WO2020186959A1 - 时钟偏移确定及其处理方法、装置、系统 - Google Patents

时钟偏移确定及其处理方法、装置、系统 Download PDF

Info

Publication number
WO2020186959A1
WO2020186959A1 PCT/CN2020/076076 CN2020076076W WO2020186959A1 WO 2020186959 A1 WO2020186959 A1 WO 2020186959A1 CN 2020076076 W CN2020076076 W CN 2020076076W WO 2020186959 A1 WO2020186959 A1 WO 2020186959A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
clock offset
reference signal
positioning reference
measurement value
Prior art date
Application number
PCT/CN2020/076076
Other languages
English (en)
French (fr)
Inventor
任斌
达人
李辉
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to EP20773196.9A priority Critical patent/EP3944680A4/en
Priority to KR1020217033558A priority patent/KR20210138084A/ko
Priority to US17/440,966 priority patent/US20220166531A1/en
Publication of WO2020186959A1 publication Critical patent/WO2020186959A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • This application relates to the field of communication technology, and in particular to clock offset determination and processing methods, devices, and systems.
  • the time and frequency synchronization deviation between the base stations is one of the key issues that directly affect the positioning performance.
  • 3GPP defines a variety of UE positioning methods by measuring its own positioning reference signal (Positioning Reference Signal, PRS) of the 3GPP wireless communication system, such as Observed Time Difference Of Arrival (OTDOA), and Uplink observed Time Difference Of Arrival, UTDOA) and so on.
  • PRS Positioning Reference Signal
  • OTDOA Observed Time Difference Of Arrival
  • UTDOA Uplink observed Time Difference Of Arrival
  • the prior art proposes a UE positioning method based on the measured value of the phase of the carrier signal of the 3GPP radio communication system itself.
  • the transmitter of the signal in the 3GPP line communication system (which can be a base station (Base Station, BS) or user equipment (UE) or vehicle) not only sends the PRS, but also sends the carrier phase positioning reference for carrier phase positioning Signal (Carrier phase Positioning Reference Signal, C-PRS).
  • the receiving end obtains positioning measurement values by receiving PRS and C-PRS, including Time Of Arrival (TOA)/Time Difference Of Arrival (TDOA) and carrier phase measurement values.
  • This method uses the 3GPP wireless communication system itself to send positioning reference signals and carrier reference signals for positioning. It can work when the Global Navigation Satellite System (GNSS) satellite signal is weak or cannot be received, and the location of the UE can be determined with high accuracy. .
  • GNSS Global Navigation Satellite System
  • the basic method of UE positioning based on wireless communication carrier phase measurement is as follows:
  • the transmitting end (BS or UE) transmits PRS and C-PRS on a pre-configured or predefined carrier frequency.
  • C-PRS can usually be a sinusoidal carrier signal.
  • BS is the transmitter.
  • Each BS transmits PRS and C-PRS on a pre-configured or predefined carrier frequency. Different adjacent cells will send C-PRS in different subcarriers;
  • the UE For uplink positioning methods, such as UTDOA, the UE is the transmitter.
  • the UE transmits PRS and C-PRS on a pre-configured or predefined carrier frequency. Different UEs will send C-PRS in different subcarriers;
  • the receiving end measures the PRS and C-PRS according to the PRS and C-PRS configuration information; the positioning measurement value measured by the PRS can include TOA/TDOA (TDOA is also called Reference Signal Time Difference (RSTD)) Etc.; and the carrier phase measurement value (CP) measured by C-PRS;
  • TDOA is also called Reference Signal Time Difference (RSTD)
  • CP carrier phase measurement value
  • the receiving end (BS or UE) reports the positioning measurement values (TOA/TDOA/CP, etc.) to a certain positioning server in the wireless communication system.
  • the positioning server determines the position of the UE with high accuracy according to the PRS and C-PRS configuration information, such as the position of the transmitting antenna of each cell, and the positioning measurement value provided by the receiving end.
  • Non-differential method directly use TOA and phase measurement value to calculate UE position without using differential technology.
  • Differential method First, the TOA and phase measured values are differentiated to eliminate some common deviations in the measured values, and then the TOA and phase measured values after the differential are used to calculate the UE position. There are two differential methods, single differential and double differential.
  • Single differential mode select one transmitter (or receiver) as the reference terminal, and then make a difference between the measured values related to other transmitters (or receivers) and the measured values related to the reference terminal.
  • the purpose of single differential is to eliminate measurement deviation at a certain end (receiving end or sending end).
  • the RSTD measurement value of 3GPP OTDOA positioning is the TOA measurement value related to the UE and each BS, and it is obtained by the difference of the TOA measurement value related to the UE and a reference BS.
  • the purpose of the difference is to eliminate the UE clock offset The impact on positioning.
  • Double differential mode Differentiate the measured value after single differential mode again to eliminate measurement errors related to the transmitter and receiver at the same time, such as the BS and UE clock offset.
  • the dual differential technology can be used for downlink positioning scenarios. At this time, there are multiple transmitters (base stations) and two receivers, one of which is a reference receiver with a known location. The other receiving end is a UE whose location is unknown. At this time, the two receiving ends are connected to the positioning signal sent by the base station at the same time, and the double differential technology is used to eliminate the common errors related to the transmitting end and the receiving end in the measured values of the two receiving ends, and then the position of the receiving end of the unknown position is accurately calculated .
  • the double differential method can eliminate the influence of time and frequency synchronization deviation between base stations on positioning accuracy.
  • the non-differential method is affected by the clock offset of the UE and the base station at the same time, and the UE clock offset is much larger than the base station clock offset, which is not adopted by 3GPP; the double differential method requires that one be placed in a known location. Refer to the receiving end, which has a negative impact on the specific system implementation.
  • the single differential method is currently used for the RSTD measurement value of 3GPP OTDOA positioning (the RSTD measurement value calculation method is the TOA measurement value of the target UE and all BSs, and the TOA measurement value of the UE and a reference BS is differentiated).
  • the single differential mode can eliminate the influence of UE clock offset on positioning, but the time and frequency synchronization deviation between base stations will directly affect the positioning accuracy of the single differential mode.
  • the embodiments of the present application provide clock offset determination and processing methods, devices, and systems for monitoring the reference signals PRS and C-PRS of neighboring base stations through the base station to achieve time and frequency synchronization between base stations.
  • the time offset caused by the frequency offset causes the problem of the degradation of the positioning performance of the system, which in turn improves the positioning performance of the system.
  • a method for determining a clock offset includes:
  • the clock offset is determined based on multiple phase measurement values obtained by measuring the C-PRS sent by the transmitting end at multiple times.
  • the clock offset is determined based on the multiple phase measurement values and multiple time-of-arrival TOA measurement values obtained by measuring the positioning reference signal PRS sent by the transmitting end at multiple times.
  • the method further includes:
  • the clock offset is notified to the sending end of the positioning reference signal PRS and the carrier phase positioning reference signal C-PRS, and the sending end corrects the clock offset introduced due to the frequency deviation.
  • the phase measurement value is obtained after signal phase locking is performed on the C-PRS.
  • the method for determining clock offset provided in the embodiment of the present application includes:
  • the C-PRS is sent so that the receiving end of the positioning reference signal obtains a phase measurement value by measuring the C-PRS, and the clock offset between the receiving end and the sending end of the positioning reference signal is determined based on the phase measurement value.
  • the C-PRS is sent at multiple times, so that the receiving end determines the clock offset based on multiple phase measurement values obtained by measuring the C-PRS at multiple times.
  • the method further includes:
  • the positioning reference signal PRS is sent at multiple times, so that the receiving end determines the clock offset based on the multiple phase measurement values and multiple arrival time TOA measurement values obtained by measuring the PRS at multiple times.
  • the method further includes:
  • the method further includes:
  • the PRS and C-PRS are sent to the user equipment UE at multiple times.
  • a clock offset processing method provided by an embodiment of the present application includes:
  • the clock offset between the receiving end and the transmitting end that receives the positioning reference signal is determined based on the phase measurement value, the phase measurement value is sent by the receiving end at multiple times by measuring the transmitting end Carrier phase positioning reference signal C-PRS and positioning reference signal PRS are obtained;
  • the influence of the clock offset is eliminated in the single differential positioning calculation process.
  • a device for determining a clock offset provided in an embodiment of the present application includes:
  • Memory used to store program instructions
  • the processor is used to call the program instructions stored in the memory and execute according to the obtained program:
  • the processor determines the clock offset based on multiple phase measurement values obtained by measuring the C-PRS sent by the sending end at multiple times.
  • the processor determines the clock offset based on the multiple phase measurement values and multiple time-of-arrival TOA measurement values obtained by measuring the positioning reference signal PRS sent by the transmitting end at multiple times.
  • the processor is further configured to:
  • the clock offset is notified to the sending end of the positioning reference signal PRS and the carrier phase positioning reference signal C-PRS, and the sending end corrects the clock offset introduced due to the frequency deviation.
  • the processor obtains the phase measurement value after performing signal phase lock on the C-PRS.
  • the device for determining a clock offset provided in an embodiment of the present application includes:
  • Memory used to store program instructions
  • the processor is used to call the program instructions stored in the memory and execute according to the obtained program:
  • the C-PRS is sent so that the receiving end of the positioning reference signal obtains a phase measurement value by measuring the C-PRS, and the clock offset between the receiving end and the sending end of the positioning reference signal is determined based on the phase measurement value.
  • the processor sends the C-PRS at multiple times, so that the receiving end determines the clock offset based on multiple phase measurement values obtained by measuring the C-PRS at multiple times.
  • the processor is further configured to:
  • the positioning reference signal PRS is sent at multiple times, so that the receiving end determines the clock offset based on the multiple phase measurement values and multiple arrival time TOA measurement values obtained by measuring the PRS at multiple times.
  • the processor is further configured to:
  • the processor is further configured to:
  • the PRS and C-PRS are sent to the user equipment UE at multiple times.
  • the processor is further configured to:
  • a clock offset processing device provided in an embodiment of the present application includes:
  • Memory used to store program instructions
  • the processor is used to call the program instructions stored in the memory and execute according to the obtained program:
  • the clock offset between the receiving end and the transmitting end that receives the positioning reference signal is determined based on the phase measurement value, the phase measurement value is sent by the receiving end at multiple times by measuring the transmitting end Carrier phase positioning reference signal C-PRS and positioning reference signal PRS are obtained;
  • the processor eliminates the influence of the clock offset during the single-difference positioning calculation process.
  • another device for determining clock offset includes:
  • the phase measurement value determining unit is configured to obtain the phase measurement value by measuring the carrier phase positioning reference signal C-PRS for carrier phase positioning sent by the transmitter of the measurement positioning reference signal;
  • the clock offset determining unit is configured to determine the clock offset between the receiving end and the transmitting end of the positioning reference signal based on the phase measurement value.
  • another device for determining clock offset provided in an embodiment of the present application includes:
  • a carrier phase positioning reference signal determining unit configured to determine a carrier phase positioning reference signal C-PRS for carrier phase positioning
  • the carrier phase positioning reference signal sending unit is configured to send the C-PRS so that the receiving end of the positioning reference signal obtains a phase measurement value by measuring the C-PRS, and determines the receiving end of the positioning reference signal based on the phase measurement value The clock offset between and the sender.
  • another clock offset processing device provided in an embodiment of the present application includes:
  • the receiving unit is used to receive the clock offset between the receiving end and the transmitting end of the positioning reference signal, the clock offset is determined based on the phase measurement value, and the phase measurement value is measured by the receiving end by measuring the transmission end Obtained from the carrier phase positioning reference signal C-PRS and the positioning reference signal PRS transmitted at multiple times;
  • the elimination unit is used to eliminate the influence of the clock offset.
  • a communication system provided by an embodiment of the present application includes one or a combination of any of the aforementioned devices.
  • Another embodiment of the present application provides a computing device, which includes a memory and a processor, wherein the memory is used to store program instructions, and the processor is used to call the program instructions stored in the memory, according to the obtained program Perform any of the above methods.
  • Another embodiment of the present application provides a computer storage medium that stores computer-executable instructions, and the computer-executable instructions are used to make the computer execute any of the above methods.
  • FIG. 1 is a schematic diagram of time and frequency synchronization between base stations provided by an embodiment of the application
  • FIG. 2 is a schematic flowchart of a method for determining a clock offset according to an embodiment of the application
  • FIG. 3 is a schematic flowchart of another method for determining clock offset according to an embodiment of the application.
  • FIG. 4 is a schematic flowchart of a method for determining a clock offset at a receiving end according to an embodiment of the application
  • FIG. 5 is a schematic flowchart of a method for determining a clock offset of a transmitting end according to an embodiment of the application
  • FIG. 6 is a schematic flowchart of a method for processing clock offset at the UE according to an embodiment of the application
  • FIG. 7 is a schematic structural diagram of a device for determining a clock offset at a receiving end according to an embodiment of the application
  • FIG. 8 is a schematic structural diagram of a device for determining a clock offset of a transmitting end according to an embodiment of the application
