WO2021104025A1 - 信息传输方法及装置 - Google Patents

信息传输方法及装置 Download PDF

Info

Publication number
WO2021104025A1
WO2021104025A1 PCT/CN2020/128194 CN2020128194W WO2021104025A1 WO 2021104025 A1 WO2021104025 A1 WO 2021104025A1 CN 2020128194 W CN2020128194 W CN 2020128194W WO 2021104025 A1 WO2021104025 A1 WO 2021104025A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
reference signal
resource configuration
technical solution
configuration information
Prior art date
Application number
PCT/CN2020/128194
Other languages
English (en)
French (fr)
Inventor
任斌
达人
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP20891515.7A priority Critical patent/EP4068668A4/en
Priority to US17/775,739 priority patent/US20220407639A1/en
Publication of WO2021104025A1 publication Critical patent/WO2021104025A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0215Interference
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0226Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0236Assistance data, e.g. base station almanac
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0244Accuracy or reliability of position solution or of measurements contributing thereto
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0257Hybrid positioning
    • G01S5/0263Hybrid positioning by combining or switching between positions derived from two or more separate positioning systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0056Inter-base station aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0036Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/01Determining conditions which influence positioning, e.g. radio environment, state of motion or energy consumption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/06Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems

Definitions

  • This application relates to the field of communication technology, and in particular to information transmission methods and devices.
  • Step 1 After a user terminal (User Equipment, UE) establishes a connection with a base station, the UE is in a Radio Resource Control Connected (RRC_CONNECTED) state.
  • RRC_CONNECTED Radio Resource Control Connected
  • Step 2 The location server (Location Management Function, LMF) sends a "request location capability" message to the UE, requesting the UE to notify the LMF of the location function supported by the UE.
  • LMF Location Management Function
  • Step 3 The UE sends a "Provide Positioning Capability" message in response to the LMF, and the "Provide Positioning Capability" message reports that the UE supports OTDOA positioning capabilities.
  • Step 4 When the downlink positioning assistance data is needed, the UE sends a "request positioning assistance data" message to the LMF, which is used to request the LMF to provide OTDOA assistance data.
  • Step 5 The LMF sends an "OTDOA Information Request" message to the base station, which is used to request the base station to provide downlink positioning assistance data, such as Down Link (DL) positioning reference signal (Positioning Reference Signal, PRS) configuration data.
  • downlink positioning assistance data such as Down Link (DL) positioning reference signal (Positioning Reference Signal, PRS) configuration data.
  • DL Down Link
  • PRS Positioning Reference Signal
  • Step 6 The base station sends an "OTDOA information response" message to the LMF, and provides the requested downlink positioning assistance data to the LMF, including PRS configuration data.
  • Step 7 The LMF provides the positioning assistance data requested by the UE in the "provide positioning assistance data" message, which carries the DL PRS configuration data.
  • Step 8 The base station sends a DL PRS signal to the UE.
  • Step 9 The UE uses positioning assistance data (for example: PRS configuration data) to measure downlink signals to obtain positioning measurement values, such as: Reference Signal Time Difference (RSTD), Reference Signal Received Power Power, RSRP).
  • positioning assistance data for example: PRS configuration data
  • RSTD Reference Signal Time Difference
  • RSRP Reference Signal Received Power Power
  • Step 10 The UE sends a "Provide Positioning Information" message to the LMF, which includes the positioning measurement values obtained by measuring the DL PRS, such as RSTD and RSRP.
  • Step 11 The LMF determines the location of the UE according to the PRS configuration information, the location of the transmitting antenna of each base station, and the positioning measurement value reported by the UE.
  • the "OTDOA Information Request" message sent by the LMF to the base station in step 5 only triggers the base station to provide the requested downlink positioning assistance data to the positioning server. It does not contain the configuration information of the recommended downlink positioning reference signal.
  • the request message sent by the LMF to the base station in step 5 of FIG. 2 only triggers the base station to provide the requested downlink positioning assistance data to the LMF.
  • each base station independently determines the configuration of the DL PRS signal.
  • the current method has the following problems: neighboring base stations may send DL PRS on the same time and frequency resources, causing the DL PRS signals of neighboring base stations to interfere with each other, resulting in degradation of downlink positioning measurement performance; each base station cannot meet the UE's positioning performance requirements To optimize the configuration of DL PRS signals.
  • the embodiment of the application provides an information transmission method and device for determining positioning reference signal resource configuration information and positioning technical solutions through a negotiation process between a positioning server and other nodes, so as to prevent neighboring base stations from having the same time and frequency resources.
  • the positioning reference signal is sent on the uplink, causing the positioning reference signals of adjacent base stations to interfere with each other, resulting in the problem of performance degradation of the downlink positioning measurement value, and it can also support each base station to optimize the configuration of positioning reference signals according to the positioning performance requirements of the terminal, thereby improving positioning performance.
  • an information transmission method provided in an embodiment of the present application includes:
  • the method determines the positioning reference signal resource configuration information and the positioning technical solution through a negotiation process between the positioning server and other nodes; notifies the other nodes of the positioning reference signal resource configuration information and the positioning technical solution, and the other nodes Including base stations and/or terminals, so as to prevent neighboring base stations from sending positioning reference signals on the same time and frequency resources, causing the positioning reference signals of neighboring base stations to interfere with each other, resulting in the degradation of downlink positioning measurement performance, and also Support each base station to optimize the configuration of positioning reference signals according to the positioning performance requirements of the terminal, thereby improving positioning performance.
  • the other nodes include terminals and/or base stations.
  • the method further includes:
  • the method further includes:
  • the terminal location is determined based on the reported positioning amount.
  • the positioning report amount includes the measurement value and measurement quality obtained by measuring the positioning reference signal reported by the other node.
  • the positioning reference signal resource configuration information and the positioning technical solution are determined, which specifically includes:
  • the first positioning reference signal resource configuration information and the first positioning technical solution are determined according to the predefined criterion 1.
  • the positioning reference signal resource configuration information and the positioning technical solution are determined, which specifically includes:
  • the current positioning reference signal resource configuration information is the first positioning reference signal resource configuration information, or the second positioning reference signal resource configuration information re-determined according to predefined criterion three
  • the current positioning technical solution is The first positioning technical solution, or the second positioning technical solution re-determined according to predefined criterion 3.
  • notifying the positioning reference signal resource configuration information and the positioning technical solution to the other nodes specifically includes: determining the reasonable current positioning reference signal resource configuration information and the current positioning technology determined according to the second predefined criterion The solution is notified to the other nodes.
  • the second positioning reference signal resource configuration information and/or the second positioning technical solution are further determined according to the predefined criterion 3.
  • the predefined criterion one includes:
  • the first positioning reference signal resource configuration information is determined according to the lowest positioning performance of all terminals or part of the terminals in the base station associated with the positioning server and the mapping relationship between the pre-configured positioning reference signal resources and the positioning performance.
  • the second predefined criterion includes: when one or a combination of the following conditions is met, determining that the second positioning reference signal resource configuration information and the second positioning technical solution are reasonable; otherwise, determining the second positioning reference signal resource configuration information And the second positioning technical solution is unreasonable:
  • Condition 1 The measurement quality is higher than the preset measurement quality threshold
  • Condition 2 The measurement value variance is less than the preset measurement value variance threshold
  • Condition 3 The terminal position calculation results obtained based on the third-generation partnership project 3GPP positioning technology solution and the terminal position calculation results obtained based on the network-assisted global navigation satellite system (Assisting-Global Navigation Satellite System, A-GNSS) positioning technology solution
  • the normalized relative error of is less than the preset error threshold.
  • the third predefined criterion includes:
  • an information transmission method provided in an embodiment of the present application includes:
  • the positioning technical solution is one of the following solutions:
  • sending positioning-related information specifically includes:
  • the downlink positioning reference signal resource configuration information received from the positioning server receiving the downlink positioning reference signal sent by the base station and performing measurement to obtain the downlink positioning measurement value and measurement quality;
  • the downlink positioning measurement value and measurement quality are sent to the positioning server as the positioning report quantity.
  • sending positioning-related information specifically includes:
  • the uplink positioning reference signal is sent to the base station.
  • sending the positioning related information specifically includes:
  • the downlink positioning reference signal sent by the base station is received and combined with the uplink positioning reference signal for measurement to obtain the combined uplink and downlink positioning measurement values of the terminal side, and Measurement quality
  • sending positioning-related information specifically includes:
  • the downlink positioning reference signal is sent to the terminal.
  • sending positioning-related information specifically includes:
  • the uplink positioning reference signal resource configuration information received from the positioning server receiving the uplink positioning reference signal sent by the terminal and performing measurement to obtain the uplink positioning measurement value and measurement quality;
  • the uplink positioning measurement value and the measurement quality are reported to the positioning server as the positioning report quantity.
  • sending positioning related information specifically includes:
  • the uplink positioning reference signal sent by the terminal is received and combined with the downlink positioning reference signal transmission time for measurement, to obtain the uplink and downlink of the base station side Combined positioning measurement value, and measurement quality;
  • the downlink reference signal includes one or a combination of the following signals: New Radio Positioning Reference Signal (NR PRS), Channel State Information-Reference Signal (CSI-RS) , Synchronization Block (Synchronization Signal/Physical Broadcast Channel Block, SSB).
  • N PRS New Radio Positioning Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • SSB Synchronization Block
  • the uplink reference signal includes an uplink sounding reference signal UL SRS (Up-Link Sounding Reference Signal).
  • UL SRS Up-Link Sounding Reference Signal
  • the positioning technical solution includes one of the following positioning technical solutions: various downlink positioning technologies, uplink positioning technologies, and combined uplink and downlink positioning technologies supported by 3GPP.
  • an information transmission device provided in an embodiment of the present application includes:
  • the determining unit is configured to determine the positioning reference signal resource configuration information and the positioning technical solution through a negotiation process between the positioning server and other nodes; wherein the negotiation process is an interactive process of positioning related information;
  • the notification unit is configured to notify the other nodes of the positioning reference signal resource configuration information and the positioning technical solution.
  • the other nodes include terminals and/or base stations.
  • the notification unit is further used for:
  • the notification unit is further used for:
  • the terminal location is determined based on the reported positioning amount.
  • the positioning report amount includes the measurement value and measurement quality obtained by measuring the positioning reference signal reported by the other node.
  • the determining unit determines the positioning reference signal resource configuration information and the positioning technical solution through a negotiation process between the positioning server and other nodes, which specifically includes:
  • the first positioning reference signal resource configuration information and the first positioning technical solution are determined according to the predefined criterion 1.
  • the determining unit determines the positioning reference signal resource configuration information and the positioning technical solution through a negotiation process between the positioning server and other nodes, which specifically includes:
  • the current positioning reference signal resource configuration information is the first positioning reference signal resource configuration information, or the second positioning reference signal resource configuration information re-determined according to predefined criterion three
  • the current positioning technical solution is The first positioning technical solution, or the second positioning technical solution re-determined according to predefined criterion 3.
  • the determining unit notifies the positioning reference signal resource configuration information and the positioning technical solution to the other nodes, which specifically includes:
  • the second positioning reference signal resource configuration information and/or the second positioning technical solution are further determined according to the predefined criterion 3.
  • the predefined criterion one includes:
  • the first positioning reference signal resource configuration information is determined according to the lowest positioning performance of all terminals or part of the terminals in the base station associated with the positioning server, and the mapping relationship between the pre-configured positioning reference signal resources and the positioning performance.
  • the second predefined criterion includes: when one or a combination of the following conditions is met, determining that the second positioning reference signal resource configuration information and the second positioning technical solution are reasonable; otherwise, determining the second positioning reference signal resource configuration information And the second positioning technical solution is unreasonable:
  • Condition 1 The measurement quality is higher than the preset measurement quality threshold
  • Condition 2 The measurement value variance is less than the preset measurement value variance threshold
  • Condition 3 The normalized relative error of the terminal position calculation result obtained based on the 3GPP positioning technology solution of the Third Generation Partnership Project and the terminal position calculation result obtained based on the network-assisted global navigation satellite system A-GNSS positioning technology solution is less than expected Set the error threshold.
  • the third predefined criterion includes:
  • an information transmission device provided in an embodiment of the present application includes:
  • a receiving unit configured to receive positioning reference signal resource configuration information and positioning technical solutions sent by a positioning server; wherein the positioning reference signal resource configuration information and positioning technical solutions are determined through a negotiation process between the positioning server and other nodes;
  • the negotiation process is an interactive process of positioning related information
  • the sending unit is configured to send positioning related information based on the positioning reference signal resource configuration information and the type of the positioning technical solution.
  • the positioning technical solution is one of the following solutions:
  • sending positioning-related information specifically includes:
  • the downlink positioning reference signal resource configuration information received from the positioning server receiving the downlink positioning reference signal sent by the base station and performing measurement to obtain the downlink positioning measurement value and measurement quality;
  • the downlink positioning measurement value and measurement quality are sent to the positioning server as the positioning report quantity.
  • sending positioning-related information specifically includes:
  • the uplink positioning reference signal is sent to the base station.
  • sending positioning related information specifically includes:
  • the downlink positioning reference signal sent by the base station is received and combined with the uplink positioning reference signal for measurement to obtain the combined uplink and downlink positioning measurement values of the terminal side, and Measurement quality
  • sending positioning-related information specifically includes:
  • the downlink positioning reference signal is sent to the terminal.
  • sending positioning-related information specifically includes:
  • the uplink positioning reference signal resource configuration information received from the positioning server receiving the uplink positioning reference signal sent by the terminal and performing measurement to obtain the uplink positioning measurement value and measurement quality;
  • the uplink positioning measurement value and the measurement quality are reported to the positioning server as the positioning report quantity.
  • sending positioning related information specifically includes:
  • the uplink positioning reference signal sent by the terminal is received and combined with the downlink positioning reference signal transmission time for measurement, to obtain the uplink and downlink of the base station side Combined positioning measurement value, and measurement quality;
  • the downlink reference signal includes one or a combination of the following signals: a new air interface positioning reference signal NR PRS, a channel state information reference signal CSI-RS, and a synchronization block SSB.
  • the uplink reference signal includes an uplink sounding reference signal UL SRS.
  • the positioning technical solution includes one of the following positioning technical solutions: various downlink positioning technologies, uplink positioning technologies, and combined uplink and downlink positioning technologies supported by 3GPP.
  • another information transmission device provided in an embodiment of the present application includes:
  • Memory used to store program instructions
  • the processor is configured to call the program instructions stored in the memory, and execute according to the obtained program:
  • the other nodes include terminals and/or base stations.
  • the processor is further configured to:
  • the processor is further configured to:
  • the terminal location is determined based on the reported positioning amount.
  • the positioning report amount includes the measurement value and measurement quality obtained by measuring the positioning reference signal reported by the other node.
  • the processor determines the positioning reference signal resource configuration information and the positioning technical solution, which specifically includes:
  • the first positioning reference signal resource configuration information and the first positioning technical solution are determined according to the predefined criterion 1.
  • the processor determines the positioning reference signal resource configuration information and the positioning technical solution, which specifically includes:
  • the current positioning reference signal resource configuration information is the first positioning reference signal resource configuration information, or the second positioning reference signal resource configuration information re-determined according to predefined criterion three
  • the current positioning technical solution is The first positioning technical solution, or the second positioning technical solution re-determined according to predefined criterion 3.
  • the processor notifies the positioning reference signal resource configuration information and the positioning technical solution to the other nodes, specifically including: determining reasonable current positioning reference signal resource configuration information according to the second predefined criterion And the current positioning technical solution to the other nodes.
  • the second positioning reference signal resource configuration information and/or the second positioning technical solution are further determined according to the predefined criterion 3.
  • the predefined criterion one includes:
  • the first positioning reference signal resource configuration information is determined according to the lowest positioning performance of all terminals or part of the terminals in the base station associated with the positioning server, and the mapping relationship between the pre-configured positioning reference signal resources and the positioning performance.
  • the second predefined criterion includes: when one or a combination of the following conditions is met, determining that the second positioning reference signal resource configuration information and the second positioning technical solution are reasonable; otherwise, determining the second positioning reference signal resource configuration information And the second positioning technical solution is unreasonable:
  • Condition 1 The measurement quality is higher than the preset measurement quality threshold
  • Condition 2 The measurement value variance is less than the preset measurement value variance threshold
  • Condition 3 The normalized relative error of the terminal position calculation result obtained based on the 3GPP positioning technology solution of the Third Generation Partnership Project and the terminal position calculation result obtained based on the network-assisted global navigation satellite system A-GNSS positioning technology solution is less than expected Set the error threshold.
  • the third predefined criterion includes:
  • another information transmission device provided in an embodiment of the present application includes:
  • Memory used to store program instructions
  • the processor is configured to call the program instructions stored in the memory, and execute according to the obtained program:
  • the positioning technical solution is one of the following solutions:
  • sending positioning-related information specifically includes:
  • the downlink positioning reference signal resource configuration information received from the positioning server receiving the downlink positioning reference signal sent by the base station and performing measurement to obtain the downlink positioning measurement value and measurement quality;
  • the downlink positioning measurement value and measurement quality are sent to the positioning server as the positioning report quantity.
  • sending positioning-related information specifically includes:
  • the uplink positioning reference signal is sent to the base station.
  • sending positioning related information specifically includes:
  • the downlink positioning reference signal sent by the base station is received and combined with the uplink positioning reference signal for measurement to obtain the combined uplink and downlink positioning measurement values of the terminal side, and Measurement quality
  • sending positioning-related information specifically includes:
  • the downlink positioning reference signal is sent to the terminal.
  • sending positioning-related information specifically includes:
  • the uplink positioning reference signal resource configuration information received from the positioning server receiving the uplink positioning reference signal sent by the terminal and performing measurement to obtain the uplink positioning measurement value and measurement quality;
  • the uplink positioning measurement value and the measurement quality are reported to the positioning server as the positioning report quantity.
  • sending positioning related information specifically includes:
  • the uplink positioning reference signal sent by the terminal is received and combined with the downlink positioning reference signal transmission time for measurement, to obtain the uplink and downlink of the base station side Combined positioning measurement value, and measurement quality;
  • the downlink reference signal includes one or a combination of the following signals: a new air interface positioning reference signal NR PRS, a channel state information reference signal CSI-RS, and a synchronization block SSB.
  • the uplink reference signal includes an uplink sounding reference signal UL SRS.
  • the positioning technical solution includes one of the following positioning technical solutions: various downlink positioning technologies, uplink positioning technologies, and combined uplink and downlink positioning technologies supported by 3GPP.
  • Another embodiment of the present application provides a computer storage medium, the computer storage medium stores computer-executable instructions, and the computer-executable instructions are used to make the computer execute any of the foregoing methods.
  • Figure 1 is a schematic diagram of the UE positioning system architecture in the prior art
  • Figure 2 is a schematic diagram of a UE positioning process in the prior art
  • FIG. 3 is a schematic diagram of a UE positioning process according to Embodiment 1 of the application.
  • FIG. 4 is a schematic diagram of a UE positioning process according to Embodiment 2 of this application.
  • FIG. 5 is a schematic diagram of a UE positioning process according to Embodiment 3 of this application.
  • FIG. 6 is a schematic flowchart of an information transmission method on the positioning server side according to an embodiment of the application.
  • FIG. 7 is a schematic flowchart of an information transmission method applicable to both the terminal side and the base station side according to an embodiment of the application;
  • FIG. 8 is a schematic structural diagram of an information transmission device on the positioning server side according to an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of an information transmission device applicable to both the terminal side and the base station side according to an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of another information transmission device on the positioning server side according to an embodiment of the application.
  • FIG. 11 is a schematic structural diagram of another information transmission device on the terminal side according to an embodiment of the application.
  • FIG. 12 is a schematic structural diagram of another information transmission device on the base station side according to an embodiment of the application.
  • the embodiment of the application provides an information transmission method and device for determining positioning reference signal resource configuration information and positioning technical solutions through a negotiation process between a positioning server and other nodes, so as to prevent neighboring base stations from having the same time and frequency resources.
  • the positioning reference signal is sent on the uplink, causing the positioning reference signals of adjacent base stations to interfere with each other, resulting in the problem of performance degradation of the downlink positioning measurement value, and it can also support each base station to optimize the configuration of positioning reference signals according to the positioning performance requirements of the terminal, thereby improving positioning performance.
  • the method and the device are based on the same application concept. Since the method and the device have similar principles for solving the problem, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the applicable system can be the global system of mobile communication (GSM) system, code division multiple access (CDMA) system, and wideband code division multiple access (WCDMA) general packet Wireless service (general packet radio service, GPRS) system, long term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD), general Mobile system (universal mobile telecommunication system, UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G system, 5G NR system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • general packet Wireless service general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS general Mobile system
  • WiMAX worldwide interoperability for microwave access
  • the terminal device involved in the embodiments of the present application may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the name of the terminal device may be different.
  • the terminal device may be called User Equipment (UE).
  • UE User Equipment
  • a wireless terminal device can communicate with one or more core networks via a radio access network (RAN).
  • the wireless terminal device can be a mobile terminal device, such as a mobile phone (or “cellular” phone) and a mobile phone.
  • the computer of the terminal device for example, may be a portable, pocket-sized, handheld, built-in computer or vehicle-mounted mobile device, which exchanges language and/or data with the wireless access network.
  • Wireless terminal equipment can also be called system, subscriber unit, subscriber station, mobile station, mobile, remote station, and access point , Remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), user device (user device), which are not limited in the embodiments of the present application.
  • the network device involved in the embodiment of the present application may be a base station, and the base station may include multiple cells.
  • a base station may also be called an access point, or may refer to a device in an access network that communicates with a wireless terminal device through one or more sectors on an air interface, or other names.
  • the network device can be used to convert the received air frame and the Internet protocol (IP) packet to each other, as a router between the wireless terminal device and the rest of the access network, where the rest of the access network can include the Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment involved in the embodiment of this application may be a network equipment (base transmitter station, BTS) in the global system for mobile communications (GSM) or code division multiple access (CDMA). ), it can also be a network device (NodeB) in wide-band code division multiple access (WCDMA), or an evolved network device in a long-term evolution (LTE) system (evolutional node B, eNB or e-NodeB), 5G base station in 5G network architecture (next generation system), but also home evolved node B (HeNB), relay node (relay node), home base station ( Femto), pico base station (pico), etc., are not limited in the embodiment of the present application.
  • BTS network equipment
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • NodeB wide-band code division multiple access
  • LTE long-term evolution
  • 5G base station in 5G network architecture
  • HeNB home evolved node B
  • HeNB home evolved node B
  • Femto home base station
  • LMF Location Management Function
  • the LMF configures the first positioning reference signal resource configuration information (that is, the initial resource configuration) and the first positioning technical solution according to the predefined criterion 1, and notifies the UE and the base station.
  • the LMF receives the first positioning report amount reported by the UE and the base station, and determines The first UE location result; then, the LMF assigns the first positioning reference signal resource configuration information to the second positioning reference signal resource configuration information, and assigns the first positioning technical solution to the second positioning technical solution.
  • LMF judges the current second positioning reference signal resource based on one or a combination of the second positioning report amount reported by the UE and the base station and the second UE position result according to the second predefined criterion And/or whether the second positioning technical solution is reasonable, if it is unreasonable, further determine the updated second positioning reference signal resource configuration information and/or the updated second positioning technical solution based on predefined criterion three; if it is reasonable, continue to use the current The second positioning reference signal resource configuration information and the second positioning technical solution; (2) The LMF uses broadcast, multicast or unicast to notify the UE and the base station of the second positioning reference signal resource configuration information and the second positioning technical solution; (3) The LMF receives the second positioning report amount reported by the UE and the base station based on the second positioning reference signal resource configuration information, and determines the second UE position result.
  • the mapping relationship between the positioning reference signal resource configuration information and the positioning performance for example, the mapping relationship is obtained through simulation or a fixed configuration method), and the first positioning reference signal resource configuration information and the first positioning technical solution are determined.
  • the second predefined criterion includes: when one or a combination of the following three conditions is met, determining that the second positioning reference signal resource configuration information and/or the second positioning technical solution are reasonable; otherwise, determining the second positioning reference signal resource The configuration information and/or the second positioning technical solution are unreasonable:
  • the measurement quality is higher than the preset measurement quality threshold
  • the measurement value variance is less than the preset measurement value variance threshold
  • the normalized relative error of the UE position calculation result is less than the preset error threshold.
  • the predefined criterion three includes but is not limited to: the LMF is based on the actual positioning performance of the UE in the associated base station, and the mapping relationship between the pre-configured positioning reference signal resources and the positioning performance (for example: obtaining this by simulation or a fixed configuration method). Mapping relationship) to determine the second positioning reference signal resource configuration information and/or the second positioning technical solution.
  • any one of the aforementioned positioning reference signals includes:
  • Downlink positioning reference signal Downlink Positioning Reference Signal
  • DL PRS Downlink Positioning Reference Signal
  • N PRS New Radio Positioning Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • SSB Synchronization Signal/Physical Broadcast Channel Block
  • an uplink reference signal used for uplink positioning and combined uplink and downlink positioning such as a sounding reference signal (SRS).
  • SRS sounding reference signal
  • any one of the aforementioned positioning technical solutions includes: various downlink positioning technologies supported by 3GPP (for example: Observed Time Difference of Arrival) Arrival, OTDOA), Downlink Departure Angle (Down Link-Angle Of Departure, DL-AoD), Downlink Angle of Arrival (Down Link-Angle Of Arrival, DL-AoA), and uplink positioning technology (e.g., uplink Road signal arrival time difference (Up Link Time Difference Of Arrival, UL-TDOA), uplink signal arrival angle (Up Link-Angle Of Arrival, UL-AoA), and uplink-downlink combined positioning technology (e.g., enhanced cell identification ( One or more of Enhanced Cell Identification (E-CID), Multiple Cell-Round Time Trip (Multiple-RTT), etc.).
