WO2021093642A1 - 时钟偏差确定方法及装置 - Google Patents

时钟偏差确定方法及装置 Download PDF

Info

Publication number
WO2021093642A1
WO2021093642A1 PCT/CN2020/126222 CN2020126222W WO2021093642A1 WO 2021093642 A1 WO2021093642 A1 WO 2021093642A1 CN 2020126222 W CN2020126222 W CN 2020126222W WO 2021093642 A1 WO2021093642 A1 WO 2021093642A1
Authority
WO
WIPO (PCT)
Prior art keywords
clock deviation
base station
positioning
prs
terminal
Prior art date
Application number
PCT/CN2020/126222
Other languages
English (en)
French (fr)
Inventor
任斌
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US17/773,845 priority Critical patent/US11988754B2/en
Priority to KR1020227019066A priority patent/KR20220097960A/ko
Priority to EP20886435.5A priority patent/EP4061068A4/en
Priority to JP2022527209A priority patent/JP7413527B2/ja
Publication of WO2021093642A1 publication Critical patent/WO2021093642A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/256Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to timing, e.g. time of week, code phase, timing offset
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/252Employing an initial estimate of location in generating assistance data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/31Acquisition or tracking of other signals for positioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2662Arrangements for Wireless System Synchronisation
    • H04B7/2671Arrangements for Wireless Time-Division Multiple Access [TDMA] System Synchronisation
    • H04B7/2678Time synchronisation
    • H04B7/2687Inter base stations synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for determining clock deviation.
  • the 3rd Generation Partnership Project (3GPP) defines a variety of user terminal (User Terminal, UE) positioning methods by measuring the positioning reference signal (Positioning Reference Signal, PRS) of the 3GPP wireless communication system, such as downlink Link Observed Time Difference Of Arrival (OTDOA), Uplink Time Difference Of Arrival (UTDOA), etc.
  • PRS Positioning Reference Signal
  • OTDOA Uplink Time Difference Of Arrival
  • UTDA Uplink Time Difference Of Arrival
  • the characteristics of these methods are based on the PRS positioning of the wireless communication system itself, and can work in an environment where the positioning reference signal outside the network cannot be received. But the common problem of these positioning methods is low positioning accuracy.
  • the embodiments of the present application provide a method and device for determining clock deviations, which are used to reduce clock deviations between base stations, thereby improving positioning accuracy.
  • the method for determining clock deviation includes:
  • Manner 1 The first clock deviation is directly used as the second clock deviation, and the target terminal is notified through the Sidelink interface;
  • Manner 2 The first clock deviation is fed back to the first terminal of the first type through the Sidelink interface, and the first terminal of the first type determines the second clock deviation based on the first clock deviation and a predefined criterion. And notify the target terminal through the Sidelink interface;
  • Manner 3 Notifying the target terminal of the first clock deviation through the Sidelink interface, and the target terminal determines the second clock deviation based on the first clock deviation and a predefined criterion.
  • the predefined criteria includes one or a combination of the following calculation criteria: arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • the positioning reference signal PRS includes one or a combination of the following signals:
  • NR PRS NR PRS, NR C-PRS, SSB, CSI-RS.
  • the method for determining clock deviation provided in an embodiment of the present application includes:
  • the method further includes:
  • the second clock deviation is determined by one of the following methods:
  • Manner 1 Receive the first clock deviation notified by the first terminal through the Sidelink interface, and assign the first clock deviation to the second clock deviation;
  • Manner 2 Receive a second clock deviation notified by the first terminal of the first type through the Sidelink interface, where the second clock deviation is based on the first clock deviation and a predefined criterion by the first terminal of the first type It is determined that the first clock deviation is determined by the first terminal of the second type and fed back to the first terminal of the second type through the Sidelink interface;
  • Manner 3 Receive the first clock deviation notified by multiple first terminals through the Sidelink interface, and determine the second clock deviation based on the first clock deviation and a predefined criterion.
  • the predefined criteria includes one or a combination of the following calculation criteria: arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • the positioning reference signal PRS includes one or a combination of the following signals:
  • NR PRS NR PRS, NR C-PRS, SSB, CSI-RS.
  • a terminal provided in an embodiment of the present application includes a processor and a memory:
  • the processor is used to read the program in the memory and execute the following process:
  • the processor assists the target terminal to obtain the second clock deviation in one of the following ways:
  • Manner 1 The first clock deviation is directly used as the second clock deviation, and the target terminal is notified through the Sidelink interface;
  • Manner 2 The first clock deviation is fed back to the first terminal of the first type through the Sidelink interface, and the first terminal of the first type determines the second clock deviation based on the first clock deviation and a predefined criterion. And notify the target terminal through the Sidelink interface;
  • Manner 3 Notifying the target terminal of the first clock deviation through the Sidelink interface, and the target terminal determines the second clock deviation based on the first clock deviation and a predefined criterion.
  • the predefined criteria includes one or a combination of the following calculation criteria: arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • the positioning reference signal PRS includes one or a combination of the following signals:
  • NR PRS NR PRS, NR C-PRS, SSB, CSI-RS.
  • a terminal provided in an embodiment of the present application includes a processor and a memory:
  • the processor is used to read the program in the memory and execute the following process:
  • the processor is further configured to:
  • the processor determines the second clock deviation in one of the following ways:
  • Manner 1 Receive the first clock deviation notified by the first terminal through the Sidelink interface, and assign the first clock deviation to the second clock deviation;
  • Manner 2 Receive a second clock deviation notified by the first terminal of the first type through the Sidelink interface, where the second clock deviation is based on the first clock deviation and a predefined criterion by the first terminal of the first type It is determined that the first clock deviation is determined by the first terminal of the second type and fed back to the first terminal of the second type through the Sidelink interface;
  • Manner 3 Receive the first clock deviation notified by multiple first terminals through the Sidelink interface, and determine the second clock deviation based on the first clock deviation and a predefined criterion.
  • the predefined criteria includes one or a combination of the following calculation criteria: arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • the positioning reference signal PRS includes one or a combination of the following signals:
  • NR PRS NR PRS, NR C-PRS, SSB, CSI-RS.
  • the device for determining clock deviation provided in an embodiment of the present application includes:
  • the first unit is used to determine the first positioning measurement value by measuring the downlink positioning reference signal PRS from the reference base station and the non-reference base station;
  • the second unit is configured to determine a first clock deviation between the reference base station and the non-reference base station based on the first positioning measurement value; based on the first clock deviation, assist the target terminal to obtain a second clock deviation.
  • the method for determining clock deviation includes:
  • the third unit is used to determine the second clock deviation, where the second clock deviation is determined based on the first clock deviation between the reference base station and the non-reference base station, and the first clock deviation is measured by the first terminal Determined by the first positioning measurement value determined by the downlink positioning reference signal PRS from the reference base station and the non-reference base station;
  • the fourth unit is configured to correct the first positioning measurement value based on the second clock deviation and obtain a second positioning measurement value.
  • Another embodiment of the present application provides a computer storage medium, the computer storage medium stores computer-executable instructions, and the computer-executable instructions are used to make the computer execute any of the foregoing methods.
  • the first positioning measurement value is determined by measuring the downlink positioning reference signal PRS from the reference base station and the non-reference base station, and based on the first positioning measurement value, the difference between the reference base station and the non-reference base station is determined. Based on the first clock deviation, assist the target terminal to obtain the second clock deviation, thereby realizing a calibration scheme for clock deviation between base stations, which can reduce the clock deviation between base stations and improve positioning accuracy.
  • FIG. 1 is a schematic diagram of determining a second clock deviation based on a first clock deviation according to an embodiment of the application
  • FIG. 2 is another schematic diagram of determining a second clock deviation based on the first clock deviation according to an embodiment of the application
  • FIG. 3 is a third schematic diagram of determining a second clock deviation based on the first clock deviation provided by an embodiment of this application;
  • FIG. 4 is a schematic flowchart of a method for determining a clock offset on the reference terminal side according to an embodiment of the application
  • FIG. 5 is a schematic flowchart of a method for determining a clock offset on the target terminal side according to an embodiment of the application
  • FIG. 6 is a schematic structural diagram of a device for determining a clock deviation on a reference terminal side according to an embodiment of the application
  • FIG. 7 is a schematic structural diagram of a device for determining a clock deviation on a target terminal side according to an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a terminal provided by an embodiment of the application.
  • the PRS described in the embodiments of this application refers to all reference signals that can be used to measure Time of Arrival (TOA), including, for example, PRS that can be used for traditional OTDOA/UTDOA positioning, and channel state indication reference signals (Channel State Indication Reference Signal, CSI-RS), Sounding Reference Signal (Sounding Reference Signal, SRS), etc.
  • TOA Time of Arrival
  • PRS Physical Transport Stream
  • CSI-RS Channel State Indication Reference Signal
  • SRS Sounding Reference Signal
  • the method of positioning using carrier phase measurements (a UE positioning method characterized by high positioning accuracy) can have the following basic methods:
  • Non-differential method directly use the carrier phase measurement value to calculate the UE position without using differential technology.
  • Differential method First, the carrier phase measurement value is differentiated to eliminate some common deviations in the measured value, and then the carrier phase measurement value after the difference is used to calculate the UE position. There are two differential methods, single differential and double differential.
  • Single differential mode select a certain sending end (or receiving end) as the reference end, and then make a difference between the measured value related to the other sending end (or receiving end) and the measured value related to the reference end.
  • the purpose of single differential is to eliminate the measurement deviation of a certain end (receiving end or sending end).
  • Double differential mode Differentiate the measured value after single differential mode again to eliminate measurement errors related to the sender and receiver at the same time, such as the clock deviation between the base station (BS) and the UE.
  • the dual differential technology can be used in downlink positioning scenarios. At this time, there are multiple transmitters (base stations) and two receivers, one of which is a reference receiver with a known location. The other receiving end is a UE whose location is unknown. At this time, the two receiving ends receive the positioning signal sent by the base station at the same time, and the double differential technology is used to eliminate the common errors related to the transmitting end and the receiving end in the measured values of the two receiving ends, and then the position of the receiving end of the unknown position is accurately calculated .
  • the double differential method can eliminate the influence of the time and frequency synchronization deviation between the base stations on the positioning accuracy.
  • the non-differential method is affected by the clock deviation between the UE and the base station at the same time, and the UE clock deviation is much larger than the base station clock deviation; the double differential method requires a reference receiver to be specially placed in a known position, which is implemented for the specific system. Have a negative impact.
  • the single-difference method can be used for the reference signal time difference (RSTD) measurement value of 3GPP OTDOA positioning (the RSTD measurement value calculation method is the TOA measurement value of the target UE and all BSs, and the UE and a reference BS The relevant TOA measurement value is calculated by difference).
  • the single differential mode can eliminate the influence of UE clock deviation on positioning, but the clock deviation between base stations will directly affect the positioning accuracy of the single differential mode.
  • the time synchronization deviation between the base stations is the key to directly affect the positioning accuracy of the single-difference method.
  • a method for time synchronization between base stations one base station monitors the PRS of a neighboring base station. Then, based on the detected arrival time of the PRS, the transmission time of the PRS and the known distance between the two base stations, the time offset between the two base stations is estimated. The estimated time offset between the two base stations can be used to compensate for the influence of the time offset between the base stations on the OTDOA or UTDOA positioning algorithm.
  • the effectiveness of this method is limited as follows: the estimation accuracy of the time offset between two base stations estimated based on the PRS of a single transmission is limited; since the base station has to receive PRS signals from other base stations, the resource overhead of the PRS is increased, and Increase the complexity of the base station implementation.
  • LMF Location Management Function
  • the embodiments of the present application propose a method and device for clock offset calibration based on carrier phase and UE-based positioning, which will effectively reduce the time delay for the UE-assisted positioning scheme.
  • the method and the device are based on the same application concept. Since the method and the device have similar principles for solving the problem, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the applicable system can be Global System of Mobile Communication (GSM) system, Code Division Multiple Access (CDMA) system, Wideband Code Division Multiple Access (WCDMA) general packet Wireless service (General Packet Radio Service, GPRS) system, Long Term Evolution (LTE) system, LTE Frequency Division Duplex (FDD) system, LTE Time Division Duplex (TDD), General Mobile system (Universal Mobile Telecommunication System, UMTS), Worldwide Interoperability for Microwave Access (WiMAX) system, 5G system, 5G NR system, etc.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS General Mobile system
  • WiMAX Worldwide Interoperability for Microwave Access
  • the terminal device involved in the embodiments of the present application may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the terminal equipment may have different names.
  • the terminal equipment may be referred to as user equipment UE.
  • a wireless terminal device can communicate with one or more core networks via a radio access network (RAN).
  • the wireless terminal device can be a mobile terminal device, such as a mobile phone (or “cellular” phone) and a mobile phone.
  • the computer of the terminal device for example, may be a portable, pocket-sized, handheld, built-in computer or vehicle-mounted mobile device, which exchanges language and/or data with the wireless access network.
  • Wireless terminal equipment can also be called system, subscriber unit (Subscriber Unit), subscriber station (Subscriber Station), mobile station (Mobile Station), mobile station (Mobile), remote station (Remote Station), access point (Access Point) , Remote Terminal Equipment (Remote Terminal), Access Terminal Equipment (Access Terminal), User Terminal Equipment (User Terminal), User Agent (User Agent), User Device (User Device), which are not limited in the embodiments of this application.
  • the network device involved in the embodiment of the present application may be a base station, and the base station may include multiple cells.
  • a base station may also be called an access point, or may refer to a device in an access network that communicates with a wireless terminal device through one or more sectors on an air interface, or other names.
  • Network equipment can be used to convert received air frames and Internet Protocol (IP) packets to each other, as a router between wireless terminal equipment and the rest of the access network, where the rest of the access network can include IP Communications network.
  • IP Internet Protocol
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment involved in the embodiments of this application may be a network equipment in the Global System for Mobile Communications GSM or code division multiple access CDMA (Base Transceiver Station, BTS), or it may be a bandwidth code division multiple access in WCDMA.
  • the network equipment (NodeB) can also be the evolved network equipment (evolutional Node B, eNB or e-NodeB) in the long-term evolution LTE system, the 5G base station in the 5G network architecture (Next Generation System), or the evolved home base station ( Home evolved Node B (HeNB), Relay Node (Relay Node), Femto e-NodeB, Pico Cell, etc., which are not limited in the embodiment of the present application.
  • clock deviation between base stations (that is, time synchronization error) is one of the key issues that directly affect positioning performance.
  • the embodiment of the present application proposes a clock deviation calibration solution based on carrier phase. The specific introduction is as follows:
  • a single or multiple first UEs ie, reference UEs
  • the first positioning measurement value ie the carrier phase measurement value
  • the positioning measurement value is calculated to obtain the first clock deviation between the reference base station and the non-reference base station.
  • the UE needs to measure the carrier phase difference between the downlink reference signals of the two downlink base stations and the UE, obtain the single-difference carrier phase measurement value, and establish two or more The hyperbolic equation of the single differential carrier phase measurement value is solved, and the intersection of the two hyperbolic curves is solved as the UE position to be solved.
  • the common base stations in multiple hyperbolic equations are called reference base stations, and the remaining base stations are called non-reference base stations.
  • the target UE is a UE whose geographic location is unknown and needs to be calculated.
  • the reference UE is a UE whose geographic location is known and used to measure and determine the clock deviation between a reference base station and a non-reference base station.
  • the first UE ie, the reference UE
  • the target UE in obtaining the second clock offset in one of the following three ways:
  • Manner 1 A single first UE directly uses the first clock deviation as the second clock deviation, and notifies the second UE (that is, the target UE) through the Sidelink interface;
  • Manner 2 Multiple first UEs of the second type (Type 2) (that is, reference UEs of the second type) feed back the first clock deviation to the first UE of the first type (Type 1) through the Sidelink interface (that is, The first type of reference UE), the first UE Type 1 determines the second clock deviation based on the first clock deviation and a predefined criterion, and then the first UE Type 1 informs the second UE of the second clock deviation through the Sidelink interface (that is, the target UE);
  • Manner 3 The multiple first UEs notify the second UE (ie, the target UE) of the first clock deviation through the Sidelink interface, and the second UE determines the second clock deviation based on the first clock deviation and a predefined criterion.
  • the second UE corrects the first positioning measurement value based on the second clock deviation and obtains the second positioning measurement value
  • the second UE performs downlink positioning based on the second positioning measurement value (based on the carrier phase positioning scheme).
  • the first UE ie, the reference UE
  • the first UE may be a regular UE, a UE dedicated to positioning, or a drive test device.
  • the first UE includes two types: a first UE of the first type (ie, a reference UE of the first type) and a first UE of the second type (ie, a reference UE of the second type);
  • the first UE of one type is a reference UE whose geographic location is known and used to measure and determine the second clock deviation
  • the first UE of the second type is a reference UE whose geographic location is known and used to measure and obtain the first clock deviation
  • the positioning reference signal PRS may be any downlink signal, including but not limited to:
  • New Radio (NR) PRS NR Carrier Phase Positioning Reference Signal (C-PRS), Synchronization Signal Block (Synchronization Signal Block, SSB), and Channel State Indication Reference Signal (Channel State Indication Reference Signal) , CSI-RS) and so on.
  • C-PRS NR Carrier Phase Positioning Reference Signal
  • SSB Synchronization Signal Block
  • CSI-RS Channel State Indication Reference Signal
  • the predefined criteria include, but are not limited to, calculation criteria such as arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • Solution 1 UE-based positioning, a single reference UE clock offset calibration solution.
  • the first UE adopts method one to assist the second UE in obtaining the second clock offset.
  • a single first UE ie reference UE simultaneously measures the downlink positioning reference signal PRS from the reference base station and the non-reference base station to obtain the first positioning measurement value (ie the carrier phase measurement value), and further calculates the reference base station and the non-reference base station.