  • FIG. 9 is a schematic structural diagram of a clock skew processing apparatus on the UE side according to an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of another device for determining a clock offset at a receiving end according to an embodiment of the application.
  • FIG. 11 is a schematic structural diagram of another device for determining a clock offset at a transmitting end according to an embodiment of the application.
  • FIG. 12 is a schematic structural diagram of another device for processing clock offset on the UE side according to an embodiment of the application.
  • FIG. 13 is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA broadband code division multiple access Address
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • NR New Radio
  • the time synchronization deviation between the base stations is the key to directly affecting the positioning accuracy of the single differential mode.
  • 3GPP is currently discussing a method of time synchronization between base stations.
  • a base station monitors the PRS of a neighboring base station. Then, based on the detected PRS arrival time, PRS transmission time and the known distance between the two base stations, the time offset between the two base stations is estimated.
  • the estimated time offset between the two base stations can be used to compensate the influence of the time offset between the base stations on the OTDOA or UTDOA positioning algorithm.
  • the above method for time synchronization between base stations is simple to implement, and it is possible to reduce the impact of the time offset between the two base stations on the positioning accuracy of the single-difference method to a certain extent. However, the effectiveness of this method is limited as follows:
  • PRS is only sent periodically.
  • the estimation accuracy of the time offset between two base stations estimated based on the PRS of a single transmission is limited;
  • the time synchronization deviation between the two base stations is not a fixed one, but shifts with time. For example, if the frequency offset of the base station is ⁇ 0.05 ppm, the time offset caused by the frequency offset can reach ⁇ 5 nanoseconds within 0.1 second.
  • the embodiment of the present application provides a clock offset determination and processing method and device to eliminate the influence of the time and frequency synchronization deviation between base stations on positioning performance, thereby improving positioning accuracy.
  • PRS represents all reference signals that can be used to measure Time of Arrival (TOA), for example, including PRS that can be used for traditional OTDOA/UTDOA positioning, and channel state indication Reference signal (Channel state indication reference signal, CSI-RS), sounding reference signal (Sounding Reference Signal, SRS), etc.
  • TOA Time of Arrival
  • PRS represents all reference signals that can be used to measure Time of Arrival (TOA), for example, including PRS that can be used for traditional OTDOA/UTDOA positioning, and channel state indication Reference signal (Channel state indication reference signal, CSI-RS), sounding reference signal (Sounding Reference Signal, SRS), etc.
  • CSI-RS Channel state indication reference signal
  • SRS Sounding Reference Signal
  • the method and the device are based on the same application conceived. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • applicable systems can be global system of mobile communication (GSM) system, code division multiple access (CDMA) system, and wideband code division multiple access (Wideband Code Division Multiple Access, WCDMA) general packet Wireless service (general packet radio service, GPRS) system, long term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD), general Mobile system (universal mobile telecommunication system, UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G system, 5G NR system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband Code Division Multiple Access
  • general packet Wireless service general packet radio service
  • GPRS general packet Radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS general Mobile system
  • WiMAX worldwide interoperability for microwave access
  • the terminal device involved in the embodiments of the present application may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the name of the terminal device may be different.
  • the terminal device may be called user equipment (UE).
  • the wireless terminal device can communicate with one or more core networks via the RAN.
  • the wireless terminal device can be a mobile terminal device, such as a mobile phone (or “cellular” phone) and a computer with a mobile terminal device, for example, a portable , Pocket, handheld, computer built-in or vehicle-mounted mobile devices that exchange language and/or data with the wireless access network.
  • Wireless terminal equipment can also be referred to as system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point (access point) , Remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), user device (user device), which are not limited in the embodiments of the present application.
  • the network device involved in the embodiment of the present application may be a base station, and the base station may include multiple cells.
  • a base station may also be called an access point, or may refer to a device in an access network that communicates with a wireless terminal device through one or more sectors on an air interface, or other names.
  • the network device can be used to convert the received air frame and the Internet protocol (IP) packet to each other, as a router between the wireless terminal device and the rest of the access network, where the rest of the access network can include the Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment involved in the embodiments of this application may be a network equipment (base transmitter station, BTS) in the global system for mobile communications (GSM) or code division multiple access (CDMA). ), it can also be a network device (NodeB) in wide-band code division multiple access (WCDMA), or an evolved network device in a long-term evolution (LTE) system (evolutional node B, eNB or e-NodeB), 5G base station in 5G network architecture (next generation system), but also home evolved node B (HeNB), relay node (relay node), home base station ( Femto), pico base station (pico), etc., are not limited in the embodiment of the present application.
  • BTS network equipment
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • NodeB wide-band code division multiple access
  • LTE long-term evolution
  • an embodiment of the present application proposes a method for estimating the time and frequency deviation between base stations by using the method of mutual monitoring of reference signals between base stations.
  • One base station monitors the reference signals (PRS and C- PRS) to achieve time and frequency synchronization between base stations.
  • PRS and C- PRS reference signals
  • the monitoring base station measures the C-PRS signal sent by the monitored base station (transmitting end), and obtains the phase measurement value after the signal is phase-locked; the receiving end measures the signal sent by the transmitting end The PRS signal obtains the TOA measurement value; the receiving end jointly determines the clock offset between the receiving end and the sending end based on the above-mentioned phase measurement value and the TOA measurement value measured at multiple times.
  • the receiving end notifies the UE of the above clock offset, and the UE removes the influence of the clock offset value during the single-difference positioning calculation; or the receiving end sends the clock offset value to all monitored base stations respectively, and the monitored base station
  • the base station actively corrects the clock offset introduced by the frequency offset, and sends PRS and C-PRS signals to the UE for positioning signal measurement after correcting the clock offset.
  • the embodiment of this application adds a C-PRS reference signal for signal phase lock and frequency synchronization.
  • the monitoring base station and the monitored base station realize complete frequency synchronization, eliminating the influence of the frequency offset of each base station on the time synchronization error between the base stations, and improving the positioning of the system Performance; on the other hand, multiple PRS signals and C-PRS signals that are periodically sent can be used to improve the accuracy of time synchronization error estimation between base stations, thereby improving the positioning performance of the system.
  • the time and frequency synchronization solution between base stations in the wireless communication system proposed in the embodiment of the application can be applied to the OTDOA/UTDOA positioning solution.
  • the time synchronization error between the receiving end and the sending end at time k is:
  • ⁇ b(k) For the purpose of UE positioning, in order to achieve accurate time synchronization between base stations, ⁇ b(k) needs to be accurately estimated. If ⁇ b(k) is estimated only by monitoring PRS, then the estimated value of ⁇ b(k) is
  • the time synchronization error depends on the measurement error at time k
  • the monitoring base station (receiving end) a also measures the phase lock of the C-PRS signal sent by the monitored base station (transmitting end) i (how to use the existing technology to achieve phase lock through the C-PRS signal), and obtain the phase measurement value then At time k and k+1 can be expressed as follows:
  • phase measurement error is generally only 10% of the carrier wavelength.
  • Equation (6) shows that the change in time synchronization error between base stations ( ⁇ b(k+1)- ⁇ b(k)) caused by the frequency offset of each base station is equivalent to the change in phase measurement.
  • the estimation accuracy of depends on the estimation accuracy of ⁇ b(k 0 ). Will also follow the TOA measurement The number is increasing and continuously improving, and is not affected by the frequency offset of each base station itself.
  • Solution 1 The monitoring base station measures the clock offset between the monitoring base station and the monitored base station The clock offset value is notified to the UE, and the UE removes the influence of the clock offset value during the single-difference positioning calculation.
  • Example 1 For details on how to remove the influence of the clock offset value, see the following Formula (15) and Formula (16) of Embodiment 1;
  • Solution 2 For the scenario of one monitoring base station and multiple monitored base stations, the monitoring base station measures the clock offset between the monitoring base station and all monitored base stations. The clock offset value is sent to all monitored base stations, and the monitored base station actively corrects the clock offset introduced by the frequency deviation (for details, please refer to step 3 of embodiment 2), and then correct the clock After the offset, the PRS and C-PRS signals are sent to the UE.
  • the PRS and C-PRS signals are sent to the UE.
  • Embodiment 2 Since the clocks of the listening base station and multiple non-monitoring base stations are synchronized, the UE will not be affected by the clock offset value introduced by the frequency deviation when measuring the TOA measurement value and the carrier phase measurement value from different base stations at this time.
  • embodiment 1 corresponds to the above-mentioned processing scheme 1, in which there is one monitoring base station B and two monitored base stations A1 and A2.
  • the monitoring base station B measures the clock offset between the monitoring base station B and the monitored base stations A1 and A2, and notifies the UE of the clock offset.
  • the UE removes the clock when the TOA measurement value and the carrier phase measurement value are single-differenced The effect of offset.
  • Step 1 Each base station (including monitoring base station B, monitored base stations A1 and A2) sends PRS and C-PRS signals according to their respective PRS and C-PRS configuration information.
  • Step 2 Monitoring base station B measures the PRS and C-PRS signals of monitored base stations A1 and A2 at the same time to obtain TOA measurement values and carrier phase measurement values of base stations A1 and A2, and obtain base station B and base station A1 according to formula (10) Clock skew And the clock offset between base station B and base station A2 among them, The two clock offsets are notified to the UE, and base stations B, A1, and A2 do not compensate for the clock offset value.
  • Step 3 UE measures the PRS and C-PRS signals of base stations A1, A2, and B respectively to obtain the first TOA measurement value And the first carrier phase measurement value
  • Step 4 The UE measures the first TOA measurement value of the base stations A1 and A2 to be monitored And the first carrier phase measurement value The first TOA measurement value measured by monitoring base station B And the first carrier phase measurement value Perform single differential operation and get the following first single differential measurement value:
  • the single differential measurement value of TOA also called RSTD.
  • Step 5 UE adopts the clock offset of base station B notified by base station B and base station A1 and A2 respectively with Remove the clock offset from the first single differential measurement value obtained by formulas (13) and (14) in step 3b
  • the second single-difference measurement value after the update is obtained:
  • Step 6 UE compares the second single-differential TOA measurement value calculated in step 5 and the second single-differential carrier phase measurement value Report to LMF.
  • Step 7 LMF uses the second single-differential TOA measurement value and the second carrier phase measurement value reported by the UE in step 6 And information such as the locations of base stations A1, A2, and B are calculated to obtain the positioning location of the UE.
  • embodiment 2 corresponds to the above-mentioned processing scheme two, in which there is a monitoring base station B and two monitored base stations A1 and A2.
  • the monitoring base station B measures the clock offset between the monitoring base station B and the monitored base stations A1 and A2, and actively compensates for the clock offset introduced by the frequency deviation.
  • Step 1 Each base station (including monitoring base station B, monitored base stations A1 and A2) sends PRS and C-PRS signals according to their respective PRS and C-PRS configuration information.
  • Step 2 Base station B measures the PRS signals and C-PRS signals of base stations A1 and A2 at the same time, obtains TOA measurement values and carrier phase measurement values of base stations A1 and A2, and obtains the clock deviation between base station B and base station A1 according to formula (10) shift And the clock offset between base station B and base station A2 among them,
  • Step 2a Base station B shifts the clock between base station B and base station A1 Send to base station A1, and offset the clocks of base station B and base station A2 Send to base station A2.
  • Step 3 The monitored base stations A1 and A2 respectively compensate for the clock offset with base station B with Then the base stations A1 and A2 respectively send the PRS signal and the C-PRS signal after clock offset compensation to the UE.
  • Step 4 UE measures the PRS and C-PRS signals sent by base station B, and the PRS and C-PRS signals sent after compensating for clock offsets of base stations A1 and A2, and calculates the first RSTD measurement value and the first carrier phase measurement value.
  • Step 5 The UE reports the first RSTD measurement value and the first carrier phase measurement value obtained in Step 4 to the LMF.
  • Step 6 The LMF uses the first RSTD measurement value and the first carrier phase measurement value reported by the UE in step 5 to calculate the positioning position of the UE.
  • a method for determining a clock offset provided in an embodiment of the present application includes:
  • the clock offset is determined based on multiple phase measurement values obtained by measuring the C-PRS sent by the transmitting end at multiple times.
  • the clock offset is determined based on the multiple phase measurement values and multiple time-of-arrival TOA measurement values obtained by measuring the positioning reference signal PRS sent by the transmitting end at multiple times.
  • the method further includes:
  • the clock offset is notified to the sending end of the positioning reference signal PRS and the carrier phase positioning reference signal C-PRS, and the sending end corrects the clock offset introduced due to the frequency deviation.
