WO2020220803A1 - 信号传输、信号测量上报、定位方法及装置 - Google Patents

信号传输、信号测量上报、定位方法及装置 Download PDF

Info

Publication number
WO2020220803A1
WO2020220803A1 PCT/CN2020/076259 CN2020076259W WO2020220803A1 WO 2020220803 A1 WO2020220803 A1 WO 2020220803A1 CN 2020076259 W CN2020076259 W CN 2020076259W WO 2020220803 A1 WO2020220803 A1 WO 2020220803A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
configuration
downlink beam
terminal
downlink
Prior art date
Application number
PCT/CN2020/076259
Other languages
English (en)
French (fr)
Inventor
任斌
缪德山
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP20799353.6A priority Critical patent/EP3965438B1/en
Priority to US17/607,900 priority patent/US20220322105A1/en
Priority to EP23207627.3A priority patent/EP4294072A3/en
Priority to KR1020217038887A priority patent/KR20220005543A/ko
Publication of WO2020220803A1 publication Critical patent/WO2020220803A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • H04L5/0025Spatial division following the spatial signature of the channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/327Received signal code power [RSCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for signal transmission, signal measurement reporting, and positioning.
  • the Positioning Reference Signal (PRS) defined by Long Term Evolution (LTE) is based on cell-specific transmission.
  • 5G NR has not yet defined how to configure PRS, but all support cell-specific transmission.
  • the problem caused by the cell-specific transmission of PRS is that when the base station has multiple downlink transmission beams, the base station needs to allocate orthogonal PRS time-frequency resources to the multiple downlink beams, resulting in relatively large PRS resource overhead. Increase the receiving power consumption of the terminal.
  • the embodiments of the present application provide a method and device for signal transmission, signal measurement reporting, and positioning to save resource overhead of reference signals and reduce terminal power consumption.
  • the signal measurement report method provided by the embodiment of the present application, applied to a terminal includes:
  • the reported value of the first beam information includes one or a combination of the following information: a first beam information measurement value, a cell ID, an RS resource ID, and a beam direction.
  • the first beam information measurement value includes: reference signal received power RSRP, signal to interference plus noise ratio SINR, and/or reference signal received quality RSRQ.
  • the reported value of the second beam information includes one or a combination of the following information: a reference signal time difference RSTD, and a terminal receiving and sending time difference.
  • RSTD reference signal time difference
  • the second RS configuration information is configured by the network side in a terminal-level UE-specific or terminal group-level UE group-specific configuration mode; wherein, the UE-specific configuration mode is expressed as each terminal
  • the beam direction is configured separately, and the group-specific configuration mode of the UE means that a group of terminals in the same cell configure the same beam direction.
  • the UE-specific or UE group-specific configuration mode is periodic reference signal RS configuration, semi-persistent RS configuration, and aperiodic RS configuration.
  • the periodic RS configuration is triggered by radio resource control RRC signaling, downlink control information DCI signaling, or a long-term evolution positioning protocol LPP message; the semi-persistent RS configuration and aperiodic RS configuration are triggered by DCI signaling.
  • the second RS and the first RS have a quasi co-site QCL association relationship.
  • the first RS includes a new air interface NR positioning reference signal PRS, a synchronization block signal SSB, or a channel state information reference signal CSI-RS;
  • the second RS includes the new air interface NR positioning reference signal PRS.
  • a signal transmission method provided by an embodiment of the present application, applied to the network side includes:
  • sending the cell-level first reference signal RS in the M downlink beam directions of the first downlink beam set for different cells specifically includes: according to the cell-level first RS configuration information, in the first downlink beam direction for different cells A cell-level first reference signal RS is sent in M downlink beam directions of a downlink beam set; wherein, the first RS configuration information is obtained through a positioning server LMF;
  • Sending the second RS in the N downlink beam directions of the second downlink beam set for different cells specifically includes: according to the second RS configuration information, sending the second RS in the N downlink beam directions of the second downlink beam set for different cells RS, where the second RS configuration information is obtained through the LMF.
  • sending the cell-level first reference signal RS in the M downlink beam directions of the first downlink beam set for different cells specifically includes: according to the cell-level first RS configuration information, in the first downlink beam direction for different cells A cell-level first reference signal RS is sent in M downlink beam directions of a downlink beam set; wherein, the first RS configuration information is obtained through a positioning server LMF;
  • the method further includes: obtaining the first beam information reported value for different cells reported by the terminal in the cell, and using the QCL association relationship between the first RS and the second RS, and the first beam information reported value to determine the value for the different cells
  • the second downlink beam set of the terminal is exchanged between the serving gNB and the non-serving gNB of the terminal; the second RS configuration information of the second downlink beam set is notified to the terminal;
  • Sending the second RS in the N downlink beam directions of the second downlink beam set for different cells specifically includes: according to the second RS configuration information, sending the second RS in the N downlink beam directions of the second downlink beam set. RS.
  • using the QCL association relationship between the first RS and the second RS and the reported value of the first beam information to determine the second downlink beam set specifically includes:
  • the QCL association relationship between the first RS and the second RS is used to configure second terminals with the same beam direction for the multiple terminals in the same cell.
