WO2024066913A1 - 一种定位方法及装置 - Google Patents

一种定位方法及装置 Download PDF

Info

Publication number
WO2024066913A1
WO2024066913A1 PCT/CN2023/116321 CN2023116321W WO2024066913A1 WO 2024066913 A1 WO2024066913 A1 WO 2024066913A1 CN 2023116321 W CN2023116321 W CN 2023116321W WO 2024066913 A1 WO2024066913 A1 WO 2024066913A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
measurement
reference signal
positioning reference
terminal
Prior art date
Application number
PCT/CN2023/116321
Other languages
English (en)
French (fr)
Inventor
任斌
达人
任晓涛
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2024066913A1 publication Critical patent/WO2024066913A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present application relates to the field of communication technology, and in particular to a positioning method and device.
  • the 3rd Generation Partnership Project (3GPP) version 16 (Rel-16) standard supports a variety of positioning methods that rely on the fifth generation cellular mobile communication system (5th Generation, 5G) radio access technology (Radio Access Technology, RAT-dependent).
  • 5th Generation, 5G fifth generation cellular mobile communication system
  • UE user equipment
  • RAT-dependent Radio Access Technology
  • the embodiments of the present application provide a positioning method and device for providing a positioning solution for user equipment in various motion speed scenarios, and ensuring positioning accuracy to avoid the problem of reduced positioning accuracy performance for user equipment moving at high speed.
  • an embodiment of the present application provides a positioning method, including:
  • the positioning reference signal configuration information is positioning reference signal configuration information about multiple positioning reference signal sending entities at multiple time instants;
  • the positioning reference signals are sent at the multiple time instants, and positioning measurements are performed, wherein the granularity of the measurement time instants is less than or equal to an orthogonal frequency division multiplexing symbol.
  • This method obtains and receives the positioning reference signals sent by the multiple positioning reference signal sending entities at multiple moments according to the positioning reference signal configuration information of the multiple positioning reference signal sending entities at the multiple moments, and performs positioning measurement, wherein the granularity of the measurement moment is less than or equal to the orthogonal frequency division multiplexing symbol, thereby overcoming the influence of UE movement and Doppler frequency shift on positioning accuracy, thereby improving the positioning accuracy of high-speed moving terminals.
  • the method can be applied to the positioning of user equipment in various motion speed scenarios, and ensures the positioning accuracy, avoiding the problem of reduced positioning accuracy performance of high-speed moving user equipment.
  • the method further comprises:
  • the type of positioning measurement quantity supported by the terminal wherein the type includes arrival phase and/or arrival time;
  • performing positioning measurements includes:
  • the step of determining the number M of measurement samples includes:
  • indication information is received, where the indication information is used to indicate information for determining a value of the number M of the measurement samples, and the value of the number M of the measurement samples is determined according to the indication information.
  • the value of the number M of measurement samples is 1.
  • the method further comprises:
  • the positioning measurement includes one of the following four types or a combination of positioning measurements:
  • the measurement quality indication information includes one or a combination of the following information:
  • the absolute time or relative time corresponding to the positioning measurement value wherein the absolute time or relative time uses orthogonal frequency division multiplexing symbols or sampling value points as the measurement time granularity;
  • the method further includes: obtaining a differential arrival time TOA measurement amount and/or a differential arrival phase POA measurement amount based on the positioning measurement, using preset terminal location information at multiple different times within the initial search range, and calculating the location information of the terminal at multiple different times based on a cost function minimization criterion;
  • the differential TOA includes single differential TOA and double differential TOA
  • the differential POA measurement includes single differential POA and double differential POA.
  • the cost function includes one of the following five cost functions:
  • the fifth type of cost function using multiple different terminal positions preset at the moment, calculating the first weighted square value of the difference between the theoretical double differential TOA value and the double differential TOA value actually measured by the terminal, wherein the inverse of the weighted coefficient is the variance of the TOA measurement error, and the TOA measurement error is a preset value, or is notified to the terminal by the network according to the current scenario;
  • the calculating of the theoretical double differential TOA value includes calculating a theoretical single differential TOA from the terminal to any non-reference positioning reference signal sending entity j among the multiple positioning reference signal sending entities. and a difference value of a theoretical single differential TOA to a reference positioning reference signal sending entity p among the multiple positioning reference signal sending entities;
  • Calculating the theoretical double differential POA value includes calculating a difference value between a theoretical single differential POA from the terminal to any non-reference positioning reference signal sending entity j among the multiple positioning reference signal sending entities and a theoretical single differential POA from the terminal to a reference positioning reference signal sending entity p among the multiple positioning reference signal sending entities;
  • N represents the total number of positioning reference signal sending entities.
  • an embodiment of the present application provides a location method, including:
  • the positioning reference signal configuration information is sent, so that the terminal receives the positioning reference signals sent by the multiple positioning reference signal sending entities at the multiple time instants according to the positioning reference signal configuration information, and performs positioning measurement, wherein the granularity of the measurement time instant is less than or equal to an orthogonal frequency division multiplexing symbol.
  • the method further comprises:
  • the positioning capability of the receiving terminal includes one or a combination of the following information:
  • the type of positioning measurement quantity supported by the terminal wherein the type includes arrival phase and/or arrival time;
  • the time domain resource positions of the positioning reference signals of the multiple positioning reference signal sending entities at the same time of multiple time moments are the same or adjacent or differ by a preset range.
  • the method further comprises:
  • the indication information indicates a value of the number M of measurement samples; or, the indication information indicates information used to determine the value of the number M of measurement samples.
  • the value of the number M of measurement samples is 1.
  • the method further comprises:
  • the positioning measurement includes one of the following four types or a combination of positioning measurements:
  • the measurement quality indication information includes one or a combination of the following information:
  • the absolute time or relative time corresponding to the positioning measurement value wherein the absolute time or relative time uses orthogonal frequency division multiplexing symbols or sampling value points as the measurement time granularity;
  • the method further comprises:
  • the preset terminal location information at multiple different moments in the initial search range is used, and based on a cost function minimization criterion, the location information of the terminal at the multiple different moments is calculated.
  • the fifth type of cost function using multiple different terminal positions preset at the moment, calculating the first weighted square value of the difference between the theoretical double differential TOA value and the double differential TOA value actually measured by the terminal, wherein the inverse of the weighted coefficient is the variance of the TOA measurement error, and the TOA measurement error is a preset value, or is notified to the terminal by the network according to the current scenario;
  • the calculating of the theoretical double differential TOA value includes calculating a difference value between a theoretical single differential TOA from the terminal to any non-reference positioning reference signal sending entity j among the multiple positioning reference signal sending entities and a theoretical single differential TOA from the terminal to a reference positioning reference signal sending entity p among the multiple positioning reference signal sending entities;
  • Calculating the theoretical double differential POA value includes calculating a difference value between a theoretical single differential POA from the terminal to any non-reference positioning reference signal sending entity j among the multiple positioning reference signal sending entities and a theoretical single differential POA from the terminal to a reference positioning reference signal sending entity p among the multiple positioning reference signal sending entities;
  • N represents the total number of positioning reference signal sending entities.
  • an embodiment of the present application provides a positioning method, including:
  • the positioning management function entity negotiateate with the positioning management function entity to determine positioning reference signal configuration information, where the positioning reference signal configuration information is positioning reference signal configuration information about multiple positioning reference signal sending entities at multiple times;
  • a positioning reference signal is sent to the terminal at each of the multiple time instants, so that the terminal receives the positioning reference signals sent at the multiple time instants according to the positioning reference signal configuration information and performs positioning measurement, wherein the granularity of the measurement time instant is less than or equal to an orthogonal frequency division multiplexing symbol.
  • the time domain resource positions of the positioning reference signals of the multiple positioning reference signal sending entities at the same time of multiple time moments are the same or adjacent or differ by a preset range.
  • an embodiment of the present application provides a positioning device, including a memory, a transceiver, and a processor:
  • a memory for storing a computer program; a transceiver for transmitting and receiving data under the control of the processor; and a processor for reading the computer program in the memory and performing the following operations:
  • the positioning reference signal configuration information is positioning reference signal configuration information about multiple positioning reference signal sending entities at multiple time instants;
  • the positioning reference signals are sent at the multiple time instants, and positioning measurements are performed, wherein the granularity of the measurement time instants is less than or equal to an orthogonal frequency division multiplexing symbol.
  • the processor is further configured to read the computer program in the memory and perform the following operations:
  • the type of positioning measurement quantity supported by the terminal wherein the type includes arrival phase and/or arrival time;
  • performing positioning measurements includes:
  • the determining of the number M of measurement samples, where the measurement samples are used to obtain positioning measurement values includes:
  • indication information is received, where the indication information is used to indicate information for determining a value of the number M of the measurement samples, and the value of the number M of the measurement samples is determined according to the indication information.
  • the value of the number M of measurement samples is 1.
  • the processor is further configured to read the computer program in the memory and perform the following operations:
  • the positioning measurement includes one of the following four types or a combination of positioning measurements:
  • the measurement quality indication information includes one or a combination of the following information:
  • the absolute time or relative time corresponding to the positioning measurement quantity wherein the absolute time or relative time Time, with OFDM symbols or sampling points as the measurement time granularity;
  • the processor is further configured to read the computer program in the memory and perform the following operations:
  • a differential arrival time TOA measurement amount and/or a differential arrival phase POA measurement amount are obtained based on the positioning measurement, and the preset terminal location information at multiple different times within the initial search range is used to calculate the location information of the terminal at the multiple different times based on a cost function minimization criterion;
  • the differential TOA includes single differential TOA and double differential TOA
  • the differential POA measurement includes single differential POA and double differential POA.
  • an embodiment of the present application provides a positioning device, including a memory, a transceiver, and a processor:
  • a memory for storing a computer program; a transceiver for transmitting and receiving data under the control of the processor; and a processor for reading the computer program in the memory and performing the following operations:
  • the positioning reference signal configuration information is sent, so that the terminal receives the positioning reference signals sent by the multiple positioning reference signal sending entities at the multiple time instants according to the positioning reference signal configuration information, and performs positioning measurement, wherein the granularity of the measurement time instant is less than or equal to an orthogonal frequency division multiplexing symbol.
  • the processor is further configured to read the computer program in the memory and perform the following operations:
  • the positioning capability of the receiving terminal includes one or a combination of the following information:
  • the type of positioning measurement quantity supported by the terminal wherein the type includes arrival phase and/or arrival time;
  • the time domain resource positions of the positioning reference signals of the multiple positioning reference signal sending entities at the same time of multiple time moments are the same or adjacent or differ by a preset range.
  • the processor is further configured to read the computer program in the memory and perform the following operations:
  • the indication information indicates a value of the number M of measurement samples; or, the indication information indicates information used to determine the value of the number M of measurement samples.
  • the value of the number M of measurement samples is 1.
  • the processor is further configured to read the computer program in the memory and perform the following operations:
  • the positioning measurement includes one of the following four types or a combination of positioning measurements:
  • the measurement quality indication information includes one or a combination of the following information:
  • the absolute time or relative time corresponding to the positioning measurement value wherein the absolute time or relative time uses orthogonal frequency division multiplexing symbols or sampling value points as the measurement time granularity;
  • the processor is further configured to read the computer program in the memory and perform the following operations:
  • the preset terminal location information at multiple different moments in the initial search range is used, and based on a cost function minimization criterion, the location information of the terminal at the multiple different moments is calculated.
  • an embodiment of the present application provides a positioning device, including a memory, a transceiver, and a processor:
  • a memory for storing a computer program; a transceiver for transmitting and receiving data under the control of the processor; and a processor for reading the computer program in the memory and performing the following operations:
  • the positioning management function entity negotiateate with the positioning management function entity to determine positioning reference signal configuration information, where the positioning reference signal configuration information is positioning reference signal configuration information about multiple positioning reference signal sending entities at multiple times;
  • a positioning reference signal is sent to the terminal at each of the multiple time instants, so that the terminal receives the positioning reference signals sent at the multiple time instants according to the positioning reference signal configuration information and performs positioning measurement, wherein the granularity of the measurement time instant is less than or equal to an orthogonal frequency division multiplexing symbol.
  • the time domain resource positions of the positioning reference signals of the multiple positioning reference signal sending entities at the same time of multiple time moments are the same or adjacent or differ by a preset range.
  • another positioning device provided in an embodiment of the present application includes:
  • An acquisition positioning reference signal configuration unit is used to acquire positioning reference signal configuration information, wherein the positioning reference signal configuration information is positioning reference signal configuration information about multiple positioning reference signal sending entities at multiple time instants;
  • a positioning measurement unit is used to receive positioning reference signals sent by the multiple positioning reference signal sending entities at the multiple time moments according to the positioning reference signal configuration information, and perform positioning measurement, wherein the granularity of the measurement time moment is less than or equal to an orthogonal frequency division multiplexing symbol.
  • another location device provided in an embodiment of the present application includes:
  • a positioning reference signal configuration negotiation unit configured to negotiate with a plurality of positioning reference signal sending entities to determine positioning reference signal configuration information, wherein the positioning reference signal configuration information is positioning reference signal configuration information about the plurality of positioning reference signal sending entities at a plurality of times;
  • a positioning reference signal configuration sending unit is used to send the positioning reference signal configuration information, and is used for the terminal to receive the positioning reference signals sent by the multiple positioning reference signal sending entities at the multiple time periods according to the positioning reference signal configuration information, and perform positioning measurement, wherein the granularity of the measurement time is less than or equal to the orthogonal frequency division multiplexing symbol.
  • another positioning device provided in an embodiment of the present application includes: include:
  • a positioning reference signal configuration negotiation unit configured to negotiate with a positioning management function entity to determine positioning reference signal configuration information, wherein the positioning reference signal configuration information is positioning reference signal configuration information about multiple positioning reference signal sending entities at multiple times;
  • a positioning reference signal sending unit is used to send positioning reference signals to the terminal at the multiple time points respectively, and the terminal is used to receive the positioning reference signals sent at the multiple time points according to the positioning reference signal configuration information, and perform positioning measurement, wherein the granularity of the measurement time point is less than or equal to the orthogonal frequency division multiplexing symbol.
  • Another embodiment of the present application provides a processor-readable storage medium, wherein the processor-readable storage medium stores a computer program, and the computer program is used to enable the processor to execute any of the above methods.
  • FIG1 is a schematic diagram of a signal round trip time (RTT) provided in an embodiment of the present application
  • FIG2 is a schematic diagram of the overall solution provided by an embodiment of the present application.
  • FIG3 is a schematic diagram of the dd jp calculation principle provided in an embodiment of the present application.
  • FIG. 4 is a diagram of an embodiment of the present application. Schematic diagram of calculation principle
  • FIG5 is a schematic flow chart of a positioning method at a PRS receiving entity side provided in an embodiment of the present application
  • FIG6 is a schematic flow chart of a positioning method for the LMF side provided in an embodiment of the present application.
  • FIG7 is a schematic flow chart of a positioning method at the PRS sending entity side provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of the structure of a positioning device on a terminal side provided in an embodiment of the present application.
  • FIG9 is a schematic diagram of the structure of a positioning device on the network side provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of the structure of a positioning device on the PRS receiving entity side provided in an embodiment of the present application.
  • FIG11 is a schematic structural diagram of a positioning device on the LMF side provided in an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the structure of a positioning device on the PRS sending entity side provided in an embodiment of the present application.
  • the term "and/or” describes the association relationship of the associated objects, indicating that there may be three relationships.
  • a and/or B may represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/” generally indicates that the associated objects before and after are in an "or” relationship.
  • the term “plurality” refers to two or more than two, and other quantifiers are similar.
  • the embodiments of the present application provide a positioning method and device for providing a positioning solution for user equipment in various motion speed scenarios, and ensuring positioning accuracy to avoid the problem of reduced positioning accuracy performance for user equipment moving at high speed.
  • the method and the device are based on the same application concept. Since the method and the device solve the problem in a similar principle, the implementation of the device and the method can refer to each other, and the repeated parts will not be repeated.
  • the applicable system can be a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (WCDMA) general packet radio service (GPRS) system, a long term evolution (LTE) system, a LTE frequency division duplex (FDD) system, a LTE time division duplex (TDD) system, a long term evolution (LTE-A) system, a universal mobile telecommunication system (UMTS) system, a world-wide interoperability for microwave access (WiMAX) system, a 5G new radio (NR) system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • LTE-A long term evolution
  • UMTS universal mobile telecommunication system
  • WiMAX world-wide interoperability for microwave access
  • NR 5
  • the terminal device involved in the embodiments of the present application may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the name of the terminal device may also be different.
  • the terminal device may be called a user equipment (UE).
  • the wireless terminal device can communicate with one or more core networks (CN) via the RAN.
  • the wireless terminal device may be a mobile terminal device, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal device, for example, a portable, pocket-sized, handheld, computer-built-in or Mobile devices on mobile phones or vehicles that exchange language and/or data with the wireless access network.
  • Wireless terminal devices may also be referred to as systems, subscriber units, subscriber stations, mobile stations, mobile stations, remote stations, access points, remote terminal devices, access terminal devices, user terminal devices, user agents, and user devices, which are not limited in the embodiments of the present application.
  • the network device involved in the embodiments of the present application may be a base station, which may include multiple cells.
  • the base station may also be called an access point, or may refer to a device in an access network that communicates with a wireless terminal device through one or more sectors on an air interface, or other names.
  • the network device may be used to convert received air frames to and from Internet Protocol (IP) packets, acting as a router between the wireless terminal device and the rest of the access network, where the rest of the access network may include an Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • the network device may also coordinate the attribute management of the air interface.
  • the network device involved in the embodiments of the present application may be a network device (Base Transceiver Station, BTS) in the Global System for Mobile Communications (GSM) or Code Division Multiple Access (CDMA), or a network device (NodeB) in Wideband Code Division Multiple Access (WCDMA), or an evolved network device (evolutional Node B, eNB or e-NodeB) in the Long Term Evolution (LTE) system, a 5G base station in the 5G network architecture (next generation system), or a home evolved Node B (Home evolved Node B, HeNB), a relay node, a home base station (femto), a pico base station (pico), etc., which is not limited in the embodiments of the present application.
  • the network device may include a centralized unit (CU) node and a distributed unit (DU) node, and the centralized unit and the distributed unit may also be arranged geographically separately.
  • Network devices and terminal devices can each use one or more antennas for multiple input multiple output (MIMO) transmission.
  • MIMO transmission can be single user MIMO (SU-MIMO) or multi-user MIMO (Multi-User MIMO, MU-MIMO).
  • MIMO transmission can be 2D-MIMO, 3D-MIMO, FD-MIMO or massive-MIMO, or it can be diversity transmission, precoded transmission or beamforming transmission, etc.
  • Positioning methods in 5G technology include:
  • DL-TDOA Downlink-Time Difference of Arrival
  • Multi-RTT Multiple cell-Round Trip Time
  • Uplink-Angle of Arrival (UL-AoA)
  • Downlink-Angle of Departure (DL-AoD);
  • E-CID Enhanced-Cell Identification
  • Multi-RTT is a newly introduced positioning method, and its basic principle is shown in Figure 1.
  • the two positioning measurement quantities (referred to as measurement quantities) used in the Multi-RTT positioning method are as follows:
  • UE Rx-Tx time difference The time difference between the arrival time of the downlink (DL) positioning reference signal (PRS) from each transmission and reception point (TRP) and the time difference between the UE sending the SRS-Pos (Sounding Reference Signal for Positioning, an uplink sounding reference signal for positioning) (called UE Rx-Tx time difference);
  • the round trip time (RTT) between the UE and any TRP can be measured by the UE Rx-Tx time difference
  • Add the gNB Rx-Tx time difference measured by the TRP The distance between the UE and the TRP can be obtained by multiplying 1/2RTT by the speed of light.
  • the high-speed movement of the UE will cause The UE position has changed, resulting in positioning errors.
  • the higher the UE movement speed the greater the positioning error.
  • the delay of the RTT measurement amount is 20ms.
  • the change in the relative position of the UE can reach 1.4 meters in 20ms. If the problem caused by the relative speed of the UE (i.e., Doppler shift) is not solved, a positioning error of 1.4 meters may be introduced.
  • a measurement report contains one or more measurement instances (or measurement samples), and each UE measurement sample is associated with a timestamp, where the granularity of the timestamp is the time slot.
  • the PRS resource is repeatedly transmitted twice within a period of 80ms, and each PRS transmission is called a measurement sample, that is, two measurement samples are included in 80ms.