  • the phase measurement value is obtained after signal phase locking is performed on the C-PRS.
  • a method for determining a clock offset provided in an embodiment of the present application includes:
  • the C-PRS is sent at multiple times, so that the receiving end determines the clock offset based on multiple phase measurement values obtained by measuring the C-PRS at multiple times.
  • the method further includes:
  • the positioning reference signal PRS is sent at multiple times, so that the receiving end determines the clock offset based on the multiple phase measurement values and multiple arrival time TOA measurement values obtained by measuring the PRS at multiple times.
  • the method further includes:
  • the method further includes:
  • the PRS and C-PRS are sent to the user equipment UE at multiple times.
  • a clock offset processing method provided by an embodiment of the present application includes:
  • the influence of the clock offset is eliminated in the single differential positioning calculation process.
  • a clock offset determination device provided in an embodiment of the present application includes:
  • the memory 520 is used to store program instructions
  • the processor 500 is configured to call the program instructions stored in the memory, and execute according to the obtained program:
  • the processor 500 determines the clock offset based on multiple phase measurement values obtained by measuring the C-PRS sent by the transmitting end at multiple times.
  • the processor 500 determines the clock offset based on the multiple phase measurement values and multiple time-of-arrival TOA measurement values obtained by measuring the positioning reference signal PRS sent by the transmitting end at multiple times.
  • processor 500 is further configured to:
  • the clock offset is notified to the sending end of the positioning reference signal PRS and the carrier phase positioning reference signal C-PRS, and the sending end corrects the clock offset introduced due to the frequency deviation.
  • the processor 500 obtains the phase measurement value after performing signal phase lock on the C-PRS.
  • the transceiver 510 is configured to receive and send data under the control of the processor 500.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 500 and various circuits of the memory represented by the memory 520 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 510 may be a plurality of elements, that is, including a transmitter and a transceiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 can store data used by the processor 500 when performing operations.
  • the processor 500 may be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device). , CPLD).
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • FPGA field programmable gate array
  • CPLD complex programmable logic device
  • a clock offset determination device provided in an embodiment of the present application includes:
  • the memory 505 is used to store program instructions
  • the processor 504 is configured to call the program instructions stored in the memory, and execute according to the obtained program:
  • the C-PRS is sent so that the receiving end of the positioning reference signal obtains a phase measurement value by measuring the C-PRS, and the clock offset between the receiving end and the sending end of the positioning reference signal is determined based on the phase measurement value.
  • the processor 504 sends the C-PRS at multiple times, so that the receiving end determines the clock offset based on multiple phase measurement values obtained by measuring the C-PRS at multiple times.
  • the processor is further configured to:
  • the positioning reference signal PRS is sent at multiple times, so that the receiving end determines the clock offset based on the multiple phase measurement values and multiple arrival time TOA measurement values obtained by measuring the PRS at multiple times.
  • processor 504 is further configured to:
  • processor 504 is further configured to:
  • the PRS and C-PRS are sent to the user equipment UE at multiple times.
  • processor 504 is further configured to:
  • any of the clock offset determining devices described above may have the functions of both the transmitting end and the receiving end.
  • it may be a base station, which can be used as the clock offset determining device of the transmitting end, or As the clock offset determination device at the receiving end.
  • the transceiver 501 is configured to receive and send data under the control of the processor 504.
  • bus architecture represented by bus 506
  • bus 506 may include any number of interconnected buses and bridges
  • bus 506 will include one or more processors represented by processor 504 and memory represented by memory 505
  • the various circuits are linked together.
  • the bus 500 may also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further description will be given herein.
  • the bus interface 503 provides an interface between the bus 506 and the transceiver 501.
  • the transceiver 501 may be one element or multiple elements, such as multiple receivers and transmitters, and provide a unit for communicating with various other devices on a transmission medium.
  • the data processed by the processor 504 is transmitted on the wireless medium through the antenna 502, and further, the antenna 502 also receives the data and transmits the data to the processor 504.
  • the processor 504 is responsible for managing the bus 506 and general processing, and can also provide various functions, including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 505 may be used to store data used by the processor 504 when performing operations.
  • the processor 504 may be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device ( Complex Programmable Logic Device, CPLD).
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD Complex Programmable Logic Device
  • a clock offset processing apparatus provided in an embodiment of the present application includes:
  • the memory 620 is used to store program instructions
  • the processor 600 is configured to call the program instructions stored in the memory, and execute according to the obtained program:
  • the clock offset between the receiving end and the transmitting end that receives the positioning reference signal is determined based on the phase measurement value, the phase measurement value is sent by the receiving end at multiple times by measuring the transmitting end Carrier phase positioning reference signal C-PRS and positioning reference signal PRS are obtained;
  • the processor 600 eliminates the influence of the clock offset during the single-difference positioning calculation process.
  • the transceiver 610 is configured to receive and send data under the control of the processor 600.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 600 and various circuits of the memory represented by the memory 620 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 610 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 630 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 600 when performing operations.
  • the processor 600 may be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device ( Complex Programmable Logic Device, CPLD).
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD Complex Programmable Logic Device
  • another device for determining clock offset provided by an embodiment of the present application includes:
  • the phase measurement value determining unit 11 is configured to obtain the phase measurement value by measuring the carrier phase positioning reference signal C-PRS for carrier phase positioning sent by the transmitter of the measurement positioning reference signal;
  • the clock offset determining unit 12 is configured to determine the clock offset between the receiving end and the transmitting end of the positioning reference signal based on the phase measurement value.
  • the clock offset determining unit 12 determines the clock offset based on multiple phase measurement values obtained by measuring the C-PRS sent by the transmitting end at multiple times.
  • the clock offset determining unit 12 determines the clock offset based on the multiple phase measurement values and multiple time-of-arrival TOA measurement values obtained by measuring the positioning reference signal PRS sent by the transmitting end at multiple times.
  • the clock offset determining unit 12 is further configured to:
  • the clock offset is notified to the sending end of the positioning reference signal PRS and the carrier phase positioning reference signal C-PRS, and the sending end corrects the clock offset introduced due to the frequency deviation.
  • the phase measurement value determining unit 11 obtains the phase measurement value after performing signal phase lock on the C-PRS.
  • another device for determining clock offset provided in an embodiment of the present application includes:
  • the carrier phase positioning reference signal determining unit 21 is configured to determine the carrier phase positioning reference signal C-PRS for carrier phase positioning;
  • the carrier phase positioning reference signal sending unit 22 is configured to send the C-PRS so that the receiving end of the positioning reference signal obtains a phase measurement value by measuring the C-PRS, and determines the reception of the positioning reference signal based on the phase measurement value The clock skew between the end and the sending end.
  • the carrier phase positioning reference signal sending unit 22 sends the C-PRS at multiple times, so that the receiving end determines the clock offset based on multiple phase measurement values obtained by measuring the C-PRS at multiple times.
  • the carrier phase positioning reference signal sending unit 22 is further configured to:
  • the positioning reference signal PRS is sent at multiple times, so that the receiving end determines the clock offset based on the multiple phase measurement values and multiple arrival time TOA measurement values obtained by measuring the PRS at multiple times.
  • the carrier phase positioning reference signal sending unit 22 is further configured to:
  • the carrier phase positioning reference signal sending unit 22 is further configured to:
  • the PRS and C-PRS are sent to the user equipment UE at multiple times.
  • another clock offset processing apparatus provided in an embodiment of the present application includes:
  • the receiving unit 31 is configured to receive a clock offset between the receiving end and the transmitting end of the positioning reference signal, the clock offset is determined based on a phase measurement value, and the phase measurement value is measured by the receiving end by measuring the transmitting end Obtained from the carrier phase positioning reference signal C-PRS and the positioning reference signal PRS transmitted at multiple times;
  • the elimination unit 32 is used to eliminate the influence of the clock offset.
  • the elimination unit 32 eliminates the influence of the clock offset during the single-difference positioning calculation process.
  • each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including a number of instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • a communication system provided by an embodiment of the present application includes one or a combination of any of the aforementioned devices. It may include any one or more of the aforementioned clock offset determination devices, and/or clock offset processing devices.
  • the device for determining the clock offset on the transmitting end and the device for determining the clock offset on the receiving end may both be base stations.
  • the communication system provided in this embodiment of the present application may include a transmitting end base station 131, a receiving end base station 132, and a UE 133. .
  • the base station and UE described in the embodiments of the present application may be used as a device at the transmitting end or as a receiving end device, and may have both the functions of the transmitting end and the receiving end.
  • the embodiments of the present application provide a computing device, and the computing device may specifically be a desktop computer, a portable computer, a smart phone, a tablet computer, a personal digital assistant (Personal Digital Assistant, PDA), etc.
  • the computing device may include a central processing unit (CPU), a memory, an input/output device, etc.
  • the input device may include a keyboard, a mouse, a touch screen, etc.
  • an output device may include a display device, such as a liquid crystal display (Liquid Crystal Display, LCD), Cathode Ray Tube (CRT), etc.
  • the memory may include read-only memory (ROM) and random access memory (RAM), and provides the processor with program instructions and data stored in the memory.
  • ROM read-only memory
  • RAM random access memory
  • the memory may be used to store the program of any of the methods provided in the embodiment of the present application.
  • the processor calls the program instructions stored in the memory, and the processor is configured to execute any of the methods provided in the embodiments of the present application according to the obtained program instructions.
  • the embodiment of the present application provides a computer storage medium for storing computer program instructions used by the device provided in the foregoing embodiment of the present application, which includes a program for executing any method provided in the foregoing embodiment of the present application.
  • the computer storage medium may be any available medium or data storage device that can be accessed by the computer, including but not limited to magnetic storage (such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (such as CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state drive (SSD)), etc.
  • magnetic storage such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage such as CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state drive (SSD)
  • the method provided in the embodiments of the present application can be applied to terminal equipment, and can also be applied to network equipment.
  • the terminal equipment can also be called User Equipment (User Equipment, referred to as "UE"), Mobile Station (Mobile Station, referred to as “MS”), Mobile Terminal (Mobile Terminal), etc.
  • UE User Equipment
  • MS Mobile Station
  • Mobile Terminal Mobile Terminal
  • the terminal can It has the ability to communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the terminal can be a mobile phone (or called a "cellular" phone), or a mobile computer, etc.
  • the terminal may also be a portable, pocket-sized, handheld, computer built-in or vehicle-mounted mobile device.
  • the network device may be a base station (for example, an access point), which refers to a device that communicates with a wireless terminal through one or more sectors on an air interface in an access network.
  • the base station can be used to convert received air frames and IP packets into each other, and act as a router between the wireless terminal and the rest of the access network, where the rest of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate the attribute management of the air interface.
  • the base station can be a base station (BTS, Base Transceiver Station) in GSM or CDMA, a base station (NodeB) in WCDMA, or an evolved base station (NodeB or eNB or e-NodeB, evolutional NodeB) in LTE. B), or it can also be gNB in the 5G system.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • e-NodeB evolutional NodeB
  • the processing flow of the above method can be implemented by a software program, which can be stored in a storage medium, and when the stored software program is called, the above method steps are executed.
  • the embodiment of the present application proposes a base station to monitor the reference signals (PRS and C-PRS) of neighboring base stations to reach the base station.
  • the time and frequency synchronization method solves the problem that the accuracy of the existing single-differential positioning algorithm is limited by the frequency deviation of the transmitter, and improves the positioning performance of the system.
  • it solves the problem of limited accuracy of time offset measurement estimation based on the PRS signal, and the problem that the time offset caused by frequency offset reduces the positioning performance of the system.
  • the embodiments of the present invention may be provided as methods, systems, or computer program products. Therefore, the present invention may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present invention may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了时钟偏移确定及其处理方法、装置、系统,用以通过基站监听相邻基站的参考信号PRS以及C-PRS达到基站之间的时间和频率同步,解决了基站之间频率偏移导致的时间偏移使得系统定位性能下降的问题,进而提高系统的定位性能。本申请提供的一种时钟偏移确定方法,包括:通过测量定位参考信号的发送端发送的用于载波相位定位的载波相位定位参考信号C-PRS,获得相位测量值;基于所述相位测量值确定定位参考信号的接收端和发送端之间的时钟偏移。