  • Downlink beam collection when multiple terminals in the same cell have the same one or more beam directions, the QCL association relationship between the first RS and the second RS is used to configure second terminals with the same beam direction for the multiple terminals in the same cell.
  • the second RS configuration information is configured in a terminal-level UE-specific or terminal group-level UE group-specific configuration mode; wherein, the UE-specific configuration mode means that each terminal is configured separately The beam direction, the UE group-specific configuration mode means that a group of terminals in the same cell configure the same beam direction.
  • the UE-specific or UE group-specific configuration mode is periodic reference signal RS configuration, semi-persistent RS configuration, and aperiodic RS configuration.
  • the periodic RS configuration is triggered by radio resource control RRC signaling, downlink control information DCI signaling, or a long-term evolution positioning protocol LPP message; the semi-persistent RS configuration and aperiodic RS configuration are triggered by DCI signaling.
  • the positioning method provided in the embodiment of the present application applied to the network side includes:
  • An RS is a cell-level first RS sent to the terminal in M downlink beam directions of the first downlink beam set for different cells, where M is greater than 1;
  • the method further includes:
  • the second downlink beam set Using the QCL association relationship between the first RS and the second RS, and the reported value of the first beam information, determine the second downlink beam set, and notify the base station and the terminal of the second RS configuration of the second downlink beam set information.
  • using the QCL association relationship between the first RS and the second RS and the reported value of the first beam information to determine the second downlink beam set specifically includes:
  • the QCL association relationship between the first RS and the second RS is used to configure second terminals with the same beam direction for the multiple terminals in the same cell.
  • Downlink beam collection when multiple terminals in the same cell have the same one or more beam directions, the QCL association relationship between the first RS and the second RS is used to configure second terminals with the same beam direction for the multiple terminals in the same cell.
  • the second RS configuration information is configured in a terminal-level UE-specific or terminal group-level UE group-specific configuration mode; wherein, the UE-specific configuration mode means that each terminal is configured separately The beam direction, the UE group-specific configuration mode means that a group of terminals in the same cell configure the same beam direction.
  • the UE-specific or UE group-specific configuration mode is periodic reference signal RS configuration, semi-persistent RS configuration, and aperiodic RS configuration.
  • the periodic RS configuration is triggered by radio resource control RRC signaling, downlink control information DCI signaling, or a long-term evolution positioning protocol LPP message; the semi-persistent RS configuration and aperiodic RS configuration are triggered by DCI signaling.
  • a signal measurement and reporting apparatus provided in an embodiment of the present application includes:
  • Memory used to store program instructions
  • the processor is used to call the program instructions stored in the memory and execute according to the obtained program:
  • the reported value of the first beam information includes one or a combination of the following information: a first beam information measurement value, a cell ID, an RS resource ID, and a beam direction.
  • the first beam information measurement value includes: reference signal received power RSRP, signal to interference plus noise ratio SINR, and/or reference signal received quality RSRQ.
  • the reported value of the second beam information includes one or a combination of the following information: a reference signal time difference RSTD, and a terminal receiving and sending time difference.
  • RSTD reference signal time difference
  • the second RS configuration information is configured by the network side in a terminal-level UE-specific or terminal group-level UE group-specific configuration mode; wherein, the UE-specific configuration mode is expressed as each terminal
  • the beam direction is configured separately, and the group-specific configuration mode of the UE means that a group of terminals in the same cell configure the same beam direction.
  • the UE-specific or UE group-specific configuration mode is periodic reference signal RS configuration, semi-persistent RS configuration, and aperiodic RS configuration.
  • the periodic PRS configuration is triggered by radio resource control RRC signaling, downlink control information DCI signaling, or a long-term evolution positioning protocol LPP message; the semi-persistent RS configuration and aperiodic RS configuration are triggered by DCI signaling.
  • the second RS has a quasi co-location QCL association relationship with the first RS.
  • the first RS includes a new air interface NR positioning reference signal PRS, a synchronization block signal SSB, or a channel state information reference signal CSI-RS;
  • the second RS includes the new air interface NR positioning reference signal PRS.
  • a signal transmission device provided in an embodiment of the present application includes:
  • Memory used to store program instructions
  • the processor is used to call the program instructions stored in the memory and execute according to the obtained program:
  • sending the cell-level first reference signal RS in the M downlink beam directions of the first downlink beam set for different cells specifically includes: according to the cell-level first RS configuration information, in the first downlink beam direction for different cells A cell-level first reference signal RS is sent in M downlink beam directions of a downlink beam set; wherein, the first RS configuration information is obtained through a positioning server LMF;
  • Sending the second RS in the N downlink beam directions of the second downlink beam set for different cells specifically includes: according to the second RS configuration information, sending the second RS in the N downlink beam directions of the second downlink beam set for different cells RS, where the second RS configuration information is obtained through the LMF.