  • 3GPP for example: Observed Time Difference of Arrival) Arrival, OTDOA), Downlink Departure Angle (Down Link-Angle Of Departure, DL-AoD), Downlink Angle of Arrival
  • Step 1.0 Pre-configure the initial value of N, the initial value of N_MAX, the measurement quality threshold, the measured value variance threshold, and the error coefficient threshold; among them, the initial value of N is 1, and N_MAX is a positive integer greater than 1, Represents the maximum number of positioning negotiations.
  • Step 1.1 In the Nth round of positioning negotiation process, determine the size of N and N_MAX.
  • the LMF determines the first positioning reference signal resource configuration information and the first positioning technical solution according to the predefined criterion 1, and then enters Step 1.3.
  • the LMF judges whether the current second positioning reference signal resource configuration information is reasonable according to the second predefined criterion:
  • Step 1.3 based on the current second positioning reference signal resource configuration information and the second positioning technical solution
  • Step 1.2 If it is unreasonable, go to Step 1.2 and continue with the Nth round of positioning negotiation process.
  • Step 1.2 The LMF determines the second positioning reference signal resource configuration information and/or the second positioning technical solution that each base station needs to reconfigure according to the predefined criterion three, and then enters Step 1.3.
  • the second positioning reference signal resource configuration information that each base station needs to be reconfigured is determined according to the predefined criterion three, for example, including: first, adopting a new second positioning reference signal resource configuration; or, second, based on the previous round
  • the second positioning reference signal resource configuration adopts a muting mechanism to avoid interference of downlink positioning reference signals of each base station.
  • Step 1.3 The LMF uses broadcast, multicast or unicast to configure the first positioning reference signal resource configuration information or the second positioning reference signal resource configuration information and the current positioning technical solution (for example, the type information of the current positioning technical solution can be notified) Notify each UE and base station to enter Step 1.4.
  • the current positioning technical solution is the first positioning technical solution or the second positioning technical solution.
  • Step 1.4 The LMF receives the first positioning report volume or the second positioning report volume currently reported by the UE and/or the base station, and then enters Step 1.5;
  • the first positioning report amount is obtained by measuring the first positioning reference signal by the UE and each base station according to the first positioning reference signal resource configuration information configured by the LMF.
  • the second positioning report amount is obtained by measuring the second positioning reference signal by the UE and each base station according to the second positioning reference signal resource configuration information configured by the LMF.
  • Step 1.5 The LMF determines the location of the UE based on the first positioning report volume or the second positioning report volume currently reported by the UE and/or the base station, and the current positioning technical solution, and then enters Step 1.6.
  • any one of the positioning report amounts includes: the measurement value and the measurement quality reported by the UE and/or the base station, including two types:
  • the second category is the measurement value and measurement quality on the base station side.
  • the method for determining the measurement value and measurement quality reported by the UE is as follows: the UE receives and measures DL based on the downlink positioning reference signal (Down Link Positioning Reference Signal, DL PRS) resource configuration information provided and sent by the LMF PRS, to obtain the measurement value and measurement quality on the UE side.
  • DL PRS Down Link Positioning Reference Signal
  • the method for determining the measurement value and measurement quality reported by the base station is as follows: the base station receives and measures the UL SRS signal sent by the terminal based on the UL SRS resource configuration information provided by the LMF, and obtains the measurement value and/or measurement on the base station side quality.
  • pre-configured positioning reference signal resources The mapping relationship with the positioning performance of the positioning technical solution (for example: obtained through simulation or fixed configuration) determines the first positioning reference signal resource configuration information and the first positioning technical solution.
  • the second predefined criterion includes: when one or a combination of the following conditions is met, determining that the second positioning reference signal resource configuration information and/or the second positioning technical solution are reasonable; otherwise, determining the second positioning reference signal resource The configuration information and/or the second positioning technical solution is unreasonable:
  • the measurement quality is higher than the preset measurement quality threshold
  • the measurement value variance is less than the preset measurement value variance threshold
  • the normalized relative error of the UE position calculation result obtained based on the 3GPP positioning technical solution and the UE position calculation result obtained based on the A-GNSS positioning technical solution is less than the preset error threshold.
  • the predefined criterion three includes, but is not limited to: the LMF according to the actual positioning performance of the UE in the associated base station, and the mapping relationship between the pre-configured positioning reference signal resources and the positioning performance (for example: through simulation or fixed configuration Acquire the mapping relationship), and determine the second positioning reference signal resource configuration information and/or the second positioning technical solution.
  • the information transmission process on the UE side includes, for example:
  • Step 1 The UE receives the positioning reference signal resource configuration information configured by the LMF and the current positioning technical solution type information, where the notification mode may be broadcast, multicast or unicast.
  • Step 2 The UE judges the current positioning technical solution type
  • step 3 If it is a downlink-based positioning technology solution, go to step 3;
  • step 4 If it is an uplink-based positioning technology solution, go to step 4.
  • step 5 If it is a positioning technical solution based on a combination of uplink and downlink, go to step 5.
  • Step 3 The operation of the UE's downlink-based positioning technical solution includes:
  • Step 3.1 According to the positioning reference signal resource configuration information (such as DL PRS resource configuration information) received from the LMF, the UE receives the positioning reference signal (such as DL PRS) sent by the base station and performs measurement to obtain the downlink positioning measurement value (including TOA, DL-TDOA, DL-AoD, DL-AoA, etc.) and measurement quality;
  • the positioning reference signal such as DL PRS
  • Step 3.2 The UE reports the downlink positioning measurement value and measurement quality as the positioning report amount to the LMF.
  • Step 4 The operation of the UE's uplink-based positioning technical solution includes:
  • Step 4.1 The UE sends uplink positioning reference signal (SRS) resource configuration information to the base station according to the uplink positioning reference signal resource configuration information received from the LMF or the base station (for example, uplink (UL, referred to as uplink) sounding reference signal (SRS) resource configuration information).
  • SRS uplink positioning reference signal
  • Reference signal (such as UL SRS).
  • Step 5 The operation of the UE based on the combined uplink and downlink positioning technical solution includes:
  • Step 5.1 According to the downlink positioning reference signal (DL PRS) and uplink positioning reference signal resource configuration information (such as UL SRS resource configuration information) received from the LMF, the UE receives the DL PRS sent by the base station, and combined with the UE needs to send UL SRS Measure at the moment, and obtain the UE side uplink and downlink combined positioning measurement value (UE Rx-Tx difference) and measurement quality;
  • DL PRS downlink positioning reference signal
  • uplink positioning reference signal resource configuration information such as UL SRS resource configuration information
  • Step 5.2 The UE reports the combined uplink and downlink positioning measurement value and measurement quality as the positioning report amount to the LMF.
  • the information transmission process on the base station side includes, for example:
  • Step 1 The base station receives the positioning reference signal resource configuration information configured by the LMF and the current positioning technical solution type information, where the LMF can be notified to the base station through broadcast, multicast or unicast.
  • Step 2 The base station judges the type of the current positioning technology solution
  • step 3 If it is a downlink-based positioning technology solution, go to step 3;
  • step 4 If it is an uplink-based positioning technology solution, go to step 4.
  • step 5 If it is a positioning technical solution based on a combination of uplink and downlink, go to step 5.
  • Step 3 The operation of the base station based on the downlink positioning technical solution includes:
  • Step 3.1 The base station sends the DL PRS to the UE according to the DL PRS resource configuration information received from the LMF.
  • Step 4 The operation of the base station based on the uplink positioning technical solution includes:
  • Step 4.1 The base station receives the uplink positioning reference signal sent by the UE according to the uplink positioning reference signal resource configuration information (such as UL SRS resource configuration information) received from the LMF and performs measurement to obtain the uplink positioning measurement value (including TOA, UL-TDOA) , UL-AoA, etc.) and measurement quality;
  • the uplink positioning reference signal resource configuration information such as UL SRS resource configuration information
  • Step 4.2 The base station reports the uplink positioning measurement value and measurement quality as the positioning report quantity to the LMF.
  • Step 5 The operation of the base station based on the uplink and downlink combined positioning technical solution includes:
  • Step 5.1 The base station receives the uplink positioning reference signal (such as UL SRS) sent by the UE according to the DL PRS received from the LMF and the uplink positioning reference signal resource configuration information (UL SRS resource configuration information), and combined with the base station needs to send DL PRS Measure at the time, and obtain the positioning measurement value (gNB Rx-Tx difference) and measurement quality of the uplink and downlink combination on the base station side;
  • the uplink positioning reference signal such as UL SRS
  • UL SRS resource configuration information uplink positioning reference signal resource configuration information
  • Step 5.2 The base station reports the combined uplink and downlink positioning measurement value and measurement quality as the positioning report amount to the LMF.
  • Embodiment 1 DL-TDOA->DL-TDOA, change DL PRS resource configuration information.
  • both the first positioning reference signal and the second positioning reference signal are reference signals DL PRS used for downlink positioning; the first positioning technical solution and the second positioning technical solution are both DL-TDOA (that is, OTDOA).
  • the difference between the second positioning reference signal resource and the first positioning reference signal resource is that a larger PRS bandwidth is adopted, and a muting mechanism is adopted to avoid interference of the downlink positioning reference signal of each base station.
  • FIG. 3 shows the UE positioning process of Embodiment 1, which specifically includes:
  • Steps 1 to 4 are the same as steps 1 to 4 shown in Fig. 2, and will not be repeated here.
  • Step 5 the LMF determines the first PRS resource configuration information (that is, the initial PRS resource) according to the predefined criterion 1, and informs the UE and the base station in a broadcast manner.
  • the first PRS resource configuration information that is, the initial PRS resource
  • Step 6 to step 10 are the same as step 6 to step 10 shown in FIG. 2 and will not be repeated here.
  • Step 11 The LMF uses the obtained positioning measurement value and base station location information to calculate the first UE position; the LMF is based on one or a combination of the first positioning report amount reported by the UE and the base station, and the first UE position calculation result.
  • the second definition criterion determines whether the first PRS resource configuration information is reasonable.
  • Step 12 If the first PRS resource configuration information is unreasonable, the LMF instructs the base station to further determine the second PRS resource configuration information (for example: using a larger PRS bandwidth, using the muting mechanism to avoid interference from the downlink positioning reference signal of each base station), and still use OTDOA positioning technology solution;
  • Step 13 The LMF notifies the UE and the base station of the second PRS resource configuration information through broadcast, multicast or unicast.
  • Step 14 The UE receives the DL PRS signal sent by the base station according to the latest second PRS resource configuration information, that is, the second PRS reference signal.
  • Step 15 The UE measures the second PRS reference signal according to the second PRS resource configuration information, and obtains a second positioning measurement value (RSTD).
  • RSTD second positioning measurement value
  • Step 16 The UE reports the second positioning report amount (including the updated second measurement value RSTD and measurement quality obtained in step 15) to the LMF.
  • Step 17 The LMF performs UE position calculation based on the second positioning report amount (updated measurement value and measurement quality) reported by the UE.
  • Embodiment 1 describes examples of the technical solutions provided in Embodiment 1 from the LMF, UE, and base station sides respectively.
  • the positioning negotiation process of mutual information between LMF, UE and base station includes, for example:
  • Step 1.1 In the Nth round of positioning negotiation process, determine the size of N and N_MAX.
  • the LMF determines the first DL PRS resource configuration information and the OTDOA positioning technical solution according to the predefined criterion 1, and enters Step 1.3.
  • Step 1.2 If it is unreasonable, go to Step 1.2 and continue with the Nth round of positioning negotiation process.
  • Step 1.2 The LMF determines the second DL PRS resources to be reconfigured by each base station according to the predefined criterion three (including: first, adopting the new second positioning reference signal resource configuration), and enter Step 1.3.
  • Step 1.3 The LMF broadcasts the currently configured DL PRS resource configuration information (first DL PRS resource configuration information or second DL PRS resource configuration information) to notify each UE and base station, and enter Step 1.4.
  • Step 1.4 The LMF receives the first positioning reported amount or the second positioning reported amount currently reported by the UE, and enters Step 1.5.
  • the first positioning report amount is obtained by measuring the first DL PRS according to the first DL PRS resource information configured by the LMF by the UE and each base station;
  • the second positioning report amount is obtained by measuring the second DL PRS by the UE and each base station according to the second DL PRS resource information configured by the LMF.
  • Step 1.5 The LMF determines the location of the UE based on the first or second positioning reported volume currently reported by the UE, as well as the OTDOA positioning technical solution, and then enters Step 1.6.
  • the positioning report amount in Step 1.4 and Step 1.5 includes: the measurement value and measurement quality reported by the UE are only: the RSTD measurement value and measurement quality on the UE side (the uncertainty mean estimated value and resolution) .
  • the method for determining the measurement value and measurement quality reported by the UE is as follows: the UE receives and measures the DL PRS based on the DL PRS resource configuration information configured and sent by the LMF, and obtains the measurement value and measurement quality on the UE side.
  • X 80
  • the mapping relationship between the DL PRS resources and the positioning performance determines the first DL PRS resource configuration information.
  • the second predefined criterion includes: when one or a combination of the following conditions is met, determining that the second positioning reference signal resource configuration information and/or the second positioning technical solution are reasonable; otherwise, determining that the first 2.
  • the measurement quality is higher than the preset measurement quality threshold
  • the measurement value variance is less than the preset measurement value variance threshold
  • the normalized relative difference between the UE position calculation result obtained based on the 3GPP positioning technical solution and the UE position calculation result obtained based on the A-GNSS positioning technical solution is smaller than the preset error coefficient threshold.
  • the predefined criterion 3 includes but is not limited to: LMF according to the actual positioning performance of the UE in the associated base station, and the mapping relationship between pre-configured DL PRS resources and positioning performance (for example: through simulation Method acquisition) to determine the second DL PRS resource configuration information and/or the second positioning technical solution.
  • the information transmission process on the UE side includes, for example:
  • Step 1 The UE receives the DL and PRS resource configuration information configured by the LMF, where the notification mode is a broadcast mode.
  • Step 2 The UE judges that the current positioning technical solution type is a downlink-based positioning technical solution, and then proceeds to step 3.
  • Step 3 The operation of the UE based on the downlink positioning technical solution:
  • the UE receives the DL PRS sent by the base station according to the DL PRS resource configuration information received from the LMF and performs measurements to obtain downlink positioning measurement values (including DL-TDOA) and measurement quality (uncertainty mean estimate value and resolution);
  • the UE reports the downlink positioning measurement value and measurement quality as the positioning report amount to the LMF.
  • the information transmission process on the base station side includes, for example:
  • Step 1 The base station receives the DL PRS resource configuration information configured by the LMF, where the notification mode may be broadcast, multicast or unicast.
  • Step 2 The base station judges that the current positioning technical solution type is a downlink-based positioning technical solution, and then proceeds to step 3.
  • Step 3 The operation of the base station based on the downlink positioning technical solution:
  • the base station sends the DL PRS to the UE according to the DL PRS resource configuration information received from the LMF.
  • Embodiment 2 DL-TDOA->UL-TDOA, change UL SRS resource configuration information.
  • the first positioning reference signal is the reference signal DL SSB used for downlink positioning
  • the second positioning reference signal is the reference signal UL SRS used for uplink positioning
  • the first positioning technical solution is DL-TDOA (that is, OTDOA).
  • the second positioning technical solution is UL-TDOA.
  • FIG. 4 shows the UE positioning process of Embodiment 2, which specifically includes:
  • Steps 1 to 4 are the same as steps 1 to 4 shown in Fig. 2, and will not be repeated here.
  • Step 5 the LMF configures the first SSB resource (that is, the initial SSB resource) according to the predefined criterion 1, and informs the UE and the base station in a broadcast manner.
  • the first SSB resource that is, the initial SSB resource
  • Step 6 to step 10 are the same as step 6 to step 10 shown in FIG. 2 and will not be repeated here.
  • Step 11 The LMF uses the obtained positioning measurement value and base station location information to calculate the first UE position; the LMF is based on one or a combination of the first positioning report amount reported by the UE and the base station, and the first UE position calculation result.
  • the second definition criterion determines whether the first SSB resource is reasonable.
  • Step 12 It is judged that the first SSB resource is unreasonable, the LMF instructs the base station to change to the UL-TDOA positioning technical solution, and provides updated second positioning reference signal (UL SRS) resource configuration information;
  • UL SRS second positioning reference signal
  • Step 13 The LMF notifies the UE and the base station of the updated second SRS resource configuration information and the UL-TDOA positioning technical solution through broadcast, multicast or unicast.
  • Step 14 The UE sends the UL SRS signal (ie, the second SRS reference signal) to the base station according to the updated second SRS resource configuration information.
  • the UL SRS signal ie, the second SRS reference signal
  • Step 15 The base station measures the second SRS reference signal according to the second SRS resource configuration information, and obtains a second positioning measurement value (UL, TDOA, etc.).
  • Step 16 The base station reports the second positioning report quantity (updated measured values RSTD, RSRP and measurement quality) to the LMF.
  • Step 17 The LMF performs UE position calculation based on the second positioning report amount (updated measurement value and measurement quality) reported by the base station and UL-TDOA.
  • Embodiment 2 introduces the technical solutions provided in Embodiment 2 from the LMF, UE, and base station sides respectively.
  • the information transmission methods on the LMF side include:
  • the positioning negotiation process of mutual information between LMF, UE and base station includes:
  • Step 1.0 Configure the initial value of N to 1, the initial value of N_MAX to 10, the measurement quality threshold, the measurement value variance threshold, and the error coefficient threshold.
  • Step 1.1 In the Nth round of positioning negotiation process, determine the size of N and N_MAX.
  • the LMF determines the first DL SSB resource configuration information and the OTDOA positioning technical solution according to the predefined criterion 1, and enters Step 1.3.
  • the LMF judges whether the current second positioning reference signal resource configuration information is reasonable according to the second predefined criterion:
  • Step 1.2 If it is unreasonable, go to Step 1.2 and continue with the Nth round of positioning negotiation process.
  • Step 1.2 The LMF determines the second positioning reference signal resource configuration information that each base station needs to reconfigure according to the predefined criterion three (including: first, adopting the new second positioning reference signal resource configuration; second, based on the previous round The second positioning reference signal resource configuration, the muting mechanism is used to avoid the interference of the downlink positioning reference signal of each base station) and the second positioning technical solution UL-TDOA, enter Step 1.3.
  • Step 1.3 The LMF uses broadcast, multicast or unicast to notify each UE and base station of the configured first DL SSB or second UL SRS resource configuration information, and enter Step 1.4.
  • Step 1.4 The LMF receives the first positioning report volume or the second positioning report volume currently reported by the UE or the base station, and enters Step 1.5.
  • the first positioning report amount is obtained by measuring the first positioning reference signal by the UE/base station according to the first DL SSB resource configuration information configured by the LMF;
  • the second positioning report amount is obtained by measuring the second positioning reference signal by the UE/base station according to the second UL SRS resource configuration information configured by the LMF.
  • Step 1.5 The LMF determines the location of the UE based on the first positioning reported volume/second positioning reported volume currently reported by the UE/base station, and the OTDOA positioning technical solution/UL-TDOA positioning technical solution, and then enters Step 1.6.
  • the positioning report amount in Step 1.4 and Step 1.5 includes: the measurement value and measurement quality reported by the UE and/or the base station, including two types: type 1) the measurement value and measurement quality on the UE side, Type 2) Measurement value and measurement quality on the base station side.
  • the method for determining the measurement value and measurement quality reported by the UE is as follows: the UE receives and measures the DL SSB based on the DL SSB resource configuration information configured and sent by the LMF to obtain the first type of measurement value and measurement quality. That is, the measurement value and measurement quality on the UE side.
  • the method for determining the measurement value and measurement quality reported by the base station is as follows: the base station receives and measures the UL SRS signal sent by the terminal based on the UL SRS resource configuration provided by the LMF, and obtains the second type of measurement value and/or measurement quality , Which is the measured value and measurement quality on the base station side.
  • pre-configured positioning The mapping relationship between the reference signal resource and the positioning performance (for example: obtained by simulation or a fixed configuration method) determines the first positioning reference signal resource configuration information.
  • the second predefined criterion includes: when one or a combination of the following conditions is met, it is determined that the second positioning reference signal resource configuration information and/or the second positioning technical solution is reasonable; otherwise, the second positioning is determined The reference signal resource configuration information and/or the second positioning technical solution is unreasonable:
  • the measurement quality is higher than the preset measurement quality threshold
  • the measurement value variance is less than the preset measurement value variance threshold
  • the normalized relative difference between the UE position calculation result obtained based on the 3GPP positioning technical solution and the UE position calculation result obtained based on the A-GNSS positioning technical solution is smaller than the preset error coefficient threshold.
  • the predefined criterion three includes, but is not limited to: the LMF according to the actual positioning performance of the UE in the associated base station, and the mapping relationship between the pre-configured positioning reference signal resources and the positioning performance (for example: through simulation or Obtained in a fixed configuration mode), and determine the second positioning reference signal resource configuration information and/or the second positioning technical solution.
  • the information transmission process on the UE side includes, for example:
  • Step 1 The UE receives the positioning reference signal resource configuration information configured by the LMF, where the notification mode may be broadcast, multicast or unicast.
  • Step 2 The UE judges the current positioning technical solution type, if it is a downlink-based positioning technical solution, proceed to step 3; if it is an uplink-based positioning technical solution, proceed to step 4.
  • Step 3 The operation of the UE based on the downlink positioning technical solution:
  • the UE receives the DL SSB sent by the base station according to the DL SSB resource configuration information received from the LMF and performs measurements to obtain downlink positioning measurement values (including TOA, DL-TDOA, DL-AoD, DL-AoA, etc.) and measurement quality;
  • downlink positioning measurement values including TOA, DL-TDOA, DL-AoD, DL-AoA, etc.
  • the UE reports the downlink positioning measurement value and measurement quality as the positioning report amount to the LMF.
  • Step 4 The operation of the UE based on the uplink positioning technical solution:
  • the UE sends the UL SRS to the base station according to the UL SRS resource configuration information received from the LMF or the base station.
  • the information transmission process on the base station side includes, for example:
  • Step 1 The base station receives the positioning reference signal resource configuration information configured by the LMF, where the notification mode may be broadcast, multicast or unicast.
  • Step 2 The base station judges the current positioning technical solution type. If it is a downlink-based positioning technical solution, proceed to step 3; if it is an uplink-based positioning technical solution, proceed to step 4.
  • Step 3 The operation of the base station based on the downlink positioning technical solution:
  • the base station sends the DL SSB to the UE according to the DL SSB resource configuration information received from the LMF.
  • Step 4 The operation of the base station based on the uplink positioning technical solution:
  • the base station receives the UL SRS sent by the UE according to the UL SRS resource configuration information received from the LMF and performs measurements to obtain uplink positioning measurement values (including TOA, UL-TDOA, UL-AoA, etc.) and measurement quality;
  • the base station reports the uplink positioning measurement value and measurement quality as the positioning report amount to the LMF.
  • Embodiment 3 DL-TDOA->Multiple Cell-Round Time Trip (Multiple-RTT), change the downlink channel state information reference signal (Down Link Channel State Information-Reference Signal, DL CSI-RS) And UL SRS resource configuration information.
  • Multiple-RTT Multiple-RTT
  • change the downlink channel state information reference signal Down Link Channel State Information-Reference Signal, DL CSI-RS
  • UL SRS resource configuration information DL-TDOA->Multiple Cell-Round Time Trip
  • the first positioning reference signal is a reference signal DL CSI-RS for downlink positioning
  • the second positioning reference signal includes reference signals DL CSI-RS and UL SRS for uplink and downlink joint positioning
  • first The positioning technology solution is DL-TDOA (ie OTDOA)
  • the second positioning technology solution is Multiple-RTT.
  • FIG. 5 shows the UE positioning process of Embodiment 3, which specifically includes:
  • Steps 1 to 4 are the same as steps 1 to 4 shown in Fig. 2, and will not be repeated here.
  • Step 5 the LMF configures the first CSI-RS resource (that is, the initial CSI-RS resource) configuration information according to the predefined criterion 1, and informs the UE and the base station in a broadcast manner.
  • the first CSI-RS resource that is, the initial CSI-RS resource
  • Step 6 to step 10 are the same as step 6 to step 10 in FIG. 2 and will not be repeated here.
  • Step 11 The LMF uses the obtained positioning measurement value and base station location information to calculate the first UE position; the LMF is based on one or a combination of the first positioning report amount reported by the UE and the base station, and the first UE position calculation result.
  • the second definition criterion determines whether the first CSI-RS resource configuration information is reasonable.
  • Step 12 It is judged that the first CSI-RS resource configuration information is unreasonable, the LMF changes the current positioning technical solution to the Multiple-RTT positioning technical solution, and provides updated second positioning reference signal (DL CSI-RS and UL SRS) resources Configuration information;
  • DL CSI-RS and UL SRS second positioning reference signal
  • Step 13 The LMF notifies the UE and the base station of the updated resource configuration information of the second positioning reference signal (DL CSI-RS and UL SRS) and the Multiple-RTT positioning technical solution through broadcast, multicast or unicast.
  • the second positioning reference signal DL CSI-RS and UL SRS
  • Step 14 The UE sends the UL SRS signal to the base station according to the updated second SRS resource configuration information.
  • Step 15 The base station measures the second SRS reference signal according to the second SRS resource configuration information, and obtains a second positioning measurement value (gNB Rx-Tx Timing).
  • Step 16 The base station reports the second positioning report quantity (updated measured value gNB Rx-Tx Timing and measurement quality) to the LMF.
  • Step 17 The UE receives the DL CSI-RS signal sent by the base station according to the updated second CSI-RS resource configuration information, that is, the second CSI-RS reference signal.
  • Step 18 The UE measures the second CSI-RS reference signal according to the second CSI-RS resource configuration information, and obtains a second positioning measurement value (UE Rx-Tx Timing).
  • Step 19 The UE reports the second positioning report quantity (updated measurement value UE Rx-Tx Timing and measurement quality) to the LMF.
  • Step 20 The LMF calculates the position of the UE based on the second positioning report quantity reported by the UE and the base station (updated measurement values UE Rx-Tx Timing, gNB Rx-Tx Timing and measurement quality) and the Multiple-RTT positioning technology scheme.
  • Embodiment 3 introduces the technical solutions provided in Embodiment 3 from the LMF, UE, and base station sides respectively.
  • the information transmission process on the LMF side includes:
  • Step 1.0 Configure the initial value of N, the initial value of N_MAX, the measurement quality threshold, the measured value variance threshold, and the error coefficient threshold; among them, the initial value of N is 1, and N_MAX is a positive integer greater than 1, which means The maximum number of positioning negotiations.
  • Step 1.1 In the Nth round of positioning negotiation process, determine the size of N and N_MAX.
  • the LMF determines the first DL CSI-RS resource configuration information and the OTDOA positioning technical solution according to the predefined criterion 1, and then enters Step 1.3.
  • the LMF judges whether the current second positioning reference signal resource configuration information is reasonable according to the second predefined criterion:
  • Step 1.2 If it is unreasonable, go to Step 1.2 and continue with the Nth round of positioning negotiation process.
  • Step 1.2 The LMF determines the second positioning reference signal resource to be reconfigured by each base station according to predefined criterion three (including: first, adopting the new second positioning reference signal resource configuration; second, based on the second round of the previous round) Positioning reference signal resource configuration, using muting mechanism to avoid the interference of the downlink positioning reference signal of each base station) and the second positioning technology solution Multiple-RTT, enter Step 1.3
  • Step 1.3 LMF uses broadcast, multicast, or unicast to notify each UE and base station of the configured first or second positioning reference signal resource configuration information, and enter Step 1.4.
  • Step 1.4 The LMF receives the first positioning report volume or the second positioning report volume currently reported by the UE and/or the base station, and enters Step 1.5.
  • the first positioning report amount is obtained by measuring the first positioning reference signal by the UE and each base station according to the first positioning reference signal resource configuration information configured by the LMF;
  • the second positioning report amount is obtained by measuring the second positioning reference signal by the UE and each base station according to the second positioning reference signal resource configuration information configured by the LMF.
  • Step 1.5 The LMF determines the location of the UE based on the first/second positioning report volume currently reported by the UE and/or the base station, and the positioning technical solution, and then enters Step 1.6.
  • the positioning report amount in Step 1.4 and Step 1.5 includes: the measurement value and measurement quality reported by the UE and the base station, including two types: type 1) measurement value and measurement quality at the UE side, type 2. ) Measurement value and measurement quality on the base station side.
  • the method for determining the measurement value and measurement quality reported by the UE is as follows: the UE receives and measures the DL CSI-RS based on the DL CSI-RS resource configuration information that is configured and sent by the LMF, and obtains the first type of measurement value and measurement quality.