Description

时钟偏移确定及其处理方法、装置、系统
本申请要求在2019年3月18日提交中国专利局、申请号为201910201844.5、发明名称为“时钟偏移确定及其处理方法、装置、系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及时钟偏移确定及其处理方法、装置、系统。
背景技术
在无线通信的用户终端定位系统中,基站之间的时间和频率同步偏差是直接影响定位性能的关键问题之一。
3GPP定义了多种通过测量3GPP无线通信系统的自身定位参考信号(Positioning Reference Signal,PRS)的UE定位方法,例如观察到达时间差(Observed Time Difference Of Arrival,OTDOA),上行链路观察到达时间差(Uplink observed Time Difference Of Arrival,UTDOA)等等。这些方法的特点是基于无线通信系统自身的PRS进行定位,可在接收不到网络外部定位参考信号环境里工作。但这些定位方法的共同问题是定位精度较低。
针对目前OTDOA,UTDOA定位精确度较低的问题,现有技术提出了一种基于3GPP无线电通信系统自身的载波信号相位测量值的UE定位方法。在这种方法里,3GPP线通信系统中信号的发送端(可以是基站(Base Station,BS)或用户设备(UE)或车辆)不仅发送PRS,而且发送用于载波相位定位的载波相位定位参考信号(Carrier phase Positioning Reference Signal,C-PRS)。接收端通过接收PRS和C-PRS,获得定位测量值,包括到达时间(Time Of Arrival,TOA)/到达时间差(Time Difference Of Arrival,TDOA)和载波相位测量值。这种方法利用3GPP无线通信系统自身发送定位参考信号和载波参考信号定位,可在全球导航卫星系统(Global Navigation Satellite System,GNSS)卫星信号弱或接收不到时工作,高精度地确定UE的位置。
基于无线通信载波相位测量的UE定位基本方法如下:
发送端(BS或UE)在预配置或预定义载波频率发送PRS和C-PRS。C-PRS通常可以是正弦载波信号。
对于下行定位方法,例如OTDOA,BS为发送端。各BS在预配置或预定义的载波频率发送PRS和C-PRS。相邻不同小区将在不同的子载波中发送C-PRS;
对于上行定位方法,例如UTDOA,UE为发送端。UE在预配置或预定义的载波频率发送PRS和C-PRS。不同UE将在不同的子载波中发送C-PRS;
接收端(BS或UE)根据PRS和C-PRS配置信息测量PRS和C-PRS;PRS测量的定位测量值可包括TOA/TDOA(TDOA又称为参考信号时间差(Reference Signal Time Difference,RSTD))等;以及由C-PRS测量到的载波相位测量值(CP);
接收端(BS或UE)将定位测量值(TOA/TDOA/CP等)报送到无线通信系统中的某个定位服务器。定位服务器根据PRS和C-PRS配置信息,例如各小区的发送天线的位置,以及接收端提供的定位测量值,来高精度地确定UE的位置。
使用TOA和相位测量值进行定位可有以下几种基本方式:
非差分方式:直接使用TOA和相位测量值计算UE位置而不使用差分技术。
差分方式:首先对TOA和相位测量值进行差分,消除测量值中的一些共同的偏差,然后用于差分后TOA和相位测量值计算UE位置。差分方式又有单差分和双差分两种。
单差分方式:选一个发送端(或接收端)作为参考端,然后将由其它发送端(或接收端)相关的测量值与由参考端相关的测量值进行差分。单差分的目的是消除某一端(接收端或发送端)的测量偏差。例如,3GPP OTDOA定位的RSTD测量值即为UE与各个BS所相关的TOA测量值,与该UE与某参考BS所相关的TOA测量值进行差分所获得的,其差分目的是消除UE时钟偏移对定位的影响。
双差分方式:对单差分方式后的测量值再次差分,以同时消除与发送端和接收端有关的测量误差,例如BS和UE的时钟偏移。例如,双差分技术可用于下行定位的场景。这时,有多个发送端(基站)和两个接收端,其中一个接收端为位置已知的参考接收端。另一个接收端为位置未知的UE。这时,两个接收端同时接基站所发送的定位信号,利用双差分技术去消除两个接收端的测量值中与发送端和接收端有关的共同误差,然后精确地计算出未知位置接收端的位置。采用双差分方式可消除基站之间的时间和频率同步偏差对定位精度的影响。
综上所述,非差分方式同时受到UE和基站的时钟偏移影响,且UE时钟偏移远大于基站时钟偏移,未被3GPP采用;双差分方式要求专门在一个已知的位置上安置一个参考接收端,对具体系统实现带来负面影响。单差分方式目前被用于3GPP OTDOA定位的RSTD测量值(RSTD测量值计算方法是目标UE与所有BS相关的TOA测量值,与该UE与某参考BS所相关的TOA测量值进行差分)。单差分方式可以消除UE时钟偏移对定位的影响,但是基站之间的时间和频率同步偏差将直接影响单差分方式的定位精度。
发明内容
本申请实施例提供了时钟偏移确定及其处理方法、装置、系统,用以通过基站监听相邻基站的参考信号PRS以及C-PRS达到基站之间的时间和频率同步,解决了基站之间频率偏移导致的时间偏移使得系统定位性能下降的问题,进而提高系统的定位性能。
在接收端,本申请实施例提供的一种时钟偏移确定方法,包括:
通过测量定位参考信号的发送端发送的用于载波相位定位的载波相位定位参考信号C-PRS,获得相位测量值;
基于所述相位测量值确定定位参考信号的接收端和发送端之间的时钟偏移。
可选地,基于多个时刻测量发送端发送的C-PRS获得的多个相位测量值,确定所述时钟偏移。
可选地,基于所述多个相位测量值,以及通过多个时刻测量发送端发送的定位参考信号PRS获得的多个到达时间TOA测量值,确定所述时钟偏移。
可选地,该方法还包括:
将所述时钟偏移通知给用户设备UE,由UE在单差分的定位计算过程中消除所述时钟偏移的影响;
或者,将所述时钟偏移通知给定位参考信号PRS和载波相位定位参考信号C-PRS的发送端,由发送端修正由于频率偏差引入的时钟偏移。
可选地,对所述C-PRS进行信号锁相后获得所述相位测量值。
在发送端,本申请实施例提供的一种时钟偏移确定方法,包括:
确定用于载波相位定位的载波相位定位参考信号C-PRS;
发送所述C-PRS,使得定位参考信号的接收端通过测量所述C-PRS获得相位测量值,并基于所述相位测量值确定定位参考信号的接收端和发送端之间的时钟偏移。
可选地,在多个时刻发送C-PRS,使得所述接收端基于多个时刻测量C-PRS获得的多个相位测量值,确定所述时钟偏移。
可选地,该方法还包括:
在多个时刻发送定位参考信号PRS,使得所述接收端基于所述多个相位测量值,以及通过多个时刻测量所述PRS获得的多个到达时间TOA测量值,确定所述时钟偏移。
可选地,该方法还包括:
接收所述接收端发送的所述时钟偏移,并根据所述时钟偏移修正由于频率偏差引入的时钟偏移。
可选地,该方法还包括:
在修正时钟偏移之后,在多个时刻发送PRS和C-PRS给用户设备UE。
在终端侧,本申请实施例提供的一种时钟偏移处理方法,包括:
接收定位参考信号的接收端和发送端之间的时钟偏移,所述时钟偏移是基于相位测量值确定的,所述相位测量值是接收端通过测量所述发送端在多个时刻发送的载波相位定位参考信号C-PRS和定位参考信号PRS获得的;
消除所述时钟偏移的影响。
可选地,在单差分的定位计算过程中消除所述时钟偏移的影响。
在接收端,本申请实施例提供的一种时钟偏移确定装置,包括:
存储器,用于存储程序指令;
处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
通过测量定位参考信号的发送端发送的用于载波相位定位的载波相位定位参考信号C-PRS,获得相位测量值;
基于所述相位测量值确定定位参考信号的接收端和发送端之间的时钟偏移。
可选地,所述处理器基于多个时刻测量发送端发送的C-PRS获得的多个相位测量值,确定所述时钟偏移。
可选地,所述处理器基于所述多个相位测量值,以及通过多个时刻测量发送端发送的定位参考信号PRS获得的多个到达时间TOA测量值,确定所述时钟偏移。
可选地,所述处理器还用于:
将所述时钟偏移通知给用户设备UE,由UE在单差分的定位计算过程中消除所述时钟偏移的影响;
或者,将所述时钟偏移通知给定位参考信号PRS和载波相位定位参考信号C-PRS的发送端,由发送端修正由于频率偏差引入的时钟偏移。
可选地,所述处理器对所述C-PRS进行信号锁相后获得所述相位测量值。
在发送端,本申请实施例提供的一种时钟偏移确定装置,包括:
存储器,用于存储程序指令;
处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
确定用于载波相位定位的载波相位定位参考信号C-PRS;
发送所述C-PRS,使得定位参考信号的接收端通过测量所述C-PRS获得相位测量值,并基于所述相位测量值确定定位参考信号的接收端和发送端之间的时钟偏移。
可选地,所述处理器在多个时刻发送C-PRS,使得所述接收端基于多个时刻测量C-PRS获得的多个相位测量值,确定所述时钟偏移。
可选地,所述处理器还用于:
在多个时刻发送定位参考信号PRS,使得所述接收端基于所述多个相位测量值,以及通过多个时刻测量所述PRS获得的多个到达时间TOA测量值,确定所述时钟偏移。
可选地,所述处理器还用于:
接收所述接收端发送的所述时钟偏移,并根据所述时钟偏移修正由于频率偏差引入的时钟偏移。
可选地,所述处理器还用于:
在修正时钟偏移之后,在多个时刻发送PRS和C-PRS给用户设备UE。
可选地,所述处理器还用于:
通过测量定位参考信号的发送端发送的用于载波相位定位的载波相位定位参考信号C-PRS,获得相位测量值;
基于所述相位测量值确定定位参考信号的接收端和发送端之间的时钟偏移。
在终端侧,本申请实施例提供的一种时钟偏移处理装置,包括:
存储器,用于存储程序指令;
处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
接收定位参考信号的接收端和发送端之间的时钟偏移,所述时钟偏移是基于相位测量值确定的,所述相位测量值是接收端通过测量所述发送端在多个时刻发送的载波相位定位参考信号C-PRS和定位参考信号PRS获得的;
消除所述时钟偏移的影响。
可选地,所述处理器在单差分的定位计算过程中消除所述时钟偏移的影响。
在接收端,本申请实施例提供的另一种时钟偏移确定装置,包括:
相位测量值确定单元,用于通过测量定位参考信号的发送端发送的用于载波相位定位的载波相位定位参考信号C-PRS,获得相位测量值;
时钟偏移确定单元,用于基于所述相位测量值确定定位参考信号的接收端和发送端之间的时钟偏移。
在发送端,本申请实施例提供的另一种时钟偏移确定装置,包括:
载波相位定位参考信号确定单元,用于确定用于载波相位定位的载波相位定位参考信号C-PRS;
载波相位定位参考信号发送单元,用于发送所述C-PRS,使得定位参考信号的接收端通过测量所述C-PRS获得相位测量值,并基于所述相位测量值确定定位参考信号的接收端和发送端之间的时钟偏移。
在终端侧,本申请实施例提供的另一种时钟偏移处理装置,包括:
接收单元,用于接收定位参考信号的接收端和发送端之间的时钟偏移,所述时钟偏移是基于相位测量值确定的,所述相位测量值是接收端通过测量所述发送端在多个时刻发送的载波相位定位参考信号C-PRS和定位参考信号PRS获得的;
消除单元,用于消除所述时钟偏移的影响。
本申请实施例提供的一种通信系统,包括上述任一所述的装置之一或组合。
本申请另一实施例提供了一种计算设备,其包括存储器和处理器,其中,所述存储器用于存储程序指令,所述处理器用于调用所述存储器中存储的程序指令,按照获得的程序执行上述任一种方法。
本申请另一实施例提供了一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述任一种方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的基站之间的时间和频率同步示意图;
图2为本申请实施例提供的一种时钟偏移确定方法的流程示意图;
图3为本申请实施例提供的另一种时钟偏移确定方法的流程示意图;
图4为本申请实施例提供的接收端的一种时钟偏移确定方法的流程示意图;
图5为本申请实施例提供的发送端的一种时钟偏移确定方法的流程示意图;
图6为本申请实施例提供的UE端的一种时钟偏移处理方法的流程示意图;
图7为本申请实施例提供的接收端的一种时钟偏移确定装置的结构示意图;
图8为本申请实施例提供的发送端的一种时钟偏移确定装置的结构示意图;
图9为本申请实施例提供的UE端的一种时钟偏移处理装置的结构示意图;
图10为本申请实施例提供的接收端的另一种时钟偏移确定装置的结构示意图;
图11为本申请实施例提供的发送端的另一种时钟偏移确定装置的结构示意图;
图12为本申请实施例提供的UE端的另一种时钟偏移处理装置的结构示意图;
图13为本申请实施例提供的一种通信系统的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,本发明的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、新空口(New Radio,NR)等。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
根据上述分析,对单差分方式,基站之间的时间同步偏差是直接影响单差分方式的定位精度的关键。目前3GPP在讨论一种基站之间的时间同步方法。该方法由一个基站监听一个相邻基站的PRS。然后,基于所检测的PRS到达时间,PRS的发送时间以及两个基站之间的已知距离,估计出两个基站之间的时间偏移。所估计的两个基站之间的时间偏移可用来补偿基站之间的时间偏移对OTDOA或UTDOA定位算法的影响。以上基站之间的时间同步方法实施简单,且有可能在一定程度上减少两个基站之间的时间偏移之间对单差分方式的定位精度的影响。但是,该方法的有效性受到如下限制:
由于资源使用限制,PRS仅定期发送。基于单次发送的PRS所估计的两个基站之间的时间偏移的估计精度有限;
因为基站本身频率偏移的影响,两个基站之间的时间同步偏差不是一个固定的,而是随着时间偏移。例如,如果基站频率偏移是±0.05ppm,频率偏移引起的时间偏移可在0.1秒内达到±5纳秒。
本申请实施例提供了时钟偏移确定及其处理方法、装置,用以消除基站之间的时间和频率同步偏差对定位性能的影响,从而提高定位精度。