  • the traditional TDOA positioning method requires accurate time synchronization between each TRP. The inaccuracy of time synchronization between TRPs (that is, the presence of positioning errors) will directly affect the positioning performance of traditional TDOA.
  • the Doppler frequency shift caused by high speed will cause RTT positioning and TDOA positioning to bring a large loss of positioning accuracy (including absolute positioning or relative positioning).
  • the 3GPP protocol has not considered how to overcome the impact of UE movement and Doppler frequency shift on positioning accuracy.
  • the embodiment of the present application provides a joint positioning method based on measurements at different times, which can solve the problem of reduced positioning accuracy performance due to large Doppler frequency shift.
  • OFDM Orthogonal frequency division multiplexing
  • LMF Location Management Function
  • the network architecture provided by the embodiment of the present application is shown in Figure 2, including a PRS sending entity, a PRS receiving entity and an LMF entity (not shown in Figure 2).
  • the PRS sending entities described in the embodiments of the present application include, for example, a base station, a TRP, a road side unit (RSU), an anchor UE, etc.
  • the PRS receiving entity described in the embodiments of the present application is also called a target UE, that is, a terminal that needs to be located.
  • the LMF entity described in the embodiment of the present application is responsible for negotiating with the PRS sending entity, determining the positioning reference signal configuration information about multiple positioning reference signal sending entities at multiple times, and, in the UE-assisted positioning method, obtaining the positioning measurement amount and measurement quality indication information reported by the target UE, and then positioning the target UE.
  • the target UE performs the positioning of the local UE based on the positioning measurement amount and measurement quality indication information.
  • UE-based positioning includes Uu (interface between terminal and base station) positioning and Sidelink (direct link between terminal and terminal, referred to as SL) positioning;
  • PRS includes New Radio (NR) PRS, SL PRS and other signals.
  • the positioning method on the target UE (i.e., the PRS receiving entity, i.e., the target terminal to be positioned) side includes, for example:
  • Step 1 The target UE reports the positioning capability of the UE.
  • the UE's positioning capability includes but is not limited to one or a combination of the following information:
  • Positioning measurement types supported by the UE including POA (Phase of Arrival) and/or TOA (Time of Arrival), etc.
  • the historical speed information estimated and stored by the UE itself (including speed range and speed direction, etc.);
  • the UE positioning capabilities defined by existing standards include the supported PRS reception bandwidth, the number of positioning frequency layers, etc.
  • Step 2 The target UE receives the PRS configuration information of N PRS sending entities at K moments notified by the LMF or other anchor UEs, where N and K are both preset integers greater than 1.
  • N and K are both preset integers greater than 1.
  • Each PRS sending entity sends a PRS signal at K moments, and the PRS configuration information of different PRS sending entities may be different.
  • the PRS configuration information includes the time-frequency resources, repetition period and transmission time of the PRS;
  • the notification signaling used to notify the PRS configuration information can use LPP or SLPP signaling.
  • PRS includes: NR PRS signal, NR synchronization signal block (Synchronization Signal/PBCH Block, SSB) signal and NR channel state indication reference signal (Channel State Indication-Reference Signal, CSI-RS), etc.
  • the notification signaling is LPP signaling.
  • PRS includes SL PRS signal, and the notification signaling is SLPP signaling.
  • the UE receives The coordinate information of the N PRS sending entities notified by the LMF or other anchor UE is used for subsequent positioning solution.
  • the UE may also receive the historical speed information (including speed range and speed direction, etc.) about the UE pre-stored by the LMF, or the historical speed information of all UEs within the PRS sending entity range previously stored by the LMF.
  • the UE can determine the positioning measurement amount of M measurement samples based on the information notified by the network side.
  • the UE performs positioning measurement according to the number M of measurement samples indicated by the network (corresponding to the UE-assisted positioning method) or the number M of measurement samples determined by itself (corresponding to the UE-based positioning method).
  • Step 4 If it is UE-assisted downlink positioning, execute the following step A; if it is UE-based downlink positioning, execute the following step B.
  • Step A The target UE reports the positioning measurement quantity and measurement quality indication information to the LMF or other anchor UE.
  • the signaling for reporting the positioning measurement quantity and measurement quality indication information is LPP signaling.
  • the signaling for reporting the positioning measurement quantity and measurement quality indication information is SLPP signaling.
  • the positioning measurement quantity reported by the UE includes but is not limited to one or a combination of the following four types:
  • DD POA value For the specific calculation method, please refer to formula (10) in the following content.
  • the measurement quality indication information reported by the UE includes but is not limited to one or a combination of the following information:
  • the absolute or relative measurement time corresponding to the positioning measurement quantity is less than or equal to the OFDM symbol, and the granularity includes the OFDM symbol or the sampling value point;
  • Positioning measurement quality indicators such as the maximum value, mean value, variance, mean square error, other statistics (such as second-order/third-order variance, or the error value corresponding to 50%, 80% or 90% of the distribution points) of the positioning measurement error, and the resolution of the error;
  • LOS Line of Sight
  • NLOS Non Line of Sight
  • T2 moment and T1 moment respectively.
  • the joint search method described in the embodiment of the present application is to find the position of the UE at time T1 when the cost function value is minimized. and the position at time T2 Thus, the UE position at each of the K moments is determined.
  • the first type of cost function assumes that the UE is within the initial search range ⁇ UE(x 1 ,y 1 ),UE(x 2 ,y 2 ) ⁇ , that is, assuming that the UE is at position (x 1 ,y 1 ) at time T1 and at position (x 2 ,y 2 ) at time T2, minimizes the theoretical double differential TOA value from time T1 to time T2, from UE to any TRP j (non-reference TRP) and from UE to TRP p (reference TRP)
  • the weighted sum of squares of the differences between the actual measured double differential TOA value dd jp and the actual measured double differential TOA value dd jp is calculated, for example, using the following formula (1).
  • the pth PRS sending entity is a reference PRS sending entity (pre-configured), p is an element in ⁇ 1:N ⁇ , and c is the speed of light (in meters per second);
  • dd jp represents the actual measured double differential TOA value for TRP j and reference TRP p due to UE movement from time T1 to time T2.
  • the initial search range ⁇ UE(x 1 ,y 1 ),UE(x 2 ,y 2 ) ⁇ can be obtained based on a traditional R16 positioning method such as TDOA or RTT.
  • sd j represents the single differential TOA value for TRP j introduced due to UE movement from time T1 to time T2; wherein, sd p represents the single differential TOA value for reference TRP p introduced due to UE movement from time T1 to time T2.
  • sd j may be calculated using the following formula (3):
  • Rx_TOA_j1 and Rx_TOA_j2 represent the UE receiving the signal from the jth RSU at T1 and T2 respectively.
  • the reception time of the PRS signal sent at time (j ⁇ 1:N ⁇ ).
  • Tx_TOA_j1 and Tx_TOA_j2 represent the sending time of the PRS signal sent by the jth RSU at time T1 and T2 respectively.
  • the UE can obtain the ideal Tx_TOA_j1 and Tx_TOA_j2 through the transmission configuration information of the PRS.
  • Dis[A,B] means calculating the distance between two vector points A and B; Loc(A) and Loc(B) represent the positions of vector points A and B respectively, where A and B are respectively: UE position UE(x 1 ,y 1 ) at time T1, UE position UE(x 2 ,y 2 ) at time T2, position Txj of PRS sending entity j, and position Txp of PRS sending entity p.
  • the range in the dotted rectangular box represents the combined initial search range ⁇ UE(x 1 ,y 1 ),UE(x 2 ,y 2 ) ⁇ at time T1 and time T2.
  • a simplified method is to divide the search range into time T1 and time T2 and determine the search range separately.
  • the range in the dotted circle around time T1 represents the initial search range ⁇ UE(x 1 ,y 1 ) ⁇ at time T1
  • the range in the dotted circle around time T2 represents the initial search range ⁇ UE(x 2 ,y 2 ) ⁇ at time T2.
  • the second type of cost function assumes that the UE is in the initial search range ⁇ UE( x1 , y1 ), UE( x2 , y2 ) ⁇ , that is, assuming that the UE is at position ( x1 , y1 ) at time T1 and at position ( x2 , y2 ) at time T2, minimizes the theoretical single difference TOA value from time T1 to time T2, from the UE to any TRP j
  • the weighted sum of squares of the differences between the actual measured single-difference TOA value sd j and the actual measured single-difference TOA value sd j is calculated, for example, using the following formula (7):
  • sd j is calculated, for example, using the above formula (3), Expressing assumptions The UE is located at position (x 1 , y 1 ) at time T1 and at position (x 2 , y 2 ) at time T2.
  • the theoretical single differential TOA value from the UE to TRP j is (a preset value, ie, the theoretical single differential TOA value between time T1/T2).
  • the third type of cost function assumes that the UE is in the initial search range ⁇ UE( x1 , y1 ), UE( x2 , y2 ) ⁇ , that is, assuming that the UE is at position ( x1 , y1 ) at time T1 and at position ( x2 , y2 ) at time T2, minimizes the theoretical double differential carrier phase value from time T1 to time T2, from UE to any TRP j, and from UE to TRP p and the actual measured double differential carrier phase value For example, the following formula (9) is used for calculation.
  • the pth PRS sending entity is a reference PRS sending entity, where p is an element in ⁇ 1:N ⁇ and c is the speed of light (in meters per second);
  • the calculation process is shown in the following formula (12).
  • the initial search range ⁇ (x 1 , y 1 , x 2 , y 2 ) ⁇ can be acquired based on existing positioning methods such as TDOA/RTT.
  • is the carrier wavelength (in meters).
  • ⁇ t j (t) is the timing deviation of PRB transmitting entity (gNB/TRP/RSU) j (in meters), and ⁇ t a (t) is the timing deviation of UE a (in meters), where the timing deviation is caused by crystal oscillator drift;
  • c is the speed of light (in meters per second);
  • is the carrier wavelength (in meters);
  • the fourth type of cost function is to assume that the UE is in the initial search range ⁇ UE(x 1 ,y 1 ),UE(x 2 ,y 2 ) ⁇ , that is, assuming that the UE is at position (x 1 ,y 1 ) at time T1 and at position (x 2 ,y 2 ) at time T2, minimize the theoretical single differential carrier phase value from time T1 to time T2, from UE to any TRP j and the actual measured single differential carrier phase value For example, the following formula (14) is used for calculation.
  • TRP j the theoretical single differential carrier phase value between time T1/T2
  • the calculation process is shown in formula (15).
  • TRP j the single-difference integer ambiguity between times T1/T2, It is calculated based on the existing algorithm.
  • the fifth type of cost function is to assume that the UE is in the initial search range ⁇ UE(x 1 ,y 1 ),UE(x 2 ,y 2 ) ⁇ , that is, assuming that the UE is at position (x 1 ,y 1 ) at time T1 and at position (x 2 ,y 2 ) at time T2, minimize the theoretical double differential carrier phase value from time T1 to time T2, from UE to any TRP j, and from UE to TRP p and the actual measured double differential carrier phase value
  • the weighted square of the difference between the UE and TRP j and the theoretical double differential TOA value between the UE and TRP p The cumulative sum of the weighted squares of the differences between the actual measured double differential TOA value dd jp and the actual measured double differential TOA value dd jp is calculated by, for example, the following formula (16) is used for calculation.
  • the pth PRS sending entity is the reference PRS sending entity, and c is the speed of light (in meters per second);
  • Rx_TOA_j1, Rx_TOA_j2, Tx_TOA_j1, Tx_TOA_j2, and The calculation method of is as mentioned in Method 1 above;
  • the positioning method provided by the embodiment of the present application on the target UE side includes:
  • the positioning reference signal configuration information is positioning reference signal configuration information about multiple positioning reference signal sending entities at multiple time instants;
  • S102 Receive, according to the positioning reference signal configuration information, positioning reference signals sent by the multiple positioning reference signal sending entities at the multiple time instants, and perform positioning measurement, wherein the granularity of the measurement time instant is less than or equal to an orthogonal frequency division multiplexing symbol, for example, the granularity of the measurement time instant includes an OFDM symbol or a sampling value point, that is, the measurement is performed according to the time accuracy of the OFDM symbol or the sampling value point. Line positioning measurement.
  • the method further comprises:
  • the type of positioning measurement quantity supported by the terminal wherein the type includes arrival phase and/or arrival time;
  • M the smaller the positioning search range is. Therefore, the complexity of positioning calculation can be further reduced, and the positioning efficiency and accuracy can be improved.
  • performing positioning measurements includes:
  • the step of determining the number M of measurement samples includes:
  • indication information where the indication information is used to indicate a value of the number M of the measurement samples (for a UE-assisted positioning method);
  • indication information is received, where the indication information is used to indicate information for determining a value of the number M of the measurement samples (for a UE-based positioning method), and the value of the number M of the measurement samples is determined according to the indication information.
  • the speed of the terminal when the speed of the terminal is greater than a preset value (ie, a high-speed UE), the value of the number M of measurement samples is 1. Therefore, the complexity of positioning calculation can be further reduced, and the positioning efficiency and accuracy can be improved.
  • a preset value ie, a high-speed UE
  • the indication information when used to indicate information for determining a value of the number M of the measurement samples, the indication information, for example, includes:
  • the PRS sends historical speed information of all UEs within the entity range.
  • the method further comprises (i.e., step A above):
  • the positioning measurement includes one of the following four types or a combination of positioning measurements:
  • the measurement quality indication information includes one or a combination of the following information:
  • the absolute time or relative time corresponding to the positioning measurement value wherein the absolute time or relative time uses orthogonal frequency division multiplexing symbols or sampling value points as the measurement time granularity;
  • the method further includes (i.e., step B above): obtaining a differential arrival time TOA measurement amount and/or a differential arrival phase POA measurement amount based on the positioning measurement, using preset terminal location information at multiple different times within the initial search range, and calculating the location information of the terminal at multiple different times based on a cost function minimization criterion;
  • the differential TOA includes single differential TOA and double differential TOA
  • the differential POA measurement includes single differential POA and double differential POA.
  • the cost function includes one of the five cost functions mentioned above, which will not be described in detail.
  • the positioning method on the LMF (positioning server, i.e., positioning solution entity) side includes, for example:
  • Step 1 LMF receives the UE positioning capability reported by the target UE.
  • the UE's positioning capability includes but is not limited to one or a combination of the following information:
  • Positioning measurement types supported by the UE including POA (Phase of Arrival) and/or TOA (Time of Arrival), etc.
  • the historical speed information estimated and stored by the UE itself (including speed range and speed direction, etc.);
  • the UE positioning capabilities defined by existing standards include the supported PRS reception bandwidth, the number of positioning frequency layers, etc.
  • LMF can use the historical speed information (including speed range and speed) reported by the target UE to The estimated value of the current speed information of the target UE is obtained based on the historical speed information of all target UEs within the PRS sending entity range previously stored by the LMF, which is used for subsequent negotiation with the serving base station or other anchor UEs on the PRS resource configuration for N PRS sending entities and the recommendations for M measurement samples.
  • Step 2 The LMF negotiates with the serving base station or other anchor UE and notifies the UE of the PRS configuration information of the N PRS sending entities at K moments;
  • the PRS configuration information includes the time-frequency resources, repetition period and transmission time of PRS, and the notification signaling adopts LPP signaling.
  • LMF will request the serving base station to configure the PRS resources of N PRS transmission entities in a time range as close as possible, for example: using the same time domain resources, using different resource element (RE) shifts under a given comb size (Comb-size) to distinguish different PRS transmission entities.
  • RE resource element
  • Comb-size comb size
  • the LMF will also notify the UE of an indication of using M measurement samples to obtain positioning measurement quantities.
  • the LMF notifies the UE of the coordinate information of N PRS sending entities. In some embodiments, the LMF may also notify the UE of the estimated value of the current speed information of the UE.
  • Step 3 For the UE-assisted positioning method, the LMF receives the positioning measurement quantity and measurement quality indication information required for positioning using the joint positioning method reported by the UE.
  • the positioning measurement amount reported by the UE includes but is not limited to one or a combination of the following four types:
  • SD TOA value: sd j for example, see the above formula (3) for a specific calculation method
  • the measurement quality indication information reported by the UE includes but is not limited to one or a combination of the following information:
  • the absolute or relative time corresponding to the positioning measurement value the granularity is less than or equal to the OFDM symbol, and the granularity includes the OFDM symbol or the sampling value point;
  • LOS Line of Sight
  • NLOS Non Line of Sight
  • Step 4 For the UE-assisted positioning method, LMF uses one of the five joint search methods mentioned above to calculate the UE position at K (K>2) moments.
  • a positioning method provided by an embodiment of the present application on the LMF side includes:
  • S202 Send the positioning reference signal configuration information, so that the terminal receives the positioning reference signals sent by the multiple positioning reference signal sending entities at the multiple time instants according to the positioning reference signal configuration information, and performs positioning measurement, wherein the granularity of the measurement time instant is less than or equal to an orthogonal frequency division multiplexing symbol, for example, including an OFDM symbol or a sampling value point.
  • an orthogonal frequency division multiplexing symbol for example, including an OFDM symbol or a sampling value point.
  • the method further comprises:
  • the positioning capability of the receiving terminal includes one or a combination of the following information:
  • the type of positioning measurement quantity supported by the terminal wherein the type includes arrival phase and/or arrival time;
  • the time domain resource positions of the positioning reference signals of the multiple positioning reference signal sending entities at the same time of multiple time moments are the same or adjacent or differ by a preset range.
  • the method further comprises:
  • the indication information indicates a value of the number M of measurement samples; or, the indication information indicates information used to determine the value of the number M of measurement samples.
  • the value of the number M of measurement samples is 1.
  • the method further comprises:
  • the positioning measurement includes one of the following four types or a combination of positioning measurements:
  • the measurement quality indication information includes one or a combination of the following information:
  • the absolute time or relative time corresponding to the positioning measurement value wherein the absolute time or relative time uses orthogonal frequency division multiplexing symbols or sampling value points as the measurement time granularity;
  • the method further comprises:
  • the preset terminal location information at multiple different moments in the initial search range is used, and based on a cost function minimization criterion, the location information of the terminal at the multiple different moments is calculated.
  • the cost function includes one of the five cost functions mentioned above, which will not be described in detail.
  • the positioning method on the PRS sending entity (which may be a gNB/TRP/RSU or other anchor UE) side, for example, see FIG. 7, includes:
  • the reference signal configuration information is positioning reference signal configuration information about multiple positioning reference signal sending entities at multiple time instants.
  • the PRS sending entity negotiates with the LMF to determine the PRS configuration information of N PRS sending entities at K moments.
  • the PRS configuration information includes the time-frequency resources, repetition period, and sending time of the PRS.
  • the PRS sending entity notifies the LMF of the PRS configuration information of the N PRS sending entities at K moments through the NR Positioning Protocol A (NRPPa) signaling, and the LMF further notifies the UE through the LTE Positioning Protocol (LPP) signaling.
  • NRPPa NR Positioning Protocol A
  • LMF LTE Positioning Protocol
  • PRS includes NR PRS signal, NR SSB signal and NR CSI-RS, and the notification signaling is NRPPa and LPP signaling.
  • PRS includes SL-PRS signal, and the notification signaling is SLPP signaling.
  • the serving base station preferentially configures the PRS resources of the N PRS sending entities within a time range as close as possible.
  • the N PRS sending entities use the same time domain resources and use different RE shifts under a given Comb-size condition to distinguish different PRS sending entities.
  • the PRS sending entity sends PRS signals to the target UE at K time points respectively, for example, sending the downlink PRS signal using a preset period.
  • Embodiment 1 Downlink UE assisted positioning method based on Uu interface.
  • the cost function of the search algorithm is method one and method two.
  • the positioning method on the target UE side includes:
  • the supported positioning measurement type TOA/POA, etc.
  • the historical speed information stored by the UE itself including speed range and speed direction, etc.
  • the notification signaling adopts LPP signaling.
  • the UE may also receive an indication from the LMF notifying the UE to use M measurement samples to obtain the positioning measurement quantity.
  • Step 4 For UE-assisted downlink positioning, proceed to step A.
  • Step A The UE reports the measurement quantity and measurement quality indication information to the LMF.
  • the measurement quantities include but are not limited to the following two types:
  • the measurement quality indication information includes but is not limited to:
  • the absolute or relative time corresponding to the measured quantity is less than or equal to the OFDM symbol, including the OFDM symbol or sampling value point;
  • the positioning method on the LMF side includes:
  • Step 1 LMF receives the UE positioning capability reported by the UE.
  • the entity's PRS configuration information at K 2 times, where the configuration information includes the time-frequency resources, repetition period, and transmission time of the PRS, and the notification signaling adopts LPP signaling.
  • the LMF can also notify the UE of the indication of using M measurement samples to obtain the positioning measurement amount.
  • Step 3 For the UE-assisted positioning method, the LMF receives the positioning measurement quantity and measurement quality indication information of the joint positioning method reported by the UE.
  • the measurement quantities include but are not limited to the following two types:
  • the measurement quality indication information includes but is not limited to:
  • the absolute or relative time corresponding to the measured quantity is less than or equal to the OFDM symbol, including the OFDM symbol or sampling value point;
  • the first type of cost function is to minimize the cost from T1 to T2, from the UE to any TRP, assuming that the UE is at position (x 1 , y 1 ) at time T1 and at position (x 2 , y 2 ) at time T2.
  • Theoretical double differential TOA values from UE to TRP p The weighted sum of squares of the differences between the actual measured double-difference TOA value dd jp and the actual measured double-difference TOA value dd jp , as shown in formula (17).
  • Tx_TOA_j1 and Tx_TOA_j2 represent the sending time of the PRS signal sent by the jth RSU at time T1 and T2 respectively.
  • the UE can obtain the ideal Tx_TOA_j1 and Tx_TOA_j2 through the transmission configuration information of the PRS.
  • dd j1 represents the double differential TOA value for TRP j and reference TRP 1 introduced by UE motion from time T1 to time T2, which is actually calculated using formula (18).
  • the initial search range ⁇ UE(x 1 ,y 1 ),UE(x 2 ,y 2 ) ⁇ can be acquired based on traditional R16 positioning methods such as DL-TDOA/UL-TDOA/RTT.
  • the second type of cost function is to minimize the theoretical single difference TOA value from T1 to T2 from the UE to any TRP j, assuming that the UE is at position (x 1 , y 1 ) at time T1 and at position (x 2 , y 2 ) at time T2.
  • the weighted sum of squares of the differences between sd j and the actual measured single-difference TOA value sd j as shown in formula (23).
  • a preset value i.e., the theoretical single differential TOA value between time T1 / T2
  • the positioning method at the PRS sending entity side includes:
  • Embodiment 2 Downlink UE-based positioning method based on Uu interface.
  • the cost function of the search algorithm is method three and method four.
  • the positioning method on the target UE side includes:
  • the supported positioning measurement type TOA/POA
  • the historical speed information stored by the UE itself including speed range and speed direction, etc.
  • Step 2 The UE receives the PRS configuration information of N PRS sending entities at K times notified by the LMF, where the configuration information includes the time-frequency resources, repetition period and sending time of the PRS, and the notification signaling adopts LPP signaling.
  • the UE will receive the coordinate information of N PRS sending entities notified by the LMF.
  • the UE can also receive the historical speed information about the UE (including speed range and speed direction, etc.) pre-stored by the LMF, or the historical speed information of all UEs within the PRS sending entity range previously stored by the LMF.
  • the positioning measurement quantity of this is used to perform positioning measurement.
  • Step 4 For UE-based downlink positioning, go to step B.
  • the initial search range ⁇ (x 1 , y 1 , x 2 , y 2 ) ⁇ can be acquired based on existing positioning methods such as TDOA/RTT.
  • is the carrier wavelength (in meters).