  • the method for determining the measurement value and measurement quality reported by the base station is as follows: the base station receives and measures the UL SRS signal sent by the terminal based on the UL SRS resource configuration information provided by the LMF, and obtains the second type of measurement value and/or measurement quality.
  • pre-configured positioning The mapping relationship between the reference signal resource and the positioning performance (for example, obtained through simulation or fixed configuration), determines the first positioning reference signal resource configuration information.
  • the second predefined criterion includes but is not limited to one or a combination of the following three conditions:
  • the measurement quality is higher than the preset measurement quality threshold
  • the measurement value variance is less than the preset measurement value variance threshold
  • the normalized relative difference between the UE position calculation result obtained based on the 3GPP positioning technical solution and the UE position calculation result obtained based on the A-GNSS positioning technical solution is smaller than the preset error coefficient threshold.
  • the predefined criterion three includes, but is not limited to: the LMF according to the actual positioning performance of the UE in the associated base station, and the mapping relationship between the pre-configured positioning reference signal resources and the positioning performance (for example: through simulation or Fixed configuration mode), determine the second positioning reference signal resource configuration information and the second positioning technical solution.
  • the information transmission process on the UE side includes, for example:
  • Step 1 The UE receives the positioning reference signal resource configuration information configured by the LMF, where the notification mode may be broadcast, multicast or unicast.
  • Step 2 The UE judges the current positioning technical solution type, if it is a downlink-based positioning technical solution, proceed to step 3; if it is a positioning technical solution based on a combination of uplink and downlink, proceed to step 5.
  • Step 3 The operation of the UE based on the downlink positioning technical solution:
  • the UE receives the DL CSI-RS sent by the base station according to the DL CSI-RS resource configuration information received from the LMF and performs measurements to obtain downlink positioning measurement values (including TOA, DL-TDOA, DL-AoD, DL-AoA, etc.) And measurement quality;
  • the UE reports the downlink positioning measurement value and measurement quality as the positioning report amount to the LMF.
  • Step 5 The operation of the UE based on the uplink and downlink combined positioning technical solution:
  • the UE receives the DL CSI-RS sent by the base station according to the DL CSI-RS and UL SRS resource configuration information received from the LMF and combines the UL SRS to perform measurement to obtain the UE side uplink and downlink combined positioning measurement value (UE Rx-Tx difference) and measurement quality;
  • the UE reports the combined uplink and downlink positioning measurement value and measurement quality as the positioning report amount to the LMF.
  • the information transmission process on the base station side includes:
  • Step 1 The base station receives the positioning reference signal resource configuration information configured by the LMF, where the notification mode may be broadcast, multicast or unicast.
  • Step 2 The base station judges the current positioning technical solution type, if it is a downlink-based positioning technical solution, proceed to step 3; if it is a positioning technical solution based on a combination of uplink and downlink, proceed to step 5.
  • Step 3 The operation of the base station based on the downlink positioning technical solution:
  • the base station sends the DL CSI-RS to the UE according to the DL CSI-RS resource configuration information received from the LMF.
  • Step 5 The operation of the base station based on the combination of uplink and downlink positioning technology solutions:
  • the base station receives the UL SRS sent by the UE according to the DL CSI-RS and UL SRS resource configuration information received from the LMF, and performs measurement in conjunction with the DL CSI-RS transmission time to obtain the combined uplink and downlink positioning measurement value (gNB Rx) on the base station side. -Tx difference) and measurement quality;
  • the base station reports the combined uplink and downlink positioning measurement value and measurement quality as the positioning report amount to the LMF.
  • an information transmission method provided by an embodiment of the present application includes:
  • S101 Determine positioning reference signal resource configuration information and positioning technical solutions through a negotiation process between the positioning server and other nodes;
  • step S102 for example, the positioning reference signal resource configuration information and the positioning technical solution type information may be notified to the other nodes.
  • the other nodes include terminals and/or base stations.
  • the method further includes:
  • the method further includes:
  • the terminal location is determined based on the reported positioning amount.
  • the positioning report amount includes the measurement value and measurement quality obtained by measuring the positioning reference signal reported by the other node.
  • the positioning reference signal resource configuration information and the positioning technical solution are determined, which specifically includes:
  • the first positioning reference signal resource configuration information and the first positioning technical solution are determined according to the predefined criterion 1.
  • the positioning reference signal resource configuration information and the positioning technical solution are determined, which specifically includes:
  • the current positioning reference signal resource configuration information is the first positioning reference signal resource configuration information, or the second positioning reference signal resource configuration information re-determined according to predefined criterion three
  • the current positioning technical solution is The first positioning technical solution, or the second positioning technical solution re-determined according to predefined criterion 3.
  • the first positioning reference signal resource configuration information is first assigned to the second positioning reference signal resource configuration information, and the first positioning technical solution is assigned to the first 2. Positioning technical solutions. Then, according to the second predefined criterion, it is judged whether the current positioning reference signal resource configuration information and/or positioning technical solution is reasonable, then the current positioning reference signal resource configuration information is the second positioning reference signal resource configuration information, and the current positioning technology The solution is the second positioning technology solution.
  • the predefined criterion three may be used to re-determine the second positioning reference signal resource configuration information, and/or to re-determine the second positioning technical solution.
  • notifying the positioning reference signal resource configuration information and the positioning technical solution to the other nodes specifically includes: determining the reasonable current positioning reference signal resource configuration information and the current positioning technology determined according to the second predefined criterion The solution is notified to the other nodes.
  • the second positioning reference signal resource configuration information and/or the second positioning technical solution are further determined according to the predefined criterion 3.
  • the predefined criterion one includes:
  • the first positioning reference signal resource configuration information is determined according to the lowest positioning performance of all terminals or part of the terminals in the base station associated with the positioning server, and the mapping relationship between the pre-configured positioning reference signal resources and the positioning performance.
  • the second predefined criterion includes: when one or a combination of the following conditions is met, determining that the second positioning reference signal resource configuration information and the second positioning technical solution are reasonable; otherwise, determining the second positioning reference signal resource configuration information And the second positioning technical solution is unreasonable:
  • Condition 1 The measurement quality is higher than the preset measurement quality threshold
  • Condition 2 The measurement value variance is less than the preset measurement value variance threshold
  • Condition 3 The normalized relative error of the terminal position calculation result obtained based on the 3GPP positioning technology solution of the Third Generation Partnership Project and the terminal position calculation result obtained based on the network-assisted global navigation satellite system A-GNSS positioning technology solution is less than expected Set the error threshold.
  • the third predefined criterion includes:
  • an information transmission method applicable to the other node side includes:
  • S201 Receive positioning reference signal resource configuration information and positioning technical solutions sent by a positioning server; wherein the positioning reference signal resource configuration information and positioning technical solutions are determined through a negotiation process between the positioning server and other nodes;
  • positioning reference signal resource configuration information includes uplink positioning reference signal resource configuration information and downlink positioning reference signal resource configuration information, which will not be repeated.
  • S202 Send positioning-related information based on the positioning reference signal resource configuration information and the type of the positioning technical solution.
  • the positioning technical solution is one of the following solutions:
  • sending positioning-related information specifically includes:
  • the downlink positioning reference signal resource configuration information received from the positioning server receiving the downlink positioning reference signal sent by the base station and performing measurement to obtain the downlink positioning measurement value and measurement quality;
  • the downlink positioning measurement value and measurement quality are sent to the positioning server as the positioning report quantity.
  • sending positioning-related information specifically includes:
  • the uplink positioning reference signal is sent to the base station.
  • sending positioning related information specifically includes:
  • the downlink positioning reference signal sent by the base station is received and combined with the uplink positioning reference signal for measurement to obtain the combined uplink and downlink positioning measurement values of the terminal side, and Measurement quality
  • sending positioning-related information specifically includes:
  • the downlink positioning reference signal is sent to the terminal.
  • sending positioning-related information specifically includes:
  • the uplink positioning reference signal resource configuration information received from the positioning server receiving the uplink positioning reference signal sent by the terminal and performing measurement to obtain the uplink positioning measurement value and measurement quality;
  • the uplink positioning measurement value and the measurement quality are reported to the positioning server as the positioning report quantity.
  • sending the positioning related information specifically includes:
  • the uplink positioning reference signal sent by the terminal is received and combined with the downlink positioning reference signal transmission time for measurement, to obtain the uplink and downlink of the base station side Combined positioning measurement value, and measurement quality;
  • the downlink reference signal includes one or a combination of the following signals: a new air interface positioning reference signal NR PRS, a channel state information reference signal CSI-RS, and a synchronization block SSB.
  • the uplink reference signal includes an uplink sounding reference signal UL SRS.
  • the positioning technical solution includes one of the following positioning technical solutions: various downlink positioning technologies, uplink positioning technologies, and combined uplink and downlink positioning technologies supported by 3GPP.
  • an information transmission device on the side of a positioning server provided in an embodiment of the present application includes:
  • the determining unit 11 is configured to determine positioning reference signal resource configuration information and positioning technical solutions through a negotiation process between the positioning server and other nodes;
  • the notification unit 12 is configured to notify the other nodes of the positioning reference signal resource configuration information and positioning technical solution.
  • the other nodes include terminals and/or base stations.
  • the determining unit is further configured to:
  • the determining unit is further configured to:
  • the terminal location is determined based on the reported positioning amount.
  • the positioning report amount includes the measurement value and measurement quality obtained by measuring the positioning reference signal reported by the other node.
  • the positioning reference signal resource configuration information and the positioning technical solution are determined, which specifically includes:
  • the first positioning reference signal resource configuration information and the first positioning technical solution are determined according to the predefined criterion 1.
  • the determining unit determines the positioning reference signal resource configuration information and the positioning technical solution through a negotiation process between the positioning server and other nodes, which specifically includes:
  • the current positioning reference signal resource configuration information is the first positioning reference signal resource configuration information, or the second positioning reference signal resource configuration information re-determined according to predefined criterion three
  • the current positioning technical solution is The first positioning technical solution, or the second positioning technical solution re-determined according to predefined criterion 3.
  • notifying the positioning reference signal resource configuration information and the positioning technical solution to the other nodes specifically includes: determining the reasonable current positioning reference signal resource configuration information and the current positioning technology determined according to the second predefined criterion The solution is notified to the other nodes.
  • the second positioning reference signal resource configuration information and/or the second positioning technical solution are further determined according to the predefined criterion 3.
  • the predefined criterion one includes:
  • the first positioning reference signal resource configuration information is determined according to the lowest positioning performance of all terminals or part of the terminals in the base station associated with the positioning server, and the mapping relationship between the pre-configured positioning reference signal resources and the positioning performance.
  • the second predefined criterion includes: when one or a combination of the following conditions is met, determining that the second positioning reference signal resource configuration information and the second positioning technical solution are reasonable; otherwise, determining the second positioning reference signal resource configuration information And the second positioning technical solution is unreasonable:
  • Condition 1 The measurement quality is higher than the preset measurement quality threshold
  • Condition 2 The measurement value variance is less than the preset measurement value variance threshold
  • Condition 3 The normalized relative error of the terminal position calculation result obtained based on the 3GPP positioning technology solution of the Third Generation Partnership Project and the terminal position calculation result obtained based on the network-assisted global navigation satellite system A-GNSS positioning technology solution is less than expected Set the error threshold.
  • the third predefined criterion includes:
  • the above-mentioned information transmission device on the positioning server side can implement all the method steps implemented in the above-mentioned embodiment of the information transmission method on the positioning server side, and can achieve the same technical effect.
  • the beneficial effects of this embodiment will not be described in detail here.
  • an information transmission device applicable to both the terminal side and the base station side provided in the embodiment of the present application includes:
  • the receiving unit 21 is configured to receive positioning reference signal resource configuration information and positioning technical solutions sent by a positioning server; wherein the positioning reference signal resource configuration information and positioning technical solutions are determined through a negotiation process between the positioning server and other nodes ;
  • the sending unit 22 is configured to send positioning related information based on the positioning reference signal resource configuration information and the type of the positioning technical solution.
  • the positioning technical solution is one of the following solutions:
  • sending positioning-related information specifically includes:
  • the downlink positioning reference signal resource configuration information received from the positioning server receiving the downlink positioning reference signal sent by the base station and performing measurement to obtain the downlink positioning measurement value and measurement quality;
  • the downlink positioning measurement value and measurement quality are sent to the positioning server as the positioning report quantity.
  • sending positioning-related information specifically includes:
  • the uplink positioning reference signal is sent to the base station.
  • sending positioning related information specifically includes:
  • the downlink positioning reference signal sent by the base station is received and combined with the uplink positioning reference signal for measurement to obtain the combined uplink and downlink positioning measurement values of the terminal side, and Measurement quality
  • sending positioning-related information specifically includes:
  • the downlink positioning reference signal is sent to the terminal.
  • sending positioning-related information specifically includes:
  • the uplink positioning reference signal resource configuration information received from the positioning server receiving the uplink positioning reference signal sent by the terminal and performing measurement to obtain the uplink positioning measurement value and measurement quality;
  • the uplink positioning measurement value and the measurement quality are reported to the positioning server as the positioning report quantity.
  • sending positioning related information specifically includes:
  • the uplink positioning reference signal sent by the terminal is received and combined with the downlink positioning reference signal transmission time for measurement, to obtain the uplink and downlink of the base station side Combined positioning measurement value, and measurement quality;
  • the downlink reference signal includes one or a combination of the following signals: a new air interface positioning reference signal NR PRS, a channel state information reference signal CSI-RS, and a synchronization block SSB.
  • the uplink reference signal includes an uplink sounding reference signal UL SRS.
  • the positioning technical solution includes one of the following positioning technical solutions: various downlink positioning technologies, uplink positioning technologies, and combined uplink and downlink positioning technologies supported by 3GPP.
  • the above-mentioned information transmission device applicable to both the terminal side and the base station side can implement all the method steps implemented in the above-mentioned information transmission method embodiment applicable to both the terminal side and the base station side, and The same technical effect can be achieved, and the beneficial effects of this embodiment will not be described in detail here.
  • an information transmission device on the positioning server side provided in an embodiment of the present application includes:
  • the memory 520 is used to store program instructions
  • the processor 500 is configured to call the program instructions stored in the memory, and execute according to the obtained program:
  • the positioning reference signal resource configuration information and positioning technical solution are notified to the other nodes through the transceiver 510.
  • the other nodes include terminals and/or base stations.
  • the processor is further configured to:
  • the processor is further configured to:
  • the terminal location is determined based on the reported positioning amount.
  • the positioning report amount includes the measurement value and measurement quality obtained by measuring the positioning reference signal reported by the other node.
  • the positioning reference signal resource configuration information and the positioning technical solution are determined, which specifically includes:
  • the first positioning reference signal resource configuration information and the first positioning technical solution are determined according to the predefined criterion 1.
  • the processor determines the positioning reference signal resource configuration information and the positioning technical solution through a negotiation process between the positioning server and other nodes, which specifically includes:
  • the current positioning reference signal resource configuration information is the first positioning reference signal resource configuration information, or the second positioning reference signal resource configuration information re-determined according to predefined criterion three
  • the current positioning technical solution is The first positioning technical solution, or the second positioning technical solution re-determined according to predefined criterion 3.
  • notifying the positioning reference signal resource configuration information and the positioning technical solution to the other nodes specifically includes: determining the reasonable current positioning reference signal resource configuration information and the current positioning technology determined according to the second predefined criterion The solution is notified to the other nodes.
  • the second positioning reference signal resource configuration information and/or the second positioning technical solution are further determined according to the predefined criterion 3.
  • the predefined criterion one includes:
  • the first positioning reference signal resource configuration information is determined according to the lowest positioning performance of all terminals or part of the terminals in the base station associated with the positioning server, and the mapping relationship between the pre-configured positioning reference signal resources and the positioning performance.
  • the second predefined criterion includes: when one or a combination of the following conditions is met, determining that the second positioning reference signal resource configuration information and the second positioning technical solution are reasonable; otherwise, determining the second positioning reference signal resource configuration information And the second positioning technical solution is unreasonable:
  • Condition 1 The measurement quality is higher than the preset measurement quality threshold
  • Condition 2 The measurement value variance is less than the preset measurement value variance threshold
  • Condition 3 The normalized relative error of the terminal position calculation result obtained based on the 3GPP positioning technology solution of the Third Generation Partnership Project and the terminal position calculation result obtained based on the network-assisted global navigation satellite system A-GNSS positioning technology solution is less than expected Set the error threshold.
  • the third predefined criterion includes:
  • the transceiver 510 is configured to receive and send data under the control of the processor 500.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 500 and various circuits of the memory represented by the memory 520 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 510 may be a plurality of elements, that is, include a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 can store data used by the processor 500 when performing operations.
  • the processor 500 can be a central processing unit (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device, CPLD).
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD complex programmable logic device
  • another information transmission device on the terminal side provided in an embodiment of the present application includes:
  • the memory 620 is used to store program instructions
  • the processor 600 is configured to call the program instructions stored in the memory, and execute according to the obtained program:
  • positioning reference signal resource configuration information and positioning technical solutions Receiving positioning reference signal resource configuration information and positioning technical solutions sent by a positioning server; wherein the positioning reference signal resource configuration information and positioning technical solutions are determined through a negotiation process between the positioning server and other nodes;
  • the positioning technical solution is one of the following solutions:
  • sending positioning-related information specifically includes:
  • the downlink positioning reference signal resource configuration information received from the positioning server receiving the downlink positioning reference signal sent by the base station and performing measurement to obtain the downlink positioning measurement value and measurement quality;
  • the downlink positioning measurement value and measurement quality are sent to the positioning server as the positioning report quantity.
  • sending positioning-related information specifically includes:
  • the uplink positioning reference signal is sent to the base station.
  • sending positioning related information specifically includes:
  • the downlink positioning reference signal sent by the base station is received and combined with the uplink positioning reference signal for measurement to obtain the combined uplink and downlink positioning measurement values of the terminal side, and Measurement quality
  • the positioning related information is sent through the transceiver 610.
  • the transceiver 610 is configured to receive and send data under the control of the processor 600.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 600 and various circuits of the memory represented by the memory 620 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 610 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the user interface 630 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 600 when performing operations.
  • the processor 600 may be a central processing unit (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable Logic device (Complex Programmable Logic Device, CPLD).
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD complex programmable Logic device
  • another information transmission apparatus on the base station side provided in an embodiment of the present application includes:
  • the memory 505 is used to store program instructions
  • the processor 504 is configured to call the program instructions stored in the memory, and execute according to the obtained program:
  • positioning reference signal resource configuration information and positioning technical solutions Receiving positioning reference signal resource configuration information and positioning technical solutions sent by a positioning server; wherein the positioning reference signal resource configuration information and positioning technical solutions are determined through a negotiation process between the positioning server and other nodes;
  • the positioning technical solution is one of the following solutions:
  • sending positioning-related information specifically includes:
  • the downlink positioning reference signal is sent to the terminal.
  • sending positioning-related information specifically includes:
  • the uplink positioning reference signal resource configuration information received from the positioning server receiving the uplink positioning reference signal sent by the terminal and performing measurement to obtain the uplink positioning measurement value and measurement quality;
  • the uplink positioning measurement value and the measurement quality are reported to the positioning server as the positioning report quantity.
  • sending positioning related information specifically includes:
  • the uplink positioning reference signal sent by the terminal is received and combined with the downlink positioning reference signal transmission time for measurement, to obtain the uplink and downlink of the base station side Combined positioning measurement value, and measurement quality;
  • the downlink reference signal includes one or a combination of the following signals: a new air interface positioning reference signal NR PRS, a channel state information reference signal CSI-RS, and a synchronization block SSB.
  • the uplink reference signal includes an uplink sounding reference signal UL SRS.
  • the positioning technical solution includes one of the following positioning technical solutions: various downlink positioning technologies, uplink positioning technologies, and combined uplink and downlink positioning technologies supported by 3GPP.
  • the positioning related information is sent through the transceiver 501.
  • the transceiver 501 is configured to receive and send data under the control of the processor 504.
  • bus architecture (represented by bus 506), bus 506 can include any number of interconnected buses and bridges, bus 506 will include one or more processors represented by processor 504 and memory represented by memory 505
  • the various circuits are linked together.
  • the bus 506 may also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further description will be given herein.
  • the bus interface 503 provides an interface between the bus 506 and the transceiver 501.
  • the transceiver 501 may be one element or multiple elements, such as multiple receivers and transmitters, and provide a unit for communicating with various other devices on a transmission medium.
  • the data processed by the processor 504 is transmitted on the wireless medium through the antenna 502, and further, the antenna 502 also receives the data and transmits the data to the processor 504.
  • the processor 504 is responsible for managing the bus 506 and general processing, and can also provide various functions, including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 505 may be used to store data used by the processor 504 when performing operations.
  • the processor 504 may be a central processing unit (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable Logic device (Complex Programmable Logic Device, CPLD).
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD complex programmable Logic device
  • the above-mentioned information transmission device applicable to the base station side can implement all the method steps implemented in the above-mentioned information transmission method embodiment applicable to the base station side, and can achieve the same technical effect.
  • the beneficial effects of this embodiment will not be described in detail here.
  • the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .
  • the embodiments of the present application provide a computing device, and the computing device may specifically be a desktop computer, a portable computer, a smart phone, a tablet computer, a personal digital assistant (Personal Digital Assistant, PDA), etc.
  • the computing device may include a central processing unit (CPU), a memory, an input/output device, etc.
  • the input device may include a keyboard, a mouse, a touch screen, etc.
  • an output device may include a display device, such as a liquid crystal display (Liquid Crystal Display, LCD), Cathode Ray Tube (CRT), etc.
  • the memory may include read only memory (ROM) and random access memory (RAM), and provides the processor with program instructions and data stored in the memory.
  • ROM read only memory
  • RAM random access memory
  • the memory may be used to store the program of any of the methods provided in the embodiments of the present application.
  • the processor calls the program instructions stored in the memory, and the processor is configured to execute any of the methods provided in the embodiments of the present application according to the obtained program instructions.
  • the embodiment of the present application provides a computer storage medium for storing computer program instructions used by the device provided in the foregoing embodiment of the present application, which includes a program for executing any method provided in the foregoing embodiment of the present application.
  • the computer storage medium may be any available medium or data storage device that the computer can access, including but not limited to magnetic storage (such as floppy disks, hard disks, magnetic tapes, magneto-optical disks (Magneto-Optical, MO), etc.), optical storage (such as Compact Disk (CD), Digital Versatile Disc (DVD), Blu-ray Disc (BD), High-Definition Versatile Disc (HVD), etc.), and semiconductor memory (such as ROM, Erasable Programmable Read-Only Memory (EPROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Non-Volatile Memory (NAND FLASH), Solid State Disk ((Solid State Disk, SSD)SSD)), etc.
  • magnetic storage such as floppy disks, hard disks, magnetic tapes, magneto-optical disks (Magneto-Optical, MO), etc.
  • optical storage such as Compact Disk (CD), Digital Versatile Disc (DVD), Blu-ray Disc (BD), High-
  • the method provided in the embodiments of the present application can be applied to terminal equipment, and can also be applied to network equipment.
  • the terminal equipment can also be called User Equipment (User Equipment, referred to as "UE"), Mobile Station (Mobile Station, referred to as “MS”), Mobile Terminal (Mobile Terminal), etc.
  • UE User Equipment
  • MS Mobile Station
  • Mobile Terminal Mobile Terminal
  • the terminal can be It has the ability to communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the terminal can be a mobile phone (or called a "cellular" phone), or a mobile computer, etc.
  • the terminal may also be a portable, pocket-sized, handheld, built-in computer or vehicle-mounted mobile device.
  • the network device may be a base station (for example, an access point), which refers to a device that communicates with a wireless terminal through one or more sectors on an air interface in an access network.
  • the base station can be used to convert received air frames and IP packets into each other, and act as a router between the wireless terminal and the rest of the access network, where the rest of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate the attribute management of the air interface.
  • the base station can be a base station (Base Transceiver Station, BTS) in GSM or CDMA, a base station (NodeB) in WCDMA, or an evolved base station (NodeB or eNB or e-NodeB, evolutional NodeB) in LTE. B), or it can also be gNB in the 5G system.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • e-NodeB evolutional NodeB
  • the processing flow of the above method can be implemented by a software program, which can be stored in a storage medium, and when the stored software program is called, the steps of the above method are executed.
  • the embodiment of the present application proposes an LMF coordinated positioning solution, which solves the following problems that may exist in the existing solution:
  • the DL PRS configuration information is not negotiated between the various base stations.
  • Neighboring base stations may send DL PRS on the same time and frequency resources, causing DL PRS signals of neighboring base stations to interfere with each other, resulting in degradation of downlink positioning measurement performance;
  • the base station cannot support each base station to optimally configure the DL PRS signal according to the UE's positioning performance requirements. For example, sometimes the time and frequency resources of the DL PRS configured by the base station are insufficient (for example, the DL PRS bandwidth is too small, the time-frequency domain resource density is too low, etc.), which cannot meet the positioning performance requirements of the UE; and sometimes the base station is configured The time and frequency resources of the DL PRS are too wasteful, which adversely affects wireless system communication due to the waste of resources.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can direct a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本申请公开了信息传输方法及装置,用以通过定位服务器与其他节点之间的协商过程确定定位参考信号资源配置信息和定位技术方案,从而避免相邻基站可能在相同的时间和频率资源上发送定位参考信号,造成相邻基站定位参考信号相互干扰,导致下行定位测量值性能下降的问题,并且还可以支持各基站根据终端的定位性能需求来优化配置定位参考信号,进而提高定位性能。本申请提供的一种信息传输方法,包括:通过定位服务器与其他节点之间的协商过程,确定定位参考信号资源配置信息和定位技术方案;将所述定位参考信号资源配置信息和定位技术方案通知给所述其他节点。

