frequency domain channel coefficients obtained by the terminal device by measuring the positioning reference signal sent by the reference network device are used to represent the amplitude changes and phase changes of the positioning reference signal sent by the reference network device through the channel between the terminal device and the reference network device.
  • the frequency domain channel coefficient obtained by the terminal device from measuring the positioning reference signal sent by the at least one measurement network device is used to characterize the amplitude of the positioning reference signal sent by the at least one measurement network device passing through the channel between the terminal device and the at least one measurement network device. changes and phase changes.
  • the at least one first network device includes a reference network device and a measurement network device 1 .
  • the frequency domain channel coefficient obtained by the terminal device by measuring the positioning reference signal sent by the reference network device is H1(K)
  • the frequency domain channel coefficient obtained by the terminal device by measuring the positioning reference signal sent by the measurement network device 1 is H2(K).
  • the terminal equipment extracts the phase A of the first frequency point from H1(K), and extracts the phase B of the first frequency point from H2(K).
  • the terminal device can determine the phase difference between phase A and phase B.
  • the measurement reference network device and the at least one measurement network device respectively send positioning reference signals at the first moment.
  • the at least one phase difference includes at least one of the following:
  • the terminal device measures the phase difference between the phase obtained by measuring the positioning reference signal sent by the measurement reference network device at the first moment and the phase obtained by the terminal device measuring the positioning reference signal sent by the at least one measurement network device at the first moment; or ,
  • the frequency domain channel coefficient obtained by the terminal device by measuring the positioning reference signal sent by the measurement reference network device at the first moment is the same as the frequency domain channel coefficient obtained by the terminal device by measuring the positioning reference signal sent by the at least one measurement network device at the first moment. phase difference at the frequency point.
  • the same frequency point can be the same subcarrier, or the same carrier frequency point, or the same carrier aggregation (CC), or the same bandwidth (band), or the same partial bandwidth. (bandwidth part, BWP), or the same frequency layer (frequency layer), or the same center frequency point, or the same absolute radio frequency channel number (ARFCN), which is not specifically limited in this application.
  • BWP bandwidth part
  • ARFCN absolute radio frequency channel number
  • the at least one first network device includes a reference network device and N measurement network devices.
  • the at least one phase difference includes N phase differences 1.
  • the i-th phase difference 1 among the N phase differences 1 is the phase obtained by the terminal device measuring the positioning reference signal of the i-th measurement network device among the N measurement network devices at the first moment and the phase obtained by the terminal device measuring the reference network device at The phase difference between the phases obtained by the positioning reference signal sent at the first moment; or, the i-th phase difference 1 among the N phase differences 1 is the terminal equipment measuring the i-th measurement network device among the N measurement network devices.
  • the i-th phase difference 1 is the frequency domain channel coefficient obtained by the terminal device when measuring the positioning reference signal of the i-th measurement network device among the N measurement network devices at the first moment and the frequency domain channel coefficient obtained by the terminal device measuring the positioning reference signal sent by the reference network device at the first moment.
  • N is an integer greater than or equal to 1
  • i is an integer greater than or equal to 1 and less than or equal to N.
  • the at least one phase difference is a phase difference obtained by the terminal device by measuring the positioning reference signal sent by at least one first network device at the same time.
  • the at least one phase difference is associated with the same time tag. This facilitates expression of the correlation between the phase differences in the at least one phase difference. That is, the terminal device measures the phase difference obtained by positioning reference signals sent by at least one first network device at the same time. In this way, the second network device locates the terminal device based on the at least one phase difference, which is beneficial to improving positioning accuracy.
  • the at least one phase difference includes at least one of the following:
  • the terminal device measures the phase difference between the phases obtained from the positioning reference signals respectively sent by the reference network device and the at least one measurement network device at the same time.
  • the terminal device measures the phase difference between the phase of the channel first path obtained from the positioning reference signal respectively sent by the reference network device and the at least one measurement network device at the same time.
  • the channel is derived based on the frequency domain RE occupied by the positioning reference signal.
  • the terminal device measures the phase difference between the first path phase obtained from the positioning reference signal respectively sent by the reference network device and the at least one measurement network device at the same time.
  • the terminal device measures the phase difference at the same frequency point of the frequency domain channel coefficients obtained from the positioning reference signals respectively sent by the reference network device and the at least one measurement network device at the same time.
  • the following N phase differences 1 include the phase obtained by the terminal device measuring the positioning reference signal sent by the reference network device at the first moment and the phase obtained by the terminal device measuring the positioning reference signal sent by the N measurement network devices at the first moment.
  • the phase difference between them is introduced as an example.
  • the reference network device is TRP1
  • the N measurement network devices include TRP2, TRP3, and TRP4.
  • the at least one phase difference includes: and
  • the reference network device and the at least one measurement network device respectively send positioning reference signals at the second moment.
  • the at least one phase difference also includes at least one of the following:
  • the terminal device measures the phase difference between the phase obtained by measuring the positioning reference signal sent by the reference network device at the second moment and the phase obtained by the terminal device measuring the positioning reference signal sent by the at least one measurement network device at the second moment; or,
  • the frequency domain channel coefficient obtained by the terminal device by measuring the positioning reference signal sent by the reference network device at the second moment is the same as the frequency domain channel coefficient obtained by the terminal device by measuring the positioning reference signal sent by the at least one measurement network device at the second moment. phase difference at the frequency point.
  • the at least one first network device includes a reference network device and N measurement network devices.
  • the at least one phase difference includes N phase differences 2.
  • the i-th phase difference 2 among the N phase differences 2 is the phase obtained by the terminal device when measuring the positioning reference signal sent by the i-th measurement network device among the N measurement network devices at the second moment, and the phase obtained by the terminal device measuring the reference network device.
  • the i-th phase difference 2 among the N phase differences 2 is the phase of the channel first path obtained by the terminal equipment when measuring the positioning reference signal of the i-th measurement network equipment among the N measurement network equipment at the second moment, and the phase of the channel first path measured by the terminal equipment.
  • the i-th phase difference 2 among the N phase differences 2 is the frequency domain channel coefficient obtained by the terminal equipment from measuring the positioning reference signal of the i-th measurement network equipment among the N measurement network equipment at the second moment and the terminal equipment measurement reference The phase difference at the same frequency point of the frequency domain channel coefficients obtained from the positioning reference signal sent by the network device at the second moment.
  • N is an integer greater than or equal to 1
  • i is an integer greater than or equal to 1 and less than or equal to N.
  • N phase differences 2 uses N phase differences 2 to include the terminal device measuring the positioning reference signal sent by the reference network device at the second moment.
  • the phase difference between the phase obtained by the signal and the phase obtained by the terminal device by measuring the positioning reference signals sent by the N measurement network devices at the second moment will be introduced as an example.
  • the reference network device is TRP1
  • the N measurement network devices include TRP2, TRP3, and TRP4.
  • the at least one phase difference includes: and
  • the at least one first network device includes one or more first network devices.
  • the at least one first network device includes a first network device.
  • the at least one phase difference includes: the phase of the carrier signal received by the terminal device carrying the positioning reference signal sent by the first network device at the first moment and the phase of the carrier signal received by the terminal device carrying the positioning reference signal sent by the first network device at the second moment.
  • the phase difference between the phases of a signal's carrier signal is not limited to: the phase of the carrier signal received by the terminal device carrying the positioning reference signal sent by the first network device at the first moment.
  • the at least one first network device includes a first network device.
  • the at least one phase difference includes: a phase difference between a third phase difference and a fourth phase difference.
  • the third phase difference is the phase difference between the phase of the carrier signal received by the terminal device carrying the positioning reference signal sent by the first network device at the first moment and the phase of the carrier signal of the terminal device.
  • the fourth phase difference is between the phase of the carrier signal received by the terminal device carrying the positioning reference signal sent by the first network device at the second moment and the phase of the carrier signal of the terminal device. phase difference.
  • the above-mentioned carrier signal may also be a carrier frequency signal or a local array signal, which is not specifically limited in this application.
  • the at least one phase difference includes at least one of the following:
  • the terminal device measures the phase difference between the phases obtained by positioning reference signals sent by each first network device at different times in the at least one first network device; or,
  • the at least one first network device includes a first network device.
  • the at least one phase difference includes a phase difference between phases obtained by measuring the positioning reference signals sent by the first network device at different times by the terminal device.
  • the at least one first network device includes the first network device 1 .
  • the at least one phase difference includes the phase obtained by the terminal device measuring the positioning reference signal sent by the first network device 1 at the first time t 1 and the phase obtained by the terminal device measuring the positioning reference signal sent by the first network device 1 at the second time t 10 The phase difference between the resulting phases of the signal.
  • the at least one phase difference also includes the phase obtained by the terminal device measuring the positioning reference signal sent by the first network device 1 at the second time t 10 and the phase obtained by the terminal device measuring the first network device 1 at the third time t 20 The phase difference between the phases obtained by sending the positioning reference signal.
  • the time interval between the first time t 1 and the second time t 10 is equal to the time interval between the second time t 10 and the third time t 20 .
  • the at least one phase difference includes: the phase difference between the phases of the channel first paths obtained by the terminal device measuring the positioning reference signals sent by each of the at least one first network device at different times.
  • the at least one first network device includes a first network device.
  • the at least one phase difference includes a phase difference between phases of channel first paths obtained by measuring the positioning reference signals sent by the first network device at different times by the terminal device.
  • the at least one first network device includes the first network device 1 .
  • the at least one phase difference includes the phase of the channel first path obtained by the terminal device measuring the positioning reference signal sent by the first network device 1 at the first time t 1 and the phase of the channel first path obtained by the terminal device measuring the first network device 1 at the second time t 10 The phase difference between the first path of the channel obtained from the transmitted positioning reference signal.
  • the at least one phase difference also includes the phase of the channel first path obtained by the terminal equipment measuring the positioning reference signal sent by the first network equipment 1 at the second time t 10 and the phase of the channel first path obtained by the terminal equipment measuring the first network equipment 1 at the second time t 10 The phase difference between the phases of the channel first path obtained from the positioning reference signal sent at the third time t 20 .
  • the time interval between the first time t 1 and the second time t 10 is equal to the time interval between the second time t 10 and the third time t 20 .
  • the at least one phase difference includes: the terminal device measures the phase difference at the same frequency point of the frequency domain channel coefficients respectively obtained by positioning reference signals sent by each first network device in the at least one first network device at different times.
  • the at least one first network device includes a first network device.
  • the at least one phase difference includes the phase difference at the same frequency point of frequency domain channel coefficients respectively obtained by the terminal device from measuring the positioning reference signals sent by the first network device at different times.
  • the at least one first network device includes the first network device 1 .
  • the at least one phase difference includes the terminal
  • the frequency domain channel coefficient obtained by the device by measuring the positioning reference signal sent by the first network device 1 at the first time t 1 is the same as the frequency domain obtained by the terminal device by measuring the positioning reference signal sent by the first network device 1 at the second time t 10
  • the phase difference of channel coefficients at the same frequency point is the same as the frequency domain obtained by the terminal device by measuring the positioning reference signal sent by the first network device 1 at the second time t 10 .
  • the at least one phase difference also includes the frequency domain channel coefficient obtained by the terminal device measuring the positioning reference signal sent by the first network device 1 at the second time t 10 and the frequency domain channel coefficient obtained by the terminal device measuring the first network device 1 at the second time t 10 .
  • the time interval between the first time t 1 and the second time t 10 is equal to the time interval between the second time t 10 and the third time t 20 .
  • the at least one first network device includes a first network device
  • the at least one phase difference includes a phase obtained by the terminal device measuring the positioning reference signal sent by each first network device in the at least one first network device at different times.
  • the phase difference between them is taken as an example to introduce the technical solution of this application.
  • the at least one phase difference includes P phase differences 3.
  • the a-th phase difference 3 among the P phase differences 3 is the phase obtained by the terminal equipment measuring the positioning reference signal sent by the first network equipment at the a-th time and the phase obtained by the terminal equipment measuring the first network equipment at the a+1th time.
  • a is an integer greater than or equal to 1.
  • P is an integer greater than or equal to 1, and the size of P is related to the number of times when the first network device sends the positioning reference signal. For example, if the terminal device measures the positioning reference signal sent by the first network device at two moments, P is equal to 1. If the terminal device measures the positioning reference signal sent by the first network device at three times, then P is equal to 2.
  • the a+1th phase difference 3 among the P phase differences 3 is the phase obtained by the terminal device measuring the positioning reference signal sent by the first network device at the a+1th moment and the phase obtained by the terminal device measuring the first network device at the a+1th moment.
  • the time interval between the ath moment and the a+1th moment is equal to the time interval between the a+1th moment and the a+2th moment.
  • the time intervals between different adjacent moments in the multiple moments are equal.
  • P is equal to the number of moments in the plurality of moments minus one.
  • the at least one first network device includes TRP1, and the P phase differences 3 include That is, P equals 1.
  • the at least one first network device includes TRP1, and the P phase differences 3 include and That is, P equals 2. about See the previous introduction.
  • Measurements for end devices The phase obtained by the positioning reference signal sent by TRP1 at the second time t 10 .
  • the at least one first network device includes TRP1, TRP2, TRP3 and TRP4.
  • the at least one phase difference includes: and
  • the at least one first network device includes TRP1, TRP2, TRP3 and TRP4.
  • the at least one phase difference includes: and
  • first time t 1 and the second time t 10 are two adjacent times.
  • the second time t 10 and the third time t 20 are two adjacent times.
  • the time interval between the first time t 1 and the second time t 10 is equal to the time interval between the second time t 10 and the third time t 20 .
  • the terminal device sends the first information to the second network device.
  • the first information includes at least one phase difference; or, the first information is determined based on at least one phase difference.
  • the at least one phase difference please refer to the relevant introduction of the aforementioned step 602.
  • the first information is used by the second network device to locate the terminal device.
  • the first information can be understood as positioning information provided by the terminal device for the second network device.
  • the embodiment shown in FIG. 6 further includes step 603a.
  • Step 603a may be performed before step 603.
  • the terminal device determines the first information based on the at least one phase difference.
  • Step 603a will be introduced below in conjunction with the content included in the first information.
  • the first information is introduced based on an implementation manner in which the at least one first network device includes a reference network device and at least one measurement network device.
  • the first information includes at least one of the following: at least one first accumulated phase difference; or, at least one first equivalent distance change.
  • the at least one first accumulated phase difference includes at least one of the following: a phase obtained by the terminal device measuring the positioning reference signal sent by the reference network device and a phase obtained by the terminal device measuring the at least one positioning reference signal sent by the measurement network device.
  • the cumulative amount of phase difference in time; or, the phase of the channel first path obtained by the terminal equipment by measuring the positioning reference signal sent by the reference network device is respectively different from the phase of the channel first path obtained by the terminal equipment by measuring at least one positioning reference signal sent by the measurement network device.
  • the cumulative amount of the phase difference between phases in time; or, the frequency domain channel coefficient obtained by the terminal equipment measuring the positioning reference signal sent by the reference network device and at least one frequency domain channel coefficient obtained by measuring the positioning reference signal sent by the network device are in The cumulative amount of phase difference at the same frequency point in time.
  • the at least one first equivalent distance change includes a change in time of a distance difference between the distance between the terminal device and the reference network device and the distance between the terminal device and the at least one measurement network device respectively.
  • the terminal device determines the at least one first accumulated phase difference based on the at least one phase difference.
  • the at least one first network device includes a reference network device and N measurement network devices, and the at least one phase difference includes N phase differences 1 and N phase differences 2.
  • N phase differences 1 and N phase differences 2 please refer to the relevant introduction in the previous article.
  • the terminal device determines the at least one first accumulated phase difference based on the N phase differences 1 and N phase differences 2.
  • the at least one first accumulated phase difference includes N first accumulated phase differences.
  • the i-th first cumulative phase difference among the N first cumulative phase differences is the difference between the i-th phase difference 1 among the N first phase differences 1 and the i-th phase difference 2 among the N phase differences 2.
  • the i-th first accumulated phase difference represents the phase difference between the phase obtained by the terminal device by measuring the positioning reference signal sent by the reference network device and the phase obtained by the terminal device by measuring the positioning reference signal sent by the i-th measurement network device. accumulation over time.
  • the i-th first accumulated phase difference represents the phase of the channel first path obtained by the terminal device by measuring the positioning reference signal sent by the reference network device and the phase of the channel first path obtained by the terminal device by measuring the positioning reference signal sent by the i-th measurement network device. The cumulative amount of phase difference between the phases in time.
  • the i-th first cumulative phase difference represents the frequency domain channel coefficient obtained by the terminal equipment by measuring the positioning reference signal sent by the reference network device and the frequency domain channel coefficient obtained by the terminal equipment by measuring the positioning reference signal sent by the i-th measurement network device. The cumulative amount of phase difference in time at the same frequency point.
  • the following introduction takes the terminal device determining the first accumulated phase difference in the time interval between the first time t 1 and the second time t 10 as an example. In practical applications, the terminal device may use the first accumulated phase difference in multiple time intervals, which is not specifically limited in this application.
  • the i-th first accumulated phase difference is used to represent the phase difference between the phase obtained by the terminal equipment by measuring the positioning reference signal sent by the reference network device and the phase obtained by the terminal equipment by measuring the positioning reference signal sent by the i-th measurement network device.
  • the cumulative amount over time is introduced as an example.
  • the i-th first accumulated phase difference can be expressed as:
  • the i-th phase difference 2 indicates that the phase obtained by the terminal device when measuring the positioning reference signal sent by the i-th measurement network device among the N measurement network devices at the second time t 10 is the same as the phase obtained by the terminal device measuring the reference network device at the second time t 10 The phase difference between the phases of the transmitted positioning reference signal.
  • the i-th phase difference 1 indicates that the phase obtained by the terminal device when measuring the positioning reference signal sent by the i-th measurement network device among the N measurement network devices at the first time t 1 is the same as the phase obtained by the terminal device measuring the reference network device at the first time t 1 The phase difference between the phases of the transmitted positioning reference signal.
  • the terminal device reports the first cumulative phase difference to track the cumulative amount of the phase difference in time.
  • the phase change is less than 2 ⁇ , and the corresponding mobile position of the terminal device is small.
  • One possible method is for the terminal device to accumulate multiple phase difference changes and then report them. That is to say, the first accumulated phase difference is reported, and the larger distance change is calculated using the changes in the accumulated multiple phase differences. change.
  • the terminal device measures the positioning reference signal sent by the reference network device multiple times in the time interval between the first time t 1 and the second time t 10 and obtains a corresponding result from the measurement of the positioning reference signal sent by the network device. multiple phase differences, and then combine the multiple phase differences to determine the first cumulative phase difference.
  • the phase difference between the phase obtained by the terminal device when measuring the positioning reference signal sent by the reference network device at time t 1 and the phase obtained by measuring the positioning reference signal sent by the i-th measurement network device at time t 1 is The phase difference between the phase obtained by the terminal device when measuring the positioning reference signal sent by the reference network device at time t 2 and the phase obtained by measuring the positioning reference signal sent by the i-th measurement network device at time t 2 is The phase difference between the phase obtained by the terminal device when measuring the positioning reference signal sent by the reference network device at time t3 and the phase obtained by measuring the positioning reference signal sent by the i-th measurement network device at time t3 is The phase difference between the phase obtained by the terminal device by measuring the positioning reference signal sent by the reference network device at time t4 and the phase obtained by measuring the positioning reference signal sent by the i-th measurement network device at time t4 is The phase difference between the phase obtained by the terminal device by measuring the positioning reference signal sent by the reference network device at time t5 and the phase obtained by measuring the positioning
  • the i-th first accumulated phase difference can be expressed as:
  • the first cumulative phase difference from the 1st second to the 10th second must be gradually accumulated and calculated based on the phase differences from the 1st second, the 2nd second, and up to the 10th second, thereby eliminating the problem of integer ambiguity. It cannot be obtained directly from the phase difference corresponding to the 10th second and the phase difference corresponding to the 1st second. Even though the expression of the above formula 1 can be written as the subtraction of the phase differences at two moments, it actually needs to be obtained by gradually accumulating the phase differences at multiple moments.
  • the terminal device determines the at least one first equivalent distance variation based on the at least one first accumulated phase difference. Specifically, the terminal device determines the at least one first equivalent distance variation based on the at least one first cumulative phase difference and the wavelength used by the at least one first network device to send the positioning reference signal.
  • the following introduction takes the terminal device determining the first equivalent distance change amount in the time interval between the first time t 1 and the second time t 10 as an example. In practical applications, the terminal device may change the first equivalent distance within multiple time intervals, which is not specifically limited in this application.
  • the at least one first equivalent distance change includes N first equivalent distance changes.
  • the i-th first equivalent distance change among the N first equivalent distance changes is the distance difference between the terminal device and the reference network device and the i-th measurement network device at the first time t 1 and the terminal device.
  • the i-th first equivalent distance change is represented by Formula 3 below:
  • is the wavelength used by the i-th measurement network device to send the positioning reference signal. This article introduces the technical solution of the present application by taking the wavelength used by the at least one first network device to send the positioning reference signal as lambda as an example.
  • the first information includes at least one of the following: at least one first cumulative phase difference rate; or, at least one first equivalent distance change rate.
  • the at least one first accumulated phase difference rate includes at least one of the following: the phase obtained by the terminal device measuring the positioning reference signal sent by the reference network device and the phase obtained by the terminal device measuring the positioning reference signal sent by the at least one measurement network device.
  • the cumulative amount of the phase difference between them in unit time; or, the phase of the channel first path obtained by the terminal equipment measuring the positioning reference signal sent by the reference network device is respectively different from the channel obtained by the terminal equipment measuring at least one positioning reference signal sent by the measurement network device.
  • the accumulation amount per unit time includes at least one of the following: the phase obtained by the terminal device measuring the positioning reference signal sent by the reference network device and the phase obtained by the terminal device measuring the positioning reference signal sent by the at least one measurement network device.
  • the at least one first equivalent distance change rate includes the change amount in unit time of the distance difference between the distance between the terminal device and the reference network device and the distance between the terminal device and the at least one measurement network device.
  • the terminal device determines the at least one first accumulated phase difference based on the at least one phase difference. Then, the terminal device determines the at least one first accumulated phase difference rate according to the at least one first accumulated phase difference.
  • the terminal device determines the time interval between the first time t 1 and the second time t 10 based on the at least one first accumulated phase difference and the time interval between the first time t 1 and the second time t 10 .
  • the at least one first accumulated phase difference rate includes N first accumulated phase difference rates.
  • the N first accumulated phase difference rates are equal to the i-th first accumulated phase difference among the N first accumulated phase differences divided by the time interval between the first time t 1 and the second time t 10 .
  • the i-th first cumulative phase difference rate represents the phase difference between the phase obtained by the terminal device by measuring the positioning reference signal sent by the reference network device and the phase obtained by the terminal device by measuring the positioning reference signal sent by the i-th measurement network device. Cumulative amount per unit time.
  • the i-th first cumulative phase difference rate represents the phase of the channel first path obtained by the terminal equipment by measuring the positioning reference signal sent by the reference network equipment and the phase of the channel obtained by the terminal equipment by measuring the positioning reference signal sent by the i-th measurement network equipment.
  • the i-th first cumulative phase difference rate represents the frequency domain channel coefficient obtained by the terminal equipment by measuring the positioning reference signal sent by the reference network device and the frequency domain channel obtained by the terminal equipment by measuring the positioning reference signal sent by the i-th measurement network device. The cumulative amount of the phase difference of coefficients at the same frequency point per unit time.
  • the following uses the i-th first cumulative phase difference rate to represent the phase between the phase obtained by the terminal equipment by measuring the positioning reference signal sent by the reference network device and the phase obtained by the terminal equipment by measuring the positioning reference signal sent by the i-th measurement network device. Let’s take the cumulative amount of difference per unit time as an example.
  • the i-th first accumulated phase difference rate can be expressed as:
  • the terminal device determines the at least one first equivalent distance change rate according to the at least one first accumulated phase difference rate. Specifically, the terminal device determines the at least one first equivalent distance change rate based on the at least one first cumulative phase difference rate and the wavelength used by the at least one first network device to send the positioning reference signal.
  • the at least one first equivalent distance change rate includes N first equivalent distance change rates.
  • the i-th first equivalent distance change rate among the N first equivalent distance change rates is equal to the i-th first equivalent distance change amount among the N first equivalent distance change amounts divided by the first time t 1 The time interval to the second time t 10 .
  • the i-th first equivalent distance change rate is represented by Formula 5 below.
  • ⁇ d ij is the i-th first equivalent distance change
  • (t 10 -t 1 ) is the time interval between the first moment and the second moment.
  • ⁇ ij is the phase deviation between the reference network device and the i-th measurement network device.
  • is the wavelength used by the i-th measurement network device to send the positioning reference signal.
  • the first information is introduced below based on the fact that the at least one first network device includes one or more first network devices.
  • the following takes one of the at least one first network device as an example to introduce the first information. The same is true for other first network devices.
  • the first information includes at least one of the following: at least one second cumulative phase difference; or, at least one second equivalent distance change.
  • the at least one second accumulated phase difference includes at least one of the following: the terminal equipment measures the cumulative amount of the phase difference in time between the phases obtained by the positioning reference signals sent by the first network equipment at different times; or, the terminal equipment measures the third The cumulative amount of the phase difference in time between the phases of the channel first path obtained by the positioning reference signals sent by a network device at different times; or the terminal device measures the positioning reference signals sent by the first network device at different times.
  • the at least one second equivalent distance change includes: a change in time of a distance difference between the terminal device and the first network device at different times.
  • the terminal device determines the at least one second accumulated phase difference based on the at least one phase difference.
  • the at least one first network device includes a first network device
  • the at least one phase difference includes P phase differences 3.
  • the at least one second accumulated phase difference includes M second accumulated phase differences.
  • the a-th second cumulative phase difference among the M second cumulative phase differences is the difference between the a-th phase difference 3 among the P phase differences 3 and the a+1-th phase difference 3 among the P phase differences 3.
  • M is an integer greater than or equal to 1
  • a is an integer greater than or equal to 1.
  • the value of M is determined based on the number of times the terminal device measures the positioning reference signal. M equals one less than the number of moments.
  • the a-th phase difference 3 is between the phase obtained by the terminal device by measuring the positioning reference signal sent by the first network device at the a-th time and the phase obtained by the terminal device by measuring the positioning reference signal sent by the first network device at the a+1-th time. phase difference.
  • the a+1th phase difference 3 is the phase obtained by the terminal device measuring the positioning reference signal sent by the first network device at the a+1th moment and the phase obtained by the terminal device measuring the positioning reference signal sent by the first network device at the a+2th moment.
  • the time interval between the ath moment and the a+1th moment is equal to the time interval between the a+1th moment and the a+2th moment.
  • the a-th second accumulated phase difference can be expressed as:
  • phase difference 3 is the a-th phase difference 3 among the P phase differences 3.
  • the terminal device reports the second cumulative phase difference to track the cumulative amount of the phase difference in time.
  • the phase change is less than 2 ⁇ , and the corresponding mobile position of the terminal device is small.
  • One possible method is for the terminal device to accumulate multiple phase difference changes and then report them. That is, the second accumulated phase difference is reported. Larger distance changes are calculated using the accumulated changes in multiple phase differences.
  • the terminal device measures the positioning reference signal sent by the first network device multiple times in the time interval between time t 1 and time t 20 to obtain the phase difference between the phases obtained at different times, and then combines the The phase difference between the phases obtained at different times determines the at least one second accumulated phase difference.
  • the phase difference between the phase obtained by the terminal device by measuring the positioning reference signal sent by the first network device at time t1 and the phase obtained by the terminal device by measuring the positioning reference signal sent by the first network device at time t2 is The phase difference between the phase obtained by the terminal device by measuring the positioning reference signal sent by the first network device at time t2 and the phase obtained by the terminal device by measuring the positioning reference signal sent by the first network device at time t3 is The phase obtained by the terminal equipment measuring the positioning reference signal sent by the first network equipment at time t3 is the same as the phase obtained by the terminal equipment measuring the first network equipment at time t3.
  • the phase difference between the phases obtained by the positioning reference signal sent at time t 4 is The phase difference between the phase obtained by the terminal device by measuring the positioning reference signal sent by the first network device at time t4 and the phase obtained by the terminal device by measuring the positioning reference signal sent by the first network device at time t5 is The phase difference between the phase obtained by the terminal device by measuring the positioning reference signal sent by the first network device at time t5 and the phase obtained by the terminal device by measuring the positioning reference signal sent by the first network device at time t6 is The phase difference between the phase obtained by the terminal device by measuring the positioning reference signal sent by the first network device at time t6 and the phase obtained by the terminal device by measuring the positioning reference signal sent by the first network device at time t7 is The phase difference between the phase obtained by the terminal device by measuring the positioning reference signal sent by the first network device at time t7 and the phase obtained by the terminal device by measuring the positioning reference signal sent by the first network device at time t8 is The phase difference between the phase obtained by the terminal device by measuring the positioning reference signal sent by
  • the a-th second cumulative phase difference can be expressed as:
  • the second cumulative phase difference from the 1st second to the 20th second must be gradually accumulated and calculated based on the phase differences from the 1st second, the 2nd second, and up to the 20th second, thereby eliminating the problem of integer ambiguity. It cannot be obtained directly from the phase difference corresponding to the 20th second and the phase difference corresponding to the 1st second. Even though the expression of the above formula 6.1 can be written as the subtraction of the phase differences at two moments, it actually needs to be obtained by gradually accumulating the phase differences at multiple moments.
  • the terminal device determines the at least one second equivalent distance variation based on the at least one second accumulated phase difference. Specifically, the terminal device determines the at least one second equivalent distance change based on the at least one second cumulative phase difference and the wavelength used by the at least one first network device to send the positioning reference signal.
  • the following introduction takes the terminal device as an example to determine the second equivalent distance change amount in the time interval between time t a and time t a+2 .
  • the terminal device may change the second equivalent distance within multiple time intervals, which is not specifically limited in this application.
  • the at least one second equivalent distance change includes M second equivalent distance changes.
  • the a-th second equivalent distance change among the M second equivalent distance changes is the a-th first distance difference among the P first distance differences and the a+1-th among the P first distance differences.
  • the difference between a distance difference is the distance difference between the distance between the terminal device and the first network device at the a-th time and the distance between the terminal device and the first network device at the a+1-th time.
  • the a+1th first distance difference is the difference between the distance between the terminal device and the first network device at the a+1th time and the distance difference between the terminal device and the first network device at the a+2th time.
  • ⁇ d a is the a-th first distance difference among the P first distance differences.
  • ⁇ d a+1 is the a+1th first distance difference among the P first distance differences.
  • is the wavelength used by the first network device to send the positioning reference signal.
  • the first information includes at least one of the following: at least one second cumulative phase difference rate; or, at least one second equivalent distance change rate.
  • the at least one second cumulative phase difference rate includes at least one of the following: the terminal device measures the cumulative amount of the phase difference in unit time between the phases obtained by measuring the positioning reference signals sent by the first network device at different times; or, the terminal The device measures the cumulative amount of the phase difference per unit time between the phases of the channel first path obtained by positioning reference signals sent by the first network device at different times; or, the terminal device measures the positioning reference sent by the first network device at different times.
  • the at least one second equivalent distance change rate is the change amount in unit time of the distance difference between the distances of the terminal device to the first network device at different times.
  • the terminal device determines the at least one second cumulative phase difference based on the at least one phase difference. Then, the terminal device determines the at least one second accumulated phase difference rate according to the at least one second accumulated phase difference.
  • the terminal device determines the at least one second accumulated phase difference rate according to the at least one second accumulated phase difference and the time interval between the time ta and the time ta +2 .
  • the at least one second accumulated phase difference rate includes M second accumulated phase difference rates.
  • the M second accumulated phase difference rates are equal to the a-th second accumulated phase difference among the M second accumulated phase differences divided by the time interval between time t a and time ta + 2 .
  • the a-th second cumulative phase difference rate can be expressed as:
  • the terminal device determines the at least one second equivalent distance change rate according to the at least one second accumulated phase difference rate. Specifically, the terminal device determines the at least one second equivalent distance change rate based on the at least one second cumulative phase difference rate and the wavelength used by the first network device to send the positioning reference signal.
  • the at least one second equivalent distance change rate includes M second equivalent distance change rates.
  • the a-th second equivalent distance change rate among the M second equivalent distance change rates is equal to the M second equivalent distance change amounts divided by the time interval between time t a and time t a+2 .
  • the following formula 9 represents the a-th second equivalent distance change rate:
  • ⁇ d a is the a-th first distance difference among the P first distance differences.
  • ⁇ d a+1 is the a+1th first distance difference among the P first distance differences.
  • is the wavelength used by the first network device to send the positioning reference signal.
  • the second network device locates the terminal device according to the first information.
  • Step 604a may be performed before step 604.
  • the second network device acquires at least one phase deviation.
  • At least one phase deviation includes a phase deviation between different first network devices in the at least one first network device obtained by measuring the positioning reference signal sent by the at least one first network device by the calibration terminal device. The at least one phase deviation is reported by the calibration terminal equipment.
  • the second network device receives at least one phase deviation from the calibration terminal device. about the at least one Please refer to the following introduction for phase deviation.
  • step 603 may be performed first, and then step 604a may be performed; or step 604a may be performed first, and then step 603 may be performed; or step 603 and step 604a may be performed simultaneously depending on the situation, and this application does not limit the specifics.
  • step 604 specifically includes:
  • the second network device locates the terminal device according to the first information and the at least one phase deviation.
  • the second network device positions the terminal device based on the first information and the at least one phase deviation, please refer to the relevant introduction below.
  • Step 604b may be performed before step 604.
  • the second network device obtains at least one accumulated phase deviation.
  • the at least one accumulated phase deviation includes a cumulative amount of phase deviations in time between different first network devices in at least one first network device obtained by the calibration terminal device measuring the positioning reference signal sent by at least one first network device. At least one The accumulated phase deviation is reported by the calibration terminal equipment.
  • the second network device receives at least one accumulated phase deviation from the calibration terminal device.
  • the at least one accumulated phase deviation please refer to the relevant introduction below.
  • step 603 may be executed first, and then step 604b may be executed; or step 604b may be executed first, and then step 603 may be executed; or step 603 and step 604b may be executed at the same time depending on the situation, which is not specifically limited in this application.
  • step 604 specifically includes:
  • the second network device locates the terminal device according to the first information and the at least one accumulated phase deviation.
  • the second network device positions the terminal device based on the first information and the at least one accumulated phase deviation, please refer to the relevant introduction below.
  • step 604 will be introduced below in conjunction with the content included in the first information.
  • the at least one first network device includes a reference network device and at least one measurement network device, and the first information includes at least one phase difference.
  • the at least one phase difference includes at least one of the following: a phase difference between the phase obtained by the terminal equipment by measuring the positioning reference signal sent by the reference network device and the phase obtained by the terminal equipment by measuring the at least one positioning reference signal sent by the measurement network device; Or, the phase difference between the phase of the channel first path obtained by the terminal equipment by measuring the positioning reference signal sent by the reference network device and the phase of the channel first path obtained by the terminal equipment by measuring the at least one positioning reference signal sent by the measurement network device; or , the phase difference at the same frequency point between the frequency domain channel coefficient obtained by the terminal device by measuring the positioning reference signal sent by the reference network device and the frequency domain channel coefficient obtained by the terminal device by measuring the at least one positioning reference signal sent by the measurement network device.
  • the at least one phase difference includes the phase difference obtained by the terminal device by measuring the positioning reference signal sent by the reference network device and the phase obtained by the terminal device by measuring the at least one positioning reference signal sent by the measurement network device.
  • the following is a process in which the second network device combines the first information and the at least one phase deviation to position the terminal device.
  • the at least one phase deviation includes a phase deviation between different first network devices in the at least one first network device obtained by measuring the positioning reference signal sent by the at least one first network device by the calibration terminal device.
  • the at least one first network device includes a reference network device and at least one measurement network device.
  • the at least one phase deviation includes a difference between a phase deviation between the calibration terminal device and the reference network device, respectively, and a phase deviation between the calibration terminal device and the at least one measurement network device.
  • the calibration terminal device measures the phase obtained from the positioning reference signal sent by the reference network device at the first moment.
  • the calibration terminal device determines the phase deviation between the calibration terminal device and the reference network device in combination with the phase and the position between the calibration terminal device and the reference network device.
  • the phase deviation between the calibration terminal equipment and the reference network equipment can represent the synchronization error between the calibration terminal equipment and the reference network equipment and the initial radio frequency phase of the calibration terminal equipment itself.
  • the calibration terminal device measures the phase obtained from the positioning reference signal sent by each measurement network device in the at least one measurement network device at the first moment.
  • the calibration terminal device then combines the phase and the position between the calibration terminal device and each measurement network device to calculate the phase deviation between the calibration terminal device and each measurement network device.
  • the phase deviation between the calibration terminal device and each measurement network device can represent the synchronization error between the calibration terminal device and each measurement network device and the initial radio frequency phase of the calibration terminal device itself. Therefore, the at least one phase difference deviation can be understood as the phase deviation between the reference network device and the at least one measurement network device measured by the calibration terminal.
  • the at least one phase difference deviation represents a synchronization error between the reference network device and the at least one measurement network device respectively.
  • the specific determination process of the at least one phase deviation can be referred to the relevant introduction later.
  • the at least one phase difference includes N phase differences 1.
  • N phase differences please refer to the relevant introduction in the previous article and will not go into details here.
  • the at least one phase deviation includes N first phase deviations.
  • the phase deviation between the calibration terminal device and each measurement network device includes N second phase deviations.
  • the phase deviation between the calibration terminal equipment and the reference network equipment is called the third phase deviation.
  • the i-th first phase deviation among the N first phase deviations is the difference between the i-th second phase deviation and the third phase deviation among the N second phase deviations.
  • the i-th second bit deviation of the N second phase deviations is the phase deviation between the calibration terminal device and the i-th measurement network device among the N measurement network devices at the first moment. That is to say, the N second phase deviations include the phase deviation between the calibration terminal device and each of the N measurement network devices at the first moment.
  • the third phase deviation is the phase deviation between the calibrated terminal device and the reference network device at the first moment. The location of the calibration terminal device is known to the second network device.
  • the i-th first phase deviation among the N first phase deviations is the phase compensation value of the i-th phase difference 1 among the N phase differences 1.
  • the calibration terminal device measures the phase difference between the phase obtained by measuring the positioning reference signal sent by each measurement network device at the first moment and the phase obtained by the calibration terminal device measuring the positioning reference signal sent by the reference network device at the first moment, and obtains The N phase difference is 4.
  • the calibration terminal device determines the N first phase deviations in combination with the N phase differences 4 .
  • the calibration terminal device sends the N first phase deviations to the second network device.
  • the second network device receives the N first phase deviations from the calibration terminal device.
  • the reference network device is TRP1
  • the N measurement network devices include TRP2, TRP3, and TRP4.
  • the second network device receives the N first phase deviations sent from the calibration terminal device.
  • the location of the calibration terminal is known to the second network device.
  • the calibration terminal equipment measures the phase obtained by the positioning reference signal sent by the i-th TRP at the first moment. It can be expressed as the following formula 1:
  • r i represents the distance between the calibration terminal device and the i-th TRP included in the N measurement network devices.
  • Ni represents the number of integer cycles of wavelength between the calibration terminal equipment and the i-th TRP included in the N measurement network equipment.
  • c represents the speed of light.
  • ⁇ i (t 1 ) represents the synchronization error between the calibration terminal device and the i-th TRP included in the N measurement network devices at the first time t 1
  • ⁇ i (t 1 ) represents the calibration terminal device itself at the first time t 1 RF initial phase.
  • the radio frequency initial phase of different devices is different.
  • n i represents phase noise.
  • is the wavelength corresponding to the frequency point of the carrier signal that carries the positioning reference signal sent by the i-th TRP at the first moment.
  • the calibration terminal device calculates the distance ri between the calibration terminal device and the i-th TRP included in the N measurement network devices at the first moment according to the position of the calibration terminal device.
  • Calibrate terminal equipment according to The i-th second phase deviation ⁇ i (t 1 ) among the N second phase deviations can be calculated.
  • the second phase deviation ⁇ i (t 1 ) represents the synchronization error between the calibration terminal device and the i-th TRP included in the N measurement network devices at the first moment and the initial radio frequency phase of the calibration terminal device itself.
  • the i-th second phase deviation ⁇ i (t 1 ) among the N second phase deviations can be expressed as:
  • ⁇ i (t 1 ) represents the synchronization error between the calibration terminal equipment and the i-th TRP included in the N measurement network equipment at the first moment and the initial radio frequency phase of the calibration terminal equipment itself, it is necessary to pass the inter-station difference
  • the form eliminates the radio frequency initial phase of the calibration terminal equipment itself.
  • the calibration terminal equipment measures the positioning reference signal of TRP1 (ie, the reference network equipment) at the first moment to obtain the phase. Then calibrate the terminal equipment according to The third phase deviation ⁇ j (t 1 ) can be calculated.
  • the third phase deviation ⁇ j (t 1 ) represents the synchronization error between the calibration terminal equipment and TRP1 at the first moment and the initial radio frequency phase of the calibration terminal equipment itself.
  • ⁇ ij (t 1 ) is the i-th first phase deviation among the above-mentioned N first phase deviations. It can be seen that the second network device differentiates the i-th second phase deviation ⁇ i (t 1 ) and the third phase deviation ⁇ j (t 1 ) to obtain the ⁇ ij (t 1 ). Should ⁇ ij (t 1 ) is not affected by the error of the initial radio frequency phase of the calibration terminal equipment itself. And, the ⁇ ij (t 1 ) can characterize the synchronization error between the i-th TRP and TRP1 included in the N measurement network devices.
  • the second network device locates the terminal device according to the N phase differences 1 and the N first phase deviations.
  • the i-th phase difference 1 among the N phase differences 1 is the phase obtained by the terminal equipment when measuring the positioning reference signal sent by the i-th measurement network equipment at the first moment and the phase obtained by the terminal equipment measuring the reference network equipment at the first moment.
  • the terminal device uses the difference value between phases to eliminate the error influence of the terminal device's own radio frequency initial phase and the synchronization error between the terminal device and the at least one first network device (including N measurement network devices and reference network devices) Impact.
  • This ⁇ ij (t 1 ) can be understood as the phase compensation value of the i-th phase difference 1 among the above-mentioned N phase differences 1. Compensation for the synchronization error between the i-th measurement network device and the reference network device is realized.
  • the terminal equipment and the calibration terminal equipment should measure the TRP to transmit the positioning reference signal at the same time.
  • the same time includes: the same OFDM symbol, the same time slot, the same sub-slot, the same subframe, the same signal frame, the same measurement window, the same measurement interval, the same PRS processing window, the same Within the reference signal period, the same uplink and downlink switching period, or the length of the time interval.
  • the length of the time interval includes 1ms (milliseconds), 2ms (milliseconds), 5ms, 10ms or 20ms.
  • the terminal equipment reports the N phase differences 1
  • the calibration terminal equipment reports the N first phase deviations. It is convenient for the second network device to accurately locate the terminal device.
  • the terminal device can select a reference network device. Then, the terminal device measures the phase difference between the phase obtained by measuring the positioning reference signal sent by each measurement network device at the first moment and the phase obtained by measuring the positioning reference signal sent by the reference network device at the first moment, that is, N phase differences 1 . Then, the calibration terminal device measures the phase difference between the phase obtained by measuring the positioning reference signal sent by each measurement network device at the first moment and the phase obtained by the calibration terminal device measuring the positioning reference signal sent by the reference network device at the first moment, that is, N The phase difference is 4. The calibration terminal device determines the N first phase deviations through the N phase differences 4 and reports them to the second network device. The second network device locates the terminal device according to the N phase differences 1 and the N first phase deviations.
  • the following describes a process in which the second network device locates the terminal device based on the N phase differences 1 and the N first phase deviations.
  • the reference network device is TRP1
  • the N measurement network devices include TRP2, TRP3, and TRP4.
  • the second network device constructs the following equation based on the N phase differences 1 and the N first phase deviations:
  • ⁇ 21 (t 1 ) is the phase deviation between TRP2 and TRP1 measured by the calibration terminal equipment at the first moment. That is, the first first phase deviation among the N first phase deviations.
  • the first first phase deviation is equal to the difference between the first second phase deviation and the third phase deviation among the N second phase deviations.
  • N 21 is the integer ambiguity corresponding to the difference between the distances from the terminal device to TRP2 and TRP1.
  • ⁇ r 21 is the distance difference between the distance of the terminal device to TRP2 and the distance of the terminal device to TRP1 at the first moment.
  • is the wavelength corresponding to the frequency point where the carrier signal carrying the TRP positioning reference signal is located.
  • the wavelength corresponding to the frequency point corresponding to the carrier signal carrying the positioning reference signal of each TRP is ⁇ as an example.
  • ⁇ 31 (t 1 ) is the phase deviation between TRP3 and TRP1 measured by the calibration terminal equipment at the first moment. That is, the second first phase deviation among the N first phase deviations.
  • the second first phase deviation is equal to the difference between the second second phase deviation and the third phase deviation among the N second phase deviations.
  • N 31 is the integer ambiguity corresponding to the difference between the distances from the terminal device to TRP3 and TRP1.
  • ⁇ r 31 is the distance difference between the distance of the terminal device to TRP3 and the distance of the terminal device to TRP1 at the first moment.
  • ⁇ 41 (t 1 ) is the phase deviation between TRP4 and TRP1 measured by the calibration terminal equipment at the first moment. That is, the third first phase deviation among the N first phase deviations.
  • the third first phase deviation is equal to the difference between the third second phase deviation and the third phase deviation among the N second phase deviations.
  • N 41 The integer ambiguity corresponding to the difference between the distance from the terminal device to TRP4 and TRP1.
  • ⁇ r 41 is the distance difference between the distance of the terminal device to TRP4 and the distance to TRP1 at the first moment.
  • the second network device combines the above formulas 13 to 15 to calculate the distance between the terminal device and each TRP and the location of the terminal device.
  • the second network device receives N phase differences 1 from the terminal device. That is, the phase difference between the phase obtained by the terminal equipment by measuring the positioning reference signal sent by the reference network device at the first moment and the phase obtained by the terminal device by measuring at least one positioning reference signal sent by the measurement network device at the first moment, and These phase differences are sent to the second network device.
  • the i-th phase difference 1 is the phase difference between the phases obtained by the terminal device when measuring the positioning reference signals sent by the i-th measurement network device and the reference network device respectively at the first moment.
  • the second network device acquires N first phase deviations.
  • the i-th first phase deviation among the N first phase deviations may be the phase compensation value of the i-th phase difference 1 among the N phase differences 1. Realize the connection between the i-th measurement network device and the reference network device Compensation for synchronization errors. Then, the second network device locates the terminal device according to the N phase differences 1 and the N first phase deviations. This enables high-precision positioning of terminal equipment.
  • the at least one first network device includes a reference network device and at least one measurement network device, and the first information includes at least one of the following: at least a first cumulative phase difference, or at least a first equivalent distance change; or , the first information includes at least one of the following: at least a first cumulative phase difference rate, or at least a first equivalent distance change rate.
  • the first information includes the at least one first accumulated phase difference or the at least one first equivalent distance variation to introduce the positioning process of the second network device to the terminal device.
  • the first information of the second network device and the at least one accumulated phase deviation are used to locate the terminal device.
  • the at least one accumulated phase deviation includes a cumulative amount of phase deviation in time between the reference network device and the at least one measurement network device measured by the calibration terminal device.
  • the at least one accumulated phase deviation includes: the cumulative amount of the difference in time between the phase deviation between the calibration terminal device and the reference network device and the phase deviation between the calibration terminal device and the at least one measurement network device.
  • the at least one accumulated phase deviation includes N accumulated phase deviations.
  • the i-th cumulative phase deviation ⁇ ij among the N cumulative phase deviations is the i-th first phase deviation ⁇ ij (t 1 ) among the N first phase deviations and the i-th fourth phase among the N fourth phase deviations.
  • the i-th fourth phase deviation ⁇ ij (t 2 ) among the N fourth phase deviations is the same as the i-th fifth phase deviation ⁇ i (t 2 ) among the N fifth phase deviations and the sixth phase deviation ⁇ j (t 2 ).
  • the i-th fifth phase deviation ⁇ i (t 2 ) among the N fifth phase deviations is the phase deviation between the calibration terminal device and the i-th measurement network device among the N measurement network devices at the second moment.
  • the sixth phase deviation ⁇ j (t 2 ) is the phase deviation between the calibration terminal device and the reference network device at the second moment.
  • the i-th accumulated phase deviation is the phase compensation value of the i-th first accumulated phase difference among the N first accumulated phase differences. This eliminates the initial radio frequency phase of the calibration terminal equipment itself and compensates for synchronization errors between different stations. For specific principles, please refer to the relevant introduction below.
  • a possible implementation manner in which the second network device combines the first information and at least one accumulated phase deviation to position the terminal device is introduced below.
  • the terminal device needs to continuously track the phase, and use the accumulation of the phase over time to achieve accurate tracking of the terminal device.
  • the terminal device may determine N first accumulated phase differences. For example, the i-th first accumulated phase difference among the N first accumulated phase differences is expressed by the above formula 1.
  • ⁇ ij ⁇ ij (t 10 )- ⁇ ij (t 1 ) Equation 16
  • ⁇ ij (t 1 ) represents the i-th first phase deviation among the N first phase deviations.
  • ⁇ ij (t 1 ) represents the i-th first phase deviation among the N first phase deviations.
  • ⁇ ij (t 1 ) represents the i-th fourth phase deviation among the N fourth phase deviations.
  • ⁇ ij (t 10 ) is N The difference between the i-th fifth phase deviation ⁇ i (t 10 ) and the sixth phase deviation ⁇ j (t 10 ) among the fifth phase deviations.
  • TRP1 is the reference network equipment
  • TRP2 to TRP5 are the measurement network equipment.
  • the second network device can construct the following sets of equations through the obtained measurement quantities:
  • TRP2 is the first measurement network device among the N measurement network devices.
  • ⁇ d 21 represents the first first equivalent distance change among the N first equivalent distance changes, that is, the distance between the terminal equipment arriving at TRP1 and TRP2 at the first time t 1 is the same as the distance between the terminal equipment arriving at TRP1 and TRP2 at the second time t 10
  • the difference between the distance to TRP1 and TRP2. is the first first accumulated phase difference among the N first accumulated phase differences.
  • ⁇ 21 is the first accumulated phase deviation among the N accumulated phase deviations.
  • ⁇ 21 is used to calculate the first accumulated phase difference among the N first accumulated phase differences.
  • is the wavelength corresponding to the frequency point where the carrier signal carrying the TRP positioning reference signal is located.
  • the wavelength corresponding to the frequency point corresponding to the carrier signal carrying the positioning reference signal of each TRP is ⁇ as an example.
  • TRP3 is the second measurement network device among the N measurement network devices.
  • ⁇ d 31 represents the second first equivalent distance change amount among the N first equivalent distance change amounts. That is, the difference between the distance between the terminal device reaching TRP1 and TRP3 at the first time t 1 and the distance between the terminal device arriving at TRP1 and TRP3 at the second time t 10 . is the second first accumulated phase difference among the N first accumulated phase differences.
  • ⁇ 31 is the second cumulative phase deviation among the N cumulative phase deviations.
  • ⁇ 31 is used to calculate the second first accumulated phase difference among the N first accumulated phase differences. Phase compensation to compensate for the synchronization error between TRP3 and TRP1.
  • TRP4 is the third measurement network device among the N measurement network devices.
  • ⁇ d 41 represents the third first equivalent distance change amount among the N first equivalent distance change amounts. That is, the difference between the distance between the terminal device reaching TRP1 and TRP4 at the first time t 1 and the distance between the terminal device arriving at TRP1 and TRP4 at the second time t 10 . is the third first accumulated phase difference among the N first accumulated phase differences.
  • ⁇ 41 is the third cumulative phase deviation among the N cumulative phase deviations.
  • ⁇ 41 is used to calculate the third first accumulated phase difference among the N first accumulated phase differences. Phase compensation to compensate for the synchronization error between TRP4 and TRP1.
  • TRP5 is the fourth measurement network device among the N measurement network devices.
  • ⁇ d 51 represents the fourth first equivalent distance change amount among the N first equivalent distance change amounts. That is, the difference between the distance between the terminal device reaching TRP1 and TRP5 at the first time t 1 and the distance between the terminal device arriving at TRP1 and TRP5 at the second time t 10 . is the fourth first accumulated phase difference among the N first accumulated phase differences.
  • ⁇ 51 is the fourth accumulated phase deviation among the N accumulated phase deviations.
  • ⁇ 51 is used to calculate the fourth first accumulated phase difference among the N first accumulated phase differences. Phase compensation to compensate for the synchronization error between TRP5 and TRP1.
  • the second network device can calculate the position of the terminal device at the first time and the position at the second time by combining the above formulas 18 to 21. Specifically, the second network device can calculate the position of the terminal device at the first time and the position at the second time through the following formula 22.
  • the second network device can search the position of the terminal device at the first time (x1, y1) and the position of the terminal device at the second time (x2, y2).
  • the second network device can search the position of the terminal device at the second time (x2, y2).
  • the position at a moment (x1, y1) and the position of the terminal device at the second moment (x2, y2) are substituted Minimize the above equation 14. Therefore, it can be seen that (x1, y1, x2, y2) is (x' 1 , y 1 ', x 2 ', y 2 ') in the above formula 14.
  • the second network device receives the first information from the terminal device.
  • the second network device obtains N accumulated phase deviations.
  • the second network device locates the terminal device according to the first information and the N accumulated phase deviations.
  • the terminal device reports at least one first cumulative phase difference, at least one first equivalent distance change, at least one first cumulative phase difference rate, or at least one first equivalent distance change rate, which can eliminate the terminal device's own radio frequency initial phase sum
  • the second network device combines the first information reported by the terminal device and the information reported by the calibration terminal device to locate the terminal device. Compensation for synchronization errors between different first network devices is achieved, thereby achieving high-precision positioning of the terminal device.
  • the at least one first network device includes one or more first network devices, and the first information includes at least one of the following phase differences; or, the first information includes at least one of the following: at least one second cumulative phase difference, or At least one second equivalent distance change amount; alternatively, the first information includes at least one of the following: at least one second cumulative phase rate, or at least one second equivalent distance change rate.
  • the at least one phase difference includes at least one of the following: the terminal device measures the phase difference between the phases obtained by positioning reference signals sent by each first network device in the at least one first network device at different times; or, the terminal device measures The phase difference between the phases of the channel first paths obtained by positioning reference signals sent by each first network device in the at least one first network device at different times; or, the terminal device measures each of the at least one first network device.
  • the phase difference at the same frequency point of the frequency domain channel coefficients obtained from the positioning reference signals sent by the first network device at different times.
  • the at least one phase difference includes a phase difference obtained by a terminal device measuring a positioning reference signal sent by each first network device in the at least one first network device at different times.
  • the terminal device reports the following four phase differences 3 to the second network device: about and Please refer to the related introduction mentioned above.
  • the second network device calculates the distance difference ⁇ d 1 , the distance difference ⁇ d 2 , the distance difference ⁇ d 3 and the distance difference ⁇ d 4 through the four phase differences 3 reported by the terminal device.
  • the distance difference ⁇ d 1 is the difference between the distance of the terminal device to TRP1 at the first time t 1 and the second time t 10 .
  • the distance difference ⁇ d 2 is the difference between the distance of the terminal device to TRP2 at the first time t 1 and the second time t 10 .
  • the distance difference ⁇ d 3 is the difference between the distance of the terminal device to TRP3 at the first time t 1 and the second time t 10 .
  • the distance difference ⁇ d 4 is the difference between the distance of the terminal device to TRP4 at the first time t 1 and the second time t 10 .
  • the distance difference ⁇ d 1 , the distance difference ⁇ d 2 , the distance difference ⁇ d 3 and the distance difference ⁇ d 4 are respectively expressed by formulas below.
  • the second network device can calculate the position of the terminal device at the first time t 1 and the position at the second time t 10 by combining the above formulas 23 to 26. Specifically, the second network device can calculate the position of the terminal device at the first time t 1 and the position at the second time t 10 through the following formula 27.
  • b is an integer greater than or equal to 1 and less than or equal to the number of the one or more first network devices.
  • is the wavelength corresponding to the frequency point where the carrier signal carrying the TRP positioning reference signal is located.
  • the wavelength corresponding to the frequency point corresponding to the carrier signal carrying the positioning reference signal of each TRP is ⁇ as an example.
  • the second network device can search the position of the terminal device at the first time (x1, y1) and the position of the terminal device at the second time (x2, y2).
  • the second network device can search the position of the terminal device at the second time (x2, y2).
  • Substitute the position at one moment (x1, y1) and the position of the terminal device at the second moment (x2, y2) Minimize the above equation 27. Therefore, (x1, y1, x2, y2) is (x' 1 , y 1 ', x 2 ', y 2 ') in the above formula 27.
  • the terminal device eliminates the initial radio frequency phase of the terminal device itself by reporting P phase differences of 3 and the synchronization error between the terminal device and the TRP. It is convenient for the second network device to determine the position of the terminal device at the first time and the position at the second time through the P phase differences 3 reported by the terminal device. This enables high-precision positioning of terminal equipment.
  • a b represents the deviation of the clock drift rate between the terminal device and the b-th TRP.
  • t period represents the absolute time interval, and k represents the fixed time deviation.
  • the phase difference 3 includes linear synchronization error.
  • the terminal device measures the phase difference between the phases of the positioning reference signals sent by the b-th TRP at time t 1 and time t 10 respectively. The details are as shown in Equation 29:
  • represents the wavelength corresponding to the frequency point of the carrier signal carrying the positioning reference signal of the b-th TRP.
  • represents the wavelength corresponding to the frequency point of the carrier signal carrying the positioning reference signal of the b-th TRP.
  • the phase difference 3 includes a linear synchronization error.
  • the second network device or terminal device can calculate the second cumulative phase difference by combining Equation 29 and Equation 30.
  • second cumulative phase difference It can be expressed as:
  • the second cumulative phase change rate can be expressed as:
  • the terminal device reports the following information to the second network device: the second accumulated phase difference second cumulative phase difference second cumulative phase difference and the second cumulative phase difference These second accumulated phase differences are expressed by formulas below.
  • the second network device can determine the following second equivalent distance change based on the information reported by the above terminal device.
  • the second equivalent distance change amount The second equivalent distance change amount and the second equivalent distance change
  • the second equivalent distance change amount is the difference between ⁇ d 1 and ⁇ d 5
  • ⁇ d 5 is the difference between the distance of the terminal device to TRP1 at the second time t 10 and the third time t 20 .
  • the second equivalent distance change amount is the difference between ⁇ d 2 and ⁇ d 6
  • ⁇ d 6 is the difference between the distance of the terminal device to TRP2 at the second time t 10 and the third time t 20 .
  • the second equivalent distance change amount is the difference between ⁇ d 3 and ⁇ d 7
  • ⁇ d 7 is the difference between the distance of the terminal device to TRP3 at the second time t 10 and the third time t 20 .
  • the second equivalent distance change amount is the difference between ⁇ d 4 and ⁇ d 8
  • ⁇ d 8 is the difference between the distance of the terminal device to TRP4 at the second time t 10 and the third time t 20 .
  • the following combined formula represents the second equivalent distance change
  • the second equivalent distance change amount The second equivalent distance change amount and the second equivalent distance change
  • the second network device can calculate the positions of the terminal device at the first time t 1 , the second time t 10 and the third time t 20 by combining the above formulas 37 to 40. Specifically, the second network device can calculate the positions of the terminal device at the first moment, the second moment, and the third moment respectively through the following formula 41.
  • is the wavelength corresponding to the frequency point where the carrier signal carrying the TRP positioning reference signal is located.
  • the wavelength ⁇ corresponding to the frequency point where the carrier signal carrying the positioning reference signal of each TRP is located is used as an example for introduction.
  • the second network device can search the position of the terminal device at the first time (x1, y1), the position of the terminal device at the second time (x2, y2) and the position of the terminal device at the third time (x3 , y3).
  • the second network device substitutes the position (x1, y1) of the terminal device at the first time, the position (x2, y2) of the terminal device at the second time, and the position (x3, y3) of the terminal device at the third time. and Minimize the above equation 41. Therefore, (x1, y1, x2, y2, x3, y3) is (x' 1 ,y 1 ',x 2 ',y 2 ',x 3 ',y 3 ') in the above formula 28.
  • the second network device may position the terminal device based on the first accumulated phase difference between stations or the first accumulated phase difference rate between stations in combination with the positioning method shown in FIG. 9 .
  • This application is not specifically limited.
  • the second network device locates the terminal device based on at least one second cumulative phase difference provided by the terminal device.
  • This method utilizes the characteristic that the time drift error contained in the phase difference 3 changes linearly in time, and eliminates the influence of the time drift error in the form of difference through the phase difference 3.
  • Phase difference 3 can eliminate the initial radio frequency phase of the terminal device itself and the synchronization error between the terminal device and the TRP.
  • the second accumulated phase difference can further eliminate the influence of time drift error.
  • the second network device can achieve high-precision positioning of the terminal device based on at least one second cumulative phase difference or at least one second cumulative phase difference rate reported by the terminal device. There is no need to involve calibration terminal equipment, avoiding the difficulties caused by deployment.
  • the terminal device measures the positioning reference signal sent from at least one first network device to obtain at least one phase difference. Then, the terminal device sends first information to the second network device, where the first information includes at least one phase difference; or, the first information is determined based on at least one phase difference. It can be seen from this that the first information provided by the terminal device is determined in combination with at least one phase difference, which is beneficial to eliminating synchronization errors between the terminal device and the first network device and synchronization errors between different first network devices. It is beneficial for the second network device to accurately locate the terminal device based on the first information. For example, in a cellular communication system, the technical solution of this application can enable the second network device to accurately position the terminal device. This avoids the problem of reduced positioning accuracy caused by synchronization errors between the terminal device and the first network device and synchronization errors between different first network devices.
  • FIG. 12 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device may be used to perform the tasks performed by the terminal device in the embodiment shown in Figure 6
  • FIG. 12 please refer to the relevant introduction in the above method embodiment.
  • the communication device 1200 includes a transceiver module 1201 and a processing module 1202.
  • the transceiver module 1201 can implement corresponding communication functions, and the transceiver module 1201 can also be called a communication interface or a communication unit.
  • Processing module 1202 is used to perform processing operations.
  • the communication device 1200 may also include a storage module, which may be used to store instructions and/or data, and the processing module 1202 may read the instructions and/or data in the storage module, so that the communication device implements the preceding figure.
  • a storage module which may be used to store instructions and/or data
  • the processing module 1202 may read the instructions and/or data in the storage module, so that the communication device implements the preceding figure. The method embodiment shown in 6.
  • the communication device 1200 can be used to perform the actions performed by the terminal device in the above method embodiment.
  • the communication device 1200 may be a terminal device or a component that can be configured in the terminal device.
  • the transceiver module 1201 is configured to perform reception-related operations on the terminal device side in the above method embodiment, and the processing module 1202 is used to perform processing-related operations on the terminal device side in the above method embodiment.
  • the transceiver module 1201 may include a sending module and a receiving module.
  • the sending module is used to perform the sending operation of the terminal device in the method embodiment shown in Figure 6.
  • the receiving module is used to perform the receiving operation of the terminal device in the method embodiment shown in Figure 6.
  • the communication device 1200 may include a sending module but not a receiving module.
  • communication device 1200 may include a receiving module but not a transmitting module. Specifically, it may depend on whether the above solution executed by the communication device 1200 includes a sending action and a receiving action.
  • the communication device 1200 is used to perform the following solution:
  • the processing module 1202 is configured to measure the positioning reference signal sent from at least one first network device to obtain at least one phase difference;
  • the transceiver module 1201 is configured to send first information to the second network device, where the first information includes at least one phase difference; or the first information is determined based on the at least one phase difference.
  • At least one first network device includes a reference network device and at least one measurement network device; at least one phase difference includes at least one of the following:
  • phase difference between the phases obtained by the communication device 1200 measuring the positioning reference signal sent by the reference network device and the phase obtained by the communication device 1200 measuring at least one positioning reference signal sent by the measurement network device is not limited
  • the communication device 1200 measures the phase difference between the channel first path obtained by measuring the positioning reference signal sent by the reference network device and the phase of the channel first path obtained by the communication device 1200 measuring at least one positioning reference signal sent by the measurement network device; or,
  • the communication device 1200 measures the phase difference at the same frequency point between the frequency domain channel coefficient obtained by measuring the positioning reference signal sent by the reference network device and the frequency domain channel coefficient obtained by the communication device 1200 measuring at least one positioning reference signal sent by the measurement network device.
  • At least one first network device includes a first network device; at least one phase difference includes at least one of the following:
  • the communication device 1200 measures the phase difference between the phases obtained from the positioning reference signals sent by the first network device at different times; or,
  • the communication device 1200 measures the channel first path obtained by measuring the positioning reference signals sent by the first network device at different times.
  • the communication device 1200 measures the phase difference at the same frequency point of the frequency domain channel coefficients respectively obtained from the positioning reference signals sent by the first network device at different times.
  • At least one first network device includes a reference network device and at least one measurement network device; the first information includes at least one of the following: at least a first cumulative phase difference, or at least a first equivalent distance change;
  • the at least one first accumulated phase difference includes at least one of the following:
  • the communication device 1200 measures the cumulative amount of the phase difference in time at the same frequency point between the frequency domain channel coefficient obtained by measuring the positioning reference signal sent by the reference network device and at least one frequency domain channel coefficient obtained by measuring the positioning reference signal sent by the network device. ;
  • At least one first equivalent distance change includes a change in time of a distance difference between the distance between the communication device 1200 and the reference network device and the distance between the communication device 1200 and the at least one measurement network device respectively.
  • At least one first equivalent distance variation is determined based on at least one first accumulated phase difference.
  • At least one first network device includes a reference network device and at least one measurement network device; the first information includes at least one of the following: at least a first cumulative phase difference rate, or, at least a first Equivalent distance change rate;
  • At least one first accumulated phase difference rate includes at least one of the following:
  • the phase difference between the phase of the channel first path obtained by the communication device 1200 by measuring the positioning reference signal sent by the reference network device and the phase of the channel first path obtained by the communication device 1200 by measuring at least one positioning reference signal sent by the measurement network device is in unit time. the cumulative amount on; or,
  • the communication device 1200 measures the cumulative amount of the phase difference per unit time at the same frequency point between the positioning reference signal sent by the reference network device and the frequency domain channel coefficient obtained by at least one measurement network device.
  • At least one first equivalent distance change rate includes a change amount in unit time of a distance difference between the distance between the communication device 1200 and the reference network device and the distance between the communication device 1200 and the at least one measurement network device.
  • the at least one first equivalent distance change rate is determined based on at least one first cumulative phase difference rate.
  • At least one first network device includes a first network device
  • the first information includes at least one of the following: at least one second cumulative phase difference; or, at least one second equivalent distance change;
  • At least one second cumulative phase difference includes at least one of the following:
  • the communication device 1200 measures the cumulative amount of phase differences in time between the phases obtained from the positioning reference signals sent by the first network device at different times; or,
  • the communication device 1200 measures the cumulative amount of the phase difference in time between the phases of the channel first paths obtained from the positioning reference signals sent by the first network device at different times; or,
  • the communication device 1200 measures the cumulative amount of the phase difference in time at the same frequency point of the frequency domain channel coefficients obtained from the positioning reference signals sent by the first network device at different times;
  • At least one second equivalent distance change includes a change in time of a distance difference between the distances of the communication device 1200 to the first network device at different times.
  • At least one second equivalent distance variation is determined based on at least one second cumulative phase difference.
  • At least one first network device includes a first network device; the first information includes at least one of the following: at least one second cumulative phase difference rate, or at least one second equivalent distance change Rate;
  • At least one second cumulative phase difference rate includes at least one of the following:
  • the communication device 1200 measures the cumulative amount of the phase difference in unit time between the phases obtained from the positioning reference signals sent by the first network device at different times; or,
  • the communication device 1200 measures the cumulative amount of the phase difference in unit time between the phases of the channel first paths obtained from the positioning reference signals sent by the first network device at different times; or,
  • the communication device 1200 measures the cumulative amount of the phase difference per unit time of the frequency domain channel coefficients obtained from the positioning reference signals sent by the first network device at different times at the same frequency point;
  • At least one second equivalent distance change rate is a change in time of a distance difference between the distances of the communication device 1200 to the first network device at different times.
  • At least one second equivalent distance change rate is determined based on at least one second cumulative phase difference rate.
  • the communication device provided by the embodiment of the present application is described below. Please refer to Figure 13, which is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device may be used to perform the steps performed by the second network device in the embodiment shown in Figure 6.
  • Figure 13 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device may be used to perform the steps performed by the second network device in the embodiment shown in Figure 6.
  • the communication device 1300 includes a transceiver module 1301 and a processing module 1302.
  • the transceiver module 1301 can implement corresponding communication functions, and the transceiver module 1301 can also be called a communication interface or a communication unit.
  • Processing module 1302 is used to perform processing operations.
  • the communication device 1300 may also include a storage module, which may be used to store instructions and/or data, and the processing module 1302 may read the instructions and/or data in the storage module, so that the communication device implements the preceding figure.
  • a storage module which may be used to store instructions and/or data
  • the processing module 1302 may read the instructions and/or data in the storage module, so that the communication device implements the preceding figure. The method embodiment shown in 6.
  • the communication device 1300 may be used to perform the actions performed by the second network device in the above method embodiment.
  • the communication device 1300 may be a second network device or a component configurable in the second network device.
  • Transceiver module 1301 is used to perform To perform reception-related operations on the second network device side in the above method embodiment
  • the processing module 1302 is configured to perform processing-related operations on the second network device side in the above method embodiment.
  • the transceiver module 1301 may include a sending module and a receiving module.
  • the sending module is used to perform the sending operation of the second network device in the above method embodiment shown in Figure 6.
  • the receiving module is configured to perform the receiving operation of the second network device in the above method embodiment shown in Figure 6.
  • the communication device 1300 may include a sending module but not a receiving module.
  • communication device 1300 may include a receiving module but not a transmitting module. Specifically, it may depend on whether the above solution executed by the communication device 1300 includes a sending action and a receiving action.
  • the communication device 1300 can be used to perform the following solutions:
  • Transceiver module 1301 configured to receive first information from the terminal device.
  • the first information includes at least one phase difference, or the first information is determined based on the at least one phase difference.
  • the at least one phase difference is measured by the terminal device. Obtained from the positioning reference signal sent by the first network device;
  • the processing module 1302 is used to locate the terminal device according to the first information.
  • At least one first network device includes a reference network device and at least one measurement network device; at least one phase difference includes at least one of the following:
  • phase difference between the phases obtained by the terminal device by measuring the positioning reference signal sent by the reference network device and the phase obtained by the terminal device by measuring at least one positioning reference signal sent by the measurement network device is not limited
  • phase difference between the phase of the channel first path obtained by the terminal equipment by measuring the positioning reference signal sent by the reference network device and the phase of the channel first path obtained by the terminal equipment by measuring at least one positioning reference signal sent by the measurement network device or,
  • the phase difference at the same frequency point is between the frequency domain channel coefficient obtained by the terminal device by measuring the positioning reference signal sent by the reference network device and the frequency domain channel coefficient obtained by the terminal device by measuring at least one positioning reference signal sent by the measurement network device.
  • At least one first network device includes a first network device; at least one phase difference includes at least one of the following:
  • the terminal device measures the phase difference between the phases obtained from the positioning reference signals sent by the first network device at different times; or,
  • the terminal equipment measures the phase difference between the phases of the channel first paths obtained from the positioning reference signals sent by the first network equipment at different times; or,
  • the terminal device measures the phase difference at the same frequency point of the frequency domain channel coefficients respectively obtained from the positioning reference signals sent by the first network device at different times.
  • At least one first network device includes a reference network device and at least one measurement network device; the first information includes at least one of the following: at least a first cumulative phase difference, or at least a first equivalent distance change;
  • the at least one first accumulated phase difference includes at least one of the following:
  • the phase of the channel first path obtained by the terminal equipment by measuring the positioning reference signal sent by the reference network equipment is respectively related to the phase of the terminal equipment.
  • At least one first equivalent distance change includes a change in time of a distance difference between the distance between the terminal device and the reference network device and the distance between the terminal device and the at least one measurement network device respectively.
  • At least one first equivalent distance variation is determined based on at least one first accumulated phase difference.
  • At least one first network device includes a reference network device and at least one measurement network device; the first information includes at least one of the following: at least a first cumulative phase difference rate, or, at least a first Equivalent distance change rate;
  • At least one first accumulated phase difference rate includes at least one of the following:
  • phase difference in unit time between the phase of the channel first path obtained by the terminal equipment by measuring the positioning reference signal sent by the reference network device and the phase of the channel first path obtained by the terminal equipment by measuring at least one positioning reference signal sent by the measurement network device is measured
  • the terminal equipment measures the cumulative amount of the phase difference in unit time at the same frequency point between the positioning reference signal sent by the reference network device and the frequency domain channel coefficient obtained by at least one measurement network device sent by the positioning reference signal;
  • At least one first equivalent distance change rate includes a change amount in unit time of a distance difference between the distance between the terminal device and the reference network device and the distance between the terminal device and the at least one measurement network device.
  • the at least one first equivalent distance change rate is determined based on at least one first cumulative phase difference rate.
  • At least one first network device includes a first network device
  • the first information includes at least one of the following: at least one second cumulative phase difference; or, at least one second equivalent distance change;
  • At least one second cumulative phase difference includes at least one of the following:
  • the terminal device measures the accumulated amount of phase differences in time between the phases obtained by the positioning reference signals sent by the first network device at different times; or,
  • the terminal equipment measures the cumulative amount of the phase difference in time between the phases of the channel first path obtained by the positioning reference signal sent by the first network equipment at different times; or,
  • the terminal equipment measures the cumulative amount of the phase difference in time at the same frequency point of the frequency domain channel coefficients obtained from the positioning reference signals sent by the first network equipment at different times;
  • At least one second equivalent distance change includes a change in time of a distance difference between the terminal device and the first network device at different times.
  • At least one second equivalent distance variation is determined based on at least one second cumulative phase difference.
  • At least one first network device includes a first network device; the first information includes at least one of the following: at least one second cumulative phase difference rate, or at least one second equivalent distance change Rate;
  • At least one second cumulative phase difference rate includes at least one of the following:
  • the terminal device measures the cumulative amount of the phase difference in unit time between the phases obtained from the positioning reference signals sent by the first network device at different times; or,
  • the terminal equipment measures the cumulative amount of the phase difference per unit time between the phases of the channel first paths obtained by positioning reference signals sent by the first network equipment at different times; or,
  • the terminal equipment measures the cumulative amount of the phase difference per unit time of the frequency domain channel coefficients obtained from the positioning reference signals sent by the first network equipment at different times at the same frequency point;
  • At least one second equivalent distance change rate is a change in time of a distance difference between the distances of the terminal device to the first network device at different times.
  • At least one second equivalent distance change rate is determined based on at least one second cumulative phase difference rate.
  • processing module 1302 is specifically used to:
  • the terminal device is positioned according to the first information and at least one phase deviation.
  • the at least one phase deviation includes different first networks in at least one first network device obtained by calibrating the terminal device to measure the positioning reference signal sent by at least one first network device. Phase deviation between devices, at least one phase deviation is reported by the calibration terminal device.
  • the transceiver module 1301 is also used to:
  • the at least one phase deviation is received from the calibration terminal device.
  • processing module 1302 is specifically used to:
  • the terminal device is positioned according to the first information and at least one cumulative phase deviation.
  • the at least one cumulative phase deviation includes calibrating the different first network devices in the at least one first network device obtained by measuring the positioning reference signal sent by the at least one first network device. A cumulative amount of phase deviations between network devices over time. At least one accumulated phase deviation is reported by the calibration terminal device.
  • the transceiver module 1301 is also used to:
  • the at least one accumulated phase deviation is received from the calibration terminal device.
  • FIG. 14 A possible structural diagram of a terminal device is shown below in FIG. 14 .
  • Figure 14 shows a simplified structural diagram of a terminal device.
  • a mobile phone is used as an example of the terminal device.
  • the terminal equipment includes a processor, memory, radio frequency circuit, antenna and input and output device.
  • the processor is mainly used to process communication protocols and communication data, control terminal equipment, execute software programs, process data of software programs, etc.
  • Memory is mainly used to store software programs and data.
  • Radio frequency circuits are mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • terminal equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal out in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • FIG 14. For ease of illustration, only one memory and processor are shown in Figure 14. In an actual terminal device product, there may be one or more processors and one or more memories. Memory can also be called storage media or storage devices. The memory may be provided independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and the radio frequency circuit with the transceiver function can be regarded as the transceiver unit of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1410 and a processing unit 1420.
  • the transceiver unit may also be called a transceiver, a transceiver, a transceiver device, etc.
  • the processing unit can also be called a processor, a processing board, a processing module, a processing device, etc.
  • the devices used to implement the receiving function in the transceiving unit 1410 can be regarded as receiving units, and the devices used in the transceiving unit 1410 used to implement the transmitting function can be regarded as sending units. That is, the transceiving unit 1410 includes a receiving unit and a transmitting unit.
  • the transceiver unit may sometimes also be called a transceiver, transceiver, or transceiver circuit.
  • the receiving unit may also be called a receiver, receiver, or receiving circuit.
  • the sending unit may sometimes be called a transmitter, transmitter or transmitting circuit.
  • transceiving unit 1410 is used to perform sending operations and receiving operations on the terminal device in the above method embodiment
  • processing unit 1420 is used to perform other operations on the terminal device in addition to the sending and receiving operations in the above method embodiment.
  • the chip When the terminal device is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input-output circuit or a communication interface;
  • the processing unit may be a processor or microprocessor, integrated circuit or logic circuit integrated on the chip.
  • the present application also provides a communication device.
  • FIG. 15 is another schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device may be used to perform the steps performed by the second network device in the embodiment shown in Figure 6. Reference may be made to the relevant descriptions in the above method embodiments.
  • the communication device includes a processor 1501.
  • the communication device also includes a memory 1502 and a transceiver 1503.
  • the processor 1501, the memory 1502, and the transceiver 1503 are respectively connected through a bus, and computer instructions are stored in the memory.
  • the processing module 1302 in the foregoing embodiment may specifically be the processor 1501 in this embodiment, so the specific implementation of the processor 1501 will not be described again.
  • the transceiver module 1301 in the foregoing embodiment may specifically be the transceiver 1503 in this embodiment, so the specific implementation of the transceiver 1503 will not be described again.
  • An embodiment of the present application also provides a communication system, which includes a terminal device and a second network device.
  • the terminal device is used to perform all or part of the steps performed by the terminal device in the embodiment shown in FIG. 6 .
  • the second network device is configured to perform all or part of the steps performed by the second network device in the embodiment shown in FIG. 6 .
  • An embodiment of the present application also provides a computer program product including instructions that, when run on a computer, cause the computer to execute the communication method of the embodiment shown in FIG. 6 .
  • Embodiments of the present application also provide a computer-readable storage medium, which includes computer instructions.
  • the computer instructions When the computer instructions are run on a computer, they cause the computer to execute the method of the embodiment shown in FIG. 6 .
  • An embodiment of the present application also provides a chip device, including a processor, which is connected to a memory and calls a program stored in the memory, so that the processor executes the method of the embodiment shown in FIG. 6 .
  • the processor mentioned in any of the above places can be a general central processing unit, a microprocessor, an application-specific integrated circuit (ASIC), or one or more processors used to control the above-mentioned devices in Figure 6.
  • the method of the illustrated embodiment is program-executed on an integrated circuit.
  • the memory mentioned in any of the above places can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM), etc.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium and includes a number of instructions to A computer device (which may be a personal computer, a server, or a network device, etc.) is caused to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Abstract