  • the fourth type of cost function is to minimize the theoretical single differential carrier phase value from T1 to T2, from UE to any TRP j, assuming that the UE is at position (x 1 , y 1 ) at time T1 and at position (x 2 , y 2 ) at time T2 and the actual measured single differential carrier phase value The weighted sum of squares of the differences between . As shown in formula (29).
  • the positioning method on the LMF side includes:
  • the supported positioning measurement type TOA/POA
  • LMF can obtain the estimated value of the UE's current speed information based on the historical speed information reported by the UE (including speed range and speed direction, etc.), or the historical speed information of all UEs within the PRS sending entity range previously stored by the LMF, for subsequent PRS resource configuration recommendations and M measurement sample
  • the notification signaling adopts LPP signaling.
  • LMF can also notify the UE of the estimated value of the current speed information of the UE.
  • the positioning method on the PRS sending entity side includes:
  • the serving base station takes priority.
  • Example 3 UE-based positioning method based on Sidelink PC5 interface.
  • the cost function of the search algorithm is that of method five.
  • the supported positioning measurement type TOA/POA, etc.
  • the historical speed information estimated and stored by the UE itself including speed range and speed direction, etc.
  • Step 2 UE receives the PRS configuration information of N PRS sending entities at K times notified by LMF or other anchor UE, where the configuration information includes the time-frequency resources, repetition period and sending time of PRS, and the notification signaling adopts LPP/SLPP signaling.
  • PRS includes NR PRS signal, NR SSB signal and NR CSI-RS, and the notification signaling is LPP signaling.
  • PRS includes SL-PRS signal, and the notification signaling is SLPP signaling.
  • the UE will receive the coordinate information of N base stations/TRP/RSU notified by the LMF or other anchor UEs.
  • the UE may also receive the historical speed information about the UE (including speed range and speed direction, etc.) pre-stored by the LMF, or the historical speed information of all UEs within the PRS sending entity range previously stored by the LMF.
  • the UE performs positioning measurement based on the positioning measurement quantities of the M measurement samples indicated by the network or determined by itself.
  • Step 4 For UE-based sidelink positioning, go to step B.
  • K 2 moments (T2 and T1) as an example, and can also be applied to K (K>2) moments.
  • the fifth cost function is to minimize the theoretical double differential carrier phase value from time T1 to time T2, from UE to any TRP j and from UE to TRP p, assuming that the UE is at position (x 1 ,y 1 ) at time T1 and at position (x 2 ,y 2 ) at time T2 and the actual measured double differential carrier phase value
  • the weighted square of the difference between the UE and TRP j and the theoretical double differential TOA value between the UE and TRP p The cumulative sum of the weighted squares of the differences between the actual measured double-difference TOA value dd jp and the actual measured double-difference TOA value dd jp , as shown in formula (30).
  • the positioning method on the LMF side includes:
  • the supported positioning measurement type TOA/POA
  • LMF can obtain the estimated value of the UE's current speed information based on the historical speed information reported by the UE (including speed range and speed direction, etc.), or the historical speed information of all UEs within the PRS sending entity range previously stored by LMF, for subsequent PRS resource configuration recommendations and M measurement samples
  • the notification signaling adopts LPP signaling.
  • LMF can also notify the UE of the estimated value of the current speed information of the UE.
  • the positioning method on the PRS sending entity side includes:
  • Step 1 The serving base station or other anchor UE negotiates with LMF to determine the PRS configuration information of N PRS sending entities at K times, where the configuration information includes the time-frequency resources, repetition period and sending time of PRS, etc., and then notifies LMF through NRPPa signaling, and LMF further notifies UE through LPP signaling.
  • PRS includes NR PRS signal, NR SSB signal and NR CSI-RS, etc.
  • the notification signaling is NRPPa and LPP signaling.
  • PRS includes SL-PRS signal, and the notification signaling is SLPP signaling.
  • the serving base station preferentially configures the PRS resources of N PRS sending entities within a time range as close as possible, for example: using the same time domain resources and using different RE shifts under a given Comb-size condition to distinguish different PRS sending entities.
  • a joint positioning method based on measurements at different times is provided, which can overcome the influence of UE movement and Doppler frequency shift on positioning accuracy, and is suitable for UE high-speed, medium and low-speed It can be used in high-speed and low-speed scenarios, and is applicable to downlink UE-assisted positioning methods and UE-based positioning (including Uu positioning and sidelink positioning). It solves the problem in the prior art that the Doppler frequency shift caused by high speed will cause RTT positioning and TDOA positioning to suffer a large loss of positioning accuracy (including absolute positioning or relative positioning).
  • an embodiment of the present application provides a positioning device, including:
  • the processor 600 is used to read the program in the memory 620 and execute the following process:
  • the positioning reference signal configuration information is positioning reference signal configuration information about multiple positioning reference signal sending entities at multiple time instants;
  • the positioning reference signals sent by the multiple positioning reference signal sending entities at the multiple time instants are received, and positioning measurement is performed, wherein the granularity of the measurement time instant is less than or equal to an orthogonal frequency division multiplexing symbol.
  • the processor 600 is further configured to read the computer program in the memory and perform the following operations:
  • the type of positioning measurement quantity supported by the terminal wherein the type includes arrival phase and/or arrival time;
  • performing positioning measurements includes:
  • the step of determining the number M of measurement samples includes:
  • indication information is received, where the indication information is used to indicate information for determining a value of the number M of the measurement samples, and the value of the number M of the measurement samples is determined according to the indication information.
  • the value of the number M of measurement samples is 1.
  • the processor 600 is further configured to read the computer program in the memory and perform the following operations:
  • the positioning measurement includes one of the following four types or a combination of positioning measurements:
  • the measurement quality indication information includes one or a combination of the following information:
  • the absolute time or relative time corresponding to the positioning measurement value wherein the absolute time or relative time uses orthogonal frequency division multiplexing symbols or sampling value points as the measurement time granularity;
  • the processor 600 is further configured to read the computer program in the memory and perform the following operations:
  • a differential arrival time TOA measurement amount and/or a differential arrival phase POA measurement amount are obtained based on the positioning measurement, and the preset terminal location information at multiple different times within the initial search range is used to calculate the location information of the terminal at the multiple different times based on a cost function minimization criterion;
  • the differential TOA includes single differential TOA and double differential TOA
  • the differential POA measurement includes single differential POA and double differential POA.
  • the cost function is, for example, one of the five cost functions mentioned above, and details thereof will not be repeated herein.
  • the transceiver 610 is configured to receive and send data under the control of the processor 600 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically linking together various circuits of one or more processors represented by processor 600 and memory represented by memory 620.
  • the bus architecture may also link together various other circuits such as peripheral devices, voltage regulators, and power management circuits, which are well known in the art and are therefore not described herein. Further description is given.
  • the bus interface provides an interface.
  • the transceiver 610 may be a plurality of components, namely, a transmitter and a receiver, providing a unit for communicating with various other devices on a transmission medium, and these transmission media include wireless channels, wired channels, optical cables and other transmission media.
  • the user interface 630 may also be an interface capable of externally connecting or internally connecting required devices, and the connected devices include but are not limited to a keypad, a display, a speaker, a microphone, a joystick and the like.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 600 when performing operations.
  • the processor 600 can be a CPU (central processing unit), an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array) or a CPLD (Complex Programmable Logic Device), and the processor can also adopt a multi-core architecture.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • the processor calls the computer program stored in the memory to execute any of the methods provided in the embodiments of the present application according to the obtained executable instructions.
  • the processor and the memory can also be arranged physically separately.
  • a positioning device provided in an embodiment of the present application includes:
  • the processor 500 is used to read the program in the memory 520 and execute the following process:
  • the positioning reference signal configuration information is sent, so that the terminal receives the positioning reference signals sent by the multiple positioning reference signal sending entities at the multiple time points according to the positioning reference signal configuration information, and performs positioning measurement, wherein the granularity of the measurement time point is less than or equal to the orthogonal frequency division multiplexing symbol Number.
  • the processor 500 is further configured to read the computer program in the memory and perform the following operations:
  • the positioning capability of the receiving terminal includes one or a combination of the following information:
  • the type of positioning measurement quantity supported by the terminal wherein the type includes arrival phase and/or arrival time;
  • the time domain resource positions of the positioning reference signals of the multiple positioning reference signal sending entities at the same time of multiple time moments are the same or adjacent or differ by a preset range.
  • the processor 500 is further configured to read the computer program in the memory and perform the following operations:
  • the indication information indicates a value of the number M of measurement samples; or, the indication information indicates information used to determine the value of the number M of measurement samples.
  • the value of the number M of measurement samples is 1.
  • the processor 500 is further configured to read the computer program in the memory and perform the following operations:
  • the positioning measurement includes one of the following four types or a combination of positioning measurements:
  • the measurement quality indication information includes one or a combination of the following information:
  • the absolute time or relative time corresponding to the positioning measurement value wherein the absolute time or relative time uses orthogonal frequency division multiplexing symbols or sampling value points as the measurement time granularity;
  • the processor 500 is further configured to read the computer program in the memory and perform the following operations:
  • the preset terminal location information at multiple different moments in the initial search range is used, and based on a cost function minimization criterion, the location information of the terminal at the multiple different moments is calculated.
  • the cost function is, for example, one of the five cost functions mentioned above, and details thereof will not be repeated herein.
  • the transceiver 510 is configured to receive and send data under the control of the processor 500 .
  • the bus architecture can include any number of interconnected buses and bridges, specifically one or more processors represented by processor 500 and various circuits of memory represented by memory 520 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, regulators, and power management circuits together, which are all well known in the art, so they are not further described herein.
  • the bus interface provides an interface.
  • the transceiver 510 can be a plurality of components, that is, including a transmitter and a receiver, providing a unit for communicating with various other devices on a transmission medium, and these transmission media include transmission media such as wireless channels, wired channels, and optical cables.
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 can store data used by the processor 500 when performing operations.
  • the processor 500 can be a central processing unit (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or a complex programmable logic device (CPLD).
  • the processor can also adopt a multi-core architecture.
  • an embodiment of the present application provides a positioning device, including a memory, a transceiver, and a processor:
  • a memory for storing a computer program; a transceiver for transmitting and receiving data under the control of the processor; and a processor for reading the computer program in the memory and performing the following operations:
  • the positioning management function entity negotiateate with the positioning management function entity to determine positioning reference signal configuration information, where the positioning reference signal configuration information is positioning reference signal configuration information about multiple positioning reference signal sending entities at multiple times;
  • a positioning reference signal is sent to the terminal at each of the multiple time instants, so that the terminal receives the positioning reference signals sent at the multiple time instants according to the positioning reference signal configuration information and performs positioning measurement, wherein the granularity of the measurement time instant is less than or equal to an orthogonal frequency division multiplexing symbol.
  • the time domain resource positions of the positioning reference signals of the multiple positioning reference signal sending entities at the same time of multiple time moments are the same or adjacent or differ by a preset range.
  • the positioning reference signal sending entity is a terminal (such as an anchor UE), its structure may refer to FIG. 8 ; if it is a network-side device, its structure may refer to FIG. 9 .
  • another positioning device provided by an embodiment of the present application includes:
  • the positioning reference signal configuration acquisition unit 11 is configured to acquire positioning reference signal configuration information, wherein the positioning reference signal configuration information is positioning reference signal configuration information about multiple positioning reference signal sending entities at multiple moments;
  • the positioning measurement unit 12 is used to receive the positioning reference signals sent by the multiple positioning reference signal sending entities at the multiple time instants according to the positioning reference signal configuration information, and perform positioning measurement, wherein the granularity of the measurement time instant is less than or equal to the orthogonal frequency division multiplexing symbol.
  • the positioning reference signal acquisition configuration unit 11 is further configured to:
  • the type of positioning measurement quantity supported by the terminal wherein the type includes arrival phase and/or arrival time;
  • performing positioning measurements includes:
  • the step of determining the number M of measurement samples includes:
  • indication information is received, where the indication information is used to indicate information for determining a value of the number M of the measurement samples, and the value of the number M of the measurement samples is determined according to the indication information.
  • the value of the number M of measurement samples is 1.
  • the positioning measurement unit 12 is further configured to:
  • the positioning measurement includes one of the following four types or a combination of positioning measurements:
  • the measurement quality indication information includes one or a combination of the following information:
  • the absolute time or relative time corresponding to the positioning measurement value wherein the absolute time or relative time uses orthogonal frequency division multiplexing symbols or sampling value points as the measurement time granularity;
  • the positioning measurement unit 12 is further used to: obtain a differential arrival time TOA measurement amount and/or a differential arrival phase POA measurement amount based on the positioning measurement, use the preset terminal location information at multiple different times within the initial search range, and calculate the terminal location information at multiple different times based on a cost function minimization criterion;
  • the differential TOA includes single differential TOA and double differential TOA
  • the differential POA measurement includes single differential POA and double differential POA.
  • the cost function includes one of the five cost functions mentioned above, which will not be described in detail.
  • another location device provided by an embodiment of the present application includes:
  • a positioning reference signal configuration negotiation unit 21 configured to negotiate with a plurality of positioning reference signal sending entities to determine positioning reference signal configuration information, wherein the positioning reference signal configuration information is positioning reference signal configuration information about the plurality of positioning reference signal sending entities at a plurality of times;
  • the positioning reference signal configuration sending unit 22 is configured to send the positioning reference signal configuration information.
  • the terminal is used to receive the positioning reference signals sent by the multiple positioning reference signal sending entities at the multiple time points according to the positioning reference signal configuration information, and perform positioning measurement, wherein the granularity of the measurement time point is less than or equal to an orthogonal frequency division multiplexing symbol.
  • the positioning reference signal configuration negotiation unit 21 is further configured to:
  • the positioning capability of the receiving terminal includes one or a combination of the following information:
  • the type of positioning measurement quantity supported by the terminal wherein the type includes arrival phase and/or arrival time;
  • the time domain resource positions of the positioning reference signals of the multiple positioning reference signal sending entities at the same time of multiple time moments are the same or adjacent or differ by a preset range.
  • the positioning reference signal configuration sending unit 22 is further configured to:
  • the indication information indicates a value of the number M of measurement samples; or, the indication information indicates information used to determine the value of the number M of measurement samples.
  • the value of the number M of measurement samples is 1.
  • the positioning reference signal configuration sending unit 22 is further configured to:
  • the positioning measurement includes one of the following four types or a combination of positioning measurements:
  • the measurement quality indication information includes one or a combination of the following information:
  • the absolute time or relative time corresponding to the positioning measurement value wherein the absolute time or relative time uses orthogonal frequency division multiplexing symbols or sampling value points as the measurement time granularity;
  • the positioning reference signal configuration sending unit 22 is further configured to:
  • the preset terminal location information at multiple different moments in the initial search range is used, and based on a cost function minimization criterion, the location information of the terminal at the multiple different moments is calculated.
  • the cost function includes one of the five cost functions mentioned above, which will not be described in detail.
  • another positioning device provided by an embodiment of the present application includes:
  • a positioning reference signal configuration negotiation unit 31 is configured to negotiate with a positioning management function entity to determine positioning reference signal configuration information, where the positioning reference signal configuration information is positioning reference signal configuration information about multiple positioning reference signal sending entities at multiple times;
  • the positioning reference signal sending unit 32 is used to send positioning reference signals to the terminal at the multiple time points respectively, and the terminal is used to receive the positioning reference signals sent at the multiple time points according to the positioning reference signal configuration information, and perform positioning measurements, wherein the granularity of the measurement time point is less than or equal to the orthogonal frequency division multiplexing symbol.
  • the time domain resource positions of the positioning reference signals of the multiple positioning reference signal sending entities at the same time of multiple time moments are the same or adjacent or differ by a preset range.
  • each functional unit in each embodiment of the present application may be integrated into a processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application, or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium and includes several instructions for enabling a computer device (which can be a personal computer, The server, or network device, etc.) or processor executes all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage medium includes: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and other media that can store program codes.
  • An embodiment of the present application provides a processor-readable storage medium, wherein the processor-readable storage medium stores a computer program, and the computer program is used to enable the processor to execute any of the methods provided in the above-mentioned embodiments of the present application.
  • the processor-readable storage medium can be any available medium or data storage device that can be accessed by the processor, including but not limited to magnetic storage (such as floppy disks, hard disks, magnetic tapes, magneto-optical disks (MO), etc.), optical storage (such as CD, DVD, BD, HVD, etc.), and semiconductor storage (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state drive (SSD)), etc.
  • magnetic storage such as floppy disks, hard disks, magnetic tapes, magneto-optical disks (MO), etc.
  • optical storage such as CD, DVD, BD, HVD, etc.
  • semiconductor storage such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state drive (SSD)
  • the present application embodiment also provides a computer program product or computer program, which includes a computer instruction, which is stored in a computer-readable storage medium.
  • the processor of the computer device reads the computer instruction from the computer-readable storage medium, and the processor executes the computer instruction so that the computer device executes any of the methods described in the above embodiments.
  • the program product can use any combination of one or more readable media.
  • the readable medium can be a readable signal medium or a readable storage medium.
  • the readable storage medium can be, for example, - but not limited to - an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination of the above.
  • readable storage media include: an electrical connection with one or more wires, a portable disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the above.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or flash memory erasable programmable read-only memory
  • CD-ROM compact disk read-only memory
  • magnetic storage device or any suitable combination of the above.
  • the access technology through which entities in the communication network transmit traffic can be any suitable current or future technology, such as WLAN (Wireless Local Access Network), WiMAX (Worldwide Interoperability for Microwave Access), LTE, LTE-A, 5G, Bluetooth, infrared, etc.; in addition, the embodiments can also apply wired technology, for example, IP-based access technology, such as a wired network or a fixed line.
  • WLAN Wireless Local Access Network
  • WiMAX Worldwide Interoperability for Microwave Access
  • LTE Long Term Evolution
  • LTE-A Fifth Generation
  • 5G Fifth Generation
  • Bluetooth Bluetooth
  • infrared etc.
  • the embodiments can also apply wired technology, for example, IP-based access technology, such as a wired network or a fixed line.
  • Embodiments suitable for being implemented as software code or a portion thereof and running using a processor or processing functionality are independent of the software code and may be specified using any known or future developed programming language, such as a high-level programming language such as objective-C, C, C++, C#, Java, Python, Javascript, other scripting languages, etc., or a low-level programming language such as machine language or assembler.
  • a high-level programming language such as objective-C, C, C++, C#, Java, Python, Javascript, other scripting languages, etc.
  • a low-level programming language such as machine language or assembler.
  • the implementation of the embodiments is hardware independent and may be implemented using any known or future developed hardware technology or any mixture thereof, such as a microprocessor or CPU (central processing unit), MOS (metal oxide semiconductor), CMOS (complementary MOS), BiMOS (bipolar MOS), BiCMOS (bipolar CMOS), ECL (emitter coupled logic) and/or TTL (transistor-transistor logic).
  • a microprocessor or CPU central processing unit
  • MOS metal oxide semiconductor
  • CMOS complementary MOS
  • BiMOS bipolar MOS
  • BiCMOS bipolar CMOS
  • ECL emitter coupled logic
  • TTL transistor-transistor logic
  • Embodiments may be implemented as separate devices, apparatuses, units, components, or functions, or in a distributed manner, for example, one or more processors or processing functions may be used or shared in a process, or one or more processing segments or processing portions may be used and shared in a process, wherein one physical processor or more than one physical processor may be used to implement one or more processing portions dedicated to a specific process as described.
  • the device may be implemented by a semiconductor chip, a chipset, or a (hardware) module including such a chip or chipset.
  • the embodiments may also be implemented as any combination of hardware and software, such as ASIC (Application Specific IC (Integrated Circuit)) components, FPGA (Field Programmable Gate Array) or CPLD (Complex Programmable Logic Device) components or DSP (Digital Signal Processor) components.
  • ASIC Application Specific IC
  • FPGA Field Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • DSP Digital Signal Processor
  • the embodiments may also be implemented as a computer program product including a computer usable medium having computer readable program code embodied therein, the computer readable program code being adapted to perform the processes as described in the embodiments, wherein the computer usable medium may be a non-transitory medium.
  • the embodiments of the present application can be provided as methods, systems, or Computer program product. Therefore, the present application may take the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present application may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) containing computer-usable program code.
  • These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本申请公开了一种定位方法及装置,用以提供适用于各种运动速度场景下的用户设备的定位方案,并且保证定位精度,避免对高速运动的用户设备的定位精度性能下降的问题。本申请提供的定位方法包括:获取定位参考信号配置信息,其中,所述定位参考信号配置信息是关于多个定位参考信号发送实体在多个时刻的定位参考信号配置信息;根据所述定位参考信号配置信息,接收所述多个定位参考信号发送实体在所述多个时刻发送的定位参考信号,并进行定位测量,其中,测量时刻的颗粒度小于等于正交频分复用符号。