  • sending the cell-level first reference signal RS in the M downlink beam directions of the first downlink beam set for different cells specifically includes: according to the cell-level first RS configuration information, in the first downlink beam direction for different cells A cell-level first reference signal RS is sent in M downlink beam directions of a downlink beam set; wherein, the first RS configuration information is obtained through a positioning server LMF;
  • the processor is further configured to: obtain the first beam information reported value for different cells reported by the terminal in the cell, and determine the first beam information reported value by using the QCL association relationship between the first RS and the second RS A second downlink beam set for different cells; exchange the second downlink beam set between the serving gNB and non-serving gNB of the terminal; notify the terminal of the second RS configuration information of the second downlink beam set;
  • Sending the second RS in the N downlink beam directions of the second downlink beam set for different cells specifically includes: according to the second RS configuration information, sending the second RS in the N downlink beam directions of the second downlink beam set. RS.
  • using the QCL association relationship between the first RS and the second RS and the reported value of the first beam information to determine the second downlink beam set specifically includes:
  • the QCL association relationship between the first RS and the second RS is used to configure second terminals with the same beam direction for the multiple terminals in the same cell.
  • Downlink beam collection when multiple terminals in the same cell have the same one or more beam directions, the QCL association relationship between the first RS and the second RS is used to configure second terminals with the same beam direction for the multiple terminals in the same cell.
  • the second RS configuration information is configured in a terminal-level UE-specific or terminal group-level UE group-specific configuration mode; wherein, the UE-specific configuration mode means that each terminal is configured separately The beam direction, the UE group-specific configuration mode means that a group of terminals in the same cell configure the same beam direction.
  • the UE-specific or UE group-specific configuration mode is periodic reference signal RS configuration, semi-persistent RS configuration, and aperiodic RS configuration.
  • the periodic PRS configuration is triggered by radio resource control RRC signaling, downlink control information DCI signaling, or a long-term evolution positioning protocol LPP message; the semi-persistent RS configuration and aperiodic RS configuration are triggered by DCI signaling.
  • a positioning device provided in an embodiment of the present application includes:
  • Memory used to store program instructions
  • the processor is used to call the program instructions stored in the memory and execute according to the obtained program:
  • An RS is a cell-level first RS sent to the terminal in M downlink beam directions of the first downlink beam set for different cells, where M is greater than 1;
  • the processor is further configured to:
  • the second downlink beam set Using the QCL association relationship between the first RS and the second RS, and the reported value of the first beam information, determine the second downlink beam set, and notify the base station and the terminal of the second RS configuration of the second downlink beam set information.
  • using the QCL association relationship between the first RS and the second RS and the reported value of the first beam information to determine the second downlink beam set specifically includes:
  • the QCL association relationship between the first RS and the second RS is used to configure second terminals with the same beam direction for the multiple terminals in the same cell.
  • Downlink beam collection when multiple terminals in the same cell have the same one or more beam directions, the QCL association relationship between the first RS and the second RS is used to configure second terminals with the same beam direction for the multiple terminals in the same cell.
  • the second RS configuration information is configured in a terminal-level UE-specific or terminal group-level UE group-specific configuration mode; wherein, the UE-specific configuration mode means that each terminal is configured separately The beam direction, the UE group-specific configuration mode means that a group of terminals in the same cell configure the same beam direction.
  • the UE-specific or UE group-specific configuration mode is periodic reference signal RS configuration, semi-persistent RS configuration, and aperiodic RS configuration.
  • the periodic RS configuration is triggered by radio resource control RRC signaling, downlink control information DCI signaling, or a long-term evolution positioning protocol LPP message; the semi-persistent RS configuration and aperiodic RS configuration are triggered by DCI signaling.
  • another signal measurement and reporting device provided in an embodiment of the present application includes:
  • the first reporting unit is configured to obtain the cell-level first reference signal RS sent by the network in the M downlink beam directions of the first downlink beam set for different cells, and use the first RS configuration information to compare the first reference signal RS.
  • the RS performs measurement, obtains the reported value of the first beam information and reports it to the network side, where M is greater than 1;
  • the second reporting unit is used to obtain the second RS sent by the network side in the N downlink beam directions of the second downlink beam set for different cells, and use the second RS configuration information to measure the second RS to obtain the second beam
  • another signal transmission device provided in an embodiment of the present application includes:
  • the first RS sending unit is configured to send the cell-level first reference signal RS in the M downlink beam directions of the first downlink beam set for different cells, where M is greater than 1;
  • the device further includes:
  • the configuration information notification unit is used to obtain the first beam information report value for different cells reported by the terminal in the cell; use the QCL association relationship between the first RS and the second RS, and the first beam information report value to determine the The second downlink beam set of the cell; the second downlink beam set is exchanged between the serving gNB and the non-serving gNB of the terminal; the second RS configuration information of the second downlink beam set is notified to the terminal.
  • another positioning device provided in an embodiment of the present application includes:
  • the configuration information notification unit is configured to notify the base station and the terminal of cell-level first reference signal RS configuration information, so that the base station sends the first RS to the terminal according to the first RS configuration information, and the terminal receives the first RS according to the first RS configuration information.
  • RS cell-level first reference signal RS configuration information
  • the first RS is a cell-level first RS sent to the terminal in M downlink beam directions of the first downlink beam set for different cells, where M is greater than 1;
  • the configuration information notification unit is further configured to:
  • the second downlink beam set Using the QCL association relationship between the first RS and the second RS, and the reported value of the first beam information, determine the second downlink beam set, and notify the base station and the terminal of the second RS configuration of the second downlink beam set information.