  • the first UE assists the target UE in obtaining the second clock deviation by using method one: a single first UE directly uses the first clock deviation as the second clock deviation, and notifies the target UE through the Sidelink interface.
  • the second UE corrects the first positioning measurement value based on the second clock deviation and obtains the second positioning measurement value
  • the second UE performs downlink positioning based on the corrected second positioning measurement value (based on the carrier phase positioning scheme).
  • the first UE ie, the reference UE
  • the first UE may be a regular UE, dedicated to positioning the UE, or a drive test device;
  • the positioning reference signal PRS can be any downlink signal, including but not limited to: NR PRS, NR C-PRS, SSB, CSI-RS, etc.;
  • the predefined criteria include, but are not limited to, arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • base station i is a reference base station
  • base station j is a non-reference base station.
  • the first UE a is a reference UE dedicated to positioning measurement; the second UE c is a target UE.
  • the processing schemes of the first UE, the second UE, the reference base station, and the non-reference base station are respectively introduced below.
  • the method for determining the clock offset of the first UE includes:
  • Step 1 The first UE receives the configuration signaling of the first downlink PRS signal
  • the first downlink PRS can be any downlink signal, including but not limited to NR PRS, NR C-PRS, SSB, and CSI-RS.
  • the configuration signaling may be dedicated positioning signaling from LMF or Broadcast signaling, UE-specific RRC signaling or DCI signaling from the serving base station.
  • Step 2 At time T1, the first UE (ie, the reference UE) receives and measures the first downlink PRS signals of the reference base station and the non-reference base station to obtain the first clock deviation between the reference base station and the non-reference base station.
  • the first UE ie, the reference UE
  • Step 3 The first UE notifies the target UE of the first clock deviation.
  • the first UE may notify the second UE (target UE) of the first clock deviation through Sidelink, or forward it to the second UE (target UE) through the serving base station.
  • the method for determining the clock offset of the second UE (target UE) includes:
  • Step 1 The second UE receives the configuration signaling of the second downlink PRS signal and the location information of the downlink reference base station and non-reference base station;
  • the second downlink PRS can be any downlink signal, including but not limited to NR PRS, NR C-PRS, SSB, and CSI-RS.
  • the configuration signaling can be a positioning dedicated signaling from LMF or a service.
  • Step 2 At time T2, the second UE receives and measures the second downlink PRS signals of the reference base station and the non-reference base station to obtain the first positioning measurement value (that is, the carrier phase measurement value).
  • Step 3 The second UE receives the second clock deviation fed back by the first UE.
  • Step 4 Based on the second clock deviation, the second UE corrects the first positioning measurement value (that is, the carrier phase measurement value) measured by Step2 and obtains the second positioning measurement value.
  • the first positioning measurement value that is, the carrier phase measurement value
  • Step 5 The second UE performs downlink positioning based on the second positioning measurement value.
  • a positioning scheme based on carrier phase can be used.
  • processing procedures on the side of the reference base station and the non-reference base station include:
  • Step 1 The reference base station and the non-reference base station receive the configuration signaling of the first downlink PRS signal and the second downlink PRS signal;
  • the configuration signaling is dedicated positioning signaling from the LMF.
  • Step 2 The reference base station and the non-reference base station send the first downlink PRS signal to all first UEs.
  • Step 3 The reference base station and the non-reference base station send the second downlink PRS signal to all second UEs.
  • Solution 2 UE-based positioning, multiple reference UEs, the first type of reference UE notifies the target UE of the clock offset calibration solution.
  • the first UE assists the second UE to obtain the second clock offset by using the second method.
  • the first UE includes two types: the first UE Type 1 (that is, the reference UE of the first type) and the first UE Type 2 ( That is, the second type of reference UE).
  • all first UEs ie reference UEs simultaneously measure the downlink positioning reference signal PRS from the reference base station and the non-reference base station to obtain the first positioning measurement value (ie the carrier phase measurement value), and further calculate to obtain the reference base station and the non-reference base station.
  • the first UE assists the target UE in obtaining the second clock deviation by using method two: multiple first UE Type 2 (ie, reference UEs of the second type) feed back the first clock deviation to the first UE Type 1 through the Sidelink interface. That is, the reference UE of the first type), the first UE Type 1 determines the second clock deviation based on the first clock deviation and a predefined criterion, and then the first UE Type 1 informs the second UE of the second clock deviation through the Sidelink interface (that is, Target UE).
  • first UE Type 2 ie, reference UEs of the second type
  • the second UE corrects the first positioning measurement value based on the second clock deviation and obtains the second positioning measurement value
  • the second UE performs downlink positioning based on the second positioning measurement value (based on the carrier phase positioning scheme).
  • the first UE ie, the reference UE
  • the reference UE can be a regular UE, dedicated to positioning a UE, or a drive test device
  • the positioning reference signal PRS can be any downlink signal, including but not limited to: NR PRS, NR C-PRS, SSB and CSI-RS, etc.
  • predefined criteria include, but are not limited to, arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • base station i is a reference base station
  • base station j is a non-reference base station.
  • the first UE Type 1 a i.e. the first UE of the first type
  • the first UE Type 2 b i.e. the first UE of the second type
  • It is a reference UE dedicated to positioning measurement (that is, a reference UE of the second type)
  • the second UE c is a target UE.
  • the method for determining the clock offset of the first UE Type 1 includes:
  • Step 1 The reference UE of the first type receives the configuration signaling of the first downlink PRS signal
  • the first downlink PRS can be any downlink signal, including but not limited to NR PRS, NR C-PRS, SSB, and CSI-RS.
  • the configuration signaling can be dedicated positioning signaling from LMF or from Broadcast signaling, UE-specific RRC signaling or DCI signaling of the serving base station.
  • Step 2 At time T1, the reference UE of the first type receives and measures the first downlink PRS signals of the reference base station and the non-reference base station to obtain the first clock deviation between the reference base station and the non-reference base station.
  • Step 3 The reference UE of the first type receives the first clock deviation fed back by the reference UE of the second type, and determines the second clock deviation based on a predefined criterion;
  • the predefined criteria include, but are not limited to, arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • the reference UE of the first type may directly receive the first clock deviation fed back by the reference UE of the second type through Sidelink, or the serving base station forwards to receive the first clock deviation fed back by the reference UE of the second type.
  • Step 4 The reference UE of the first type notifies the target UE of the second clock deviation.
  • the reference UE of the first type may notify the target UE of the second clock deviation through Sidelink, or forward it to the target UE through the serving base station.
  • the method for determining the clock offset of the first UE Type 2 (that is, the first UE of the second type, that is, the reference UE of the second type) includes:
  • Step 1 The second type of reference UE receives the configuration signaling of the first downlink PRS signal
  • the first downlink PRS can be any downlink signal, including but not limited to NR PRS, NR C-PRS, SSB, and CSI-RS.
  • the configuration signaling can be dedicated positioning signaling from LMF or from Broadcast signaling, UE-specific RRC signaling or DCI signaling of the serving base station.
  • Step 2 At time T1, the second type of reference UE receives and measures the first downlink PRS signals of the reference base station and the non-reference base station to obtain the first clock deviation between the reference base station and the non-reference base station.
  • Step 3 The reference UE of the second type feeds back the above-mentioned first clock deviation to the reference UE of the first type.
  • the method for determining the clock offset of the second UE includes:
  • Step 1 The second UE receives the configuration signaling of the second downlink PRS signal and the location information of the downlink reference base station and non-reference base station;
  • the second downlink PRS can be any downlink signal, including but not limited to NR PRS, NR C-PRS, SSB, and CSI-RS.
  • the configuration signaling can be a positioning dedicated signaling from LMF or a service.
  • Step 2 At time T2, the second UE receives and measures the second downlink PRS signals of the reference base station and the non-reference base station to obtain the first positioning measurement value (that is, the carrier phase measurement value).
  • Step 3 The second UE receives the second clock deviation fed back by the reference UE of the first type.
  • Step 4 Based on the second clock deviation, the second UE corrects the first positioning measurement value measured by Step2 and obtains the second positioning measurement value.
  • Step 5 The second UE performs downlink positioning based on the corrected second positioning measurement value, for example, a positioning scheme based on carrier phase.
  • the processing procedures of the reference base station and the non-reference base station include:
  • Step 1 The reference base station and the non-reference base station receive the configuration signaling of the first downlink PRS signal and the second downlink PRS signal;
  • the configuration signaling is dedicated positioning signaling from the LMF.
  • Step 2 The reference base station and the non-reference base station send the first downlink PRS signal to all first UEs.
  • Step 3 The reference base station and the non-reference base station send the second downlink PRS signal to all second UEs.
  • Solution 3 UE-based positioning, multiple reference UEs directly notify the target UE of the clock offset calibration solution.
  • the first UE adopts way three to assist the second UE in obtaining the second clock offset.
  • first UEs ie, reference UEs
  • the first positioning measurement value ie the carrier phase measurement value
  • the first UE assists the target UE in obtaining the second clock deviation in way three: multiple first UEs notify the second UE of the first clock deviation through the Sidelink interface, and the second UE determines the first clock deviation based on the first clock deviation and a predefined criterion. Two clock deviation.
  • the second UE corrects the first positioning measurement value based on the second clock deviation and obtains the second positioning measurement value
  • the second UE performs downlink positioning based on the second positioning measurement value (based on the carrier phase positioning scheme).
  • the first UE (ie, the reference UE) can be a regular UE, dedicated to positioning a UE, or a drive test device; in the second method, the first UE includes two types: First UE Type 1 (ie, the first type of reference UE ) And the first UE Type 2 (that is, the second type of reference UE); the positioning reference signal PRS can be any downlink signal, including but not limited to: NR PRS, NR C-PRS, SSB, CSI-RS, etc.; predefined criteria Including but not limited to arithmetic average, selecting the optimal value of channel conditions, and weighted average.
  • First UE Type 1 ie, the first type of reference UE
  • the first UE Type 2 that is, the second type of reference UE
  • the positioning reference signal PRS can be any downlink signal, including but not limited to: NR PRS, NR C-PRS, SSB, CSI-RS, etc.
  • predefined criteria Including but not limited to arithm
  • base station i is a reference base station
  • base station j is a non-reference base station.
  • the first UE a and the first UE b are reference UEs; the second UE c is the target UE.
  • the method for determining the clock offset of the first UE includes:
  • Step 1 The first UE receives the configuration signaling of the first downlink PRS signal
  • the first downlink PRS can be any downlink signal, including but not limited to NR PRS, NR C-PRS, SSB, and CSI-RS.
  • the configuration signaling can be dedicated positioning signaling from LMF or from Broadcast signaling, UE-specific RRC signaling or DCI signaling of the serving base station.
  • Step 2 At time T1, the first UE receives and measures the first downlink PRS signals of the reference base station and the non-reference base station to obtain the first clock deviation between the reference base station and the non-reference base station.
  • Step 3 The first UE feeds back the above-mentioned first clock deviation to the second UE (target UE). Wherein, the first UE may feed back the first clock deviation to the second UE through Sidelink.
  • the method for determining the clock offset of the second UE (target UE) includes:
  • Step 1 The second UE receives the configuration signaling of the second downlink PRS signal and the location information of the downlink reference base station and non-reference base station;
  • the second downlink PRS can be any downlink signal, including but not limited to NR PRS, NR C-PRS, SSB, and CSI-RS.
  • the configuration signaling can be a positioning dedicated signaling from LMF or a service.
  • Step 2 At time T2, the second UE receives and measures the second downlink PRS signals of the reference base station and the non-reference base station to obtain the first positioning measurement value (that is, the carrier phase measurement value).
  • Step 3 The second UE receives all the second clock deviations fed back by the first UE.
  • the second UE determines the second clock offset based on a predefined criterion, where the predefined criterion includes, but is not limited to, arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • Step 4 Based on the second clock deviation, the second UE corrects the first positioning measurement value measured by Step2 and obtains the second positioning measurement value.
  • Step 5 The second UE performs downlink positioning based on the second positioning measurement value, for example: a positioning scheme based on carrier phase.
  • the processing procedures of the reference base station and the non-reference base station include:
  • Step 1 The reference base station and the non-reference base station receive the configuration signaling of the first downlink PRS signal and the second downlink PRS signal; the configuration signaling is dedicated positioning signaling from the LMF.
  • Step 2 The reference base station and the non-reference base station send the first downlink PRS signal to all first UEs.
  • Step 3 The reference base station and the non-reference base station send the second downlink PRS signal to all second UEs.
  • Embodiment 1 describes the first UE (ie, the reference UE) and the second UE (ie, the target UE) of Scheme 1, where the first UE a is a reference UE dedicated to positioning measurement; the target UE c The first positioning measurement value obtained by measurement is the carrier phase measurement value; the positioning reference signal PRS is NR C-PRS; base station i is a reference base station, and base station j is a non-reference base station.
  • the method for determining the clock offset of the first UE (reference UE) a includes:
  • Step 1 The first UE a receives the configuration signaling of the first downlink PRS signal
  • the first downlink PRS may be NR C-PRS, and the configuration signaling may be dedicated positioning signaling from the LMF, or broadcast signaling from the serving base station, UE-specific RRC signaling, or DCI signaling.
  • Step 2 At time T1, the first UE a receives and measures the first downlink PRS signals of the reference base station i and the non-reference base station j to obtain the first clock deviation between the reference base station i and the non-reference base station j.
  • the first UE a measures the C-PRS signal sent by base station i and locks the phase to obtain the carrier phase measurement value then At time k, it can be expressed as follows:
  • Is the carrier phase measurement value in the unit of carrier period ⁇ is the carrier wavelength of C-PRS, Is the unknown full-week ambiguity, Is the carrier phase measurement error.
  • the phase measurement error is generally only 10% of the carrier wavelength, which can be ignored when discussing the base station clock deviation.
  • c is the speed of light, that is, 3.0*10 ⁇ 8 (m/s)
  • b r, a and b t, i are the clock deviations (ie, time synchronization errors) of the first UE a and base station i, respectively.
  • K is a positive integer greater than or equal to 1.
  • Step 3 The first UE a offsets the first clock Notify the target UE c.
  • the method for determining the clock offset of the second UE (target UE) c includes:
  • Step 1 The second UE c receives the configuration signaling of the second downlink PRS signal and the location information of the downlink reference base station and non-reference base station;
  • the second downlink PRS may be NR C-PRS, and the configuration signaling may be dedicated positioning signaling from the LMF, or broadcast signaling from the serving base station, UE-specific RRC signaling, or DCI signaling.
  • Step 2 At time T2, the second UE c receives and measures the second downlink PRS signals of the reference base station and the non-reference base station to obtain the first positioning measurement value (carrier phase).
  • Step 3 The second UE c receives the estimated value of the first clock deviation fed back by the first UE a Directly as the second clock deviation
  • Step 4 The second UE c is based on the second clock deviation Correct the first positioning measurement value (carrier phase) measured by Step2 and obtain the second positioning measurement value.
  • the first positioning measurement value (carrier phase) of base station i and base station j measured by the second UE (target UE) c for:
  • the second UE (target UE)c is based on the second clock deviation estimate Use the following formula for the first positioning measurement value (carrier phase) Make corrections:
  • Step 5 The second UE c is based on the corrected second positioning measurement value Perform downlink positioning, such as a positioning scheme based on carrier phase.
  • the maximum value of the clock deviation between the base stations of the existing TDD system is plus or minus 50 ns. After the above processing, the residual clock deviation can be made to be about 1 ns.
  • Embodiment 2 is performed for the first UE Type1 (ie the reference UE of the first type), the first UE Type2 (ie the reference UE of the second type) and the second UE (ie the target UE) of the scheme 2.
  • the first UE Type1 a is a reference UE of the first type dedicated to positioning measurement
  • the first UE Type2 b is a reference UE of the second type dedicated to positioning measurement
  • the first UE measured by the target UE c is the first positioning measurement
  • the value is the carrier phase measurement value
  • the positioning reference signal PRS is NR C-PRS
  • base station i is the reference base station
  • base station j is the non-reference base station.
  • the method for determining the clock offset of the first UE Type1 (that is, the reference UE of the first type) a includes:
  • Step 1 The first UE Type1 a receives the configuration signaling of the first downlink PRS signal; where the first downlink PRS may be NR C-PRS, and the configuration signaling may be dedicated positioning signaling from the LMF, or It can be broadcast signaling from the serving base station, UE-specific RRC signaling, or DCI signaling.
  • the first downlink PRS may be NR C-PRS
  • the configuration signaling may be dedicated positioning signaling from the LMF, or It can be broadcast signaling from the serving base station, UE-specific RRC signaling, or DCI signaling.
  • Step 2 At time T1, the first UE Type1a receives and measures the first downlink PRS signals of the reference base station i and the non-reference base station j to obtain the first clock offset between the reference base station i and the non-reference base station j.
  • the carrier phase measurement value is obtained then At time k, it can be expressed as follows:
  • is the carrier wavelength of C-PRS
  • the phase measurement error is generally only 10% of the carrier wavelength, which can be ignored when discussing the base station clock deviation.
  • c is the speed of light, that is, 3.0*10 ⁇ 8 (m/s)
  • b r, a and b t, i are the clock deviations (ie, time synchronization errors) of UE a and base station i, respectively.
  • the carrier phase measurement value obtained by measuring the C-PRS signal sent by base station j by the first UE Type1 a is
  • Step 3 The first UE Type1 a receives the first clock deviation fed back by the first UE Type2 b Deviation from the first clock measured by itself The second clock deviation is determined based on a predefined criterion.
  • the first UE Type1 a combined with the first clock deviation measured by the two reference UEs can calculate a more accurate second clock between the reference base station i and the non-reference base station j deviation There are at least the following three calculation methods:
  • Arithmetic average for example:
  • Option2 Select the clock deviation of the reference UE with the best channel conditions (for example, the best channel conditions of the UE with the largest RSRP and/or SINR) as the second clock deviation
  • the RSRP and/or SINR of the reference UE a is greater than the RSRP and/or SINR of the reference UE b, that is, the RSRP of the reference UE a is greater than the RSRP of the reference UE b, and/or the SINR of the reference UE a is greater than the SINR of the reference UE b .
  • Weighted average for example: Among them, f is a weighting coefficient between 0 and 1, and the value of the weighting coefficient f can be determined according to the channel conditions of UE a and UE b.
  • Step 4 The first UE Type1 a offsets the second clock Notify the second UE c.
  • the method for determining the clock offset of the first UE Type 2 includes:
  • Step 1 The first UE Type 2 b receives the configuration signaling of the first downlink PRS signal; where the first downlink PRS may be NR C-PRS, and the configuration signaling may be dedicated positioning signaling from the LMF, or It can be broadcast signaling from the serving base station, UE-specific RRC signaling, or DCI signaling.
  • the first downlink PRS may be NR C-PRS
  • the configuration signaling may be dedicated positioning signaling from the LMF, or It can be broadcast signaling from the serving base station, UE-specific RRC signaling, or DCI signaling.