Description

信息传输方法及装置
相关申请的交叉引用
本申请要求在2019年11月25日提交中国专利局、申请号为201911168857.3、申请名称为“信息传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及信息传输方法及装置。
背景技术
图1和图2以下行(Down Link,DL)观察到达时差(Observed Time Difference Of Arrival,OTDOA)定位为例,示出了目前方案中的常见的流程示意图,包括下面11个步骤:
步骤1、在用户终端(User Equipment,UE)建立与基站的连接之后,UE处于无线资源控制连接(Radio Resource Control Connected,RRC_CONNECTED)状态。
步骤2、定位服务器(Location Management Function,LMF)向UE发送“请求定位能力”消息,请求UE通知LMF该UE所能支持的定位功能。
步骤3、UE发送“提供定位能力”消息来响应LMF,“提供定位能力”消息上报UE支持OTDOA的定位能力。
步骤4、当需要下行定位辅助数据时,UE向LMF发送“请求定位辅助数据”消息,该消息用于请求LMF提供OTDOA辅助数据。
步骤5、LMF向基站发送“OTDOA信息请求”消息,该消息用于请求基站提供下行定位辅助数据,例如下行链路(Down Link,DL)定位参考信号(Positioning Reference Signal,PRS)配置数据。
步骤6、基站向LMF发送“OTDOA信息响应”消息,向LMF提供所请求 的下行定位辅助数据,包括PRS配置数据。
步骤7、LMF在“提供定位辅助数据”消息中提供UE所请求的定位辅助数据,其中,携带DL PRS配置数据。
步骤8、基站向UE发送DL PRS信号。
步骤9、UE利用定位辅助数据(例如:PRS配置数据)来测量下行信号以获得定位测量值,例如:参考信号的到达时间差(Reference Signal Time Difference,RSTD),参考信号的接收功率(Reference Signal Received Power,RSRP)。
步骤10、UE向LMF发送“提供定位信息”消息,其中包括测量DL PRS所获得的定位测量值,例如:RSTD、RSRP。
步骤11、LMF根据PRS配置信息、各基站的发送天线的位置,以及UE上报的定位测量值来确定UE的位置。
其中,目前第三代合作伙伴计划(Third Generation partnership project,3GPP)协议中,步骤5中LMF向基站发送的“OTDOA信息请求”消息中只是触发基站向定位服务器提供所请求的下行定位辅助数据,并没有包含建议的下行定位参考信号的配置信息。
综上所述,图2的步骤5中LMF向基站发送的请求消息中只是触发基站向LMF提供所请求的下行定位辅助数据。在基站收到LMF请求消息后,各基站自主确定DL PRS信号的配置。目前的方法存在如下问题:相邻基站可能在相同的时间和频率资源上发送DL PRS,造成相邻基站DL PRS信号相互干扰,导致下行定位测量值性能下降;各基站不能根据UE的定位性能需求来优化配置DL PRS信号。
发明内容
本申请实施例提供了信息传输方法及装置,用以通过定位服务器与其他节点之间的协商过程确定定位参考信号资源配置信息和定位技术方案,从而避免相邻基站可能在相同的时间和频率资源上发送定位参考信号,造成相邻 基站定位参考信号相互干扰,导致下行定位测量值性能下降的问题,并且还可以支持各基站根据终端的定位性能需求来优化配置定位参考信号,进而提高定位性能。
在定位服务器侧,本申请实施例提供的一种信息传输方法,包括:
通过定位服务器与其他节点之间的协商过程,确定定位参考信号资源配置信息和定位技术方案;其中,所述协商过程为定位相关信息的交互过程;
将所述定位参考信号资源配置信息和定位技术方案通知给所述其他节点。
该方法通过定位服务器与其他节点之间的协商过程,确定定位参考信号资源配置信息和定位技术方案;将所述定位参考信号资源配置信息和定位技术方案通知给所述其他节点,所述其他节点包括基站和/或终端,从而可以避免相邻基站可能在相同的时间和频率资源上发送定位参考信号,造成相邻基站定位参考信号相互干扰,导致下行定位测量值性能下降的问题,并且还可以支持各基站根据终端的定位性能需求来优化配置定位参考信号,进而提高定位性能。
可选地,所述其他节点包括终端和/或基站。
可选地,该方法还包括:
接收所述其他节点发送的定位上报量,其中,所述定位上报量是所述其他节点基于所述定位参考信号资源配置信息,对定位参考信号进行测量得到的。
可选地,该方法还包括:
基于所述定位上报量确定终端位置。
可选地,所述定位上报量,包括所述其他节点上报的针对定位参考信号进行测量得到的测量值和测量质量。
可选地,通过定位服务器与其他节点之间的协商过程,确定定位参考信号资源配置信息和定位技术方案,具体包括:
对于首次协商过程,根据预定义准则一确定第一定位参考信号资源配置信息和第一定位技术方案。
可选地,通过定位服务器与其他节点之间的协商过程,确定定位参考信号资源配置信息和定位技术方案,具体包括:
对于非首次协商过程,根据预定义准则二判断当前定位参考信号资源配置信息和/或定位技术方案是否合理,确定采用合理的当前定位参考信号资源配置信息和/或定位技术方案;
其中,所述当前定位参考信号资源配置信息,为所述第一定位参考信号资源配置信息,或者为根据预定义准则三重新确定的第二定位参考信号资源配置信息,所述当前定位技术方案为第一定位技术方案,或根据预定义准则三重新确定的第二定位技术方案。
可选地,将所述定位参考信号资源配置信息和定位技术方案通知给所述其他节点,具体包括:将根据所述预定义准则二确定的合理的当前定位参考信号资源配置信息和当前定位技术方案通知给所述其他节点。
可选地,若根据所述预定义准则二确定当前定位参考信号资源配置信息不合理,则进一步根据预定义准则三重新确定第二定位参考信号资源配置信息和/或第二定位技术方案。
可选地,所述预定义准则一包括:
根据定位服务器所关联的基站内的所有终端或者部分终端的最低定位性能,以及预先配置的定位参考信号资源与定位性能的映射关系,确定第一定位参考信号资源配置信息。
可选地,所述预定义准则二包括:当满足下列条件之一或组合时,确定第二定位参考信号资源配置信息和第二定位技术方案合理;否则,确定第二定位参考信号资源配置信息和第二定位技术方案不合理:
条件一、测量质量高于预设的测量质量门限值;
条件二、测量值方差小于预设的测量值方差门限值;
条件三、基于第三代合作伙伴计划3GPP定位技术方案获取的终端位置计算结果和基于网络辅助的全球导航卫星系统(Assisting-Global Navigation Satellite System,A-GNSS)定位技术方案获取的终端位置计算结果的归一化 相对误差,小于预设的误差门限值。
可选地,所述预定义准则三包括:
根据定位服务器关联的基站内终端的实际定位性能,以及预先配置的定位参考信号资源与定位技术方案的定位性能之间的映射关系,确定第二定位参考信号资源配置信息和/或第二定位技术方案。
相应地,在所述其他节点侧,例如终端侧和基站侧,本申请实施例提供的一种信息传输方法,包括:
接收定位服务器发送的定位参考信号资源配置信息和定位技术方案;其中,所述定位参考信号资源配置信息和定位技术方案是通过定位服务器与其他节点之间的协商过程确定的;其中,所述协商过程为定位相关信息的交互过程;
基于定位参考信号资源配置信息和定位技术方案的类型,发送定位相关信息。
可选地,所述定位技术方案为下列方案之一:
基于下行的定位技术方案;
基于上行的定位技术方案;
基于上行和下行组合的定位技术方案。
可选地,若定位技术方案为基于下行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器接收到的下行定位参考信号资源配置信息,接收基站发送的下行定位参考信号并且进行测量,得到下行定位测量值和测量质量;
将所述下行定位测量值和测量质量作为定位上报量发送给定位服务器。
可选地,若定位技术方案为基于上行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器或者基站接收到的上行定位参考信号资源配置信息,向基站发送上行定位参考信号。
可选地,若定位技术方案为基于上行和下行的定位技术方案,则发送定 位相关信息具体包括:
根据从定位服务器接收到的下行定位参考信号和上行定位参考信号资源配置信息,接收基站发送的下行定位参考信号并且结合上行定位参考信号进行测量,得到终端侧上行和下行组合的定位测量值,以及测量质量;
将所述终端侧上行和下行组合的定位测量值和所述测量质量作为定位上报量发送给所述定位服务器。
可选地,若定位技术方案为基于下行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器接收到的下行定位参考信号资源配置信息,向终端发送下行定位参考信号。
可选地,若定位技术方案为基于上行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器接收到的上行定位参考信号资源配置信息,接收终端发送的上行定位参考信号并且进行测量,得到上行定位测量值和测量质量;
将所述上行定位测量值和所述测量质量作为定位上报量上报给定位服务器。
可选地,若定位技术方案为基于上行和下行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器接收到的下行定位参考信号资源配置信息和上行定位参考信号资源配置信息,接收终端发送的上行定位参考信号并且结合所述下行定位参考信号发送时刻进行测量,得到基站侧上行和下行组合的定位测量值,以及测量质量;
将所述基站侧上行和下行组合的定位测量值和所述测量质量作为定位上报量发送给所述定位服务器。
可选地,所述下行参考信号包括下列信号之一或组合:新空口定位参考信号(New Radio Positioning Reference Signal,NR PRS),信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS),同步块 (Synchronization Signal/Physical Broadcast Channel Block,SSB)。
可选地,所述上行参考信号包括上行链路探测参考信号UL SRS(Up-Link Sounding Reference Signal)。
可选地,所述定位技术方案包括下列定位技术方案之一:3GPP所支持的各种下行定位技术、上行定位技术、上下行组合的定位技术。
在定位服务器侧,本申请实施例提供的一种信息传输装置,包括:
确定单元,用于通过定位服务器与其他节点之间的协商过程,确定定位参考信号资源配置信息和定位技术方案;其中,所述协商过程为定位相关信息的交互过程;
通知单元,用于将所述定位参考信号资源配置信息和定位技术方案通知给所述其他节点。
可选地,所述其他节点包括终端和/或基站。
可选地,所述通知单元还用于:
接收所述其他节点发送的定位上报量,其中,所述定位上报量是所述其他节点基于所述定位参考信号资源配置信息,对定位参考信号进行测量得到的。
可选地,所述通知单元还用于:
基于所述定位上报量确定终端位置。
可选地,所述定位上报量,包括所述其他节点上报的针对定位参考信号进行测量得到的测量值和测量质量。
可选地,所述确定单元通过定位服务器与其他节点之间的协商过程,确定定位参考信号资源配置信息和定位技术方案,具体包括:
对于首次协商过程,根据预定义准则一确定第一定位参考信号资源配置信息和第一定位技术方案。
可选地,所述确定单元通过定位服务器与其他节点之间的协商过程,确定定位参考信号资源配置信息和定位技术方案,具体包括:
对于非首次协商过程,根据预定义准则二判断当前定位参考信号资源配 置信息和/或定位技术方案是否合理,确定采用合理的当前定位参考信号资源配置信息和/或定位技术方案;
其中,所述当前定位参考信号资源配置信息,为所述第一定位参考信号资源配置信息,或者为根据预定义准则三重新确定的第二定位参考信号资源配置信息,所述当前定位技术方案为第一定位技术方案,或根据预定义准则三重新确定的第二定位技术方案。
可选地,所述确定单元将所述定位参考信号资源配置信息和定位技术方案通知给所述其他节点,具体包括:
将根据所述预定义准则二确定的合理的当前定位参考信号资源配置信息和当前定位技术方案通知给所述其他节点。
可选地,若根据所述预定义准则二确定当前定位参考信号资源配置信息不合理,则进一步根据预定义准则三重新确定第二定位参考信号资源配置信息和/或第二定位技术方案。
可选地,所述预定义准则一包括:
根据定位服务器所关联的基站内的所有终端或者部分终端的最低定位性能,以及预先配置的定位参考信号资源与定位性能的映射关系,确定第一定位参考信号资源配置信息。
可选地,所述预定义准则二包括:当满足下列条件之一或组合时,确定第二定位参考信号资源配置信息和第二定位技术方案合理;否则,确定第二定位参考信号资源配置信息和第二定位技术方案不合理:
条件一、测量质量高于预设的测量质量门限值;
条件二、测量值方差小于预设的测量值方差门限值;
条件三、基于第三代合作伙伴计划3GPP定位技术方案获取的终端位置计算结果和基于网络辅助的全球导航卫星系统A-GNSS定位技术方案获取的终端位置计算结果的归一化相对误差,小于预设的误差门限值。
可选地,所述预定义准则三包括:
根据定位服务器关联的基站内终端的实际定位性能,以及预先配置的定 位参考信号资源与定位技术方案的定位性能之间的映射关系,确定第二定位参考信号资源配置信息和/或第二定位技术方案。
在终端侧和基站侧,本申请实施例提供的一种信息传输装置,包括:
接收单元,用于接收定位服务器发送的定位参考信号资源配置信息和定位技术方案;其中,所述定位参考信号资源配置信息和定位技术方案是通过定位服务器与其他节点之间的协商过程确定的;其中,所述协商过程为定位相关信息的交互过程;
发送单元,用于基于定位参考信号资源配置信息和定位技术方案的类型,发送定位相关信息。
可选地,所述定位技术方案为下列方案之一:
基于下行的定位技术方案;
基于上行的定位技术方案;
基于上行和下行组合的定位技术方案。
可选地,若定位技术方案为基于下行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器接收到的下行定位参考信号资源配置信息,接收基站发送的下行定位参考信号并且进行测量,得到下行定位测量值和测量质量;
将所述下行定位测量值和测量质量作为定位上报量发送给定位服务器。
可选地,若定位技术方案为基于上行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器或者基站接收到的上行定位参考信号资源配置信息,向基站发送上行定位参考信号。
可选地,若定位技术方案为基于上行和下行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器接收到的下行定位参考信号和上行定位参考信号资源配置信息,接收基站发送的下行定位参考信号并且结合上行定位参考信号进行测量,得到终端侧上行和下行组合的定位测量值,以及测量质量;
将所述终端侧上行和下行组合的定位测量值和所述测量质量作为定位上报量发送给所述定位服务器。
可选地,若定位技术方案为基于下行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器接收到的下行定位参考信号资源配置信息,向终端发送下行定位参考信号。
可选地,若定位技术方案为基于上行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器接收到的上行定位参考信号资源配置信息,接收终端发送的上行定位参考信号并且进行测量,得到上行定位测量值和测量质量;
将所述上行定位测量值和所述测量质量作为定位上报量上报给定位服务器。
可选地,若定位技术方案为基于上行和下行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器接收到的下行定位参考信号资源配置信息和上行定位参考信号资源配置信息,接收终端发送的上行定位参考信号并且结合所述下行定位参考信号发送时刻进行测量,得到基站侧上行和下行组合的定位测量值,以及测量质量;
将所述基站侧上行和下行组合的定位测量值和所述测量质量作为定位上报量发送给所述定位服务器。
可选地,所述下行参考信号包括下列信号之一或组合:新空口定位参考信号NR PRS,信道状态信息参考信号CSI-RS,同步块SSB。
可选地,所述上行参考信号包括上行链路探测参考信号UL SRS。
可选地,所述定位技术方案包括下列定位技术方案之一:3GPP所支持的各种下行定位技术、上行定位技术、上下行组合的定位技术。
在定位服务器侧,本申请实施例提供的另一种信息传输装置,包括:
存储器,用于存储程序指令;
处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
通过定位服务器与其他节点之间的协商过程,确定定位参考信号资源配置信息和定位技术方案;其中,所述协商过程为定位相关信息的交互过程;
将所述定位参考信号资源配置信息和定位技术方案通知给所述其他节点。
可选地,所述其他节点包括终端和/或基站。
可选地,所述处理器还用于:
接收所述其他节点发送的定位上报量,其中,所述定位上报量是所述其他节点基于所述定位参考信号资源配置信息,对定位参考信号进行测量得到的。
可选地,所述处理器还用于:
基于所述定位上报量确定终端位置。
可选地,所述定位上报量,包括所述其他节点上报的针对定位参考信号进行测量得到的测量值和测量质量。
可选地,通过定位服务器与其他节点之间的协商过程,所述处理器确定定位参考信号资源配置信息和定位技术方案,具体包括:
对于首次协商过程,根据预定义准则一确定第一定位参考信号资源配置信息和第一定位技术方案。
可选地,通过定位服务器与其他节点之间的协商过程,所述处理器确定定位参考信号资源配置信息和定位技术方案,具体包括:
对于非首次协商过程,根据预定义准则二判断当前定位参考信号资源配置信息和/或定位技术方案是否合理,确定采用合理的当前定位参考信号资源配置信息和/或定位技术方案;
其中,所述当前定位参考信号资源配置信息,为所述第一定位参考信号资源配置信息,或者为根据预定义准则三重新确定的第二定位参考信号资源配置信息,所述当前定位技术方案为第一定位技术方案,或根据预定义准则三重新确定的第二定位技术方案。
可选地,所述处理器将所述定位参考信号资源配置信息和定位技术方案 通知给所述其他节点,具体包括:将根据所述预定义准则二确定的合理的当前定位参考信号资源配置信息和当前定位技术方案通知给所述其他节点。
可选地,若根据所述预定义准则二确定当前定位参考信号资源配置信息不合理,则进一步根据预定义准则三重新确定第二定位参考信号资源配置信息和/或第二定位技术方案。
可选地,所述预定义准则一包括:
根据定位服务器所关联的基站内的所有终端或者部分终端的最低定位性能,以及预先配置的定位参考信号资源与定位性能的映射关系,确定第一定位参考信号资源配置信息。
可选地,所述预定义准则二包括:当满足下列条件之一或组合时,确定第二定位参考信号资源配置信息和第二定位技术方案合理;否则,确定第二定位参考信号资源配置信息和第二定位技术方案不合理:
条件一、测量质量高于预设的测量质量门限值;
条件二、测量值方差小于预设的测量值方差门限值;
条件三、基于第三代合作伙伴计划3GPP定位技术方案获取的终端位置计算结果和基于网络辅助的全球导航卫星系统A-GNSS定位技术方案获取的终端位置计算结果的归一化相对误差,小于预设的误差门限值。
可选地,所述预定义准则三包括:
根据定位服务器关联的基站内终端的实际定位性能,以及预先配置的定位参考信号资源与定位技术方案的定位性能之间的映射关系,确定第二定位参考信号资源配置信息和/或第二定位技术方案。
在终端侧和基站侧,本申请实施例提供的另一种信息传输装置,包括:
存储器,用于存储程序指令;
处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
接收定位服务器发送的定位参考信号资源配置信息和定位技术方案;其中,所述定位参考信号资源配置信息和定位技术方案是通过定位服务器与其他节点之间的协商过程确定的;其中,所述协商过程为定位相关信息的交互 过程;
基于定位参考信号资源配置信息和定位技术方案的类型,发送定位相关信息。
可选地,所述定位技术方案为下列方案之一:
基于下行的定位技术方案;
基于上行的定位技术方案;
基于上行和下行组合的定位技术方案。
可选地,若定位技术方案为基于下行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器接收到的下行定位参考信号资源配置信息,接收基站发送的下行定位参考信号并且进行测量,得到下行定位测量值和测量质量;
将所述下行定位测量值和测量质量作为定位上报量发送给定位服务器。
可选地,若定位技术方案为基于上行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器或者基站接收到的上行定位参考信号资源配置信息,向基站发送上行定位参考信号。
可选地,若定位技术方案为基于上行和下行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器接收到的下行定位参考信号和上行定位参考信号资源配置信息,接收基站发送的下行定位参考信号并且结合上行定位参考信号进行测量,得到终端侧上行和下行组合的定位测量值,以及测量质量;
将所述终端侧上行和下行组合的定位测量值和所述测量质量作为定位上报量发送给所述定位服务器。
可选地,若定位技术方案为基于下行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器接收到的下行定位参考信号资源配置信息,向终端发送下行定位参考信号。
可选地,若定位技术方案为基于上行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器接收到的上行定位参考信号资源配置信息,接收终端发送的上行定位参考信号并且进行测量,得到上行定位测量值和测量质量;
将所述上行定位测量值和所述测量质量作为定位上报量上报给定位服务器。
可选地,若定位技术方案为基于上行和下行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器接收到的下行定位参考信号资源配置信息和上行定位参考信号资源配置信息,接收终端发送的上行定位参考信号并且结合所述下行定位参考信号发送时刻进行测量,得到基站侧上行和下行组合的定位测量值,以及测量质量;
将所述基站侧上行和下行组合的定位测量值和所述测量质量作为定位上报量发送给所述定位服务器。
可选地,所述下行参考信号包括下列信号之一或组合:新空口定位参考信号NR PRS,信道状态信息参考信号CSI-RS,同步块SSB。
可选地,所述上行参考信号包括上行链路探测参考信号UL SRS。
可选地,所述定位技术方案包括下列定位技术方案之一:3GPP所支持的各种下行定位技术、上行定位技术、上下行组合的定位技术。
本申请另一实施例提供了一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述任一种方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前 提下,还可以根据这些附图获得其他的附图。
图1为现有技术中UE定位系统架构示意图;
图2为现有技术中UE定位流程示意图;
图3为本申请实施例1的UE定位流程示意图;
图4为本申请实施例2的UE定位流程示意图;
图5为本申请实施例3的UE定位流程示意图;
图6为本申请实施例提供的定位服务器侧的一种信息传输方法的流程示意图;
图7为本申请实施例提供的终端侧和基站侧都适用的一种信息传输方法的流程示意图;
图8为本申请实施例提供的定位服务器侧的一种信息传输装置的结构示意图;
图9为本申请实施例提供的终端侧和基站侧都适用的一种信息传输装置的结构示意图;
图10为本申请实施例提供的定位服务器侧的另一种信息传输装置的结构示意图;
图11为本申请实施例提供的终端侧的另一种信息传输装置的结构示意图;
图12为本申请实施例提供的基站侧的另一种信息传输装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供了信息传输方法及装置,用以通过定位服务器与其他节点之间的协商过程确定定位参考信号资源配置信息和定位技术方案,从而避免相邻基站可能在相同的时间和频率资源上发送定位参考信号,造成相邻 基站定位参考信号相互干扰,导致下行定位测量值性能下降的问题,并且还可以支持各基站根据终端的定位性能需求来优化配置定位参考信号,进而提高定位性能。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
本申请实施例提供的技术方案可以适用于多种系统,尤其是第五代移动通信技术(5th generation,5G)系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G系统以及5G NR系统等。这多种系统中均包括终端设备和网络设备。
本申请实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiated protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站 (subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本申请实施例中并不限定。
本申请实施例涉及的网络设备,可以是基站,该基站可以包括多个小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(internet protocol,IP)分组进行相互转换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本申请实施例涉及的网络设备可以是全球移动通信系统(global system for mobile communications,GSM)或码分多址接入(code division multiple access,CDMA)中的网络设备(base transceiver station,BTS),也可以是带宽码分多址接入(wide-band code division multiple access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站,也可是家庭演进基站(home evolved node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本申请实施例中并不限定。
下面结合说明书附图对本申请各个实施例进行详细描述。需要说明的是,本申请实施例的展示顺序仅代表实施例的先后顺序,并不代表实施例所提供的技术方案的优劣。
本申请实施例提供的定位服务器(Location Management Function,LMF)协调的定位参考信号配置方法介绍如下:
本申请实施例的技术方案包括:
首先,LMF根据预定义准则一配置第一定位参考信号资源配置信息(即初始资源配置)和第一定位技术方案并且通知UE和基站,LMF接收UE和 基站上报的第一定位上报量,并且确定第一UE位置结果;然后,LMF把第一定位参考信号资源配置信息赋值为第二定位参考信号资源配置信息,并且把第一定位技术方案赋值为第二定位技术方案,LMF和基站、UE之间进行如下的若干轮定位协商过程:(1)LMF基于UE和基站上报的第二定位上报量、第二UE位置结果之一或者组合,根据预定义准则二判断当前的第二定位参考信号资源和/或第二定位技术方案是否合理,如果不合理,进一步基于预定义准则三确定更新的第二定位参考信号资源配置信息和/或更新的第二定位技术方案;如果合理,继续采用当前的第二定位参考信号资源配置信息和第二定位技术方案;(2)LMF采用广播、组播或者单播方式通知UE和基站第二定位参考信号资源配置信息和第二定位技术方案;(3)LMF接收UE和基站基于第二定位参考信号资源配置信息上报的第二定位上报量,并且确定第二UE位置结果。
其中,可选地,预定义准则一包括但不限于:LMF根据所关联的基站内的所有UE或者部分UE(例如X%UE以上,例如:X=80)的最低定位性能,以及预先配置的定位参考信号资源配置信息和定位性能的映射关系(例如:通过仿真或者固定配置方式获取该映射关系),确定第一定位参考信号资源配置信息和第一定位技术方案。
可选地,预定义准则二包括:当满足下列三个条件之一或组合时,确定第二定位参考信号资源配置信息和/或第二定位技术方案合理;否则,确定第二定位参考信号资源配置信息和/或第二定位技术方案不合理:
测量质量高于预设的测量质量门限值;
测量值方差小于预设的测量值方差门限值;
基于第三代合作伙伴计划(Third Generation partnership project,3GPP)定位技术方案获取的UE位置计算结果和基于网络辅助的全球导航卫星系统(Assisting-Global Navigation Satellite System,A-GNSS)定位技术方案获取的UE位置计算结果的归一化相对误差,小于预设的误差门限值。
可选地,预定义准则三包括但不限于:LMF根据关联的基站内UE的实 际定位性能,以及预先配置的定位参考信号资源和定位性能的映射关系(例如:通过仿真或者固定配置方式获取该映射关系),确定第二定位参考信号资源配置信息和/或第二定位技术方案。
其中,可选地,上述任一所述的定位参考信号(适用于第一定位参考信号和第二定位参考信号)包括:
用于下行定位和上下行组合定位的下行定位参考信号(Down Link Positioning Reference Signal,DL PRS),例如包括但不限于新空口定位参考信号(New Radio Positioning Reference Signal,NR PRS),信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS),同步块(Synchronization Signal/Physical Broadcast Channel Block,SSB)等;
和/或,用于上行定位和用于上下行组合定位的上行参考信号,例如探测参考信号(Sounding Reference Signal,SRS)。
可选地,上述任一所述的定位技术方案(适用于第一定位技术方案和第二定位技术方案)包括:3GPP所支持的各种下行定位技术(例如:观察到达时差(Observed Time Difference Of Arrival,OTDOA)、下行链路离开角度(Down Link-Angle Of Departure,DL-AoD)、下行链路到达角度(Down Link-Angle Of Arrival,DL-AoA))、上行定位技术(例如:上行链路信号到达时间差(Up Link Time Difference Of Arrival,UL-TDOA)、上行链路信号到达角度(Up Link-Angle Of Arrival,UL-AoA))和上下行组合的定位技术(例如:增强小区标识(Enhanced Cell Identification,E-CID)、多小区-往返时延(Multiple Cell-Round Time Trip,Multiple-RTT)等)中的一种或多种。
下面分别从LMF、UE和基站侧介绍本申请实施例提供的技术方案。
LMF侧:
关于LMF、UE和基站相互之间信息的定位协商过程,例如包括以下步骤:
Step 1.0、预先配置N的初始值、N_MAX的初始值、测量质量门限值、测量值方差门限值和误差系数门限值;其中,N初始值为1,N_MAX是大于1的正整数,表示定位协商次数的最大值。
Step 1.1、在第N轮定位协商过程中,判断N和N_MAX的大小。
如果N>=N_MAX,结束定位协商过程;
否则,判断N是否等于1;
如果N=1,LMF根据预定义准则一确定第一定位参考信号资源配置信息和第一定位技术方案,然后进入Step 1.3。
如果N>1,若N=2,LMF把第一定位参考信号资源配置信息赋值为第二定位参考信号资源配置信息,并且把第一定位技术方案赋值为第二定位技术方案;否则(即N>2),LMF保持当前的第二定位参考信号资源配置信息和第二定位技术方案;
LMF根据预定义准则二判断当前的第二定位参考信号资源配置信息是否合理:
如果合理,结束当前第N轮定位协商过程,基于当前的第二定位参考信号资源配置信息和第二定位技术方案,进入Step 1.3;
如果不合理,进入Step 1.2,继续进行第N轮的定位协商过程。
Step 1.2、LMF根据预定义准则三确定各个基站分别需要重新配置的第二定位参考信号资源配置信息和/或第二定位技术方案,进入Step 1.3。
其中,根据预定义准则三确定各个基站分别需要重新配置的第二定位参考信号资源配置信息,例如包括:第一,采用新的第二定位参考信号资源配置;或者,第二,基于上一轮的第二定位参考信号资源配置,采用静音(Muting)机制避免各个基站的下行定位参考信号干扰。
Step 1.3、LMF采用广播、组播或者单播方式将配置的第一定位参考信号资源配置信息或者第二定位参考信号资源配置信息和当前定位技术方案(例如可以通知当前定位技术方案的类型信息)通知各个UE和基站,进入Step 1.4。
其中,所述当前定位技术方案为所述第一定位技术方案,或所述第二定位技术方案。
Step 1.4、LMF接收UE和/或基站当前上报的第一定位上报量或第二定位上报量,然后进入Step 1.5;
其中,第一定位上报量,是UE和各基站根据LMF配置的第一定位参考信号资源配置信息针对第一定位参考信号进行测量得到的。
第二定位上报量,是UE和各基站根据LMF配置的第二定位参考信号资源配置信息针对第二定位参考信号进行测量得到的。
Step 1.5、LMF基于UE和/或基站当前上报的第一定位上报量或第二定位上报量,以及当前定位技术方案,确定UE位置,进入Step 1.6。
Step 1.6、更新N=N+1,进入Step 1.1。
其中,可选地,任一所述定位上报量(适用于第一定位上报量和第二定位上报量)包括:UE和/或基站上报的测量值和测量质量,包括两种类型:
第一类、UE侧的测量值和测量质量;
第二类、基站侧的测量值和测量质量。
可选地,所述UE上报的测量值和测量质量的确定方法如下:UE基于LMF提供的配置并发送的下行定位参考信号(Down Link Positioning Reference Signal,DL PRS)资源配置信息,接收并测量DL PRS,获得UE侧的测量值和测量质量。
可选地,所述基站上报的测量值和测量质量的确定方法如下:基站基于LMF提供的UL SRS资源配置信息,接收并测量终端发送的UL SRS信号,获得基站侧的测量值和/或测量质量。
可选地,所述预定义准则一包括但不限于:LMF根据所关联的基站内的所有UE或者X%UE以上的最低定位性能(例如:X=80),以及预先配置的定位参考信号资源和定位技术方案的定位性能之间的映射关系(例如:通过仿真或者固定配置方式获取)确定第一定位参考信号资源配置信息和第一定位技术方案。
可选地,所述预定义准则二包括:当满足下列条件之一或组合时,确定第二定位参考信号资源配置信息和/或第二定位技术方案合理;否则,确定第二定位参考信号资源配置信息和/或第二定位技术方案不合理:
测量质量高于预设的测量质量门限值;
测量值方差小于预设的测量值方差门限值;
基于3GPP定位技术方案获取的UE位置计算结果和基于A-GNSS定位技术方案获取的UE位置计算结果的归一化相对误差小于预设的误差门限值。
可选地,所述预定义准则三包括但不限于:LMF根据关联的基站内UE的实际定位性能,以及预先配置的定位参考信号资源和定位性能的映射关系(例如:通过仿真或者固定配置方式获取所述映射关系),确定第二定位参考信号资源配置信息和/或第二定位技术方案。
相应的,UE侧的信息传输过程,例如包括:
步骤1、UE接收LMF配置的定位参考信号资源配置信息和当前的定位技术方案类型信息,其中,通知方式可以是广播、组播或者单播方式。
步骤2、UE判断当前的定位技术方案类型;
如果是基于下行的定位技术方案,进入步骤3;
如果是基于上行的定位技术方案,进入步骤4;
如果是基于上行和下行组合的定位技术方案,进入步骤5。
步骤3、UE基于下行的定位技术方案的操作包括:
步骤3.1、UE根据从LMF接收到的定位参考信号资源配置信息(例如DL PRS资源配置信息),接收基站发送的定位参考信号(例如DL PRS)并且进行测量,得到下行定位测量值(包括TOA、DL-TDOA、DL-AoD、DL-AoA等)和测量质量;
步骤3.2、UE把下行定位测量值和测量质量作为定位上报量上报给LMF。
步骤4、UE基于上行的定位技术方案的操作包括:
步骤4.1、UE根据从LMF或者基站接收到的上行定位参考信号资源配置信息(例如上行链路(UL,简称上行)探测参考信号(Sounding Reference Signal,SRS)资源配置信息),向基站发送上行定位参考信号(例如UL SRS)。
步骤5、UE基于上行和下行组合的定位技术方案的操作包括:
步骤5.1、UE根据从LMF接收到的下行定位参考信号(DL PRS)和上行定位参考信号资源配置信息(例如UL SRS资源配置信息),接收基站发送 的DL PRS,并且结合本UE需要发送UL SRS的时刻进行测量,得到UE侧上行和下行组合的定位测量值(UE Rx-Tx difference)和测量质量;
步骤5.2、UE把上行和下行组合的定位测量值和测量质量作为定位上报量上报给LMF。
相应地,基站侧的信息传输过程,例如包括:
步骤1、基站接收LMF配置的定位参考信号资源配置信息和当前的定位技术方案类型信息,其中,LMF可以通过广播、组播或者单播方式通知给基站。
步骤2、基站判断当前的定位技术方案类型;
如果是基于下行的定位技术方案,进入步骤3;
如果是基于上行的定位技术方案,进入步骤4;
如果是基于上行和下行组合的定位技术方案,进入步骤5。
步骤3、基站基于下行的定位技术方案的操作包括:
步骤3.1、基站根据从LMF接收到的DL PRS资源配置信息向UE发送DL PRS。
步骤4、基站基于上行的定位技术方案的操作包括:
步骤4.1、基站根据从LMF接收到的上行定位参考信号资源配置信息(例如UL SRS资源配置信息),接收UE发送的上行定位参考信号并且进行测量,得到上行定位测量值(包括TOA、UL-TDOA、UL-AoA等)和测量质量;
步骤4.2、基站把上行定位测量值和测量质量,作为定位上报量上报给LMF。
步骤5、基站基于上行和下行组合的定位技术方案的操作包括:
步骤5.1、基站根据从LMF接收到的DL PRS和上行定位参考信号资源配置信息(UL SRS资源配置信息),接收UE发送的上行定位参考信号(例如UL SRS),并且结合本基站需要发送DL PRS的时刻进行测量,得到基站侧上行和下行组合的定位测量值(gNB Rx-Tx difference)和测量质量;
步骤5.2、基站把上行和下行组合的定位测量值和测量质量作为定位上报 量上报给LMF。
下面给出几个具体实施例的举例说明。
实施例1:DL-TDOA->DL-TDOA,更改DL PRS资源配置信息。
实施例1中,第一定位参考信号、第二定位参考信号都是用于下行定位的参考信号DL PRS;第一定位技术方案和第二定位技术方案都是DL-TDOA(即OTDOA)。第二定位参考信号资源和第一定位参考信号资源的差异在于:采用更大的PRS带宽,采用静音(Muting)机制避免各个基站的下行定位参考信号干扰。
图3给出了实施例1的UE定位流程,具体包括:
步骤1~步骤4,同图2所示的步骤1~步骤4,在此不再赘述。
步骤5、在OTDOA信息请求中,LMF根据预定义准则一确定第一PRS资源配置信息(即初始PRS资源),采用广播方式通知UE和基站。
步骤6~步骤10,同图2所示的步骤6~步骤10,在此不再赘述。
步骤11、LMF利用所获得的定位测量值和基站位置等信息,计算出第一UE位置;LMF基于UE和基站上报的第一定位上报量、第一UE位置计算结果之一或者组合,根据预定义准则二判断第一PRS资源配置信息是否合理。
步骤12、如果第一PRS资源配置信息不合理,LMF指示基站进一步确定第二PRS资源配置信息(例如:采用更大的PRS带宽,采用Muting机制避免各个基站的下行定位参考信号干扰),仍然采用OTDOA定位技术方案;
步骤13、LMF把第二PRS资源配置信息通过广播、组播或者单播方式通知UE和基站。
步骤14、UE接收基站根据最新的第二PRS资源配置信息发送的DL PRS信号,即第二PRS参考信号。
步骤15、UE根据第二PRS资源配置信息测量第二PRS参考信号,并获取第二定位测量值(RSTD)。
步骤16、UE向LMF上报第二定位上报量(包括步骤15中得到的更新后的第二测量值RSTD和测量质量)。
步骤17、LMF基于UE上报的第二定位上报量(更新后测量值和测量质量)进行UE位置计算。
下面分别从LMF、UE和基站侧介绍本实施例1提供的技术方案的举例说明。
LMF侧:
LMF、UE和基站之间相互信息的定位协商过程,例如包括:
Step 1.0、配置N的初始值=1、N_MAX的初始值为8、测量质量门限值、测量值方差门限值和误差系数门限值;其中,N_MAX表示定位协商次数的最大值。
Step 1.1、在第N轮定位协商过程中,判断N和N_MAX的大小。
如果N>=N_MAX,结束定位协商过程;
否则,判断N是否等于1,
如果N=1,LMF根据预定义准则一确定第一DL PRS资源配置信息和OTDOA定位技术方案,进入Step 1.3。
如果N>1,LMF根据预定义准则二判断当前的第二DL PRS资源配置信息(若N=2,则当前的第二DL PRS资源配置信息即第一DL PRS资源配置信息,否则,当前的第二DL PRS资源配置信息是利用预定义准则三确定的DL PRS资源配置信息,其他实施例同理)是否合理:
如果合理,结束当前第N轮定位协商过程,基于当前的DL PRS资源和OTDOA定位技术方案,进入Step 1.3;
如果不合理,进入Step 1.2,继续进行第N轮的定位协商过程。
Step 1.2、LMF根据预定义准则三确定各个基站分别需要重新配置的第二DL PRS资源(包括:第一,采用新的第二定位参考信号资源配置),进入Step 1.3。
Step 1.3、LMF采用广播方式将当前配置的DL PRS资源配置信息(第一DL PRS资源配置信息或者第二DL PRS资源配置信息)通知各个UE和基站,进入Step 1.4。
Step 1.4、LMF接收UE当前上报的第一定位上报量或第二定位上报量,进入Step 1.5。
其中,第一定位上报量是UE和各基站根据LMF配置的第一DL PRS资源信息针对第一DL PRS进行测量得到的;
第二定位上报量是UE和各基站根据LMF配置的第二DL PRS资源信息针对第二DL PRS进行测量得到的。
Step 1.5、LMF基于UE当前上报的第一定位上报量或第二定位上报量,以及OTDOA定位技术方案,确定UE位置,进入Step 1.6。
Step 1.6、更新N=N+1,进入Step 1.1。
其中,可选地,Step1.4和Step1.5中的定位上报量包括:UE上报的测量值和测量质量只有:UE侧的RSTD测量值和测量质量(不确定性均值估计值和分辨率)。
其中,可选地,UE上报的测量值和测量质量的确定方法如下:UE基于LMF提供的配置并发送的DL PRS资源配置信息,接收并测量DL PRS,获得UE侧的测量值和测量质量。
其中,可选地,Step1.1中,预定义准则一包括但不限于:LMF根据所关联的基站内的所有UE或者X%UE以上的最低定位性能(例如:X=80),以及预先配置的DL PRS资源和定位性能的映射关系(例如:通过仿真方式获取)确定第一DL PRS资源配置信息。
其中,可选地,Step1.1中,预定义准则二包括:当满足下列条件之一或组合时,确定第二定位参考信号资源配置信息和/或第二定位技术方案合理;否则,确定第二定位参考信号资源配置信息和/或第二定位技术方案不合理:
测量质量高于预设的测量质量门限值;
测量值方差小于预设的测量值方差门限值;
基于3GPP定位技术方案获取的UE位置计算结果和基于A-GNSS定位技术方案获取的UE位置计算结果的归一化相对差异小于预设的误差系数门限值。
其中,可选地,Step1.2中,预定义准则三包括但不限于:LMF根据关联的基站内UE的实际定位性能,以及预先配置的DL PRS资源和定位性能的映射关系(例如:通过仿真方式获取),确定第二DL PRS资源配置信息和/或第二定位技术方案。
相应地,UE侧的信息传输过程,例如包括:
步骤1、UE接收LMF配置的DL PRS资源配置信息,其中,通知方式是广播方式。
步骤2、UE判断当前的定位技术方案类型是基于下行的定位技术方案,则进入步骤3。
步骤3、UE基于下行的定位技术方案的操作:
3.1、UE根据从LMF接收到的DL PRS资源配置信息接收基站发送的DL PRS并且进行测量,得到下行定位测量值(包括DL-TDOA)和测量质量(不确定性均值估计值和分辨率);
3.2、UE把下行定位测量值和测量质量作为定位上报量上报给LMF。
相应地,基站侧的信息传输过程,例如包括:
步骤1、基站接收LMF配置的DL PRS资源配置信息,其中,通知方式可以是广播、组播或者单播方式。
步骤2、基站判断当前的定位技术方案类型是基于下行的定位技术方案,则进入步骤3。
步骤3、基站基于下行的定位技术方案的操作:
3.1、基站根据从LMF接收到的DL PRS资源配置信息向UE发送DL PRS。
实施例2:DL-TDOA->UL-TDOA,更改UL SRS资源配置信息。
本实施例2中,第一定位参考信号是用于下行定位的参考信号DL SSB,第二定位参考信号是用于上行定位的参考信号UL SRS;第一定位技术方案是DL-TDOA(即OTDOA),第二定位技术方案是UL-TDOA。
图4给出了实施例2的UE定位流程,具体包括:
步骤1~步骤4,同图2所示的步骤1~步骤4,在此不再赘述。
步骤5、OTDOA信息请求中,LMF根据预定义准则一配置第一SSB资源(即初始SSB资源),采用广播方式通知UE和基站。
步骤6~步骤10,同图2所示的步骤6~步骤10,在此不再赘述。
步骤11、LMF利用所获得的定位测量值和基站位置等信息,计算出第一UE位置;LMF基于UE和基站上报的第一定位上报量、第一UE位置计算结果之一或者组合,根据预定义准则二判断第一SSB资源是否合理。
步骤12、判断第一SSB资源不合理,LMF指示基站更改为UL-TDOA定位技术方案,并且给出更新的第二定位参考信号(UL SRS)资源配置信息;
步骤13、LMF把更新的第二SRS资源配置信息和UL-TDOA定位技术方案通过广播、组播或者单播方式通知UE和基站。
步骤14、UE根据更新的第二SRS资源配置信息向基站发送UL SRS信号(即第二SRS参考信号)。
步骤15、基站根据第二SRS资源配置信息测量第二SRS参考信号,并获取第二定位测量值(UL TDOA等)。
步骤16、基站向LMF上报第二定位上报量(更新后测量值RSTD、RSRP和测量质量)。
步骤17、LMF基于基站上报的第二定位上报量(更新后测量值和测量质量)和UL-TDOA进行UE位置计算。
下面分别从LMF、UE和基站侧介绍实施例2提供的技术方案。
LMF侧的信息传输方法包括:
LMF、UE和基站之间相互信息的定位协商过程,具体包括:
Step 1.0、配置N的初始值为1、N_MAX的初始值为10、测量质量门限值、测量值方差门限值和误差系数门限值。
Step 1.1、在第N轮定位协商过程中,判断N和N_MAX的大小。
如果N>=N_MAX,结束定位协商过程;
否则,判断N是否等于1,
如果N=1,LMF根据预定义准则一确定第一DL SSB资源配置信息和 OTDOA定位技术方案,进入Step 1.3。
如果N>1,LMF根据预定义准则二判断当前的第二定位参考信号资源配置信息是否合理:
如果合理,结束当前第N轮定位协商过程,基于当前的定位参考信号资源配置信息和定位技术方案,进入Step 1.3;
如果不合理,进入Step 1.2,继续进行第N轮的定位协商过程。
Step 1.2、LMF根据预定义准则三确定各个基站分别需要重新配置的第二定位参考信号资源配置信息(包括:第一,采用新的第二定位参考信号资源配置;第二,基于上一轮的第二定位参考信号资源配置,采用Muting机制避免各个基站的下行定位参考信号干扰)和第二定位技术方案UL-TDOA,进入Step 1.3。
Step 1.3、LMF采用广播、组播或者单播方式将配置的第一DL SSB或者第二UL SRS资源配置信息通知各个UE和基站,进入Step 1.4。
Step 1.4、LMF接收UE或基站当前上报的第一定位上报量或第二定位上报量,进入Step 1.5。
其中,第一定位上报量是UE/基站根据LMF配置的第一DL SSB资源配置信息针对第一定位参考信号进行测量得到的;
第二定位上报量是UE/基站根据LMF配置的第二UL SRS资源配置信息针对第二定位参考信号进行测量得到的。
Step 1.5、LMF基于UE/基站当前上报的第一定位上报量/第二定位上报量,以及OTDOA定位技术方案/UL-TDOA定位技术方案确定UE位置,进入Step 1.6。
Step 1.6、更新N=N+1,进入Step 1.1。
其中,可选地,Step1.4和Step1.5中的定位上报量包括:UE和/或基站上报的测量值和测量质量,包括两种类型:类型1)UE侧的测量值和测量质量,类型2)基站侧的测量值和测量质量。
其中,可选地,UE上报的测量值和测量质量的确定方法如下:UE基于 LMF提供的配置并发送的DL SSB资源配置信息,接收并测量DL SSB,获得第一类测量值和测量质量,即UE侧的测量值和测量质量。
其中,可选地,基站上报的测量值和测量质量的确定方法如下:基站基于LMF提供的UL SRS资源配置,接收并测量终端发送的UL SRS信号,获得第二类测量值和/或测量质量,即基站侧的测量值和测量质量。
可选地,Step1.1中,预定义准则一包括但不限于:LMF根据所关联的基站内的所有UE或者X%UE以上的最低定位性能(例如:X=80),以及预先配置的定位参考信号资源和定位性能的映射关系(例如:通过仿真或者固定配置方式获取)确定第一定位参考信号资源配置信息。
可选地,Step1.1中,预定义准则二包括:当满足下列条件之一或组合时,确定第二定位参考信号资源配置信息和/或第二定位技术方案合理;否则,确定第二定位参考信号资源配置信息和/或第二定位技术方案不合理:
测量质量高于预设的测量质量门限值;
测量值方差小于预设的测量值方差门限值;
基于3GPP定位技术方案获取的UE位置计算结果和基于A-GNSS定位技术方案获取的UE位置计算结果的归一化相对差异小于预设的误差系数门限值。
可选地,Step1.2中,预定义准则三包括但不限于:LMF根据关联的基站内UE的实际定位性能,以及预先配置的定位参考信号资源和定位性能的映射关系(例如:通过仿真或者固定配置方式获取),确定第二定位参考信号资源配置信息和/或第二定位技术方案。
相应第,UE侧的信息传输过程,例如包括:
步骤1、UE接收LMF配置的定位参考信号资源配置信息,其中,通知方式可以是广播、组播或者单播方式。
步骤2、UE判断当前的定位技术方案类型,如果是基于下行的定位技术方案,进入步骤3;如果是基于上行的定位技术方案,进入步骤4。
步骤3、UE基于下行的定位技术方案的操作:
3.1、UE根据从LMF接收到的DL SSB资源配置信息接收基站发送的DL SSB并且进行测量,得到下行定位测量值(包括TOA、DL-TDOA、DL-AoD、DL-AoA等)和测量质量;
3.2、UE把下行定位测量值和测量质量作为定位上报量上报给LMF。
步骤4、UE基于上行的定位技术方案的操作:
4.1、UE根据从LMF或者基站接收到的UL SRS资源配置信息向基站发送UL SRS。
相应地,基站侧的信息传输过程,例如包括:
步骤1、基站接收LMF配置的定位参考信号资源配置信息,其中,通知方式可以是广播、组播或者单播方式。
步骤2、基站判断当前的定位技术方案类型,如果是基于下行的定位技术方案,进入步骤3;如果是基于上行的定位技术方案,进入步骤4。
步骤3、基站基于下行的定位技术方案的操作:
3.1、基站根据从LMF接收到的DL SSB资源配置信息向UE发送DL SSB。
步骤4、基站基于上行的定位技术方案的操作:
4.1、基站根据从LMF接收到的UL SRS资源配置信息接收UE发送的UL SRS并且进行测量,得到上行定位测量值(包括TOA、UL-TDOA、UL-AoA等)和测量质量;
4.2、基站把上行定位测量值和测量质量作为定位上报量上报给LMF。
实施例3:DL-TDOA->多小区-往返时延(Multiple Cell-Round Time Trip,Multiple-RTT),更改下行信道状态信息参考信号(Down Link Channel State Information-Reference Signal,DL CSI-RS)和UL SRS资源配置信息。
本实施例3中,第一定位参考信号是用于下行定位的参考信号DL CSI-RS,第二定位参考信号包括用于上行和下行联合定位的参考信号DL CSI-RS和UL SRS;第一定位技术方案是DL-TDOA(即OTDOA),第二定位技术方案是Multiple-RTT。
图5给出了实施例3的UE定位流程,具体包括:
步骤1~步骤4,同图2所示的步骤1~步骤4,在此不再赘述。
步骤5、在OTDOA信息请求中,LMF根据预定义准则一配置第一CSI-RS资源(即初始CSI-RS资源)配置信息,采用广播方式通知UE和基站。
步骤6~步骤10,同图2的步骤6~步骤10,在此不再赘述。
步骤11、LMF利用所获得的定位测量值和基站位置等信息,计算出第一UE位置;LMF基于UE和基站上报的第一定位上报量、第一UE位置计算结果之一或者组合,根据预定义准则二判断第一CSI-RS资源配置信息是否合理。
步骤12、判断第一CSI-RS资源配置信息不合理,LMF更改当前的定位技术方案为Multiple-RTT定位技术方案,并且给出更新的第二定位参考信号(DL CSI-RS和UL SRS)资源配置信息;
步骤13、LMF把更新的第二定位参考信号(DL CSI-RS和UL SRS)资源配置信息和Multiple-RTT定位技术方案,通过广播、组播或者单播方式通知UE和基站。
步骤14、UE根据更新的第二SRS资源配置信息向基站发送UL SRS信号。
步骤15、基站根据第二SRS资源配置信息测量第二SRS参考信号,并获取第二定位测量值(gNB Rx-Tx Timing)。
步骤16、基站向LMF上报第二定位上报量(更新后测量值gNB Rx-Tx Timing和测量质量)。
步骤17、UE接收基站根据更新的第二CSI-RS资源配置信息发送的DL CSI-RS信号,即第二CSI-RS参考信号。
步骤18、UE根据第二CSI-RS资源配置信息测量第二CSI-RS参考信号,并获取第二定位测量值(UE Rx-Tx Timing)。
步骤19、UE向LMF上报第二定位上报量(更新后测量值UE Rx-Tx Timing和测量质量)。
步骤20、LMF基于UE和基站上报的第二定位上报量(更新后测量值UE Rx-Tx Timing、gNB Rx-Tx Timing和测量质量)和Multiple-RTT定位技术方 案进行UE位置计算。
其中,需要说明的是,步骤14~16和步骤17~19之间没有先后顺序。
下面分别从LMF、UE和基站侧介绍实施例3提供的技术方案。
LMF侧的信息传输过程包括:
LMF、UE和基站相互之间信息的定位协商过程:
Step 1.0、配置N的初始值、N_MAX的初始值、测量质量门限值、测量值方差门限值和误差系数门限值;其中,N初始值为1,N_MAX是大于1的正整数,表示定位协商次数的最大值。
Step 1.1、在第N轮定位协商过程中,判断N和N_MAX的大小。
如果N>=N_MAX,结束定位协商过程;
否则,判断N是否等于1;
如果N=1,LMF根据预定义准则一确定第一DL CSI-RS资源配置信息和OTDOA定位技术方案,进入Step 1.3。
如果N>1,LMF根据预定义准则二判断当前的第二定位参考信号资源配置信息是否合理:
如果合理,结束当前第N轮定位协商过程,基于当前的定位参考信号资源和定位技术方案,进入Step 1.3;
如果不合理,进入Step 1.2,继续进行第N轮的定位协商过程。
Step 1.2、LMF根据预定义准则三确定各个基站分别需要重新配置的第二定位参考信号资源(包括:第一,采用新的第二定位参考信号资源配置;第二,基于上一轮的第二定位参考信号资源配置,采用Muting机制避免各个基站的下行定位参考信号干扰)和第二定位技术方案Multiple-RTT,进入Step 1.3。
Step 1.3、LMF采用广播、组播或者单播方式将配置的第一或者第二定位参考信号资源配置信息通知各个UE和基站,进入Step 1.4。
Step 1.4、LMF接收UE和/或基站当前上报的第一定位上报量或第二定位上报量,进入Step 1.5。
其中,第一定位上报量是UE和各基站根据LMF配置的第一定位参考信 号资源配置信息针对第一定位参考信号进行测量得到的;
第二定位上报量是UE和各基站根据LMF配置的第二定位参考信号资源配置信息针对第二定位参考信号进行测量得到的。
Step 1.5、LMF基于UE和/或基站当前上报的第一/第二定位上报量,以及定位技术方案确定UE位置,进入Step 1.6。
Step 1.6、更新N=N+1,进入Step 1.1。
其中,可选地,Step1.4和Step1.5中的定位上报量包括:UE和基站上报的测量值和测量质量,包括两种类型:类型1)UE侧的测量值和测量质量,类型2)基站侧的测量值和测量质量。
可选地,UE上报的测量值和测量质量的确定方法如下:UE基于LMF提供的配置并发送的DL CSI-RS资源配置信息,接收并测量DL CSI-RS,获得第一类测量值和测量质量。
可选地,基站上报的测量值和测量质量的确定方法如下:基站基于LMF提供的UL SRS资源配置信息,接收并测量终端发送的UL SRS信号,获得第二类测量值和/或测量质量。
可选地,Step1.1中,预定义准则一包括但不限于:LMF根据所关联的基站内的所有UE或者X%UE以上的最低定位性能(例如:X=80),以及预先配置的定位参考信号资源和定位性能的映射关系(例如:通过仿真或者固定配置方式获取),确定第一定位参考信号资源配置信息。
可选地,Step1.1中,预定义准则二包括但不限于下面三个条件之一或者组合:
测量质量高于预设的测量质量门限值;
测量值方差小于预设的测量值方差门限值;
基于3GPP定位技术方案获取的UE位置计算结果和基于A-GNSS定位技术方案获取的UE位置计算结果的归一化相对差异小于预设的误差系数门限值。
可选地,Step1.2中,预定义准则三包括但不限于:LMF根据关联的基站 内UE的实际定位性能,以及预先配置的定位参考信号资源和定位性能的映射关系(例如:通过仿真或者固定配置方式获取),确定第二定位参考信号资源配置信息和第二定位技术方案。
相应第,UE侧的信息传输过程,例如包括:
步骤1、UE接收LMF配置的定位参考信号资源配置信息,其中,通知方式可以是广播、组播或者单播方式。
步骤2、UE判断当前的定位技术方案类型,如果是基于下行的定位技术方案,进入步骤3;如果是基于上行和下行组合的定位技术方案,进入步骤5。
步骤3、UE基于下行的定位技术方案的操作:
3.1、UE根据从LMF接收到的DL CSI-RS资源配置信息接收基站发送的DL CSI-RS并且进行测量,得到下行定位测量值(包括TOA、DL-TDOA、DL-AoD、DL-AoA等)和测量质量;
3.2、UE把下行定位测量值和测量质量作为定位上报量上报给LMF。
步骤5、UE基于上行和下行组合的定位技术方案的操作:
5.1、UE根据从LMF接收到的DL CSI-RS和UL SRS资源配置信息接收基站发送的DL CSI-RS并且结合UL SRS进行测量,得到UE侧上行和下行组合的定位测量值(UE Rx-Tx difference)和测量质量;
5.2、UE把上行和下行组合的定位测量值和测量质量作为定位上报量上报给LMF。
基站侧的信息传输过程包括:
步骤1、基站接收LMF配置的定位参考信号资源配置信息,其中,通知方式可以是广播、组播或者单播方式。
步骤2、基站判断当前的定位技术方案类型,如果是基于下行的定位技术方案,进入步骤3;如果是基于上行和下行组合的定位技术方案,进入步骤5。
步骤3、基站基于下行的定位技术方案的操作:
3.1、基站根据从LMF接收到的DL CSI-RS资源配置信息向UE发送DL CSI-RS。
步骤5、基站基于上行和下行组合的定位技术方案的操作:
5.1、基站根据从LMF接收到的DL CSI-RS和UL SRS资源配置信息接收UE发送的UL SRS并且结合DL CSI-RS发送时刻进行测量,得到基站侧上行和下行组合的定位测量值(gNB Rx-Tx difference)和测量质量;
5.2、基站把上行和下行组合的定位测量值和测量质量作为定位上报量上报给LMF。
综上所述,参见图6,在定位服务器侧,本申请实施例提供的一种信息传输方法,包括:
S101、通过定位服务器与其他节点之间的协商过程,确定定位参考信号资源配置信息和定位技术方案;
S102、将所述定位参考信号资源配置信息和定位技术方案通知给所述其他节点。
其中,步骤S102例如,可以将所述定位参考信号资源配置信息和定位技术方案类型信息通知给所述其他节点。
可选地,所述其他节点包括终端和/或基站。
可选地,该方法还包括:
接收所述其他节点发送的定位上报量,其中,所述定位上报量是所述其他节点基于所述定位参考信号资源配置信息,对定位参考信号进行测量得到的。
可选地,该方法还包括:
基于所述定位上报量确定终端位置。
可选地,所述定位上报量,包括所述其他节点上报的针对定位参考信号进行测量得到的测量值和测量质量。
可选地,通过定位服务器与其他节点之间的协商过程,确定定位参考信号资源配置信息和定位技术方案,具体包括:
对于首次协商过程,根据预定义准则一确定第一定位参考信号资源配置信息和第一定位技术方案。
可选地,通过定位服务器与其他节点之间的协商过程,确定定位参考信号资源配置信息和定位技术方案,具体包括:
对于非首次协商过程,根据预定义准则二判断当前定位参考信号资源配置信息和/或定位技术方案是否合理,确定采用合理的当前定位参考信号资源配置信息和/或定位技术方案;
其中,所述当前定位参考信号资源配置信息,为所述第一定位参考信号资源配置信息,或者为根据预定义准则三重新确定的第二定位参考信号资源配置信息,所述当前定位技术方案为第一定位技术方案,或根据预定义准则三重新确定的第二定位技术方案。
需要说明的是,本申请实施例中,对于第二次的协商过程,先把第一定位参考信号资源配置信息赋值为第二定位参考信号资源配置信息,并且把第一定位技术方案赋值为第二定位技术方案。然后再根据预定义准则二判断当前定位参考信号资源配置信息和/或定位技术方案是否合理,那么所述的当前定位参考信号资源配置信息即第二定位参考信号资源配置信息,所述当前定位技术方案即第二定位技术方案。
另外,还需要说明的是,本申请实施例中,可以用预定义准则三重新确定第二定位参考信号资源配置信息,和/或,重新确定第二定位技术方案。
可选地,将所述定位参考信号资源配置信息和定位技术方案通知给所述其他节点,具体包括:将根据所述预定义准则二确定的合理的当前定位参考信号资源配置信息和当前定位技术方案通知给所述其他节点。
可选地,若根据所述预定义准则二确定当前定位参考信号资源配置信息不合理,则进一步根据预定义准则三重新确定第二定位参考信号资源配置信息和/或第二定位技术方案。
可选地,所述预定义准则一包括:
根据定位服务器所关联的基站内的所有终端或者部分终端的最低定位性能,以及预先配置的定位参考信号资源与定位性能的映射关系,确定第一定位参考信号资源配置信息。
可选地,所述预定义准则二包括:当满足下列条件之一或组合时,确定第二定位参考信号资源配置信息和第二定位技术方案合理;否则,确定第二定位参考信号资源配置信息和第二定位技术方案不合理:
条件一、测量质量高于预设的测量质量门限值;
条件二、测量值方差小于预设的测量值方差门限值;
条件三、基于第三代合作伙伴计划3GPP定位技术方案获取的终端位置计算结果和基于网络辅助的全球导航卫星系统A-GNSS定位技术方案获取的终端位置计算结果的归一化相对误差,小于预设的误差门限值。
可选地,所述预定义准则三包括:
根据定位服务器关联的基站内终端的实际定位性能,以及预先配置的定位参考信号资源与定位技术方案的定位性能之间的映射关系,确定第二定位参考信号资源配置信息和/或第二定位技术方案。
相应地,参见图7,在所述其他节点侧,例如终端侧和基站侧都适用的一种信息传输方法,包括:
S201、接收定位服务器发送的定位参考信号资源配置信息和定位技术方案;其中,所述定位参考信号资源配置信息和定位技术方案是通过定位服务器与其他节点之间的协商过程确定的;
需要说明的是,上述定位参考信号资源配置信息包括上行定位参考信号资源配置信息和下行定位参考信号资源配置信息,不再赘述。
S202、基于定位参考信号资源配置信息和定位技术方案的类型,发送定位相关信息。
可选地,所述定位技术方案为下列方案之一:
基于下行的定位技术方案;
基于上行的定位技术方案;
基于上行和下行组合的定位技术方案。
对于终端侧:
可选地,若定位技术方案为基于下行的定位技术方案,则发送定位相关 信息具体包括:
根据从定位服务器接收到的下行定位参考信号资源配置信息,接收基站发送的下行定位参考信号并且进行测量,得到下行定位测量值和测量质量;
将所述下行定位测量值和测量质量作为定位上报量发送给定位服务器。
可选地,若定位技术方案为基于上行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器或者基站接收到的上行定位参考信号资源配置信息,向基站发送上行定位参考信号。
可选地,若定位技术方案为基于上行和下行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器接收到的下行定位参考信号和上行定位参考信号资源配置信息,接收基站发送的下行定位参考信号并且结合上行定位参考信号进行测量,得到终端侧上行和下行组合的定位测量值,以及测量质量;
将所述终端侧上行和下行组合的定位测量值和所述测量质量作为定位上报量发送给所述定位服务器。
对于基站侧:
可选地,若定位技术方案为基于下行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器接收到的下行定位参考信号资源配置信息,向终端发送下行定位参考信号。
可选地,若定位技术方案为基于上行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器接收到的上行定位参考信号资源配置信息,接收终端发送的上行定位参考信号并且进行测量,得到上行定位测量值和测量质量;
将所述上行定位测量值和所述测量质量作为定位上报量上报给定位服务器。
可选地,若定位技术方案为基于上行和下行的定位技术方案,则发送定 位相关信息具体包括:
根据从定位服务器接收到的下行定位参考信号资源配置信息和上行定位参考信号资源配置信息,接收终端发送的上行定位参考信号并且结合所述下行定位参考信号发送时刻进行测量,得到基站侧上行和下行组合的定位测量值,以及测量质量;
将所述基站侧上行和下行组合的定位测量值和所述测量质量作为定位上报量发送给所述定位服务器。
可选地,所述下行参考信号包括下列信号之一或组合:新空口定位参考信号NR PRS,信道状态信息参考信号CSI-RS,同步块SSB。
可选地,所述上行参考信号包括上行链路探测参考信号UL SRS。
可选地,所述定位技术方案包括下列定位技术方案之一:3GPP所支持的各种下行定位技术、上行定位技术、上下行组合的定位技术。
参见图8,本申请实施例提供的定位服务器侧的一种信息传输装置包括:
确定单元11,用于通过定位服务器与其他节点之间的协商过程,确定定位参考信号资源配置信息和定位技术方案;
通知单元12,用于将所述定位参考信号资源配置信息和定位技术方案通知给所述其他节点。
可选地,所述其他节点包括终端和/或基站。
可选地,所述确定单元还用于:
接收所述其他节点发送的定位上报量,其中,所述定位上报量是所述其他节点基于所述定位参考信号资源配置信息,对定位参考信号进行测量得到的。
可选地,所述确定单元还用于:
基于所述定位上报量确定终端位置。
可选地,所述定位上报量,包括所述其他节点上报的针对定位参考信号进行测量得到的测量值和测量质量。
可选地,通过定位服务器与其他节点之间的协商过程,确定定位参考信 号资源配置信息和定位技术方案,具体包括:
对于首次协商过程,根据预定义准则一确定第一定位参考信号资源配置信息和第一定位技术方案。
可选地,所述确定单元通过定位服务器与其他节点之间的协商过程,确定定位参考信号资源配置信息和定位技术方案,具体包括:
对于非首次协商过程,根据预定义准则二判断当前定位参考信号资源配置信息和/或定位技术方案是否合理,确定采用合理的当前定位参考信号资源配置信息和/或定位技术方案;
其中,所述当前定位参考信号资源配置信息,为所述第一定位参考信号资源配置信息,或者为根据预定义准则三重新确定的第二定位参考信号资源配置信息,所述当前定位技术方案为第一定位技术方案,或根据预定义准则三重新确定的第二定位技术方案。
可选地,将所述定位参考信号资源配置信息和定位技术方案通知给所述其他节点,具体包括:将根据所述预定义准则二确定的合理的当前定位参考信号资源配置信息和当前定位技术方案通知给所述其他节点。
可选地,若根据所述预定义准则二确定当前定位参考信号资源配置信息不合理,则进一步根据预定义准则三重新确定第二定位参考信号资源配置信息和/或第二定位技术方案。
可选地,所述预定义准则一包括:
根据定位服务器所关联的基站内的所有终端或者部分终端的最低定位性能,以及预先配置的定位参考信号资源与定位性能的映射关系,确定第一定位参考信号资源配置信息。
可选地,所述预定义准则二包括:当满足下列条件之一或组合时,确定第二定位参考信号资源配置信息和第二定位技术方案合理;否则,确定第二定位参考信号资源配置信息和第二定位技术方案不合理:
条件一、测量质量高于预设的测量质量门限值;
条件二、测量值方差小于预设的测量值方差门限值;
条件三、基于第三代合作伙伴计划3GPP定位技术方案获取的终端位置计算结果和基于网络辅助的全球导航卫星系统A-GNSS定位技术方案获取的终端位置计算结果的归一化相对误差,小于预设的误差门限值。
可选地,所述预定义准则三包括:
根据定位服务器关联的基站内终端的实际定位性能,以及预先配置的定位参考信号资源与定位技术方案的定位性能之间的映射关系,确定第二定位参考信号资源配置信息和/或第二定位技术方案。
在此需要说明的是,本申请实施例提供的上述定位服务器侧的信息传输装置,能够实现上述定位服务器侧的信息传输方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例的有益效果进行具体赘述。
参见图9,本申请实施例提供的终端侧和基站侧都适用的一种信息传输装置包括:
接收单元21,用于接收定位服务器发送的定位参考信号资源配置信息和定位技术方案;其中,所述定位参考信号资源配置信息和定位技术方案是通过定位服务器与其他节点之间的协商过程确定的;
发送单元22,用于基于定位参考信号资源配置信息和定位技术方案的类型,发送定位相关信息。
可选地,所述定位技术方案为下列方案之一:
基于下行的定位技术方案;
基于上行的定位技术方案;
基于上行和下行组合的定位技术方案。
对于终端侧:
可选地,若定位技术方案为基于下行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器接收到的下行定位参考信号资源配置信息,接收基站发送的下行定位参考信号并且进行测量,得到下行定位测量值和测量质量;
将所述下行定位测量值和测量质量作为定位上报量发送给定位服务器。
可选地,若定位技术方案为基于上行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器或者基站接收到的上行定位参考信号资源配置信息,向基站发送上行定位参考信号。
可选地,若定位技术方案为基于上行和下行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器接收到的下行定位参考信号和上行定位参考信号资源配置信息,接收基站发送的下行定位参考信号并且结合上行定位参考信号进行测量,得到终端侧上行和下行组合的定位测量值,以及测量质量;
将所述终端侧上行和下行组合的定位测量值和所述测量质量作为定位上报量发送给所述定位服务器。
对于基站侧:
可选地,若定位技术方案为基于下行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器接收到的下行定位参考信号资源配置信息,向终端发送下行定位参考信号。
可选地,若定位技术方案为基于上行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器接收到的上行定位参考信号资源配置信息,接收终端发送的上行定位参考信号并且进行测量,得到上行定位测量值和测量质量;
将所述上行定位测量值和所述测量质量作为定位上报量上报给定位服务器。
可选地,若定位技术方案为基于上行和下行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器接收到的下行定位参考信号资源配置信息和上行定位参考信号资源配置信息,接收终端发送的上行定位参考信号并且结合所述下 行定位参考信号发送时刻进行测量,得到基站侧上行和下行组合的定位测量值,以及测量质量;
将所述基站侧上行和下行组合的定位测量值和所述测量质量作为定位上报量发送给所述定位服务器。
可选地,所述下行参考信号包括下列信号之一或组合:新空口定位参考信号NR PRS,信道状态信息参考信号CSI-RS,同步块SSB。
可选地,所述上行参考信号包括上行链路探测参考信号UL SRS。
可选地,所述定位技术方案包括下列定位技术方案之一:3GPP所支持的各种下行定位技术、上行定位技术、上下行组合的定位技术。
在此需要说明的是,本申请实施例提供的上述终端侧和基站侧都适用的信息传输装置,能够实现上述终端侧和基站侧都适用的信息传输方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例的有益效果进行具体赘述。
参见图10,本申请实施例提供的定位服务器侧的一种信息传输装置包括:
存储器520,用于存储程序指令;
处理器500,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
通过定位服务器与其他节点之间的协商过程,确定定位参考信号资源配置信息和定位技术方案;
将所述定位参考信号资源配置信息和定位技术方案通过收发机510通知给所述其他节点。
可选地,所述其他节点包括终端和/或基站。
可选地,所述处理器还用于:
接收所述其他节点发送的定位上报量,其中,所述定位上报量是所述其他节点基于所述定位参考信号资源配置信息,对定位参考信号进行测量得到的。
可选地,所述处理器还用于:
基于所述定位上报量确定终端位置。
可选地,所述定位上报量,包括所述其他节点上报的针对定位参考信号进行测量得到的测量值和测量质量。
可选地,通过定位服务器与其他节点之间的协商过程,确定定位参考信号资源配置信息和定位技术方案,具体包括:
对于首次协商过程,根据预定义准则一确定第一定位参考信号资源配置信息和第一定位技术方案。
可选地,所述处理器通过定位服务器与其他节点之间的协商过程,确定定位参考信号资源配置信息和定位技术方案,具体包括:
对于非首次协商过程,根据预定义准则二判断当前定位参考信号资源配置信息和/或定位技术方案是否合理,确定采用合理的当前定位参考信号资源配置信息和/或定位技术方案;
其中,所述当前定位参考信号资源配置信息,为所述第一定位参考信号资源配置信息,或者为根据预定义准则三重新确定的第二定位参考信号资源配置信息,所述当前定位技术方案为第一定位技术方案,或根据预定义准则三重新确定的第二定位技术方案。
可选地,将所述定位参考信号资源配置信息和定位技术方案通知给所述其他节点,具体包括:将根据所述预定义准则二确定的合理的当前定位参考信号资源配置信息和当前定位技术方案通知给所述其他节点。
可选地,若根据所述预定义准则二确定当前定位参考信号资源配置信息不合理,则进一步根据预定义准则三重新确定第二定位参考信号资源配置信息和/或第二定位技术方案。
可选地,所述预定义准则一包括:
根据定位服务器所关联的基站内的所有终端或者部分终端的最低定位性能,以及预先配置的定位参考信号资源与定位性能的映射关系,确定第一定位参考信号资源配置信息。
可选地,所述预定义准则二包括:当满足下列条件之一或组合时,确定 第二定位参考信号资源配置信息和第二定位技术方案合理;否则,确定第二定位参考信号资源配置信息和第二定位技术方案不合理:
条件一、测量质量高于预设的测量质量门限值;
条件二、测量值方差小于预设的测量值方差门限值;
条件三、基于第三代合作伙伴计划3GPP定位技术方案获取的终端位置计算结果和基于网络辅助的全球导航卫星系统A-GNSS定位技术方案获取的终端位置计算结果的归一化相对误差,小于预设的误差门限值。
可选地,所述预定义准则三包括:
根据定位服务器关联的基站内终端的实际定位性能,以及预先配置的定位参考信号资源与定位技术方案的定位性能之间的映射关系,确定第二定位参考信号资源配置信息和/或第二定位技术方案。
收发机510,用于在处理器500的控制下接收和发送数据。
其中,在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机510可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。处理器500负责管理总线架构和通常的处理,存储器520可以存储处理器500在执行操作时所使用的数据。
处理器500可以是中央处理器(Central Processing Unit,CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。在此需要说明的是,本申请实施例提供的上述定位服务器侧的信息传输装置,能够实现上述定位服务器侧的信息传输方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例的有益效果进行具体赘述。
参见图11,本申请实施例提供的终端侧的另一种信息传输装置包括:
存储器620,用于存储程序指令;
处理器600,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
接收定位服务器发送的定位参考信号资源配置信息和定位技术方案;其中,所述定位参考信号资源配置信息和定位技术方案是通过定位服务器与其他节点之间的协商过程确定的;
基于定位参考信号资源配置信息和定位技术方案的类型,发送定位相关信息。
可选地,所述定位技术方案为下列方案之一:
基于下行的定位技术方案;
基于上行的定位技术方案;
基于上行和下行组合的定位技术方案。
可选地,若定位技术方案为基于下行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器接收到的下行定位参考信号资源配置信息,接收基站发送的下行定位参考信号并且进行测量,得到下行定位测量值和测量质量;
将所述下行定位测量值和测量质量作为定位上报量发送给定位服务器。
可选地,若定位技术方案为基于上行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器或者基站接收到的上行定位参考信号资源配置信息,向基站发送上行定位参考信号。
可选地,若定位技术方案为基于上行和下行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器接收到的下行定位参考信号和上行定位参考信号资源配置信息,接收基站发送的下行定位参考信号并且结合上行定位参考信号进行测量,得到终端侧上行和下行组合的定位测量值,以及测量质量;
将所述终端侧上行和下行组合的定位测量值和所述测量质量作为定位上报量发送给所述定位服务器。
通过收发机610接收定位服务器发送的定位参考信号资源配置信息和定位技术方案;其中,所述定位参考信号资源配置信息和定位技术方案是通过定位服务器与其他节点之间的协商过程确定的;
基于定位参考信号资源配置信息和定位技术方案的类型,通过收发机610发送定位相关信息。
收发机610,用于在处理器600的控制下接收和发送数据。
其中,在图11中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口630还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
可选的,处理器600可以是中央处理器(Central Processing Unit,CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。在此需要说明的是,本申请实施例提供的上述终端侧适用的信息传输装置,能够实现上述终端侧适用的信息传输方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例的有益效果进行具体赘述。
参见图12,本申请实施例提供的基站侧的另一种信息传输装置包括:
存储器505,用于存储程序指令;
处理器504,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
接收定位服务器发送的定位参考信号资源配置信息和定位技术方案;其中,所述定位参考信号资源配置信息和定位技术方案是通过定位服务器与其他节点之间的协商过程确定的;
基于定位参考信号资源配置信息和定位技术方案的类型,发送定位相关信息。
可选地,所述定位技术方案为下列方案之一:
基于下行的定位技术方案;
基于上行的定位技术方案;
基于上行和下行组合的定位技术方案。
可选地,若定位技术方案为基于下行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器接收到的下行定位参考信号资源配置信息,向终端发送下行定位参考信号。
可选地,若定位技术方案为基于上行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器接收到的上行定位参考信号资源配置信息,接收终端发送的上行定位参考信号并且进行测量,得到上行定位测量值和测量质量;
将所述上行定位测量值和所述测量质量作为定位上报量上报给定位服务器。
可选地,若定位技术方案为基于上行和下行的定位技术方案,则发送定位相关信息具体包括:
根据从定位服务器接收到的下行定位参考信号资源配置信息和上行定位参考信号资源配置信息,接收终端发送的上行定位参考信号并且结合所述下行定位参考信号发送时刻进行测量,得到基站侧上行和下行组合的定位测量值,以及测量质量;
将所述基站侧上行和下行组合的定位测量值和所述测量质量作为定位上报量发送给所述定位服务器。
可选地,所述下行参考信号包括下列信号之一或组合:新空口定位参考信号NR PRS,信道状态信息参考信号CSI-RS,同步块SSB。
可选地,所述上行参考信号包括上行链路探测参考信号UL SRS。
可选地,所述定位技术方案包括下列定位技术方案之一:3GPP所支持的各种下行定位技术、上行定位技术、上下行组合的定位技术。
通过收发机501接收定位服务器发送的定位参考信号资源配置信息和定位技术方案;其中,所述定位参考信号资源配置信息和定位技术方案是通过定位服务器与其他节点之间的协商过程确定的;
基于定位参考信号资源配置信息和定位技术方案的类型,通过收发机501发送定位相关信息。
收发机501,用于在处理器504的控制下接收和发送数据。
在图12中,总线架构(用总线506来代表),总线506可以包括任意数量的互联的总线和桥,总线506将包括由处理器504代表的一个或多个处理器和存储器505代表的存储器的各种电路链接在一起。总线506还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口503在总线506和收发机501之间提供接口。收发机501可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器504处理的数据通过天线502在无线介质上进行传输,进一步,天线502还接收数据并将数据传送给处理器504。
处理器504负责管理总线506和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器505可以被用于存储处理器504在执行操作时所使用的数据。
可选的,处理器504可以是中央处理器(Central Processing Unit,CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门 阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。
在此需要说明的是,本申请实施例提供的上述基站侧适用的信息传输装置,能够实现上述基站侧适用的信息传输方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例的有益效果进行具体赘述。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例提供了一种计算设备,该计算设备具体可以为桌面计算机、便携式计算机、智能手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)等。该计算设备可以包括中央处理器(Center Processing Unit,CPU)、存储器、输入/输出设备等,输入设备可以包括键盘、鼠标、触摸屏等,输出设备可以包括显示设备,如液晶显示器(Liquid Crystal Display,LCD)、阴极射线管(Cathode Ray Tube,CRT)等。
存储器可以包括只读存储器(ROM)和随机存取存储器(RAM),并向处理器提供存储器中存储的程序指令和数据。在本申请实施例中,存储器可 以用于存储本申请实施例提供的任一所述方法的程序。
处理器通过调用存储器存储的程序指令,处理器用于按照获得的程序指令执行本申请实施例提供的任一所述方法。
本申请实施例提供了一种计算机存储介质,用于储存为上述本申请实施例提供的装置所用的计算机程序指令,其包含用于执行上述本申请实施例提供的任一方法的程序。
所述计算机存储介质可以是计算机能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(Magneto-Optical,MO)等)、光学存储器(例如光盘(Compact Disk,CD)、数字通用光盘(Digital Versatile Disc,DVD)、蓝光光碟(Blu-ray Disc,BD)、高清通用光盘(High-Definition Versatile Disc,HVD)等)、以及半导体存储器(例如ROM、可擦除可编程只读存储(Erasable Programmable Read-Only Memory,EPROM)、带电可擦可编程只读存储器(Electrically Erasable Programmable read only memory,EEPROM)、非易失性存储器(NAND FLASH)、固态硬盘((Solid State Disk,简称SSD)SSD))等。
本申请实施例提供的方法可以应用于终端设备,也可以应用于网络设备。
其中,终端设备也可称之为用户设备(User Equipment,简称为“UE”)、移动台(Mobile Station,简称为“MS”)、移动终端(Mobile Terminal)等,可选的,该终端可以具备经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信的能力,例如,终端可以是移动电话(或称为“蜂窝”电话)、或具有移动性质的计算机等,例如,终端还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
网络设备可以为基站(例如,接入点),指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(Internet Protocol,IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(Base  Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以是5G系统中的gNB等。本申请实施例中不做限定。
上述方法处理流程可以用软件程序实现,该软件程序可以存储在存储介质中,当存储的软件程序被调用时,执行上述方法步骤。
综上所述,本申请实施例提出了一种LMF协调的定位方案,解决了现有方案可能存在的如下问题:
第一,没有在各个基站之间进行协商DL PRS的配置信息。相邻基站可能在相同的时间和频率资源上的发送DL PRS,造成相邻基站DL PRS信号相互干扰,导致下行定位测量值性能下降;
第二,不能支持各基站根据UE的定位性能需求来优化配置DL PRS信号。例如,可能在有的时候基站配置的DL PRS时间和频率资源不足(如:DL PRS带宽过小、时频域资源密度过低等),不能满足UE的定位性能需求;而有的时候基站配置的DL PRS时间和频率资源过于浪费,由于资源浪费而对无线系统通信造成不利影响。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (67)