Description

一种定位方法及装置
相关申请的交叉引用
本申请要求在2022年09月30日提交中国专利局、申请号为202211218041.9、申请名称为“一种定位方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种定位方法及装置。
背景技术
第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)版本16(Rel-16)标准支持多种依赖于第五代蜂窝移动通信系统(5th Generation,5G)无线接入技术(Radio Access Technology,RAT-dependent)的定位方法。然而,3GPP定义的高速场景中用户设备(User Equipment,简称UE,也称为用户终端)单向速度最高可以到250km/h,高速运动带来的多普勒频移,将导致对高速运动的用户设备的定位精度性能的下降,因此现有技术无法保证各种运动速度场景下的用户设备的精确定位。
发明内容
本申请实施例提供了一种定位方法及装置,用以提供适用于各种运动速度场景下的用户设备的定位方案,并且保证定位精度,避免对高速运动的用户设备的定位精度性能下降的问题。
在目标UE侧,本申请实施例提供的一种定位方法,包括:
获取定位参考信号配置信息,其中,所述定位参考信号配置信息是关于多个定位参考信号发送实体在多个时刻的定位参考信号配置信息;
根据所述定位参考信号配置信息,接收所述多个定位参考信号发送实体 在所述多个时刻发送的定位参考信号,并进行定位测量,其中,测量时刻的颗粒度小于等于正交频分复用符号。
本方法通过获取并根据关于多个定位参考信号发送实体在多个时刻的定位参考信号配置信息,接收所述多个定位参考信号发送实体在所述多个时刻发送的定位参考信号,并进行定位测量,其中测量时刻的颗粒度小于等于正交频分复用符号,从而可以克服UE运动和多普勒频移对定位精度的影响,进而提升对高速运动的终端的定位精度。并且,所述方法可以适用于各种运动速度场景下的用户设备的定位,并且保证定位精度,避免对高速运动的用户设备的定位精度性能下降的问题。
在一些实施例中,所述方法还包括:
上报终端的定位能力,所述终端的定位能力包括下列信息之一或组合:
终端支持的定位测量量的类型;其中,所述类型包括到达相位和/或到达时间;
终端的历史速度信息;
终端是否支持1个测量样本的定位测量。
在一些实施例中,所述进行定位测量,包括:
确定测量样本的个数M,所述测量样本用于获取定位测量量,其中,M为大于或等于1的整数;
基于M个测量样本,获取定位测量量;
其中,所述确定测量样本的个数M,包括:
接收指示信息,所述指示信息用于指示所述测量样本的个数M的取值;
或者,接收指示信息,所述指示信息用于指示确定所述测量样本的个数M的取值的信息,根据所述指示信息确定所述测量样本的个数M的取值。
在一些实施例中,当终端的速度大于预设值时,所述测量样本的个数M的取值为1。
在一些实施例中,所述方法还包括:
发送定位测量量和测量质量指示信息;其中,
所述定位测量量包括如下四种类型之一或组合的定位测量量:
单差分到达时间、单差分到达相位、双差分到达时间、双差分到达相位;
所述测量质量指示信息包括下列信息之一或组合:
定位测量量对应的绝对时刻或者相对时刻,其中所述绝对时刻或者相对时刻,以正交频分复用符号或者采样值点为测量时刻颗粒度;
定位测量质量指示;
视距或非视距的指示。
在一些实施例中,所述方法还包括:基于所述定位测量得到差分到达时间TOA测量量和/或差分到达相位POA测量量,采用初始搜索范围内多个不同时刻的预设的终端位置信息,基于代价函数最小化准则,计算终端在多个不同的所述时刻的终端的位置信息;
其中,所述差分TOA包含单差分TOA和双差分TOA;
其中,所述差分POA测量量包含单差分POA和双差分POA。
在一些实施例中,所述代价函数包括如下五种代价函数之一:
第一类代价函数:利用多个不同的所述时刻预设的终端位置,计算理论双差分TOA值,其中包括计算终端到所述多个定位参考信号发送实体中的任一非参考定位参考信号发送实体j的理论单差分TOA,和到所述多个定位参考信号发送实体中的参考定位参考信号发送实体p的理论单差分TOA的差分值;其中,j={1:N},j≠p,N表示定位参考信号发送实体的总个数;
计算所述理论双差分TOA值与终端实际测量获取的双差分TOA值的差分值的加权平方和;其中,加权系数的倒数为TOA测量误差的方差,所述TOA测量误差为预设值,或者是网络根据当前场景通知给所述终端的;
第二类代价函数:利用多个不同的所述时刻预设的终端位置,计算理论单差分TOA值,其中包括计算终端到所述多个定位参考信号发送实体中的任一非参考定位参考信号发送实体j的理论上的单差分TOA;其中,j={1:N},N表示定位参考信号发送实体的总个数;
计算所述理论单差分TOA值,与终端实际测量获取的单差分TOA值的 差分值的加权平方和;其中,加权系数的倒数为TOA测量误差的方差,所述TOA测量误差为预设值,或者是网络根据当前场景通知给所述终端的;
第三类代价函数:利用多个不同的所述时刻预设的终端位置,计算理论双差分POA值,其中包括计算终端到所述多个定位参考信号发送实体中的任一非参考定位参考信号发送实体j的理论单差分POA,和到所述多个定位参考信号发送实体中的参考定位参考信号发送实体p的理论单差分POA的差分值;其中,j={1:N},j≠p,N表示定位参考信号发送实体的总个数;
计算所述理论双差分POA值,与终端实际测量获取的双差分POA值的差分值的加权平方和;其中,加权系数的倒数为POA测量误差的方差,所述POA测量误差为预设值,或者是网络根据当前场景通知给所述终端的;
第四类代价函数:利用多个不同的所述时刻预设的终端位置,计算理论单差分POA值,其中包括计算终端到所述多个定位参考信号发送实体中的任一非参考定位参考信号发送实体j的理论上的单差分POA;其中,j={1:N},N表示定位参考信号发送实体的总个数;
计算所述理论单差分POA值,与终端实际测量获取的单差分POA值的差分值的加权平方和;其中,加权系数的倒数为POA测量误差的方差,所述POA测量误差为预设值,或者是网络根据当前场景通知给所述终端的;
第五类代价函数:利用多个不同的所述时刻预设的终端位置,计算理论双差分TOA值与终端实际测量获取的双差分TOA值的差分值的第一加权平方值,其中,加权系数的倒数为TOA测量误差的方差,所述TOA测量误差为预设值,或者是网络根据当前场景通知给所述终端的;
以及,计算理论双差分POA值与终端实际测量获取的双差分POA值的差值的第二加权平方值,其中,加权系数的倒数为POA测量误差的方差,所述POA测量误差为预设值,或者是网络根据当前场景通知给所述终端的;
并且,计算所述第一加权平方值与所述第二加权平方值的累加和;
其中,计算所述理论双差分TOA值,包括计算终端到所述多个定位参考信号发送实体中的任一非参考定位参考信号发送实体j的理论单差分TOA, 和到所述多个定位参考信号发送实体中的参考定位参考信号发送实体p的理论单差分TOA的差分值;
计算所述理论双差分POA值,包括计算终端到所述多个定位参考信号发送实体中的任一非参考定位参考信号发送实体j的理论单差分POA,和到所述多个定位参考信号发送实体中的参考定位参考信号发送实体p的理论单差分POA的差分值;
其中,j={1:N},j≠p,N表示定位参考信号发送实体的总个数。
在定位管理功能实体侧,本申请实施例提供的一种定位方法,包括:
与多个定位参考信号发送实体协商确定定位参考信号配置信息,所述定位参考信号配置信息是关于所述多个定位参考信号发送实体在多个时刻的定位参考信号配置信息;
发送所述定位参考信号配置信息,用于终端根据所述定位参考信号配置信息,接收所述多个定位参考信号发送实体在所述多个时刻发送的定位参考信号,并进行定位测量,其中,测量时刻的颗粒度小于等于正交频分复用符号。
在一些实施例中,所述方法还包括:
接收终端的定位能力,所述定位能力包括下列信息之一或组合:
终端支持的定位测量量的类型;其中,所述类型包括到达相位和/或到达时间;
终端的历史速度信息;
终端是否支持1个测量样本的定位测量。
在一些实施例中,所述定位参考信号配置信息中,所述多个定位参考信号发送实体在多个时刻的同一个时刻中的定位参考信号的时域资源位置相同或相邻或相差预设范围。
在一些实施例中,所述方法还包括:
发送指示信息,所述指示信息指示了测量样本的个数M的取值;或者,所述指示信息指示了用于确定测量样本的个数M的取值的信息。
在一些实施例中,当终端的速度大于预设值时,所述测量样本的个数M的取值为1。
在一些实施例中,所述方法还包括:
接收终端发送的定位测量量和测量质量指示信息;其中,
所述定位测量量包括如下四种类型之一或组合的定位测量量:
单差分到达时间、单差分到达相位、双差分到达时间、双差分到达相位;
所述测量质量指示信息包括下列信息之一或组合:
定位测量量对应的绝对时刻或者相对时刻,其中所述绝对时刻或者相对时刻,以正交频分复用符号或者采样值点为测量时刻颗粒度;
定位测量质量指示;
视距或非视距的指示。
在一些实施例中,所述方法还包括:
基于所述定位测量量,采用初始搜索范围内多个不同时刻的预设的终端位置信息,基于代价函数最小化准则,计算终端在多个不同的所述时刻的终端的位置信息。
在一些实施例中,所述代价函数包括如下五种代价函数之一:
第一类代价函数:利用多个不同的所述时刻预设的终端位置,计算理论双差分TOA值,其中包括计算终端到所述多个定位参考信号发送实体中的任一非参考定位参考信号发送实体j的理论单差分TOA,和到所述多个定位参考信号发送实体中的参考定位参考信号发送实体p的理论单差分TOA的差分值;其中,j={1:N},j≠p,N表示定位参考信号发送实体的总个数;
计算所述理论双差分TOA值与终端实际测量获取的双差分TOA值的差分值的加权平方和;其中,加权系数的倒数为TOA测量误差的方差,所述TOA测量误差为预设值,或者是网络根据当前场景通知给所述终端的;
第二类代价函数:利用多个不同的所述时刻预设的终端位置,计算理论单差分TOA值,其中包括计算终端到所述多个定位参考信号发送实体中的任一非参考定位参考信号发送实体j的理论上的单差分TOA;其中,j={1:N}, N表示定位参考信号发送实体的总个数;
计算所述理论单差分TOA值,与终端实际测量获取的单差分TOA值的差分值的加权平方和;其中,加权系数的倒数为TOA测量误差的方差,所述TOA测量误差为预设值,或者是网络根据当前场景通知给所述终端的;
第三类代价函数:利用多个不同的所述时刻预设的终端位置,计算理论双差分POA值,其中包括计算终端到所述多个定位参考信号发送实体中的任一非参考定位参考信号发送实体j的理论单差分POA,和到所述多个定位参考信号发送实体中的参考定位参考信号发送实体p的理论单差分POA的差分值;其中,j={1:N},j≠p,N表示定位参考信号发送实体的总个数;
计算所述理论双差分POA值,与终端实际测量获取的双差分POA值的差分值的加权平方和;其中,加权系数的倒数为POA测量误差的方差,所述POA测量误差为预设值,或者是网络根据当前场景通知给所述终端的;
第四类代价函数:利用多个不同的所述时刻预设的终端位置,计算理论单差分POA值,其中包括计算终端到所述多个定位参考信号发送实体中的任一非参考定位参考信号发送实体j的理论上的单差分POA;其中,j={1:N},N表示定位参考信号发送实体的总个数;
计算所述理论单差分POA值,与终端实际测量获取的单差分POA值的差分值的加权平方和;其中,加权系数的倒数为POA测量误差的方差,所述POA测量误差为预设值,或者是网络根据当前场景通知给所述终端的;
第五类代价函数:利用多个不同的所述时刻预设的终端位置,计算理论双差分TOA值与终端实际测量获取的双差分TOA值的差分值的第一加权平方值,其中,加权系数的倒数为TOA测量误差的方差,所述TOA测量误差为预设值,或者是网络根据当前场景通知给所述终端的;
以及,计算理论双差分POA值与终端实际测量获取的双差分POA值的差值的第二加权平方值,其中,加权系数的倒数为POA测量误差的方差,所述POA测量误差为预设值,或者是网络根据当前场景通知给所述终端的;
并且,计算所述第一加权平方值与所述第二加权平方值的累加和;
其中,计算所述理论双差分TOA值,包括计算终端到所述多个定位参考信号发送实体中的任一非参考定位参考信号发送实体j的理论单差分TOA,和到所述多个定位参考信号发送实体中的参考定位参考信号发送实体p的理论单差分TOA的差分值;
计算所述理论双差分POA值,包括计算终端到所述多个定位参考信号发送实体中的任一非参考定位参考信号发送实体j的理论单差分POA,和到所述多个定位参考信号发送实体中的参考定位参考信号发送实体p的理论单差分POA的差分值;
其中,j={1:N},j≠p,N表示定位参考信号发送实体的总个数。
在定位参考信号的发送实体侧,本申请实施例提供的一种定位方法,包括:
与定位管理功能实体协商确定定位参考信号配置信息,所述定位参考信号配置信息是关于多个定位参考信号发送实体在多个时刻的定位参考信号配置信息;
在所述多个时刻分别向终端发送定位参考信号,用于所述终端根据所述定位参考信号配置信息,接收在所述多个时刻发送的定位参考信号,并进行定位测量,其中,测量时刻的颗粒度小于等于正交频分复用符号。
在一些实施例中,所述定位参考信号配置信息中,所述多个定位参考信号发送实体在多个时刻的同一个时刻中的定位参考信号的时域资源位置相同或相邻或相差预设范围。
在目标UE侧,本申请实施例提供的一种定位装置,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
获取定位参考信号配置信息,其中,所述定位参考信号配置信息是关于多个定位参考信号发送实体在多个时刻的定位参考信号配置信息;
根据所述定位参考信号配置信息,接收所述多个定位参考信号发送实体 在所述多个时刻发送的定位参考信号,并进行定位测量,其中,测量时刻的颗粒度小于等于正交频分复用符号。
在一些实施例中,在所述处理器,还用于读取所述存储器中的计算机程序并执行以下操作:
上报终端的定位能力,所述终端的定位能力包括下列信息之一或组合:
终端支持的定位测量量的类型;其中,所述类型包括到达相位和/或到达时间;
终端的历史速度信息;
终端是否支持1个测量样本的定位测量。
在一些实施例中,所述进行定位测量,包括:
确定测量样本的个数M,所述测量样本用于获取定位测量量,其中,M为大于或等于1的整数;
基于M个测量样本,获取定位测量量;
其中,所述确定测量样本的个数M,所述测量样本用于获取定位测量量,包括:
接收指示信息,所述指示信息用于指示所述测量样本的个数M的取值;
或者,接收指示信息,所述指示信息用于指示确定所述测量样本的个数M的取值的信息,根据所述指示信息确定所述测量样本的个数M的取值。
在一些实施例中,当终端的速度大于预设值时,所述测量样本的个数M的取值为1。
在一些实施例中,所述处理器,还用于读取所述存储器中的计算机程序并执行以下操作:
发送定位测量量和测量质量指示信息;其中,
所述定位测量量包括如下四种类型之一或组合的定位测量量:
单差分到达时间、单差分到达相位、双差分到达时间、双差分到达相位;
所述测量质量指示信息包括下列信息之一或组合:
定位测量量对应的绝对时刻或者相对时刻,其中所述绝对时刻或者相对 时刻,以正交频分复用符号或者采样值点为测量时刻颗粒度;
定位测量质量指示;
视距或非视距的指示。
在一些实施例中,所述处理器,还用于读取所述存储器中的计算机程序并执行以下操作:
基于所述定位测量得到差分到达时间TOA测量量和/或差分到达相位POA测量量,采用初始搜索范围内多个不同时刻的预设的终端位置信息,基于代价函数最小化准则,计算终端在多个不同的所述时刻的终端的位置信息;
其中,所述差分TOA包含单差分TOA和双差分TOA;
其中,所述差分POA测量量包含单差分POA和双差分POA。
在LMF实体侧,本申请实施例提供的一种定位装置,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
与多个定位参考信号发送实体协商确定定位参考信号配置信息,所述定位参考信号配置信息是关于所述多个定位参考信号发送实体在多个时刻的定位参考信号配置信息;
发送所述定位参考信号配置信息,用于终端根据所述定位参考信号配置信息,接收所述多个定位参考信号发送实体在所述多个时刻发送的定位参考信号,并进行定位测量,其中,测量时刻的颗粒度小于等于正交频分复用符号。
在一些实施例中,所述处理器,还用于读取所述存储器中的计算机程序并执行以下操作:
接收终端的定位能力,所述定位能力包括下列信息之一或组合:
终端支持的定位测量量的类型;其中,所述类型包括到达相位和/或到达时间;
终端的历史速度信息;
终端是否支持1个测量样本的定位测量。
在一些实施例中,所述定位参考信号配置信息中,所述多个定位参考信号发送实体在多个时刻的同一个时刻中的定位参考信号的时域资源位置相同或相邻或相差预设范围。
在一些实施例中,所述处理器,还用于读取所述存储器中的计算机程序并执行以下操作:
发送指示信息,所述指示信息指示了测量样本的个数M的取值;或者,所述指示信息指示了用于确定测量样本的个数M的取值的信息。
在一些实施例中,当终端的速度大于预设值时,所述测量样本的个数M的取值为1。
在一些实施例中,所述处理器,还用于读取所述存储器中的计算机程序并执行以下操作:
接收终端发送的定位测量量和测量质量指示信息;其中,
所述定位测量量包括如下四种类型之一或组合的定位测量量:
单差分到达时间、单差分到达相位、双差分到达时间、双差分到达相位;
所述测量质量指示信息包括下列信息之一或组合:
定位测量量对应的绝对时刻或者相对时刻,其中所述绝对时刻或者相对时刻,以正交频分复用符号或者采样值点为测量时刻颗粒度;
定位测量质量指示;
视距或非视距的指示。
在一些实施例中,所述处理器,还用于读取所述存储器中的计算机程序并执行以下操作:
基于所述定位测量量,采用初始搜索范围内多个不同时刻的预设的终端位置信息,基于代价函数最小化准则,计算终端在多个不同的所述时刻的终端的位置信息。
在定位参考信号发送实体侧,本申请实施例提供的一种定位装置,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
与定位管理功能实体协商确定定位参考信号配置信息,所述定位参考信号配置信息是关于多个定位参考信号发送实体在多个时刻的定位参考信号配置信息;
在所述多个时刻分别向终端发送定位参考信号,用于所述终端根据所述定位参考信号配置信息,接收在所述多个时刻发送的定位参考信号,并进行定位测量,其中,测量时刻的颗粒度小于等于正交频分复用符号。
在一些实施例中,所述定位参考信号配置信息中,所述多个定位参考信号发送实体在多个时刻的同一个时刻中的定位参考信号的时域资源位置相同或相邻或相差预设范围。
在目标UE侧,本申请实施例提供的另一种定位装置,包括:
获取定位参考信号配置单元,用于获取定位参考信号配置信息,其中,所述定位参考信号配置信息是关于多个定位参考信号发送实体在多个时刻的定位参考信号配置信息;
定位测量单元,用于根据所述定位参考信号配置信息,接收所述多个定位参考信号发送实体在所述多个时刻发送的定位参考信号,并进行定位测量,其中,测量时刻的颗粒度小于等于正交频分复用符号。
在定位管理功能实体侧,本申请实施例提供的另一种定位装置,包括:
定位参考信号配置协商单元,用于与多个定位参考信号发送实体协商确定定位参考信号配置信息,所述定位参考信号配置信息是关于所述多个定位参考信号发送实体在多个时刻的定位参考信号配置信息;
定位参考信号配置发送单元,用于发送所述定位参考信号配置信息,用于终端根据所述定位参考信号配置信息,接收所述多个定位参考信号发送实体在所述多个时刻发送的定位参考信号,并进行定位测量,其中,测量时刻的颗粒度小于等于正交频分复用符号。
在定位参考信号发送实体侧,本申请实施例提供的另一种定位装置,包 括:
定位参考信号配置协商单元,用于与定位管理功能实体协商确定定位参考信号配置信息,所述定位参考信号配置信息是关于多个定位参考信号发送实体在多个时刻的定位参考信号配置信息;
定位参考信号发送单元,用于在所述多个时刻分别向终端发送定位参考信号,用于所述终端根据所述定位参考信号配置信息,接收在所述多个时刻发送的定位参考信号,并进行定位测量,其中,测量时刻的颗粒度小于等于正交频分复用符号。
本申请另一实施例提供了一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行上述任一种方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的信号往返行程时间(RTT)示意图;
图2为本申请实施例提供的总体方案示意图;
图3为本申请实施例提供的ddjp计算原理示意图;
图4为本申请实施例提供的计算原理示意图;
图5为本申请实施例提供的PRS接收实体侧的一种定位方法的流程示意图;
图6为本申请实施例提供的LMF侧的一种定位方法的流程示意图;
图7为本申请实施例提供的PRS发送实体侧的一种定位方法的流程示意图;
图8为本申请实施例提供的终端侧的定位装置的结构示意图;
图9为本申请实施例提供的网络侧的定位装置的结构示意图;
图10为本申请实施例提供的PRS接收实体侧的定位装置的结构示意图;
图11为本申请实施例提供的LMF侧的定位装置的结构示意图;
图12为本申请实施例提供的PRS发送实体侧的定位装置的结构示意图。
具体实施方式
本申请实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供了一种定位方法及装置,用以提供适用于各种运动速度场景下的用户设备的定位方案,并且保证定位精度,避免对高速运动的用户设备的定位精度性能下降的问题。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
以下示例和实施例将只被理解为是说明性的示例。虽然本说明书可能在若干处提及“一”、“一个”或“一些”示例或实施例,但这并非意味着每个这种提及都与相同的示例或实施例有关,也并非意味着该特征仅适用于单个示例或实施例。不同实施例的单个特征也可以被组合以提供其他实施例。此外,如“包括”和“包含”的术语应被理解为并不将所描述的实施例限制为仅由已提及的那些特征组成;这种示例和实施例还可以包含并未具体提及的特征、结构、单元、模块等。
本申请实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(General Packet Radio Service,GPRS)系统、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、高级长期演进(Long Term Evolution Advanced,LTE-A)系统、通用移动系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide interoperability for Microwave Access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evolved Packet System,EPS)、5G系统(5GS)等。
本申请实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经RAN与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或 者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本申请实施例中并不限定。
本申请实施例涉及的网络设备,可以是基站,该基站可以包括多个小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互转换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本申请实施例涉及的网络设备可以是全球移动通信系统(GSM)或码分多址接入(CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(WCDMA)中的网络设备(NodeB),还可以是长期演进(LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站,也可是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本申请实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
网络设备与终端设备之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO, MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是2D-MIMO、3D-MIMO、FD-MIMO或massive-MIMO,也可以是分集传输或预编码传输或波束赋形传输等。
下面结合说明书附图对本申请各个实施例进行详细描述。需要说明的是,本申请实施例的展示顺序仅代表实施例的先后顺序,并不代表实施例所提供的技术方案的优劣。
5G技术中的定位方法,包括:
下行链路到达时间差(Downlink-Time Difference of Arrival,DL-TDOA);
上行链路到达时间差(Uplink-Time Difference of Arrival UL-TDOA);
多小区往返行程时间(Multiple cell-Round Trip Time,Multi-RTT);
上行链路到达角(Uplink-Angle of Arrival,UL-AoA);
下行链路离开角(Downlink-Angle of Departure,DL-AoD);
增强小区标识(Enhanced-Cell Identification,E-CID)。
其中,Multi-RTT作为新引入的定位方法,基本原理如图1所示。Multi-RTT定位方法采用的两种定位测量量(简称测量量)如下:
1)、UE所测量的,来自各收发点(Transmission and Reception Point,TRP)的下行链路(Downlink,DL)定位参考信号(Positioning Reference Signal,PRS)的到达时间与UE发送SRS-Pos(Sounding Reference Signal for Positioning,用于定位的上行探测参考信号)的时间差(称为UE Rx-Tx时间差);
2)、各TRP所测量的,来自UE的SRS-Pos的到达时间与TRP发送DL PRS的时间差(称为gNB Rx-Tx时间差)。
如图1所示,UE与任一TRP之间的信号往返行程时间(Round Trip Time,RTT),可由UE所测量的UE Rx-Tx时间差加上该TRP所测量的gNB Rx-Tx时间差得到,而UE与该TRP的距离可由1/2RTT乘以光速得到。
然而,由于RTT定位的测量量不是在同一个时刻获取的,在图1所示的RTT时延(即UE Rx-Tx时间差+gNB Rx-Tx时间差)内,UE高速运动将使 得UE位置发生了改变,从而带来定位误差。在给定RTT时延条件下,UE运动速度越高,定位误差越大。假设PRS周期为5ms,并由M=4个PRS周期所得的M个测量样本的测量量进行RTT定位,则RTT测量量的时延为20ms。针对速度为250km/h的高速运动的UE定位,则20ms的时间里,UE相对位置的变化可达1.4米。若不解决因UE相对速度(即多普勒频移)所导致的问题,则有可能引入1.4米的定位误差。
而传统的TDOA方法也难以获得米级的定位精度性能。与RTT定位一样,也要解决因UE相对速度(多普勒频移)所导致的问题。一个测量报告包含了一个或者多个测量实例(或者称为测量样本),每个UE测量样本都和一个时间戳(Time stamp)关联,其中,该Time stamp的颗粒度是时隙。
其中,关于所述测量样本,例如:PRS资源在80ms周期内重复传输了两次,每一次PRS传输称为一个测量样本,即80ms内包含了两个测量样本。针对支持M>1个测量样本的定位测量量,假设M=4,意味着PRS接收端采用平均或者线性加权等算法针对M=4个测量样本进行处理,才得到一个定位测量量。由于典型的M=4个测量样本的时间间隔为十毫秒量级,在UE高速运动场景下将引入比较大的误差。此外,传统TDOA定位方法要求各TRP之间具有准确的时间同步,TRP之间时间同步的不准确性(即存在定位误差)将直接影响传统TDOA的定位性能。
综上,UE高速运动场景下,高速带来的多普勒频移将导致RTT定位和TDOA定位带来较大的定位精度损失(包括绝对定位或者相对定位)。目前,3GPP协议还没有考虑如何克服UE运动和多普勒频移对定位精度的影响。
本申请实施例给出了一种基于不同时刻测量量的联合定位方法,可以解决因较大的多普勒频移导致的定位精度性能下降的问题。
本申请实施例提供的定位方法中包括如下内容:
1)、提供了联合定位方法的定位测量量和测量质量指示信息。
其中,所述测量质量指示信息中包括:定位测量量对应的绝对或者相对时刻的信息:测量时刻的颗粒度小于或等于正交频分复用(Orthogonal  Frequency Division Multiplexing,OFDM)符号,也就是说,所述测量时刻的颗粒度包括OFDM符号或者采样值点,其中,所述采样值点Ts=1/fs,fs表示采样率,例如针对100MHz信号带宽,典型的采样率fs为122.88MHz,Ts=1/fs=1/122.88M=8.14ns;
2)、针对高速UE信息,通过引入位置管理功能(Location Management Function,LMF)实体和PRS发送实体的协商机制,LMF请求PRS发送实体把N个PRS发送实体的PRS资源配置在尽可能接近的时间范围内(例如配置在预设时间范围内,具体的时间范围可以根据实际需要而定),并且配置UE基于M=1个测量样本进行定位测量。
本申请实施例提供的网络架构如图2所示,包括PRS发送实体、PRS接收实体和LMF实体(图2中未示出)。
本申请实施例中所述的PRS发送实体,例如:基站、TRP、路侧单元(Road Side Unit,RSU)、锚点(anchor)UE等。
本申请实施例中所述的PRS接收实体,也称为目标UE,即需要被定位的终端。
本申请实施例中所述的LMF实体,负责与PRS发送实体进行协商,确定关于多个定位参考信号发送实体在多个时刻的定位参考信号配置信息,以及,在UE辅助的(UE-assisted)定位方法中,获得目标UE上报的定位测量量和测量质量指示信息,进而进行目标UE的定位。而在基于UE的(UE-based)定位方法中,目标UE根据定位测量量和测量质量指示信息,进行本地UE的定位。
本申请实施例提供的技术方案,可以克服UE运动和多普勒频移对定位精度的影响,适用于UE高速、中速和低速运动的各种场景,并且适用于下行UE辅助的(UE-assisted)定位方法和基于UE的(UE-based)定位方法。其中,UE-based定位包括Uu(终端与基站之间的接口)定位和Sidelink(终端与终端之间的直通链路,简称SL)定位;PRS包括新空口(New Radio,NR)PRS、SL PRS等信号。
下面分别从不同实体侧,具体介绍本申请实施例提供的技术方案:
目标UE(即PRS接收实体,也即需要被定位的目标终端)侧的定位方法,例如包括:
步骤一:目标UE上报本UE的定位能力。
其中,UE的定位能力包括但不限于下列信息之一或组合:
UE支持的定位测量量类型,所述类型包括POA(Phase of Arrival,到达相位)和/或TOA(Time of Arrival,到达时间)等;
UE自身估计并存储的历史速度信息(包括速度范围和速度方向等);
UE是否支持M=1个测量样本的定位测量能力;
现有标准定义的UE定位能力,包含支持的PRS接收带宽、定位频率层个数等。
步骤二:目标UE接收LMF或者其它锚点(anchor)UE通知的关于N个PRS发送实体在K个时刻的PRS配置信息。其中,N和K都是预设的大于1的整数。每一个PRS发送实体都在K个时刻发送PRS信号,不同的PRS发送实体的PRS配置信息可以不同。
其中,PRS配置信息包括PRS的时频资源、重复周期和发送时刻等;
用于通知PRS配置信息的通知信令可以采用LPP或SLPP信令。其中,针对NR Uu接口(UE与基站之间的接口),PRS包括:NR PRS信号、NR同步信号块(Synchronization Signal/PBCH Block,SSB)信号和NR信道状态指示参考信号(Channel State Indication-Reference Signal,CSI-RS)等,通知信令为LPP信令。针对Sidelink PC5接口(终端与终端之间的接口),PRS包括SL PRS信号,通知信令为SLPP信令。
在一些实施例中,针对UE-assisted(UE辅助的)定位方法,UE还会收到LMF通知的采用M个测量样本来获取定位测量量的指示。例如:针对高速UE,指示采用M=1个测量样本的定位测量量;针对中低速或者静止UE,指示采用M=4或2或1个测量样本的定位测量量。
在一些实施例中,针对UE-based(基于UE的)定位方法,UE将接收到 LMF或者其它锚点(anchor)UE通知的N个PRS发送实体的坐标信息,用于后续进行定位解算。在一些实施例中,UE还可以接收到LMF预先存储的关于该UE的历史速度信息(包括速度范围和速度方向等),或者LMF之前存储的PRS发送实体范围内所有UE的历史速度信息。UE可以根据网络侧通知的这些信息,确定采用M个测量样本的定位测量量。例如:若确定本地UE为高速UE,则采用M=1个测量样本的定位测量量;若确定本地UE为中低速或者静止UE,则采用M=4或2或1个测量样本的定位测量量。
其中,本申请实施例中所述的高速UE、中速UE、低速UE的具体速度范围的划分,都是可以根据实际需要而定的,本申请实施例中不进行限制。
步骤三:目标UE接收并测量N个PRS发送实体在K个时刻的PRS信号,获取定位测量量,包括时延测量量和/或相位测量量。其中,例如,N>=4,K>=2。
其中,UE根据网络指示(对应UE-assisted定位方法)的测量样本的个数M,或者自身确定的测量样本的个数M(对应UE-based定位方法),进行定位测量。
步骤四:若是UE-assisted下行定位,则执行下列步骤A;若是UE-based下行定位,则执行下列步骤B。
步骤A:目标UE向LMF或者其它锚点(anchor)UE上报定位测量量和测量质量指示信息。
其中,针对NR Uu接口,上报定位测量量和测量质量指示信息的信令为LPP信令。针对Sidelink PC5接口,上报定位测量量和测量质量指示信息的信令为SLPP信令。
UE上报的定位测量量包括但不限于如下四种类型之一或组合:
单差分(Single Differential,SD)到达时间(Time of Arrival,TOA)值:sdj,具体计算方式例如参见后续内容中的公式(3);
SD到达相位(Phase of Arrival,POA)值:具体计算方式例如参见后续内容中的公式(11);
双差分(Double Differential,DD)TOA值:ddjp,具体计算方式例如参见后续内容中的公式(2);
DD POA值:具体计算方式例如参见后续内容中的公式(10)。
UE上报的测量质量指示信息包括但不限于下列信息之一或组合:
定位测量量对应的测量绝对或者相对时刻:颗粒度小于等于OFDM符号,颗粒度包括OFDM符号或者采样值点;
定位测量质量指示,例如:定位测量量的误差的最大值、平均值、方差、均方差、其它统计量(例如:二阶/三阶方差,或者50%、80%或90%的分布点对应的误差值),以及误差的分辨率;
LOS(Line of Sight,视距)或NLOS(Non Line of Sight,非视距)指示。
步骤B:目标UE采用下面五种联合搜索方法之一解算出K(K>=2)个时刻的UE位置。
下面以K=2个时刻(例如分别用T2时刻和T1时刻表示)为例进行说明,对于K>2的情况,同理,不再赘述。
本申请实施例中所述的联合搜索方法,即寻找代价函数值最小化情况下UE在T1时刻的位置和T2时刻的位置从而确定K个时刻中的各个时刻的UE位置。
方法一、采用预设的第一类代价函数解计算出K(K>=2)个时刻的UE位置:
所述第一类代价函数是假设UE在初始搜索范围{UE(x1,y1),UE(x2,y2)}内,即假设UE在T1时刻位于位置(x1,y1)并且在T2时刻位于位置(x2,y2)的条件下,最小化从T1时刻到T2时刻、UE到任意一个TRP j(非参考TRP)和UE到TRP p(参考TRP)的理论双差分TOA值和实际测量的双差分TOA值ddjp之差的加权平方和,例如具体采用下面的公式(1)进行计算。
其中,第p个PRS发送实体为参考PRS发送实体(预先配置的),p是{1:N}中的一个元素,c为光速(单位是米/秒);
表示假设UE在T1时刻位于位置(x1,y1),在T2时刻位于位置(x2,y2),UE到TRP j(j={1:N},j≠p)和UE到TRP p的理论双差分TOA值(为预设值,即TRP j和TRP p之间,时刻T1、T2之间的理论双差分TOA值);
ddjp表示从T1时刻到T2时刻由于UE运动引入的针对TRP j和参考TRP p的实际测得的双差分TOA值。
表示TOA测量误差的方差,可以是预设值,或者根据当前场景网络通知给目标UE的。
表示最终计算得到的UE在T1时刻的位置和T2时刻的位置
初始搜索范围{UE(x1,y1),UE(x2,y2)}可以基于TDOA或RTT等传统的R16定位方法获取。
在一些实施例中,如图3所示,例如,可以采用如下公式(2)计算ddjp
ddjp=sdj-sdp(j={1:N},j≠p)                           (2)
其中,sdj表示从T1时刻到T2时刻由于UE运动引入的针对TRP j的单差分TOA值;其中,sdp表示从T1时刻到T2时刻由于UE运动引入的针对参考TRP p的单差分TOA值。
在一些实施例中,例如,可以采用如下公式(3)计算sdj
其中,sdj=(sd_Txj-sd_Rxj)×c(j={1:N})                    (3)
其中:
sd_Rxj=Rx_TOA_j2-Rx_TOA_j1(j={1:N})                   (4)
sd_Txj=Tx_TOA_j2-Tx_TOA_j1(j={1:N})                   (5)
其中:
Rx_TOA_j1和Rx_TOA_j2分别表示UE接收到来自第j个RSU在T1和T2 时刻发送的PRS信号的接收时刻(j={1:N})。
Tx_TOA_j1和Tx_TOA_j2分别表示T1和T2时刻,第j个RSU发送的PRS信号的发送时刻(j={1:N}),UE为了接收到PRS,通过PRS的发送配置信息可以获取理想的Tx_TOA_j1和Tx_TOA_j2。
在一些实施例中,如图4所示,例如,可以采用如下公式(6)进行计算:
其中,Dis[A,B]表示计算两个矢量点A和B之间的距离;Loc(A)和Loc(B)分别表示矢量点A和B的位置,其中,A和B分别取值为:T1时刻的UE位置UE(x1,y1),T2时刻的UE位置UE(x2,y2),PRS发送实体j的位置Txj,PRS发送实体p的位置Txp。
计算过程如图4所示,其中,虚线矩形方框内的范围表示联合的T1和T2时刻初始搜索范围{UE(x1,y1),UE(x2,y2)}。为了降低搜索复杂度,一种简化方式是分割为T1和T2时刻分别确定搜索范围。例如:围绕T1时刻的虚线圆框内的范围表示T1时刻的初始搜索范围{UE(x1,y1)},围绕T2时刻的虚线圆框内的范围表示T2时刻的初始搜索范围{UE(x2,y2)}。
方法二、采用第二类代价函数解计算出K(K>=2)个时刻的UE位置:
第二类代价函数是假设UE在初始搜索范围{UE(x1,y1),UE(x2,y2)}内,即假设UE在T1时刻位于位置(x1,y1)并且在T2时刻位于位置(x2,y2)的条件下,最小化从T1时刻到T2时刻、UE到任意一个TRP j的理论单差分TOA值和实际测量的单差分TOA值sdj之差的加权平方和,例如具体采用下面的公式(7)进行计算:
其中,sdj例如采用上述公式(3)计算得到,表示假设 UE在T1时刻位于位置(x1,y1),在T2时刻位于位置(x2,y2),UE到TRP j的理论单差分TOA值(为预设值,即时刻T1/T2之间的理论单差分TOA值)。
在一些实施例中,例如,可以采用如下公式(8)计算
表示TOA测量误差的方差,可以是预设值,或者根据当前场景网络通知给目标UE的。
方法三、采用第三类代价函数解计算出K(K>=2)个时刻的UE位置:
第三类代价函数是假设UE在初始搜索范围{UE(x1,y1),UE(x2,y2)}内,即假设UE在T1时刻位于位置(x1,y1)并且在T2时刻位于位置(x2,y2)的条件下,最小化从T1时刻到T2时刻、UE到任意一个TRP j和UE到TRP p的理论双差分载波相位值和实际测量的双差分载波相位值之差的加权平方和。例如具体采用下面的公式(9)进行计算。