  • Step 2 At time T1, the first UE Type2b receives and measures the first downlink PRS signals of the reference base station i and the non-reference base station j to obtain the first clock offset between the reference base station i and the non-reference base station j.
  • the first clock deviation value of the reference base station i and the non-reference base station j estimated by the first UE Type2 b can be obtained
  • Step 3 The first UE Type2 b offsets the above first clock Feed back to the first UE Type1a.
  • the method for determining the clock offset of the second UE (target UE) c includes:
  • Step 1 The second UE c receives the configuration signaling of the second downlink PRS signal and the location information of the downlink reference base station and non-reference base station; where the second downlink PRS may be NR C-PRS, and the configuration signaling may come from
  • the LMF positioning dedicated signaling may also be broadcast signaling from the serving base station, UE-specific RRC signaling, or DCI signaling.
  • Step 2 At time T2, the second UE c receives and measures the second downlink PRS signals of the reference base station and the non-reference base station to obtain the first positioning measurement value (carrier phase).
  • Step 3 The second UE c receives the second clock deviation estimation value fed back by the reference UE a of the first type
  • Step 4 Based on the second clock deviation, the second UE c corrects the first positioning measurement value (carrier phase) measured by Step2 and obtains the second positioning measurement value.
  • the first positioning measurement value (carrier phase) of base station i and base station j measured by the second UE (target UE) c for:
  • the second UE (target UE)c is based on the second clock deviation estimate Use the following formula for the first positioning measurement value (carrier phase) Make corrections:
  • Step 5 The second UE c is based on the corrected second positioning measurement value Perform downlink positioning, such as a positioning scheme based on carrier phase.
  • the maximum value of the clock deviation between the base stations of the existing TDD system is plus or minus 50 ns. After the above processing, the residual clock deviation can be made to be about 1 ns.
  • Embodiment 3 describes the first UE (ie, the reference UE) and the second UE (ie, the target UE) of Scheme 3, where the first UE a and the first UE b are dedicated to positioning measurement Reference UE; the first positioning measurement value measured by the second UE (target UE) c is the carrier phase measurement value; the positioning reference signal PRS is NR C-PRS; base station i is a reference base station, and base station j is a non-reference base station.
  • Embodiment 3 The difference between Embodiment 3 and Embodiment 2 is that multiple first UEs (reference UEs) directly notify the second UE (target UE) of the first clock deviation, and the target UE determines the second clock deviation.
  • the method for determining the clock offset of the first UE (reference UE) a and b includes:
  • Step 1 The first UE a and b receive the configuration signaling of the first downlink PRS signal; where the first downlink PRS may be NR C-PRS, and the configuration signaling may be dedicated positioning signaling from the LMF, It can also be broadcast signaling, UE-specific RRC signaling, or DCI signaling from the serving base station.
  • the first downlink PRS may be NR C-PRS
  • the configuration signaling may be dedicated positioning signaling from the LMF, It can also be broadcast signaling, UE-specific RRC signaling, or DCI signaling from the serving base station.
  • Step 2 At time T1, the first UE a and b receive and measure the first downlink PRS signals of the reference base station i and the non-reference base station j to obtain the first clock offset between the reference base station i and the non-reference base station j.
  • the first clock deviation value of the reference base station i and the non-reference base station j estimated by the first UE a can be obtained
  • Step 3 The first UE a and b offset the first clock with Notify the target UE c.
  • the method for determining the clock offset of the second UE (target UE) c includes:
  • Step 1 The second UE c receives the configuration signaling of the second downlink PRS signal and the location information of the downlink reference base station and non-reference base station; where the second downlink PRS may be NR C-PRS, and the configuration signaling may come from
  • the LMF positioning dedicated signaling may also be broadcast signaling from the serving base station, UE-specific RRC signaling, or DCI signaling.
  • Step 2 At time T2, the second UE c receives and measures the second downlink PRS signals of the reference base station and the non-reference base station to obtain the first positioning measurement value (carrier phase).
  • Step 3 The second UE c receives the first clock deviation estimation value fed back by the first UE a and b with Determine the second clock deviation based on predefined criteria
  • the second UE combines the first clock deviation measured by the two first UEs (the first UE a and the first UE b) to calculate a more accurate second clock deviation between the reference base station i and the non-reference base station j There are at least the following three calculation methods:
  • Arithmetic average for example:
  • Option2 Select the clock deviation of the reference UE with the best channel conditions (for example, the best channel conditions of the UE with the largest RSRP and/or SINR) as the second clock deviation
  • the RSRP and/or SINR of the reference UE a is greater than the RSRP and/or SINR of the reference UE b, that is, the RSRP of the reference UE a is greater than the RSRP of the reference UE b, and/or the SINR of the reference UE a is greater than the SINR of the reference UE b .
  • Weighted average for example: Where, f is a weighting coefficient between 0 and 1, and the value of f can be determined according to the channel conditions of the first UE a and the first UE b.
  • Step 4 The second UE c is based on the second clock deviation Correct the first positioning measurement value (carrier phase) measured by Step2 and obtain the second positioning measurement value
  • the first positioning measurement value (carrier phase) of base station i and base station j measured by the second UE (target UE) c for:
  • the second UE c is based on the second clock deviation estimate Use the following formula for the first positioning measurement value (carrier phase) Make corrections:
  • Step 5 The second UE c is based on the corrected second positioning measurement value Perform downlink positioning, such as a positioning scheme based on carrier phase.
  • the maximum value of the clock deviation between base stations in the existing TDD system is plus or minus 50 ns. After the above processing, the residual clock deviation can be made to be about 1 ns.
  • a method for determining a clock deviation provided in an embodiment of the present application includes:
  • S101 Determine a first positioning measurement value by measuring a downlink positioning reference signal PRS from a reference base station and a non-reference base station.
  • Manner 1 The first clock deviation is directly used as the second clock deviation, and the target terminal is notified through the Sidelink interface;
  • Manner 2 The first clock deviation is fed back to the first terminal of the first type through the Sidelink interface, and the first terminal of the first type determines the second clock deviation based on the first clock deviation and a predefined criterion. And notify the target terminal through the Sidelink interface;
  • Manner 3 Notifying the target terminal of the first clock deviation through the Sidelink interface, and the target terminal determines the second clock deviation based on the first clock deviation and a predefined criterion.
  • the predefined criteria includes one or a combination of the following calculation criteria: arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • the positioning reference signal PRS includes one or a combination of the following signals:
  • NR PRS NR PRS, C-PRS, SSB, CSI-RS.
  • a method for determining a clock deviation provided in an embodiment of the present application includes:
  • the method further includes:
  • the second clock deviation is determined by one of the following methods:
  • Manner 1 Receive the first clock deviation notified by the first terminal through the Sidelink interface, and assign the first clock deviation to the second clock deviation;
  • Manner 2 Receive a second clock deviation notified by the first terminal of the first type through the Sidelink interface, where the second clock deviation is based on the first clock deviation and a predefined criterion by the first terminal of the first type It is determined that the first clock deviation is determined by the first terminal of the second type and fed back to the first terminal of the second type through the Sidelink interface;
  • Manner 3 Receive the first clock deviation notified by multiple first terminals through the Sidelink interface, and determine the second clock deviation based on the first clock deviation and a predefined criterion.
  • the predefined criteria includes one or a combination of the following calculation criteria: arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • the positioning reference signal PRS includes one or a combination of the following signals:
  • NR PRS NR PRS, NR C-PRS, SSB, CSI-RS.
  • a device for determining a clock deviation provided in an embodiment of the present application includes:
  • the first unit 11 is configured to determine the first positioning measurement value by measuring the downlink positioning reference signal PRS from the reference base station and the non-reference base station;
  • the second unit 12 is configured to determine a first clock deviation between the reference base station and the non-reference base station based on the first positioning measurement value; based on the first clock deviation, assist the target terminal to obtain a second clock deviation .
  • the second unit 12 specifically assists the target terminal to obtain the second clock deviation by one of the following methods:
  • Manner 1 The first clock deviation is directly used as the second clock deviation, and the target terminal is notified through the Sidelink interface;
  • Manner 2 The first clock deviation is fed back to the first terminal of the first type through the Sidelink interface, and the first terminal of the first type determines the second clock deviation based on the first clock deviation and a predefined criterion. And notify the target terminal through the Sidelink interface;
  • Manner 3 Notifying the target terminal of the first clock deviation through the Sidelink interface, and the target terminal determines the second clock deviation based on the first clock deviation and a predefined criterion.
  • the predefined criteria includes one or a combination of the following calculation criteria: arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • the positioning reference signal PRS includes one or a combination of the following signals:
  • NR PRS NR PRS, NR C-PRS, SSB, CSI-RS.
  • a method for determining clock deviation provided in an embodiment of the present application includes:
  • the third unit 21 is configured to determine a second clock deviation, where the second clock deviation is determined based on the first clock deviation between the reference base station and the non-reference base station, and the first clock deviation is passed by the first terminal Determined by measuring the first positioning measurement value determined by the downlink positioning reference signal PRS from the reference base station and the non-reference base station;
  • the fourth unit 22 is configured to correct the first positioning measurement value based on the second clock deviation and obtain a second positioning measurement value.
  • the fourth unit 22 is further configured to:
  • the third unit 21 determines the second clock deviation in one of the following ways:
  • Manner 1 Receive the first clock deviation notified by the first terminal through the Sidelink interface, and assign the first clock deviation to the second clock deviation;
  • Manner 2 Receive a second clock deviation notified by the first terminal of the first type through the Sidelink interface, where the second clock deviation is based on the first clock deviation and a predefined criterion by the first terminal of the first type It is determined that the first clock deviation is determined by the first terminal of the second type and fed back to the first terminal of the second type through the Sidelink interface;
  • Manner 3 Receive the first clock deviation notified by multiple first terminals through the Sidelink interface, and determine the second clock deviation based on the first clock deviation and a predefined criterion.
  • the predefined criteria includes one or a combination of the following calculation criteria: arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • the positioning reference signal PRS includes one or a combination of the following signals:
  • NR PRS NR PRS, NR C-PRS, SSB, CSI-RS.
  • a terminal provided in an embodiment of the present application includes a processor 600 and a memory 620.
  • the processor 600 is configured to read the program in the memory 620 and execute the following process:
  • the processor 600 specifically assists the target terminal to obtain the second clock deviation based on the first clock deviation in one of the following ways:
  • Manner 1 The first clock deviation is directly used as the second clock deviation, and the target terminal is notified through the Sidelink interface;
  • Manner 2 The first clock deviation is fed back to the first terminal of the first type through the Sidelink interface, and the first terminal of the first type determines the second clock deviation based on the first clock deviation and a predefined criterion. And notify the target terminal through the Sidelink interface;
  • Manner 3 Notifying the target terminal of the first clock deviation through the Sidelink interface, and the target terminal determines the second clock deviation based on the first clock deviation and a predefined criterion.
  • the predefined criteria includes one or a combination of the following calculation criteria: arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • the positioning reference signal PRS includes one or a combination of the following signals:
  • NR PRS NR PRS, NR C-PRS, SSB, CSI-RS.
  • the processor 600 is further configured to:
  • processor 600 is further configured to:
  • the processor 600 determines the second clock deviation in one of the following ways:
  • Manner 1 Receive the first clock deviation notified by the first terminal through the Sidelink interface, and assign the first clock deviation to the second clock deviation;
  • Manner 2 Receive a second clock deviation notified by the first terminal of the first type through the Sidelink interface, where the second clock deviation is based on the first clock deviation and a predefined criterion by the first terminal of the first type It is determined that the first clock deviation is determined by the first terminal of the second type and fed back to the first terminal of the second type through the Sidelink interface;
  • Manner 3 Receive the first clock deviation notified by multiple first terminals through the Sidelink interface, and determine the second clock deviation based on the first clock deviation and a predefined criterion.
  • the predefined criteria includes one or a combination of the following calculation criteria: arithmetic average, selection of the optimal value of channel conditions, and weighted average.
  • the positioning reference signal PRS includes one or a combination of the following signals:
  • NR PRS NR PRS, NR C-PRS, SSB, CSI-RS.
  • the transceiver 610 is configured to receive and send data under the control of the processor 600.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 600 and various circuits of the memory represented by the memory 620 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are well known in the art, and therefore, will not be further described in this article.
  • the bus interface provides the interface.
  • the transceiver 610 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the user interface 630 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, etc.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 600 when performing operations.
  • the processor 600 may be a central processing unit (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable Logic device (Complex Programmable Logic Device, CPLD).
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD complex programmable Logic device
  • the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (Processor) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • the embodiments of the present application provide a computing device, and the computing device may specifically be a desktop computer, a portable computer, a smart phone, a tablet computer, a personal digital assistant (Personal Digital Assistant, PDA), etc.
  • the computing device may include a central processing unit (CPU), memory, input/output devices, etc.
  • input devices may include keyboards, mice, touch screens, etc.
  • output devices may include display devices, such as liquid crystal displays (LCD), cathode ray tubes (Cathode Ray Tube, CRT) etc.
  • LCD liquid crystal displays
  • CRT cathode Ray Tube
  • the memory may include a read-only memory ROM and a random access memory RAM, and provides the processor with program instructions and data stored in the memory.
  • the memory may be used to store the program of any of the methods provided in the embodiment of the present application.
  • the processor calls the program instructions stored in the memory, and the processor is configured to execute any of the methods provided in the embodiments of the present application according to the obtained program instructions.
  • the embodiment of the present application provides a computer storage medium for storing computer program instructions used by the device provided in the foregoing embodiment of the present application, which includes a program for executing any method provided in the foregoing embodiment of the present application.
  • the computer storage medium may be any available medium or data storage device that can be accessed by the computer, including but not limited to magnetic storage (such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (such as CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state disk (Solid State Disk, SSD)), etc.
  • magnetic storage such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage such as CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state disk (Solid State Disk, SSD)
  • the method provided in the embodiments of the present application can be applied to terminal equipment, and can also be applied to network equipment.
  • the terminal equipment may also be referred to as user equipment UE, mobile station MS, mobile terminal, etc.
  • the terminal may have the ability to communicate with one or more core networks via the radio access network RAN, for example, the terminal It may be a mobile phone (or called a "cellular" phone), or a mobile computer, etc.
  • the terminal may also be a portable, pocket-sized, handheld, computer-built-in or vehicle-mounted mobile device.
  • the network device may be a base station (for example, an access point), which refers to a device that communicates with a wireless terminal through one or more sectors on an air interface in an access network.
  • the base station can be used to convert received air frames and IP packets into each other, as a router between the wireless terminal and the rest of the access network, where the rest of the access network can include the IP network.
  • the base station can also coordinate the attribute management of the air interface.
  • the base station can be a base station (BTS) in GSM or CDMA, a base station (NodeB) in WCDMA, an evolved base station (NodeB or eNB or e-NodeB) in LTE, or a 5G GNB in the system, etc.
  • BTS base station
  • NodeB base station
  • eNB evolved base station
  • e-NodeB evolved base station
  • 5G GNB 5G GNB
  • the above-mentioned method processing flow can be implemented by a software program, which can be stored in a storage medium, and when the stored software program is called, the above-mentioned method steps are executed.
  • a single or multiple first UEs simultaneously measure the downlink positioning reference signal PRS from the reference base station and the non-reference base station to obtain the first positioning measurement value (ie the carrier phase measurement value), and further calculate the reference base station The first clock deviation between the base station and the non-reference base station.
  • the first UE assists the target UE in obtaining the second clock deviation in three ways: Method one, a single first UE directly uses the first clock deviation as the second clock deviation and notifies the target UE through the Sidelink interface; Method two, multiple The first UE Type 2 (ie the second type of reference UE) feeds back the first clock deviation to the first UE Type 1 (ie the first type of reference UE) through the Sidelink interface, and the first UE Type 1 is based on the first clock The deviation and the predefined criteria determine the second clock deviation, and then the first UE Type 1 informs the second UE (ie the target UE) of the second clock deviation through the Sidelink interface; mode three, multiple first UEs transmit the first clock deviation through Sidelink The interface notifies the second UE that the second UE determines the second clock deviation based on the first clock deviation and a predefined criterion.
  • the second UE corrects the first positioning measurement value based on the second clock deviation and obtains the second positioning measurement value
  • the second UE performs downlink positioning based on the corrected second positioning measurement value (based on the carrier phase positioning scheme).
  • the first UE (ie, the reference UE) can be a regular UE, dedicated to positioning UEs, or drive test equipment; in method 2, the first UE includes two types: First UE Type 1 (ie, the first type of reference UE ) And the first UE Type 2 (ie, the second type of reference UE); the positioning reference signal PRS can be any downlink signal, including but not limited to: NR PRS, NR C-PRS, SSB, CSI-RS, etc.; predefined criteria Including but not limited to arithmetic average, selecting the optimal value of channel conditions, and weighted average.
  • First UE Type 1 ie, the first type of reference UE
  • the first UE Type 2 ie, the second type of reference UE
  • the positioning reference signal PRS can be any downlink signal, including but not limited to: NR PRS, NR C-PRS, SSB, CSI-RS, etc.
  • predefined criteria Including but not limited to arithmetic average, selecting
  • the embodiment of the present application proposes a clock offset calibration solution between base stations based on carrier phase and UE-based positioning. It solves the problem that the accuracy of the positioning algorithm of the existing single-differential scheme is limited by the limited accuracy of the clock deviation measurement of the PRS signal, which reduces the system positioning performance. For example, the maximum value of the clock deviation between the base stations of the existing TDD system is plus or minus 50ns After the above processing, the residual clock deviation can be made about 1 ns. Compared with the UE-assisted positioning solution, this solution can effectively reduce the time delay.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Electric Clocks (AREA)