需要说明的是,为了方便描述,在本申请实施例中,PRS代表所有可用于测量到达时间(Time of Arrival,TOA)的参考信号,例如包括可用于传统OTDOA/UTDOA定位的PRS, 信道状态指示参考信号(Channel state indication reference signal,CSI-RS),探测参考信号(Sounding Reference Signal,SRS)等等。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
本申请实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G系统以及5G NR系统等。这多种系统中均包括终端设备和网络设备。
本申请实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(user equipment,UE)。无线终端设备可以经RAN与一个或多个核心网进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiated protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本申请实施例中并不限定。
本申请实施例涉及的网络设备,可以是基站,该基站可以包括多个小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(internet protocol,IP)分组进行相互转换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本申请实施例涉及的网络设备可以是全球移动通信系统(global system for mobile communications,GSM)或码分多址接入(code division multiple  access,CDMA)中的网络设备(base transceiver station,BTS),也可以是带宽码分多址接入(wide-band code division multiple access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站,也可是家庭演进基站(home evolved node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本申请实施例中并不限定。
下面结合说明书附图对本申请各个实施例进行详细描述。需要说明的是,本申请实施例的展示顺序仅代表实施例的先后顺序,并不代表实施例所提供的技术方案的优劣。
参见图1,本申请实施例提出了一种利用基站之间相互监听参考信号的方法来估计基站之间的时间和频率偏差的方法,由一个基站监听相邻基站的参考信号(PRS以及C-PRS)而达到基站之间的时间和频率同步。
本申请实施例提供的技术方案中,监听基站(接收端)通过测量被监听基站(发送端)发送的C-PRS信号,进行信号锁相后获得相位测量值;接收端通过测量发送端发送的PRS信号获得TOA测量值;接收端基于多个时刻测量得到的上述相位测量值和TOA测量值,联合确定接收端和发送端之间的时钟偏移。接收端把上述时钟偏移通知给UE,由UE在单差分的定位计算时去除该时钟偏移值的影响;或者接收端把该时钟偏移值分别发送给所有的被监听基站,由被监听基站主动修正由于频率偏差引入的时钟偏移,在修正时钟偏移之后发送PRS和C-PRS信号给UE进行定位信号测量。
与目前3GPP所讨论的基站之间的时间同步方法相比,本申请实施例增加了用于信号锁相和频率同步的C-PRS参考信号。通过基于C-PRS信号的信号锁相,一方面监听基站与被监听基站实现完全的频率同步,消除了因各基站本身频率偏移对基站之间的时间同步误差的影响,提高了系统的定位性能;另一方面能利用定期发送的多个PRS信号和C-PRS信号提高对基站之间的时间同步误差估计的精度,从而提高了系统的定位性能。本申请实施例提出的无线通信系统中基站之间的时间和频率同步方案可以应用于OTDOA/UTDOA的定位方案。
本申请实施例提供的技术方案的基本原理如下:
设监听基站(接收端)a通过测量被监听基站(发送端)i发送的PRS信号获得的TOA测量值为
Figure PCTCN2020076076-appb-000001
Figure PCTCN2020076076-appb-000002
在时刻k可以表达如下:
Figure PCTCN2020076076-appb-000003
其中,
Figure PCTCN2020076076-appb-000004
表示以米为单位的TOA测量值,
Figure PCTCN2020076076-appb-000005
是发射端和接收端之间的实际的物理距离,可由已知的基站位置得出。c是光速,b r和b t分别是接收端和发送端的时钟偏移(即时间同步误差),
Figure PCTCN2020076076-appb-000006
是TOA测量误差。
接收端和发送端的时间同步误差在时刻k为:
δb(k)=b r(k)-b t(k)              (2)
对于UE定位的目的,为了实现基站之间精确时间同步,需要精确地估计出δb(k)。若仅通过监听PRS来估计δb(k),则δb(k)的估计值为
Figure PCTCN2020076076-appb-000007
这时,时间同步误差取决于在时刻k的测量误差
Figure PCTCN2020076076-appb-000008
设监听基站(接收端)a还通过测量被监听基站(发送端)i发送的C-PRS信号锁相(如何通过C-PRS信号锁相可以采用现有技术实现)后,获得相位测量值
Figure PCTCN2020076076-appb-000009
Figure PCTCN2020076076-appb-000010
在时刻k和k+1可以表达如下:
Figure PCTCN2020076076-appb-000011
Figure PCTCN2020076076-appb-000012
其中,
Figure PCTCN2020076076-appb-000013
是以载波周期为单位的相位测量值,λ是C-PRS的载波波长,
Figure PCTCN2020076076-appb-000014
是未知的整周模糊度,
Figure PCTCN2020076076-appb-000015
是相位测量误差。相位测量误差一般只有载波波长的10%。在讨论基站时间同步时,可以忽略不计。由等式(5)减去等式(4),结合等式(2),且忽略了相位测量误差后可得:
Figure PCTCN2020076076-appb-000016
等式(6)表示,由于各基站本身频率偏移所产生的基站之间的时间同步误差的变化(δb(k+1)-δb(k))等效于相位测量的变化。
若设信号锁相的时刻为k 0,且基站之间的时间同步误差在时刻k 0时为δb(k 0),则根据公式(6)可得:
Figure PCTCN2020076076-appb-000017
把公式(7)代入公式(1)可得:
Figure PCTCN2020076076-appb-000018
例如,若有测量值
Figure PCTCN2020076076-appb-000019
并且已知基站之间的距离
Figure PCTCN2020076076-appb-000020
则基站之间的时间同步误差δb(k 0)可由下面公式(9)估计得到:
Figure PCTCN2020076076-appb-000021
由公式(9)可知,δb(k 0)的估计精度将随着TOA测量值
Figure PCTCN2020076076-appb-000022
和相位测量值
Figure PCTCN2020076076-appb-000023
的个数增加而不断地提高,且不受各个基站本身频率偏移的影响。对于任何时刻k>k 0,基站 之间的时间同步误差的估计值为:
Figure PCTCN2020076076-appb-000024
由公式(10)可知,
Figure PCTCN2020076076-appb-000025
的估计精度取决于δb(k 0)的估计精度。也将随着TOA测量值
Figure PCTCN2020076076-appb-000026
的个数增加而不断地提高,并且不受各个基站本身频率偏移的影响。
根据公式(10)获得监听基站(接收端)a与被监听基站(发送端)i的时间同步误差δb(k)之后,有两种处理方案:
方案一,监听基站测量监听基站与被监听基站之间的时钟偏移
Figure PCTCN2020076076-appb-000027
并把该时钟偏移值通知给UE,由UE在单差分的定位计算时去除该时钟偏移值的影响,具体方案参见实施例1,具体如何去除该时钟偏移值的影响可以参见下面的实施例1的公式(15)和公式(16);
方案二,针对一个监听基站和多个被监听基站的场景,监听基站分别测量监听基站与所有被监听基站之间的时钟偏移
Figure PCTCN2020076076-appb-000028
把该时钟偏移值分别发送给所有被监听基站,被监听基站主动修正由于频率偏差引入的时钟偏移(具体如何修正可以采用现有技术,参见实施例2的步骤3),然后在修正时钟偏移之后发送PRS和C-PRS信号给UE,具体方案参见实施例2。由于监听基站与多个非监听基站的时钟保持同步,此时UE在测量来自不同基站的TOA测量值和载波相位测量值时,不会受到频率偏差引入的时钟偏移值的影响。
实施例1:
参见图2,实施例1对应于上述的处理方案一,其中,有一个监听基站B和两个被监听基站A1和A2。监听基站B测量监听基站B与被监听基站A1和A2之间的时钟偏移,并把该时钟偏移通知给UE,由UE在对TOA测量值和载波相位测量值做单差分时去除该时钟偏移的影响。
具体的处理流程如图2所示,具体步骤如下:
步骤一:各基站(包括监听基站B,被监听基站A1和A2)根据各自的PRS和C-PRS配置信息发送PRS和C-PRS信号。
步骤二:监听基站B同时测量被监听基站A1和A2的PRS和C-PRS信号,得到基站A1和A2的TOA测量值和载波相位测量值,并且根据公式(10)得到基站B与基站A1的时钟偏移
Figure PCTCN2020076076-appb-000029
和基站B与基站A2的时钟偏移
Figure PCTCN2020076076-appb-000030
其中,
Figure PCTCN2020076076-appb-000031
Figure PCTCN2020076076-appb-000032
并把这两个时钟偏移通知给UE,基站B、A1和A2不补偿该时钟偏移值。
步骤三:UE分别测量基站A1、A2和B的PRS和C-PRS信号,获得第一TOA测量值
Figure PCTCN2020076076-appb-000033
和第一载波相位测量值
Figure PCTCN2020076076-appb-000034
Figure PCTCN2020076076-appb-000035
Figure PCTCN2020076076-appb-000036
步骤四:UE对将被监听基站A1和A2测量的第一TOA测量值
Figure PCTCN2020076076-appb-000037
和第一载波相位测量值
Figure PCTCN2020076076-appb-000038
与监听基站B测量的第一TOA测量值
Figure PCTCN2020076076-appb-000039
和第一载波相位测量值
Figure PCTCN2020076076-appb-000040
进行单差分操作,得到以下第一单差分测量值:
Figure PCTCN2020076076-appb-000041
Figure PCTCN2020076076-appb-000042
其中,TOA的单差分测量值
Figure PCTCN2020076076-appb-000043
也称为RSTD。
步骤五:UE采用基站B通知的基站B分别与基站A1和A2的时钟偏移
Figure PCTCN2020076076-appb-000044
Figure PCTCN2020076076-appb-000045
对步骤3b中公式(13)和(14)得到的第一单差分测量值上去除该时钟偏移
Figure PCTCN2020076076-appb-000046
的影响,得到更新后的第二单差分测量值:
Figure PCTCN2020076076-appb-000047
Figure PCTCN2020076076-appb-000048
步骤六:UE把步骤五计算得到的第二单差分TOA测量值和第二单差分载波相位测量值
Figure PCTCN2020076076-appb-000049
上报给LMF。
步骤七:LMF利用步骤六中UE上报的第二单差分TOA测量值和第二载波相位测量值
Figure PCTCN2020076076-appb-000050
以及基站A1、A2和B的位置等信息计算得到UE的定位位置。
实施例2:
参见图3,实施例2对应于上述的处理方案二,其中,有一个监听基站B和两个被监听基站A1和A2。监听基站B测量监听基站B与被监听基站A1和A2的时钟偏移,并主动补偿由于频率偏差引入的时钟偏移。
如图3所示,具体步骤如下:
步骤1:各基站(包括监听基站B,被监听基站A1和A2)根据各自的PRS和C-PRS配置信息发送PRS和C-PRS信号。
步骤2:基站B同时测量基站A1和A2的PRS信号和C-PRS信号,得到基站A1和A2的TOA测量值和载波相位测量值,并且根据公式(10)得到基站B与基站A1的时钟偏移
Figure PCTCN2020076076-appb-000051
和基站B与基站A2的时钟偏移
Figure PCTCN2020076076-appb-000052
其中,
Figure PCTCN2020076076-appb-000053
Figure PCTCN2020076076-appb-000054
步骤2a:基站B把基站B与基站A1的时钟偏移
Figure PCTCN2020076076-appb-000055
发送给基站A1,并且把基站 B与基站A2的时钟偏移
Figure PCTCN2020076076-appb-000056
发送给基站A2。
步骤3:被监听基站A1和A2分别补偿与基站B的时钟偏移
Figure PCTCN2020076076-appb-000057
Figure PCTCN2020076076-appb-000058