其中,
第p个PRS发送实体为参考PRS发送实体,其中,p是{1:N}中的一个元素,c为光速(单位是米/秒);
表示假设UE在T1时刻位于位置(x1,y1),在T2时刻位于位置(x2,y2),UE到TRP j和UE到TRP p的理论双差分载波相位值(即TRP j/TRP p,时刻T1/T2之间的理论双差分载波相位值),单位是米。
在一些实施例中,计算过程参见下面的公式(12)。
其中,例如采用上述公式(6)计算得到;
表示UE针对TRP j和TRP p,在时刻T1和T2之间的双差分载波相位值所对应的双差分整周模糊度,其中,表示T2时刻UE a到TRP j的载波相位测量量对应的整周模糊度,表示T1时刻UE a到TRP j的载波相位测量量对应的整周模糊度,表示T2时刻UE a到TRP p的载波相位测量量对应的整周模糊度,表示T1时刻UE a到TRP p的载波相位测量量对应的整周模糊度,可以通过现有算法计算得到,例如:基于MLAMDA算法进行搜索。
表示载波相位POA测量误差的方差,可以是预设值,或者根据当前场景网络通知给目标UE的。
初始搜索范围{(x1,y1,x2,y2)}可以基于现有TDOA/RTT等定位方法获取。
λ是载波波长(单位是米)。
表示从T1时刻到T2时刻、UE到任意一个TRP j的实际测量的单差分载波相位值;
表示从T1时刻到T2时刻、UE到任意参考TRP p的实际测量的单差分载波相位值(单位是米)。
其中,表示第t时刻测量获取的连续时刻的载波相位(POA)测量量,例如采用如下公式(13)确定:
其中,
表示UE a和gNB或TRP j之间的预设的理想距离值(或者理想TOA值)(单位是米),c是光速;
为载波相位测量量中未知的整周模糊度(单位是周期),可以基于现有算法计算得到的。
δtj(t)是PRB发送实体(gNB/TRP/RSU)j的定时偏差(单位是米),δta(t)是UE a的定时偏差(单位是米),其中,定时偏差是由晶振漂移导致的;
是PRB发送实体(gNB/TRP/RSU)j的初始相位(单位是周期),是UE a的初始相位(单位是周期);
c是光速(单位是米/秒);
λ是载波波长(单位是米);
是预设的载波相位的测量误差(单位是周期),可以是预设值,或者根据当前场景网络通知给目标UE的。
方法四、采用第四类代价函数解算出K(K>=2)个时刻的UE位置:
第四类代价函数是假设UE在初始搜索范围{UE(x1,y1),UE(x2,y2)}内,即假设UE在T1时刻位于位置(x1,y1)并且在T2时刻位于位置(x2,y2)的条件下,最小化从T1时刻到T2时刻、UE到任意一个TRP j的理论单差分载波相位值和实际测量的单差分载波相位值之差的加权平方和。例如具体采用下面的公式(14)进行计算。
其中,表示从T1时刻到T2时刻、UE到任意一个TRP j的实际测量的单差分载波相位值;
表示假设UE在T1时刻位于位置(x1,y1),在T2时刻位于位置(x2,y2),UE到TRP j的理论单差分载波相位值(即TRP j,时刻T1/T2之间的理论单差分载波相位值),单位是米。
在一些实施例中,计算过程参见公式(15)。
其中,例如采用上述公式(8)计算得到;
表示TRP j,时刻T1/T2之间的单差分整周模糊度,是基于现有算法计算得到的。
方法五、采用第五类代价函数解算出K(K>=2)个时刻的UE位置:
第五类代价函数是假设UE在初始搜索范围{UE(x1,y1),UE(x2,y2)}内,即假设UE在T1时刻位于位置(x1,y1)并且在T2时刻位于位置(x2,y2)的条件下,最小化从T1时刻到T2时刻、UE到任意一个TRP j和UE到TRP p的理论双差分载波相位值和实际测量的双差分载波相位值之差的加权平方,和UE到任意一个TRP j和UE到TRP p的理论双差分TOA值和实际测量的双差分TOA值ddjp之差的加权平方的累加和。例如具体采用下面的公式(16)进行计算。
其中,可以视为理论双差分TOA值与终端实际测量获取的双差分TOA值的差值的第一加权平方值;可以视为理论双差分POA值与终端实际测量获取的双差分POA值的差值的第二加权平方值;
第p个PRS发送实体为参考PRS发送实体,c为光速(单位是米/秒);
Rx_TOA_j1、Rx_TOA_j2、Tx_TOA_j1、Tx_TOA_j2、的计算方式参见上述方法一;
的计算方式参见上述方法三。
综上所述,如图5所示,可见在目标UE侧本申请实施例提供的定位方法,包括:
S101、获取定位参考信号配置信息,其中,所述定位参考信号配置信息是关于多个定位参考信号发送实体在多个时刻的定位参考信号配置信息;
S102、根据所述定位参考信号配置信息,接收所述多个定位参考信号发送实体在所述多个时刻发送的定位参考信号,并进行定位测量,其中,测量时刻的颗粒度小于等于正交频分复用符号,例如测量时刻的颗粒度包括OFDM符号或者采样值点,即按照OFDM符号或者采样值点的时间精确度进 行定位测量。
在一些实施例中,所述方法还包括:
上报终端的定位能力,所述终端的定位能力包括下列信息之一或组合:
终端支持的定位测量量的类型;其中,所述类型包括到达相位和/或到达时间;
终端的历史速度信息;
终端是否支持1个测量样本的定位测量,即M=1,M越小,定位搜索范围越小,因此可以进一步降低定位计算复杂度,提高了定位效率和准确性。
在一些实施例中,所述进行定位测量,包括:
确定测量样本的个数M,所述测量样本用于获取定位测量量,其中,M为大于或等于1的整数;
基于M个测量样本,获取定位测量量;
其中,所述确定测量样本的个数M,包括:
接收指示信息,所述指示信息用于指示所述测量样本的个数M的取值(针对UE-assisted定位方法);
或者,接收指示信息,所述指示信息用于指示确定所述测量样本的个数M的取值的信息(针对UE-based定位方法),根据所述指示信息确定所述测量样本的个数M的取值。
在一些实施例中,当终端的速度大于预设值(即高速UE)时,所述测量样本的个数M的取值为1。因此可以进一步降低定位计算复杂度,提高了定位效率和准确性。
其中,当所述指示信息用于指示确定所述测量样本的个数M的取值的信息时,所述指示信息例如包括:
多个定位参考信号发送实体的坐标信息;
目标UE的历史速度信息;
PRS发送实体范围内所有UE的历史速度信息等。
在一些实施例中,所述方法还包括(即上述步骤A):
发送定位测量量和测量质量指示信息;其中,
所述定位测量量包括如下四种类型之一或组合的定位测量量:
单差分到达时间、单差分到达相位、双差分到达时间、双差分到达相位;
所述测量质量指示信息包括下列信息之一或组合:
定位测量量对应的绝对时刻或者相对时刻,其中所述绝对时刻或者相对时刻,以正交频分复用符号或者采样值点为测量时刻颗粒度;
定位测量质量指示;
视距或非视距的指示。
在一些实施例中,所述方法还包括(即上述步骤B):基于所述定位测量得到差分到达时间TOA测量量和/或差分到达相位POA测量量,采用初始搜索范围内多个不同时刻的预设的终端位置信息,基于代价函数最小化准则,计算终端在多个不同的所述时刻的终端的位置信息;
其中,所述差分TOA包含单差分TOA和双差分TOA;
其中,所述差分POA测量量包含单差分POA和双差分POA。
在一些实施例中,所述代价函数包括上述五种代价函数之一,具体不再赘述。
相应地,LMF(定位服务器,即定位解算实体)侧的定位方法,例如包括:
步骤一:LMF接收目标UE上报的UE定位能力。
其中,UE的定位能力包括但不限于下列信息之一或组合:
UE支持的定位测量量类型,所述类型包括POA(Phase of Arrival,到达相位)和/或TOA(Time of Arrival,到达时间)等;
UE自身估计并存储的历史速度信息(包括速度范围和速度方向等);
UE是否支持M=1个测量样本的定位测量能力;
现有标准定义的UE定位能力,包含支持的PRS接收带宽、定位频率层个数等。
其中,LMF可以根据目标UE上报的历史速度信息(包括速度范围和速 度方向等),或者LMF之前存储的PRS发送实体范围内所有目标UE的历史速度信息,获得目标UE当前速度信息的估计值,用于后续与服务基站或者其它锚点(anchor)UE协商针对N个PRS发送实体的PRS资源配置和M个测量样本的建议。
步骤二:LMF经过和服务基站或者其它锚点(anchor)UE协商,向UE通知关于N个PRS发送实体在K个时刻的PRS配置信息;
其中,PRS配置信息包括PRS的时频资源、重复周期和发送时刻等,通知信令采用LPP信令。其中,针对LMF估计的高速UE,LMF将请求服务基站把N个PRS发送实体的PRS资源配置在尽可能接近的时间范围内,例如:采用相同的时域资源,采用给定梳状尺寸(Comb-size)条件下的不同资源单元(Resource Element,RE)偏移(shift)来区分不同的PRS发送实体。
在一些实施例中,针对UE-assisted定位方法,LMF还会通知UE关于采用M个测量样本来获取定位测量量的指示。其中,LMF可以根据UE当前速度信息的估计值,来确定M取值。例如:针对高速UE,采用M=1个测量样本的定位测量量;针对中低速或者静止UE,采用M=4或2或1个测量样本的定位测量量。
在一些实施例中,针对UE-based定位方法,LMF通知UE N个PRS发送实体的坐标信息。在一些实施例中,LMF还可以通知UE针对该UE的当前速度信息的估计值。使得UE根据上述信息,判断自身采用M个测量样本的定位测量量。例如:目标UE当确定自身是高速UE时,采用M=1个测量样本的定位测量量;目标UE当确定自身是中低速或者静止UE时,采用M=4或2或1个测量样本的定位测量量。
步骤三:针对UE辅助定位方法,LMF接收UE上报的采用联合定位方法进行定位所需的定位测量量和测量质量指示信息。
其中,UE上报的定位测量量包括但不限于如下四种类型之一或组合:
SD TOA值:sdj,具体计算方式例如参见上述公式(3);
SD POA值:具体计算方式例如参见上述公式(11);
DD TOA值:ddjp,具体计算方式例如参见上述公式(2);
DD POA值:具体计算方式例如参见上述公式(10)。
UE上报的测量质量指示信息包括但不限于下列信息之一或组合:
定位测量量对应的绝对或者相对时刻:颗粒度小于等于OFDM符号,颗粒度包括OFDM符号或者采样值点;
定位测量质量指示;
LOS(Line of Sight,视距)或NLOS(Non Line of Sight,非视距)指示。
步骤四:针对UE辅助定位方法,LMF采用上述五种联合搜索方法之一来解算出K(K>2)个时刻的UE位置。
具体地,同理可以参见上述目标UE侧描述的五种联合搜索方法,此处不再赘述。
综上所述,如图6所示,可见在LMF侧本申请实施例提供的一种定位方法,包括:
S201、与多个定位参考信号发送实体协商确定定位参考信号配置信息,所述定位参考信号配置信息是关于所述多个定位参考信号发送实体在多个时刻的定位参考信号配置信息;
S202、发送所述定位参考信号配置信息,用于终端根据所述定位参考信号配置信息,接收所述多个定位参考信号发送实体在所述多个时刻发送的定位参考信号,并进行定位测量,其中,测量时刻的颗粒度小于等于正交频分复用符号,例如包括OFDM符号或者采样值点。
在一些实施例中,所述方法还包括:
接收终端的定位能力,所述定位能力包括下列信息之一或组合:
终端支持的定位测量量的类型;其中,所述类型包括到达相位和/或到达时间;
终端的历史速度信息;
终端是否支持1个测量样本的定位测量。
在一些实施例中,所述定位参考信号配置信息中,所述多个定位参考信号发送实体在多个时刻的同一个时刻中的定位参考信号的时域资源位置相同或相邻或相差预设范围。
在一些实施例中,所述方法还包括:
发送指示信息,所述指示信息指示了测量样本的个数M的取值;或者,所述指示信息指示了用于确定测量样本的个数M的取值的信息。
在一些实施例中,当终端的速度大于预设值(例如250km/h)时,所述测量样本的个数M的取值为1。
在一些实施例中,所述方法还包括:
接收终端发送的定位测量量和测量质量指示信息;其中,
所述定位测量量包括如下四种类型之一或组合的定位测量量:
单差分到达时间、单差分到达相位、双差分到达时间、双差分到达相位;
所述测量质量指示信息包括下列信息之一或组合:
定位测量量对应的绝对时刻或者相对时刻,其中所述绝对时刻或者相对时刻,以正交频分复用符号或者采样值点为测量时刻颗粒度;
定位测量质量指示;
视距或非视距的指示。
在一些实施例中,所述方法还包括:
基于所述定位测量量,采用初始搜索范围内多个不同时刻的预设的终端位置信息,基于代价函数最小化准则,计算终端在多个不同的所述时刻的终端的位置信息。
在一些实施例中,所述代价函数包括上述五种代价函数之一,具体不再赘述。
相应地,在PRS发送实体(可以是gNB/TRP/RSU或者其它锚点(anchor)UE)侧的定位方法,例如参见图7,包括:
S301、与定位管理功能实体协商确定定位参考信号配置信息,所述定位 参考信号配置信息是关于多个定位参考信号发送实体在多个时刻的定位参考信号配置信息。
具体地,例如:PRS发送实体和LMF协商,确定N个PRS发送实体在K个时刻的PRS配置信息。其中,PRS配置信息包括PRS的时频资源、重复周期和发送时刻等。然后,PRS发送实体将N个PRS发送实体在K个时刻的PRS配置信息通过NR定位协议A(NRPPa)信令通知LMF,由LMF进一步通过LTE定位协议(LPP)信令通知UE。
其中,针对NR Uu接口,PRS包括NR PRS信号、NR SSB信号和NR CSI-RS等,通知信令为NRPPa和LPP信令。针对Sidelink PC5接口,PRS包括SL-PRS信号,通知信令为SLPP信令。
其中,当LMF提供了目标UE可能是高速UE的指示信息时,服务基站优先把N个PRS发送实体的PRS资源配置在尽可能接近的时间范围内,例如:N个PRS发送实体采用相同的时域资源,采用给定Comb-size条件下的不同RE shift区分不同的PRS发送实体。
S302、在所述多个时刻分别向终端发送定位参考信号,用于所述终端根据所述定位参考信号配置信息,接收在所述多个时刻发送的定位参考信号,并进行定位测量,其中,测量时刻的颗粒度小于等于正交频分复用符号。
其中,PRS发送实体在K个时刻分别向目标UE发送PRS信号,例如:采用预设周期发送下行PRS信号。
下面给出三个具体实施例的举例说明。
实施例1:基于Uu接口的下行UE辅助定位方法。
实施例1以下行UE辅助定位方法进行说明,UE为高速场景,M=1,N=4,K=2。搜索算法的代价函数为方法一和方法二。
目标UE侧的定位方法包括:
步骤一:UE上报本UE的定位能力。包括但不限于:支持的定位测量量类型(TOA/POA等),UE自身存储的历史速度信息(包括速度范围和速度方向等),是否支持M=1个测量样本的定位测量能力。
步骤二:UE接收LMF通知的关于N=4个PRS发送实体在K=2个时刻的PRS配置信息,其中,配置信息包括PRS的时频资源、重复周期和发送时刻等,通知信令采用LPP信令。
针对UE-assisted定位方法,可选地,UE还会收到LMF通知的采用M个测量样本来获取定位测量量的指示。
步骤三:UE接收并测量N=4个TRP/RSU在K=2个时刻的PRS信号,获取时延或者相位测量量。UE根据网络指示或者自身判断的M=1个测量样本的定位测量量,进行定位测量。
步骤四:针对UE辅助的下行定位,进入步骤A。
步骤A:UE向LMF上报测量量和测量质量指示信息。
其中,测量量包括但不限于如下两种类型:
单差SD-TOA:sdj,定义参见公式(19);
双差DD-TOA:ddj1,定义参见公式(18);
其中,测量质量指示信息包括但不限于:
测量量对应的绝对或者相对时刻:颗粒度小于等于OFDM符号,包括OFDM符号或者采样值点;
测量质量指示;
LOS或NLOS指示。
相应地,在LMF侧的定位方法包括:
步骤一:LMF接收UE上报的UE定位能力。
包括但不限于:支持的定位测量量类型(TOA/POA),UE自身存储的历史速度信息(包括速度范围和速度方向等),是否支持M=1个测量样本的定位测量能力。LMF可以根据UE上报的历史速度信息(包括速度范围和速度方向等),或者LMF之前存储的PRS发送实体范围内所有UE的历史速度信息,获得UE当前速度信息的估计值,用于后续针对N=4个PRS发送实体的PRS资源建议和M个测量样本建议。
步骤二:LMF经过和服务基站协商,向UE通知的关于N=4个PRS发送 实体在K=2个时刻的PRS配置信息,其中,配置信息包括PRS的时频资源、重复周期和发送时刻等,通知信令采用LPP信令。
针对LMF估计的高速UE,LMF将请求服务基站把N=4个PRS发送实体的PRS资源配置在尽可能接近的时间范围内,例如:采用相同的时域资源,采用Comb-size的不同RE shift来区分不同的PRS发送实体。
针对UE-assisted定位方法,LMF还可以通知UE关于采用M个测量样本来获取定位测量量的指示。其中,LMF可以根据UE当前速度信息的估计值,来确定M取值。例如:针对高速UE,采用M=1个测量样本的定位测量量;针对中低速或者静止UE,采用M=4或2或1个测量样本的定位测量量。
步骤三:针对UE辅助定位方法,LMF接收UE上报的联合定位方法的定位测量量和测量质量指示信息。
其中,测量量包括但不限于如下两种类型:
单差SD-TOA:sdj,定义参见公式(19);
双差DD-TOA:ddj1,定义参见公式(18);
其中,测量质量指示信息包括但不限于:
测量量对应的绝对或者相对时刻:颗粒度小于等于OFDM符号,包括OFDM符号或者采样值点;
测量质量指示;
LOS或NLOS指示。
步骤四:针对UE辅助定位方法,LMF采用下面五种联合搜索方法之一来解算出K(K=2)个时刻的UE位置。
本实施例以方法一和方法二,K=2个时刻(T2和T1)为例进行说明,也可以用于K(K>2)个时刻。
方法一、采用第一类代价函数解算出K=2个时刻的UE位置:
第一类代价函数是假设UE在T1时刻位于位置(x1,y1)并且在T2时刻位于位置(x2,y2)条件下,最小化从T1时刻到T2时刻、UE到任意一个TRP  j和UE到TRP p的理论双差分TOA值和实际测量的双差分TOA值ddjp之差的加权平方和,如公式(17)所示。