Abstract

本申请公开了时钟偏差确定方法及装置,用以降低基站之间的时钟偏差,从而提高定位精度。本申请实施例提供的一种时钟偏差确定方法,包括:通过测量来自于参考基站和非参考基站的下行定位参考信号PRS,确定第一定位测量值;基于所述第一定位测量值确定所述参考基站和所述非参考基站之间的第一时钟偏差;基于所述第一时钟偏差,协助目标终端获得第二时钟偏差。

Description

时钟偏差确定方法及装置
相关申请的交叉引用
本申请要求在2019年11月11日提交中国专利局、申请号为201911096940.4、申请名称为“时钟偏差确定方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及时钟偏差确定方法及装置。
背景技术
第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)定义了多种通过测量3GPP无线通信系统的自身定位参考信号(Positioning Reference Signal,PRS)的用户终端(User Terminal,UE)定位方法,例如下行链路观察到达时间差(Observed Time Difference Of Arrival,OTDOA),上行链路到达时间差(Uplink Time Difference Of Arrival,UTDOA)等等。这些方法的特点是基于无线通信系统自身的PRS定位,可在接收不到网络外部定位参考信号环境里工作。但这些定位方法的共同问题是定位精度较低。
发明内容
本申请实施例提供了时钟偏差确定方法及装置,用以降低基站之间的时钟偏差,从而提高定位精度。
在第一终端侧,本申请实施例提供的一种时钟偏差确定方法,包括:
通过测量来自于参考基站和非参考基站的下行定位参考信号PRS,确定第一定位测量值;
基于所述第一定位测量值确定所述参考基站和所述非参考基站之间的第一时钟偏差;
基于所述第一时钟偏差,协助目标终端获得第二时钟偏差。
可选地,基于所述第一时钟偏差,具体通过下列方式之一协助目标终端获得第二时钟偏差:
方式一、直接将所述第一时钟偏差作为第二时钟偏差,通过Sidelink接口通知所述目标终端;
方式二、将所述第一时钟偏差通过Sidelink接口反馈给第一类型的第一终端,由所述第一类型的第一终端基于所述第一时钟偏差和预定义准则确定第二时钟偏差,并通过Sidelink接口通知所述目标终端;
方式三、将所述第一时钟偏差通过Sidelink接口通知所述目标终端,由所述目标终端基于所述第一时钟偏差和预定义准则确定第二时钟偏差。
可选地,所述预定义准则包括下列计算准则之一或组合:算术平均、选择信道条件最优值、加权平均。
可选地,所述定位参考信号PRS包括下列信号之一或组合:
NR PRS、NR C-PRS、SSB、CSI-RS。
相应地,在第二终端侧,本申请实施例提供的一种时钟偏差确定方法,包括:
确定第二时钟偏差,其中,所述第二时钟偏差是基于参考基站和非参考基站之间的第一时钟偏差确定的,所述第一时钟偏差是第一终端通过测量来自于所述参考基站和所述非参考基站的下行定位参考信号PRS确定的第一定位测量值确定的;
基于所述第二时钟偏差,对所述第一定位测量值进行修正并得到第二定位测量值。
可选地,该方法还包括:
基于所述第二定位测量值进行下行定位。
可选地,通过如下方式之一确定所述第二时钟偏差:
方式一、通过Sidelink接口,接收所述第一终端通知的第一时钟偏差,并把所述第一时钟偏差赋值为第二时钟偏差;
方式二、通过Sidelink接口,接收第一类型的第一终端通知的第二时钟偏差,所述第二时钟偏差是由所述第一类型的第一终端基于所述第一时钟偏差和预定义准则确定的,所述第一时钟偏差是第二类型的第一终端确定并通过Sidelink接口反馈给所述第二类型的第一终端的;
方式三、通过Sidelink接口,接收多个第一终端通知的第一时钟偏差,并基于所述第一时钟偏差和预定义准则确定第二时钟偏差。
可选地,所述预定义准则包括下列计算准则之一或组合:算术平均、选择信道条件最优值、加权平均。
可选地,所述定位参考信号PRS包括下列信号之一或组合:
NR PRS、NR C-PRS、SSB、CSI-RS。
与上述方法相对应地,在第一终端侧,本申请实施例提供的一种终端,包括处理器和存储器:
处理器,用于读取存储器中的程序,执行下列过程:
通过测量来自于参考基站和非参考基站的下行定位参考信号PRS,确定第一定位测量值;
基于所述第一定位测量值确定所述参考基站和所述非参考基站之间的第一时钟偏差;
基于所述第一时钟偏差,协助目标终端获得第二时钟偏差。
可选地,基于所述第一时钟偏差,所述处理器通过下列方式之一协助目标终端获得第二时钟偏差:
方式一、直接将所述第一时钟偏差作为第二时钟偏差,通过Sidelink接口通知所述目标终端;
方式二、将所述第一时钟偏差通过Sidelink接口反馈给第一类型的第一终端,由所述第一类型的第一终端基于所述第一时钟偏差和预定义准则确定第二时钟偏差,并通过Sidelink接口通知所述目标终端;
方式三、将所述第一时钟偏差通过Sidelink接口通知所述目标终端,由所述目标终端基于所述第一时钟偏差和预定义准则确定第二时钟偏差。
可选地,所述预定义准则包括下列计算准则之一或组合:算术平均、选择信道条件最优值、加权平均。
可选地,所述定位参考信号PRS包括下列信号之一或组合:
NR PRS、NR C-PRS、SSB、CSI-RS。
在第二终端侧,本申请实施例提供的一种终端,包括处理器和存储器:
处理器,用于读取存储器中的程序,执行下列过程:
确定第二时钟偏差,其中,所述第二时钟偏差是基于参考基站和非参考基站之间的第一时钟偏差确定的,所述第一时钟偏差是第一终端通过测量来自于所述参考基站和所述非参考基站的下行定位参考信号PRS确定的第一定位测量值确定的;
基于所述第二时钟偏差,对所述第一定位测量值进行修正并得到第二定位测量值。
可选地,所述处理器还用于:
基于所述第二定位测量值进行下行定位。
可选地,所述处理器通过如下方式之一确定所述第二时钟偏差:
方式一、通过Sidelink接口,接收所述第一终端通知的第一时钟偏差,并把所述第一时钟偏差赋值为第二时钟偏差;
方式二、通过Sidelink接口,接收第一类型的第一终端通知的第二时钟偏差,所述第二时钟偏差是由所述第一类型的第一终端基于所述第一时钟偏差和预定义准则确定的,所述第一时钟偏差是第二类型的第一终端确定并通过Sidelink接口反馈给所述第二类型的第一终端的;
方式三、通过Sidelink接口,接收多个第一终端通知的第一时钟偏差,并基于所述第一时钟偏差和预定义准则确定第二时钟偏差。
可选地,所述预定义准则包括下列计算准则之一或组合:算术平均、选择信道条件最优值、加权平均。
可选地,所述定位参考信号PRS包括下列信号之一或组合:
NR PRS、NR C-PRS、SSB、CSI-RS。
在第一终端侧,本申请实施例提供的一种时钟偏差确定装置,包括:
第一单元,用于通过测量来自于参考基站和非参考基站的下行定位参考信号PRS,确定第一定位测量值;
第二单元,用于基于所述第一定位测量值确定所述参考基站和所述非参考基站之间的第一时钟偏差;基于所述第一时钟偏差,协助目标终端获得第二时钟偏差。
在第二终端侧,本申请实施例提供的一种时钟偏差确定方法,包括:
第三单元,用于确定第二时钟偏差,其中,所述第二时钟偏差是基于参考基站和非参考基站之间的第一时钟偏差确定的,所述第一时钟偏差是第一终端通过测量来自于所述参考基站和所述非参考基站的下行定位参考信号PRS确定的第一定位测量值确定的;
第四单元,用于基于所述第二时钟偏差,对所述第一定位测量值进行修正并得到第二定位测量值。
本申请另一实施例提供了一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述任一种方法。
本申请实施例,通过测量来自于参考基站和非参考基站的下行定位参考信号PRS,确定第一定位测量值,并基于所述第一定位测量值确定所述参考基站和所述非参考基站之间的第一时钟偏差;基于所述第一时钟偏差,协助目标终端获得第二时钟偏差,从而实现了基站之间时钟偏差的校准方案,可以降低基站之间的时钟偏差,提高定位精度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种基于第一时钟偏差确定第二时钟偏差的示意图;
图2为本申请实施例提供的另一种基于第一时钟偏差确定第二时钟偏差的示意图;
图3为本申请实施例提供的第三种基于第一时钟偏差确定第二时钟偏差的示意图;
图4为本申请实施例提供的参考终端侧的一种时钟偏差确定方法的流程示意图;
图5为本申请实施例提供的目标终端侧的一种时钟偏差确定方法的流程示意图;
图6为本申请实施例提供的参考终端侧的一种时钟偏差确定装置的结构示意图;
图7为本申请实施例提供的目标终端侧的一种时钟偏差确定装置的结构示意图;
图8为本申请实施例提供的一种终端的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,本申请实施例中所述的PRS,表示所有可用于测量到达时间(Time of Arrival,TOA)的参考信号,例如包括可用于传统OTDOA/UTDOA定位的PRS、信道状态指示参考信号(Channel State Indication Reference Signal,CSI-RS)、探测参考信号(Sounding Reference Signal,SRS)等。
使用载波相位测量值进行定位的方法(一种UE定位方法,特点是定位精 度较高)可有以下几种基本方式:
非差分方式:直接使用载波相位测量值计算UE位置,而不使用差分技术。
差分方式:首先对载波相位测量值进行差分,消除测量值中的一些共同的偏差,然后用于差分后载波相位测量值计算UE位置。差分方式又有单差分和双差分两种。
单差分方式:选某个发送端(或接收端)作为参考端,然后将由其它发送端(或接收端)相关的测量值与由参考端相关的测量值进行差分。单差分的目的是消除某一端(接收端或发送端)的测量偏差。
双差分方式:对单差分方式后的测量值再次差分,以同时消除与发送端和接收端有关的测量误差,例如基站(Base Station,BS)和UE的时钟偏差。例如,双差分技术可用于下行定位的场景。这时,有多个发送端(基站)和两个接收端,其中一个接收端为位置已知的参考接收端。另一个接收端为位置未知的UE。这时,两个接收端同时接收基站所发送的定位信号,利用双差分技术去消除两个接收端的测量值中与发送端和接收端有关的共同误差,然后精确地计算出未知位置接收端的位置。采用双差分方式可消除基站之间的时间和频率同步偏差对定位精度的影响。
综上所述,非差分方式同时受到UE和基站的时钟偏差影响,且UE时钟偏差远大于基站时钟偏差;双差分方式要求专门在一个已知的位置上安置一个参考接收端,对具体系统实现带来负面影响。单差分方式可以被用于3GPP OTDOA定位的参考信号时间差(Reference Signal Time Difference,RSTD)测量值(RSTD测量值计算方法是目标UE与所有BS相关的TOA测量值,与该UE与某参考BS所相关的TOA测量值,进行差分计算)。单差分方式可以消除UE时钟偏差对定位的影响,但是基站之间的时钟偏差将直接影响单差分方式的定位精度。
因此,对单差分方式,基站之间的时间同步偏差是直接影响单差分方式的定位精度的关键。另外,一种基站之间的时间同步方法,由一个基站监听一个相邻基站的PRS。然后,基于所检测的PRS到达时间,PRS的发送时间 以及两个基站之间的已知距离,估计出两个基站之间的时间偏移。所估计的两个基站之间的时间偏移可用来补偿基站之间的时间偏移对OTDOA或UTDOA定位算法的影响。该方法的有效性受到如下限制:基于单次发送的PRS所估计的两个基站之间的时间偏移的估计精度有限;由于基站要接收其它基站的PRS信号,增加了PRS的资源开销,并且增加了基站的实现复杂度。但是基于定位管理功能(Location Management Function,LMF)实体处理的终端辅助(UE-assisted)的定位技术方案,由于所有测量值都是通过UE上报给LMF处理,该方案将引入较大的时延。
因此,本申请实施例提出一种基于载波相位、UE-based定位的时钟偏差校准方法和装置,对于UE-assisted的定位方案,将有效地降低时延。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
本申请实施例提供的技术方案可以适用于多种系统,尤其是5G(Fifth Generation)系统。例如适用的系统可以是全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(General Packet Radio Service,GPRS)系统、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide interoperability for Microwave Access,WiMAX)系统、5G系统以及5G NR系统等。这多种系统中均包括终端设备和网络设备。
本申请实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备UE。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端设备可以是 移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端设备(Remote Terminal)、接入终端设备(Access Terminal)、用户终端设备(User Terminal)、用户代理(User Agent)、用户装置(User Device),本申请实施例中并不限定。
本申请实施例涉及的网络设备,可以是基站,该基站可以包括多个小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互转换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP通信网络。网络设备还可协调对空中接口的属性管理。例如,本申请实施例涉及的网络设备可以是全球移动通信系统GSM或码分多址接入CDMA中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入WCDMA中的网络设备(NodeB),还可以是长期演进LTE系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(Next Generation System)中的5G基站,也可是家庭演进基站(Home evolved Node B,HeNB)、中继节点(Relay Node)、家庭基站(Femto e-NodeB)、微微基站(Pico Cell)等,本申请实施例中并不限定。
下面结合说明书附图对本申请各个实施例进行详细描述。需要说明的是,本申请实施例的展示顺序仅代表实施例的先后顺序,并不代表实施例所提供的技术方案的优劣。
在无线通信的用户终端定位系统中,基站之间的时钟偏差(即时间同步误差)是直接影响定位性能的关键问题之一。本申请实施例提出了一种基于载波相位的时钟偏差校准方案。具体介绍如下:
首先,单个或者多个第一UE(即参考UE)同时测量来自于参考基站和非参考基站的下行定位参考信号PRS,获取第一定位测量值(即载波相位测量值),进一步,基于第一定位测量值计算得到参考基站和非参考基站之间的第一时钟偏差。
需要说明的是,在基于单差分的载波相位定位技术方案中,UE需要测量下行两个基站的下行参考信号到本UE的载波相位差,获得单差分载波相位测量值,并且建立两个以上的单差分载波相位测量值双曲线方程,求解两条双曲线的交点作为待求解的UE位置。其中,多个双曲线方程中公共的基站称为参考基站,其余基站称为非参考基站。目标UE是地理位置未知的、需要进行位置计算的UE。参考UE是地理位置已知的、用于测量并确定参考基站和非参考基站之间时钟偏差的UE。
然后,第一UE(即参考UE)采用下列三种方式之一协助目标UE获得第二时钟偏差:
方式一、单个第一UE直接把该第一时钟偏差作为第二时钟偏差,通过Sidelink接口通知第二UE(即目标UE);
方式二、多个第二类型(Type 2)的第一UE(即第二类型的参考UE)把所述第一时钟偏差通过Sidelink接口反馈给第一类型(Type 1)的第一UE(即第一类型的参考UE),由第一UE Type 1基于第一时钟偏差和预定义准则确定第二时钟偏差,然后第一UE Type 1把第二时钟偏差通过Sidelink接口通知第二UE(即目标UE);
方式三、多个第一UE把第一时钟偏差通过Sidelink接口通知第二UE(即目标UE),由第二UE基于第一时钟偏差和预定义准则确定第二时钟偏差。
其次,第二UE基于第二时钟偏差,对第一定位测量值进行修正并得到第二定位测量值;
最后,第二UE基于所述第二定位测量值进行下行定位(基于载波相位定位方案)。
其中,所述第一UE(即参考UE)可以是常规UE、专用于定位的UE、或者路测设备。
上述方式二中,第一UE包含两种类型:第一类型的第一UE(即第一类型的参考UE)和第二类型的第一UE(即第二类型的参考UE);其中,第一类型的第一UE是地理位置已知的、用于测量并确定第二时钟偏差的参考UE,第二类型的第一UE是地理位置已知的、用于测量并获得第一时钟偏差的参考UE。
所述定位参考信号PRS可以是任意下行信号,包括但不限于:
新空口(New Radio,NR)PRS、NR载波相位定位参考信号(Carrier phase Positioning Reference Signal,C-PRS)、同步信号块(Synchronization Signal Block,SSB)和信道状态指示参考信号(Channel State Indication Reference Signal,CSI-RS)等。
所述预定义准则包括但不限于算术平均、选择信道条件最优值和加权平均等计算准则。
下面针对第一UE协助第二UE获得第二时钟偏差的三种方式,分别介绍三种方案的具体实施例。
方案1:基于终端(UE-based)的定位、单个参考UE的时钟偏差校准方案。
方案1中,第一UE采用方式一协助第二UE获得第二时钟偏差。
首先,单个第一UE(即参考UE)同时测量来自于参考基站和非参考基站的下行定位参考信号PRS,获取第一定位测量值(即载波相位测量值),进一步计算得到参考基站和非参考基站之间的第一时钟偏差。
然后,第一UE采用方式一协助目标UE获得第二时钟偏差:单个第一UE直接把该第一时钟偏差作为第二时钟偏差,通过Sidelink接口通知目标UE。
其次,第二UE基于第二时钟偏差针对第一定位测量值进行修正并得到第 二定位测量值;
最后,第二UE基于修正后的第二定位测量值进行下行定位(基于载波相位定位方案)。
其中,第一UE(即参考UE)可以是常规UE,专用于定位UE,或者路测设备;
定位参考信号PRS可以是任意下行信号,包括但不限于:NR PRS、NR C-PRS、SSB和CSI-RS等;
预定义准则包括但不限于算术平均、选择信道条件最优值和加权平均。
如图1所示,基站i为参考基站,基站j为非参考基站。第一UE a是专用于定位测量的参考UE;第二UE c是目标UE。
下面分别介绍第一UE、第二UE、参考基站和非参考基站的处理方案。
第一UE(参考UE)的时钟偏差确定方法包括:
Step 1:第一UE接收第一下行PRS信号的配置信令;
其中,第一下行PRS可以是任意下行信号,包括但不限于NR PRS、NR C-PRS、SSB和CSI-RS,所述配置信令可以是来自于LMF的定位专用信令,也可以是来自服务基站的广播信令、UE专属RRC信令或者DCI信令。
Step 2:在T1时刻,第一UE(即参考UE)接收并测量参考基站和非参考基站的第一下行PRS信号,得到参考基站和非参考基站之间的第一时钟偏差。
Step 3:第一UE把第一时钟偏差通知给目标UE。
其中,第一UE可以通过Sidelink把第一时钟偏差通知给第二UE(目标UE),或者通过服务基站转发给第二UE(目标UE)。
第二UE(目标UE)的时钟偏差确定方法包括:
Step 1:第二UE接收第二下行PRS信号的配置信令,以及下行参考基站和非参考基站的位置信息;
其中,第二下行PRS可以是任意下行信号,包括但不限于NR PRS、NR C-PRS、SSB和CSI-RS,该配置信令可以是来自于LMF的定位专用信令,也 可以是来自服务基站的广播信令、UE专属RRC信令或者DCI信令。
Step 2:在T2时刻,第二UE接收并测量参考基站和非参考基站的第二下行PRS信号,得到第一定位测量值(即载波相位测量值)。
Step 3:第二UE接收第一UE反馈的第二时钟偏差。
Step 4:第二UE基于第二时钟偏差,针对Step2测量的第一定位测量值(即载波相位测量值)进行修正并得到第二定位测量值。
Step 5:第二UE基于第二定位测量值进行下行定位。
例如:可以采用基于载波相位的定位方案。
相应地,参考基站和非参考基站侧的处理过程包括:
Step 1:参考基站和非参考基站接收第一下行PRS信号和第二下行PRS信号的配置信令;
其中,所述配置信令是来自于LMF的定位专用信令。