  1. 一种信息传输方法,其特征在于,该方法包括:
    通过定位服务器与其他节点之间的协商过程,确定定位参考信号资源配置信息和定位技术方案;其中,所述协商过程为定位相关信息的交互过程;
    将所述定位参考信号资源配置信息和定位技术方案通知给所述其他节点。
  2. 根据权利要求1所述的方法,其特征在于,所述其他节点包括终端和/或基站。
  3. 根据权利要求1所述的方法,其特征在于,该方法还包括:
    接收所述其他节点发送的定位上报量,其中,所述定位上报量是所述其他节点基于所述定位参考信号资源配置信息,对定位参考信号进行测量得到的。
  4. 根据权利要求3所述的方法,其特征在于,该方法还包括:
    基于所述定位上报量确定终端位置。
  5. 根据权利要求3所述的方法,其特征在于,所述定位上报量,包括所述其他节点上报的针对定位参考信号进行测量得到的测量值和测量质量。
  6. 根据权利要求1所述的方法,其特征在于,通过定位服务器与其他节点之间的协商过程,确定定位参考信号资源配置信息和定位技术方案,具体包括:
    对于首次协商过程,根据预定义准则一确定第一定位参考信号资源配置信息和第一定位技术方案。
  7. 根据权利要求6所述的方法,其特征在于,通过定位服务器与其他节点之间的协商过程,确定定位参考信号资源配置信息和定位技术方案,具体包括:
    对于非首次协商过程,根据预定义准则二判断当前定位参考信号资源配置信息和/或定位技术方案是否合理,确定采用合理的当前定位参考信号资源配置信息和/或定位技术方案;
    其中,所述当前定位参考信号资源配置信息,为所述第一定位参考信号资源配置信息,或者为根据预定义准则三重新确定的第二定位参考信号资源配置信息,所述当前定位技术方案为第一定位技术方案,或根据预定义准则三重新确定的第二定位技术方案。
  8. 根据权利要求7所述的方法,其特征在于,将所述定位参考信号资源配置信息和定位技术方案通知给所述其他节点,具体包括:
    将根据所述预定义准则二确定的合理的当前定位参考信号资源配置信息和当前定位技术方案通知给所述其他节点。
  9. 根据权利要求8所述的方法,其特征在于,若根据所述预定义准则二确定当前定位参考信号资源配置信息不合理,则进一步根据预定义准则三重新确定第二定位参考信号资源配置信息和/或第二定位技术方案。
  10. 根据权利要求6所述的方法,其特征在于,所述预定义准则一包括:
    根据定位服务器所关联的基站内的所有终端或者部分终端的最低定位性能,以及预先配置的定位参考信号资源与定位性能的映射关系,确定第一定位参考信号资源配置信息。
  11. 根据权利要求7、8或9之一所述的方法,其特征在于,所述预定义准则二包括:当满足下列条件之一或组合时,确定第二定位参考信号资源配置信息和第二定位技术方案合理;否则,确定第二定位参考信号资源配置信息和第二定位技术方案不合理:
    条件一、测量质量高于预设的测量质量门限值;
    条件二、测量值方差小于预设的测量值方差门限值;
    条件三、基于第三代合作伙伴计划3GPP定位技术方案获取的终端位置计算结果和基于网络辅助的全球导航卫星系统A-GNSS定位技术方案获取的终端位置计算结果的归一化相对误差,小于预设的误差门限值。
  12. 根据权利要求9所述的方法,其特征在于,所述预定义准则三包括:
    根据定位服务器关联的基站内终端的实际定位性能,以及预先配置的定位参考信号资源与定位技术方案的定位性能之间的映射关系,确定第二定位 参考信号资源配置信息和/或第二定位技术方案。
  13. 一种信息传输方法,其特征在于,该方法包括:
    接收定位服务器发送的定位参考信号资源配置信息和定位技术方案;其中,所述定位参考信号资源配置信息和定位技术方案是通过定位服务器与其他节点之间的协商过程确定的;其中,所述协商过程为定位相关信息的交互过程;
    基于定位参考信号资源配置信息和定位技术方案的类型,发送定位相关信息。
  14. 根据权利要求13所述的方法,其特征在于,所述定位技术方案为下列方案之一:
    基于下行的定位技术方案;
    基于上行的定位技术方案;
    基于上行和下行组合的定位技术方案。
  15. 根据权利要求14所述的方法,其特征在于,若定位技术方案为基于下行的定位技术方案,则发送定位相关信息具体包括:
    根据从定位服务器接收到的下行定位参考信号资源配置信息,接收基站发送的下行定位参考信号并且进行测量,得到下行定位测量值和测量质量;
    将所述下行定位测量值和测量质量作为定位上报量发送给定位服务器。
  16. 根据权利要求14所述的方法,其特征在于,若定位技术方案为基于上行的定位技术方案,则发送定位相关信息具体包括:
    根据从定位服务器或者基站接收到的上行定位参考信号资源配置信息,向基站发送上行定位参考信号。
  17. 根据权利要求14所述的方法,其特征在于,若定位技术方案为基于上行和下行的定位技术方案,则发送定位相关信息具体包括:
    根据从定位服务器接收到的下行定位参考信号和上行定位参考信号资源配置信息,接收基站发送的下行定位参考信号并且结合上行定位参考信号进行测量,得到终端侧上行和下行组合的定位测量值,以及测量质量;
    将所述终端侧上行和下行组合的定位测量值和所述测量质量作为定位上报量发送给所述定位服务器。
  18. 根据权利要求14所述的方法,其特征在于,若定位技术方案为基于下行的定位技术方案,则发送定位相关信息具体包括:
    根据从定位服务器接收到的下行定位参考信号资源配置信息,向终端发送下行定位参考信号。
  19. 根据权利要求14所述的方法,其特征在于,若定位技术方案为基于上行的定位技术方案,则发送定位相关信息具体包括:
    根据从定位服务器接收到的上行定位参考信号资源配置信息,接收终端发送的上行定位参考信号并且进行测量,得到上行定位测量值和测量质量;
    将所述上行定位测量值和所述测量质量作为定位上报量上报给定位服务器。
  20. 根据权利要求14所述的方法,其特征在于,若定位技术方案为基于上行和下行的定位技术方案,则发送定位相关信息具体包括:
    根据从定位服务器接收到的下行定位参考信号资源配置信息和上行定位参考信号资源配置信息,接收终端发送的上行定位参考信号并且结合所述下行定位参考信号发送时刻进行测量,得到基站侧上行和下行组合的定位测量值,以及测量质量;
    将所述基站侧上行和下行组合的定位测量值和所述测量质量作为定位上报量发送给所述定位服务器。
  21. 根据权利要求15、17、18或20之一所述的方法,其特征在于,
    所述下行参考信号包括下列信号之一或组合:新空口定位参考信号NR PRS,信道状态信息参考信号CSI-RS,同步块SSB。
  22. 根据权利要求16或19所述的方法,其特征在于,所述上行参考信号包括上行链路探测参考信号UL SRS。
  23. 一种信息传输装置,其特征在于,该装置包括:
    确定单元,用于通过定位服务器与其他节点之间的协商过程,确定定位 参考信号资源配置信息和定位技术方案;其中,所述协商过程为定位相关信息的交互过程;
    通知单元,用于将所述定位参考信号资源配置信息和定位技术方案通知给所述其他节点。
  24. 根据权利要求23所述的信息传输装置,其特征在于,所述其他节点包括终端和/或基站。
  25. 根据权利要求23所述的信息传输装置,其特征在于,所述通知单元还用于:
    接收所述其他节点发送的定位上报量,其中,所述定位上报量是所述其他节点基于所述定位参考信号资源配置信息,对定位参考信号进行测量得到的。
  26. 根据权利要求25所述的信息传输装置,其特征在于,所述通知单元还用于:
    基于所述定位上报量确定终端位置。
  27. 根据权利要求25所述的信息传输装置,其特征在于,所述定位上报量,包括所述其他节点上报的针对定位参考信号进行测量得到的测量值和测量质量。
  28. 根据权利要求23所述的信息传输装置,其特征在于,所述确定单元通过定位服务器与其他节点之间的协商过程,确定定位参考信号资源配置信息和定位技术方案,具体包括:
    对于首次协商过程,根据预定义准则一确定第一定位参考信号资源配置信息和第一定位技术方案。
  29. 根据权利要求28所述的信息传输装置,其特征在于,所述确定单元通过定位服务器与其他节点之间的协商过程,确定定位参考信号资源配置信息和定位技术方案,具体包括:
    对于非首次协商过程,根据预定义准则二判断当前定位参考信号资源配置信息和/或定位技术方案是否合理,确定采用合理的当前定位参考信号资源 配置信息和/或定位技术方案;
    其中,所述当前定位参考信号资源配置信息,为所述第一定位参考信号资源配置信息,或者为根据预定义准则三重新确定的第二定位参考信号资源配置信息,所述当前定位技术方案为第一定位技术方案,或根据预定义准则三重新确定的第二定位技术方案。
  30. 根据权利要求29所述的信息传输装置,其特征在于,所述确定单元将所述定位参考信号资源配置信息和定位技术方案通知给所述其他节点,具体包括:
    将根据所述预定义准则二确定的合理的当前定位参考信号资源配置信息和当前定位技术方案通知给所述其他节点。
  31. 根据权利要求30所述的信息传输装置,其特征在于,若根据所述预定义准则二确定当前定位参考信号资源配置信息不合理,则进一步根据预定义准则三重新确定第二定位参考信号资源配置信息和/或第二定位技术方案。
  32. 根据权利要求28所述的信息传输装置,其特征在于,所述预定义准则一包括:
    根据定位服务器所关联的基站内的所有终端或者部分终端的最低定位性能,以及预先配置的定位参考信号资源与定位性能的映射关系,确定第一定位参考信号资源配置信息。
  33. 根据权利要求29、30或31之一所述的信息传输装置,其特征在于,所述预定义准则二包括:当满足下列条件之一或组合时,确定第二定位参考信号资源配置信息和第二定位技术方案合理;否则,确定第二定位参考信号资源配置信息和第二定位技术方案不合理:
    条件一、测量质量高于预设的测量质量门限值;
    条件二、测量值方差小于预设的测量值方差门限值;
    条件三、基于第三代合作伙伴计划3GPP定位技术方案获取的终端位置计算结果和基于网络辅助的全球导航卫星系统A-GNSS定位技术方案获取的终端位置计算结果的归一化相对误差,小于预设的误差门限值。
  34. 根据权利要求31所述的信息传输装置,其特征在于,所述预定义准则三包括:
    根据定位服务器关联的基站内终端的实际定位性能,以及预先配置的定位参考信号资源与定位技术方案的定位性能之间的映射关系,确定第二定位参考信号资源配置信息和/或第二定位技术方案。
  35. 一种信息传输装置,其特征在于,该装置包括:
    接收单元,用于接收定位服务器发送的定位参考信号资源配置信息和定位技术方案;其中,所述定位参考信号资源配置信息和定位技术方案是通过定位服务器与其他节点之间的协商过程确定的;其中,所述协商过程为定位相关信息的交互过程;
    发送单元,用于基于定位参考信号资源配置信息和定位技术方案的类型,发送定位相关信息。
  36. 根据权利要求35所述的信息传输装置,其特征在于,所述定位技术方案为下列方案之一:
    基于下行的定位技术方案;
    基于上行的定位技术方案;
    基于上行和下行组合的定位技术方案。
  37. 根据权利要求36所述的信息传输装置,其特征在于,若定位技术方案为基于下行的定位技术方案,则发送定位相关信息具体包括:
    根据从定位服务器接收到的下行定位参考信号资源配置信息,接收基站发送的下行定位参考信号并且进行测量,得到下行定位测量值和测量质量;
    将所述下行定位测量值和测量质量作为定位上报量发送给定位服务器。
  38. 根据权利要求36所述的信息传输装置,其特征在于,若定位技术方案为基于上行的定位技术方案,则发送定位相关信息具体包括:
    根据从定位服务器或者基站接收到的上行定位参考信号资源配置信息,向基站发送上行定位参考信号。
  39. 根据权利要求36所述的信息传输装置,其特征在于,若定位技术方 案为基于上行和下行的定位技术方案,则发送定位相关信息具体包括:
    根据从定位服务器接收到的下行定位参考信号和上行定位参考信号资源配置信息,接收基站发送的下行定位参考信号并且结合上行定位参考信号进行测量,得到终端侧上行和下行组合的定位测量值,以及测量质量;
    将所述终端侧上行和下行组合的定位测量值和所述测量质量作为定位上报量发送给所述定位服务器。
  40. 根据权利要求36所述的信息传输装置,其特征在于,若定位技术方案为基于下行的定位技术方案,则发送定位相关信息具体包括:
    根据从定位服务器接收到的下行定位参考信号资源配置信息,向终端发送下行定位参考信号。
  41. 根据权利要求36所述的信息传输装置,其特征在于,若定位技术方案为基于上行的定位技术方案,则发送定位相关信息具体包括:
    根据从定位服务器接收到的上行定位参考信号资源配置信息,接收终端发送的上行定位参考信号并且进行测量,得到上行定位测量值和测量质量;
    将所述上行定位测量值和所述测量质量作为定位上报量上报给定位服务器。
  42. 根据权利要求36所述的信息传输装置,其特征在于,若定位技术方案为基于上行和下行的定位技术方案,则发送定位相关信息具体包括:
    根据从定位服务器接收到的下行定位参考信号资源配置信息和上行定位参考信号资源配置信息,接收终端发送的上行定位参考信号并且结合所述下行定位参考信号发送时刻进行测量,得到基站侧上行和下行组合的定位测量值,以及测量质量;
    将所述基站侧上行和下行组合的定位测量值和所述测量质量作为定位上报量发送给所述定位服务器。
  43. 根据权利要求37、39、40或42之一所述的信息传输装置,其特征在于,
    所述下行参考信号包括下列信号之一或组合:新空口定位参考信号NR  PRS,信道状态信息参考信号CSI-RS,同步块SSB。
  44. 根据权利要求38或41所述的信息传输装置,其特征在于,所述上行参考信号包括上行链路探测参考信号UL SRS。
  45. 一种信息传输装置,其特征在于,包括:
    存储器,用于存储程序指令;
    处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
    通过定位服务器与其他节点之间的协商过程,确定定位参考信号资源配置信息和定位技术方案;其中,所述协商过程为定位相关信息的交互过程;
    将所述定位参考信号资源配置信息和定位技术方案通知给所述其他节点。
  46. 根据权利要求45所述的信息传输装置,其特征在于,所述其他节点包括终端和/或基站。
  47. 根据权利要求45所述的信息传输装置,其特征在于,所述处理器还用于:
    接收所述其他节点发送的定位上报量,其中,所述定位上报量是所述其他节点基于所述定位参考信号资源配置信息,对定位参考信号进行测量得到的。
  48. 根据权利要求47所述的信息传输装置,其特征在于,所述处理器还用于:
    基于所述定位上报量确定终端位置。
  49. 根据权利要求47所述的信息传输装置,其特征在于,所述定位上报量,包括所述其他节点上报的针对定位参考信号进行测量得到的测量值和测量质量。
  50. 根据权利要求45所述的信息传输装置,其特征在于,所述处理器通过定位服务器与其他节点之间的协商过程,确定定位参考信号资源配置信息和定位技术方案,具体包括:
    对于首次协商过程,根据预定义准则一确定第一定位参考信号资源配置信息和第一定位技术方案。
  51. 根据权利要求50所述的信息传输装置,其特征在于,所述处理器通过定位服务器与其他节点之间的协商过程,确定定位参考信号资源配置信息和定位技术方案,具体包括:
    对于非首次协商过程,根据预定义准则二判断当前定位参考信号资源配置信息和/或定位技术方案是否合理,确定采用合理的当前定位参考信号资源配置信息和/或定位技术方案;
    其中,所述当前定位参考信号资源配置信息,为所述第一定位参考信号资源配置信息或者为根据预定义准则三重新确定的第二定位参考信号资源配置信息,所述定位技术方案为第一定位技术方案,或根据预定义准则三重新确定的第二定位技术方案。
  52. 根据权利要求51所述的信息传输装置,其特征在于,所述处理器将所述定位参考信号资源配置信息和定位技术方案通知给所述其他节点,具体包括:将根据所述预定义准则二确定的合理的当前定位参考信号资源配置信息和当前定位技术方案通知给所述其他节点。
  53. 根据权利要求52所述的信息传输装置,其特征在于,若根据所述预定义准则二确定当前定位参考信号资源配置信息不合理,则进一步根据预定义准则三重新确定第二定位参考信号资源配置信息和/或第二定位技术方案。
  54. 根据权利要求50所述的信息传输装置,其特征在于,所述预定义准则一包括:
    根据定位服务器所关联的基站内的所有终端或者部分终端的最低定位性能,以及预先配置的定位参考信号资源与定位性能的映射关系,确定第一定位参考信号资源配置信息。
  55. 根据权利要求51、52或53之一所述的信息传输装置,其特征在于,所述预定义准则二包括:当满足下列条件之一或组合时,确定第二定位参考信号资源配置信息和第二定位技术方案合理;否则,确定第二定位参考信号资源配置信息和第二定位技术方案不合理:
    条件一、测量质量高于预设的测量质量门限值;
    条件二、测量值方差小于预设的测量值方差门限值;
    条件三、基于第三代合作伙伴计划3GPP定位技术方案获取的终端位置计算结果和基于网络辅助的全球导航卫星系统A-GNSS定位技术方案获取的终端位置计算结果的归一化相对误差,小于预设的误差门限值。
  56. 根据权利要求53所述的信息传输装置,其特征在于,所述预定义准则三包括:
    根据定位服务器关联的基站内终端的实际定位性能,以及预先配置的定位参考信号资源与定位技术方案的定位性能之间的映射关系,确定第二定位参考信号资源配置信息和/或第二定位技术方案。
  57. 一种信息传输装置,其特征在于,该装置包括:
    存储器,用于存储程序指令;
    处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
    接收定位服务器发送的定位参考信号资源配置信息和定位技术方案;其中,所述定位参考信号资源配置信息和定位技术方案是通过定位服务器与其他节点之间的协商过程确定的;其中,所述协商过程为定位相关信息的交互过程;
    基于定位参考信号资源配置信息和定位技术方案的类型,发送定位相关信息。
  58. 根据权利要求57所述的信息传输装置,其特征在于,所述定位技术方案为下列方案之一:
    基于下行的定位技术方案;
    基于上行的定位技术方案;
    基于上行和下行组合的定位技术方案。
  59. 根据权利要求58所述的信息传输装置,其特征在于,若定位技术方案为基于下行的定位技术方案,则发送定位相关信息具体包括:
    根据从定位服务器接收到的下行定位参考信号资源配置信息,接收基站发送的下行定位参考信号并且进行测量,得到下行定位测量值和测量质量;
    将所述下行定位测量值和测量质量作为定位上报量发送给定位服务器。
  60. 根据权利要求58所述的信息传输装置,其特征在于,若定位技术方案为基于上行的定位技术方案,则发送定位相关信息具体包括:
    根据从定位服务器或者基站接收到的上行定位参考信号资源配置信息,向基站发送上行定位参考信号。
  61. 根据权利要求58所述的信息传输装置,其特征在于,若定位技术方案为基于上行和下行的定位技术方案,则发送定位相关信息具体包括:
    根据从定位服务器接收到的下行定位参考信号和上行定位参考信号资源配置信息,接收基站发送的下行定位参考信号并且结合上行定位参考信号进行测量,得到终端侧上行和下行组合的定位测量值,以及测量质量;
    将所述终端侧上行和下行组合的定位测量值和所述测量质量作为定位上报量发送给所述定位服务器。
  62. 根据权利要求58所述的信息传输装置,其特征在于,若定位技术方案为基于下行的定位技术方案,则发送定位相关信息具体包括:
    根据从定位服务器接收到的下行定位参考信号资源配置信息,向终端发送下行定位参考信号。
  63. 根据权利要求58所述的信息传输装置,其特征在于,若定位技术方案为基于上行的定位技术方案,则发送定位相关信息具体包括:
    根据从定位服务器接收到的上行定位参考信号资源配置信息,接收终端发送的上行定位参考信号并且进行测量,得到上行定位测量值和测量质量;
    将所述上行定位测量值和所述测量质量作为定位上报量上报给定位服务器。
  64. 根据权利要求58所述的信息传输装置,其特征在于,若定位技术方案为基于上行和下行的定位技术方案,则发送定位相关信息具体包括:
    根据从定位服务器接收到的下行定位参考信号资源配置信息和上行定位参考信号资源配置信息,接收终端发送的上行定位参考信号并且结合所述下行定位参考信号发送时刻进行测量,得到基站侧上行和下行组合的定位测量 值,以及测量质量;
    将所述基站侧上行和下行组合的定位测量值和所述测量质量作为定位上报量发送给所述定位服务器。
  65. 根据权利要求59、61、62或64之一所述的信息传输装置,其特征在于,所述下行参考信号包括下列信号之一或组合:新空口定位参考信号NR PRS,信道状态信息参考信号CSI-RS,同步块SSB。
  66. 根据权利要求60或63所述的信息传输装置,其特征在于,所述上行参考信号包括上行链路探测参考信号UL SRS。
  67. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行权利要求1至12或权利要求13至22任一项所述的方法。
PCT/CN2020/128194 2019-11-25 2020-11-11 信息传输方法及装置 WO2021104025A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20891515.7A EP4068668A4 (en) 2019-11-25 2020-11-11 INFORMATION TRANSMISSION METHOD AND DEVICE
US17/775,739 US20220407639A1 (en) 2019-11-25 2020-11-11 Information communication method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911168857.3 2019-11-25
CN201911168857.3A CN112838916B (zh) 2019-11-25 2019-11-25 信息传输方法及装置