  • Another embodiment of the present application provides a computing device, which includes a memory and a processor, wherein the memory is used to store program instructions, and the processor is used to call the program instructions stored in the memory, according to the obtained program Perform any of the above methods.
  • Another embodiment of the present application provides a computer storage medium that stores computer-executable instructions, and the computer-executable instructions are used to make the computer execute any of the above methods.
  • FIG. 1 is a schematic diagram of Solution 1 on the network side provided by an embodiment of the application;
  • FIG. 3 is a schematic flowchart of a method for signal measurement and reporting on the terminal side according to an embodiment of the application;
  • FIG. 4 is a schematic flowchart of a signal transmission method on the base station side according to an embodiment of the application
  • FIG. 5 is a schematic flowchart of a positioning method on the positioning server side according to an embodiment of the application
  • FIG. 6 is a schematic diagram of a UE-specific PRS-based positioning process provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of a UE-specific PRS-based positioning process provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of a UE-specific PRS-based positioning process provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of a UE-specific PRS-based positioning process provided by an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of a signal measurement and reporting device on the terminal side according to an embodiment of the application.
  • FIG. 11 is a schematic structural diagram of a signal transmission device on the base station side according to an embodiment of the application.
  • FIG. 12 is a schematic structural diagram of a positioning device on the positioning server side according to an embodiment of the application.
  • FIG. 13 is a schematic structural diagram of another signal measurement and reporting device on the terminal side according to an embodiment of the application.
  • FIG. 14 is a schematic structural diagram of another signal transmission device on the base station side according to an embodiment of the application.
  • FIG. 15 is a schematic structural diagram of another positioning device on the positioning server side according to an embodiment of the application.
  • the embodiments of the present application provide a method and device for signal transmission, signal measurement reporting, and positioning to save resource overhead of reference signals and reduce terminal power consumption.
  • the method and the device are based on the same application conceived. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • applicable systems can be global system of mobile communication (GSM) system, code division multiple access (CDMA) system, and wideband code division multiple access (Wideband Code Division Multiple Access, WCDMA) general packet Wireless service (general packet radio service, GPRS) system, long term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD), general Mobile system (universal mobile telecommunication system, UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G system, 5G NR system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband Code Division Multiple Access
  • general packet Wireless service general packet radio service
  • GPRS general packet Radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS general Mobile system
  • WiMAX worldwide interoperability for microwave access
  • the terminal device involved in the embodiments of the present application may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the name of the terminal device may be different.
  • the terminal device may be called user equipment (UE).
  • the wireless terminal device can communicate with one or more core networks via the RAN.
  • the wireless terminal device can be a mobile terminal device, such as a mobile phone (or “cellular” phone) and a computer with a mobile terminal device, for example, a portable , Pocket, handheld, computer built-in or vehicle-mounted mobile devices that exchange language and/or data with the wireless access network.
  • Wireless terminal equipment can also be referred to as system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point (access point) , Remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), user device (user device), which are not limited in the embodiments of the present application.
  • the network device involved in the embodiment of the present application may be a base station, and the base station may include multiple cells.
  • a base station may also be called an access point, or may refer to a device in an access network that communicates with a wireless terminal device through one or more sectors on an air interface, or other names.
  • the network device can be used to convert the received air frame and the Internet protocol (IP) packet to each other, as a router between the wireless terminal device and the rest of the access network, where the rest of the access network can include the Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment involved in the embodiments of this application may be a network equipment (base transmitter station, BTS) in the global system for mobile communications (GSM) or code division multiple access (CDMA). ), it can also be a network device (NodeB) in wide-band code division multiple access (WCDMA), or an evolved network device in a long-term evolution (LTE) system (evolutional node B, eNB or e-NodeB), 5G base station in 5G network architecture (next generation system), but also home evolved node B (HeNB), relay node (relay node), home base station ( Femto), pico base station (pico), etc., are not limited in the embodiment of the present application.
  • BTS network equipment
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • NodeB wide-band code division multiple access
  • LTE long-term evolution
  • the UE receives all M (M is an integer greater than 1) downlink beam direction sent in the first downlink beam set (DLBeamSet1) of different cells configured by the network.
  • -specific) first reference signal (RS) and perform measurement to obtain the first beam information measurement value of an optimal downlink beam direction or multiple optimized downlink beam directions of the UE for different cells and report it to the network
  • the first An RS includes NR PRS, SSB (primary synchronization signal (PSS)/secondary synchronization signal (SSS or SS)/physical broadcast channel (PBCH)) or channel state indication reference signal (Channel State Indication Reference Signal, CSI-RS); network
  • PSS primary synchronization signal
  • SSS or SS secondary synchronization signal
  • PBCH physical broadcast channel
  • CSI-RS channel state indication reference signal
  • the second RS configuration information corresponding to the second downlink beam set (DLBeamSet2) for different cells and the second RS are further provided to the UE.