Step 2:参考基站和非参考基站向全部第一UE发送第一下行PRS信号。
Step 3:参考基站和非参考基站向全部第二UE发送第二下行PRS信号。
方案2:UE-based定位、多个参考UE、第一类型的参考UE通知目标UE的时钟偏差校准方案。
在方案2中,第一UE采用方式二协助第二UE获得第二时钟偏差,第一UE包含两种类型:第一UE Type 1(即第一类型的参考UE)和第一UE Type 2(即第二类型的参考UE)。
首先,所有第一UE(即参考UE)同时测量来自于参考基站和非参考基站的下行定位参考信号PRS,获取第一定位测量值(即载波相位测量值),进一步计算得到参考基站和非参考基站之间的第一时钟偏差。
然后,第一UE采用方式二协助目标UE获得第二时钟偏差:多个第一UE Type 2(即第二类型的参考UE)把该第一时钟偏差通过Sidelink接口反馈给第一UE Type 1(即第一类型的参考UE),由第一UE Type 1基于第一时钟偏差和预定义准则确定第二时钟偏差,然后第一UE Type 1把第二时钟偏差通过Sidelink接口通知第二UE(即目标UE)。
其次,第二UE基于第二时钟偏差针对第一定位测量值进行修正并得到第二定位测量值;
最后,第二UE基于第二定位测量值进行下行定位(基于载波相位定位方案)。
其中,第一UE(即参考UE)可以是常规UE、专用于定位UE、或者路测设备;定位参考信号PRS可以是任意下行信号,包括但不限于:NR PRS、NR C-PRS、SSB和CSI-RS等;预定义准则包括但不限于算术平均、选择信道条件最优值和加权平均。
如图2所示,基站i为参考基站,基站j为非参考基站。第一UE Type 1 a(即第一类型的第一UE)是专用于定位测量的参考UE(即第一类型的参考UE),第一UE Type 2 b(即第二类型的第一UE)是专用于定位测量的参考UE(即第二类型的参考UE);第二UE c是目标UE。
下面分别介绍第一UE Type 1、第一UE Type 2、第二UE、参考基站和非参考基站的处理方案。
第一UE Type 1(即第一类型的第一UE,或第一类型的参考UE)的时钟偏差确定方法包括:
Step 1:第一类型的参考UE接收第一下行PRS信号的配置信令;
其中,第一下行PRS可以是任意下行信号,包括但不限于NR PRS、NR C-PRS、SSB和CSI-RS,该配置信令可以是来自于LMF的定位专用信令,也可以是来自服务基站的广播信令、UE专属RRC信令或者DCI信令。
Step 2:在T1时刻,第一类型的参考UE接收并测量参考基站和非参考基站的第一下行PRS信号,得到参考基站和非参考基站之间的第一时钟偏差。
Step 3:第一类型的参考UE接收第二类型的参考UE反馈的第一时钟偏差,基于预定义准则确定第二时钟偏差;
其中,预定义准则包括但不限于算术平均、选择信道条件最优值和加权平均。其中,第一类型的参考UE可以通过Sidelink直接接收第二类型的参考UE反馈的第一时钟偏差,或者服务基站转发来接收第二类型的参考UE反馈 的第一时钟偏差。
Step 4:第一类型的参考UE把第二时钟偏差通知给目标UE。
其中,第一类型的参考UE可以通过Sidelink把第二时钟偏差通知给目标UE,或者通过服务基站转发给目标UE。
第一UE Type 2(即第二类型的第一UE,也即第二类型的参考UE)的时钟偏差确定方法包括:
Step 1:第二类型的参考UE接收第一下行PRS信号的配置信令;
其中,第一下行PRS可以是任意下行信号,包括但不限于NR PRS、NR C-PRS、SSB和CSI-RS,该配置信令可以是来自于LMF的定位专用信令,也可以是来自服务基站的广播信令、UE专属RRC信令或者DCI信令。
Step 2:在T1时刻,第二类型的参考UE接收并测量参考基站和非参考基站的第一下行PRS信号,得到参考基站和非参考基站之间的第一时钟偏差。
Step 3:第二类型的参考UE把上述第一时钟偏差反馈给第一类型的参考UE。
第二UE(即目标UE)的时钟偏差确定方法包括:
Step 1:第二UE接收第二下行PRS信号的配置信令,以及下行参考基站和非参考基站的位置信息;
其中,第二下行PRS可以是任意下行信号,包括但不限于NR PRS、NR C-PRS、SSB和CSI-RS,该配置信令可以是来自于LMF的定位专用信令,也可以是来自服务基站的广播信令、UE专属RRC信令或者DCI信令。
Step 2:在T2时刻,第二UE接收并测量参考基站和非参考基站的第二下行PRS信号,得到第一定位测量值(即载波相位测量值)。
Step 3:第二UE接收第一类型的参考UE反馈的第二时钟偏差。
Step 4:第二UE基于第二时钟偏差,针对Step2测量的第一定位测量值做修正并得到第二定位测量值。
Step 5:第二UE基于修正后第二定位测量值进行下行定位,例如:基于载波相位定位方案。
相应地,参考基站和非参考基站的处理流程包括:
Step 1:参考基站和非参考基站接收第一下行PRS信号和第二下行PRS信号的配置信令;
其中,该配置信令是来自于LMF的定位专用信令。
Step 2:参考基站和非参考基站向全部第一UE发送第一下行PRS信号。
Step 3:参考基站和非参考基站向全部第二UE发送第二下行PRS信号。
方案3:UE-based定位、多个参考UE直接通知目标UE的时钟偏差校准方案。
在方案3中,第一UE采用方式三协助第二UE获得第二时钟偏差。
首先,多个第一UE(即参考UE)同时测量来自于参考基站和非参考基站的下行定位参考信号PRS,获取第一定位测量值(即载波相位测量值),进一步计算得到参考基站和非参考基站之间的第一时钟偏差。
然后,第一UE采用方式三协助目标UE获得第二时钟偏差:多个第一UE把第一时钟偏差通过Sidelink接口通知第二UE,由第二UE基于第一时钟偏差和预定义准则确定第二时钟偏差。
其次,第二UE基于第二时钟偏差针对第一定位测量值进行修正并得到第二定位测量值;
最后,第二UE基于第二定位测量值进行下行定位(基于载波相位定位方案)。
其中,第一UE(即参考UE)可以是常规UE、专用于定位UE、或者路测设备;方式二中,第一UE包含两种类型:第一UE Type 1(即第一类型的参考UE)和第一UE Type 2(即第二类型的参考UE);定位参考信号PRS可以是任意下行信号,包括但不限于:NR PRS、NR C-PRS、SSB和CSI-RS等;预定义准则包括但不限于算术平均、选择信道条件最优值和加权平均。
如图3所示,基站i为参考基站,基站j为非参考基站。第一UE a和第一UE b是参考UE;第二UE c是目标UE。
第一UE(参考UE)的时钟偏差确定方法包括:
Step 1:第一UE接收第一下行PRS信号的配置信令;
其中,第一下行PRS可以是任意下行信号,包括但不限于NR PRS、NR C-PRS、SSB和CSI-RS,该配置信令可以是来自于LMF的定位专用信令,也可以是来自服务基站的广播信令、UE专属RRC信令或者DCI信令。
Step 2:在T1时刻,第一UE接收并测量参考基站和非参考基站的第一下行PRS信号,得到参考基站和非参考基站之间的第一时钟偏差。
Step 3:第一UE把上述第一时钟偏差反馈给第二UE(目标UE)。其中,第一UE可以通过Sidelink向第二UE反馈第一时钟偏差。
第二UE(目标UE)的时钟偏差确定方法包括:
Step 1:第二UE接收第二下行PRS信号的配置信令,以及下行参考基站和非参考基站的位置信息;
其中,第二下行PRS可以是任意下行信号,包括但不限于NR PRS、NR C-PRS、SSB和CSI-RS,该配置信令可以是来自于LMF的定位专用信令,也可以是来自服务基站的广播信令、UE专属RRC信令或者DCI信令。
Step 2:在T2时刻,第二UE接收并测量参考基站和非参考基站的第二下行PRS信号,得到第一定位测量值(即载波相位测量值)。
Step 3:第二UE接收所有第一UE反馈的第二时钟偏差。第二UE基于预定义准则确定第二时钟偏差,其中,预定义准则包括但不限于算术平均、选择信道条件最优值和加权平均。
Step 4:第二UE基于第二时钟偏差,针对Step2测量的第一定位测量值进行修正并得到第二定位测量值。
Step 5:第二UE基于第二定位测量值进行下行定位,例如:基于载波相位定位方案。
相应地,参考基站和非参考基站的处理流程包括:
Step 1:参考基站和非参考基站接收第一下行PRS信号和第二下行PRS信号的配置信令;该配置信令是来自于LMF的定位专用信令。
Step 2:参考基站和非参考基站向全部第一UE发送第一下行PRS信号。
Step 3:参考基站和非参考基站向全部第二UE发送第二下行PRS信号。
下面给出实施例的具体介绍。
实施例1:
如图1所示,实施例1针对方案1的第一UE(即参考UE)、第二UE(即目标UE)进行说明,其中,第一UE a是专用于定位测量的参考UE;目标UE c测量得到的第一定位测量值是载波相位测量值;定位参考信号PRS是NR C-PRS;基站i为参考基站,基站j为非参考基站。
第一UE(参考UE)a的时钟偏差确定方法包括:
Step 1:第一UE a接收第一下行PRS信号的配置信令;
其中,第一下行PRS可以是NR C-PRS,该配置信令可以是来自于LMF的定位专用信令,也可以是来自服务基站的广播信令、UE专属RRC信令或者DCI信令。
Step 2:在T1时刻,第一UE a接收并测量参考基站i和非参考基站j的第一下行PRS信号,得到参考基站i和非参考基站j之间的第一时钟偏差。
假设第一UE a通过测量基站i发送的C-PRS信号并且锁定相位后,获得载波相位测量值
Figure PCTCN2020126222-appb-000001
Figure PCTCN2020126222-appb-000002
在时刻k可以表达如下:
Figure PCTCN2020126222-appb-000003
其中,
Figure PCTCN2020126222-appb-000004
是参考基站i和参考UE a之间的理想距离,可由已知的基站位置得出。
Figure PCTCN2020126222-appb-000005
是以载波周期为单位的载波相位测量值,λ是C-PRS的载波波长,
Figure PCTCN2020126222-appb-000006
是未知的整周模糊度,
Figure PCTCN2020126222-appb-000007
是载波相位测量误差。相位测量误差一般只有载波波长的10%,在讨论基站时钟偏差时,可以忽略不计。c是光速,即3.0*10^8(米/秒),b r,a和b t,i分别是第一UE a和基站i的时钟偏差(即时间同步误差)。
设第一UE a通过测量基站j发送的C-PRS信号获得的载波相位测量值为
Figure PCTCN2020126222-appb-000008
Figure PCTCN2020126222-appb-000009
上面两式相减可得:在时刻k,第一UE a针对参考基站i和非参考基站 j的单差分载波相位测量值
Figure PCTCN2020126222-appb-000010
为:
Figure PCTCN2020126222-appb-000011
其中,
Figure PCTCN2020126222-appb-000012
表示参考基站i和非参考基站j之间的时钟偏差,
Figure PCTCN2020126222-appb-000013
表示第一UE a和参考基站i以及非参考基站j之间的理想距离差;
Figure PCTCN2020126222-appb-000014
是载波相位测量误差之差。
基于载波相位测量单差分值
Figure PCTCN2020126222-appb-000015
通过一定的算法估计得到单差分的整周模糊度
Figure PCTCN2020126222-appb-000016
例如:基于扩展卡尔曼滤波(Extended Kalman Filter,EKF)算法直接估计
Figure PCTCN2020126222-appb-000017
或者针对第一UE a的两个接收天线的载波相位测量值做双差分,并且计算得到双差分的整周模糊度,然后带回到单差分公式中得到单差分的整周模糊度
Figure PCTCN2020126222-appb-000018
然后估计得到时刻k的基站i和基站j的第一时钟偏差值
Figure PCTCN2020126222-appb-000019
Figure PCTCN2020126222-appb-000020
通过多个时刻
Figure PCTCN2020126222-appb-000021
进行平均抑制噪声处理,得到第一UE a估计的参考基站i和非参考基站j的第一时钟偏差值
Figure PCTCN2020126222-appb-000022
Figure PCTCN2020126222-appb-000023
其中,K是大于等于1的正整数。
Step 3:第一UE a把第一时钟偏差
Figure PCTCN2020126222-appb-000024
通知给目标UE c。
第二UE(目标UE)c的时钟偏差确定方法包括:
Step 1:第二UE c接收第二下行PRS信号的配置信令,以及下行参考基站和非参考基站的位置信息;
其中,第二下行PRS可以是NR C-PRS,该配置信令可以是来自于LMF的定位专用信令,也可以是来自服务基站的广播信令、UE专属RRC信令或者DCI信令。
Step 2:在T2时刻,第二UE c接收并测量参考基站和非参考基站的第二下行PRS信号,得到第一定位测量值(载波相位)。
Step 3:第二UE c接收第一UE a反馈的第一时钟偏差估计值
Figure PCTCN2020126222-appb-000025
直接作为第二时钟偏差
Figure PCTCN2020126222-appb-000026
Step 4:第二UE c基于第二时钟偏差
Figure PCTCN2020126222-appb-000027
针对Step2测量的第一定位测量值(载波相位)进行修正并得到第二定位测量值。
假设第二UE(目标UE)c测量的基站i和基站j的第一定位测量值(载波相位)
Figure PCTCN2020126222-appb-000028
为:
Figure PCTCN2020126222-appb-000029
第二UE(目标UE)c基于第二时钟偏差估计值
Figure PCTCN2020126222-appb-000030
采用下面公式针对第一定位测量值(载波相位)
Figure PCTCN2020126222-appb-000031
进行修正:
Figure PCTCN2020126222-appb-000032
其中,假设
Figure PCTCN2020126222-appb-000033
Step 5:第二UE c基于修正后得到的第二定位测量值
Figure PCTCN2020126222-appb-000034
进行下行定位,例如:基于载波相位的定位方案。
现有TDD系统基站之间的时钟偏差最大值在正负50ns,通过上述处理之后,可以使得残余的时钟偏差在1ns左右。
实施例2:
如图2所示,实施例2针对方案2的第一UE Type1(即第一类型的参考UE)、第一UE Type2(即第二类型的参考UE)和第二UE(即目标UE)进行说明,其中,第一UE Type1 a是专用于定位测量的第一类型的参考UE,第一UE Type2 b是专用于定位测量的第二类型的参考UE;目标UE c测量得到的第一定位测量值是载波相位测量值;定位参考信号PRS是NR C-PRS;基站i为参考基站,基站j为非参考基站。
第一UE Type1(即第一类型的参考UE)a的时钟偏差确定方法包括:
Step 1:第一UE Type1 a接收第一下行PRS信号的配置信令;其中,第一下行PRS可以是NR C-PRS,该配置信令可以是来自于LMF的定位专用信令,也可以是来自服务基站的广播信令、UE专属RRC信令或者DCI信令。
Step 2:在T1时刻,第一UE Type1 a接收并测量参考基站i和非参考基站j的第一下行PRS信号,得到参考基站i和非参考基站j之间的第一时钟偏差。
假设第一UE Type1 a通过测量基站i发送的C-PRS信号并且锁定相位后,获得载波相位测量值
Figure PCTCN2020126222-appb-000035
Figure PCTCN2020126222-appb-000036
在时刻k可以表达如下:
Figure PCTCN2020126222-appb-000037
其中,
Figure PCTCN2020126222-appb-000038
是参考基站i和第一UE Type1 a之间的理想距离,可由已知的基站的位置和第一UE Type1 a的位置得出。
Figure PCTCN2020126222-appb-000039
是以载波周期为单位的载波相位测量值,λ是C-PRS的载波波长,
Figure PCTCN2020126222-appb-000040
是未知的整周模糊度,
Figure PCTCN2020126222-appb-000041
是载波相位测量误差。相位测量误差一般只有载波波长的10%,在讨论基站时钟偏差时,可以忽略不计。c是光速,即3.0*10^8(米/秒),b r,a和b t,i分别是UE a和基站i的时钟偏差(即时间同步误差)。
设第一UE Type1 a通过测量基站j发送的C-PRS信号获得的载波相位测量值为
Figure PCTCN2020126222-appb-000042
Figure PCTCN2020126222-appb-000043
上面两式相减可得:在时刻k,第一UE Type1 a针对参考基站i和非参考基站j的单差分载波相位测量值
Figure PCTCN2020126222-appb-000044
为:
Figure PCTCN2020126222-appb-000045
其中,
Figure PCTCN2020126222-appb-000046
表示参考基站i和非参考基站j之间的时钟偏差,
Figure PCTCN2020126222-appb-000047
表示第一UE Type1 a和参考基站i以及非参考基站j之间的理想距离差;
Figure PCTCN2020126222-appb-000048
是载波相位测量误差之差。
基于载波相位测量单差分值
Figure PCTCN2020126222-appb-000049
通过一定的算法估计得到单差分的整周模糊度
Figure PCTCN2020126222-appb-000050
例如:基于EKF算法直接估计
Figure PCTCN2020126222-appb-000051
或者针对第一UE Type1 a的两个接收天线的载波相位测量值做双差分,并且计算得到双差分的整周模糊度,然后带回到单差分公式中得到单差分的整周模糊度
Figure PCTCN2020126222-appb-000052
然后估计得到 时刻k的基站i和基站j的第一时钟偏差值
Figure PCTCN2020126222-appb-000053
Figure PCTCN2020126222-appb-000054
通过多个时刻
Figure PCTCN2020126222-appb-000055
进行平均抑制噪声处理,得到第一UE Type1 a估计的参考基站i和非参考基站j的第一时钟偏差值
Figure PCTCN2020126222-appb-000056
Figure PCTCN2020126222-appb-000057
Step 3:第一UE Type1 a接收第一UE Type2 b反馈的第一时钟偏差
Figure PCTCN2020126222-appb-000058
和自身测量得到的第一时钟偏差
Figure PCTCN2020126222-appb-000059
基于预定义的准则确定第二时钟偏差。
第一UE Type1 a联合两个参考UE(第一UE Type1 a和第一UE Type2 b)测量的第一时钟偏差,可以计算出更加准确的参考基站i和非参考基站j之间的第二时钟偏差
Figure PCTCN2020126222-appb-000060
至少有以下三种计算方法:
Option1:算术平均,例如:
Figure PCTCN2020126222-appb-000061
Option2:选择信道条件最优(例如:RSRP和/或SINR最大的UE的信道条件最优)的参考UE的时钟偏差作为第二时钟偏差
Figure PCTCN2020126222-appb-000062
例如:参考UE a的RSRP和/或SINR大于参考UE b的RSRP和/或SINR,即参考UE a的RSRP大于参考UE b的RSRP,和/或,参考UE a的SINR大于参考UE b的SINR,则选择
Figure PCTCN2020126222-appb-000063
反之,选择
Figure PCTCN2020126222-appb-000064
Option3:加权平均,例如:
Figure PCTCN2020126222-appb-000065
其中,f是介于0到1之间的加权系数,可以根据UE a和UE b的信道条件来确定加权系数f的取值。
Step 4:第一UE Type1 a把第二时钟偏差
Figure PCTCN2020126222-appb-000066