然后基站A1和A2分别把补偿时钟偏移后的PRS信号和C-PRS信号发送给UE。
步骤4:UE分别测量基站B发送的PRS和C-PRS信号,以及基站A1、A2的补偿时钟偏移后发送的PRS和C-PRS信号,计算得到第一RSTD测量值和第一载波相位测量值。
步骤5:UE把步骤4得到的第一RSTD测量值和第一载波相位测量值上报给LMF。
步骤6:LMF利用步骤5中UE上报的第一RSTD测量值和第一载波相位测量值计算UE的定位位置。
综上所述,参见图4,在接收端,本申请实施例提供的一种时钟偏移确定方法,包括:
S101、通过测量定位参考信号的发送端发送的用于载波相位定位的载波相位定位参考信号C-PRS,获得相位测量值;
S102、基于所述相位测量值确定定位参考信号的接收端和发送端之间的时钟偏移。
可选地,基于多个时刻测量发送端发送的C-PRS获得的多个相位测量值,确定所述时钟偏移。
可选地,基于所述多个相位测量值,以及通过多个时刻测量发送端发送的定位参考信号PRS获得的多个到达时间TOA测量值,确定所述时钟偏移。
可选地,该方法还包括:
将所述时钟偏移通知给用户设备UE,由UE在单差分的定位计算过程中消除所述时钟偏移的影响;
或者,将所述时钟偏移通知给定位参考信号PRS和载波相位定位参考信号C-PRS的发送端,由发送端修正由于频率偏差引入的时钟偏移。
可选地,对所述C-PRS进行信号锁相后获得所述相位测量值。
在发送端,参见图5,本申请实施例提供的一种时钟偏移确定方法,包括:
S201、确定用于载波相位定位的载波相位定位参考信号C-PRS;
S202、发送所述C-PRS,使得定位参考信号的接收端通过测量所述C-PRS获得相位测量值,并基于所述相位测量值确定定位参考信号的接收端和发送端之间的时钟偏移。
可选地,在多个时刻发送C-PRS,使得所述接收端基于多个时刻测量C-PRS获得的多个相位测量值,确定所述时钟偏移。
可选地,该方法还包括:
在多个时刻发送定位参考信号PRS,使得所述接收端基于所述多个相位测量值,以及通过多个时刻测量所述PRS获得的多个到达时间TOA测量值,确定所述时钟偏移。
可选地,该方法还包括:
接收所述接收端发送的所述时钟偏移,并根据所述时钟偏移修正由于频率偏差引入的 时钟偏移。
可选地,该方法还包括:
在修正时钟偏移之后,在多个时刻发送PRS和C-PRS给用户设备UE。
在终端侧,参见图6,本申请实施例提供的一种时钟偏移处理方法,包括:
S301、接收定位参考信号的接收端和发送端之间的时钟偏移,所述时钟偏移是基于相位测量值确定的,所述相位测量值是接收端通过测量所述发送端在多个时刻发送的载波相位定位参考信号C-PRS和定位参考信号PRS获得的;
S302、消除所述时钟偏移的影响。
可选地,在单差分的定位计算过程中消除所述时钟偏移的影响。
与上述方法相对应地,下面介绍一下本申请实施例提供的装置和系统。
参见图7,在接收端,本申请实施例提供的一种时钟偏移确定装置,包括:
存储器520,用于存储程序指令;
处理器500,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
通过测量定位参考信号的发送端发送的用于载波相位定位的载波相位定位参考信号C-PRS,获得相位测量值;
基于所述相位测量值确定定位参考信号的接收端和发送端之间的时钟偏移。
可选地,所述处理器500基于多个时刻测量发送端发送的C-PRS获得的多个相位测量值,确定所述时钟偏移。
可选地,所述处理器500基于所述多个相位测量值,以及通过多个时刻测量发送端发送的定位参考信号PRS获得的多个到达时间TOA测量值,确定所述时钟偏移。
可选地,所述处理器500还用于:
将所述时钟偏移通知给用户设备UE,由UE在单差分的定位计算过程中消除所述时钟偏移的影响;
或者,将所述时钟偏移通知给定位参考信号PRS和载波相位定位参考信号C-PRS的发送端,由发送端修正由于频率偏差引入的时钟偏移。
可选地,所述处理器500对所述C-PRS进行信号锁相后获得所述相位测量值。
收发机510,用于在处理器500的控制下接收和发送数据。
其中,在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机510可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器500负责管理总线架构和通常的处理,存储器520可以存储处理器500在执行 操作时所使用的数据。
处理器500可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。
在发送端,参见图8,本申请实施例提供的一种时钟偏移确定装置,包括:
存储器505,用于存储程序指令;
处理器504,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
确定用于载波相位定位的载波相位定位参考信号C-PRS;
发送所述C-PRS,使得定位参考信号的接收端通过测量所述C-PRS获得相位测量值,并基于所述相位测量值确定定位参考信号的接收端和发送端之间的时钟偏移。
可选地,所述处理器504在多个时刻发送C-PRS,使得所述接收端基于多个时刻测量C-PRS获得的多个相位测量值,确定所述时钟偏移。
可选地,所述处理器还用于:
在多个时刻发送定位参考信号PRS,使得所述接收端基于所述多个相位测量值,以及通过多个时刻测量所述PRS获得的多个到达时间TOA测量值,确定所述时钟偏移。
可选地,所述处理器504还用于:
接收所述接收端发送的所述时钟偏移,并根据所述时钟偏移修正由于频率偏差引入的时钟偏移。
可选地,所述处理器504还用于:
在修正时钟偏移之后,在多个时刻发送PRS和C-PRS给用户设备UE。
可选地,所述处理器504还用于:
通过测量定位参考信号的发送端发送的用于载波相位定位的载波相位定位参考信号C-PRS,获得相位测量值;
基于所述相位测量值确定定位参考信号的接收端和发送端之间的时钟偏移。
也就是说,本申请实施例中,任一所述的时钟偏移确定装置,可以同时具有发送端和接收端的功能,例如可以是基站,该基站可以作为发送端的时钟偏移确定装置,也可以作为接收端的时钟偏移确定装置。
收发机501,用于在处理器504的控制下接收和发送数据。
在图8中,总线架构(用总线506来代表),总线506可以包括任意数量的互联的总线和桥,总线506将包括由处理器504代表的一个或多个处理器和存储器505代表的存储器的各种电路链接在一起。总线500还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口503在总线506和收发机501之间提供接口。收发机501可以是一个元件,也可以是 多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器504处理的数据通过天线502在无线介质上进行传输,进一步,天线502还接收数据并将数据传送给处理器504。
处理器504负责管理总线506和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器505可以被用于存储处理器504在执行操作时所使用的数据。
可选的,处理器504可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。
在终端侧,参见图9,本申请实施例提供的一种时钟偏移处理装置,包括:
存储器620,用于存储程序指令;
处理器600,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
接收定位参考信号的接收端和发送端之间的时钟偏移,所述时钟偏移是基于相位测量值确定的,所述相位测量值是接收端通过测量所述发送端在多个时刻发送的载波相位定位参考信号C-PRS和定位参考信号PRS获得的;
消除所述时钟偏移的影响。
可选地,所述处理器600在单差分的定位计算过程中消除所述时钟偏移的影响。
收发机610,用于在处理器600的控制下接收和发送数据。
其中,在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口630还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
可选的,处理器600可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。
在接收端,参见图10,本申请实施例提供的另一种时钟偏移确定装置,包括:
相位测量值确定单元11,用于通过测量定位参考信号的发送端发送的用于载波相位定位的载波相位定位参考信号C-PRS,获得相位测量值;
时钟偏移确定单元12,用于基于所述相位测量值确定定位参考信号的接收端和发送端之间的时钟偏移。
可选地,时钟偏移确定单元12基于多个时刻测量发送端发送的C-PRS获得的多个相位测量值,确定所述时钟偏移。
可选地,时钟偏移确定单元12基于所述多个相位测量值,以及通过多个时刻测量发送端发送的定位参考信号PRS获得的多个到达时间TOA测量值,确定所述时钟偏移。
可选地,时钟偏移确定单元12还用于:
将所述时钟偏移通知给用户设备UE,由UE在单差分的定位计算过程中消除所述时钟偏移的影响;
或者,将所述时钟偏移通知给定位参考信号PRS和载波相位定位参考信号C-PRS的发送端,由发送端修正由于频率偏差引入的时钟偏移。
可选地,相位测量值确定单元11对所述C-PRS进行信号锁相后获得所述相位测量值。
在发送端,参见图11,本申请实施例提供的另一种时钟偏移确定装置,包括:
载波相位定位参考信号确定单元21,用于确定用于载波相位定位的载波相位定位参考信号C-PRS;
载波相位定位参考信号发送单元22,用于发送所述C-PRS,使得定位参考信号的接收端通过测量所述C-PRS获得相位测量值,并基于所述相位测量值确定定位参考信号的接收端和发送端之间的时钟偏移。
可选地,载波相位定位参考信号发送单元22在多个时刻发送C-PRS,使得所述接收端基于多个时刻测量C-PRS获得的多个相位测量值,确定所述时钟偏移。
可选地,载波相位定位参考信号发送单元22还用于:
在多个时刻发送定位参考信号PRS,使得所述接收端基于所述多个相位测量值,以及通过多个时刻测量所述PRS获得的多个到达时间TOA测量值,确定所述时钟偏移。
可选地,载波相位定位参考信号发送单元22还用于:
接收所述接收端发送的所述时钟偏移,并根据所述时钟偏移修正由于频率偏差引入的时钟偏移。
可选地,载波相位定位参考信号发送单元22还用于:
在修正时钟偏移之后,在多个时刻发送PRS和C-PRS给用户设备UE。
在终端侧,参见图12,本申请实施例提供的另一种时钟偏移处理装置,包括:
接收单元31,用于接收定位参考信号的接收端和发送端之间的时钟偏移,所述时钟偏移是基于相位测量值确定的,所述相位测量值是接收端通过测量所述发送端在多个时刻发送的载波相位定位参考信号C-PRS和定位参考信号PRS获得的;
消除单元32,用于消除所述时钟偏移的影响。
可选地,消除单元32在单差分的定位计算过程中消除所述时钟偏移的影响。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例提供的一种通信系统,包括上述任一所述的装置之一或组合。可以包括上述的任一种或多种时钟偏移确定装置,和/或,时钟偏移处理装置。例如,发送端的时钟偏移确定装置和接收端的时钟偏移确定装置都可以是基站,那么,参见图13,本申请实施例提供的通信系统可以包括发送端基站131、接收端基站132和UE 133。
需要说明的是,本申请实施例中所述的基站、UE,既可以作为发送端的装置,也可以作为接收端的装置,可以同时具有发送端和接收端的功能。
本申请实施例提供了一种计算设备,该计算设备具体可以为桌面计算机、便携式计算机、智能手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)等。该计算设备可以包括中央处理器(Center Processing Unit,CPU)、存储器、输入/输出设备等,输入设备可以包括键盘、鼠标、触摸屏等,输出设备可以包括显示设备,如液晶显示器(Liquid Crystal Display,LCD)、阴极射线管(Cathode Ray Tube,CRT)等。
存储器可以包括只读存储器(ROM)和随机存取存储器(RAM),并向处理器提供存储器中存储的程序指令和数据。在本申请实施例中,存储器可以用于存储本申请实施例提供的任一所述方法的程序。
处理器通过调用存储器存储的程序指令,处理器用于按照获得的程序指令执行本申请实施例提供的任一所述方法。
本申请实施例提供了一种计算机存储介质,用于储存为上述本申请实施例提供的装置所用的计算机程序指令,其包含用于执行上述本申请实施例提供的任一方法的程序。
所述计算机存储介质可以是计算机能够存取的任何可用介质或数据存储设备,包括但 不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本申请实施例提供的方法可以应用于终端设备,也可以应用于网络设备。
其中,终端设备也可称之为用户设备(User Equipment,简称为“UE”)、移动台(Mobile Station,简称为“MS”)、移动终端(Mobile Terminal)等,可选的,该终端可以具备经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信的能力,例如,终端可以是移动电话(或称为“蜂窝”电话)、或具有移动性质的计算机等,例如,终端还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
网络设备可以为基站(例如,接入点),指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以是5G系统中的gNB等。本申请实施例中不做限定。
上述方法处理流程可以用软件程序实现,该软件程序可以存储在存储介质中,当存储的软件程序被调用时,执行上述方法步骤。
综上所述,本申请实施例通过增加用于信号锁相和频率同步的C-PRS参考信号,提出了一种由一个基站监听相邻基站的参考信号(PRS以及C-PRS)而达到基站之间的时间和频率同步方法,解决了现有的单差分方案的定位算法精度受限于发送端频率偏差的问题,提高了系统的定位性能。同时,解决了基于PRS信号进行时间偏移测量估计的精度有限的问题,以及频率偏移导致的时间偏移使得系统定位性能下降的问题。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (30)