本申请实施例公开了一种定位信息的确定方法、定位方法以及相关装置,用于提升定位精度。本申请实施例方法包括:终端设备测量来自至少一个第一网络设备发送的定位参考信号,得到至少一个相位差;所述终端设备向第二网络设备发送第一信息,所述第一信息包括所述至少一个相位差;或者,所述第一信息是根据所述至少一个相位差确定的。

Description

定位信息的确定方法、定位方法以及相关装置
本申请要求于2022年3月31日提交中国专利局,申请号为202210336233.3,发明名称为“定位信息的确定方法、定位方法以及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中,以及本申请要求于2023年3月3日提交中国专利局,申请号为PCT/CN2023/079525,发明名称为“定位信息的确定方法、定位方法以及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种定位信息的确定方法、定位方法以及相关装置。
背景技术
目前,基于相位的定位技术已经广泛应用于各种卫星系统(例如,北斗、全球定位系统(global positioning system,GPS))中,其定位精度可以达到厘米级。基于相位的定位技术的基本原理为:发送端设备发送载波信号。载波信号在经过一定的传播时延之后到达接收端设备。接收端设备接收到的该载波信号的相位与接收端设备自身本地的本振信号之间的相位差即称为该接收端设备测量到的该发送端设备的载波信号的相位。该相位包含收发端之间的传播时延的信息。因此,接收端设备基于相位解算算法可以计算出收发端之间的距离信息,并进一步进行定位解算以获得该发送端设备的位置。
上述技术方案是在卫星系统采用基于相位的定位技术进行定位的过程。然而,基于相位的定位技术如何应用于其他通信系统以提升定位精度是值得考虑的问题。例如,基于相位的定位技术如何应用于蜂窝通信系统。
发明内容
本申请提供了一种定位信息的确定方法、定位方法以及相关装置,用于提升定位精度。
本申请第一方面提供一种定位信息的确定方法,包括:
终端设备测量来自至少一个第一网络设备发送的定位参考信号,得到至少一个相位差。然后,终端设备向第二网络设备发送第一信息,第一信息包括至少一个相位差;或者第一信息是根据该至少一个相位差确定的。
上述技术方案中,终端设备测量来自至少一个第一网络设备发送的定位参考信号。例如,该至少一个第一网络设备包括一个第一网络设备,该第一网络设备在不同两个时刻发送至少两个定位参考信号。终端设备可以分别测量该至少两个定位参考信号得到两个相位之间的相位差。例如,该至少一个第一网络设备包括第一网络设备1和第一网络设备2。第一网络设备1发送定位参考信号1,第一网络设备2发送定位参考信号2。该至少一个相位差包括:终端设备测量第一网络设备1发送的定位参考信号1得到相位和终端设备测量第一网络设备2发送的定位参考信号2得到的相位之间的相位差。终端设备向第二网络设备发送第一信息。第一信息包括该至少一个相位差;或者,第一信息是根据该至少一个相位 差确定的。该第一信息用于第二网络设备对终端设备进行定位。第一信息可以理解为终端设备向第二网络设备提供的定位信息。由此可知,该至少一个相位差可以消除终端设备与该至少一个第一网络设备之间的同步误差以及不同第一网络设备之间的同步误差。有利于第二网络设备结合该第一信息对终端设备进行准确定位。例如,在蜂窝通信系统中,通过本申请的技术方案可以实现第二网络设备对终端设备进行精准定位。从而避免终端设备与该至少一个第一网络设备之间的同步误差以及不同第一网络设备之间的同步误差导致定位精度降低的问题。
本申请第二方面提供一种定位方法,包括:
第二网络设备接收来自终端设备的第一信息,第一信息包括至少一个相位差;或者,第一信息是根据至少一个相位差确定的;该至少一个相位差是终端设备测量该至少一个第一网络设备发送的定位参考信号得到的。然后,第二网络设备根据第一信息对终端设备进行定位。
上述技术方案中,第二网络设备接收来自终端设备的第一信息,第一信息包括至少一个相位差;或者,第一信息是根据至少一个相位差确定的。例如,该至少一个第一网络设备包括一个第一网络设备,该第一网络设备在两个不同时刻发送至少两个定位参考信号。终端设备可以分别测量该至少两个定位参考信号得到两个相位之间的相位差。例如,该至少一个第一网络设备包括第一网络设备1和第一网络设备2。第一网络设备1发送定位参考信号1,第一网络设备2发送定位参考信号2。该至少一个相位差包括:终端设备测量第一网络设备1发送的定位参考信号1得到相位和终端设备测量第一网络设备2发送的定位参考信号2得到的相位之间的相位差。第一信息包括至少一个相位差;或者,第一信息是根据至少一个相位差确定的。有利于消除终端设备与该一个或多个第一网络设备之间的同步误差以及不同第一网络设备之间的同步误差。实现第二网络设备结合该第一信息可以对终端设备进行准确定位。例如,在蜂窝通信系统中,通过本申请的技术方案可以实现第二网络设备对终端设备进行精准定位。从而避免终端设备与该至少一个第一网络设备之间的同步误差以及不同第一网络设备之间的同步误差导致定位精度降低的问题。
基于第一方面或第二方面,本申请第一种实施方式中,至少一个第一网络设备包括参考网络设备和至少一个测量网络设备;至少一个相位差包括以下至少一项:
终端设备测量参考网络设备发送的定位参考信号得到的相位分别与终端设备测量至少一个测量网络设备发送的定位参考信号得到的相位之间的相位差;或者,
终端设备测量参考网络设备发送的定位参考信号得到的信道首径的相位分别与终端设备测量至少一个测量网络设备发送的定位参考信号得到的信道首径的相位之间的相位差;或者,
终端设备测量参考网络设备发送的定位参考信号得到的频域信道系数和终端设备测量至少一个测量网络设备发送的定位参考信号得到的频域信道系数在同一个频点上的相位差。
在该实现方式中,上述提供了该至少一个相位差的具体形式。也就是通过相位差消除了终端设备自身的射频初相带来的误差以及终端设备与不同第一网络设备之间的同步误差。从而提高对终端设备的定位精度。例如,该至少一个第一网络设备包括参考网络设备和N 个测量网络设备。该至少一个相位差包括N个相位差1。N个相位差1中第i个相位差1是终端设备测量参考网络设备发送的定位参考信号得到的相位与终端设备测量第i个测量网络设备发送的定位参考信号得到的相位之间的相位差;或者,第i个相位差1是终端设备测量参考网络设备发送的定位参考信号得到的信道首径的相位与终端设备测量第i个测量网络设备发送的定位参考信号得到的相位之间的信道首径的相位差;或者,第i个相位差1是终端设备测量参考网络设备发送的定位参考信号得到的频域信道系数与终端设备测量第i个测量网络设备发送的定位参考信号得到的频域信道系数在同一频点上的相位差。例如,该至少一个第一网络设备包括参考网络设备和测量网络设备1,该至少一个相位差包括以下至少一项:该终端设备测量该参考网络设备发送的定位参考信号得到的相位与该终端设备测量该测量网络设备1发送的定位参考信号得到的相位之间的相位差。例如,该至少一个第一网络设备包括参考网络设备、测量网络设备1和测量网络设备2。该至少一个相位差包括:该终端设备测量该参考网络设备发送的定位参考信号得到的相位与该终端设备测量该测量网络设备1发送的定位参考信号得到的相位之间的相位差,和该终端设备测量该参考网络设备发送的定位参考信号得到的相位与该终端设备测量该测量网络设备2发送的定位参考信号得到的相位之间的相位差。
基于第一方面或第二方面,本申请第二种实施方式中,至少一个第一网络设备包括一个第一网络设备;至少一个相位差包括以下至少一项:
终端设备测量第一网络设备在不同时刻发送的定位参考信号得到的相位之间的相位差;或者,
终端设备测量第一网络设备在不同时刻发送的定位参考信号得到的信道首径的相位之间的相位差;或者,
终端设备测量第一网络设备在不同时刻发送的定位参考信号分别得到的频域信道系数在同一个频点上的相位差。
在该实现方式中,上述提供了该至少一个相位差的具体形式。例如,终端设备与第一网络设备之间在不同时刻的同步误差固定的场景中,终端设备通过上报相位差来消除终端设备自身的射频初相和终端设备与第一网络设备之间的同步误差。便于第二网络设备通过终端设备上报的相位差确定终端设备在不同时刻的位置。从而实现对终端设备的高精度定位。例如,该至少一个相位差包括P个相位差3。P个相位差3中第a个相位差3是终端设备测量第一网络设备在第a时刻发送的定位参考信号得到的相位与终端设备测量第一网络设备在第a+1时刻发送的定位参考信号得到的相位之间的相位差。或者,第a个相位差3是终端设备测量第一网络设备在第a时刻发送的定位参考信号得到的信道首径的相位与终端设备测量第一网络设备在第a+1时刻发送的定位参考信号得到的信道首径的相位之间的相位差。或者,第a个相位差3是终端设备测量第一网络设备在第a时刻发送的定位参考信号得到的频域信道系数与终端设备测量第一网络设备在第a+1时刻发送的定位参考信号得到的频域信道系数在同一频点上的相位差。
基于第一方面或第二方面,本申请第三种实施方式中,至少一个第一网络设备包括参考网络设备和至少一个测量网络设备;第一信息包括以下至少一项:至少一个第一累积相 位差、或至少一个第一等效距离变化量;
该至少一个第一累积相位差包括以下至少一项:
终端设备测量参考网络设备发送的定位参考信号得到的相位分别与终端设备测量至少一个测量网络设备发送的定位参考信号得到的相位之间的相位差在时间上的累积量;或者,
终端设备测量参考网络设备发送的定位参考信号得到的信道首径的相位分别与终端设备测量至少一个测量网络设备发送的定位参考信号得到的信道首径的相位之间的相位差在时间上的累积量;或者,
终端设备测量参考网络设备发送的定位参考信号得到的频域信道系数和至少一个测量网络设备发送的定位参考信号得到的频域信道系数在同一个频点上的相位差在时间上的累积量;
至少一个第一等效距离变化量包括终端设备与参考网络设备的距离分别和终端设备与至少一个测量网络设备的距离之间的距离差在时间上的变化量。
在该实施方式中,终端设备向第二网络设备上报以下至少一项:至少一个第一累积相位差,或,至少一个第一等效距离变化量。从而能够消除终端设备自身的射频初相和终端设备与多个第一网络设备之间的同步误差等误差影响之外,还能够消除由于各个第一网络设备在时间上的线性漂移导致的累积相位偏差。然后,第二网络设备结合终端设备上报的第一信息对终端设备进行定位。实现对不同第一网络设备之间的同步误差的补偿,从而实现对终端设备的高精度定位。
例如,该至少一个第一网络设备包括参考网络设备和N个测量网络设备;该至少一个第一累积相位差包括N个第一累积相位差。N个第一累积相位差中第i个第一累积相位差是N个相位差1中的第i个相位差1与N个相位差2中的第i个相位差2之间的差。N个相位差1中第i个相位差1是终端设备测量该N个测量网络设备中第i个测量网络设备在第一时刻的定位参考信号得到的相位与终端设备测量参考网络设备在第一时刻发送的定位参考信号得到的相位之间的相位差;或者,N个相位差1中第i个相位差1是终端设备测量该N个测量网络设备中第i个测量网络设备在第一时刻的定位参考信号得到的信道首径的相位与终端设备测量参考网络设备在第一时刻发送的定位参考信号得到的信道首径的相位之间的相位差;或者,N个相位差1中第i个相位差1是终端设备测量该N个测量网络设备中第i个测量网络设备在第一时刻的定位参考信号得到的频域信道系数与终端设备测量参考网络设备在第一时刻发送的定位参考信号得到的频域信道系数在同一频点上的相位差。N个相位差2中第i个相位差2是终端设备测量该N个测量网络设备中第i个测量网络设备在第二时刻发送的定位参考信号得到的相位与终端设备测量参考网络设备在第二时刻发送的定位参考信号得到的相位之间的相位差。或者,N个相位差2中第i个相位差2是终端设备测量该N个测量网络设备中第i个测量网络设备在第二时刻的定位参考信号得到的信道首径的相位与终端设备测量参考网络设备在第二时刻发送的定位参考信号得到的信道首径的相位之间的相位差。或者,N个相位差2中第i个相位差2是终端设备测量该N个测量网络设备中第i个测量网络设备在第二时刻的定位参考信号得到的频域信道系数与终端设备测量参考网络设备在第二时刻发送的定位参考信号得到的频域信道系数在同一频 点上的相位差。N个为大于或等于1的整数,i为大于或等于1的整数且小于或等于N的整数。
例如,该至少一个第一等效距离变化量包括N个第一等效距离变化量,该N个第一等效距离变化量中第i个第一等效距离变化量是终端设备在第一时刻t1与参考网络设备和第i个测量网络设备之间的距离差与该终端设备在第二时刻t10与参考网络设备和第i个测量网络设备之间的距离差之间的差。N个为大于或等于1的整数,i为大于或等于1的整数。
基于本申请第三种实施方式,本申请第四种实施方式中,至少一个第一等效距离变化量是根据至少一个第一累积相位差确定的。
在该实现方式中,该至少一个第一等效距离变化量可以结合该至少一个第一累积相位差确定。例如,终端设备根据至少一个相位差确定该至少一个第一累积相位差。然后,终端设备通过该至少一个第一累积相位差和该至少一个第一网络设备发送定位参考信号采用的波长确定该至少一个第一等效距离变化量。
基于第一方面或第二方面,本申请第五种实施方式中,至少一个第一网络设备包括参考网络设备和至少一个测量网络设备;第一信息包括以下至少一项:至少一个第一累积相位差速率,或者,至少一个第一等效距离变化率;
至少一个第一累积相位差速率包括以下至少一项:
终端设备测量参考网络设备发送的定位参考信号得到的相位分别与终端设备测量至少一个测量网络设备发送的定位参考信号得到的相位之间的相位差在单位时间上的累积量;或者,
终端设备测量参考网络设备发送的定位参考信号得到的信道首径的相位分别与终端设备测量至少一个测量网络设备发送的定位参考信号得到的信道首径的相位之间的相位差在单位时间上的累积量;或者,
终端设备测量参考网络设备发送的定位参考信号和至少一个测量网络设备发送的定位参考信号得到的频域信道系数在同一个频点的相位差在单位时间上的累积量;
至少一个第一等效距离变化率包括终端设备与参考网络设备的距离和终端设备与至少一个测量网络设备的距离之间的距离差在单位时间上的变化量。
在该实施方式中,终端设备向第二网络设备上报以下至少一项:至少一个第一累积相位差速率,或至少一个第一等效距离变化率。能够消除终端设备自身的射频初相和终端设备与多个第一网络设备之间的同步误差等误差影响之外,还能够消除由于各个第一网络设备在时间上的线性漂移导致的累积相位偏差。然后,第二网络设备结合终端设备上报的第一信息对终端设备进行定位。实现对不同第一网络设备之间的同步误差的补偿,从而实现对终端设备的高精度定位。
例如,该至少一个第一累积相位差速率包括N个第一累积相位差速率。N个第一累积相位差速率等于N个第一累积相位差中第i个第一累积相位差除以该第一时刻t1至第二时刻t10之间的时间间隔。该第i个第一累积相位差速率表示该终端设备测量参考网络设备发送的定位参考信号得到的相位与终端设备测量第i个测量网络设备发送的定位参考信号得到的相位之间的相位差在单位时间上的累积量。或者,该第i个第一累积相位差速率表示 该终端设备测量参考网络设备发送的定位参考信号得到的信道首径的相位与终端设备测量第i个测量网络设备发送的定位参考信号得到的信道首径的相位之间的相位差在单位时间上的累积量。或者,第i个第一累积相位差速率表示该终端设备测量参考网络设备发送的定位参考信号得到的频域信道系数与终端设备测量第i个测量网络设备发送的定位参考信号得到的频域信道系数在同一频点上的相位差在单位时间上的累积量。
例如,该至少一个第一等效距离变化率包括N个第一等效距离变化率。该N个第一等效距离变化率中第i个第一等效距离变化率等于N个第一等效距离变化量中第i个第一等效距离变化量除以该第一时刻t1至第二时刻t10之间的时间间隔。
基于本申请第五种实施方式,本申请第六种实施方式中,该至少一个第一等效距离变化率是根据至少一个第一累积相位差速率确定的。
在该实现方式中,该至少一个第一等效距离变化率可以结合该至少一个第一累积相位差速率确定。例如,终端设备根据至少一个相位差确定该至少一个第一累积相位差速率。然后,终端设备通过该至少一个第一累积相位差速率和该至少一个第一网络设备发送定位参考信号采用的波长确定该至少一个第一等效距离变化量。
基于第一方面或第二方面,本申请第七种实施方式中,至少一个第一网络设备包括一个第一网络设备;
第一信息包括以下至少一项:至少一个第二累积相位差;或者,包括至少一个第二等效距离变化量;
至少一个第二累积相位差包括以下至少一项:
终端设备测量第一网络设备在不同时刻发送的定位参考信号得到的相位之间的相位差在时间上的累积量;或者,
终端设备测量第一网络设备在不同时刻发送的定位参考信号得到的信道首径的相位之间的相位差在时间上的累积量;或者,
终端设备测量第一网络设备在不同时刻发送的定位参考信号分别得到的频域信道系数在同一频点上的相位差在时间上的累积量;
至少一个第二等效距离变化量包括终端设备在不同时刻到第一网络设备的距离之间的距离差在时间上的变化量。
在该实施方式中,终端设备向第二网络设备上报以下至少一项:至少一个第二累积相位差;或者,至少一个第二等效距离变化量。该方法利用相位差中包含的时间漂移误差在时间上是线性变化的特性,通过相位差进行差分的形式消除时间漂移误差的影响。相位差可以消除终端设备自身的射频初相和终端设备与第一网络设备之间的同步误差。而第二累积相位差可以进一步消除时间漂移误差的影响。第二网络设备基于终端设备上报的至少一个第二累积相位差,或至少一个第二等效距离变化量可以实现对终端设备高精度定位。
例如,该至少一个第一网络设备包括一个第一网络设备,该至少一个相位差包括P个相位差3。关于P个相位差3请参阅前文的相关介绍。该至少一个第二累积相位差包括M个第二累积相位差。M个第二累积相位差中第a个第二累积相位差为P个相位差3中第a个相位差3与P个相位差3中第a+1个相位差3之间的差。其中,M为大于或等于1的整 数,a为大于或等于1的整数。第a个相位差3为终端设备测量第一网络设备在第a时刻发送的定位参考信号得到的相位与终端设备测量第一网络设备在第a+1时刻发送的定位参考信号得到的相位之间的相位差。第a+1个相位差3为终端设备测量第一网络设备在第a+1时刻发送的定位参考信号得到的相位与终端设备测量第一网络设备在第a+2时刻发送的定位参考信号得到的相位之间的相位差。
基于本申请第七种实施方式,本申请第八种实施方式中,至少一个第二等效距离变化量是根据至少一个第二累积相位差确定的。
在该实现方式中,该至少一个第二等效距离变化量可以结合该至少一个第二累积相位差确定。例如,终端设备根据至少一个相位差确定该至少一个第二累积相位差。然后,终端设备通过该至少一个第二累积相位差和该至少一个第一网络设备发送定位参考信号采用的波长确定该至少一个第二等效距离变化量。
基于第一方面或第二方面,本申请第九种实施方式中,至少一个第一网络设备包括一个第一网络设备;第一信息包括以下至少一项:至少一个第二累积相位差速率,或者,至少一个第二等效距离变化率;
至少一个第二累积相位差速率包括以下至少一项:
终端设备测量第一网络设备在不同时刻发送的定位参考信号得到的相位之间的相位差在单位时间内的累积量;或者,
终端设备测量第一网络设备在不同时刻发送的定位参考信号得到的信道首径的相位之间的相位差在单位时间上的累积量;或者,
终端设备测量第一网络设备在不同时刻发送的定位参考信号分别得到的频域信道系数在同一频点上的相位差在单位时间上的累积量;
至少一个第二等效距离变化率为终端设备在不同时刻到所述第一网络设备的距离之间的距离差在单位时间上的变化量。
在该实施方式中,终端设备向第二网络设备上报以下至少一项:至少一个第二累积相位差速率,或者,至少一个第二等效距离变化率。该方法利用相位差中包含的时间漂移误差在时间上是线性变化的特性,通过相位差进行差分的形式消除时间漂移误差的影响。相位差可以消除终端设备自身的射频初相和终端设备与第一网络设备之间的同步误差。而第二累积相位差速率可以进一步消除时间漂移误差的影响。第二网络设备基于终端设备上报的至少一个第二累积相位差速率或至少一个第二等效距离变化率可以实现对终端设备高精度定位。
例如,该至少一个第二累积相位差速率包括M个第二累积相位差速率。M个第二累积相位差速率等于M个第二累积相位差中第a个第二累积相位差除以时刻ta至时刻ta+2之间的时间间隔。
例如,该至少一个第二等效距离变化率包括M个第二等效距离变化率。该M个第二等效距离变化率中第a个第二等效距离变化率等于M个第二等效距离变化量除以时刻ta至时刻ta+2之间的时间间隔。
基于本申请第九种实施方式,本申请第十种实施方式中,至少一个第二等效距离变化 率是根据至少一个第二累积相位差速率确定的。
在该实现方式中,该至少一个第二等效距离变化率可以结合该至少一个第二累积相位差速率确定。例如,终端设备根据至少一个相位差确定该至少一个第二累积相位差速率。然后,终端设备通过该至少一个第二累积相位差速率和该至少一个第一网络设备发送定位参考信号采用的波长确定该至少一个第二等效距离变化率。
基于本申请第二方面、本申请第一种实施方式至本申请第十种实施方式中任一种,本申请第十一种实施方式中,第二网络设备根据第一信息终端设备进行定位,包括:
第二网络设备根据第一信息和至少一个相位偏差对所述终端设备进行定位,至少一个相位偏差包括校准终端设备测量至少一个第一网络设备发送的定位参考信号得到的至少一个第一网络设备中不同第一网络设备之间的相位偏差,至少一个相位偏差是校准终端设备上报的。
在该实现方式中,第二网络设备还可以进一步结合该至少一个相位偏差对终端设备进行定位。该至少一个相位偏差用于消除终端设备自身的射频初相和终端设备与多个第一网络设备之间的同步误差等误差影响。实现第二网络设备对第一网络设备之间的同步误差的补偿。从而实现对终端设备的高精度定位。
基于第十一种实施方式,本申请第十二种实施方式中,方法还包括:第二网络设备接收来自校准终端设备的该至少一个相位偏差。
基于本申请第二方面、本申请第一种实施方式至本申请第十种实施方式中任一种,本申请第十三种实施方式中,第二网络设备根据第一信息对终端设备进行定位,包括:
第二网络设备根据第一信息和至少一个累积相位偏差对所述终端设备进行定位,至少一个累积相位偏差包括校准终端设备测量至少一个第一网络设备发送的定位参考信号得到的至少一个第一网络设备中不同第一网络设备之间的相位偏差在时间上的累积量,至少一个累积相位偏差是校准终端设备上报的。
在该实现方式中,第二网络设备还可以进一步结合至少一个累积相位偏差对终端设备进行定位。从而消除终端设备自身的射频初相和终端设备与多个第一网络设备之间的同步误差等误差影响之外,还能够消除由于各个第一网络设备在时间上的线性漂移导致的累积相位偏差。然后,第二网络设备结合终端设备上报的第一信息和该至少一个累积相位偏差对终端设备进行定位。实现对不同第一网络设备之间的同步误差的补偿,从而实现对终端设备的高精度定位。
基于第十三种实施方式,本申请第十四种实施方式中,方法还包括:第二网络设备接收来自校准终端设备的该至少一个累积相位偏差。
本申请第三方面提供一种终端设备,包括:
处理模块,用于测量来自至少一个第一网络设备发送的定位参考信号,得到至少一个相位差;
收发模块,用于向第二网络设备发送第一信息,第一信息包括该至少一个相位差;或者,第一信息是根据该至少一个相位差确定的。
本申请第四方面提供一种第二网络设备,包括:
收发模块,用于接收来自终端设备的第一信息,第一信息包括至少一个相位差;或者,第一信息是根据至少一个相位差确定的;该至少一个相位差是终端设备测量至少一个第一网络设备发送的定位参考信号得到的;
处理模块,用于根据第一信息对终端设备进行定位。
基于第三方面或第四方面,本申请第一种实施方式中,至少一个第一网络设备包括参考网络设备和至少一个测量网络设备;至少一个相位差包括以下至少一项:
终端设备测量参考网络设备发送的定位参考信号得到的相位分别与终端设备测量至少一个测量网络设备发送的定位参考信号得到的相位之间的相位差;或者,
终端设备测量参考网络设备发送的定位参考信号得到的信道首径的相位分别与终端设备测量至少一个测量网络设备发送的定位参考信号得到的信道首径的相位之间的相位差;或者,
终端设备测量参考网络设备发送的定位参考信号得到的频域信道系数和终端设备测量至少一个测量网络设备发送的定位参考信号得到的频域信道系数在同一个频点上的相位差。
基于第三方面或第四方面,本申请第二种实施方式中,至少一个第一网络设备包括一个第一网络设备;至少一个相位差包括以下至少一项:
终端设备测量第一网络设备在不同时刻发送的定位参考信号得到的相位之间的相位差;或者,
终端设备测量第一网络设备在不同时刻发送的定位参考信号得到的信道首径的相位之间的相位差;或者,
终端设备测量第一网络设备在不同时刻发送的定位参考信号分别得到的频域信道系数在同一个频点上的相位差。
基于第三方面或第四方面,本申请第三种实施方式中,至少一个第一网络设备包括参考网络设备和至少一个测量网络设备;第一信息包括以下至少一项:至少一个第一累积相位差、或至少一个第一等效距离变化量;
该至少一个第一累积相位差包括以下至少一项:
终端设备测量参考网络设备发送的定位参考信号得到的相位分别与终端设备测量至少一个测量网络设备发送的定位参考信号得到的相位之间的相位差在时间上的累积量;或者,
终端设备测量参考网络设备发送的定位参考信号得到的信道首径的相位分别与终端设备测量至少一个测量网络设备发送的定位参考信号得到的信道首径的相位之间的相位差在时间上的累积量;或者,
终端设备测量参考网络设备发送的定位参考信号得到的频域信道系数和至少一个测量网络设备发送的定位参考信号得到的频域信道系数在同一个频点上的相位差在时间上的累积量;
至少一个第一等效距离变化量包括终端设备与参考网络设备的距离分别和终端设备与至少一个测量网络设备的距离之间的距离差在时间上的变化量。
基于本申请第三种实施方式,本申请第四种实施方式中,至少一个第一等效距离变化量是根据至少一个第一累积相位差确定的。
基于第三方面或第四方面,本申请第五种实施方式中,至少一个第一网络设备包括参考网络设备和至少一个测量网络设备;第一信息包括以下至少一项:至少一个第一累积相位差速率,或者,至少一个第一等效距离变化率;
至少一个第一累积相位差速率包括以下至少一项:
终端设备测量参考网络设备发送的定位参考信号得到的相位分别与终端设备测量至少一个测量网络设备发送的定位参考信号得到的相位之间的相位差在单位时间上的累积量;或者,
终端设备测量参考网络设备发送的定位参考信号得到的信道首径的相位分别与终端设备测量至少一个测量网络设备发送的定位参考信号得到的信道首径的相位之间的相位差在单位时间上的累积量;或者,
终端设备测量参考网络设备发送的定位参考信号和至少一个测量网络设备发送的定位参考信号得到的频域信道系数在同一个频点的相位差在单位时间上的累积量;
至少一个第一等效距离变化率包括终端设备与参考网络设备的距离和终端设备与至少一个测量网络设备的距离之间的距离差在单位时间上的变化量。
基于本申请第五种实施方式,本申请第六种实施方式中,该至少一个第一等效距离变化率是根据至少一个第一累积相位差速率确定的。
基于第三方面或第四方面,本申请第七种实施方式中,至少一个第一网络设备包括一个第一网络设备;
第一信息包括以下至少一项:至少一个第二累积相位差;或者,包括至少一个第二等效距离变化量;
至少一个第二累积相位差包括以下至少一项:
终端设备测量第一网络设备在不同时刻发送的定位参考信号得到的相位之间的相位差在时间上的累积量;或者,
终端设备测量第一网络设备在不同时刻发送的定位参考信号得到的信道首径的相位之间的相位差在时间上的累积量;或者,
终端设备测量第一网络设备在不同时刻发送的定位参考信号分别得到的频域信道系数在同一频点上的相位差在时间上的累积量;
至少一个第二等效距离变化量包括终端设备在不同时刻到第一网络设备的距离之间的距离差在时间上的变化量。
基于本申请第七种实施方式,本申请第八种实施方式中,至少一个第二等效距离变化量是根据至少一个第二累积相位差确定的。
基于第三方面或第四方面,本申请第九种实施方式中,至少一个第一网络设备包括一个第一网络设备;第一信息包括以下至少一项:至少一个第二累积相位差速率,或者,至少一个第二等效距离变化率;
至少一个第二累积相位差速率包括以下至少一项:
终端设备测量第一网络设备在不同时刻发送的定位参考信号得到的相位之间的相位差在单位时间内的累积量;或者,
终端设备测量第一网络设备在不同时刻发送的定位参考信号得到的信道首径的相位之间的相位差在单位时间上的累积量;或者,
终端设备测量第一网络设备在不同时刻发送的定位参考信号分别得到的频域信道系数在同一频点上的相位差在单位时间上的累积量;
至少一个第二等效距离变化率为终端设备在不同时刻到所述第一网络设备的距离之间的距离差在单位时间上的变化量。
基于本申请第九种实施方式,本申请第十种实施方式中,至少一个第二等效距离变化率是根据至少一个第二累积相位差速率确定的。
基于本申请第四方面、本申请第一种实施方式至本申请第十种实施方式中任一种,本申请第十一种实施方式中,处理模块具体用于:
根据第一信息和至少一个相位偏差对所述终端设备进行定位,至少一个相位偏差包括校准终端设备测量至少一个第一网络设备发送的定位参考信号得到的至少一个第一网络设备中不同第一网络设备之间的相位偏差,至少一个相位偏差是校准终端设备上报的。
基于第十一种实施方式,本申请第十二种实施方式中,收发模块还用于:
接收来自校准终端设备的该至少一个相位偏差。
基于本申请第四方面、本申请第一种实施方式至本申请第十种实施方式中任一种,本申请第十三种实施方式中,处理模块具体用于:
根据第一信息和至少一个累积相位偏差对所述终端设备进行定位,至少一个累积相位偏差包括校准终端设备测量至少一个第一网络设备发送的定位参考信号得到的至少一个第一网络设备中不同第一网络设备之间的相位偏差在时间上的累积量,至少一个累积相位偏差是校准终端设备上报的。
基于第十三种实施方式,本申请第十四种实施方式中,收发模块还用于:
接收来自校准终端设备的该至少一个累积相位偏差。
本申请第五方面提供一种通信装置,通信装置包括处理器。该处理器用于调用并运行存储器中存储的计算机程序,使得处理器实现如第一方面至第二方面中任一方面中的任意一种实现方式。
可选的,该通信装置还包括收发器;该处理器还用于控制该收发器收发信号。
可选的,该通信装置包括存储器,该存储器中存储有计算机程序。
本申请第六方面提供一种包括指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得该计算机执行如第一方面至第二方面中任一种的实现方式。
本申请第七方面提供一种计算机可读存储介质,包括计算机指令,当该计算机指令在计算机上运行时,使得计算机执行如第一方面至第二方面中的任一种实现方式。
本申请第八方面提供一种芯片装置,包括处理器,用于与存储器相连,调用该存储器中存储的程序,以使得该处理器执行上述第一方面至第二方面中的任一种实现方式。
本申请第九方面提供一种通信系统,该通信系统包括如第三方面的终端设备和如第四方面的第二网络设备。
从以上技术方案可以看出,本申请实施例具有以下优点:
经由上述技术方案中,终端设备测量来自至少一个第一网络设备发送的定位参考信号,得到至少一个相位差。然后,终端设备向第二网络设备发送第一信息,第一信息包括该至少一个相位差;或者,第一信息是根据该至少一个相位差确定的。该至少一个相位差能够消除终端设备与该第一网络设备之间的同步误差以及不同第一网络设备之间的同步误差。有利于第二网络设备结合该第一信息对终端设备进行精准定位。例如,在蜂窝通信系统中,通过本申请的技术方案可以实现第二网络设备对终端设备进行精准定位。从而避免终端设备与第一网络设备之间的同步误差以及不同第一网络设备之间的同步误差导致定位精度降低的问题。
附图说明
图1为本申请实施例通信系统的一个示意图;
图2为本申请实施例通信系统的另一个示意图;
图3为本申请实施例通信系统的另一个示意图;
图4A为本申请实施例定位参考信号的一个发送和接收示意图;
图4B为本申请实施例终端设备测量第一网络设备发送的定位参考信号得到的相位的一个原理示意图;
图4C为本申请实施例终端设备通过终端设备与第一网络设备之间的信道得到终端设备与第一网络设备之间的传输路径的一个示意图;
图4D为本申请实施例终端设备与基站之间的传输路径的一个示意图;
图5为本申请实施例基于相位的定位技术对终端设备进行定位的一个场景示意图;
图6为本申请实施例定位信息的确定方法以及定位方法的一个实施例示意图;
图7为本申请实施例基于相位的定位技术对终端设备进行定位的另一个场景示意图;
图8为本申请实施例基于相位的定位技术对终端设备进行定位的另一个场景示意图;
图9为本申请实施例基于相位的定位技术对终端设备进行定位的另一个场景示意图;
图10为本申请实施例基于相位的定位技术对终端设备进行定位的另一个场景示意图;
图11为本申请实施例终端设备测量定位参考信号的时刻示意图;
图12为本申请实施例通信装置的一个结构示意图;
图13为本申请实施例通信装置的另一个结构示意图;
图14为本申请实施例终端设备的一个结构示意图;
图15为本申请实施例通信装置的另一个结构示意图。
具体实施方式
本申请实施例提供了一种定位信息的确定方法、定位方法以及相关装置,用于提升定位精度。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例, 都属于本申请保护的范围。
在本申请中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c;a和b;a和c;b和c;或a和b和c。其中a,b,c可以是单个,也可以是多个。
本申请的技术方案可以应用于各种通信系统。例如,第五代移动通信(5th generation,5G)系统、新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、5G网络之后的移动通信系统(例如,6G移动通信系统)、车联网(vehicle to everything,V2X)通信系统、设备到设备(device to device,D2D)通信系统等。
下面结合图1至图3介绍本申请适用的一些场景。
图1为本申请实施例通信系统的一个示意图。请参阅图1,通信系统包括终端设备101、接入网设备102、接入与移动性管理功能(access and mobility management function,AMF)103和定位管理功能(location management function,LMF)104。
可选的,终端设备101通过接口与接入网设备102连接,接入网设备与AMF103通过接口连接,AMF104通过接口与LMF104连接。LMF104用于对终端设备101的位置进行定位计算和管理。例如,终端设备101通过新空口通用陆地无线接入网与用户设备直接的无线接口(new radio the radio interface between universal terrestrial radio access network and the user equipment,NR-Uu)接口与接入网设备103连接,接入网设备102与AMF103之间通过下一代控制面板(next generation control plane,NG-C)接口连接。AMF103与LMF104之间通过NL1接口连接。NL1接口是在LMF104与AMF103之间,用作LTE定位协议(LTE positioning protocol,LPP)和NR定位协议(NR positioning protocol annex,NRPPa)的传输链路。终端设备101、接入网设备102和LMF104之间执行本申请的技术方案,实现LMF104对终端设备101的定位。