ddj1=sdj-sd1(j={2:4})                                  (18)
sdj=(sd_Txj-sd_Rxj)×c(j={1:4})                       (19)
sd_Rxj=Rx_TOA_j2-Rx_TOA_j1(j={1:4})                  (20)
sd_Txj=Tx_TOA_j2-Tx_TOA_j1(j={1:4})                   (21)
其中,
第p=1个PRS发送实体为参考PRS发送实体,c为光速(单位是米/秒);
Rx_TOA_j1和Rx_TOA_j2分别表示T1和T2时刻,UE接收到来自第j个RSU发送的PRS信号的接收时刻(j={1:4})。
Tx_TOA_j1和Tx_TOA_j2分别表示T1和T2时刻,第j个RSU发送的PRS信号的发送时刻(j={1:4}),UE为了接收到PRS,通过PRS的发送配置信息可以获取理想的Tx_TOA_j1和Tx_TOA_j2。
表示假设UE在T1时刻位于位置(x1,y1),在T2时刻位于位置(x2,y2),UE到TRP j(j={2:4})和UE到TRP 1的理论双差分TOA值(为预设值,即TRP j和TRP 1之间,时刻T1/T2之间的理论双差分TOA值)。计算公式如下:
其中,Dis[A,B]表示计算两个矢量点A和B之间的距离;Loc(A)和Loc(B)分别表示矢量点A和B的位置,其中,A和B分别取值为:T1时刻的UE位置UE(x1,y1),T2时刻的UE位置UE(x2,y2),PRS发送实体j的位置Txj(j={2:4}),PRS发送实体1的位置Tx1。
sdj(j={2:4})表示采用公式(19)实际计算得到的、从T1时刻到T2 时刻由于UE运动引入的针对TRP j的单差分TOA值;其中,sd1采用公式(19)实际计算得到的、从T1时刻到T2时刻由于UE运动引入的针对参考TRP 1的单差分TOA值。
ddj1表示采用公式(18)实际计算得到的、从T1时刻到T2时刻由于UE运动引入的针对TRP j和参考TRP 1的双差分TOA值。
表示TOA测量误差的方差,可以是预设值,或者根据当前场景网络通知给目标UE的。
表示最终计算得到的UE在T1时刻的位置和T2时刻的位置
初始搜索范围{UE(x1,y1),UE(x2,y2)}可以基于DL-TDOA/UL-TDOA/RTT等传统的R16定位方法获取。
方法二、采用第二类代价函数解算出K(K>=2)个时刻的UE位置:
第二类代价函数是假设UE在T1时刻位于位置(x1,y1)并且在T2时刻位于位置(x2,y2)条件下,最小化从T1时刻到T2时刻、UE到任意一个TRP j的理论单差分TOA值和实际测量的单差分TOA值sdj之差的加权平方和。如公式(23)所示。
其中,sdj(j={1:4})定义参见公式(19),表示假设UE在T1时刻位于位置(x1,y1),在T2时刻位于位置(x2,y2),UE到TRP j的理论单差分TOA值(为预设值,即时刻T1/T2之间的理论单差分TOA值)。计算公式如下:
表示TOA测量误差的方差,可以是预设值,或者根据当前场景网络通知给目标UE的。
相应地,在PRS发送实体侧的定位方法包括:
步骤一:服务基站(PRS发送实体)和LMF协商,确定N=4个PRS发送实体在K=2个时刻的PRS配置信息,其中,配置信息包括PRS的时频资源、重复周期和发送时刻等,然后通过NRPPa信令通知LMF,由LMF进一步通过LPP信令通知UE。
其中,当LMF提供了该UE是高速UE的指示信息,服务基站优先把N=4个PRS发送实体的PRS资源配置在尽可能接近的时间范围内,例如:采用相同的时域资源,采用Comb-size的不同RE shift来区分不同的PRS发送实体。
步骤二:N=4个PRS发送实体在K=2个时刻分别向UE发送PRS信号,例如:采用周期为10ms发送下行PRS信号。
实施例2:基于Uu接口的下行UE-based定位方法。
实施例2以基于Uu接口的下行UE-based定位方法进行说明,UE为高速场景,M=1,N=6,K=2。搜索算法的代价函数为方法三和方法四。
目标UE侧的定位方法包括:
步骤一:UE上报本UE的定位能力。包括但不限于:支持的定位测量量类型(TOA/POA),UE自身存储的历史速度信息(包括速度范围和速度方向等),是否支持M=1个测量样本的定位测量能力。
步骤二:UE接收LMF通知的关于N个PRS发送实体在K个时刻的PRS配置信息,其中,配置信息包括PRS的时频资源、重复周期和发送时刻等,通知信令采用LPP信令。
针对UE-based定位方法,UE将接收到LMF通知的N个PRS发送实体的坐标信息。可选地,UE还可以接收到LMF预先存储的关于该UE的历史速度信息(包括速度范围和速度方向等),或者LMF之前存储的PRS发送实体范围内所有UE的历史速度信息。UE根据上述信息,判断采用M个测量样本的定位测量量。例如:针对高速UE,采用M=1个测量样本的定位测量量;针对中低速或者静止UE,采用M=4或2或1个测量样本的定位测量量。
步骤三:UE接收并测量N=6个PRS发送实体在K=2个时刻的PRS信号,获取时延或者相位测量量。UE根据网络指示或者自身判断的M=1个测量样 本的定位测量量,进行定位测量。
步骤四:针对UE-based的下行定位,进入步骤B。
步骤B:UE采用下面五种联合搜索方法之一来解算出K(K=2)个时刻的UE位置。
本实施例以方法三和方法四,K=2个时刻(T2和T1)为例进行说明,也可以用于K(K>2)个时刻。
方法三、采用第三类代价函数解算出K(K>=2)个时刻的UE位置:
第三类代价函数是假设UE在T1时刻位于位置(x1,y1)并且在T2时刻位于位置(x2,y2)条件下,最小化从T1时刻到T2时刻、UE到任意一个TRP j和UE到TRP p=1的理论双差分载波相位值和实际测量的双差分载波相位值之差的加权平方和。如公式(25)所示。