  • the first beam information measurement value includes but is not limited to reference signal received power (RSRP), signal to interference plus noise ratio (SINR) and/or reference signal received quality (RSRQ); RS positioning corresponding to the optimal or optimized beam direction
  • the measured value includes but not limited to the reference signal time difference (RSTD) and the UE receiving and sending time difference (Rx-Tx time difference), where the measured value RSTD corresponds to the Observed Time Difference of Arrival (OTDOA) positioning scheme.
  • the value UE receiving and sending time difference corresponds to an enhanced cell ID (Enhanced cell ID, E-CID) or multiple round-trip time (Multi-Round-trip time, Multi-RTT) positioning scheme.
  • the second RS configuration information of the second downlink beam set DLBeamSet2 of different cells may be UE-specific or UE group-specific, where UE-specific means that each UE individually configures the RS beam direction, and UE group-specific means the same A group of UEs in a cell are configured with the same RS beam direction.
  • UE-specific or UE group-specific RS configuration methods can be periodic RS, semi-persistent RS, and aperiodic RS configuration, where the periodic RS configuration is through radio resource control (RRC) signaling and downlink control information (DCI) signaling.
  • RRC radio resource control
  • DCI downlink control information
  • the second RS and the first RS have a Quasi Co-Location (QCL) association relationship.
  • QCL means that large-scale parameters of the channel experienced by a symbol on a certain antenna port can be inferred from the channel experienced by a symbol on another antenna port.
  • the large-scale parameters may include delay spread, average delay, Doppler spread, Doppler shift, average gain, and spatial reception parameters.
  • the present invention focuses on spatial reception parameters (ie beam direction).
  • the second RS and the first RS have a QCL relationship, the second RS can obtain the large-scale parameters including the spatial reception parameters defined by the QCL from the first RS.
  • a signal measurement report method provided by an embodiment of the present application is applied to a terminal, and the method includes:
  • the reported value of the first beam information includes one or a combination of the following information: a first beam information measurement value, a cell ID, an RS resource ID, and a beam direction.
  • the first beam information measurement value includes: reference signal received power RSRP, signal to interference plus noise ratio SINR, and/or reference signal received quality RSRQ.
  • the reported value of the second beam information includes one or a combination of the following information: a reference signal time difference RSTD, and a terminal receiving and sending time difference.
  • RSTD reference signal time difference
  • the second RS configuration information is configured by the network in a terminal-level UE-specific or terminal group-level UE group-specific configuration mode; wherein, the UE-specific configuration mode means that each terminal is independent The beam direction is configured, and the UE group-specific configuration mode means that a group of terminals in the same cell configure the same beam direction.
  • the UE-specific or UE group-specific configuration mode is periodic reference signal RS configuration, semi-persistent RS configuration, and aperiodic RS configuration.
  • the periodic RS configuration is triggered by radio resource control RRC signaling, downlink control information DCI signaling, or a long-term evolution positioning protocol LPP message; the semi-persistent RS configuration and aperiodic RS configuration are triggered by DCI signaling.
  • the second RS and the first RS have a quasi co-site QCL association relationship.
  • the first RS includes a new air interface NR positioning reference signal PRS, a synchronization block signal SSB, or a channel state information reference signal CSI-RS;
  • the second RS includes the new air interface NR positioning reference signal PRS.
  • the first RS is not limited to NR PRS, it can also be reference signals such as SSB or CSI-RS), and examples of specific implementation schemes are given.
  • the first RS is not limited to NR PRS, it can also be reference signals such as SSB or CSI-RS
  • SSB reference signals
  • CSI-RS CSI-RS
  • Step 1) The UE obtains cell-specific first PRS configuration information of different cells, where the first PRS configuration information includes the time-frequency resource, PRS pattern, and PRS sequence of the PRS corresponding to the first downlink beam set DLBeamSet1.
  • the first beam information measurement value including but not limited to RSRP , SINR and/or RSRQ
  • Step 3) The UE reports the reported value of the first beam information to the LMF or the serving gNB. Specifically, it may be sent to the LMF or gNB according to the network pre-configuration, or the UE independently determines to report to the LMF or the serving gNB.
  • the reported first beam information reported value includes, for example: first beam information measurement value (RSRP, SINR and/or RSRQ), cell ID, PRS resource (resource) ID, and beam direction.
  • RSRP first beam information measurement value
  • SINR SINR and/or RSRQ
  • cell ID cell ID
  • PRS resource (resource) ID cell ID
  • beam direction beam direction
  • Step 4) The UE obtains the second PRS configuration information corresponding to the second downlink beam set DLBeamSet2 through RRC signaling, DCI signaling or LPP message.
  • Step 5 The UE performs measurements on the second PRS corresponding to the second downlink beam set DLBeamSet2 according to the second PRS configuration information, obtains the positioning measurement value corresponding to the optimal beam direction, and reports the second beam information report value to the LMF ,
  • the reported value of the second beam information includes the positioning measurement value.
  • the positioning measurement value includes, but is not limited to, RSTD and UE receiving and sending time difference (Rx-Tx time difference).
  • the reported value of the second beam information may also include a cell ID, a PRS resource (resource) ID, and a beam direction.