通知给第二UE c。
第一UE Type2(即第二类型的参考UE)b的时钟偏差确定方法包括:
Step 1:第一UE Type2 b接收第一下行PRS信号的配置信令;其中,第一下行PRS可以是NR C-PRS,该配置信令可以是来自于LMF的定位专用信令,也可以是来自服务基站的广播信令、UE专属RRC信令或者DCI信令。
Step 2:在T1时刻,第一UE Type2 b接收并测量参考基站i和非参考基站j的第一下行PRS信号,得到参考基站i和非参考基站j之间的第一时钟偏 差。
根据公式(8)到公式(12),可得第一UE Type2 b估计的参考基站i和非参考基站j的第一时钟偏差值
Figure PCTCN2020126222-appb-000067
Step 3:第一UE Type2 b把上述第一时钟偏差
Figure PCTCN2020126222-appb-000068
反馈给第一UE Type1 a。
第二UE(目标UE)c的时钟偏差确定方法包括:
Step 1:第二UE c接收第二下行PRS信号的配置信令以及下行参考基站和非参考基站的位置信息;其中,第二下行PRS可以是NR C-PRS,该配置信令可以是来自于LMF的定位专用信令,也可以是来自服务基站的广播信令、UE专属RRC信令或者DCI信令。
Step 2:在T2时刻,第二UE c接收并测量参考基站和非参考基站的第二下行PRS信号,得到第一定位测量值(载波相位)。
Step 3:第二UE c接收第一类型的参考UE a反馈的第二时钟偏差估计值
Figure PCTCN2020126222-appb-000069
Step 4:第二UE c基于第二时钟偏差,针对Step2测量的第一定位测量值(载波相位)进行修正并得到第二定位测量值。
假设第二UE(目标UE)c测量的基站i和基站j的第一定位测量值(载波相位)
Figure PCTCN2020126222-appb-000070
为:
Figure PCTCN2020126222-appb-000071
第二UE(目标UE)c基于第二时钟偏差估计值
Figure PCTCN2020126222-appb-000072
采用下面公式针对第一定位测量值(载波相位)
Figure PCTCN2020126222-appb-000073
进行修正:
Figure PCTCN2020126222-appb-000074
其中,假设
Figure PCTCN2020126222-appb-000075
Step 5:第二UE c基于修正后得到的第二定位测量值
Figure PCTCN2020126222-appb-000076
进行下行定位,例如:基于载波相位的定位方案。
现有TDD系统基站之间的时钟偏差最大值在正负50ns,通过上述处理之后,可以使得残余的时钟偏差在1ns左右。
实施例3:
如图3所示,实施例3针对方案3的第一UE(即参考UE)和第二UE(即目标UE)进行说明,其中,第一UE a和第一UE b是专用于定位测量的参考UE;第二UE(目标UE)c测量得到的第一定位测量值是载波相位测量值;定位参考信号PRS是NR C-PRS;基站i为参考基站,基站j为非参考基站。
实施例3与实施例2的区别在于多个第一UE(参考UE)把第一时钟偏差直接通知给第二UE(目标UE),由目标UE确定第二时钟偏差。
第一UE(参考UE)a和b的时钟偏差确定方法包括:
Step 1:第一UE a和b接收第一下行PRS信号的配置信令;其中,第一下行PRS可以是NR C-PRS,该配置信令可以是来自于LMF的定位专用信令,也可以是来自服务基站的广播信令、UE专属RRC信令或者DCI信令。
Step 2:在T1时刻,第一UE a和b接收并测量参考基站i和非参考基站j的第一下行PRS信号,得到参考基站i和非参考基站j之间的第一时钟偏差。
根据公式(1)到公式(5),可得第一UE a估计的参考基站i和非参考基站j的第一时钟偏差值
Figure PCTCN2020126222-appb-000077
以及第一UE b估计的参考基站i和非参考基站j的第一时钟偏差值
Figure PCTCN2020126222-appb-000078
Step 3:第一UE a和b把第一时钟偏差
Figure PCTCN2020126222-appb-000079
Figure PCTCN2020126222-appb-000080
通知给目标UE c。
第二UE(目标UE)c的时钟偏差确定方法包括:
Step 1:第二UE c接收第二下行PRS信号的配置信令以及下行参考基站和非参考基站的位置信息;其中,第二下行PRS可以是NR C-PRS,该配置信令可以是来自于LMF的定位专用信令,也可以是来自服务基站的广播信令、UE专属RRC信令或者DCI信令。
Step 2:在T2时刻,第二UE c接收并测量参考基站和非参考基站的第二下行PRS信号,得到第一定位测量值(载波相位)。
Step 3:第二UE c接收第一UE a和b反馈的第一时钟偏差估计值
Figure PCTCN2020126222-appb-000081
Figure PCTCN2020126222-appb-000082
基于预定义的准则确定第二时钟偏差
Figure PCTCN2020126222-appb-000083
第二UE联合两个第一UE(第一UE a和第一UE b)测量的第一时钟偏差,可以计算出更加准确的参考基站i和非参考基站j之间的第二时钟偏差
Figure PCTCN2020126222-appb-000084
至少有以下三种计算方法:
Option1:算术平均,例如:
Figure PCTCN2020126222-appb-000085
Option2:选择信道条件最优(例如:RSRP和/或SINR最大的UE的信道条件最优)的参考UE的时钟偏差作为第二时钟偏差
Figure PCTCN2020126222-appb-000086
例如:参考UE a的RSRP和/或SINR大于参考UE b的RSRP和/或SINR,即参考UE a的RSRP大于参考UE b的RSRP,和/或,参考UE a的SINR大于参考UE b的SINR,则选择
Figure PCTCN2020126222-appb-000087
反之,选择
Figure PCTCN2020126222-appb-000088
Option3:加权平均,例如:
Figure PCTCN2020126222-appb-000089
其中,f是介于0到1之间的加权系数,可以根据第一UE a和第一UE b的信道条件来确定f取值。
Step 4:第二UE c基于第二时钟偏差
Figure PCTCN2020126222-appb-000090
针对Step2测量的第一定位测量值(载波相位)进行修正并得到第二定位测量值
Figure PCTCN2020126222-appb-000091
假设第二UE(目标UE)c测量的基站i和基站j的第一定位测量值(载波相位)
Figure PCTCN2020126222-appb-000092
为:
Figure PCTCN2020126222-appb-000093
第二UE c基于第二时钟偏差估计值
Figure PCTCN2020126222-appb-000094
采用下面公式针对第一定位测量值(载波相位)
Figure PCTCN2020126222-appb-000095
进行修正:
Figure PCTCN2020126222-appb-000096
其中,假设
Figure PCTCN2020126222-appb-000097
Step 5:第二UE c基于修正后得到的第二定位测量值
Figure PCTCN2020126222-appb-000098
进行下行定位,例如:基于载波相位的定位方案。
现有TDD系统基站之间的时钟偏差最大值在正负50ns,通过上述处理之 后,可以使得残余的时钟偏差在1ns左右。
综上所述,参见图4,在第一终端侧,本申请实施例提供的一种时钟偏差确定方法,包括:
S101、通过测量来自于参考基站和非参考基站的下行定位参考信号PRS,确定第一定位测量值;
S102、基于所述第一定位测量值确定所述参考基站和所述非参考基站之间的第一时钟偏差;
S103、基于所述第一时钟偏差,协助目标终端获得第二时钟偏差。
可选地,基于所述第一时钟偏差,具体通过下列方式之一协助目标终端获得第二时钟偏差:
方式一、直接将所述第一时钟偏差作为第二时钟偏差,通过Sidelink接口通知所述目标终端;
方式二、将所述第一时钟偏差通过Sidelink接口反馈给第一类型的第一终端,由所述第一类型的第一终端基于所述第一时钟偏差和预定义准则确定第二时钟偏差,并通过Sidelink接口通知所述目标终端;
方式三、将所述第一时钟偏差通过Sidelink接口通知所述目标终端,由所述目标终端基于所述第一时钟偏差和预定义准则确定第二时钟偏差。
可选地,所述预定义准则包括下列计算准则之一或组合:算术平均、选择信道条件最优值、加权平均。
可选地,所述定位参考信号PRS包括下列信号之一或组合:
NR PRS、C-PRS、SSB、CSI-RS。
相应地,参见图5,在第二终端侧,本申请实施例提供的一种时钟偏差确定方法,包括:
S201、确定第二时钟偏差,其中,所述第二时钟偏差是基于参考基站和非参考基站之间的第一时钟偏差确定的,所述第一时钟偏差是第一终端通过测量来自于所述参考基站和所述非参考基站的下行定位参考信号PRS确定的第一定位测量值确定的;
S202、基于所述第二时钟偏差,对所述第一定位测量值进行修正并得到第二定位测量值。
可选地,该方法还包括:
基于所述第二定位测量值进行下行定位。
可选地,通过如下方式之一确定所述第二时钟偏差:
方式一、通过Sidelink接口,接收所述第一终端通知的第一时钟偏差,并把所述第一时钟偏差赋值为第二时钟偏差;
方式二、通过Sidelink接口,接收第一类型的第一终端通知的第二时钟偏差,所述第二时钟偏差是由所述第一类型的第一终端基于所述第一时钟偏差和预定义准则确定的,所述第一时钟偏差是第二类型的第一终端确定并通过Sidelink接口反馈给所述第二类型的第一终端的;
方式三、通过Sidelink接口,接收多个第一终端通知的第一时钟偏差,并基于所述第一时钟偏差和预定义准则确定第二时钟偏差。
可选地,所述预定义准则包括下列计算准则之一或组合:算术平均、选择信道条件最优值、加权平均。
可选地,所述定位参考信号PRS包括下列信号之一或组合:
NR PRS、NR C-PRS、SSB、CSI-RS。
参见图6,在第一终端侧,本申请实施例提供的一种时钟偏差确定装置,包括:
第一单元11,用于通过测量来自于参考基站和非参考基站的下行定位参考信号PRS,确定第一定位测量值;
第二单元12,用于基于所述第一定位测量值确定所述参考基站和所述非参考基站之间的第一时钟偏差;基于所述第一时钟偏差,协助目标终端获得第二时钟偏差。
可选地,基于所述第一时钟偏差,第二单元12具体通过下列方式之一协助目标终端获得第二时钟偏差:
方式一、直接将所述第一时钟偏差作为第二时钟偏差,通过Sidelink接口 通知所述目标终端;
方式二、将所述第一时钟偏差通过Sidelink接口反馈给第一类型的第一终端,由所述第一类型的第一终端基于所述第一时钟偏差和预定义准则确定第二时钟偏差,并通过Sidelink接口通知所述目标终端;
方式三、将所述第一时钟偏差通过Sidelink接口通知所述目标终端,由所述目标终端基于所述第一时钟偏差和预定义准则确定第二时钟偏差。
可选地,所述预定义准则包括下列计算准则之一或组合:算术平均、选择信道条件最优值、加权平均。
可选地,所述定位参考信号PRS包括下列信号之一或组合:
NR PRS、NR C-PRS、SSB、CSI-RS。
参见图7,在第二终端侧,本申请实施例提供的一种时钟偏差确定方法,包括:
第三单元21,用于确定第二时钟偏差,其中,所述第二时钟偏差是基于参考基站和非参考基站之间的第一时钟偏差确定的,所述第一时钟偏差是第一终端通过测量来自于所述参考基站和所述非参考基站的下行定位参考信号PRS确定的第一定位测量值确定的;
第四单元22,用于基于所述第二时钟偏差,对所述第一定位测量值进行修正并得到第二定位测量值。
可选地,所述第四单元22还用于:
基于所述第二定位测量值进行下行定位。
可选地,所述第三单元21通过如下方式之一确定所述第二时钟偏差:
方式一、通过Sidelink接口,接收所述第一终端通知的第一时钟偏差,并把所述第一时钟偏差赋值为第二时钟偏差;
方式二、通过Sidelink接口,接收第一类型的第一终端通知的第二时钟偏差,所述第二时钟偏差是由所述第一类型的第一终端基于所述第一时钟偏差和预定义准则确定的,所述第一时钟偏差是第二类型的第一终端确定并通过Sidelink接口反馈给所述第二类型的第一终端的;
方式三、通过Sidelink接口,接收多个第一终端通知的第一时钟偏差,并基于所述第一时钟偏差和预定义准则确定第二时钟偏差。
可选地,所述预定义准则包括下列计算准则之一或组合:算术平均、选择信道条件最优值、加权平均。
可选地,所述定位参考信号PRS包括下列信号之一或组合:
NR PRS、NR C-PRS、SSB、CSI-RS。
参见图8,本申请实施例提供的一种终端,包括处理器600和存储器620。
当所述终端作为第一终端时,处理器600,用于读取存储器620中的程序,执行下列过程:
通过测量来自于参考基站和非参考基站的下行定位参考信号PRS,确定第一定位测量值;
基于所述第一定位测量值确定所述参考基站和所述非参考基站之间的第一时钟偏差;
基于所述第一时钟偏差,协助目标终端获得第二时钟偏差。
可选地,所述处理器600基于所述第一时钟偏差,具体通过下列方式之一协助目标终端获得第二时钟偏差:
方式一、直接将所述第一时钟偏差作为第二时钟偏差,通过Sidelink接口通知所述目标终端;
方式二、将所述第一时钟偏差通过Sidelink接口反馈给第一类型的第一终端,由所述第一类型的第一终端基于所述第一时钟偏差和预定义准则确定第二时钟偏差,并通过Sidelink接口通知所述目标终端;
方式三、将所述第一时钟偏差通过Sidelink接口通知所述目标终端,由所述目标终端基于所述第一时钟偏差和预定义准则确定第二时钟偏差。
可选地,所述预定义准则包括下列计算准则之一或组合:算术平均、选择信道条件最优值、加权平均。
可选地,所述定位参考信号PRS包括下列信号之一或组合:
NR PRS、NR C-PRS、SSB、CSI-RS。
除此之外,当该终端作为第二终端时,所述处理器600还用于:
确定第二时钟偏差,其中,所述第二时钟偏差是基于参考基站和非参考基站之间的第一时钟偏差确定的,所述第一时钟偏差是第一终端通过测量来自于所述参考基站和所述非参考基站的下行定位参考信号PRS确定的第一定位测量值确定的;
基于所述第二时钟偏差,对所述第一定位测量值进行修正并得到第二定位测量值。
可选地,所述处理器600还用于:
基于所述第二定位测量值进行下行定位。
可选地,处理器600通过如下方式之一确定所述第二时钟偏差:
方式一、通过Sidelink接口,接收所述第一终端通知的第一时钟偏差,并把所述第一时钟偏差赋值为第二时钟偏差;
方式二、通过Sidelink接口,接收第一类型的第一终端通知的第二时钟偏差,所述第二时钟偏差是由所述第一类型的第一终端基于所述第一时钟偏差和预定义准则确定的,所述第一时钟偏差是第二类型的第一终端确定并通过Sidelink接口反馈给所述第二类型的第一终端的;
方式三、通过Sidelink接口,接收多个第一终端通知的第一时钟偏差,并基于所述第一时钟偏差和预定义准则确定第二时钟偏差。
可选地,所述预定义准则包括下列计算准则之一或组合:算术平均、选择信道条件最优值、加权平均。
可选地,所述定位参考信号PRS包括下列信号之一或组合:
NR PRS、NR C-PRS、SSB、CSI-RS。
收发机610,用于在处理器600的控制下接收和发送数据。
其中,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不 再对其进行进一步描述。总线接口提供接口。收发机610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口630还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
可选的,处理器600可以是中央处理器(Central Processing Unit,CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(Processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例提供了一种计算设备,该计算设备具体可以为桌面计算机、便携式计算机、智能手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)等。该计算设备可以包括中央处理器CPU、存储器、输入/输出设备等, 输入设备可以包括键盘、鼠标、触摸屏等,输出设备可以包括显示设备,如液晶显示器(Liquid Crystal Display,LCD)、阴极射线管(Cathode Ray Tube,CRT)等。
存储器可以包括只读存储器ROM和随机存取存储器RAM,并向处理器提供存储器中存储的程序指令和数据。在本申请实施例中,存储器可以用于存储本申请实施例提供的任一所述方法的程序。
处理器通过调用存储器存储的程序指令,处理器用于按照获得的程序指令执行本申请实施例提供的任一所述方法。
本申请实施例提供了一种计算机存储介质,用于储存为上述本申请实施例提供的装置所用的计算机程序指令,其包含用于执行上述本申请实施例提供的任一方法的程序。
所述计算机存储介质可以是计算机能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(Solid State Disk,SSD))等。
本申请实施例提供的方法可以应用于终端设备,也可以应用于网络设备。
其中,终端设备也可称之为用户设备UE、移动台MS、移动终端等,可选的,该终端可以具备经无线接入网RAN与一个或多个核心网进行通信的能力,例如,终端可以是移动电话(或称为“蜂窝”电话)、或具有移动性质的计算机等,例如,终端还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
网络设备可以为基站(例如,接入点),指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(BTS),也可以是WCDMA中的基站 (NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB),或者也可以是5G系统中的gNB等。本申请实施例中不做限定。
上述方法处理流程可以用软件程序实现,该软件程序可以存储在存储介质中,当存储的软件程序被调用时,执行上述方法步骤。
综上所述,本申请实施例提出的技术方案包括:
首先,单个或者多个第一UE(即参考UE)同时测量来自于参考基站和非参考基站的下行定位参考信号PRS,获取第一定位测量值(即载波相位测量值),进一步计算得到参考基站和非参考基站之间的第一时钟偏差。
然后,第一UE采用三种方式协助目标UE获得第二时钟偏差:方式一、单个第一UE直接把该第一时钟偏差作为第二时钟偏差,通过Sidelink接口通知目标UE;方式二、多个第一UE Type 2(即第二类型的参考UE)把该第一时钟偏差通过Sidelink接口反馈给第一UE Type 1(即第一类型的参考UE),由第一UE Type 1基于第一时钟偏差和预定义准则确定第二时钟偏差,然后第一UE Type 1把第二时钟偏差通过Sidelink接口通知第二UE(即目标UE);方式三、多个第一UE把第一时钟偏差通过Sidelink接口通知第二UE,由第二UE基于第一时钟偏差和预定义准则确定第二时钟偏差。
其次,第二UE基于第二时钟偏差针对第一定位测量值做修正并得到第二定位测量值;
最后,第二UE基于修正后的第二定位测量值进行下行定位(基于载波相位定位方案)。
其中,第一UE(即参考UE)可以是常规UE,专用于定位UE,或者路测设备;方式2中,第一UE包含两种类型:第一UE Type 1(即第一类型的参考UE)和第一UE Type 2(即第二类型的参考UE);定位参考信号PRS可以是任意下行信号,包括但不限于:NR PRS、NR C-PRS、SSB和CSI-RS等;预定义准则包括但不限于算术平均、选择信道条件最优值和加权平均。
因此,本申请实施例提出了一种基于载波相位、UE-based定位的基站之间时钟偏差校准方案。解决了现有单差分方案的定位算法精度受限于PRS信 号的时钟偏差测量精度有限,从而使得系统定位性能下降的问题,例如:现有TDD系统基站之间的时钟偏差最大值在正负50ns,通过上述处理之后,可以使得残余的时钟偏差在1ns左右。相对于UE-assisted的定位方案,本方案能够有效地降低时延。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要 求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (21)