上述图1仅仅示出了该通信系统包括接入网设备102的示例。而实际应用中,该通信系统还可以包括更多接入网设备。终端设备101、多个接入网设备和LMF104之间执行本申请的技术方案,实现LMF104对终端设备101的定位,具体本申请不做限定。
上述图1所示的通信系统中,LMF为目前通信系统中的名称,在未来通信系统中,该LMF的名称可能随着通信系统的演进而改变,本申请对LMF的名称不做限定。例如,该LMF可以称为定位管理设备,该定位管理设备用于对终端设备的位置进行定位计算。在目前通信系统或未来通信系统中,只要具备与该LMF类似功能的其他名称的功能网元,都可以理解本申请实施例中的定位管理设备,并且适用于本申请实施例提供的通信方法。
图2为本申请实施例通信系统的另一个示意图。请参阅图2,通信系统包括终端设备201、路边单元(roadside unit,RSU)202、RSU203以及RSU204。该终端设备201、RSU202至RSU204位于接入网设备的信号覆盖范围之外。如图2中,终端设备201与RSU之间通过邻近通信5(prose communication 5,PC5)接口进行通信。终端设备201与RSU之间通过本申请的技术方案可以实现对终端设备201的定位。
需要说明的是,上述图2所示的通信系统中,RSU的形态仅仅是一种示例,具体不属于对本申请中RSU的限定。RSU是一种部署在路边的路边单元,支持侧行链路通信和定位相关协议,能够为终端设备提供无线通信功能。RSU可以是各种形式的路边站点、接入点、接入基站,侧行链路设备。对于接入网设备来说,RSU是一种终端设备。对于终端设备来说,RSU可以充当接入网设备。也就是说RSU既可以是终端设备,也可以是接入网设备,具体本申请不做限定。
上述示出的本申请适用的通信系统仅仅是一些示例,实际应用中,本申请还可以适用其他有定位需求的通信系统,具体本申请不做限定。上述示例并不属于对本申请的技术方案的限定。
图3为本申请实施例通信系统的另一个示意图。请参阅图3,通信系统包括终端设备301和接入网设备302。
可选的,终端设备301通过接口与接入网设备302连接。例如,终端设备301通过NR-Uu接口与接入网设备302连接。终端设备301与接入网设备302之间执行本申请的技术方案,从而实现接入网设备302对终端设备301的定位。
上述图3仅仅示出了该通信系统包括接入网设备302的示例。而实际应用中,该通信系统还可以包括更多接入网设备。终端设备101与多个接入网设备之间执行本申请的技术方案,实现接入网设备对终端设备301的定位,具体本申请不做限定。
下面介绍本申请涉及的终端设备和接入网设备进行说明。
终端设备可以是能够接收网络设备调度和指示信息的无线终端设备。无线终端设备可以是指向用户提供语音和/或数据连通性的设备,或具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。
终端设备,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是包括无线通信功能(向用户提供语音/数据连通性)的设备,例如,具有无线连接功能的手持式设备、或车载设备等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工厂机器人、工业园中的定位设备、工业控制 (industrial control)中的无线终端、车联网中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、或智慧家庭(smart home)中的无线终端等。例如,车联网中的无线终端可以为车载设备、整车设备、车载模块、车辆等。工业控制中的无线终端可以为摄像头、机器人等。
网络设备可以无线网络中的设备。例如,网络设备是部署在无线接入网中为终端设备提供无线通信功能的设备。例如,网络设备可以为将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点,又可以称为接入网设备。
网络设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)等,还可以为5G移动通信系统中的网络设备。例如,新空口(new radio,NR)系统中的下一代基站(next generation NodeB,gNB),传输接收点(transmission reception point,TRP),传输点(transmission point,TP);或者,5G移动通信系统中的基站的一个或一组(包括多个天线面板)天线面板;或者,网络设备还可以为构成gNB或传输点的网络节点。例如,基带单元(baseband unit,BBU),或,分布式单元(distributed unit,DU)等。上述示出的网络设备的一些可能的具体形态,上述示出的网络设备是收发节点,该收发节点也可以称为发送接收点(transmission and reception point,TRP)。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来。因此在该架构下,高层信令(如RRC层信令)也可以认为是由DU发送的,或者,由DU和AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一个或多个的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
本申请适用的通信系统包括终端设备、一个或多个第一网络设备和第二网络设备。下面介绍第一网络设备和第二网络设备的一些可能的实现方式。
1、第一网络设备为接入网设备,第二网络设备为定位管理设备。
2、第一网络设备和第二网络设备都为接入网设备。
在该实现方式下,第二网络设备可以为该一个或多个第一网络设备中的其中一个网络设备。也就是由其中一个网络设备对终端设备进行定位。
3、第一网络设备为RSU,第二网络设备为定位管理设备。
本申请中,下面结合图4A介绍终端设备测量第一网络设备发送的定位参考信号得到的相位。
请参阅图4A,第一网络设备在频域上映射定位参考信号X1(K),该定位参考信号X1(K)经过逆傅里叶变换处理得到时域信号x1(t)。时域信号x1(t)经过上变频处理,得到射频信号xg(t)。上变频处理包括:第一网络设备将时域信号x1(t)与第一网络设备的本阵信号(或载波信号、或载频信号)相乘或混频。第一网络设备将该射频信号xg(t)发射出去。
经过信道传播之后,终端设备接收到的信号为yg(t)。终端设备可以将接收到的信号yg(t)与终端设备的本阵信号(或载波信号、或载频信号)相乘或混频处理,得到基带信号y1(t)。
因此,终端设备测量该第一网络设备发送的定位参考信号得到的相位为该终端设备测量接收到的第一网络设备的本阵信号sg(t)(或载波信号、或载频信号)得到的相位与终端设备的本阵信号su(t)(或载波信号、或载频信号)得到的相位之间的相位差。或者,终端设备测量该第一网络设备发送的定位参考信号得到的相位为该终端设备测量接收到的第一网络设备的本阵信号sg(t)(或载波信号、或载频信号)得到相位。其中,第一网络设备的本阵信号sg(t)(或载波信号、或载频信号)用于承载该定位参考信号X1(K)。
下面介绍终端设备测量一个第一网络设备发送的定位参考信号得到的相位的一些可能的实现方式。
实现方式1:终端设备在中射频上采用锁相环提取接收到的第一网络设备的本阵信号(或载波信号、或载频信号)与终端设备的本阵信号(或载波信号、或载频信号)之间的相位差,即相位测量。当然也有其他测量方式,具体本申请不做限定。例如,终端设备采用码相关技术或交叉相关技术获取终端设备接收到的第一网络设备的本阵信号(或载波信号、或载频信号)与终端设备的本阵信号(或载波信号、或载频信号)之间的相位差。
例如,如图4A和图4B所示,第一网络设备发送射频信号xg(t)。xg(t)在经过一定的传播时延之后到达终端设备。终端设备通过射频信号xg(t)确定接收到的第一网络设备的本 阵信号sg(t)。终端设备测量接收到的第一网络设备的本阵信号sg(t)的相位与终端设备自身本地的本阵信号之间的相位差,即称为该终端设备测量到的该第一网络设备发送的定位参考信号得到的相位。该相位包含收发端(终端设备与接入网设备)之间的传播时延的信息。因此,终端设备基于相位解算算法可以计算出收发端之间的距离信息,并进行定位解算以获得该终端设备的位置。
由实现方式1可知,本申请中,终端设备可以通过测量终端设备接收到的第一网络设备的载波信号得到相位。因此,上述终端设备测量第一网络设备发送的定位参考信号得到的相位也可以称为载波相位。那么后文中的相位差也可以称为载波相位差。
实现方式2:如图4A所示,终端设备通过射频信号yg(t)得到的定位参考信号Y1(K)。终端设备基于该定位参考信号Y1(K)和第一网络设备侧采用的定位参考信号X1(K)进行信道估计,得到频域信道系数。该频域信道系数可以是频域脉冲响应、信道系数、或信道频域响应(channel frequency response,CFR)。该频域信道系数可以表示为H1(K)。终端设备可以提取频域信道系数中某个频点或某个子载波的信道系数的相位。
由实现方式2可知,本申请中,终端设备可以通过终端设备与第一网络设备之间的信道确定该信道在频域上的频域相位。因此,上述终端设备测量第一网络设备发送的定位参考信号得到的相位也可以称为频域相位。那么后文中的相位差也可以称为频域相位差。
实现方式3:如图4A和图4C所示,终端设备通过射频信号yg(t)得到的定位参考信号Y1(K)。终端设备基于该定位参考信号Y1(K)和第一网络设备侧采用的定位参考信号X1(K)进行信道估计,得到频域信道系数。该频域信道系数可以是频域脉冲响应、信道系数、或信道频域响应。该频域信道系数可以表示为H1(K)。终端设备将频域信道系数H1(K)通过快速傅里叶变换(fast fourier transform,FFT)处理或逆快速傅里叶变换(inverse fast fourier transform,IFFT)处理得到时域信道系数(例如,信道脉冲响应(channel impulse response,CIR))。终端设备从该时域信道系数中提取信道首径对应的信道系数的相位。
由实现方式3可知,本申请中,终端设备可以通过终端设备与第一网络设备之间的信道确定该信道在时域上的时域相位或信道首径的相位。因此,上述终端设备测量第一网络设备发送的定位参考信号得到的相位也可以称为时域相位或信道首径相位。那么后文中的相位差也可以称为时域相位差或信道首径相位差。
例如,如图4D所示,视距(line of sight,LOS)径或者首径为终端设备与基站之间的视距径,即第一网络设备直射到终端设备的径。非视距(nonline of sight,NLOS)径或反射径为终端设备与基站之间的非视距径,即第一网络设备通过反射到终端设备的径。
实际定位过程中,终端设备可以联合多个第一网络设备进行定位。例如,如图5所示,终端设备可以测量不同TRP发送的定位参考信号得到多个相位。终端设备可以通过多个相位构建方程组,并根据已知TRP的位置联合解算得到终端设备到不同TRP的距离以及终端设备的位置。实现对终端设备进行高精度定位。
由此可知,基于相位的定位技术虽然能够实现高精度的定位,但是其对不同站间(例如,不同TRP之间)的同步误差以及终端设备与站之间的同步误差较为敏感。卫星系统中 配备有高精度的原子钟以及较为昂贵的地面校准站,因此卫星系统中采用基于相位的定位技术进行定位时能够消除同步误差的影响。但是,在蜂窝通信网络中,接入网设备与终端设备无法配备高精度的原子钟,不同站间的同步误差以及终端设备与站之间的同步误差会影响相位的测量精度,导致定位精度受限。本申请提供了相应的技术方案,用于提升定位精度。具体请参阅后文实施例的相关介绍。
本申请中,定位参考信号的名称可以是定位参考信号(positioning reference signal,PRS)、探测参考信号(sounding reference signal,SRS)、信道状态信息参考信号(channel status information reference signal,CSI-RS)、解调参考信号(de-modulation reference signal,DMRS)、辅同步信号(secondary synchronization signal,SSS)、或主同步信号(primary synchronization signal,PSS),具体本申请不做限定。
本申请中,同一个测量窗也可以称为同一个测量窗时机(measurement window instance),同一个PRS处理窗也可以称为同一个PRS处理窗时机(PRS processing window instance)。同一个测量间隔也可以称为同一个测量间隔时机(measurement gap instance)。
本申请中,信道是根据定位参考信号资源占用的频域RE推导得到的。信道也可以称为信道响应,或时域信道响应、或时域信道系数等,具体本申请不做限定。因此本申请中,信道首径也可以称为信道响应的首径,或时域信道响应的首径、或时域信道系数的首径。而首径也可以称为第一径,或者首径(first path),或者LOS径(LOS path),具体本申请不做限定。
下面结合实施例介绍本申请的技术方案。
图6为本申请实施例定位信息的确定方法以及定位方法的一个实施例示意图。请参阅图6,方法包括:
601、至少一个第一网络设备向终端设备发送定位参考信号。相应的,终端设备接收来自至少一个第一网络设备发送的定位参考信号。
下面介绍该至少一个第一网络设备发送定位参考信号的一些可能的实现方式。
实现方式1:该至少一个第一网络设备包括多个第一网络设备。该多个第一网络设备分别在第一时刻向终端设备发送定位参考信号。相应的,终端设备接收该多个第一网络设备在第一时刻发送的定位参考信号。也就是该至少一个第一网络设备发送的定位参考信号包括多个第一网络设备在第一时刻向终端设备发送的定位参考信号。
第一时刻包括:时域符号,时隙,子时隙,子帧,系统帧,测量窗(measurement window),测量间隔(measurement gap),PRS处理窗(PRS processing window),信号周期,或者上下行切换周期。时域符号可以为正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。
该多个第一网络设备分别在第一时刻向终端设备发送定位参考信号,表示该多个第一网络设备在同一时刻向终端设备发送定位参考信号。而终端设备接收该多个第一网络设备在第一时刻发送的定位参考信号,表示终端接收多个第一网络设备同一时刻发送的定位参考信号。同一时刻包括:同一个时域符号,同一个时隙,同一个子时隙,同一个子帧,同一个帧,同一个测量窗,同一个测量间隔,同一个PRS处理窗,同一个参考信号周期,或 者同一个上下行切换周期,或者一段时间间隔长度内。该时间间隔长度包括1ms(毫秒),2ms,5ms,10ms或者20ms等。
例如,如图7所示,该多个第一网络设备包括TRP1、TRP2、TRP3和TRP4。TRP1、TRP2、TRP3和TRP4分别在第一时刻向终端设备发送定位参考信号。
实现方式2:该至少一个第一网络设备包括多个第一网络设备。该多个第一网络设备分别在多个时刻向终端设备发送定位参考信号。相应的,终端设备接收该多个第一网络设备分别在多个时刻发送的定位参考信号。也就是该至少一个第一网络设备发送的定位参考信号包括该多个第一网络设备分别在多个时刻发送的定位参考信号。后文以多个时刻包括第一时刻和第二时刻为例进行介绍。
第二时刻包括:时域符号,时隙,子时隙,子帧,系统帧,测量窗,测量间隔,PRS处理窗,参考信号周期,或者上下行切换周期,或者一段时间间隔长度内。该时间间隔长度包括1ms(毫秒),2ms,5ms,10ms或者20ms等。
例如,如图7所示,该多个第一网络设备包括TRP1、TRP2、TRP3和TRP4。TRP1、TRP2、TRP3和TRP4分别在第一时刻向终端设备发送定位参考信号。TRP1、TRP2、TRP3和TRP4分别在第二时刻向终端设备发送定位参考信号。
可选的,当多个时刻包括三个或三个以上时刻时,该三个或三个以上时刻中任意两个相邻时刻的时间间隔可以相等。例如,第一时刻与第二时刻为相邻的两个时刻。第二时刻与第三时刻为相邻的两个时刻。第一时刻与第二时刻之间的时间间隔等于第二时刻与第三时刻之间的时间间隔。第三时刻包括:时域符号,时隙,子时隙,子帧,系统帧,测量窗,测量间隔,PRS处理窗,参考信号周期,上下行切换周期,或者一段时间间隔长度内。该时间间隔长度包括1ms(毫秒),2ms,5ms,10ms或者20ms等。
实现方式3:该至少一个第一网络设备包括一个第一网络设备。该第一网络设备在多个时刻向终端设备发送定位参考信号。相应的,终端设备在多个时刻接收来自该第一网络设备的定位参考信号。也就是该至少一个第一网络设备发送的定位参考信号包括该第一网络设备在多个时刻向终端设备发送的定位参考信号。后文以多个时刻包括第一时刻、第二时刻和第三时刻为例进行介绍。
在该实现方式3中,该至少一个第一网络设备还包括更多第一网络设备,这些第一网络设备分别在多个时刻向终端设备发送定位参考信号。相应的,终端设备在多个时刻接收来自这些第一网络设备在多个时刻向终端设备发送的定位参考信号。
可选的,当该多个时刻包括三个以上时刻时,该多个时刻中任意两个相邻时刻的时间间隔可以相等。例如,第一时刻与第二时刻为相邻的两个时刻。第二时刻与第三时刻为相邻的两个时刻。第一时刻与第二时刻之间的时间间隔等于第二时刻与第三时刻之间的时间间隔。
需要说明的是,不同第一网络设备发送的定位参考信号可以相同或不相同,具体本申请不做限定。
602、终端设备测量来自至少一个第一网络设备发送的定位参考信号,得到至少一个相位差。
一种可能的实现方式中,该至少一个第一网络设备包括参考网络设备和至少一个测量网络设备。
具体的,该终端设备可以从该至少一个第一网络设备选择一个第一网络设备作为参考网络设备,而剩余的第一网络设备则作为该至少一个测量网络设备。
基于前文相位的定义的基础上,可选的,该至少一个相位差包括:终端设备接收到的承载参考网络设备的定位参考信号的载波信号的相位与终端设备接收到的承载该至少一个测量网络设备的定位参考信号的载波信号的相位之间的相位差。
基于前文所述,可选的,该至少一个相位差包括:该终端设备是基于参考网络设备和测量网络设备在同一时刻发送的定位参考信号得到的相位差,所述同一时刻可以为上述第一时刻,第二时刻,或者第三时刻,所述同一时刻包括:同一个符号,同一个时隙,同一个子时隙,同一个子帧,同一个帧,同一个测量窗,同一个测量间隔,同一个PRS处理窗,同一个参考信号周期,同一个上下行切换周期,或者一段时间间隔长度内。该时间间隔长度包括1ms(毫秒),2ms,5ms,10ms或者20ms等。
即终端设备测量得到参考网络设备的定位参考信号的载波信号的相位与至少一个测量网络设备的定位参考信号的载波信号的相位之间的相位差。该相位差可以认为是终端设备在同一时刻测量得到的。具体可以是终端设备在同一个时域符号、同一个时隙,同一个子帧,同一个帧,同一个测量窗,同一个测量间隔,同一个PRS处理窗,同一个参考信号周期,同一个上下行切换周期,或者一段时间间隔长度内。该时间间隔长度包括1ms(毫秒),2ms,5ms,10ms或者20ms以内等测量得到的。
在该实现方式中,该至少一个相位差包括以下至少一项:
1、终端设备在同一时刻测量参考网络设备和该至少一个测量网络设备分别发送的定位参考信号得到的相位之间的相位差。
2、终端设备在同一时刻测量参考网络设备和该至少一个测量网络设备分别发送的定位参考信号得到的信道首径的相位之间的相位差。
3、终端设备在同一时刻测量参考网络设备和该至少一个测量网络设备分别发送的定位参考信号得到的首径的相位之间的相位差。
4、终端设备在同一时刻测量参考网络设备和该至少一个测量网络设备分别发送的定位参考信号得到的频域信道系数在同一个频点上的相位差。
基于前文相位的定位的基础上,可选的,该至少一个相位差包括:第一相位差分别与至少一个第二相位差之间的差。第一相位差为终端设备接收到的承载参考网络设备的定位参考信号的载波信号的相位与终端设备的载波信号的相位之间的相位差。该至少一个第二相位差包括终端设备接收到的承载该至少一个测量网络设备的定位参考信号的载波信号的相位分别与终端设备的载波信号的相位之间的相位差。
上述载波信号也可以为载频信号、或本阵信号,具体本申请不做限定。
基于该实现方式中,下面介绍该至少一个相位差包括的一些可能的内容。
该至少一个相位差包括以下至少一项:
1、终端设备测量参考网络设备发送的定位参考信号得到的相位分别与终端设备测量该 至少一个测量网络设备发送的定位参考信号得到的相位之间的相位差;或者,
终端设备测量第一网络设备发送的定位参考信号得到的相位的具体方式可以参阅前文步骤601的实现方式1的相关介绍。
2、终端设备测量参考网络设备发送的定位参考信号得到的信道首径的相位分别与终端设备测量该至少一个测量网络设备发送的定位参考信号得到的信道首径的相位之间的相位差;或者,
终端设备测量第一网络设备发送的定位参考信号得到的信道首径的相位的具体方式可以参阅前文步骤601的实现方式2的相关介绍。
具体的,终端设备测量参考网络设备发送的定位参考信号得到终端设备与参考网络设备之间的信道首径的相位。终端设备测量至少一个测量网络设备发送的定位参考信号得到终端设备分别与该至少一个测量网络设备之间的信道首径的相位。然后,终端设备通过终端设备与参考网络设备之间的信道首径的相位以及终端设备分别与该至少一个测量网络设备之间的信道首径的相位确定该至少一个相位差。
3、终端设备测量参考网络设备发送的定位参考信号得到的频域信道系数和终端设备测量该至少一个测量网络设备发送的定位参考信号得到的频域信道系数在同一个频点上的相位差。
终端设备测量第一网络设备发送的定位参考信号得到的频域信道系数的具体方式可以参阅前文步骤601的实现方式3的相关介绍。
终端设备测量参考网络设备发送的定位参考信号得到的频域信道系数用于表征该参考网络设备发送的定位参考信号经过终端设备与参考网络设备之间的信道发生的幅度变化和相位变化。
终端设备测量该至少一个测量网络设备发送的定位参考信号得到的频域信道系数用于表征该至少一个测量网络设备发送的定位参考信号经过终端设备与至少一个测量网络设备之间的信道发生的幅度变化和相位变化。
例如,该至少一个第一网络设备包括参考网络设备和测量网络设备1。终端设备测量参考网络设备发送的定位参考信号得到的频域信道系数为H1(K),终端设备测量该测量网络设备1发送的定位参考信号得到的频域信道系数为H2(K)。终端设备从H1(K)中提取第一频点的相位A,从H2(K)提取第一频点的相位B。终端设备可以确定相位A与相位B之间的相位差。
基于上述步骤601中的实现方式1,该测量参考网络设备和该至少一个测量网络设备分别在第一时刻发送定位参考信号。该至少一个相位差包括以下至少一项:
终端设备测量该测量参考网络设备在第一时刻发送的定位参考信号得到的相位与该终端设备测量该至少一个测量网络设备在第一时刻发送的定位参考信号得到的相位之间的相位差;或者,
终端设备测量该测量参考网络设备在第一时刻发送的定位参考信号得到的信道首径的相位与终端设备测量该至少一个测量网络设备在第一时刻发送的定位参考信号得到的信道首径的相位之间的相位差;或者,
终端设备测量该测量参考网络设备在第一时刻发送的定位参考信号得到的频域信道系数与终端设备测量该至少一个测量网络设备在第一时刻发送的定位参考信号得到的频域信道系数在同一频点上的相位差。
可选的,同一个频点可以为同一个子载波、或者为同一个载波频点、或者为同一个载波聚合(carrier aggregation,CC)、或者为同一个带宽(band)、或者为同一个部分带宽(bandwidth part,BWP)、或者为同一频率层(frequency layer),或者为同一个中心频点、或者为同一个绝对无线频道编号(absolute radio frequency channel number,ARFCN),具体本申请不做限定。
例如,该至少一个第一网络设备包括参考网络设备和N个测量网络设备。该至少一个相位差包括N个相位差1。
其中,N个相位差1中第i个相位差1是终端设备测量该N个测量网络设备中第i个测量网络设备在第一时刻的定位参考信号得到的相位与终端设备测量参考网络设备在第一时刻发送的定位参考信号得到的相位之间的相位差;或者,N个相位差1中第i个相位差1是终端设备测量该N个测量网络设备中第i个测量网络设备在第一时刻的定位参考信号得到的信道首径的相位与终端设备测量参考网络设备在第一时刻发送的定位参考信号得到的信道首径的相位之间的相位差;或者,N个相位差1中第i个相位差1是终端设备测量该N个测量网络设备中第i个测量网络设备在第一时刻的定位参考信号得到的频域信道系数与终端设备测量参考网络设备在第一时刻发送的定位参考信号得到的频域信道系数在同一频点上的相位差。N个为大于或等于1的整数,i为大于或等于1的整数且小于或等于N的整数。也就是说,该至少一个相位差是终端设备测量至少一个第一网络设备在同一时刻发送的定位参考信号得到的相位差。可选的,该至少一个相位差关联相同的时间标签。从而便于表示该至少一个相位差中各个相位差之间关联。即终端设备测量至少一个第一网络设备在同一时刻发送的定位参考信号得到的相位差。这样第二网络设备基于该至少一个相位差对终端设备进行定位,有利于提升定位精度。
在该实现方式中,该至少一个相位差包括以下至少一项:
1、终端设备在同一时刻测量参考网络设备和该至少一个测量网络设备分别发送的定位参考信号得到的相位之间的相位差。
2、终端设备在同一时刻测量参考网络设备和该至少一个测量网络设备分别发送的定位参考信号得到的信道首径的相位之间的相位差。信道是根据定位参考信号占用的频域RE推导得到的。
3、终端设备在同一时刻测量参考网络设备和该至少一个测量网络设备分别发送的定位参考信号得到的首径的相位之间的相位差。
4、终端设备在同一时刻测量参考网络设备和该至少一个测量网络设备分别发送的定位参考信号得到的频域信道系数在同一个频点上的相位差。
下面以N个相位差1包括终端设备测量该参考网络设备在第一时刻发送的定位参考信号得到的相位与该终端设备测量该N个测量网络设备在第一时刻发送的定位参考信号得到的相位之间的相位差为例进行介绍。
例如,如图7所示,参考网络设备为TRP1,N个测量网络设备包括TRP2、TRP3和TRP4。 该至少一个相位差包括:
为终端设备测量TRP2在第一时刻t1发送的定位参考信号得到的相位与终端设备测量TRP1在第一时刻t1发送的定位参考信号得到的相位之间的相位差。
为终端设备测量TRP3在第一时刻t1发送的定位参考信号得到的相位与终端设备测量TRP1在第一时刻t1发送的定位参考信号得到的相位之间的相位差。
为终端设备测量TRP4在第一时刻t1发送的定位参考信号得到的相位与终端设备测量TRP1在第一时刻t1发送的定位参考信号得到的相位之间的相位差。
进一步的,基于上述步骤601的实现方式2,该参考网络设备和该至少一个测量网络设备分别在第二时刻发送定位参考信号。该至少一个相位差还包括以下至少一项:
终端设备测量该参考网络设备在第二时刻发送的定位参考信号得到的相位与该终端设备测量该至少一个测量网络设备在第二时刻发送的定位参考信号得到的相位之间的相位差;或者,
终端设备测量该参考网络设备在第二时刻发送的定位参考信号得到的信道首径的相位与该终端设备测量该至少一个测量网络设备在第二时刻发送的定位参考信号得到的信道首径的相位之间的相位差;或者,
终端设备测量该参考网络设备在第二时刻发送的定位参考信号得到的频域信道系数与该终端设备测量该至少一个测量网络设备在第二时刻发送的定位参考信号得到的频域信道系数在同一频点上的相位差。
例如,该至少一个第一网络设备包括参考网络设备和N个测量网络设备。该至少一个相位差包括N个相位差2。
其中,N个相位差2中第i个相位差2是终端设备测量该N个测量网络设备中第i个测量网络设备在第二时刻发送的定位参考信号得到的相位与终端设备测量参考网络设备在第二时刻发送的定位参考信号得到的相位之间的相位差。或者,N个相位差2中第i个相位差2是终端设备测量该N个测量网络设备中第i个测量网络设备在第二时刻的定位参考信号得到的信道首径的相位与终端设备测量参考网络设备在第二时刻发送的定位参考信号得到的信道首径的相位之间的相位差。或者,N个相位差2中第i个相位差2是终端设备测量该N个测量网络设备中第i个测量网络设备在第二时刻的定位参考信号得到的频域信道系数与终端设备测量参考网络设备在第二时刻发送的定位参考信号得到的频域信道系数在同一频点上的相位差。N个为大于或等于1的整数,i为大于或等于1的整数且小于或等于N的整数。
下面以N个相位差2包括终端设备测量该参考网络设备在第二时刻发送的定位参考信 号得到的相位与该终端设备测量该N个测量网络设备在第二时刻发送的定位参考信号得到的相位之间的相位差为例进行介绍。
例如,如图7所示,参考网络设备为TRP1,N个测量网络设备包括TRP2、TRP3和TRP4。该至少一个相位差包括:
为终端设备测量TRP2在第一时刻t1发送的定位参考信号得到的相位与终端设备测量TRP1在第一时刻t1发送的定位参考信号得到的相位之间的相位差。
为终端设备测量TRP3在第一时刻t1发送的定位参考信号得到的相位与终端设备测量TRP1在第一时刻t1发送的定位参考信号得到的相位之间的相位差。
为终端设备测量TRP4在第一时刻t1发送的定位参考信号得到的相位与终端设备测量TRP1在第一时刻t1发送的定位参考信号得到的相位之间的相位差。
为终端设备测量TRP2在第二时刻t10发送的定位参考信号得到的相位与终端设备测量TRP1在第二时刻t10发送的定位参考信号得到的相位之间的相位差。
为终端设备测量TRP3在第二时刻t10发送的定位参考信号得到的相位与终端设备测量TRP1在第二时刻t10发送的定位参考信号得到的相位之间的相位差。
为终端设备测量TRP4在第二时刻t10发送的定位参考信号得到的相位与终端设备测量TRP1在第二时刻t10发送的定位参考信号得到的相位之间的相位差。
另一种可能的实现方式中,该至少一个第一网络设备包括一个或多个第一网络设备。
基于前述相位的定义的基础上,可选的,该至少一个第一网络设备包括一个第一网络设备。该至少一个相位差包括:终端设备接收到的承载第一网络设备在第一时刻发送的定位参考信号的载波信号的相位与终端设备接收到的承载第一网络设备在第二时刻发送的定位参考信号的载波信号的相位之间的相位差。
基于前述相位的定义的基础上,可选的,该至少一个第一网络设备包括一个第一网络设备。该至少一个相位差包括:第三相位差与第四相位差之间的相位差。该第三相位差为终端设备接收到的承载第一网络设备在第一时刻发送的定位参考信号的载波信号的相位与终端设备的载波信号的相位之间的相位差。第四相位差为终端设备接收到的承载第一网络设备在第二时刻发送的定位参考信号的载波信号的相位与终端设备的载波信号的相位之间 的相位差。
上述载波信号也可以为载频信号、或本阵信号,具体本申请不做限定。
基于该实现方式中,下面介绍该至少一个相位差包括的一些可能的内容。
该至少一个相位差包括以下至少一项:
1、终端设备测量该至少一个第一网络设备中每个第一网络设备在不同时刻发送的定位参考信号得到的相位之间的相位差;或者,
例如,该至少一个第一网络设备包括一个第一网络设备。该至少一个相位差包括该终端设备测量该第一网络设备在不同时刻发送的定位参考信号得到的相位之间的相位差。
例如,该至少一个第一网络设备包括第一网络设备1。该至少一个相位差包括该终端设备测量该第一网络设备1在第一时刻t1发送的定位参考信号得到的相位与终端设备测量该第一网络设备1在第二时刻t10发送的定位参考信号得到的相位之间的相位差。
可选的,该至少一个相位差还包括该终端设备测量该第一网络设备1在第二时刻t10发送的定位参考信号得到的相位与终端设备测量该第一网络设备1在第三时刻t20发送的定位参考信号得到的相位之间的相位差。
可选的,第一时刻t1与第二时刻t10之间的时间间隔等于第二时刻t10与第三时刻t20之间的时间间隔。
2、该至少一个相位差包括:终端设备测量该至少一个第一网络设备中每个第一网络设备在不同时刻发送的定位参考信号得到的信道首径的相位之间的相位差。
例如,该至少一个第一网络设备包括一个第一网络设备。该至少一个相位差包括该终端设备测量该第一网络设备在不同时刻发送的定位参考信号得到的信道首径的相位之间的相位差。
例如,该至少一个第一网络设备包括第一网络设备1。该至少一个相位差包括该终端设备测量该第一网络设备1在第一时刻t1发送的定位参考信号得到的信道首径的相位与终端设备测量该第一网络设备1在第二时刻t10发送的定位参考信号得到的信道首径之间的相位差。
可选的,该至少一个相位差还包括该终端设备测量该第一网络设备1在第二时刻t10发送的定位参考信号得到的信道首径的相位与终端设备测量该第一网络设备1在第三时刻t20发送的定位参考信号得到的信道首径的相位之间的相位差。
可选的,第一时刻t1与第二时刻t10之间的时间间隔等于第二时刻t10与第三时刻t20之间的时间间隔。
3、该至少一个相位差包括:终端设备测量该至少一个第一网络设备中每个第一网络设备在不同时刻发送的定位参考信号分别得到的频域信道系数在同一频点上的相位差。
例如,该至少一个第一网络设备包括一个第一网络设备。该至少一个相位差包括该终端设备测量该第一网络设备在不同时刻发送的定位参考信号分别得到的频域信道系数在同一频点上的相位差。
可选的,关于同一频点请参阅前文的相关介绍。
例如,该至少一个第一网络设备包括第一网络设备1。该至少一个相位差包括该终端 设备测量该第一网络设备1在第一时刻t1发送的定位参考信号得到的频域信道系数与终端设备测量该第一网络设备1在第二时刻t10发送的定位参考信号得到的频域信道系数在同一频点上的相位差。
可选的,该至少一个相位差还包括该终端设备测量该第一网络设备1在第二时刻t10发送的定位参考信号得到的频域信道系数与终端设备测量该第一网络设备1在第三时刻t20发送的定位参考信号得到的频域信道系数之间的相位差。
可选的,第一时刻t1与第二时刻t10之间的时间间隔等于第二时刻t10与第三时刻t20之间的时间间隔。
下面以该至少一个第一网络设备包括一个第一网络设备,该至少一个相位差包括终端设备测量该至少一个第一网络设备中每个第一网络设备在不同时刻发送的定位参考信号得到的相位之间的相位差为例介绍本申请的技术方案。
例如,该至少一个相位差包括P个相位差3。其中,该P个相位差3中第a个相位差3为终端设备测量该第一网络设备在第a时刻发送的定位参考信号得到的相位与终端设备测量该第一网络设备在第a+1时刻发送的定位参考信号得到的相位之间的相位差。