  • step 3) of the UE includes two situations:
  • the UE reports the reported value of the first beam information to the LMF;
  • CASE2 The UE reports the reported value of the first beam information to the serving gNB.
  • the network-side includes two solutions:
  • Solution 1 (corresponding to the aforementioned CASE1): The LMF determines the second downlink beam set DLBeamSet2 of different cells received by the UE, and notifies the UE of the corresponding second PRS configuration information through LPP signaling.
  • Solution 2 (corresponding to the above CASE2): the serving gNB determines the second downlink beam set DLBeamSet2 of different cells received by the UE, and interacts with the non-serving gNB through the Xn interface between the base stations, and then each serving base station corresponds to the UE managed by each The second PRS configuration information is notified to the UE through RRC or DCI signaling.
  • a signal transmission method provided by an embodiment of the present application includes:
  • Sending the cell-level first reference signal RS in the M downlink beam directions of the first downlink beam set for different cells specifically includes: according to the cell-level first RS configuration information, in the first downlink beam for different cells
  • the first reference signal RS of the cell level is sent in the set of M downlink beam directions; wherein, the first RS configuration information is obtained through the positioning server LMF;
  • Sending the second RS in the N downlink beam directions of the second downlink beam set for different cells specifically includes: according to the second RS configuration information, sending the second RS in the N downlink beam directions of the second downlink beam set for different cells RS, where the second RS configuration information is obtained through the LMF.
  • Sending the cell-level first reference signal RS in the M downlink beam directions of the first downlink beam set for different cells specifically includes: according to the cell-level first RS configuration information, in the first downlink beam for different cells
  • the first reference signal RS of the cell level is sent in the set of M downlink beam directions; wherein, the first RS configuration information is obtained through the positioning server LMF;
  • the method further includes: obtaining the first beam information reported value for different cells reported by the terminal in the cell, and using the QCL association relationship between the first RS and the second RS, and the first beam information reported value to determine the value for the different cells
  • the second downlink beam set of the terminal is exchanged between the serving gNB and the non-serving gNB of the terminal; the second RS configuration information of the second downlink beam set is notified to the terminal;
  • Sending the second RS in the N downlink beam directions of the second downlink beam set for different cells specifically includes: according to the second RS configuration information, sending the second RS in the N downlink beam directions of the second downlink beam set. RS.
  • using the QCL association relationship between the first RS and the second RS and the reported value of the first beam information to determine the second downlink beam set specifically includes:
  • the QCL association relationship between the first RS and the second RS is used to configure second terminals with the same beam direction for the multiple terminals in the same cell.
  • Downlink beam collection when multiple terminals in the same cell have the same one or more beam directions, the QCL association relationship between the first RS and the second RS is used to configure second terminals with the same beam direction for the multiple terminals in the same cell.
  • the second RS configuration information is configured in a terminal-level UE-specific or terminal group-level UE group-specific configuration mode; wherein, the UE-specific configuration mode means that each terminal is configured separately The beam direction, the UE group-specific configuration mode means that a group of terminals in the same cell configure the same beam direction.
  • the UE-specific or UE group-specific configuration mode is periodic positioning reference signal PRS configuration, semi-persistent PRS configuration, and aperiodic PRS configuration.
  • the periodic PRS configuration is triggered by radio resource control RRC signaling, downlink control information DCI signaling or a long-term evolution positioning protocol LPP message; the semi-persistent PRS configuration and aperiodic PRS configuration are triggered by DCI signaling.
  • the above-mentioned method on the base station side provided in the embodiment of the present application is applicable to the serving base station gNB of the terminal and also applicable to the non-serving gNB of the terminal. That is, it is applicable to any base station.
  • the method (corresponding to the above-mentioned solution 2) includes:
  • the first RS is a cell-level first RS sent to the terminal in M downlink beam directions of the first downlink beam set for different cells, where M is greater than 1;
  • the method further includes:
  • the second downlink beam set Using the QCL association relationship between the first RS and the second RS, and the reported value of the first beam information, determine the second downlink beam set, and notify the base station and the terminal of the second RS configuration of the second downlink beam set information.
  • using the QCL association relationship between the first RS and the second RS and the reported value of the first beam information to determine the second downlink beam set specifically includes:
  • the QCL association relationship between the first RS and the second RS is used to configure second terminals with the same beam direction for the multiple terminals in the same cell.
  • Downlink beam collection when multiple terminals in the same cell have the same one or more beam directions, the QCL association relationship between the first RS and the second RS is used to configure second terminals with the same beam direction for the multiple terminals in the same cell.
  • the second RS configuration information is configured in a terminal-level UE-specific or terminal group-level UE group-specific configuration mode; wherein, the UE-specific configuration mode means that each terminal is configured separately The beam direction, the UE group-specific configuration mode means that a group of terminals in the same cell configure the same beam direction.
  • the UE-specific or UE group-specific configuration mode is periodic positioning reference signal PRS configuration, semi-persistent PRS configuration, and aperiodic PRS configuration.
  • the periodic PRS configuration is triggered by radio resource control RRC signaling, downlink control information DCI signaling or a long-term evolution positioning protocol LPP message; the semi-persistent PRS configuration and aperiodic PRS configuration are triggered by DCI signaling.