  1. 一种时钟偏移确定方法,其特征在于,该方法包括:
    通过测量定位参考信号的发送端发送的用于载波相位定位的载波相位定位参考信号C-PRS,获得相位测量值;
    基于所述相位测量值确定定位参考信号的接收端和发送端之间的时钟偏移。
  2. 根据权利要求1所述的方法,其特征在于,基于多个时刻测量发送端发送的C-PRS获得的多个相位测量值,确定所述时钟偏移。
  3. 根据权利要求2所述的方法,其特征在于,基于所述多个相位测量值,以及通过多个时刻测量发送端发送的定位参考信号PRS获得的多个到达时间TOA测量值,确定所述时钟偏移。
  4. 根据权利要求1、2或3所述的方法,其特征在于,该方法还包括:
    将所述时钟偏移通知给用户设备UE,由UE在单差分的定位计算过程中消除所述时钟偏移的影响;
    或者,将所述时钟偏移通知给定位参考信号PRS和载波相位定位参考信号C-PRS的发送端,由发送端修正由于频率偏差引入的时钟偏移。
  5. 根据权利要求1所述的方法,其特征在于,对所述C-PRS进行信号锁相后获得所述相位测量值。
  6. 一种时钟偏移确定方法,其特征在于,该方法包括:
    确定用于载波相位定位的载波相位定位参考信号C-PRS;
    发送所述C-PRS,使得定位参考信号的接收端通过测量所述C-PRS获得相位测量值,并基于所述相位测量值确定定位参考信号的接收端和发送端之间的时钟偏移。
  7. 根据权利要求6所述的方法,其特征在于,在多个时刻发送C-PRS,使得所述接收端基于多个时刻测量C-PRS获得的多个相位测量值,确定所述时钟偏移。
  8. 根据权利要求7所述的方法,其特征在于,该方法还包括:
    在多个时刻发送定位参考信号PRS,使得所述接收端基于所述多个相位测量值,以及通过多个时刻测量所述PRS获得的多个到达时间TOA测量值,确定所述时钟偏移。
  9. 根据权利要求6、7或8所述的方法,其特征在于,该方法还包括:
    接收所述接收端发送的所述时钟偏移,并根据所述时钟偏移修正由于频率偏差引入的时钟偏移。
  10. 根据权利要求9所述的方法,其特征在于,该方法还包括:
    在修正时钟偏移之后,在多个时刻发送PRS和C-PRS给用户设备UE。
  11. 一种时钟偏移处理方法,其特征在于,该方法包括:
    接收定位参考信号的接收端和发送端之间的时钟偏移,所述时钟偏移是基于相位测量值确定的,所述相位测量值是接收端通过测量所述发送端在多个时刻发送的载波相位定位参考信号C-PRS和定位参考信号PRS获得的;
    消除所述时钟偏移的影响。
  12. 根据权利要求11所述的方法,其特征在于,在单差分的定位计算过程中消除所述时钟偏移的影响。
  13. 一种时钟偏移确定装置,其特征在于,该装置包括:
    存储器,用于存储程序指令;
    处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
    通过测量定位参考信号的发送端发送的用于载波相位定位的载波相位定位参考信号C-PRS,获得相位测量值;
    基于所述相位测量值确定定位参考信号的接收端和发送端之间的时钟偏移。
  14. 根据权利要求13所述的装置,其特征在于,所述处理器基于多个时刻测量发送端发送的C-PRS获得的多个相位测量值,确定所述时钟偏移。
  15. 根据权利要求14所述的装置,其特征在于,所述处理器基于所述多个相位测量值,以及通过多个时刻测量发送端发送的定位参考信号PRS获得的多个到达时间TOA测量值,确定所述时钟偏移。
  16. 根据权利要求13、14或15所述的装置,其特征在于,所述处理器还用于:
    将所述时钟偏移通知给用户设备UE,由UE在单差分的定位计算过程中消除所述时钟偏移的影响;
    或者,将所述时钟偏移通知给定位参考信号PRS和载波相位定位参考信号C-PRS的发送端,由发送端修正由于频率偏差引入的时钟偏移。
  17. 根据权利要求13所述的装置,其特征在于,所述处理器对所述C-PRS进行信号锁相后获得所述相位测量值。
  18. 一种时钟偏移确定装置,其特征在于,包括:
    存储器,用于存储程序指令;
    处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
    确定用于载波相位定位的载波相位定位参考信号C-PRS;
    发送所述C-PRS,使得定位参考信号的接收端通过测量所述C-PRS获得相位测量值,并基于所述相位测量值确定定位参考信号的接收端和发送端之间的时钟偏移。
  19. 根据权利要求18所述的装置,其特征在于,所述处理器在多个时刻发送C-PRS,使得所述接收端基于多个时刻测量C-PRS获得的多个相位测量值,确定所述时钟偏移。
  20. 根据权利要求19所述的装置,其特征在于,所述处理器还用于:
    在多个时刻发送定位参考信号PRS,使得所述接收端基于所述多个相位测量值,以及通过多个时刻测量所述PRS获得的多个到达时间TOA测量值,确定所述时钟偏移。
  21. 根据权利要求18、19或20所述的装置,其特征在于,所述处理器还用于:
    接收所述接收端发送的所述时钟偏移,并根据所述时钟偏移修正由于频率偏差引入的时钟偏移。
  22. 根据权利要求21所述的装置,其特征在于,所述处理器还用于:
    在修正时钟偏移之后,在多个时刻发送PRS和C-PRS给用户设备UE。
  23. 根据权利要求18所述的装置,其特征在于,所述处理器还用于:
    通过测量定位参考信号的发送端发送的用于载波相位定位的载波相位定位参考信号C-PRS,获得相位测量值;
    基于所述相位测量值确定定位参考信号的接收端和发送端之间的时钟偏移。
  24. 一种时钟偏移处理装置,其特征在于,该装置包括:
    存储器,用于存储程序指令;
    处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
    接收定位参考信号的接收端和发送端之间的时钟偏移,所述时钟偏移是基于相位测量值确定的,所述相位测量值是接收端通过测量所述发送端在多个时刻发送的载波相位定位参考信号C-PRS和定位参考信号PRS获得的;
    消除所述时钟偏移的影响。
  25. 根据权利要求24所述的装置,其特征在于,所述处理器在单差分的定位计算过程中消除所述时钟偏移的影响。
  26. 一种时钟偏移确定装置,其特征在于,该装置包括:
    相位测量值确定单元,用于通过测量定位参考信号的发送端发送的用于载波相位定位的载波相位定位参考信号C-PRS,获得相位测量值;
    时钟偏移确定单元,用于基于所述相位测量值确定定位参考信号的接收端和发送端之间的时钟偏移。
  27. 一种时钟偏移确定装置,其特征在于,该装置包括:
    载波相位定位参考信号确定单元,用于确定用于载波相位定位的载波相位定位参考信号C-PRS;
    载波相位定位参考信号发送单元,用于发送所述C-PRS,使得定位参考信号的接收端通过测量所述C-PRS获得相位测量值,并基于所述相位测量值确定定位参考信号的接收端和发送端之间的时钟偏移。
  28. 一种时钟偏移处理装置,其特征在于,该装置包括:
    接收单元,用于接收定位参考信号的接收端和发送端之间的时钟偏移,所述时钟偏移 是基于相位测量值确定的,所述相位测量值是接收端通过测量所述发送端在多个时刻发送的载波相位定位参考信号C-PRS和定位参考信号PRS获得的;
    消除单元,用于消除所述时钟偏移的影响。
  29. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行权利要求1至12任一项所述的方法。
  30. 一种通信系统,其特征在于,包括权利要求13~17、26任一所述装置,和/或,权利要求18~23、27任一所述装置,和/或,权利要求24、25、28任一所述装置。
PCT/CN2020/076076 2019-03-18 2020-02-20 时钟偏移确定及其处理方法、装置、系统 WO2020186959A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20773196.9A EP3944680A4 (en) 2019-03-18 2020-02-20 CLOCK OFFSET DETERMINATION METHOD, CLOCK OFFSET TREATMENT METHOD, DEVICE AND SYSTEM
KR1020217033558A KR20210138084A (ko) 2019-03-18 2020-02-20 클록 오프셋의 결정 방법 및 클록 오프셋의 처리 방법, 장치 및 시스템
US17/440,966 US20220166531A1 (en) 2019-03-18 2020-02-20 Clock offset determination method, clock offset processing method, device, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910201844.5A CN111726857B (zh) 2019-03-18 2019-03-18 时钟偏移确定及其处理方法、装置、系统
CN201910201844.5 2019-03-18