a为大于或等于1的整数。P为大于或等于1的整数,P的大小与第一网络设备发送定位参考信号的时刻数目有关。例如,如果终端设备测量该第一网络设备在两个时刻发送的定位参考信号,则P等于1。如果终端设备测量第一网络设备在三个时刻发送的定位参考信号,则P等于2。
可选的,该P个相位差3中第a+1个相位差3为终端设备测量第一网络设备在第a+1时刻发送的定位参考信号得到的相位与终端设备测量第一网络设备在第a+2时刻发送的定位参考信号得到的相位之间的相位差。第a时刻至第a+1时刻之间的时间间隔等于第a+1时刻至第a+2时刻之间的时间间隔。该多个时刻中不同相邻时刻之间的时间间隔相等。P等于该多个时刻的时刻数目减一。
例如,如图8所示,该至少一个第一网络设备包括TRP1,P个相位差3包括也就是P等于1。为终端设备测量TRP1在第一时刻t1发送的定位参考信号得到的相位与终端设备测量TRP1在第二时刻t10发送的定位参考信号得到的相位之间的相位差。即 为终端设备测量TRP1在第一时刻t1发送的定位参考信号得到的相位。为终端设备测量TRP1在第二时刻t10发送的定位参考信号得到的相位。
例如,如图9所示,该至少一个第一网络设备包括TRP1,P个相位差3包括也就是P等于2。关于请参阅前述介绍。为该终端设备测量TRP1在第二时刻t10发送的定位参考信号得到的相位与终端设备测量TRP1在第三时刻t20发送的定位参考信号得到的相位之间的相位差。即 为终端设备测量TRP1在第三时刻t20发送的定位参考信号得到的相位。为终端设备测量 TRP1在第二时刻t10发送的定位参考信号得到的相位。
下面介绍在该至少一个第一网络设备包括多个第一网络设备的场景下的示例。
例如,如图8所示,该至少一个第一网络设备包括TRP1、TRP2、TRP3和TRP4。该至少一个相位差包括:
关于请参阅前述介绍。为终端设备测量TRP2在第一时刻t1发送的定位参考信号得到的相位与终端设备测量TRP2在第二时刻t10发送的定位参考信号得到的相位之间的相位差。为终端设备测量TRP3在第一时刻t1发送的定位参考信号得到的相位与终端设备测量TRP2在第二时刻t10发送的定位参考信号得到的相位之间的相位差。为终端设备测量TRP4在第一时刻t1发送的定位参考信号得到的相位与终端设备测量TRP4在第二时刻t10发送的定位参考信号得到的相位之间的相位差。
例如,如图8所示,该至少一个第一网络设备包括TRP1、TRP2、TRP3和TRP4。该至少一个相位差包括:
为终端设备测量TRP1在第一时刻t1发送的定位参考信号得到的相位与终端设备测量TRP1在第二时刻t10发送的定位参考信号得到的相位之间的相位差。
为终端设备测量TRP2在第一时刻t1发送的定位参考信号得到的相位与终端设备测量TRP2在第二时刻t10发送的定位参考信号得到的相位之间的相位差。
为终端设备测量TRP3在第一时刻t1发送的定位参考信号得到的相位与终端设备测量TRP3在第二时刻t10发送的定位参考信号得到的相位之间的相位差。
为终端设备测量TRP4在第一时刻t1发送的定位参考信号得到的相位与终端设备测量TRP4在第二时刻t10发送的定位参考信号得到的相位之间的相位差。
为该终端设备测量TRP1在第二时刻t10发送的定位参考信号得到的相位与终端设备测量TRP1在第三时刻t20发送的定位参考信号得到的相位之间的相位差。
为该终端设备测量TRP2在第二时刻t10发送的定位参考信号得到的相位与终端设备测量TRP2在第三时刻t20发送的定位参考信号得到的相位之间的相位差。
为该终端设备测量TRP3在第二时刻t10发送的定位参考信号得到的相位与终端设备测量TRP3在第三时刻t20发送的定位参考信号得到的相位之间的相位差。
为该终端设备测量TRP4在第二时刻t10发送的定位参考信号得到的相位与终端设备测量TRP4在第三时刻t20发送的定位参考信号得到的相位之间的相位差。
需要说明的是,可选的,第一时刻t1与第二时刻t10为相邻的两个时刻。第二时刻t10与第三时刻t20为相邻的两个时刻。第一时刻t1与第二时刻t10之间的时间间隔等于第二时刻t10与第三时刻t20之间的时间间隔。
603、终端设备向第二网络设备发送第一信息。
其中,第一信息包括至少一个相位差;或者,第一信息是根据至少一个相位差确定的。关于该至少一个相位差请参阅前述步骤602的相关介绍。
第一信息用于第二网络设备对终端设备进行定位。第一信息可以理解为终端设备为第二网络设备提供的定位信息。
对于第一信息是根据该至少一个相位差确定的实现方式,可选的,图6所示的实施例还包括步骤603a。步骤603a可以在步骤603之前执行。
603a、终端设备根据该至少一个相位差确定第一信息。
下面结合第一信息包括的内容介绍步骤603a。
首先基于该至少一个第一网络设备包括参考网络设备和至少一个测量网络设备的实现方式介绍第一信息。
1、第一信息包括以下至少一项:至少一个第一累积相位差;或者,至少一个第一等效距离变化量。
该至少一个第一累积相位差包括以下至少一项:终端设备测量参考网络设备发送的定位参考信号得到的相位分别与终端设备测量该至少一个测量网络设备发送的定位参考信号得到的相位之间的相位差在时间上的累积量;或者,终端设备测量参考网络设备发送的定位参考信号得到的信道首径的相位分别与终端设备测量至少一个测量网络设备发送的定位参考信号得到的信道首径的相位之间的相位差在时间上的累积量;或者,终端设备测量参考网络设备发送的定位参考信号得到的频域信道系数和至少一个测量网络设备发送的定位参考信号得到的频域信道系数在同一个频点上的相位差在时间上的累积量。
该至少一个第一等效距离变化量包括终端设备与参考网络设备的距离分别和终端设备与至少一个测量网络设备的距离之间的距离差在时间上的变化量。
具体的,终端设备根据该至少一个相位差确定该至少一个第一累积相位差。
例如,该至少一个第一网络设备包括参考网络设备和N个测量网络设备,该至少一个相位差包括N个相位差1和N个相位差2。关于N个相位差1和N个相位差2请参阅前文的相关介绍。终端设备根据该N个相位差1和N个相位差2确定该至少一个第一累积相位差。该至少一个第一累积相位差包括N个第一累积相位差。N个第一累积相位差中第i个第一累积相位差是N个相位差1中的第i个相位差1与N个相位差2中的第i个相位差2之间的差。
例如,第i个第一累积相位差表示该终端设备测量参考网络设备发送的定位参考信号得到的相位与终端设备测量第i个测量网络设备发送的定位参考信号得到的相位之间的相位差在时间上的累积量。或者,第i个第一累积相位差表示该终端设备测量参考网络设备发送的定位参考信号得到的信道首径的相位与终端设备测量第i个测量网络设备发送的定位参考信号得到的信道首径的相位之间的相位差在时间上的累积量。或者,第i个第一累积相位差表示该终端设备测量参考网络设备发送的定位参考信号得到的频域信道系数与终端设备测量第i个测量网络设备发送的定位参考信号得到的频域信道系数在同一频点上的相位差在时间上的累积量。
下面以终端设备确定第一时刻t1至第二时刻t10之间的时间间隔内的第一累积相位差为例进行介绍。实际应用中,终端设备可以多个时间间隔内的第一累积相位差,具体本申请不做限定。
下面以第i个第一累积相位差表示该终端设备测量参考网络设备发送的定位参考信号得到的相位与终端设备测量第i个测量网络设备发送的定位参考信号得到的相位之间的相位差在时间上的累积量为例进行介绍。第i个第一累积相位差可以表示为:
表示N个相位差2中的第i个相位差2。该第i个相位差2表示终端设备测量N个测量网络设备中第i个测量网络设备在第二时刻t10发送的定位参考信号得到的相位与终端设备测量参考网络设备在第二时刻t10发送的定位参考信号得到的相位之间的相位差。
表示N个相位差1中的第i个相位差1。该第i个相位差1表示终端设备测量N个测量网络设备中第i个测量网络设备在第一时刻t1发送的定位参考信号得到的相位与终端设备测量参考网络设备在第一时刻t1发送的定位参考信号得到的相位之间的相位差。
具体的,终端设备上报第一累积相位差实现对相位差在时间上的累积量的跟踪。为了避免整周丢失,需要保证终端设备任意两次测量间的相位变化小于2π。相位变化小于2π,对应的终端设备的移动位置较小。一种可行的方法是终端设备累积多次相位差的变化量,再上报。也就是上报第一累积相位差,利用累积的多次相位差的变化量计算较大的距离变 化。例如,如图11所示,终端设备在第一时刻t1至第二时刻t10之间的时间间隔内测量多次参考网络设备发送的定位参考信号与测量网络设备发送的定位参考信号得到相应的多个相位差,再结合该多个相位差确定第一累积相位差。
例如,终端设备测量参考网络设备在时刻t1发送的定位参考信号得到的相位与测量第i个测量网络设备在时刻t1发送的定位参考信号得到的相位之间的相位差为终端设备测量参考网络设备在时刻t2发送的定位参考信号得到的相位与测量第i个测量网络设备在时刻t2发送的定位参考信号得到的相位之间的相位差为终端设备测量参考网络设备在时刻t3发送的定位参考信号得到的相位与测量第i个测量网络设备在时刻t3发送的定位参考信号得到的相位之间的相位差为终端设备测量参考网络设备在时刻t4发送的定位参考信号得到的相位与测量第i个测量网络设备在时刻t4发送的定位参考信号得到的相位之间的相位差为终端设备测量参考网络设备在时刻t5发送的定位参考信号得到的相位与测量第i个测量网络设备在时刻t5发送的定位参考信号得到的相位之间的相位差为终端设备测量参考网络设备在时刻t6发送的定位参考信号得到的相位与测量第i个测量网络设备在时刻t6发送的定位参考信号得到的相位之间的相位差为终端设备测量参考网络设备在时刻t7发送的定位参考信号得到的相位与测量第i个测量网络设备在时刻t7发送的定位参考信号得到的相位之间的相位差为终端设备测量参考网络设备在时刻t8发送的定位参考信号得到的相位与测量第i个测量网络设备在时刻t8发送的定位参考信号得到的相位之间的相位差为终端设备测量参考网络设备在时刻t9发送的定位参考信号得到的相位与测量第i个测量网络设备在时刻t9发送的定位参考信号得到的相位之间的相位差为终端设备测量参考网络设备在时刻t10发送的定位参考信号得到的相位与测量第i个测量网络设备在发送的定位参考信号得到的相位之间的相位差为
若时刻t1为第1秒,时刻t10为第10秒,第i个第一累积相位差可以表示为:
也就是说第1秒至第10秒的第一累积相位差要根据第1秒、第2秒、直到第10秒的相位差逐步累积计算得到,从而消除整周模糊度的问题。而不能直接通过第10秒对应的相位差和第1秒对应的相位差得到。即使上述公式1的表达上可以写为两个时刻的相位差相减,但是实际需要通过多个时刻的相位差逐步累积得到。
终端设备根据该至少一个第一累积相位差确定该至少一个第一等效距离变化量。具体的,终端设备根据该至少一个第一累积相位差和该至少一个第一网络设备发送定位参考信号采用的波长确定该至少一个第一等效距离变化量。
下面以终端设备确定第一时刻t1至第二时刻t10之间的时间间隔内的第一等效距离变化量为例进行介绍。实际应用中,终端设备可以多个时间间隔内的第一等效距离变化量,具体本申请不做限定。
例如,该至少一个第一等效距离变化量包括N个第一等效距离变化量。该N个第一等效距离变化量中第i个第一等效距离变化量是终端设备在第一时刻t1与参考网络设备和第i个测量网络设备之间的距离差与该终端设备在第二时刻t10与参考网络设备和第i个测量网络设备之间的距离差之间的差。下面通过公式3表示第i个第一等效距离变化量:
其中,为第i个第一累积相位差,关于Δθij请参阅后文的相关介绍。λ为第i个测量网络设备发送定位参考信号采用的波长。本文中以该至少一个第一网络设备发送定位参考信号采用的波长都为λ为例介绍本申请的技术方案。
2、第一信息包括以下至少一项:至少一个第一累积相位差速率;或者,至少一个第一等效距离变化率。
该至少一个第一累积相位差速率包括以下至少一项:终端设备测量参考网络设备发送的定位参考信号得到的相位分别与终端设备测量所述至少一个测量网络设备发送的定位参考信号得到的相位之间的相位差在单位时间上的累积量;或者,终端设备测量参考网络设备发送的定位参考信号得到的信道首径的相位分别与终端设备测量至少一个测量网络设备发送的定位参考信号得到的信道首径的相位之间的相位差在单位时间上的累积量;或者,终端设备测量参考网络设备发送的定位参考信号和至少一个测量网络设备发送的定位参考信号得到的同一个频点的相位差在单位时间上的累积量。
该至少一个第一等效距离变化率包括终端设备与参考网络设备的距离和终端设备与至少一个测量网络设备的距离之间的距离差在单位时间上的变化量。
具体的,终端设备根据该至少一个相位差确定该至少一个第一累积相位差。然后,终端设备根据该至少一个第一累积相位差确定该至少一个第一累积相位差速率。
关于终端设备确定该至少一个第一累积相位差的过程请参阅前述的相关介绍。终端设备根据该至少一个第一累积相位差和该第一时刻t1至第二时刻t10之间的时间间隔确定该至 少一个第一累积相位差速率。
例如,该至少一个第一累积相位差速率包括N个第一累积相位差速率。N个第一累积相位差速率等于N个第一累积相位差中第i个第一累积相位差除以该第一时刻t1至第二时刻t10之间的时间间隔。该第i个第一累积相位差速率表示该终端设备测量参考网络设备发送的定位参考信号得到的相位与终端设备测量第i个测量网络设备发送的定位参考信号得到的相位之间的相位差在单位时间上的累积量。或者,该第i个第一累积相位差速率表示该终端设备测量参考网络设备发送的定位参考信号得到的信道首径的相位与终端设备测量第i个测量网络设备发送的定位参考信号得到的信道首径的相位之间的相位差在单位时间上的累积量。或者,第i个第一累积相位差速率表示该终端设备测量参考网络设备发送的定位参考信号得到的频域信道系数与终端设备测量第i个测量网络设备发送的定位参考信号得到的频域信道系数在同一频点上的相位差在单位时间上的累积量。
下面以该第i个第一累积相位差速率表示该终端设备测量参考网络设备发送的定位参考信号得到的相位与终端设备测量第i个测量网络设备发送的定位参考信号得到的相位之间的相位差在单位时间上的累积量为例进行介绍。第i个第一累积相位差速率可以表示为:
其中,为第i个第一累积相位差,(t10-t1)为第一时刻与第二时刻之间的时间间隔。
终端设备根据该至少一个第一累积相位差速率确定该至少一个第一等效距离变化率。具体的,终端设备根据该至少一个第一累积相位差速率和该至少一个第一网络设备发送定位参考信号采用的波长确定该至少一个第一等效距离变化率。
例如,该至少一个第一等效距离变化率包括N个第一等效距离变化率。该N个第一等效距离变化率中第i个第一等效距离变化率等于N个第一等效距离变化量中第i个第一等效距离变化量除以该第一时刻t1至第二时刻t10之间的时间间隔。下面通过公式5表示第i个第一等效距离变化率。
其中,Δdij为第i个第一等效距离变化量,(t10-t1)为第一时刻与第二时刻之间的时间间隔。为第i个第一累积相位差,Δθij为参考网络设备与第i个测量网络设备之间的相位偏差,关于Δθij请参阅后文的详细介绍。λ为第i个测量网络设备发送定位参考信号采用的波长。
下面基于该至少一个第一网络设备包括一个或多个第一网络设备介绍第一信息。下面以该至少一个第一网络设备中的其中一个第一网络设备为例介绍第一信息。对于其他第一网络设备同样类似。
1、第一信息包括以下至少一项:至少一个第二累积相位差;或者,至少一个第二等效距离变化量。
该至少一个第二累积相位差包括以下至少一项:终端设备测量第一网络设备在不同时刻发送的定位参考信号得到的相位之间的相位差在时间上的累积量;或者,终端设备测量第一网络设备在不同时刻发送的定位参考信号得到的信道首径的相位之间的相位差在时间上的累积量;或者,终端设备测量第一网络设备在不同时刻发送的定位参考信号分别得到的频域信道系数在同一频点上的相位差在时间上的累积量。
该至少一个第二等效距离变化量包括:终端设备在不同时刻到第一网络设备的距离之间的距离差在时间上的变化量。
具体的,终端设备根据至少一个相位差确定该至少一个第二累积相位差。
例如,该至少一个第一网络设备包括一个第一网络设备,该至少一个相位差包括P个相位差3。关于P个相位差3请参阅前文的相关介绍。该至少一个第二累积相位差包括M个第二累积相位差。M个第二累积相位差中第a个第二累积相位差为P个相位差3中第a个相位差3与P个相位差3中第a+1个相位差3之间的差。其中,M为大于或等于1的整数,a为大于或等于1的整数。M的取值是根据终端设备测量定位参考信号的时刻数量决定。M等于时刻数量少一。
第a个相位差3为终端设备测量第一网络设备在第a时刻发送的定位参考信号得到的相位与终端设备测量第一网络设备在第a+1时刻发送的定位参考信号得到的相位之间的相位差。第a+1个相位差3为终端设备测量第一网络设备在第a+1时刻发送的定位参考信号得到的相位与终端设备测量第一网络设备在第a+2时刻发送的定位参考信号得到的相位之间的相位差。第a时刻至第a+1时刻之间的时间间隔等于第a+1时刻至第a+2时刻之间的时间间隔。
例如,第a个第二累积相位差可以表示为:
为P个相位差3中的第a个相位差3。为P个相位差3中的第a+1个相位差3。
具体的,终端设备上报第二累积相位差实现对相位差在时间上的累积量的跟踪。为了避免整周丢失,需要保证终端设备任意两次测量间的相位变化小于2π。相位变化小于2π,对应的终端设备的移动位置较小。一种可行的方法是终端设备累积多次相位差的变化量,再上报。也就是上报第二累积相位差。利用累积的多次相位差的变化量计算较大的距离变化。例如,如图11所示,终端设备在时刻t1至时刻t20之间的时间间隔内测量多次第一网络设备发送的定位参考信号得到不同时刻得到的相位之间的相位差,再结合该不同时刻得到的相位之间的相位差确定该至少一个第二累积相位差。
例如,终端设备测量第一网络设备在时刻t1发送的定位参考信号得到的相位与终端设备测量第一网络设备在时刻t2发送的定位参考信号得到的相位之间的相位差为终端设备测量第一网络设备在时刻t2发送的定位参考信号得到的相位与终端设备测量第一网络设备在时刻t3发送的定位参考信号得到的相位之间的相位差为终端设备测量第一网络设备在时刻t3发送的定位参考信号得到的相位与终端设备测量第一网络设备在 时刻t4发送的定位参考信号得到的相位之间的相位差为终端设备测量第一网络设备在时刻t4发送的定位参考信号得到的相位与终端设备测量第一网络设备在时刻t5发送的定位参考信号得到的相位之间的相位差为终端设备测量第一网络设备在时刻t5发送的定位参考信号得到的相位与终端设备测量第一网络设备在时刻t6发送的定位参考信号得到的相位之间的相位差为终端设备测量第一网络设备在时刻t6发送的定位参考信号得到的相位与终端设备测量第一网络设备在时刻t7发送的定位参考信号得到的相位之间的相位差为终端设备测量第一网络设备在时刻t7发送的定位参考信号得到的相位与终端设备测量第一网络设备在时刻t8发送的定位参考信号得到的相位之间的相位差为终端设备测量第一网络设备在时刻t8发送的定位参考信号得到的相位与终端设备测量第一网络设备在时刻t9发送的定位参考信号得到的相位之间的相位差为终端设备测量第一网络设备在时刻t9发送的定位参考信号得到的相位与终端设备测量第一网络设备在时刻t10发送的定位参考信号得到的相位之间的相位差为终端设备测量第一网络设备在时刻t10发送的定位参考信号得到的相位与终端设备测量第一网络设备在时刻t11发送的定位参考信号得到的相位之间的相位差为终端设备测量第一网络设备在时刻t11发送的定位参考信号得到的相位与终端设备测量第一网络设备在时刻t12发送的定位参考信号得到的相位之间的相位差为终端设备测量第一网络设备在时刻t12发送的定位参考信号得到的相位与终端设备测量第一网络设备在时刻t13发送的定位参考信号得到的相位之间的相位差为终端设备测量第一网络设备在时刻t13发送的定位参考信号得到的相位与终端设备测量第一网络设备在时刻t14发送的定位参考信号得到的相位之间的相位差为终端设备测量第一网络设备在时刻t14发送的定位参考信号得到的相位与终端设备测量第一网络设备在时刻t15发送的定位参考信号得到的相位之间的相位差为终端设备测量第一网络设备在时刻t15发送的定位参考信号得到的相位与终端设备测量第一网络设备在时刻t16发送的定位参考信号得到的相位之间的相位差为终端设备测量第一网络设备在时刻t16发送的定位参考信号得到的相位与终端设备测量第一网络设备在时刻t17发送的定位参考信号得到的相位之间的相位差为终端设备测量第一网络设备在时刻t17发送的定位参考信号得到的相位与终端设备测量第一网络设备在时刻t18发送的定位参考信号得到的相位之间的相位差为终端设备测量第一网络设备在时刻t18发送的定位参考信号得到的相位与终端设备测量第一网络设备在时刻t19发送的定位参考信号得到的相位之间的相位差为终端设备测量第一网络设备在时刻t19发送的定位参考信号得到的相位与终端设备测量第一网络设备在时刻t20发送的定位参考信号得到的相位之间的相位差为
若第a时刻为时刻t1,时刻t1为第1秒;第a+1时刻为时刻t10,时刻t10为第10秒;第a+时刻为时刻t20,时刻t20为第20秒,那么第a个第二累积相位差可以通过表示为:
也就是说第1秒至第20秒的第二累积相位差要根据第1秒、第2秒、直到第20秒的相位差逐步累积计算得到,从而消除整周模糊度的问题。而不能直接通过第20秒对应的相位差和第1秒对应的相位差得到。即使上述公式6.1的表达上可以写成两个时刻的相位差相减,但是实际需要通过多个时刻的相位差逐步累积得到。
终端设备根据该至少一个第二累积相位差确定该至少一个第二等效距离变化量。具体的,终端设备根据该至少一个第二累积相位差和该至少一个第一网络设备发送定位参考信号采用的波长确定该至少一个第二等效距离变化量。
下面以终端设备确定时刻ta至时刻ta+2之间的时间间隔内的第二等效距离变化量为例进行介绍。实际应用中,终端设备可以多个时间间隔内的第二等效距离变化量,具体本申请不做限定。
例如,该至少一个第二等效距离变化量包括M个第二等效距离变化量。该M个第二等效距离变化量中第a个第二等效距离变化量是P个第一距离差中第a个第一距离差与P个第一距离差中第a+1个第一距离差之间的差。第a个第一距离差为终端设备在第a时刻与第一网络设备的距离与终端设备在第a+1时刻与第一网络设备的距离之间的距离差。第a+1个第一距离差为终端设备在第a+1时刻与第一网络设备的距离与终端设备在第a+2时刻与第一网络设备的距离之间的距离差之间的差。
下面通过公式7表示第a个第二等效距离变化量:
其中,Δda为是P个第一距离差中第a个第一距离差。Δda+1为P个第一距离差中第a+1个第一距离差。λ为第一网络设备发送定位参考信号采用的波长。
2、第一信息包括以下至少一项:至少一个第二累积相位差速率;或者,至少一个第二等效距离变化率。
该至少一个第二累积相位差速率包括以下至少一项:终端设备测量第一网络设备在不同时刻发送的定位参考信号得到的相位之间的相位差在单位时间内的累积量;或者,终端 设备测量第一网络设备在不同时刻发送的定位参考信号得到的信道首径的相位之间的相位差在单位时间上的累积量;或者,终端设备测量第一网络设备在不同时刻发送的定位参考信号分别得到的频域信道系数在同一频点上的相位差在单位时间上的累积量。
该至少一个第二等效距离变化率为终端设备在不同时刻到第一网络设备的距离之间的距离差在单位时间上的变化量。
具体的,终端设备根据该至少一个相位差确定该至少一个第二累积相位差。然后,终端设备根据该至少一个第二累积相位差确定该至少一个第二累积相位差速率。
关于终端设备确定该至少一个第二累积相位差的过程请参阅前述的相关介绍。终端设备根据该至少一个第二累积相位差和该时刻ta至时刻ta+2之间的时间间隔确定该至少一个第二累积相位差速率。
例如,该至少一个第二累积相位差速率包括M个第二累积相位差速率。M个第二累积相位差速率等于M个第二累积相位差中第a个第二累积相位差除以时刻ta至时刻ta+2之间的时间间隔。
例如,第a个第二累积相位差速率可以表示为:
其中,为P个相位差3中的第a个相位差3。为P个相位差3中的第a+1个相位差3。关于P个相位差3请参阅前文相关介绍。
终端设备根据该至少一个第二累积相位差速率确定该至少一个第二等效距离变化率。具体的,终端设备根据该至少一个第二累积相位差速率和该第一网络设备发送定位参考信号采用的波长确定该至少一个第二等效距离变化率。
例如,该至少一个第二等效距离变化率包括M个第二等效距离变化率。该M个第二等效距离变化率中第a个第二等效距离变化率等于M个第二等效距离变化量除以时刻ta至时刻ta+2之间的时间间隔。下面通过公式9表示第a个第二等效距离变化率:
其中,Δda为是P个第一距离差中第a个第一距离差。Δda+1为P个第一距离差中第a+1个第一距离差。λ为第一网络设备发送定位参考信号采用的波长。
604、第二网络设备根据第一信息对终端设备进行定位。
可选的,图6所示的实施例还包括步骤604a。步骤604a可以在步骤604之前执行。
604a、第二网络设备获取至少一个相位偏差。
至少一个相位偏差包括校准终端设备测量至少一个第一网络设备发送的定位参考信号得到的至少一个第一网络设备中不同第一网络设备之间的相位偏差。该至少一个相位偏差是校准终端设备上报的。
具体的,第二网络设备接收来自校准终端设备的至少一个相位偏差。关于该至少一个 相位偏差请参阅后文相关介绍。
需要说明的是,步骤604a与步骤603之间没有固定的执行顺序。可以先执行步骤603,再执行步骤604a;或者,先执行步骤604a,再执行步骤603;或者,依据情况同时执行步骤603和步骤604a,具体本申请不做限定。
基于步骤604a,可选的,上述步骤604具体包括:
第二网络设备根据第一信息和该至少一个相位偏差对终端设备进行定位。第二网络设备结合第一信息和该至少一个相位偏差对终端设备进行定位的一些相关示例请参阅后文的相关介绍。
可选的,图6所示的实施例还包括步骤604b。步骤604b可以在步骤604之前执行。
604b、第二网络设备获取至少一个累积相位偏差。
该至少一个累积相位偏差包括校准终端设备测量至少一个第一网络设备发送的定位参考信号得到的至少一个第一网络设备中不同第一网络设备之间的相位偏差在时间上的累积量,至少一个累积相位偏差是校准终端设备上报的。
具体的,第二网络设备接收来自校准终端设备的至少一个累积相位偏差。关于该至少一个累积相位偏差请参阅后文相关介绍。
需要说明的是,步骤604b与步骤603之间没有固定的执行顺序。可以先执行步骤603,再执行步骤604b;或者,先执行步骤604b,再执行步骤603;或者,依据情况同时执行步骤603和步骤604b,具体本申请不做限定。
基于步骤604b,可选的,上述步骤604具体包括:
第二网络设备根据第一信息和该至少一个累积相位偏差对终端设备进行定位。第二网络设备结合第一信息和该至少一个累积相位偏差对终端设备进行定位的一些相关示例请参阅后文的相关介绍。
下面结合第一信息包括的内容介绍上述步骤604。
一、该至少一个第一网络设备包括参考网络设备和至少一个测量网络设备,第一信息包括至少一个相位差。
该至少一个相位差包括以下至少一项:终端设备测量参考网络设备发送的定位参考信号得到的相位分别与终端设备测量该至少一个测量网络设备发送的定位参考信号得到的相位之间的相位差;或者,终端设备测量参考网络设备发送的定位参考信号得到的信道首径的相位分别与终端设备测量该至少一个测量网络设备发送的定位参考信号得到的信道首径的相位之间的相位差;或者,终端设备测量参考网络设备发送的定位参考信号得到的频域信道系数和终端设备测量该至少一个测量网络设备发送的定位参考信号得到的频域信道系数在同一个频点上的相位差。
下面以该至少一个相位差包括终端设备测量参考网络设备发送的定位参考信号得到的相位分别与终端设备测量该至少一个测量网络设备发送的定位参考信号得到的相位之间的相位差为例进行介绍。
下面结合第二网络设备结合第一信息和该至少一个相位偏差对终端设备进行定位的过程。
该至少一个相位偏差包括校准终端设备测量至少一个第一网络设备发送的定位参考信号得到的至少一个第一网络设备中不同第一网络设备之间的相位偏差。
具体的,在该实现方式中,该至少一个第一网络设备包括参考网络设备和至少一个测量网络设备。该至少一个相位偏差包括校准终端设备与参考网络设备之间的相位偏差分别和校准终端设备与该至少一个测量网络设备之间的相位偏差之间的差。
具体的,该校准终端设备测量该参考网络设备在第一时刻发送的定位参考信号得到的相位。该校准终端设备再结合该相位和校准终端设备与参考网络设备之间的位置确定该校准终端设备与参考网络设备之间的相位偏差。该校准终端设备与参考网络设备之间的相位偏差可以表征该校准终端设备与参考网络设备之间的同步误差和校准终端设备自身的射频初相。具体确定过程可以参阅后文的相关介绍。
具体的,该校准终端设备测量该至少一个测量网络设备中每个测量网络设备在第一时刻发送的定位参考信号得到的相位。该校准终端设备再结合该相位以及校准终端设备与该每个测量网络设备之间的位置计算得到校准终端设备与每个测量网络设备之间的相位偏差。校准终端设备与每个测量网络设备之间的相位偏差可以表征该校准终端设备与该每个测量网络准备之间的同步误差和校准终端设备自身的射频初相。因此,该至少一个相位差偏差可以理解为该校准终端测量到的参考网络设备与该至少一个测量网络设备之间的相位偏差。该至少一个相位差偏差分别表征了参考网络设备与该至少一个测量网络设备之间的同步误差。该至少一个相位偏差具体确定过程可以参阅后文的相关介绍。
下面以该至少一个相位差包括N个相位差1为例介绍。关于N个相位差1请参阅前文的相关介绍,这里不再赘述。
该至少一个相位偏差包括N个第一相位偏差。该校准终端设备与每个测量网络设备之间的相位偏差包括N个第二相位偏差。该校准终端设备与参考网络设备之间的相位偏差称为第三相位偏差。该N个第一相位偏差中第i个第一相位偏差为N个第二相位偏差中第i个第二相位偏差与第三相位偏差之间的差。
N个第二相位偏差第i个第二位偏差是在第一时刻校准终端设备与N个测量网络设备中第i个测量网络设备之间的相位偏差。也就是说N个第二相位偏差包括在第一时刻校准终端设备与N个测量网络设备中各个测量网络设备之间的相位偏差。第三相位偏差是在第一时刻校准终端设备与参考网络设备之间的相位偏差。对于第二网络设备来说,该校准终端设备的位置是已知的。
N个第一相位偏差中第i个第一相位偏差为N个相位差1中第i个相位差1的相位补偿值。具体原理可以参阅后文的相关介绍。
具体的,校准终端设备测量各个测量网络设备在第一时刻发送的定位参考信号得到的相位与校准终端设备测量参考网络设备在第一时刻发送的定位参考信号得到的相位之间的相位差,得到该N个相位差4。校准终端设备结合该N个相位差4确定该N个第一相位偏差。校准终端设备向该第二网络设备发送该N个第一相位偏差。相应的,第二网络设备接收来自校准终端设备的该N个第一相位偏差。
例如,如图7所示,参考网络设备为TRP1,N个测量网络设备包括TRP2、TRP3和TRP4。 第二网络设备接收来自校准终端设备发送的该N个第一相位偏差。对于第二网络设备来说,校准终端设备的位置是已知的。校准终端设备测量第i个TRP在第一时刻发送的定位参考信号得到的相位可以表示为如下公式1:
其中,ri表示校准终端设备与N个测量网络设备中包括的第i个TRP之间的距离。Ni表示校准终端设备与N个测量网络设备中包括的第i个TRP之间的波长整周数。c表示光速。δi(t1)表示在第一时刻t1校准终端设备与N个测量网络设备中包括的第i个TRP的同步误差,φi(t1)表示在第一时刻t1校准终端设备自身的射频初相。不同设备的射频初相不同。ni表示相位噪声。λ为承载第i个TRP在第一时刻发送的定位参考信号的载波信号所在的频点对应的波长。
校准终端设备根据校准终端设备的位置计算在第一时刻校准终端设备与N个测量网络设备中包括的第i个TRP之间的距离ri。校准终端设备根据可以计算N个第二相位偏差中第i个第二相位偏差θi(t1)。该第二相位偏差θi(t1)表征在第一时刻校准终端设备与N个测量网络设备中包括的第i个TRP之间的同步误差和校准终端设备自身的射频初相。N个第二相位偏差中第i个第二相位偏差θi(t1)可以表示为:
由于θi(t1)表征了在第一时刻校准终端设备与N个测量网络设备中包括的第i个TRP之间的同步误差以及校准终端设备自身的射频初相,因此需要通过站间差分的形式消除校准终端设备自身的射频初相。校准终端设备测量TRP1(即参考网络设备)在第一时刻的定位参考信号得到相位那么校准终端设备根据可以计算得到第三相位偏差θj(t1)。第三相位偏差θj(t1)表征在第一时刻校准终端设备与TRP1之间的同步误差和校准终端设备自身的射频初相。那么第i个第二相位偏差θi(t1)以及第三相位偏差θj(t1)之间的差分值可以表示为:
θij(t1)=θi(t1)-θj(t1)   公式12
θij(t1)也就是上述N个第一相位偏差中的第i个第一相位偏差。由此可知,第二网络设备将第i个第二相位偏差θi(t1)以及第三相位偏差θj(t1)之间进行差分,得到该θij(t1)。该 θij(t1)不受校准终端设备自身的射频初相的误差影响。并且,该θij(t1)可以表征N个测量网络设备中包括的第i个TRP与TRP1之间的同步误差。
第二网络设备根据该N个相位差1和该N个第一相位偏差对终端设备进行定位。
由前述介绍可知,N个相位差1中第i个相位差1是终端设备测量该第i个测量网络设备在第一时刻发送的定位参考信号得到的相位与终端设备测量参考网络设备在第一时刻发送的定位参考信号得到的相位之间的相位差。该终端设备通过相位之间的差分值实现消除终端设备自身的射频初相的误差影响和终端设备与该至少一个第一网络设备(包括N个测量网络设备和参考网络设备)之间的同步误差的影响。该θij(t1)可以理解为上述N个相位差1中第i个相位差1的相位补偿值。实现对第i个测量网络设备与参考网络设备之间的同步误差的补偿。
此外,由于不同站间的同步误差或终端设备自身的射频初相在不同时刻可能会不同,终端设备在不同时刻测量定位参考信号得到的相位也会发生变化。因此,终端设备和校准终端设备应当在相同时刻测量TRP发送定位参考信号。可选的,相同时刻包括:同一个OFDM符号、同一个时隙、同一个子时隙、同一个子帧、同一个信号帧、同一个测量窗、同一个测量间隔、同一个PRS处理窗、同一个参考信号周期、同一个上下行切换周期、或者时间间隔长度内。该时间间隔长度包括1ms(毫秒),2ms(毫秒),5ms,10ms或者20ms。终端设备上报该N个相位差1,校准终端设备上报N个第一相位偏差。便于第二网络设备对终端设备进行精准定位。
根据上述分析,对终端设备来说,在定位过程中,终端设备可以选择一个参考网络设备。然后,终端设备测量各个测量网络设备在第一时刻发送的定位参考信号得到的相位与测量参考网络设备在第一时刻发送的定位参考信号得到的相位之间的相位差,即N个相位差1。然后,校准终端设备测量各个测量网络设备在第一时刻发送的定位参考信号得到的相位与校准终端设备测量参考网络设备在第一时刻发送的定位参考信号得到的相位之间的相位差,即N个相位差4。校准终端设备通过该N个相位差4确定N个第一相位偏差,并上报给第二网络设备。第二网络设备根据该N个相位差1和该N个第一相位偏差对终端设备进行定位。
下面介绍第二网络设备根据该N个相位差1和该N个第一相位偏差对终端设备进行定位的过程。
例如,如图7所示,参考网络设备为TRP1,N个测量网络设备包括TRP2、TRP3和TRP4。第二网络设备根据该N个相位差1和该N个第一相位偏差构建如下方程:


上述公式13中,为终端设备测量TRP2在第一时刻t1发送的定位参考信号得到的相位与终端设备测量TRP1在第一时刻t1发送的定位参考信号得到的相位之间的相位差。 θ21(t1)为在第一时刻校准终端设备测量到的TRP2与TRP1之间的相位偏差。也就是N个第一相位偏差中的第一个第一相位偏差。该第一个第一相位偏差等于N个第二相位偏差中的第一个第二相位偏差与第三相位偏差之间的差。N21为终端设备到TRP2和TRP1的距离之间的差对应的整周模糊度。Δr21为终端设备在第一时刻到达TRP2的距离与到达TRP1的距离之间的距离差。λ为承载TRP的定位参考信号的载波信号所在的频点对应的波长。这里以承载各个TRP的定位参考信号的载波信号所在的频点对应的波长都为λ为例进行介绍。
上述公式14中,为终端设备测量TRP3在第一时刻t1发送的定位参考信号得到的相位与终端设备测量TRP1在第一时刻t1发送的定位参考信号得到的相位之间的相位差。θ31(t1)为在第一时刻校准终端设备测量到的TRP3与TRP1之间的相位偏差。也就是N个第一相位偏差中的第二个第一相位偏差。该第二个第一相位偏差等于N个第二相位偏差中的第二个第二相位偏差与第三相位偏差之间的差。N31为终端设备到TRP3和TRP1的距离之间的差对应的整周模糊度。Δr31为终端设备在第一时刻到达TRP3的距离与到达TRP1的距离之间的距离差。
上述公式15中,为终端设备测量TRP4在第一时刻t1发送的定位参考信号得到的相位与终端设备测量TRP1在第一时刻t1发送的定位参考信号得到的相位之间的相位差。θ41(t1)为在第一时刻校准终端设备测量到的TRP4与TRP1之间的相位偏差。也就是N个第一相位偏差中的第三个第一相位偏差。该第三个第一相位偏差等于N个第二相位偏差中的第三个第二相位偏差与第三相位偏差之间的差。N41终端设备到TRP4和TRP1的距离之间的差对应的整周模糊度。Δr41为终端设备在第一时刻到达TRP4的距离与到达TRP1的距离之间的距离差。
第二网络设备联合上述公式13至公式15计算得到终端设备与各个TRP之间的距离以及终端设备的位置。
由此可知,上述实现方式中,第二网络设备接收来自终端设备的N个相位差1。也就是终端设备测量参考网络设备在第一时刻发送的定位参考信号得到的相位与该终端设备测量至少一个测量网络设备在第一时刻发的定位参考信号得到的相位之间的相位差,并将这些相位差发送给第二网络设备。从而消除终端设备自身的射频初相和终端设备与多个第一网络设备之间的同步误差等误差影响。第i个相位差1是终端设备测量第i个测量网络设备和参考网络设备分别在第一时刻发送的定位参考信号得到的相位之间的相位差。第二网络设备获取N个第一相位偏差。N个第一相位偏差中第i个第一相位偏差可以为N个相位差1中第i个相位差1的相位补偿值。实现对第i个测量网络设备与参考网络设备之间的 同步误差的补偿。然后,第二网络设备根据N个相位差1和N个第一相位偏差对终端设备进行定位。从而实现对终端设备的高精度定位。
二、该至少一个第一网络设备包括参考网络设备和至少一个测量网络设备,第一信息包括以下至少一项:至少一个第一累积相位差,或,至少一个第一等效距离变化量;或者,第一信息包括以下至少一项:至少一个第一累积相位差速率、或,至少一个第一等效距离变化率。
下面以第一信息包括该至少一个第一累积相位差或该至少一个第一等效距离变化量为例介绍第二网络设备对终端设备的定位过程。
可选的,第二网络设备第一信息和该至少一个累积相位偏差对终端设备进行定位的过程。下面介绍第二网络设备对终端设备的具体的定位过程。
该至少一个累积相位偏差包括校准终端设备测量到的参考网络设备与至少一个测量网络设备之间的相位偏差在时间上的累积量。换句话说,该至少一个累积相位偏差包括:校准终端设备与参考网络设备之间的相位偏差和校准终端设备与至少一个测量网络设备之间的相位偏差之间的差在时间上的累积量。
例如,该至少一个累积相位偏差包括N个累积相位偏差。该N个累积相位偏差中第i个累积相位偏差Δθij为N个第一相位偏差中第i个第一相位偏差θij(t1)与N个第四相位偏差中第i个第四相位偏差θij(t2)之间的差。
关于N个第一相位偏差请参阅前述相关介绍。N个第四相位偏差中第i个第四相位偏差θij(t2)是N个第五相位偏差中第i个第五相位偏差θi(t2)与第六相位偏差θj(t2)之间的差。
N个第五相位偏差中第i个第五相位偏差θi(t2)是在第二时刻校准终端设备与N个测量网络设备中第i个测量网络设备之间的相位偏差。第六相位偏差θj(t2)是在第二时刻校准终端设备与参考网络设备之间的相位偏差。
第i个累积相位偏差为N个第一累积相位差中第i个第一累积相位差的相位补偿值。从而实现消除校准终端设备自身的射频初相以及补偿不同站之间的同步误差。具体原理可以参阅后文的相关介绍。
下面介绍第二网络设备结合第一信息和至少一个累积相位偏差对终端设备进行定位的一种可能的实现方式。
结合前述关于图7的相关介绍可知,在网络中引入位置精确已知的校准终端设备,通过校准终端设备消除校准终端设备自身的射频初相以及实现对不同TRP之间的同步误差的校准。
在相位定位过程中,通常终端设备需要对相位进行持续的跟踪,并利用相位在时间上的累积量实现对终端设备的精确跟踪。终端设备可以确定N个第一累积相位差。例如,N个第一累积相位差中第i个第一累积相位差如上述公式1表示。
而上述N个累积相位偏差中第i个累积相位偏差可以表示为:
Δθij=θij(t10)-θij(t1)   公式16
θij(t1)表示N个第一相位偏差中的第i个第一相位偏差。具体关于该θij(t1)可以参阅前述公式3的相关介绍。θij(t10)表示N个第四相位偏差中的第i个第四相位偏差。θij(t10)为N 个第五相位偏差中第i个第五相位偏差θi(t10)与第六相位偏差θj(t10)之间的差。
那么基于上述公式1可知,N个第一累积相位差速率中第i个第一累积相位速率可以表示为:
下面结合图10所示的场景示出第二网络设备对终端设备进行定位的可能实现方式。其中,TRP1为参考网络设备,TRP2至TRP5为测量网络设备。第二网络设备可以通过获得的测量量构建下述多组方程:



上述公式18中,TRP2为N个测量网络设备中的第一个测量网络设备。Δd21表示N个第一等效距离变化量中的第一个第一等效距离变化量,也就是终端设备在第一时刻t1到达TRP1与到达TRP2的距离与终端设备在第二时刻t10到达TRP1与到达TRP2的距离之间的差。为N个第一累积相位差中第一个第一累积相位差。Δθ21为N个累积相位偏差中第一个累积相位偏差。Δθ21用于对N个第一累积相位差中第一个第一累积相位差的相位补偿,实现对TRP1与TRP2之间的同步误差的补偿。λ为承载TRP的定位参考信号的载波信号所在的频点对应的波长。这里以承载各个TRP的定位参考信号的载波信号所在的频点对应的波长都为λ为例进行介绍。
上述公式19中,TRP3为N个测量网络设备中的第二个测量网络设备。Δd31表示N个第一等效距离变化量中的第二个第一等效距离变化量。也就是终端设备在第一时刻t1到达TRP1与到达TRP3的距离与终端设备在第二时刻t10到达TRP1与到达TRP3的距离之间的差。为N个第一累积相位差中第二个第一累积相位差。Δθ31为N个累积相位偏差中的第二个累积相位偏差。Δθ31用于对N个第一累积相位差中第二个第一累积相位差 的相位补偿,实现对TRP3与TRP1之间的同步误差的补偿。
上述公式20中,TRP4为N个测量网络设备中的第三个测量网络设备。Δd41表示N个第一等效距离变化量中的第三个第一等效距离变化量。也就是终端设备在第一时刻t1到达TRP1与到达TRP4的距离与终端设备在第二时刻t10到达TRP1与到达TRP4的距离之间的差。为N个第一累积相位差中第三个第一累积相位差。Δθ41为N个累积相位偏差中的第三个累积相位偏差。Δθ41用于对N个第一累积相位差中第三个第一累积相位差的相位补偿,实现对TRP4与TRP1之间的同步误差的补偿。
上述公式21中,TRP5为N个测量网络设备中的第四个测量网络设备。Δd51表示N个第一等效距离变化量中的第四个第一等效距离变化量。也就是终端设备在第一时刻t1到达TRP1与到达TRP5的距离与终端设备在第二时刻t10到达TRP1与到达TRP5的距离之间的差。为N个第一累积相位差中第四个第一累积相位差。Δθ51为N个累积相位偏差中的第四个累积相位偏差。Δθ51用于对N个第一累积相位差中第四个第一累积相位差的相位补偿,实现对TRP5与TRP1之间的同步误差的补偿。
第二网络设备结合上述公式18至公式21可以计算得到终端设备在第一时刻的位置和在第二时刻的位置。具体第二网络设备可以通过如下公式22计算该终端设备在第一时刻的位置和在第二时刻的位置。
上述公式22中,表示终端设备在第一时刻的位置(x1,y1)到达TRP1与到达N个测量网络设备中的第i个TRP的距离和终端设备在第二时刻的位置(x2,y2)到达TRP1与到达N个测量网络设备中的第i个TRP的距离之间的差。表示N个测量网络设备中的第i个TRP的波动系数,该波动系数与终端设备和N个测量网络设备中的第i个TRP之间的信道质量有关。终端设备和N个测量网络设备中的第i个TRP之间的信道质量越好,终端设备接收到的N个测量网络设备中的第i个TRP的信号接收能量越高,越小。
上述公式22中,第二网络设备可以通过搜索终端设备在第一时刻的位置(x1,y1)和终端设备在第二时刻的位置(x2,y2),第二网络设备将该终端设备在第一时刻的位置(x1, y1)和终端设备在第二时刻的位置(x2,y2)代入使得上述公式14最小化。因此可知,(x1,y1,x2,y2)即为上述公式14中的(x'1,y1',x2',y2')。
由此可知,上述实现方式中,第二网络设备接收来自终端设备的第一信息。第二网络设备获取N个累积相位偏差。然后,第二网络设备根据第一信息和N个累积相位偏差对终端设备进行定位。终端设备上报至少一个第一累积相位差、至少一个第一等效距离变化量、至少一个第一累积相位差速率或至少一个第一等效距离变化率,能够消除终端设备自身的射频初相和终端设备与多个第一网络设备之间的同步误差等误差影响之外,还能够消除由于各个第一网络设备在时间上的线性漂移导致的累积相位偏差。然后,第二网络设备结合终端设备上报的第一信息和校准终端设备上报的信息对终端设备进行定位。实现对不同第一网络设备之间的同步误差的补偿,从而实现对终端设备的高精度定位。
三、该至少一个第一网络设备包括一个或多个第一网络设备,第一信息包括以下至少一个相位差;或者,该第一信息包括以下至少一项:至少一个第二累积相位差、或至少一个第二等效距离变化量;或者,该第一信息包括以下至少一项:至少一个第二累积相位速率,或,至少一个第二等效距离变化率。
该至少一个相位差包括以下至少一项:终端设备测量该至少一个第一网络设备中每个第一网络设备在不同时刻发送的定位参考信号得到的相位之间的相位差;或者,终端设备测量该至少一个第一网络设备中每个第一网络设备在不同时刻发送的定位参考信号得到的信道首径的相位之间的相位差;或者,终端设备测量该至少一个第一网络设备中每个第一网络设备在不同时刻发送的定位参考信号分别得到的频域信道系数在同一频点上的相位差。
下面以该至少一个相位差包括终端设备测量该至少一个第一网络设备中每个第一网络设备在不同时刻发送的定位参考信号得到的相位之间的相位差为例进行介绍。
下面结合图8和图9介绍第二网络设备根据第一信息对终端设备进行定位的一些可能的实现方式。
请参阅图8,终端设备向第二网络设备上报以下四个相位差3: 关于可以参阅前述相关介绍。
第二网络设备通过终端设备上报的四个相位差3计算得到距离差Δd1、距离差Δd2、距离差Δd3和距离差Δd4。距离差Δd1为终端设备在第一时刻t1与第二时刻t10到达TRP1的距离之间的差。距离差Δd2为终端设备在第一时刻t1与第二时刻t10到达TRP2的距离之间的差。距离差Δd3为终端设备在第一时刻t1与第二时刻t10到达TRP3的距离之间的差。距离差Δd4为终端设备在第一时刻t1与第二时刻t10到达TRP4的距离之间的差。下面分别通过公式表示距离差Δd1、距离差Δd2、距离差Δd3和距离差Δd4



第二网络设备结合上述公式23至公式26可以计算得到终端设备在第一时刻t1的位置和在第二时刻t10的位置。具体第二网络设备可以通过如下公式27计算该终端设备在第一时刻t1的位置和在第二时刻t10的位置。
上述公式27中,表示终端设备在第一时刻的位置(x1,y1)到达第b个TRP的距离与在第二时刻的位置(x2,y2)到达第b个TRP的距离之间的差。关于与前述类似,具体请参阅前述的相关介绍,这里不再赘述。b为大于或等于1且小于或等于该一个或多个第一网络设备的数目的整数。λ为承载TRP的定位参考信号的载波信号所在的频点对应的波长。这里以承载各个TRP的定位参考信号的载波信号所在的频点对应的波长都为λ为例进行介绍。
上述公式27中,第二网络设备可以通过搜索终端设备在第一时刻的位置(x1,y1)和终端设备在第二时刻的位置(x2,y2),第二网络设备将该终端设备在第一时刻的位置(x1,y1)和终端设备在第二时刻的位置(x2,y2)代入使得上述公式27最小化。因此,(x1,y1,x2,y2)即为上述公式27中的(x'1,y1',x2',y2')。
由此可知,在上述图8所示的场景中,若终端设备与TRP之间在不同时刻的同步误差固定的场景中,终端设备通过上报P个相位差3来消除终端设备自身的射频初相和终端设备与TRP之间的同步误差。便于第二网络设备通过终端设备上报的P个相位差3确定终端设备在第一时刻的位置和第二时刻的位置。从而实现对终端设备的高精度定位。
请参阅图9,如果TRP1至TRP4都服从时钟线性漂移模型。那么终端设备与第b个TRP之间的同步误差可以表示为:
tb,sync=abtperiod+k   公式28
ab表示终端设备与第b个TRP之间的时钟漂移率的偏差。tperiod表示绝对时间间隔,k表示固定的时间偏差。
根据线性的时钟模型可知,相位差3包含了线性的同步误差。例如,终端设备测量第b个TRP在时刻t1和时刻t10分别发送的定位参考信号的相位之间的相位差。具体如公式29所示:
其中,表示由于终端设备在(t10-t1)的时间间隔内的运动导致的累积相位。表示由于在(t10-t1)的时间间隔内终端设备在的线性时钟误差导致的相位变化。λ表示承载第b个TRP的定位参考信号的载波信号所在的频点对应的波长。
其中,表示由于终端设备在t20-t10的时间间隔内的运动导致的累积相位。表示由于在t20-t10的时间间隔内终端设备在的线性时钟误差导致的相位变化。λ表示承载第b个TRP的定位参考信号的载波信号所在的频点对应的波长。
根据上述公式29和公式30可知,相位差3包含线性的同步误差。为了消除线性时钟漂移误差对定位精度的影响,第二网络设备或终端设备可以结合公式29和公式30计算得到第二累积相位差第二累积相位差可以表示为:
只要保证t1与t10之间的时间间隔和t10与t20之间的时间间隔相等即可消除线性时钟漂移误差。而第二累积相位变化率可以表示为:
例如,终端设备向第二网络设备上报以下信息:第二累积相位差第二累积相位差第二累积相位差和第二累积相位差下面通过公式表示这些第二累积相位差。



第二网络设备结合上述终端设备上报的信息可以确定以下第二等效距离变化量第二等效距离变化量第二等效距离变化量和第二等效距离变化量
第二等效距离变化量为Δd1与Δd5之间的差,Δd5为终端设备在第二时刻t10与第三时刻t20到达TRP1的距离之间的差。例如,如图9所示,
第二等效距离变化量为Δd2与Δd6之间的差,Δd6为终端设备在第二时刻t10与第三时刻t20到达TRP2的距离之间的差。例如,如图9所示,
第二等效距离变化量为Δd3与Δd7之间的差,Δd7为终端设备在第二时刻t10与第三时刻t20到达TRP3的距离之间的差。例如,如图9所示,
第二等效距离变化量为Δd4与Δd8之间的差,Δd8为终端设备在第二时刻t10与第三时刻t20到达TRP4的距离之间的差。例如,如图9所示,
如图9所示,下面结合公式表示第二等效距离变化量第二等效距离变化量第二等效距离变化量和第二等效距离变化量



第二网络设备结合上述公式37至公式40可以计算得到终端设备分别在第一时刻t1、第二时刻t10与第三时刻t20的位置。具体第二网络设备可以通过如下公式41计算该终端设备分别在第一时刻、第二时刻和第三时刻的位置。
其中,表示终端设备在第二时刻t10与第三时刻t20到第b个TRP的距 离之间的差,终端设备在第二时刻t10的位置为(x2,y2),终端设备在第三时刻t20的位置为(x3,y3)。表示终端设备在第一时刻t1与第二时刻t10到第b个TRP的距离之间的差,终端设备在第一时刻t1的位置为(x1,y1),终端设备在第二时刻t10的位置为(x2,y2)。关于请参阅前述的相关介绍,这里不再赘述。λ为承载TRP的定位参考信号的载波信号所在的频点对应的波长。这里以承载各个TRP的定位参考信号的载波信号所在的频点对应的波长λ为例进行介绍。
上述公式41中,第二网络设备可以通过搜索终端设备在第一时刻的位置(x1,y1)、终端设备在第二时刻的位置(x2,y2)以及终端设备在第三时刻的位置(x3,y3)。第二网络设备将该终端设备在第一时刻的位置(x1,y1)、终端设备在第二时刻的位置(x2,y2)以及终端设备在第三时刻的位置(x3,y3)代入使得上述公式41最小化。因此,(x1,y1,x2,y2,x3,y3)即为上述公式28中的(x'1,y1',x2',y2',x3',y3')。
需要说明的是,上述图9所示的定位方法也可以扩展于站间的第一累积相位差或站间的第一累积相位差速率。第二网络设备可以基于站间的第一累积相位差或站间的第一累积相位差速率结合上述图9所示的定位方法对终端设备进行定位。具体本申请不做限定。
上述实现方式中,图9所示的场景中,第二网络设备基于终端设备提供的至少一个第二累积相位差对终端设备进行定位。该方法利用相位差3中包含的时间漂移误差在时间上是线性变化的特性,通过相位差3进行差分的形式消除时间漂移误差的影响。相位差3可以消除终端设备自身的射频初相和终端设备与TRP之间的同步误差。而第二累积相位差可以进一步消除时间漂移误差的影响。第二网络设备基于终端设备上报的至少一个第二累积相位差或至少一个第二累积相位差速率可以实现对终端设备高精度定位。无需校准终端设备的参与,避免部署带来的困难。
因此,通过本申请的技术方案,能够有效避免站间的同步误差和时钟漂移引入的误差对定位精度的影响,有利于提升蜂窝通信系统的定位精度。
本申请实施例中,终端设备测量来自至少一个第一网络设备发送的定位参考信号,得到至少一个相位差。然后,终端设备向第二网络设备发送第一信息,第一信息包括至少一个相位差;或者,第一信息是根据至少一个相位差确定的。由此可知,终端设备提供的第一信息是结合至少一个相位差确定的,有利于消除终端设备与该第一网络设备之间的同步误差以及不同第一网络设备之间的同步误差。有利于第二网络设备结合该第一信息对终端设备进行准确定位。例如,在蜂窝通信系统中,通过本申请的技术方案可以实现第二网络设备对终端设备进行精准定位。从而避免终端设备与第一网络设备之间的同步误差以及不同第一网络设备之间的同步误差导致定位精度降低的问题。
下面对本申请实施例提供的通信装置进行描述。请参阅图12,图12为本申请实施例通信装置的一个结构示意图。通信装置可以用于执行图6所示的实施例中终端设备执行的 步骤,具体请参考上述方法实施例中的相关介绍。
通信装置1200包括收发模块1201和处理模块1202。
收发模块1201可以实现相应的通信功能,收发模块1201还可以称为通信接口或通信单元。处理模块1202用于执行处理操作。
可选地,该通信装置1200还可以包括存储模块,该存储模块可以用于存储指令和/或数据,处理模块1202可以读取存储模块中的指令和/或数据,以使得通信装置实现前图6所示的方法实施例。
该通信装置1200可以用于执行上文方法实施例中终端设备所执行的动作。该通信装置1200可以为终端设备或者可配置于终端设备的部件。收发模块1201用于执行上述方法实施例中终端设备侧的接收相关的操作,处理模块1202用于执行上述方法实施例中终端设备侧的处理相关的操作。
可选的,收发模块1201可以包括发送模块和接收模块。发送模块用于执行上述图6所示的方法实施例中终端设备的发送操作。接收模块用于执行上述图6所示的方法实施例中终端设备的接收操作。
需要说明的是,通信装置1200可以包括发送模块,而不包括接收模块。或者,通信装置1200可以包括接收模块,而不包括发送模块。具体可以视通信装置1200执行的上述方案中是否包括发送动作和接收动作。
例如,通信装置1200用于执行如下方案:
处理模块1202,用于测量来自至少一个第一网络设备发送的定位参考信号,得到至少一个相位差;
收发模块1201,用于向第二网络设备发送第一信息,第一信息包括至少一个相位差;或者,第一信息是根据该至少一个相位差确定的。
一种可能的实现方式中,至少一个第一网络设备包括参考网络设备和至少一个测量网络设备;至少一个相位差包括以下至少一项:
通信装置1200测量参考网络设备发送的定位参考信号得到的相位分别与通信装置1200测量至少一个测量网络设备发送的定位参考信号得到的相位之间的相位差;或者,
通信装置1200测量参考网络设备发送的定位参考信号得到的信道首径的相位分别与通信装置1200测量至少一个测量网络设备发送的定位参考信号得到的信道首径的相位之间的相位差;或者,
通信装置1200测量参考网络设备发送的定位参考信号得到的频域信道系数和通信装置1200测量至少一个测量网络设备发送的定位参考信号得到的频域信道系数在同一个频点上的相位差。
另一种可能的实现方式中,至少一个第一网络设备包括一个第一网络设备;至少一个相位差包括以下至少一项:
通信装置1200测量第一网络设备在不同时刻发送的定位参考信号得到的相位之间的相位差;或者,
通信装置1200测量第一网络设备在不同时刻发送的定位参考信号得到的信道首径的 相位之间的相位差;或者,
通信装置1200测量第一网络设备在不同时刻发送的定位参考信号分别得到的频域信道系数在同一个频点上的相位差。
另一种可能的实现方式中,至少一个第一网络设备包括参考网络设备和至少一个测量网络设备;第一信息包括以下至少一项:至少一个第一累积相位差、或至少一个第一等效距离变化量;
该至少一个第一累积相位差包括以下至少一项:
通信装置1200测量参考网络设备发送的定位参考信号得到的相位分别与通信装置1200测量至少一个测量网络设备发送的定位参考信号得到的相位之间的相位差在时间上的累积量;或者,
通信装置1200测量参考网络设备发送的定位参考信号得到的信道首径的相位分别与通信装置1200测量至少一个测量网络设备发送的定位参考信号得到的信道首径的相位之间的相位差在时间上的累积量;或者,
通信装置1200测量参考网络设备发送的定位参考信号得到的频域信道系数和至少一个测量网络设备发送的定位参考信号得到的频域信道系数在同一个频点上的相位差在时间上的累积量;
至少一个第一等效距离变化量包括通信装置1200与参考网络设备的距离分别和通信装置1200与至少一个测量网络设备的距离之间的距离差在时间上的变化量。
另一种可能的实现方式中,至少一个第一等效距离变化量是根据至少一个第一累积相位差确定的。
另一种可能的实现方式中,至少一个第一网络设备包括参考网络设备和至少一个测量网络设备;第一信息包括以下至少一项:至少一个第一累积相位差速率,或者,至少一个第一等效距离变化率;
至少一个第一累积相位差速率包括以下至少一项:
通信装置1200测量参考网络设备发送的定位参考信号得到的相位分别与通信装置1200测量至少一个测量网络设备发送的定位参考信号得到的相位之间的相位差在单位时间上的累积量;或者,
通信装置1200测量参考网络设备发送的定位参考信号得到的信道首径的相位分别与通信装置1200测量至少一个测量网络设备发送的定位参考信号得到的信道首径的相位之间的相位差在单位时间上的累积量;或者,
通信装置1200测量参考网络设备发送的定位参考信号和至少一个测量网络设备发送的定位参考信号得到的频域信道系数在同一个频点的相位差在单位时间上的累积量;
至少一个第一等效距离变化率包括通信装置1200与参考网络设备的距离和通信装置1200与至少一个测量网络设备的距离之间的距离差在单位时间上的变化量。
另一种可能的实现方式中,该至少一个第一等效距离变化率是根据至少一个第一累积相位差速率确定的。
另一种可能的实现方式中,至少一个第一网络设备包括一个第一网络设备;
第一信息包括以下至少一项:至少一个第二累积相位差;或者,包括至少一个第二等效距离变化量;
至少一个第二累积相位差包括以下至少一项:
通信装置1200测量第一网络设备在不同时刻发送的定位参考信号得到的相位之间的相位差在时间上的累积量;或者,
通信装置1200测量第一网络设备在不同时刻发送的定位参考信号得到的信道首径的相位之间的相位差在时间上的累积量;或者,
通信装置1200测量第一网络设备在不同时刻发送的定位参考信号分别得到的频域信道系数在同一频点上的相位差在时间上的累积量;
至少一个第二等效距离变化量包括通信装置1200在不同时刻到第一网络设备的距离之间的距离差在时间上的变化量。
另一种可能的实现方式中,至少一个第二等效距离变化量是根据至少一个第二累积相位差确定的。
另一种可能的实现方式中,至少一个第一网络设备包括一个第一网络设备;第一信息包括以下至少一项:至少一个第二累积相位差速率,或者,至少一个第二等效距离变化率;
至少一个第二累积相位差速率包括以下至少一项:
通信装置1200测量第一网络设备在不同时刻发送的定位参考信号得到的相位之间的相位差在单位时间内的累积量;或者,
通信装置1200测量第一网络设备在不同时刻发送的定位参考信号得到的信道首径的相位之间的相位差在单位时间上的累积量;或者,
通信装置1200测量第一网络设备在不同时刻发送的定位参考信号分别得到的频域信道系数在同一频点上的相位差在单位时间上的累积量;
至少一个第二等效距离变化率为通信装置1200在不同时刻到所述第一网络设备的距离之间的距离差在时间上的变化量。
另一种可能的实现方式中,至少一个第二等效距离变化率是根据至少一个第二累积相位差速率确定的。
下面对本申请实施例提供的通信装置进行描述。请参阅图13,图13为本申请实施例通信装置的一个结构示意图。通信装置可以用于执行图6所示的实施例中第二网络设备执行的步骤,具体请参考上述方法实施例中的相关介绍。
通信装置1300包括收发模块1301和处理模块1302。
收发模块1301可以实现相应的通信功能,收发模块1301还可以称为通信接口或通信单元。处理模块1302用于执行处理操作。
可选地,该通信装置1300还可以包括存储模块,该存储模块可以用于存储指令和/或数据,处理模块1302可以读取存储模块中的指令和/或数据,以使得通信装置实现前图6所示的方法实施例。
该通信装置1300可以用于执行上文方法实施例中第二网络设备所执行的动作。该通信装置1300可以为第二网络设备或者可配置于第二网络设备的部件。收发模块1301用于执 行上述方法实施例中第二网络设备侧的接收相关的操作,处理模块1302用于执行上述方法实施例中第二网络设备侧的处理相关的操作。
可选的,收发模块1301可以包括发送模块和接收模块。发送模块用于执行上述图6所示的方法实施例中第二网络设备的发送操作。接收模块用于执行上述图6所示的方法实施例中第二网络设备的接收操作。
需要说明的是,通信装置1300可以包括发送模块,而不包括接收模块。或者,通信装置1300可以包括接收模块,而不包括发送模块。具体可以视通信装置1300执行的上述方案中是否包括发送动作和接收动作。
例如,通信装置1300可以用于执行如下方案:
收发模块1301,用于接收来自终端设备的第一信息,第一信息包括至少一个相位差,或者,第一信息是根据该至少一个相位差确定的,该至少一个相位差是终端设备测量至少一个第一网络设备发送的定位参考信号得到的;
处理模块1302,用于根据第一信息对终端设备进行定位。
一种可能的实现方式中,至少一个第一网络设备包括参考网络设备和至少一个测量网络设备;至少一个相位差包括以下至少一项:
终端设备测量参考网络设备发送的定位参考信号得到的相位分别与终端设备测量至少一个测量网络设备发送的定位参考信号得到的相位之间的相位差;或者,
终端设备测量参考网络设备发送的定位参考信号得到的信道首径的相位分别与终端设备测量至少一个测量网络设备发送的定位参考信号得到的信道首径的相位之间的相位差;或者,
终端设备测量参考网络设备发送的定位参考信号得到的频域信道系数和终端设备测量至少一个测量网络设备发送的定位参考信号得到的频域信道系数在同一个频点上的相位差。
另一种可能的实现方式中,至少一个第一网络设备包括一个第一网络设备;至少一个相位差包括以下至少一项:
终端设备测量第一网络设备在不同时刻发送的定位参考信号得到的相位之间的相位差;或者,
终端设备测量第一网络设备在不同时刻发送的定位参考信号得到的信道首径的相位之间的相位差;或者,
终端设备测量第一网络设备在不同时刻发送的定位参考信号分别得到的频域信道系数在同一个频点上的相位差。
另一种可能的实现方式中,至少一个第一网络设备包括参考网络设备和至少一个测量网络设备;第一信息包括以下至少一项:至少一个第一累积相位差、或至少一个第一等效距离变化量;
该至少一个第一累积相位差包括以下至少一项:
终端设备测量参考网络设备发送的定位参考信号得到的相位分别与终端设备测量至少一个测量网络设备发送的定位参考信号得到的相位之间的相位差在时间上的累积量;或者,
终端设备测量参考网络设备发送的定位参考信号得到的信道首径的相位分别与终端设 备测量至少一个测量网络设备发送的定位参考信号得到的信道首径的相位之间的相位差在时间上的累积量;或者,
终端设备测量参考网络设备发送的定位参考信号得到的频域信道系数和至少一个测量网络设备发送的定位参考信号得到的频域信道系数在同一个频点上的相位差在时间上的累积量;
至少一个第一等效距离变化量包括终端设备与参考网络设备的距离分别和终端设备与至少一个测量网络设备的距离之间的距离差在时间上的变化量。
另一种可能的实现方式中,至少一个第一等效距离变化量是根据至少一个第一累积相位差确定的。
另一种可能的实现方式中,至少一个第一网络设备包括参考网络设备和至少一个测量网络设备;第一信息包括以下至少一项:至少一个第一累积相位差速率,或者,至少一个第一等效距离变化率;
至少一个第一累积相位差速率包括以下至少一项:
终端设备测量参考网络设备发送的定位参考信号得到的相位分别与终端设备测量至少一个测量网络设备发送的定位参考信号得到的相位之间的相位差在单位时间上的累积量;或者,
终端设备测量参考网络设备发送的定位参考信号得到的信道首径的相位分别与终端设备测量至少一个测量网络设备发送的定位参考信号得到的信道首径的相位之间的相位差在单位时间上的累积量;或者,
终端设备测量参考网络设备发送的定位参考信号和至少一个测量网络设备发送的定位参考信号得到的频域信道系数在同一个频点的相位差在单位时间上的累积量;
至少一个第一等效距离变化率包括终端设备与参考网络设备的距离和终端设备与至少一个测量网络设备的距离之间的距离差在单位时间上的变化量。
另一种可能的实现方式中,该至少一个第一等效距离变化率是根据至少一个第一累积相位差速率确定的。
另一种可能的实现方式中,至少一个第一网络设备包括一个第一网络设备;
第一信息包括以下至少一项:至少一个第二累积相位差;或者,包括至少一个第二等效距离变化量;
至少一个第二累积相位差包括以下至少一项:
终端设备测量第一网络设备在不同时刻发送的定位参考信号得到的相位之间的相位差在时间上的累积量;或者,
终端设备测量第一网络设备在不同时刻发送的定位参考信号得到的信道首径的相位之间的相位差在时间上的累积量;或者,
终端设备测量第一网络设备在不同时刻发送的定位参考信号分别得到的频域信道系数在同一频点上的相位差在时间上的累积量;
至少一个第二等效距离变化量包括终端设备在不同时刻到第一网络设备的距离之间的距离差在时间上的变化量。
另一种可能的实现方式中,至少一个第二等效距离变化量是根据至少一个第二累积相位差确定的。
另一种可能的实现方式中,至少一个第一网络设备包括一个第一网络设备;第一信息包括以下至少一项:至少一个第二累积相位差速率,或者,至少一个第二等效距离变化率;
至少一个第二累积相位差速率包括以下至少一项:
终端设备测量第一网络设备在不同时刻发送的定位参考信号得到的相位之间的相位差在单位时间内的累积量;或者,
终端设备测量第一网络设备在不同时刻发送的定位参考信号得到的信道首径的相位之间的相位差在单位时间上的累积量;或者,
终端设备测量第一网络设备在不同时刻发送的定位参考信号分别得到的频域信道系数在同一频点上的相位差在单位时间上的累积量;
至少一个第二等效距离变化率为终端设备在不同时刻到所述第一网络设备的距离之间的距离差在时间上的变化量。
另一种可能的实现方式中,至少一个第二等效距离变化率是根据至少一个第二累积相位差速率确定的。
另一种可能的实现方式中,处理模块1302具体用于:
根据第一信息和至少一个相位偏差对所述终端设备进行定位,至少一个相位偏差包括校准终端设备测量至少一个第一网络设备发送的定位参考信号得到的至少一个第一网络设备中不同第一网络设备之间的相位偏差,至少一个相位偏差是校准终端设备上报的。
另一种可能的实现方式中,收发模块1301还用于:
接收来自校准终端设备的该至少一个相位偏差。
另一种可能的实现方式中,处理模块1302具体用于:
根据第一信息和至少一个累积相位偏差对所述终端设备进行定位,至少一个累积相位偏差包括校准终端设备测量至少一个第一网络设备发送的定位参考信号得到的至少一个第一网络设备中不同第一网络设备之间的相位偏差在时间上的累积量,至少一个累积相位偏差是校准终端设备上报的。
另一种可能的实现方式中,收发模块1301还用于:
接收来自校准终端设备的该至少一个累积相位偏差。
下面通过图14示出终端设备的一种可能的结构示意图。
图14示出了一种简化的终端设备的结构示意图。为了便于理解和图示方式,图14中,终端设备以手机作为例子。如图14所示,终端设备包括处理器、存储器、射频电路、天线及输入输出装置。
处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。
存储器主要用于存储软件程序和数据。
射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。
天线主要用于收发电磁波形式的射频信号。
输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为便于说明,图14中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图14所示,终端设备包括收发单元1410和处理单元1420。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。
可选的,可以将收发单元1410中用于实现接收功能的器件视为接收单元,将收发单元1410中用于实现发送功能的器件视为发送单元,即收发单元1410包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1410用于执行上述方法实施例中终端设备的发送操作和接收操作,处理单元1420用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
当该终端设备为芯片时,该芯片包括收发单元和处理单元。其中,该收发单元可以是输入输出电路或通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路或者逻辑电路。
本申请还提供一种通信装置,请参阅图15,本申请实施例通信装置的另一个结构示意图。通信装置可以用于执行图6所示的实施例中第二网络设备执行的步骤,可以参考上述方法实施例中的相关描述。
通信装置包括处理器1501。可选的,通信装置还包括存储器1502和收发器1503。
一种可能的实现方式中,该处理器1501、存储器1502和收发器1503分别通过总线相连,该存储器中存储有计算机指令。
前述实施例中的处理模块1302具体可以是本实施例中的处理器1501,因此该处理器1501的具体实现不再赘述。前述实施例中的收发模块1301则具体可以是本实施例中的收发器1503,因此收发器1503的具体实现不再赘述。
本申请实施例还提供了一种通信系统,该通信系统包括终端设备和第二网络设备。终端设备用于执行上述图6所示的实施例中终端设备执行的全部或部分步骤。第二网络设备用于执行图6所示的实施例中第二网络设备执行的全部或部分步骤。
本申请实施例还提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得该计算机执行如上述图6所示的实施例的通信方法。
本申请实施例还提供了一种计算机可读存储介质,包括计算机指令,当该计算机指令在计算机上运行时,使得计算机执行如上述图6所示的实施例的方法。
本申请实施例还提供一种芯片装置,包括处理器,用于与存储器相连,调用该存储器中存储的程序,以使得该处理器执行上述图6所示的实施例的方法。
其中,上述任一处提到的处理器,可以是一个通用中央处理器,微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述图6所示的实施例的方法的程序执行的集成电路。上述任一处提到的存储器可以为只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (37)