  • Network side solution 1 includes a positioning server (LMF), a first base station gNB1, a second base station gNB2, UE11, UE12, UE21, UE22, where gNB1 is the serving base station of UE11 and UE12, and gNB2 is the base station of UE21 and UE22. Serving base station.
  • LMF positioning server
  • gNB1 is the serving base station of UE11 and UE12
  • gNB2 is the base station of UE21 and UE22.
  • Serving base station Serving base station.
  • Network side gNB
  • Step 1) The serving gNB and the non-serving gNB obtain cell-specific first PRS (NR PRS, SSB signal or CSI-RS) configuration information through LMF, where the first PRS configuration information includes the first downlink beam set DLBeamSet1 corresponding to PRS time-frequency resources, PRS pattern, PRS sequence and other information.
  • first PRS configuration information includes the first downlink beam set DLBeamSet1 corresponding to PRS time-frequency resources, PRS pattern, PRS sequence and other information.
  • Step 2) The serving gNB and the non-serving gNB send a cell-specific first PRS (NR PRS, SSB signal or CSI-RS) to the UE according to the first PRS configuration information, where the gNB is in different first PRS time-frequency Different downlink beams are used to transmit the first PRS on the resources respectively, so as to realize transmission beam scanning for all downlink beams.
  • NR PRS, SSB signal or CSI-RS cell-specific first PRS
  • Step 3 the serving gNB and the non-serving gNB receive the second PRS configuration information of the second downlink beam set DLBeamSet2 notified by the LMF.
  • Step 4) The serving gNB and the non-serving gNB use the second PRS configuration information of the second downlink beam set DLBeamSet2 to send the second PRS (NR PRS, SSB signal or CSI-RS) to the UE.
  • the second PRS NR PRS, SSB signal or CSI-RS
  • the above step flow at the base station side can be applied to the serving base station of the terminal, and can also be applied to the non-serving base station of the terminal, that is, it is applicable to both gNB1 and gNB2 in the figure.
  • Step 1). The LMF notifies all gNBs and UEs of cell-specific first PRS (NR PRS, SSB signal, or CSI-RS) configuration information, where the first PRS configuration information includes the first downlink beam set DLBeamSet1 corresponding PRS time-frequency resources, PRS pattern, PRS sequence and other information;
  • first PRS configuration information includes the first downlink beam set DLBeamSet1 corresponding PRS time-frequency resources, PRS pattern, PRS sequence and other information;
  • LMF can be directly sent to UE through LPP signaling (that is, carried in RRC signaling and transparently transmitted to UE), or LMF can be sent to gNB through LPP signaling, which is converted to RRC signaling from gNB, and then gNB sends to UE.
  • the LMF obtains the first beam information reported value (including the beam information measurement value) reported by all UEs in different cells, and uses the QCL association relationship between the first RS and the second RS to determine according to the reported beam information measurement value
  • the second downlink beam set DLBeamSet2 specifically includes two determination methods:
  • Step 3) The LMF separately notifies all gNBs and UEs of the second PRS configuration information of the second downlink beam set DLBeamSet2 through LPP signaling.
  • the LMF receives the second beam information reported value measured and reported by the UE for the second PRS, obtains the positioning measurement value therefrom, and calculates the position of the UE terminal in combination with information such as the base station antenna position.
  • the positioning measurement value includes but is not limited to RSTD, and the UE receiving and sending time difference (Rx-Tx time difference).
  • Network side solution 2 includes a positioning server (LMF), a first base station gNB1, a second base station gNB2, UE11, UE12, UE21, UE22, where gNB1 is the serving base station of UE11 and UE12, and gNB2 is the service base station of UE21 and UE22. Serving base station.
  • LMF positioning server
  • gNB1 is the serving base station of UE11 and UE12
  • gNB2 is the service base station of UE21 and UE22.
  • Serving base station Serving base station.
  • scheme 2 The main difference between scheme 2 and scheme 1 is that the step 3) of the network-side gNB is different, and the network-side LMF only includes step 1) and step 4) of the scheme 1.
  • Network side gNB
  • Step 1) is the same as step 1) of gNB in the network side scheme 1.
  • Step 2) is the same as step 2) of gNB in solution 1 on the network side.
  • the serving gNB obtains the first beam information reported values (including beam information measurement values) reported by all UEs in the cell for different cells, and uses the QCL association relationship between the first RS and the second RS according to the first beam
  • the beam information measurement value included in the information report value determines the second downlink beam set DLBeamSet2.
  • it can include two ways: First, configure one or N1 beam directions of the optimal beam for each UE in different cells. Second, when multiple UEs in the same cell have the same one or N2 beam directions, configure the second downlink beam set DLBeamSet2 with the same beam direction for this group of UEs.
  • Step 3.1) the serving gNB and the non-serving gNB exchange the second downlink beam set DLBeamSet2.
  • Step 3.2 The serving gNB and the non-serving gNB notify the UEs in the cell managed by the gNB of the second PRS configuration information of the second downlink beam set DLBeamSet2, where the notification may be carried by RRC signaling or DCI signaling.