其中,
第p=1个PRS发送实体为参考PRS发送实体,c为光速(单位是米/秒);
表示假设UE在T1时刻位于位置(x1,y1),在T2时刻位于位置(x2,y2),UE到TRP j和UE到TRP 1的理论双差分载波相位值(即TRP j/TRP 1,时刻T1/T2之间的理论双差分载波相位值),单位是米。计算过程参见公式(28)。
其中,参见公式(22);
表示UE针对TRP j和TRP 1,在时刻T1和T2之间针对双差分载波相位值所对应的双差分整周模糊度,其中,表示T2时刻UE a到TRP j的载波相位测量量对应的 整周模糊度,表示T1时刻UE a到TRP j的载波相位测量量对应的整周模糊度,表示T2时刻UE a到TRP p=1的载波相位测量量对应的整周模糊度,表示T1时刻UE a到TRP p=1的载波相位测量量对应的整周模糊度,可以通过现有算法计算得到,例如:基于MLAMDA算法进行搜索
表示载波相位POA测量误差的方差,可以是预设值,或者根据当前场景网络通知给目标UE的。
初始搜索范围{(x1,y1,x2,y2)}可以基于现有TDOA/RTT等定位方法获取。
λ是载波波长(单位是米)。
表示从T1时刻到T2时刻、UE到任意一个TRP j(j={2:6})的实际测量的单差分载波相位值; 表示从T1时刻到T2时刻、UE到参考TRP 1的实际测量的单差分载波相位值(单位是米)。
表示第t时刻测量获取的连续时刻的载波相位(POA)测量量,定义参见公式(13)。
方法四、采用第四类代价函数解算出K(K>=2)个时刻的UE位置:
第四类代价函数是假设UE在T1时刻位于位置(x1,y1)并且在T2时刻位于位置(x2,y2)条件下,最小化从T1时刻到T2时刻、UE到任意一个TRP j的理论单差分载波相位值和实际测量的单差分载波相位值之差的加权平方和。如公式(29)所示。
其中,表示从T1时刻到T2时刻、UE到任意一个TRP j的实际测量的单差分载波相位值;表示假设UE在T1时刻位于位置(x1,y1),在T2时刻位于位置(x2,y2),UE到TRP j的理论单差分载波相位值(即TRP j,时刻T1/T2之间的理论单差分载波相位 值),单位是米。计算过程参见公式(15)。
相应的,LMF侧的定位方法包括:
步骤一:LMF接收UE上报的UE定位能力。包括但不限于:支持的定位测量量类型(TOA/POA),UE自身存储的历史速度信息(包括速度范围和速度方向等),是否支持M=1个测量样本的定位测量能力。LMF可以根据UE上报的历史速度信息(包括速度范围和速度方向等),或者LMF之前存储的PRS发送实体范围内所有UE的历史速度信息,获得UE当前速度信息的估计值,用于后续针对N=6个PRS发送实体的PRS资源配置建议和M个测量样本建议。
步骤二:LMF经过和服务基站协商,向UE通知的关于N=6个PRS发送实体在K=2个时刻的PRS配置信息,其中,配置信息包括PRS的时频资源、重复周期和发送时刻等,通知信令采用LPP信令。针对LMF估计的高速UE,LMF将请求服务基站把N=6个PRS发送实体的PRS资源配置在尽可能接近的时间范围内,例如:采用相同的时域资源,采用Comb-size的不同RE shift来区分不同的PRS发送实体。
针对UE-based定位方法,LMF通知UE N=6个PRS发送实体的坐标信息。可选地,LMF还可以通知UE针对该UE的当前速度信息的估计值。用于UE根据上述信息,判断采用M个测量样本的定位测量量。例如:针对高速UE,采用M=1个测量样本的定位测量量;针对中低速或者静止UE,采用M=4或2或1个测量样本的定位测量量。
相应的,PRS发送实体侧的定位方法包括:
步骤一:服务基站(PRS发送实体)和LMF协商,确定N=6个PRS发送实体在K=2个时刻的PRS配置信息,其中,配置信息包括PRS的时频资源、重复周期和发送时刻等,然后通过NRPPa信令通知LMF,由LMF进一步通过LPP信令通知UE。
其中,当LMF提供了该UE可能是高速UE的指示信息,服务基站优先 把N=6个PRS发送实体的PRS资源配置在尽可能接近的时间范围内,例如:采用相同的时域资源,采用Comb-size的不同RE shift来区分不同的PRS发送实体。
步骤二:N=6个PRS发送实体在K=2个时刻分别向UE发送PRS信号,例如:采用周期为10ms发送下行PRS信号。
实施例3:基于Sidelink PC5接口的UE-based定位方法。
实施例3以于Sidelink PC5接口的UE-based定位方法进行说明,UE为高速场景,M=1,N=6,K=2。搜索算法的代价函数为方法五。
目标UE侧的定位方法:
步骤一:UE上报本UE的定位能力。包括但不限于:支持的定位测量量类型(TOA/POA等),UE自身估计并存储的历史速度信息(包括速度范围和速度方向等),是否支持M=1个测量样本的定位测量能力。
步骤二:UE接收LMF或者其它锚点(anchor)UE通知的关于N个PRS发送实体在K个时刻的PRS配置信息,其中,配置信息包括PRS的时频资源、重复周期和发送时刻等,通知信令采用LPP/SLPP信令。针对NR Uu接口,PRS包括NR PRS信号、NR SSB信号和NR CSI-RS等,通知信令为LPP信令。针对Sidelink PC5接口,PRS包括SL-PRS信号,通知信令为SLPP信令。
针对UE-based定位方法,UE将接收到LMF或者其它锚点(anchor)UE通知的N个基站/TRP/RSU的坐标信息。在一些实施例中,UE还可以接收到LMF预先存储的关于该UE的历史速度信息(包括速度范围和速度方向等),或者LMF之前存储的PRS发送实体范围内所有UE的历史速度信息。UE根据上述信息,判断采用M个测量样本的定位测量量。例如:针对高速UE,采用M=1个测量样本的定位测量量;针对中低速或者静止UE,采用M=4或2或1个测量样本的定位测量量。
步骤三:UE接收并测量N=6个PRS发送实体在K=2个时刻的PRS信号,获取时延和/或者相位测量量。UE根据网络指示或者自身判断的M个测量样本的定位测量量,进行定位测量。
步骤四:针对UE-based的Sidelink定位,进入步骤B。
步骤B:UE采用下面CASE 5为例来解算出K(K=2)个时刻的UE位置。
下面以K=2个时刻(T2和T1)为例进行说明,也可以用于K(K>2)个时刻。
方法五、采用第三类代价函数解算出K(K>=2)个时刻的UE位置:
第五类代价函数是假设UE在T1时刻位于位置(x1,y1)并且在T2时刻位于位置(x2,y2)条件下,最小化从T1时刻到T2时刻、UE到任意一个TRP j和UE到TRP p的理论双差分载波相位值和实际测量的双差分载波相位值之差的加权平方,和UE到任意一个TRP j和UE到TRP p的理论双差分TOA值和实际测量的双差分TOA值ddjp之差的加权平方的累加和。如公式(30)所示。
其中,
第p=1个PRS发送实体为参考PRS发送实体,c为光速(单位是米/秒);
Rx_TOA_j1、Rx_TOA_j2、Tx_TOA_j1、Tx_TOA_j2、的定义参见实施例1中的方法一;
的定义参见实施例2中的方法三。
相应的,LMF侧的定位方法包括:
步骤一:LMF接收UE上报的UE定位能力。包括但不限于:支持的定位测量量类型(TOA/POA),UE自身存储的历史速度信息(包括速度范围和速度方向等),是否支持M=1个测量样本的定位测量能力。LMF可以根据UE上报的历史速度信息(包括速度范围和速度方向等),或者LMF之前存储的PRS发送实体范围内所有UE的历史速度信息,获得UE当前速度信息的估计值,用于后续针对N=6个PRS发送实体的PRS资源配置建议和M个测量样 本建议。
步骤二:LMF经过和服务基站协商,向UE通知的关于N=6个PRS发送实体在K=2个时刻的PRS配置信息,其中,配置信息包括PRS的时频资源、重复周期和发送时刻等,通知信令采用LPP信令。针对LMF估计的高速UE,LMF将请求服务基站把N=6个PRS发送实体的PRS资源配置在尽可能接近的时间范围内,例如:采用相同的时域资源,采用Comb-size的不同RE shift来区分不同的PRS发送实体。
针对UE-based定位方法,LMF通知UE N=6个PRS发送实体的坐标信息。可选地,LMF还可以通知UE针对该UE的当前速度信息的估计值。用于UE根据上述信息,判断采用M个测量样本的定位测量量。例如:针对高速UE,采用M=1个测量样本的定位测量量;针对中低速或者静止UE,采用M=4或2或1个测量样本的定位测量量。
相应的,PRS发送实体侧的定位方法包括:
步骤一:服务基站或者其它锚点(anchor)UE和LMF协商,确定N个PRS发送实体在K个时刻的PRS配置信息,其中,配置信息包括PRS的时频资源、重复周期和发送时刻等,然后通过NRPPa信令通知LMF,由LMF进一步通过LPP信令通知UE。针对NR Uu接口,PRS包括NR PRS信号、NR SSB信号和NR CSI-RS等,通知信令为NRPPa和LPP信令。针对Sidelink PC5接口,PRS包括SL-PRS信号,通知信令为SLPP信令。
其中,当LMF提供了该UE可能是高速UE的指示信息,服务基站优先把N个PRS发送实体的PRS资源配置在尽可能接近的时间范围内,例如:采用相同的时域资源,采用给定Comb-size条件下的不同RE shift区分不同的PRS发送实体。
步骤二:N=6个PRS发送实体或者其它锚点(anchor)UE在K=2个时刻分别向目标UE发送PRS信号,例如:采用给定周期发送下行PRS信号。
综上所述,本申请实施例中,给出了基于不同时刻测量量的联合定位方法,可以克服UE运动和多普勒频移对定位精度的影响,适用于UE高速、中 速和低速场景,并且适用于下行UE辅助定位方法和UE-based定位(包括Uu定位和sidelink定位)方法。解决了现有技术中,高速带来的多普勒频移将导致RTT定位和TDOA定位带来较大的定位精度损失(包括绝对定位或者相对定位)的问题。
基于同一发明构思,下面介绍一下本申请实施例提供的设备或装置,其中与上述方法中所述的相同或相应的技术特征的解释或举例说明,后续不再赘述。
在终端侧,本申请实施例提供的一种定位装置,包括:
处理器600,用于读取存储器620中的程序,执行下列过程:
获取定位参考信号配置信息,其中,所述定位参考信号配置信息是关于多个定位参考信号发送实体在多个时刻的定位参考信号配置信息;
根据所述定位参考信号配置信息,接收所述多个定位参考信号发送实体在所述多个时刻发送的定位参考信号,并进行定位测量,其中,测量时刻的颗粒度小于等于正交频分复用符号。
在一些实施例中,在所述处理器600,还用于读取所述存储器中的计算机程序并执行以下操作:
上报终端的定位能力,所述终端的定位能力包括下列信息之一或组合:
终端支持的定位测量量的类型;其中,所述类型包括到达相位和/或到达时间;
终端的历史速度信息;
终端是否支持1个测量样本的定位测量。
在一些实施例中,所述进行定位测量,包括:
确定测量样本的个数M,所述测量样本用于获取定位测量量,其中,M为大于或等于1的整数;
基于M个测量样本,获取定位测量量;
其中,所述确定测量样本的个数M,包括:
接收指示信息,所述指示信息用于指示所述测量样本的个数M的取值;
或者,接收指示信息,所述指示信息用于指示确定所述测量样本的个数M的取值的信息,根据所述指示信息确定所述测量样本的个数M的取值。
在一些实施例中,当终端的速度大于预设值时,所述测量样本的个数M的取值为1。
在一些实施例中,所述处理器600,还用于读取所述存储器中的计算机程序并执行以下操作:
发送定位测量量和测量质量指示信息;其中,
所述定位测量量包括如下四种类型之一或组合的定位测量量:
单差分到达时间、单差分到达相位、双差分到达时间、双差分到达相位;
所述测量质量指示信息包括下列信息之一或组合:
定位测量量对应的绝对时刻或者相对时刻,其中所述绝对时刻或者相对时刻,以正交频分复用符号或者采样值点为测量时刻颗粒度;
定位测量质量指示;
视距或非视距的指示。
在一些实施例中,所述处理器600,还用于读取所述存储器中的计算机程序并执行以下操作:
基于所述定位测量得到差分到达时间TOA测量量和/或差分到达相位POA测量量,采用初始搜索范围内多个不同时刻的预设的终端位置信息,基于代价函数最小化准则,计算终端在多个不同的所述时刻的终端的位置信息;
其中,所述差分TOA包含单差分TOA和双差分TOA;
其中,所述差分POA测量量包含单差分POA和双差分POA。
所述代价函数例如上述五种代价函数之一,具体不再赘述。
收发机610,用于在处理器600的控制下接收和发送数据。
其中,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不 再对其进行进一步描述。总线接口提供接口。收发机610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口630还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
在一些实施方式中,处理器600可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本申请实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
在此需要说明的是,本申请实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
在LMF实体侧,参见图9,本申请实施例提供的一种定位装置,包括:
处理器500,用于读取存储器520中的程序,执行下列过程:
与多个定位参考信号发送实体协商确定定位参考信号配置信息,所述定位参考信号配置信息是关于所述多个定位参考信号发送实体在多个时刻的定位参考信号配置信息;
发送所述定位参考信号配置信息,用于终端根据所述定位参考信号配置信息,接收所述多个定位参考信号发送实体在所述多个时刻发送的定位参考信号,并进行定位测量,其中,测量时刻的颗粒度小于等于正交频分复用符 号。
在一些实施例中,所述处理器500,还用于读取所述存储器中的计算机程序并执行以下操作:
接收终端的定位能力,所述定位能力包括下列信息之一或组合:
终端支持的定位测量量的类型;其中,所述类型包括到达相位和/或到达时间;
终端的历史速度信息;
终端是否支持1个测量样本的定位测量。
在一些实施例中,所述定位参考信号配置信息中,所述多个定位参考信号发送实体在多个时刻的同一个时刻中的定位参考信号的时域资源位置相同或相邻或相差预设范围。
在一些实施例中,所述处理器500,还用于读取所述存储器中的计算机程序并执行以下操作:
发送指示信息,所述指示信息指示了测量样本的个数M的取值;或者,所述指示信息指示了用于确定测量样本的个数M的取值的信息。
在一些实施例中,当终端的速度大于预设值时,所述测量样本的个数M的取值为1。
在一些实施例中,所述处理器500,还用于读取所述存储器中的计算机程序并执行以下操作:
接收终端发送的定位测量量和测量质量指示信息;其中,
所述定位测量量包括如下四种类型之一或组合的定位测量量:
单差分到达时间、单差分到达相位、双差分到达时间、双差分到达相位;
所述测量质量指示信息包括下列信息之一或组合:
定位测量量对应的绝对时刻或者相对时刻,其中所述绝对时刻或者相对时刻,以正交频分复用符号或者采样值点为测量时刻颗粒度;
定位测量质量指示;
视距或非视距的指示。
在一些实施例中,所述处理器500,还用于读取所述存储器中的计算机程序并执行以下操作:
基于所述定位测量量,采用初始搜索范围内多个不同时刻的预设的终端位置信息,基于代价函数最小化准则,计算终端在多个不同的所述时刻的终端的位置信息。
所述代价函数例如上述五种代价函数之一,具体不再赘述。
收发机510,用于在处理器500的控制下接收和发送数据。
其中,在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机510可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器500负责管理总线架构和通常的处理,存储器520可以存储处理器500在执行操作时所使用的数据。
处理器500可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
在定位参考信号发送实体侧,本申请实施例提供的一种定位装置,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
与定位管理功能实体协商确定定位参考信号配置信息,所述定位参考信号配置信息是关于多个定位参考信号发送实体在多个时刻的定位参考信号配置信息;
在所述多个时刻分别向终端发送定位参考信号,用于所述终端根据所述定位参考信号配置信息,接收在所述多个时刻发送的定位参考信号,并进行定位测量,其中,测量时刻的颗粒度小于等于正交频分复用符号。
在一些实施例中,所述定位参考信号配置信息中,所述多个定位参考信号发送实体在多个时刻的同一个时刻中的定位参考信号的时域资源位置相同或相邻或相差预设范围。
其中,定位参考信号发送实体若是终端(例如锚点UE),则其结构可以参考图8,若是网络侧装置,则其结构可以参考图9。
参见图10,在目标UE侧,本申请实施例提供的另一种定位装置,包括:
获取定位参考信号配置单元11,用于获取定位参考信号配置信息,其中,所述定位参考信号配置信息是关于多个定位参考信号发送实体在多个时刻的定位参考信号配置信息;
定位测量单元12,用于根据所述定位参考信号配置信息,接收所述多个定位参考信号发送实体在所述多个时刻发送的定位参考信号,并进行定位测量,其中,测量时刻的颗粒度小于等于正交频分复用符号。
在一些实施例中,获取定位参考信号配置单元11还用于:
上报终端的定位能力,所述终端的定位能力包括下列信息之一或组合:
终端支持的定位测量量的类型;其中,所述类型包括到达相位和/或到达时间;
终端估算并存储的该终端的历史速度信息;
终端是否支持1个测量样本的定位测量。
在一些实施例中,所述进行定位测量,包括:
确定测量样本的个数M,所述测量样本用于获取定位测量量,其中,M为大于或等于1的整数;
基于M个测量样本,获取定位测量量;
其中,所述确定测量样本的个数M,包括:
接收指示信息,所述指示信息用于指示所述测量样本的个数M的取值;
或者,接收指示信息,所述指示信息用于指示确定所述测量样本的个数M的取值的信息,根据所述指示信息确定所述测量样本的个数M的取值。
在一些实施例中,当终端的速度大于预设值时,所述测量样本的个数M的取值为1。
在一些实施例中,定位测量单元12还用于:
发送定位测量量和测量质量指示信息;其中,
所述定位测量量包括如下四种类型之一或组合的定位测量量:
单差分到达时间、单差分到达相位、双差分到达时间、双差分到达相位;
所述测量质量指示信息包括下列信息之一或组合:
定位测量量对应的绝对时刻或者相对时刻,其中所述绝对时刻或者相对时刻,以正交频分复用符号或者采样值点为测量时刻颗粒度;
定位测量质量指示;
视距或非视距的指示。
在一些实施例中,定位测量单元12还用于:基于所述定位测量得到差分到达时间TOA测量量和/或差分到达相位POA测量量,采用初始搜索范围内多个不同时刻的预设的终端位置信息,基于代价函数最小化准则,计算终端在多个不同的所述时刻的终端的位置信息;
其中,所述差分TOA包含单差分TOA和双差分TOA;
其中,所述差分POA测量量包含单差分POA和双差分POA。
在一些实施例中,所述代价函数包括上述五种代价函数之一,具体不再赘述。
参见图11,在定位管理功能实体侧,本申请实施例提供的另一种定位装置,包括:
定位参考信号配置协商单元21,用于与多个定位参考信号发送实体协商确定定位参考信号配置信息,所述定位参考信号配置信息是关于所述多个定位参考信号发送实体在多个时刻的定位参考信号配置信息;
定位参考信号配置发送单元22,用于发送所述定位参考信号配置信息, 用于终端根据所述定位参考信号配置信息,接收所述多个定位参考信号发送实体在所述多个时刻发送的定位参考信号,并进行定位测量,其中,测量时刻的颗粒度小于等于正交频分复用符号。
在一些实施例中,定位参考信号配置协商单元21还用于:
接收终端的定位能力,所述定位能力包括下列信息之一或组合:
终端支持的定位测量量的类型;其中,所述类型包括到达相位和/或到达时间;
终端的历史速度信息;
终端是否支持1个测量样本的定位测量。
在一些实施例中,所述定位参考信号配置信息中,所述多个定位参考信号发送实体在多个时刻的同一个时刻中的定位参考信号的时域资源位置相同或相邻或相差预设范围。
在一些实施例中,定位参考信号配置发送单元22还用于:
发送指示信息,所述指示信息指示了测量样本的个数M的取值;或者,所述指示信息指示了用于确定测量样本的个数M的取值的信息。
在一些实施例中,当终端的速度大于预设值时,所述测量样本的个数M的取值为1。
在一些实施例中,定位参考信号配置发送单元22还用于:
接收终端发送的定位测量量和测量质量指示信息;其中,
所述定位测量量包括如下四种类型之一或组合的定位测量量:
单差分到达时间、单差分到达相位、双差分到达时间、双差分到达相位;
所述测量质量指示信息包括下列信息之一或组合:
定位测量量对应的绝对时刻或者相对时刻,其中所述绝对时刻或者相对时刻,以正交频分复用符号或者采样值点为测量时刻颗粒度;
定位测量质量指示;
视距或非视距的指示。
在一些实施例中,定位参考信号配置发送单元22还用于:
基于所述定位测量量,采用初始搜索范围内多个不同时刻的预设的终端位置信息,基于代价函数最小化准则,计算终端在多个不同的所述时刻的终端的位置信息。
在一些实施例中,所述代价函数包括上述五种代价函数之一,具体不再赘述。
参见图12,在定位参考信号发送实体侧,本申请实施例提供的另一种定位装置,包括:
定位参考信号配置协商单元31,用于与定位管理功能实体协商确定定位参考信号配置信息,所述定位参考信号配置信息是关于多个定位参考信号发送实体在多个时刻的定位参考信号配置信息;
定位参考信号发送单元32,用于在所述多个时刻分别向终端发送定位参考信号,用于所述终端根据所述定位参考信号配置信息,接收在所述多个时刻发送的定位参考信号,并进行定位测量,其中,测量时刻的颗粒度小于等于正交频分复用符号。
在一些实施例中,所述定位参考信号配置信息中,所述多个定位参考信号发送实体在多个时刻的同一个时刻中的定位参考信号的时域资源位置相同或相邻或相差预设范围。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在此需要说明的是,本申请实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本申请实施例提供了一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行上述本申请实施例提供的任一方法。
所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本申请实施例还提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述实施例中的任一所述方法。所述程序产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
应当理解:
通信网络中的实体经由其往来传送流量的接入技术可以是任何合适的当前或未来技术,诸如可以使用WLAN(无线本地接入网络)、WiMAX(微波接入全球互操作性)、LTE、LTE-A、5G、蓝牙、红外等;另外,实施例还可以应用有线技术,例如,基于IP的接入技术,如有线网络或固定线路。
适合于被实现为软件代码或其一部分并使用处理器或处理功能运行的实施例是独立于软件代码的,并且可以使用任何已知或未来开发的编程语言来规定,诸如高级编程语言,诸如objective-C、C、C++、C#、Java、Python、Javascript、其他脚本语言等,或低级编程语言,诸如机器语言或汇编程序。
实施例的实现是独立于硬件的,并且可以使用任何已知或未来开发的硬件技术或其任何混合来实现,诸如微处理器或CPU(中央处理单元)、MOS(金属氧化物半导体)、CMOS(互补MOS)、BiMOS(双极MOS)、BiCMOS(双极CMOS)、ECL(发射极耦合逻辑)和/或TTL(晶体管-晶体管逻辑)。
实施例可以被实现为单独的设备、装置、单元、部件或功能,或者以分布式方式实现,例如,可以在处理中使用或共享一个或多个处理器或处理功能,或者可以在处理中使用和共享一个或多个处理段或处理部分,其中,一个物理处理器或多于一个的物理处理器可以被用于实现一个或多个专用于如所描述的特定处理的处理部分。
装置可以由半导体芯片、芯片组或包括这种芯片或芯片组的(硬件)模块来实现。
实施例还可以被实现为硬件和软件的任何组合,诸如ASIC(应用特定IC(集成电路))组件、FPGA(现场可编程门阵列)或CPLD(复杂可编程逻辑器件)组件或DSP(数字信号处理器)组件。
实施例还可以被实现为计算机程序产品,包括在其中体现计算机可读程序代码的计算机可用介质,该计算机可读程序代码适应于执行如实施例中所描述的过程,其中,该计算机可用介质可以是非暂时性介质。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或 计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (49)