  1. 一种时钟偏差确定方法,其特征在于,该方法包括:
    通过测量来自于参考基站和非参考基站的下行定位参考信号PRS,确定第一定位测量值;
    基于所述第一定位测量值确定所述参考基站和所述非参考基站之间的第一时钟偏差;
    基于所述第一时钟偏差,协助目标终端获得第二时钟偏差。
  2. 根据权利要求1所述的方法,其特征在于,基于所述第一时钟偏差,具体通过下列方式之一协助目标终端获得第二时钟偏差:
    方式一、直接将所述第一时钟偏差作为第二时钟偏差,通过直通链路Sidelink接口通知所述目标终端;
    方式二、将所述第一时钟偏差通过Sidelink接口反馈给第一类型的第一终端,由所述第一类型的第一终端基于所述第一时钟偏差和预定义准则确定第二时钟偏差,并通过Sidelink接口通知所述目标终端;
    方式三、将所述第一时钟偏差通过Sidelink接口通知所述目标终端,由所述目标终端基于所述第一时钟偏差和预定义准则确定第二时钟偏差。
  3. 根据权利要求2所述的方法,其特征在于,所述预定义准则包括下列计算准则之一或组合:算术平均、选择信道条件最优值、加权平均。
  4. 根据权利要求1所述的方法,其特征在于,所述定位参考信号PRS包括下列信号之一或组合:
    新空口NR PRS、NR载波相位定位参考信号C-PRS、同步信号块SSB、信道状态指示参考信号CSI-RS。
  5. 一种时钟偏差确定方法,其特征在于,该方法包括:
    确定第二时钟偏差,其中,所述第二时钟偏差是基于参考基站和非参考基站之间的第一时钟偏差确定的,所述第一时钟偏差是第一终端通过测量来自于所述参考基站和所述非参考基站的下行定位参考信号PRS确定的第一定 位测量值确定的;
    基于所述第二时钟偏差,对所述第一定位测量值进行修正并得到第二定位测量值。
  6. 根据权利要求5所述的方法,其特征在于,该方法还包括:
    基于所述第二定位测量值进行下行定位。
  7. 根据权利要求5所述的方法,其特征在于,通过如下方式之一确定所述第二时钟偏差:
    方式一、通过直通链路Sidelink接口,接收所述第一终端通知的第一时钟偏差,并把所述第一时钟偏差赋值为第二时钟偏差;
    方式二、通过Sidelink接口,接收第一类型的第一终端通知的第二时钟偏差,所述第二时钟偏差是由所述第一类型的第一终端基于所述第一时钟偏差和预定义准则确定的,所述第一时钟偏差是第二类型的第一终端确定并通过Sidelink接口反馈给所述第二类型的第一终端的;
    方式三、通过Sidelink接口,接收多个第一终端通知的第一时钟偏差,并基于所述第一时钟偏差和预定义准则确定第二时钟偏差。
  8. 根据权利要求7所述的方法,其特征在于,所述预定义准则包括下列计算准则之一或组合:算术平均、选择信道条件最优值、加权平均。
  9. 根据权利要求5所述的方法,其特征在于,所述定位参考信号PRS包括下列信号之一或组合:
    新空口NR PRS、NR载波相位定位参考信号C-PRS、同步信号块SSB、信道状态指示参考信号CSI-RS。
  10. 一种终端,其特征在于,包括处理器和存储器;
    所述存储器,用于存储程序指令;
    所述处理器,用于读取存储器中的程序指令,执行权利要求1至4任一项所述的方法。
  11. 一种终端,其特征在于,包括处理器和存储器;
    所述存储器,用于存储程序指令;
    所述处理器,还用于读取所述存储器中的程序指令,执行权利要求5至9任一项所述的方法。
  12. 一种时钟偏差确定装置,其特征在于,该装置包括:
    第一单元,用于通过测量来自于参考基站和非参考基站的下行定位参考信号PRS,确定第一定位测量值;
    第二单元,用于基于所述第一定位测量值确定所述参考基站和所述非参考基站之间的第一时钟偏差;基于所述第一时钟偏差,协助目标终端获得第二时钟偏差。
  13. 根据权利要求12所述的装置,其特征在于,基于所述第一时钟偏差,所述第二单元具体通过下列方式之一协助目标终端获得第二时钟偏差:
    方式一、直接将所述第一时钟偏差作为第二时钟偏差,通过直通链路Sidelink接口通知所述目标终端;
    方式二、将所述第一时钟偏差通过Sidelink接口反馈给第一类型的第一终端,由所述第一类型的第一终端基于所述第一时钟偏差和预定义准则确定第二时钟偏差,并通过Sidelink接口通知所述目标终端;
    方式三、将所述第一时钟偏差通过Sidelink接口通知所述目标终端,由所述目标终端基于所述第一时钟偏差和预定义准则确定第二时钟偏差。
  14. 根据权利要求13所述的装置,其特征在于,所述预定义准则包括下列计算准则之一或组合:算术平均、选择信道条件最优值、加权平均。
  15. 根据权利要求12所述的装置,其特征在于,所述定位参考信号PRS包括下列信号之一或组合:
    新空口NR PRS、NR载波相位定位参考信号C-PRS、同步信号块SSB、信道状态指示参考信号CSI-RS。
  16. 一种时钟偏差确定装置,其特征在于,该装置包括:
    第三单元,用于确定第二时钟偏差,其中,所述第二时钟偏差是基于参考基站和非参考基站之间的第一时钟偏差确定的,所述第一时钟偏差是第一终端通过测量来自于所述参考基站和所述非参考基站的下行定位参考信号 PRS确定的第一定位测量值确定的;
    第四单元,用于基于所述第二时钟偏差,对所述第一定位测量值进行修正并得到第二定位测量值。
  17. 根据权利要求16所述的装置,其特征在于,所述第四单元还用于:
    基于所述第二定位测量值进行下行定位。
  18. 根据权利要求16所述的装置,其特征在于,所述第三单元通过如下方式之一确定所述第二时钟偏差:
    方式一、通过直通链路Sidelink接口,接收所述第一终端通知的第一时钟偏差,并把所述第一时钟偏差赋值为第二时钟偏差;
    方式二、通过Sidelink接口,接收第一类型的第一终端通知的第二时钟偏差,所述第二时钟偏差是由所述第一类型的第一终端基于所述第一时钟偏差和预定义准则确定的,所述第一时钟偏差是第二类型的第一终端确定并通过Sidelink接口反馈给所述第二类型的第一终端的;
    方式三、通过Sidelink接口,接收多个第一终端通知的第一时钟偏差,并基于所述第一时钟偏差和预定义准则确定第二时钟偏差。
  19. 根据权利要求18所述的装置,其特征在于,所述预定义准则包括下列计算准则之一或组合:算术平均、选择信道条件最优值、加权平均。
  20. 根据权利要求16所述的装置,其特征在于,所述定位参考信号PRS包括下列信号之一或组合:
    新空口NR PRS、NR载波相位定位参考信号C-PRS、同步信号块SSB、信道状态指示参考信号CSI-RS。
  21. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行权利要求1至4任一项所述的方法,或执行权利要求5至9任一项所述的方法。
PCT/CN2020/126222 2019-11-11 2020-11-03 时钟偏差确定方法及装置 WO2021093642A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/773,845 US11988754B2 (en) 2019-11-11 2020-11-03 Clock offset determination method and apparatus
KR1020227019066A KR20220097960A (ko) 2019-11-11 2020-11-03 클록 오프셋을 결정하기 위한 방법 및 장치
EP20886435.5A EP4061068A4 (en) 2019-11-11 2020-11-03 CYCLE OFFSET DETERMINATION METHOD AND APPARATUS
JP2022527209A JP7413527B2 (ja) 2019-11-11 2020-11-03 クロックオフセットの決定方法および装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911096940.4A CN112788733B (zh) 2019-11-11 2019-11-11 时钟偏差确定方法及装置
CN201911096940.4 2019-11-11