Publications (1)

Publication Number Publication Date
WO2021104025A1 true WO2021104025A1 (zh) 2021-06-03

Family

ID=75922504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128194 WO2021104025A1 (zh) 2019-11-25 2020-11-11 信息传输方法及装置

Country Status (5)

Country Link
US (1) US20220407639A1 (zh)
EP (1) EP4068668A4 (zh)
CN (1) CN112838916B (zh)
TW (1) TWI760931B (zh)
WO (1) WO2021104025A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023011321A1 (zh) * 2021-08-06 2023-02-09 大唐移动通信设备有限公司 一种定位方法、装置、设备及存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111586855B (zh) * 2019-02-15 2024-02-09 华为技术有限公司 信号传输的方法与装置
US20220046444A1 (en) * 2020-08-04 2022-02-10 Qualcomm Incorporated Measurement gap sharing between radio resource management and positioning reference signal measurements
CN115567953A (zh) * 2021-07-02 2023-01-03 华为技术有限公司 数据发送和接收方法及装置
US11774541B2 (en) * 2021-09-29 2023-10-03 Qualcomm Incorporated Methods and apparatus for combined signaling for sidelink assisted positioning
CN118044140A (zh) * 2021-09-30 2024-05-14 中兴通讯股份有限公司 用于对定位参考信号的测量的系统和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349454A (zh) * 2013-08-02 2015-02-11 华为技术有限公司 定位处理方法、用户设备以及定位服务器
US20190053010A1 (en) * 2017-08-14 2019-02-14 Qualcomm Incorporated Systems and methods for 5g location support using service based interfaces
CN109923842A (zh) * 2016-11-16 2019-06-21 高通股份有限公司 无线网络中用于支持定位参考信号的多种配置的系统和方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101370260B (zh) * 2007-08-15 2013-01-30 北京三星通信技术研究有限公司 Aaa实现ms定位能力协商的方法
WO2014017965A2 (en) * 2012-07-27 2014-01-30 Telefonaktiebolaget L M Ericsson (Publ) Enhancing positioning in multi-plmn deployments
EP3448099B1 (en) * 2016-05-03 2020-07-22 Huawei Technologies Co., Ltd. Allocation of reference signals to unoccupied resource elements
US10433275B2 (en) * 2017-05-26 2019-10-01 Qualcomm Incorporated Systems and methods for positioning mobile devices in a fifth generation wireless network
CN110166501B (zh) * 2018-02-11 2021-06-29 华为技术有限公司 一种定位方法、终端及服务器
KR20230067611A (ko) * 2020-09-15 2023-05-16 퀄컴 인코포레이티드 사용자 장비 고려사항들에 기초한 포지셔닝의 선택을 위한 시스템들 및 방법들

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349454A (zh) * 2013-08-02 2015-02-11 华为技术有限公司 定位处理方法、用户设备以及定位服务器
CN109923842A (zh) * 2016-11-16 2019-06-21 高通股份有限公司 无线网络中用于支持定位参考信号的多种配置的系统和方法
US20190053010A1 (en) * 2017-08-14 2019-02-14 Qualcomm Incorporated Systems and methods for 5g location support using service based interfaces

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Considerations on DL procedures for NR positioning", 3GPP DRAFT; R2-1914980, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051816915 *
NOKIA, NOKIA SHANGHAI BELL: "On-demand and dynamic PRS configuration for DL-TDOA", 3GPP DRAFT; R2-1916106, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051817655 *
See also references of EP4068668A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023011321A1 (zh) * 2021-08-06 2023-02-09 大唐移动通信设备有限公司 一种定位方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN112838916A (zh) 2021-05-25
TWI760931B (zh) 2022-04-11
EP4068668A1 (en) 2022-10-05
TW202121921A (zh) 2021-06-01
CN112838916B (zh) 2022-10-18
EP4068668A4 (en) 2023-01-25
US20220407639A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
TWI822969B (zh) 信號傳輸、信號測量上報、定位方法及裝置、電腦存儲介質
WO2021104025A1 (zh) 信息传输方法及装置
WO2021057175A1 (zh) 信号传输方法及装置
WO2021000951A1 (zh) 信号传输方法及装置
WO2021093642A1 (zh) 时钟偏差确定方法及装置
CN111465098B (zh) 一种信息传输方法及装置
WO2022001858A1 (zh) 定位方法及装置
WO2022028153A1 (zh) 用于定位的测量方法、装置和存储介质
WO2022237423A1 (zh) 参考设备确定方法及装置、网络侧设备
WO2022161503A1 (zh) 终端的定位方法、装置、设备、存储介质及程序产品
WO2021063175A1 (zh) 一种波束切换的方法、装置及通信设备
WO2020199898A1 (zh) 一种定位测量值的确定方法及装置
WO2022206774A1 (zh) 一种prs配置信息的确定方法及装置
WO2022237501A1 (zh) 一种定位方法及装置
WO2022206918A1 (zh) 一种prs资源确定方法及装置
WO2024027402A1 (zh) 下行定位方法、设备及处理器可读存储介质
WO2024027642A1 (zh) 一种信息传输方法、装置及设备
WO2022206306A1 (zh) 一种通信方法和装置
TWI820676B (zh) 終端設備的定位方法、裝置及存儲介質
WO2023232074A1 (zh) 定位方法、装置及存储介质
TW202410714A (zh) 信號傳輸、信號測量上報、定位方法及裝置
WO2021093560A1 (zh) 时钟偏差确定方法及装置
WO2023011001A1 (zh) 定时误差关联信息的发送方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020891515

Country of ref document: EP

Effective date: 20220627