  1. 一种定位方法,所述方法包括:
    获取定位参考信号配置信息,其中,所述定位参考信号配置信息是关于多个定位参考信号发送实体在多个时刻的定位参考信号配置信息;
    根据所述定位参考信号配置信息,接收所述多个定位参考信号发送实体在所述多个时刻发送的定位参考信号,并进行定位测量,其中,测量时刻的颗粒度小于等于正交频分复用符号。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    上报终端的定位能力,所述终端的定位能力包括下列信息之一或组合:
    终端支持的定位测量量的类型;其中,所述类型包括到达相位和/或到达时间;
    终端的历史速度信息;
    终端是否支持1个测量样本的定位测量。
  3. 根据权利要求1所述的方法,其中,所述进行定位测量,包括:
    确定测量样本的个数M,所述测量样本用于获取定位测量量,其中,M为大于或等于1的整数;
    基于M个测量样本,获取定位测量量。
  4. 根据权利要求3所述的方法,其中,所述确定测量样本的个数M,包括:
    接收指示信息,所述指示信息用于指示所述测量样本的个数M的取值;
    或者,接收指示信息,所述指示信息用于指示确定所述测量样本的个数M的取值的信息,根据所述指示信息确定所述测量样本的个数M的取值。
  5. 根据权利要求4所述的方法,其中,当终端的速度大于预设值时,所述测量样本的个数M的取值为1。
  6. 根据权利要求1所述的方法,其中,所述方法还包括:
    发送定位测量量和测量质量指示信息;其中,
    所述定位测量量包括如下四种类型之一或组合的定位测量量:
    单差分到达时间、单差分到达相位、双差分到达时间、双差分到达相位;
    所述测量质量指示信息包括下列信息之一或组合:
    定位测量量对应的绝对时刻或者相对时刻,其中所述绝对时刻或者相对时刻,以正交频分复用符号或者采样值点为测量时刻颗粒度;
    定位测量质量指示;
    视距或非视距的指示。
  7. 根据权利要求1所述的方法,其中,所述方法还包括:基于所述定位测量得到差分到达时间TOA测量量和/或差分到达相位POA测量量,采用多个不同时刻的预设的终端位置信息,基于代价函数最小化准则,计算终端在所述多个不同时刻的终端的位置信息;
    其中,所述差分TOA包含单差分TOA和双差分TOA;
    其中,所述差分POA测量量包含单差分POA和双差分POA。
  8. 根据权利要求7所述的方法,其中,所述代价函数包括如下五种代价函数之一:
    第一类代价函数:利用多个不同的所述时刻预设的终端位置,计算理论双差分TOA值,其中包括计算终端到所述多个定位参考信号发送实体中的任一非参考定位参考信号发送实体j的理论单差分TOA,和到所述多个定位参考信号发送实体中的参考定位参考信号发送实体p的理论单差分TOA的差分值;其中,j={1:N},j≠p,N表示定位参考信号发送实体的总个数;
    计算所述理论双差分TOA值与终端实际测量获取的双差分TOA值的差分值的加权平方和;其中,加权系数的倒数为TOA测量误差的方差,所述TOA测量误差为预设值,或者是网络根据当前场景通知给所述终端的;
    第二类代价函数:利用多个不同的所述时刻预设的终端位置,计算理论单差分TOA值,其中包括计算终端到所述多个定位参考信号发送实体中的任一非参考定位参考信号发送实体j的理论上的单差分TOA;其中,j={1:N},N表示定位参考信号发送实体的总个数;
    计算所述理论单差分TOA值,与终端实际测量获取的单差分TOA值的差分值的加权平方和;其中,加权系数的倒数为TOA测量误差的方差,所述TOA测量误差为预设值,或者是网络根据当前场景通知给所述终端的;
    第三类代价函数:利用多个不同的所述时刻预设的终端位置,计算理论双差分POA值,其中包括计算终端到所述多个定位参考信号发送实体中的任一非参考定位参考信号发送实体j的理论单差分POA,和到所述多个定位参考信号发送实体中的参考定位参考信号发送实体p的理论单差分POA的差分值;其中,j={1:N},j≠p,N表示定位参考信号发送实体的总个数;
    计算所述理论双差分POA值,与终端实际测量获取的双差分POA值的差分值的加权平方和;其中,加权系数的倒数为POA测量误差的方差,所述POA测量误差为预设值,或者是网络根据当前场景通知给所述终端的;
    第四类代价函数:利用多个不同的所述时刻预设的终端位置,计算理论单差分POA值,其中包括计算终端到所述多个定位参考信号发送实体中的任一非参考定位参考信号发送实体j的理论上的单差分POA;其中,j={1:N},N表示定位参考信号发送实体的总个数;
    计算所述理论单差分POA值,与终端实际测量获取的单差分POA值的差分值的加权平方和;其中,加权系数的倒数为POA测量误差的方差,所述POA测量误差为预设值,或者是网络根据当前场景通知给所述终端的;
    第五类代价函数:利用多个不同的所述时刻预设的终端位置,计算理论双差分TOA值与终端实际测量获取的双差分TOA值的差分值的第一加权平方值,其中,加权系数的倒数为TOA测量误差的方差,所述TOA测量误差为预设值,或者是网络根据当前场景通知给所述终端的;
    以及,计算理论双差分POA值与终端实际测量获取的双差分POA值的差值的第二加权平方值,其中,加权系数的倒数为POA测量误差的方差,所述POA测量误差为预设值,或者是网络根据当前场景通知给所述终端的;
    并且,计算所述第一加权平方值与所述第二加权平方值的累加和;
    其中,计算所述理论双差分TOA值,包括计算终端到所述多个定位参考 信号发送实体中的任一非参考定位参考信号发送实体j的理论单差分TOA,和到所述多个定位参考信号发送实体中的参考定位参考信号发送实体p的理论单差分TOA的差分值;
    计算所述理论双差分POA值,包括计算终端到所述多个定位参考信号发送实体中的任一非参考定位参考信号发送实体j的理论单差分POA,和到所述多个定位参考信号发送实体中的参考定位参考信号发送实体p的理论单差分POA的差分值;
    其中,j={1:N},j≠p,N表示定位参考信号发送实体的总个数。
  9. 一种定位方法,所述方法包括:
    与多个定位参考信号发送实体协商确定定位参考信号配置信息,所述定位参考信号配置信息是关于所述多个定位参考信号发送实体在多个时刻的定位参考信号配置信息;
    发送所述定位参考信号配置信息,用于终端根据所述定位参考信号配置信息,接收所述多个定位参考信号发送实体在所述多个时刻发送的定位参考信号,并进行定位测量,其中,测量时刻的颗粒度小于等于正交频分复用符号。
  10. 根据权利要求9所述的方法,其中,所述方法还包括:
    接收终端的定位能力,所述定位能力包括下列信息之一或组合:
    终端支持的定位测量量的类型;其中,所述类型包括到达相位和/或到达时间;
    终端的历史速度信息;
    终端是否支持1个测量样本的定位测量。
  11. 根据权利要求10所述的方法,其中,所述定位参考信号配置信息中,所述多个定位参考信号发送实体在多个时刻的同一个时刻中的定位参考信号的时域资源位置相同或相邻或相差预设范围。
  12. 根据权利要求9所述的方法,其中,所述方法还包括:
    发送指示信息,所述指示信息指示了测量样本的个数M的取值;或者, 所述指示信息指示了用于确定测量样本的个数M的取值的信息。
  13. 根据权利要求12所述的方法,其中,当终端的速度大于预设值时,所述测量样本的个数M的取值为1。
  14. 根据权利要求9所述的方法,其中,所述方法还包括:
    接收终端发送的定位测量量和测量质量指示信息;其中,
    所述定位测量量包括如下四种类型之一或组合的定位测量量:
    单差分到达时间、单差分到达相位、双差分到达时间、双差分到达相位;
    所述测量质量指示信息包括下列信息之一或组合:
    定位测量量对应的绝对时刻或者相对时刻,其中所述绝对时刻或者相对时刻,以正交频分复用符号或者采样值点为测量时刻颗粒度;
    定位测量质量指示;
    视距或非视距的指示。
  15. 根据权利要求13所述的方法,其中,所述方法还包括:
    基于所述定位测量量,采用初始搜索范围内多个不同时刻的预设的终端位置信息,基于代价函数最小化准则,计算终端在多个不同的所述时刻的终端的位置信息。
  16. 根据权利要求15所述的方法,其中,所述代价函数包括如下五种代价函数之一:
    第一类代价函数:利用多个不同的所述时刻预设的终端位置,计算理论双差分TOA值,其中包括计算终端到所述多个定位参考信号发送实体中的任一非参考定位参考信号发送实体j的理论单差分TOA,和到所述多个定位参考信号发送实体中的参考定位参考信号发送实体p的理论单差分TOA的差分值;其中,j={1:N},j≠p,N表示定位参考信号发送实体的总个数;
    计算所述理论双差分TOA值与终端实际测量获取的双差分TOA值的差分值的加权平方和;其中,加权系数的倒数为TOA测量误差的方差,所述TOA测量误差为预设值,或者是网络根据当前场景通知给所述终端的;
    第二类代价函数:利用多个不同的所述时刻预设的终端位置,计算理论 单差分TOA值,其中包括计算终端到所述多个定位参考信号发送实体中的任一非参考定位参考信号发送实体j的理论上的单差分TOA;其中,j={1:N},N表示定位参考信号发送实体的总个数;
    计算所述理论单差分TOA值,与终端实际测量获取的单差分TOA值的差分值的加权平方和;其中,加权系数的倒数为TOA测量误差的方差,所述TOA测量误差为预设值,或者是网络根据当前场景通知给所述终端的;
    第三类代价函数:利用多个不同的所述时刻预设的终端位置,计算理论双差分POA值,其中包括计算终端到所述多个定位参考信号发送实体中的任一非参考定位参考信号发送实体j的理论单差分POA,和到所述多个定位参考信号发送实体中的参考定位参考信号发送实体p的理论单差分POA的差分值;其中,j={1:N},j≠p,N表示定位参考信号发送实体的总个数;
    计算所述理论双差分POA值,与终端实际测量获取的双差分POA值的差分值的加权平方和;其中,加权系数的倒数为POA测量误差的方差,所述POA测量误差为预设值,或者是网络根据当前场景通知给所述终端的;
    第四类代价函数:利用多个不同的所述时刻预设的终端位置,计算理论单差分POA值,其中包括计算终端到所述多个定位参考信号发送实体中的任一非参考定位参考信号发送实体j的理论上的单差分POA;其中,j={1:N},N表示定位参考信号发送实体的总个数;
    计算所述理论单差分POA值,与终端实际测量获取的单差分POA值的差分值的加权平方和;其中,加权系数的倒数为POA测量误差的方差,所述POA测量误差为预设值,或者是网络根据当前场景通知给所述终端的;
    第五类代价函数:利用多个不同的所述时刻预设的终端位置,计算理论双差分TOA值与终端实际测量获取的双差分TOA值的差分值的第一加权平方值,其中,加权系数的倒数为TOA测量误差的方差,所述TOA测量误差为预设值,或者是网络根据当前场景通知给所述终端的;
    以及,计算理论双差分POA值与终端实际测量获取的双差分POA值的差分值的第二加权平方值,其中,加权系数的倒数为POA测量误差的方差, 所述POA测量误差为预设值,或者是网络根据当前场景通知给所述终端的;
    并且,计算所述第一加权平方值与所述第二加权平方值的累加和;
    其中,计算所述理论双差分TOA值,包括计算终端到所述多个定位参考信号发送实体中的任一非参考定位参考信号发送实体j的理论单差分TOA,和到所述多个定位参考信号发送实体中的参考定位参考信号发送实体p的理论单差分TOA的差分值;
    计算所述理论双差分POA值,包括计算终端到所述多个定位参考信号发送实体中的任一非参考定位参考信号发送实体j的理论单差分POA,和到所述多个定位参考信号发送实体中的参考定位参考信号发送实体p的理论单差分POA的差分值;
    其中,j={1:N},j≠p,N表示定位参考信号发送实体的总个数。
  17. 一种定位方法,所述方法包括:
    与定位管理功能实体协商确定定位参考信号配置信息,所述定位参考信号配置信息是关于多个定位参考信号发送实体在多个时刻的定位参考信号配置信息;
    在所述多个时刻分别向终端发送定位参考信号,用于所述终端根据所述定位参考信号配置信息,接收在所述多个时刻发送的定位参考信号,并进行定位测量,其中,测量时刻的颗粒度小于等于正交频分复用符号。
  18. 根据权利要求17所述的方法,其中,所述定位参考信号配置信息中,所述多个定位参考信号发送实体在多个时刻的同一个时刻中的定位参考信号的时域资源位置相同或相邻或相差预设范围。
  19. 一种定位装置,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    获取定位参考信号配置信息,其中,所述定位参考信号配置信息是关于多个定位参考信号发送实体在多个时刻的定位参考信号配置信息;
    根据所述定位参考信号配置信息,接收所述多个定位参考信号发送实体 在所述多个时刻发送的定位参考信号,并进行定位测量,其中,测量时刻的颗粒度小于等于正交频分复用符号。
  20. 根据权利要求19所述的装置,其中,在所述处理器,还用于读取所述存储器中的计算机程序并执行以下操作:
    上报终端的定位能力,所述终端的定位能力包括下列信息之一或组合:
    终端支持的定位测量量的类型;其中,所述类型包括到达相位和/或到达时间;
    终端的历史速度信息;
    终端是否支持1个测量样本的定位测量。
  21. 根据权利要求19所述的装置,其中,所述进行定位测量,包括:
    确定测量样本的个数M,所述测量样本用于获取定位测量量,其中,M为大于或等于1的整数;
    基于M个测量样本,获取定位测量量。
  22. 根据权利要求21所述的装置,其中,所述确定测量样本的个数M,包括:
    接收指示信息,所述指示信息用于指示所述测量样本的个数M的取值;
    或者,接收指示信息,所述指示信息用于指示确定所述测量样本的个数M的取值的信息,根据所述指示信息确定所述测量样本的个数M的取值。
  23. 根据权利要求22所述的装置,其中,当终端的速度大于预设值时,所述测量样本的个数M的取值为1。
  24. 根据权利要求19所述的装置,其中,所述处理器,还用于读取所述存储器中的计算机程序并执行以下操作:
    发送定位测量量和测量质量指示信息;其中,
    所述定位测量量包括如下四种类型之一或组合的定位测量量:
    单差分到达时间、单差分到达相位、双差分到达时间、双差分到达相位;
    所述测量质量指示信息包括下列信息之一或组合:
    定位测量量对应的绝对时刻或者相对时刻,其中所述绝对时刻或者相对 时刻,以正交频分复用符号或者采样值点为测量时刻颗粒度;
    定位测量质量指示;
    视距或非视距的指示。
  25. 根据权利要求19所述的装置,其中,所述处理器,还用于读取所述存储器中的计算机程序并执行以下操作:
    基于所述定位测量得到差分到达时间TOA测量量和/或差分到达相位POA测量量,采用初始搜索范围内多个不同时刻的预设的终端位置信息,基于代价函数最小化准则,计算终端在多个不同的所述时刻的终端的位置信息;
    其中,所述差分TOA包含单差分TOA和双差分TOA;
    其中,所述差分POA测量量包含单差分POA和双差分POA。
  26. 一种定位装置,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    与多个定位参考信号发送实体协商确定定位参考信号配置信息,所述定位参考信号配置信息是关于所述多个定位参考信号发送实体在多个时刻的定位参考信号配置信息;
    发送所述定位参考信号配置信息,用于终端根据所述定位参考信号配置信息,接收所述多个定位参考信号发送实体在所述多个时刻发送的定位参考信号,并进行定位测量,其中,测量时刻的颗粒度小于等于正交频分复用符号。
  27. 根据权利要求26所述的装置,其中,所述处理器,还用于读取所述存储器中的计算机程序并执行以下操作:
    接收终端的定位能力,所述定位能力包括下列信息之一或组合:
    终端支持的定位测量量的类型;其中,所述类型包括到达相位和/或到达时间;
    终端的历史速度信息;
    终端是否支持1个测量样本的定位测量。
  28. 根据权利要求26所述的装置,其中,所述定位参考信号配置信息中,所述多个定位参考信号发送实体在多个时刻的同一个时刻中的定位参考信号的时域资源位置相同或相邻或相差预设范围。
  29. 根据权利要求26所述的装置,其中,所述处理器,还用于读取所述存储器中的计算机程序并执行以下操作:
    发送指示信息,所述指示信息指示了测量样本的个数M的取值,或者,所述指示信息指示了用于确定测量样本的个数M的取值的信息。
  30. 根据权利要求26所述的装置,其中,所述处理器,还用于读取所述存储器中的计算机程序并执行以下操作:
    接收终端发送的定位测量量和测量质量指示信息;其中,
    所述定位测量量包括如下四种类型之一或组合的定位测量量:
    单差分到达时间、单差分到达相位、双差分到达时间、双差分到达相位;
    所述测量质量指示信息包括下列信息之一或组合:
    定位测量量对应的绝对时刻或者相对时刻,其中所述绝对时刻或者相对时刻,以正交频分复用符号或者采样值点为测量时刻颗粒度;
    定位测量质量指示;
    视距或非视距的指示。
  31. 根据权利要求30所述的装置,其中,所述处理器,还用于读取所述存储器中的计算机程序并执行以下操作:
    基于所述定位测量量,采用初始搜索范围内多个不同时刻的预设的终端位置信息,基于代价函数最小化准则,计算终端在多个不同的所述时刻的终端的位置信息。
  32. 一种定位装置,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    与定位管理功能实体协商确定定位参考信号配置信息,所述定位参考信号配置信息是关于多个定位参考信号发送实体在多个时刻的定位参考信号配 置信息;
    在所述多个时刻分别向终端发送定位参考信号,用于所述终端根据所述定位参考信号配置信息,接收在所述多个时刻发送的定位参考信号,并进行定位测量,其中,测量时刻的颗粒度小于等于正交频分复用符号。
  33. 根据权利要求32所述的装置,其中,所述定位参考信号配置信息中,所述多个定位参考信号发送实体在多个时刻的同一个时刻中的定位参考信号的时域资源位置相同或相邻或相差预设范围。
  34. 一种定位装置,包括:
    获取定位参考信号配置单元,用于获取定位参考信号配置信息,其中,所述定位参考信号配置信息是关于多个定位参考信号发送实体在多个时刻的定位参考信号配置信息;
    定位测量单元,用于根据所述定位参考信号配置信息,接收所述多个定位参考信号发送实体在所述多个时刻发送的定位参考信号,并进行定位测量,其中,测量时刻的颗粒度小于等于正交频分复用符号。
  35. 根据权利要求34所述的装置,其中,获取定位参考信号配置单元还用于:
    上报终端的定位能力,所述终端的定位能力包括下列信息之一或组合:
    终端支持的定位测量量的类型;其中,所述类型包括到达相位和/或到达时间;
    终端估算并存储的该终端的历史速度信息;
    终端是否支持1个测量样本的定位测量。
  36. 根据权利要求34所述的装置,其中,所述进行定位测量,包括:
    确定测量样本的个数M,所述测量样本用于获取定位测量量,其中,M为大于或等于1的整数;
    基于M个测量样本,获取定位测量量;
    其中,所述确定测量样本的个数M,包括:
    接收指示信息,所述指示信息用于指示所述测量样本的个数M的取值;
    或者,接收指示信息,所述指示信息用于指示确定所述测量样本的个数M的取值的信息,根据所述指示信息确定所述测量样本的个数M的取值。
  37. 根据权利要求36所述的装置,其中,当终端的速度大于预设值时,所述测量样本的个数M的取值为1。
  38. 根据权利要求37所述的装置,其中,所述定位测量单元还用于:
    发送定位测量量和测量质量指示信息;其中,
    所述定位测量量包括如下四种类型之一或组合的定位测量量:
    单差分到达时间、单差分到达相位、双差分到达时间、双差分到达相位;
    所述测量质量指示信息包括下列信息之一或组合:
    定位测量量对应的绝对时刻或者相对时刻,其中所述绝对时刻或者相对时刻,以正交频分复用符号或者采样值点为测量时刻颗粒度;
    定位测量质量指示;
    视距或非视距的指示。
  39. 根据权利要求34所述的装置,其中,所述定位测量单元还用于:基于所述定位测量得到差分到达时间TOA测量量和/或差分到达相位POA测量量,采用初始搜索范围内多个不同时刻的预设的终端位置信息,基于代价函数最小化准则,计算终端在多个不同的所述时刻的终端的位置信息;
    其中,所述差分TOA包含单差分TOA和双差分TOA;
    其中,所述差分POA测量量包含单差分POA和双差分POA。
  40. 一种定位装置,包括:
    定位参考信号配置协商单元,用于与多个定位参考信号发送实体协商确定定位参考信号配置信息,所述定位参考信号配置信息是关于所述多个定位参考信号发送实体在多个时刻的定位参考信号配置信息;
    定位参考信号配置发送单元,用于发送所述定位参考信号配置信息,用于终端根据所述定位参考信号配置信息,接收所述多个定位参考信号发送实体在所述多个时刻发送的定位参考信号,并进行定位测量,其中,测量时刻的颗粒度小于等于正交频分复用符号。
  41. 根据权利要求40所述的装置,其中,所述定位参考信号配置协商单元还用于:
    接收终端的定位能力,所述定位能力包括下列信息之一或组合:
    终端支持的定位测量量的类型;其中,所述类型包括到达相位和/或到达时间;
    终端的历史速度信息;
    终端是否支持1个测量样本的定位测量。
  42. 根据权利要求41所述的装置,其中,所述定位参考信号配置信息中,所述多个定位参考信号发送实体在多个时刻的同一个时刻中的定位参考信号的时域资源位置相同或相邻或相差预设范围。
  43. 根据权利要求40所述的装置,其中,所述定位参考信号配置发送单元还用于:
    发送指示信息,所述指示信息指示了测量样本的个数M的取值;或者,所述指示信息指示了用于确定测量样本的个数M的取值的信息。
  44. 根据权利要求43所述的装置,其中,当终端的速度大于预设值时,所述测量样本的个数M的取值为1。
  45. 根据权利要求40所述的装置,其中,所述定位参考信号配置发送单元还用于:
    接收终端发送的定位测量量和测量质量指示信息;其中,
    所述定位测量量包括如下四种类型之一或组合的定位测量量:
    单差分到达时间、单差分到达相位、双差分到达时间、双差分到达相位;
    所述测量质量指示信息包括下列信息之一或组合:
    定位测量量对应的绝对时刻或者相对时刻,其中所述绝对时刻或者相对时刻,以正交频分复用符号或者采样值点为测量时刻颗粒度;
    定位测量质量指示;
    视距或非视距的指示。
  46. 根据权利要求44所述的装置,其中,所述定位参考信号配置发送单 元还用于:
    基于所述定位测量量,采用初始搜索范围内多个不同时刻的预设的终端位置信息,基于代价函数最小化准则,计算终端在多个不同的所述时刻的终端的位置信息。
  47. 一种定位装置,包括:
    定位参考信号配置协商单元,用于与定位管理功能实体协商确定定位参考信号配置信息,所述定位参考信号配置信息是关于多个定位参考信号发送实体在多个时刻的定位参考信号配置信息;
    定位参考信号发送单元,用于在所述多个时刻分别向终端发送定位参考信号,用于所述终端根据所述定位参考信号配置信息,接收在所述多个时刻发送的定位参考信号,并进行定位测量,其中,测量时刻的颗粒度小于等于正交频分复用符号。
  48. 根据权利要求47所述的装置,其中,所述定位参考信号配置信息中,所述多个定位参考信号发送实体在多个时刻的同一个时刻中的定位参考信号的时域资源位置相同或相邻或相差预设范围。
  49. 一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至18任一项所述的方法。
PCT/CN2023/116321 2022-09-30 2023-08-31 一种定位方法及装置 WO2024066913A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211218041.9 2022-09-30
CN202211218041.9A CN117858225A (zh) 2022-09-30 2022-09-30 一种定位方法及装置

Publications (1)

Publication Number Publication Date
WO2024066913A1 true WO2024066913A1 (zh) 2024-04-04

Family

ID=90476053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116321 WO2024066913A1 (zh) 2022-09-30 2023-08-31 一种定位方法及装置

Country Status (2)

Country Link
CN (1) CN117858225A (zh)
WO (1) WO2024066913A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021000872A1 (zh) * 2019-07-04 2021-01-07 大唐移动通信设备有限公司 信号传输方法及装置
US20210328737A1 (en) * 2020-04-15 2021-10-21 Qualcomm Incorporated Calculation of downlink positioning reference signal (prs) symbol duration for prs buffering purposes
CN113939012A (zh) * 2020-06-29 2022-01-14 大唐移动通信设备有限公司 定位方法及装置
US20220120841A1 (en) * 2020-10-16 2022-04-21 Qualcomm Incorporated Systems and methods for support of on-demand positioning reference signals in a wireless network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021000872A1 (zh) * 2019-07-04 2021-01-07 大唐移动通信设备有限公司 信号传输方法及装置
US20210328737A1 (en) * 2020-04-15 2021-10-21 Qualcomm Incorporated Calculation of downlink positioning reference signal (prs) symbol duration for prs buffering purposes
CN113939012A (zh) * 2020-06-29 2022-01-14 大唐移动通信设备有限公司 定位方法及装置
US20220120841A1 (en) * 2020-10-16 2022-04-21 Qualcomm Incorporated Systems and methods for support of on-demand positioning reference signals in a wireless network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Considerations on DL procedures for NR positioning", 3GPP TSG-RAN WG2 MEETING #108, R2-1914980, 8 November 2019 (2019-11-08), XP051816915 *

Also Published As

Publication number Publication date
CN117858225A (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
WO2020164334A1 (zh) 信号传输的方法与装置
CN110971326B (zh) 一种时间同步的方法和装置
US20220201531A1 (en) Measurement reporting method and apparatus
US20230299917A1 (en) Downlink positioning reference signal receiving and transmitting method, and terminal, base station, device and apparatus
WO2020220839A1 (zh) 获取时间提前量的方法与装置
JP2023543067A (ja) アップリンク基準信号関連付け方法および通信装置
JP2023513291A (ja) データ伝送方法及び装置
WO2024066913A1 (zh) 一种定位方法及装置
WO2022089442A1 (zh) 一种定位方法、装置、终端及设备
WO2023284457A1 (zh) 终端设备的定位方法、装置及存储介质
WO2022151859A1 (zh) 一种信息处理方法、装置、终端及网络侧设备
WO2022126455A1 (zh) 测量参数的确定方法、终端设备、芯片和存储介质
WO2023186135A1 (zh) 定位信息的确定方法、定位方法以及相关装置
WO2023174131A1 (zh) 通信方法和通信装置
WO2024032646A1 (zh) 多频点定位方法、设备、装置及存储介质
WO2022206361A1 (zh) 定位方法、装置及可读存储介质
WO2023011196A1 (zh) 一种时间误差信息的更新方法以及相关装置
US20240172173A1 (en) Information processing method, apparatus, terminal and network-side device
WO2024066889A1 (zh) 一种定位方法及装置
WO2023208113A1 (zh) 信息传输方法、载波相位定位方法及装置
WO2023050883A1 (zh) 信息处理方法、装置、位置管理功能服务器及通信设备
WO2024037513A1 (zh) 定位测量时间戳的上报、定位信息获取方法及装置
WO2023143114A1 (zh) 通信方法和通信装置
WO2024017098A1 (zh) 通信方法和通信装置
WO2023179637A1 (zh) 通信方法以及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870153

Country of ref document: EP

Kind code of ref document: A1