  1. 一种定位信息的确定方法,其特征在于,所述方法包括:
    终端设备测量来自至少一个第一网络设备发送的定位参考信号,得到至少一个相位差;
    所述终端设备向第二网络设备发送第一信息,所述第一信息包括所述至少一个相位差,或者,所述第一信息是根据所述至少一个相位差确定的。
  2. 一种定位方法,其特征在于,所述方法包括:
    第二网络设备接收来自终端设备的第一信息,所述第一信息包括至少一个相位差,或者,所述第一信息是根据所述至少一个相位差确定的,所述至少一个相位差是所述终端设备测量至少一个第一网络设备发送的定位参考信号得到的;
    所述第二网络设备根据所述第一信息对所述终端设备进行定位。
  3. 根据权利要求1或2所述的方法,其特征在于,所述至少一个第一网络设备包括参考网络设备和至少一个测量网络设备;
    所述至少一个相位差包括以下至少一项:
    所述终端设备测量所述参考网络设备发送的定位参考信号得到的相位分别与所述终端设备测量所述至少一个测量网络设备发送的定位参考信号得到的相位之间的相位差;
    或者,
    所述终端设备测量所述参考网络设备发送的定位参考信号得到的信道首径的相位分别与所述终端设备测量所述至少一个测量网络设备发送的定位参考信号得到的信道首径的相位之间的相位差;
    或者,
    所述终端设备测量所述参考网络设备发送的定位参考信号得到的频域信道系数和所述终端设备测量所述至少一个测量网络设备发送的定位参考信号得到的频域信道系数在同一个频点上的相位差。
  4. 根据权利要求3所述的方法,其特征在于,所述至少一个相位差为所述终端设备测量所述至少一个第一网络设备在同一时刻发送的定位参考信号得到的相位差。
  5. 根据权利要求4所述的方法,其特征在于,所述同一时刻包括:同一个正交频分复用OFDM符号,同一个时隙,同一个子时隙,同一个子帧,同一个帧,同一个测量窗、同一个测量间隔、同一个定位参考信号PRS处理窗,同一个参考信号周期、或者同一个上下行切换周期。
  6. 根据权利要3至5中任一项所述的方法,其特征在于,所述至少一个相位差关联相同的时间标签。
  7. 根据权利要求1或2所述的方法,其特征在于,所述至少一个第一网络设备包括一个第一网络设备;所述至少一个相位差包括以下至少一项:
    所述终端设备测量所述第一网络设备在不同时刻发送的定位参考信号得到的相位之间的相位差;或者,
    所述终端设备测量所述第一网络设备在不同时刻发送的定位参考信号得到的信道首径的相位之间的相位差;或者,
    所述终端设备测量所述第一网络设备在不同时刻发送的定位参考信号分别得到的频域信道系数在同一个频点上的相位差。
  8. 根据权利要求1或2所述的方法,其特征在于,所述至少一个第一网络设备包括参考网络设备和至少一个测量网络设备;
    所述第一信息包括以下至少一项:至少一个第一累积相位差、或者,至少一个第一等效距离变化量;
    所述至少一个第一累积相位差包括以下至少一项:
    所述终端设备测量所述参考网络设备发送的定位参考信号得到的相位分别与所述终端设备测量所述至少一个测量网络设备发送的定位参考信号得到的相位之间的相位差在时间上的累积量;或者,
    所述终端设备测量所述参考网络设备发送的定位参考信号得到的信道首径的相位分别与所述终端设备测量所述至少一个测量网络设备发送的定位参考信号得到的信道首径的相位之间的相位差在时间上的累积量;或者,
    所述终端设备测量所述参考网络设备发送的定位参考信号得到的频域信道系数和所述至少一个测量网络设备发送的定位参考信号得到的频域信道系数在同一个频点上的相位差在时间上的累积量;
    所述至少一个第一等效距离变化量包括所述终端设备与所述参考网络设备的距离分别和所述终端设备与所述至少一个测量网络设备的距离之间的距离差在时间上的变化量。
  9. 根据权利要求8所述的方法,其特征在于,所述至少一个第一等效距离变化量是根据所述至少一个第一累积相位差确定的。
  10. 根据权利要求1或2所述的方法,其特征在于,所述至少一个第一网络设备包括参考网络设备和至少一个测量网络设备;
    所述第一信息包括以下至少一项:至少一个第一累积相位差速率,或者,至少一个第一等效距离变化率;
    所述至少一个第一累积相位差速率包括以下至少一项:
    所述终端设备测量所述参考网络设备发送的定位参考信号得到的相位分别与所述终端设备测量所述至少一个测量网络设备发送的定位参考信号得到的相位之间的相位差在单位时间上的累积量;或者,
    所述终端设备测量所述参考网络设备发送的定位参考信号得到的信道首径的相位分别与所述终端设备测量所述至少一个测量网络设备发送的定位参考信号得到的信道首径的相位之间的相位差在单位时间上的累积量;或者,
    所述终端设备测量所述参考网络设备发送的定位参考信号和所述至少一个测量网络设备发送的定位参考信号分别得到的频域信道系数在同一个频点的相位差在单位时间上的累积量;
    所述至少一个第一等效距离变化率包括所述终端设备与所述参考网络设备的距离和所述终端设备与所述至少一个测量网络设备的距离之间的距离差在单位时间上的变化量。
  11. 根据权利要求10所述的方法,其特征在于,所述至少一个第一等效距离变化率是 根据所述至少一个第一累积相位差速率确定的。
  12. 根据权利要求1或2所述的方法,其特征在于,所述至少一个第一网络设备包括一个第一网络设备;
    所述第一信息包括以下至少一项:至少一个第二累积相位差;或者,包括至少一个第二等效距离变化量;
    所述至少一个第二累积相位差包括以下至少一项:
    所述终端设备测量所述第一网络设备在不同时刻发送的定位参考信号得到的相位之间的相位差在时间上的累积量;或者,
    所述终端设备测量所述第一网络设备在不同时刻发送的定位参考信号得到的信道首径的相位之间的相位差在时间上的累积量;或者,
    所述终端设备测量所述第一网络设备在不同时刻发送的定位参考信号分别得到的频域信道系数在同一频点上的相位差在时间上的累积量;
    所述至少一个第二等效距离变化量包括所述终端设备在不同时刻到所述第一网络设备的距离之间的距离差在时间上的变化量。
  13. 根据权利要求12所述的方法,其特征在于,所述至少一个第二等效距离变化量是根据所述至少一个第二累积相位差确定的。
  14. 根据权利要求1或2所述的方法,其特征在于,所述至少一个第一网络设备包括一个第一网络设备;
    所述第一信息包括以下至少一项:至少一个第二累积相位差速率,或者,至少一个第二等效距离变化率;
    所述至少一个第二累积相位差速率包括以下至少一项:
    所述终端设备测量所述第一网络设备在不同时刻发送的定位参考信号得到的相位之间的相位差在单位时间内的累积量;或者,
    所述终端设备测量所述第一网络设备在不同时刻发送的定位参考信号得到的信道首径的相位之间的相位差在单位时间上的累积量;或者,
    所述终端设备测量所述第一网络设备在不同时刻发送的定位参考信号分别得到的频域信道系数在同一频点上的相位差在单位时间上的累积量;
    所述至少一个第二等效距离变化率为所述终端设备在不同时刻到所述第一网络设备的距离之间的距离差在单位时间上的变化量。
  15. 根据权利要求14所述的方法,其特征在于,所述至少一个第二等效距离变化率是根据所述至少一个第二累积相位差速率确定的。
  16. 根据权利要求2至15中任一项所述的方法,其特征在于,所述第二网络设备根据所述第一信息对所述终端设备进行定位,包括:
    所述第二网络设备根据所述第一信息和至少一个相位偏差对所述终端设备进行定位,所述至少一个相位偏差包括校准终端设备测量所述至少一个第一网络设备发送的定位参考信号得到的所述至少一个第一网络设备中不同第一网络设备之间的相位偏差,所述至少一个相位偏差是所述校准终端设备上报的。
  17. 根据权利要求2至15中任一项所述的方法,其特征在于,所述第二网络设备根据所述第一信息对所述终端设备进行定位,包括:
    所述第二网络设备根据所述第一信息和至少一个累积相位偏差对所述终端设备进行定位,所述至少一个累积相位偏差包括校准终端设备测量所述至少一个第一网络设备发送的定位参考信号得到的所述至少一个第一网络设备中不同第一网络设备之间的相位偏差在时间上的累积量,所述至少一个累积相位偏差是所述校准终端设备上报的。
  18. 一种第一通信装置,其特征在于,所述第一通信装置包括收发模块和处理模块;
    所述收发模块,用于测量来自至少一个第一网络设备发送的定位参考信号,得到至少一个相位差;
    所述处理模块,用于向第二网络设备发送第一信息,所述第一信息包括所述至少一个相位差,或者,所述第一信息是根据所述至少一个相位差确定的。
  19. 一种第二通信装置,其特征在于,所述第二通信装置包括收发模块和处理模块;
    所述收发模块,用于接收来自终端设备的第一信息,所述第一信息包括至少一个相位差,或者,所述第一信息是根据所述至少一个相位差确定的,所述至少一个相位差是所述终端设备测量至少一个第一网络设备发送的定位参考信号得到的;
    所述处理模块,用于根据所述第一信息对所述终端设备进行定位。
  20. 根据权利要求18所述的第一通信装置或权利要求19所述的第二通信装置,其特征在于,所述至少一个第一网络设备包括参考网络设备和至少一个测量网络设备;
    所述至少一个相位差包括以下至少一项:
    所述第一通信装置测量所述参考网络设备发送的定位参考信号得到的相位分别与所述第一通信装置测量所述至少一个测量网络设备发送的定位参考信号得到的相位之间的相位差;
    或者,
    所述第一通信装置测量所述参考网络设备发送的定位参考信号得到的信道首径的相位分别与所述第一通信装置测量所述至少一个测量网络设备发送的定位参考信号得到的信道首径的相位之间的相位差;
    或者,
    所述第一通信装置测量所述参考网络设备发送的定位参考信号得到的频域信道系数和所述第一通信装置测量所述至少一个测量网络设备发送的定位参考信号得到的频域信道系数在同一个频点上的相位差。
  21. 根据权利要求20所述的第一通信装置或第二通信装置,其特征在于,所述至少一个相位差为所述第一通信装置测量所述至少一个第一网络设备在同一时刻发送的定位参考信号得到的相位差。
  22. 根据权利要求21所述的第一通信装置或第二通信装置,其特征在于,所述同一时刻包括:同一个正交频分复用OFDM符号,同一个时隙,同一个子时隙,同一个子帧,同一个帧,同一个测量窗、同一个测量间隔、同一个定位参考信号PRS处理窗,同一个参考信号周期、或者同一个上下行切换周期。
  23. 根据权利要20至22中任一项所述的第一通信装置或第二通信装置,其特征在于,所述至少一个相位差关联相同的时间标签。
  24. 根据权利要求18所述的第一通信装置或权利要求19所述的第二通信装置,其特征在于,所述至少一个第一网络设备包括一个第一网络设备;所述至少一个相位差包括以下至少一项:
    所述第一通信装置测量所述第一网络设备在不同时刻发送的定位参考信号得到的相位之间的相位差;或者,
    所述第一通信装置测量所述第一网络设备在不同时刻发送的定位参考信号得到的信道首径的相位之间的相位差;或者,
    所述第一通信装置测量所述第一网络设备在不同时刻发送的定位参考信号分别得到的频域信道系数在同一个频点上的相位差。
  25. 根据权利要求18所述的第一通信装置或权利要求19所述的第二通信装置,其特征在于,所述至少一个第一网络设备包括参考网络设备和至少一个测量网络设备;
    所述第一信息包括以下至少一项:至少一个第一累积相位差、或者,至少一个第一等效距离变化量;
    所述至少一个第一累积相位差包括以下至少一项:
    所述第一通信装置测量所述参考网络设备发送的定位参考信号得到的相位分别与所述第一通信装置测量所述至少一个测量网络设备发送的定位参考信号得到的相位之间的相位差在时间上的累积量;或者,
    所述第一通信装置测量所述参考网络设备发送的定位参考信号得到的信道首径的相位分别与所述第一通信装置测量所述至少一个测量网络设备发送的定位参考信号得到的信道首径的相位之间的相位差在时间上的累积量;或者,
    所述第一通信装置测量所述参考网络设备发送的定位参考信号得到的频域信道系数和所述至少一个测量网络设备发送的定位参考信号得到的频域信道系数在同一个频点上的相位差在时间上的累积量;
    所述至少一个第一等效距离变化量包括所述第一通信装置与所述参考网络设备的距离分别和所述第一通信装置与所述至少一个测量网络设备的距离之间的距离差在时间上的变化量。
  26. 根据权利要求25所述的第一通信装置或第二通信装置,其特征在于,所述至少一个第一等效距离变化量是根据所述至少一个第一累积相位差确定的。
  27. 根据权利要求18所述的第一通信装置或权利要求19所述的第二通信装置,其特征在于,所述至少一个第一网络设备包括参考网络设备和至少一个测量网络设备;
    所述第一信息包括以下至少一项:至少一个第一累积相位差速率,或者,至少一个第一等效距离变化率;
    所述至少一个第一累积相位差速率包括以下至少一项:
    所述第一通信装置测量所述参考网络设备发送的定位参考信号得到的相位分别与所述第一通信装置测量所述至少一个测量网络设备发送的定位参考信号得到的相位之间的相位 差在单位时间上的累积量;或者,
    所述第一通信装置测量所述参考网络设备发送的定位参考信号得到的信道首径的相位分别与所述第一通信装置测量所述至少一个测量网络设备发送的定位参考信号得到的信道首径的相位之间的相位差在单位时间上的累积量;或者,
    所述第一通信装置测量所述参考网络设备发送的定位参考信号和所述至少一个测量网络设备发送的定位参考信号分别得到的频域信道系数在同一个频点的相位差在单位时间上的累积量;
    所述至少一个第一等效距离变化率包括所述第一通信装置与所述参考网络设备的距离和所述第一通信装置与所述至少一个测量网络设备的距离之间的距离差在单位时间上的变化量。
  28. 根据权利要求27所述的第一通信装置或第二通信装置,其特征在于,所述至少一个第一等效距离变化率是根据所述至少一个第一累积相位差速率确定的。
  29. 根据权利要求18所述的第一通信装置或权利要求19所述的第二通信装置,其特征在于,所述至少一个第一网络设备包括一个第一网络设备;
    所述第一信息包括以下至少一项:至少一个第二累积相位差;或者,包括至少一个第二等效距离变化量;
    所述至少一个第二累积相位差包括以下至少一项:
    所述第一通信装置测量所述第一网络设备在不同时刻发送的定位参考信号得到的相位之间的相位差在时间上的累积量;或者,
    所述第一通信装置测量所述第一网络设备在不同时刻发送的定位参考信号得到的信道首径的相位之间的相位差在时间上的累积量;或者,
    所述第一通信装置测量所述第一网络设备在不同时刻发送的定位参考信号分别得到的频域信道系数在同一频点上的相位差在时间上的累积量;
    所述至少一个第二等效距离变化量包括所述第一通信装置在不同时刻到所述第一网络设备的距离之间的距离差在时间上的变化量。
  30. 根据权利要求29所述的第一通信装置或第二通信装置,其特征在于,所述至少一个第二等效距离变化量是根据所述至少一个第二累积相位差确定的。
  31. 根据权利要求18所述的第一通信装置或权利要求19所述的第二通信装置,其特征在于,所述至少一个第一网络设备包括一个第一网络设备;
    所述第一信息包括以下至少一项:至少一个第二累积相位差速率,或者,至少一个第二等效距离变化率;
    所述至少一个第二累积相位差速率包括以下至少一项:
    所述第一通信装置测量所述第一网络设备在不同时刻发送的定位参考信号得到的相位之间的相位差在单位时间内的累积量;或者,
    所述第一通信装置测量所述第一网络设备在不同时刻发送的定位参考信号得到的信道首径的相位之间的相位差在单位时间上的累积量;或者,
    所述第一通信装置测量所述第一网络设备在不同时刻发送的定位参考信号分别得到的 频域信道系数在同一频点上的相位差在单位时间上的累积量;
    所述至少一个第二等效距离变化率为所述第一通信装置在不同时刻到所述第一网络设备的距离之间的距离差在单位时间上的变化量。
  32. 根据权利要求31所述的第一通信装置或第二通信装置,其特征在于,所述至少一个第二等效距离变化率是根据所述至少一个第二累积相位差速率确定的。
  33. 根据权利要求19至32中任一项所述的第二通信装置,其特征在于,所述处理模块具体用于:
    根据所述第一信息和至少一个相位偏差对所述终端设备进行定位,所述至少一个相位偏差包括校准终端设备测量所述至少一个第一网络设备发送的定位参考信号得到的所述至少一个第一网络设备中不同第一网络设备之间的相位偏差,所述至少一个相位偏差是所述校准终端设备上报的。
  34. 根据权利要求19至32中任一项所述的第二通信装置,其特征在于,所述处理模块具体用于:
    根据所述第一信息和至少一个累积相位偏差对所述终端设备进行定位,所述至少一个累积相位偏差包括校准终端设备测量所述至少一个第一网络设备发送的定位参考信号得到的所述至少一个第一网络设备中不同第一网络设备之间的相位偏差在时间上的累积量,所述至少一个累积相位偏差是所述校准终端设备上报的。
  35. 一种通信装置,其特征在于,所述通信装置包括处理器;所述处理器用于执行存储器中的计算机程序或计算机指令,以执行如权利要求1至17中任一项所述的方法。
  36. 根据权利要求35所述的通信装置,其特征在于,所述通信装置还包括所述存储器。
  37. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置执行如权利要求1至17中任一项所述的方法。
PCT/CN2023/085643 2022-03-31 2023-03-31 定位信息的确定方法、定位方法以及相关装置 WO2023186135A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210336233.3 2022-03-31
CN202210336233.3A CN116931034A (zh) 2022-03-31 2022-03-31 定位信息的确定方法、定位方法以及相关装置
CNPCT/CN2023/079525 2023-03-03
CN2023079525 2023-03-03

Publications (1)

Publication Number Publication Date
WO2023186135A1 true WO2023186135A1 (zh) 2023-10-05

Family

ID=88199429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085643 WO2023186135A1 (zh) 2022-03-31 2023-03-31 定位信息的确定方法、定位方法以及相关装置

Country Status (1)

Country Link
WO (1) WO2023186135A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110037646A1 (en) * 2008-05-07 2011-02-17 Toyota Jidosha Kabushiki Kaisha Inter-mobile body carrier phase positioning device and method
CN109073732A (zh) * 2016-05-25 2018-12-21 株式会社村田制作所 位置检测系统以及位置检测方法
CN110062457A (zh) * 2018-01-19 2019-07-26 电信科学技术研究院有限公司 一种定位方法和相关设备
CN111279208A (zh) * 2017-09-15 2020-06-12 弗劳恩霍夫应用研究促进协会 能够用于使用相位估计进行用户设备定位的通信装置、方法和蜂窝网络
CN112543160A (zh) * 2019-09-05 2021-03-23 大唐移动通信设备有限公司 载波相位测量值的偏差消除和获取方法、装置及接收机
CN112788733A (zh) * 2019-11-11 2021-05-11 大唐移动通信设备有限公司 时钟偏差确定方法及装置
CN113115436A (zh) * 2021-03-10 2021-07-13 清华大学 信标的定位方法、装置、主站、定位系统和存储介质
CN113691929A (zh) * 2020-05-15 2021-11-23 大唐移动通信设备有限公司 定位方法及装置
CN115767415A (zh) * 2022-10-26 2023-03-07 华为技术有限公司 发送与接收信息的方法及通信装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110037646A1 (en) * 2008-05-07 2011-02-17 Toyota Jidosha Kabushiki Kaisha Inter-mobile body carrier phase positioning device and method
CN109073732A (zh) * 2016-05-25 2018-12-21 株式会社村田制作所 位置检测系统以及位置检测方法
CN111279208A (zh) * 2017-09-15 2020-06-12 弗劳恩霍夫应用研究促进协会 能够用于使用相位估计进行用户设备定位的通信装置、方法和蜂窝网络
CN110062457A (zh) * 2018-01-19 2019-07-26 电信科学技术研究院有限公司 一种定位方法和相关设备
CN112543160A (zh) * 2019-09-05 2021-03-23 大唐移动通信设备有限公司 载波相位测量值的偏差消除和获取方法、装置及接收机
CN112788733A (zh) * 2019-11-11 2021-05-11 大唐移动通信设备有限公司 时钟偏差确定方法及装置
CN113691929A (zh) * 2020-05-15 2021-11-23 大唐移动通信设备有限公司 定位方法及装置
CN113115436A (zh) * 2021-03-10 2021-07-13 清华大学 信标的定位方法、装置、主站、定位系统和存储介质
CN115767415A (zh) * 2022-10-26 2023-03-07 华为技术有限公司 发送与接收信息的方法及通信装置

Similar Documents

Publication Publication Date Title
TWI778607B (zh) 定位方法、裝置及電腦存儲介質
CN110971326B (zh) 一种时间同步的方法和装置
US20220393820A1 (en) Accurate Sidelink Positioning Reference Signal Transmission Timing
EP3067712B1 (en) Position estimation device and method for wireless communication system
US20150219750A1 (en) Positioning method and apparatus
CN103548400A (zh) 用于估计蜂窝网络中的定时偏移差的方法和装置
EP4181447A1 (en) Qcl indication method and related device
EP3925092A1 (en) Apparatus, method and computer program for beam management
WO2021046820A1 (zh) 一种测量上报方法及装置
WO2020029873A1 (zh) 通信方法、装置和通信系统
WO2023186135A1 (zh) 定位信息的确定方法、定位方法以及相关装置
US20220353832A1 (en) Method for Reference Signal Time Synchronization and Calibration
WO2022151859A1 (zh) 一种信息处理方法、装置、终端及网络侧设备
CN114095855A (zh) 一种定位方法及装置
CN116931034A (zh) 定位信息的确定方法、定位方法以及相关装置
WO2024066913A1 (zh) 一种定位方法及装置
WO2023011196A1 (zh) 一种时间误差信息的更新方法以及相关装置
WO2023185407A1 (zh) 一种通信方法及装置
WO2023207509A1 (zh) 用于sidelink的定位方法、装置及可读存储介质
WO2023174131A1 (zh) 通信方法和通信装置
WO2023236894A1 (zh) 通信方法以及通信装置
WO2023051314A1 (zh) 一种通信方法及通信装置
WO2023207510A1 (zh) 用于sidelink的定位方法、装置及可读存储介质
EP4181537A1 (en) Multi-path single anchor point positioning method and communication apparatus
WO2024026684A1 (zh) 基于载波相位的定位测量方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778499

Country of ref document: EP

Kind code of ref document: A1