Publications (1)

Publication Number Publication Date
WO2021093642A1 true WO2021093642A1 (zh) 2021-05-20

Family

ID=75749075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126222 WO2021093642A1 (zh) 2019-11-11 2020-11-03 时钟偏差确定方法及装置

Country Status (7)

Country Link
US (1) US11988754B2 (zh)
EP (1) EP4061068A4 (zh)
JP (1) JP7413527B2 (zh)
KR (1) KR20220097960A (zh)
CN (1) CN112788733B (zh)
TW (1) TWI801768B (zh)
WO (1) WO2021093642A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11044693B1 (en) * 2020-05-08 2021-06-22 Qualcomm Incorporated Efficient positioning enhancement for dynamic spectrum sharing
US20220109957A1 (en) * 2020-10-02 2022-04-07 Qualcomm Incorporated Measurement of a downlink positioning reference signal from a non-serving base station of a user equipment at a serving base station of the user equipment
GB2606371B (en) * 2021-05-05 2023-11-22 Samsung Electronics Co Ltd Method and network
WO2023186135A1 (zh) * 2022-03-31 2023-10-05 华为技术有限公司 定位信息的确定方法、定位方法以及相关装置
CN117204073A (zh) * 2022-04-08 2023-12-08 北京小米移动软件有限公司 下行定位方法、装置、设备及存储介质
CN117015031A (zh) * 2022-04-29 2023-11-07 大唐移动通信设备有限公司 信息传输方法、载波相位定位方法及装置
WO2024031714A1 (zh) * 2022-08-12 2024-02-15 北京小米移动软件有限公司 定位方法及其装置
WO2024100744A1 (ja) * 2022-11-07 2024-05-16 株式会社Nttドコモ 端末、基地局、及び通信方法
CN117082612B (zh) * 2023-10-16 2023-12-29 深圳市鑫雅达机电工程有限公司 针对电机的集群式控制方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100164789A1 (en) * 2008-12-30 2010-07-01 Gm Global Technology Operations, Inc. Measurement Level Integration of GPS and Other Range and Bearing Measurement-Capable Sensors for Ubiquitous Positioning Capability
CN103906228A (zh) * 2012-12-28 2014-07-02 中国电信股份有限公司 移动终端的基站差分定位方法、定位装置和系统
CN106658707A (zh) * 2016-12-15 2017-05-10 广州极飞科技有限公司 差分定位系统和无人机

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6377209B1 (en) * 1997-02-03 2002-04-23 Snaptrack, Inc. Method and apparatus for satellite positioning system (SPS) time measurement
EP1091611B1 (en) * 1999-10-06 2007-08-29 Matsushita Electric Industrial Co., Ltd. Location system for a cellular telecommunications network
US6665541B1 (en) * 2000-05-04 2003-12-16 Snaptrack, Incorporated Methods and apparatuses for using mobile GPS receivers to synchronize basestations in cellular networks
US6937872B2 (en) * 2002-04-15 2005-08-30 Qualcomm Incorporated Methods and apparatuses for measuring frequencies of basestations in cellular networks using mobile GPS receivers
GB2446847B (en) * 2007-02-02 2012-02-22 Ubiquisys Ltd Location of Basestation
WO2015048986A1 (en) 2013-10-01 2015-04-09 Telefonaktiebolaget L M Ericsson (Publ) Synchronization module and method
US9964626B2 (en) 2014-07-24 2018-05-08 Lg Electronics Inc. Positioning method and apparatus therefor in wireless communication system
US10470147B2 (en) 2015-04-01 2019-11-05 Lg Electronics Inc. Method for executing RSTD measurement-related operation in wireless communication system
EP3386248B1 (en) * 2015-12-28 2020-04-22 Huawei Technologies Co., Ltd. Positioning network device and positioning method based on time difference of arrival
US11122535B2 (en) * 2016-07-15 2021-09-14 Qualcomm Incorporated Techniques for locating devices using narrowband positioning reference signals
EP3306337A1 (en) 2016-10-10 2018-04-11 Fraunhofer Gesellschaft zur Förderung der Angewand User equipment localization in a mobile communication network
CN108112071B (zh) * 2016-11-11 2021-07-20 中兴通讯股份有限公司 定位方法、定位基站、定位服务器和定位系统
US10120060B2 (en) * 2017-02-02 2018-11-06 Qualcomm Incorporated Location determination using user equipment preconfigured with positioning reference signal information
CN109842934B (zh) * 2017-11-24 2023-04-07 北京三星通信技术研究有限公司 用户设备ue的定位方法、定位装置及用户设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100164789A1 (en) * 2008-12-30 2010-07-01 Gm Global Technology Operations, Inc. Measurement Level Integration of GPS and Other Range and Bearing Measurement-Capable Sensors for Ubiquitous Positioning Capability
CN103906228A (zh) * 2012-12-28 2014-07-02 中国电信股份有限公司 移动终端的基站差分定位方法、定位装置和系统
CN106658707A (zh) * 2016-12-15 2017-05-10 广州极飞科技有限公司 差分定位系统和无人机

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion of the Scope of Rel-17 NR Positioning Enhancements", 3GPP TSG RAN WG MEETING #85 RP-191978, 20 September 2019 (2019-09-20), XP051782536 *
INTEL CORPORATION: "Remaining Details of Physical Layer Measurements for NR Positioning", 3GPP TSG RAN WG1 MEETING #98BIS R1-1910676, 20 October 2019 (2019-10-20), XP051789468 *
See also references of EP4061068A4 *

Also Published As

Publication number Publication date
EP4061068A1 (en) 2022-09-21
KR20220097960A (ko) 2022-07-08
EP4061068A4 (en) 2023-01-04
TWI801768B (zh) 2023-05-11
CN112788733B (zh) 2021-11-12
CN112788733A (zh) 2021-05-11
JP2023501552A (ja) 2023-01-18
US20220381922A1 (en) 2022-12-01
US11988754B2 (en) 2024-05-21
JP7413527B2 (ja) 2024-01-15
TW202119832A (zh) 2021-05-16

Similar Documents

Publication Publication Date Title
WO2021093642A1 (zh) 时钟偏差确定方法及装置
WO2021057175A1 (zh) 信号传输方法及装置
WO2021227821A1 (zh) 定位方法及装置
WO2020186959A1 (zh) 时钟偏移确定及其处理方法、装置、系统
EP3965438B1 (en) Methods and apparatuses for signal transmission, signal measurement reporting, and positioning
WO2021000951A1 (zh) 信号传输方法及装置
WO2022001858A1 (zh) 定位方法及装置
WO2021104025A1 (zh) 信息传输方法及装置
WO2021169676A1 (zh) 信息传输方法及装置
KR20230134141A (ko) 신호 처리 방법 및 장치
WO2020199898A1 (zh) 一种定位测量值的确定方法及装置
WO2021093560A1 (zh) 时钟偏差确定方法及装置
WO2022151897A1 (zh) 信息指示方法、装置、终端设备、网络设备及存储介质
WO2023011001A1 (zh) 定时误差关联信息的发送方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886435

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022527209

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227019066

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020886435

Country of ref document: EP

Effective date: 20220613