Publications (1)

Publication Number Publication Date
WO2020186959A1 true WO2020186959A1 (zh) 2020-09-24

Family

ID=72519529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076076 WO2020186959A1 (zh) 2019-03-18 2020-02-20 时钟偏移确定及其处理方法、装置、系统

Country Status (5)

Country Link
US (1) US20220166531A1 (zh)
EP (1) EP3944680A4 (zh)
KR (1) KR20210138084A (zh)
CN (2) CN111726857B (zh)
WO (1) WO2020186959A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022123109A1 (en) * 2020-12-08 2022-06-16 Nokia Technologies Oy Frequency reference adjustment compensation for positioning
WO2022207340A1 (en) * 2021-04-02 2022-10-06 Nokia Technologies Oy Transmitter residual carrier frequency offset compensation

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112543160B (zh) * 2019-09-05 2022-09-13 大唐移动通信设备有限公司 载波相位测量值的偏差消除和获取方法、装置及接收机
US20230366977A1 (en) * 2020-10-09 2023-11-16 Nokia Solutions And Networks Oy Method and apparatus for positioning reference signal transmission and reception
CN114466448B (zh) * 2020-11-10 2023-04-11 大唐移动通信设备有限公司 定位方法、装置及处理器可读存储介质
CN116017267A (zh) * 2021-10-21 2023-04-25 华为技术有限公司 信息处理的方法和电子设备
CN116980101A (zh) * 2022-04-24 2023-10-31 北京三星通信技术研究有限公司 通信系统中的接收端、发射端执行的方法及设备
WO2023211217A1 (ko) * 2022-04-28 2023-11-02 엘지전자 주식회사 무선 통신 시스템에서 단말이 측위를 위한 측정을 수행하는 방법 및 이를 위한 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103200677A (zh) * 2013-04-02 2013-07-10 东南大学 一种基于lte定位参考信号特征的精确时延计算方法
US20160302165A1 (en) * 2015-04-08 2016-10-13 Alcatel-Lucent Usa Inc. Base station synchronization

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060049982A1 (en) * 2004-09-03 2006-03-09 Telefonaktiebolaget L M Ericsson (Publ) Method of and system for reducing a time to fix in a location-enabled receiver
US20110166884A1 (en) * 2009-12-04 2011-07-07 Dept. Of Veterans Affairs System and method for automated patient history intake
CN102232849B (zh) * 2010-04-30 2014-09-03 西门子(深圳)磁共振有限公司 一种动态频率漂移校正方法
CN103841058B (zh) * 2012-11-21 2016-11-02 电信科学技术研究院 一种误差矢量幅度确定方法及装置
CN103763773B (zh) * 2014-01-29 2017-09-26 上海大唐移动通信设备有限公司 一种移动终端的定位方法及装置
EP3544342B1 (en) * 2015-03-30 2020-07-15 Sony Corporation Apparatus and method for mobile network positioning of mtc devices using common reference or synchronization signals
WO2016181197A1 (en) * 2015-05-14 2016-11-17 Telefonaktiebolaget Lm Ericsson (Publ) High-accuracy round trip time (rtt) ranging
CN106304316B (zh) * 2015-05-29 2021-01-15 中国移动通信集团公司 一种频率同步性能检测方法及装置
EP3374785A4 (en) * 2015-11-10 2019-07-24 Xco Tech Inc. ULTRA-WIDE BAND POSITION LOCATION SYSTEM AND METHOD
WO2017084006A1 (en) * 2015-11-16 2017-05-26 Accenture Global Solutions Limited Telecommunication network signal analysis for matching a mobile device cellular identifier with a mobile device network identifier
EP3171194B1 (en) * 2015-11-19 2021-01-13 u-blox AG Calculating a ranging measurement in a cellular communications network
US10736113B2 (en) * 2016-02-16 2020-08-04 Qualcomm Incorporated Positioning signal techniques for narrowband devices
CN108259401B (zh) * 2016-12-28 2020-09-15 电信科学技术研究院 参考信号发送方法和相位噪声确定方法及相关装置
US10863453B2 (en) * 2017-02-14 2020-12-08 Telefonaktiebolaget Lm Ericsson (Publ) PRS power pattern

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103200677A (zh) * 2013-04-02 2013-07-10 东南大学 一种基于lte定位参考信号特征的精确时延计算方法
US20160302165A1 (en) * 2015-04-08 2016-10-13 Alcatel-Lucent Usa Inc. Base station synchronization

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3RD GENERATION PARTNERSHIP PROJECT TECHNICAL SPECIFICATION GROUP RADIO ACCESS NETWORK: "Study on NR Positioning Support", 3GPP TR 38.855 V1.1.0, 11 March 2019 (2019-03-11), XP051722750 *
See also references of EP3944680A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022123109A1 (en) * 2020-12-08 2022-06-16 Nokia Technologies Oy Frequency reference adjustment compensation for positioning
WO2022207340A1 (en) * 2021-04-02 2022-10-06 Nokia Technologies Oy Transmitter residual carrier frequency offset compensation
US11770277B2 (en) 2021-04-02 2023-09-26 Nokia Technologies Oy Transmitter residual carrier frequency offset compensation

Also Published As

Publication number Publication date
CN113438724B (zh) 2022-03-25
KR20210138084A (ko) 2021-11-18
CN111726857A (zh) 2020-09-29
CN111726857B (zh) 2021-07-20
US20220166531A1 (en) 2022-05-26
EP3944680A4 (en) 2022-05-11
EP3944680A1 (en) 2022-01-26
CN113438724A (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
WO2020186959A1 (zh) 时钟偏移确定及其处理方法、装置、系统
WO2021057175A1 (zh) 信号传输方法及装置
WO2021227821A1 (zh) 定位方法及装置
TWI801768B (zh) 時鐘偏差確定方法及裝置
WO2020238639A1 (zh) 一种信息确定方法及装置
US20230262647A1 (en) Positioning method and apparatus
WO2021000951A1 (zh) 信号传输方法及装置
US20240073852A1 (en) Signal processing method, and apparatus
US20220155401A1 (en) Method and device for determining positioning measurement
TWI784342B (zh) 時鐘偏差確定方法、計算設備及電腦存儲介質
WO2022151897A1 (zh) 信息指示方法、装置、终端设备、网络设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217033558

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020773196

Country of ref document: EP

Effective date: 20211018