  • Step 4 same as step 4) of gNB in solution 1 on the network side.
  • the above step flow at the base station side can be applied to the serving base station of the terminal, and can also be applied to the non-serving base station of the terminal, that is, it is applicable to both gNB1 and gNB2 in the figure.
  • Step 1) is the same as step 1) of LMF in solution 1 on the network side.
  • Step 2) same as step 4) of LMF in the network side scheme 1.
  • Step 2 same as step 4) of LMF in the network side scheme 1.
  • Example 1 is based on network-side solution 1, and:
  • step 1) on the UE side the cell-specific NR PRS is used as the first PRS;
  • step 3 on the UE side, report the reported value of the first beam information to the LMF;
  • step 4) on the UE side the UE obtains the second PRS configuration information corresponding to the second downlink beam set DLBeamSet2 through the LPP message, where the second downlink beam set DLBeamSet2 of each UE has only one optimal PRS beam for each cell .
  • the positioning measurement value is the RSTD used in the OTDOA positioning scheme.
  • Step 1 After the UE establishes a connection with the BS, the UE is in a radio resource control connection (RRC_CONNECTED) state.
  • RRC_CONNECTED radio resource control connection
  • Step 2 The positioning server sends a "request positioning capability" message to the UE, requesting the UE to notify the server of the positioning function supported by the UE.
  • Step 3 The UE responds to the positioning server by sending a "provide positioning capability” message.
  • the "Provide Positioning Capability” message is reported to the UE that the terminal supports the positioning capability of the New Generation Radio Access Network (NG-RAN) OTDOA.
  • NG-RAN New Generation Radio Access Network
  • Step 4 When the downlink positioning assistance data is needed, the UE sends a "request positioning assistance data" message to the positioning server. This message includes requesting the positioning server to provide OTDOA assistance data.
  • the positioning server sends a "OTDOA Information Request (NRPPa OTDOA INFORMATION REQUEST)" message to the base station (BS), which requests the BS to provide downlink positioning assistance data, including cell-specific first PRS configuration information, where the first PRS
  • the configuration information includes information such as the PRS time-frequency resource, PRS pattern, and PRS sequence corresponding to the first downlink beam set DLBeamSet1.
  • Step 6 The base station sends an "OTDOA information response (NRPPa OTDOA INFORMATION RESPONSE)" message to the positioning server.
  • NRPPa OTDOA INFORMATION RESPONSE Provide the requested downlink positioning assistance data to the positioning server, including the cell-specific first PRS configuration information of the first downlink beam set.
  • Step 7 The positioning server provides the positioning assistance data requested by the UE in the "provide positioning assistance data" message, which carries the cell-specific first PRS configuration information, including the first downlink beam set DLBeamSet1.
  • Step 7a All BSs send the cell-specific first PRS to the UE.
  • Step 8 The positioning server sends a "request positioning information" message to the UE. This message requests the UE to measure the downlink PRS of the BS and responds with the measured positioning measurement value.
  • Step 9 The UE uses positioning assistance data (for example: PRS configuration data) to measure the downlink signal to obtain a positioning measurement value (for example: RSTD).
  • positioning assistance data for example: PRS configuration data
  • RSTD positioning measurement value
  • Step 10 The UE provides positioning information to the LMF, including the positioning measurement value and the first beam information report value, where the first beam information report value only includes the largest first beam information measurement value RSRP (corresponding to the optimal beam direction ).
  • Step 11 The LMF calculates the position of the terminal using the obtained positioning measurement value and base station antenna position and other information, and determines different cells based on the reported value of the first beam information reported by the UE and the QCL association relationship between the second PRS and the first PRS The corresponding second downlink beam subset DLBeamSet2, where the second downlink beam set DLBeamSet2 of each UE has only one optimal PRS beam for each cell.
  • Step 12 The positioning server sends an "OTDOA information request (UE-specific second PRS configuration)" message to the BS.
  • Step 13 The BS sends an "OTDOA information response (UE-specific second PRS configuration)" message to the positioning server.
  • Step 14 The positioning server provides positioning assistance data (UE-specific second PRS configuration, including the second downlink beam set DLBeamSet2) to the UE.
  • positioning assistance data UE-specific second PRS configuration, including the second downlink beam set DLBeamSet2
  • Step 14a All BSs send UE-specific second PRS to the UE.
  • Step 15 The positioning server sends a "request positioning information" message to the UE.
  • Step 16 The UE uses positioning assistance data (UE-specific second PRS configuration information) to measure the downlink signal to obtain a positioning measurement value.
  • positioning assistance data UE-specific second PRS configuration information
  • Step 17 The UE provides positioning information (including the positioning measurement value of the best quality beam direction) to the LMF.
  • Step 18 The LMF calculates the position of the terminal by using the obtained positioning measurement value and the information such as the position of the base station antenna.
  • Embodiment 2 The difference between Embodiment 2 and Embodiment 1 is:
  • the UE uses a cell-specific SSB signal as the first PRS.
  • step 3 on the UE side, the reported value of the first beam information is reported to the serving gNB.
  • the positioning measurement value is the UE receiving and sending time difference (Rx-Tx time difference) used in the Multi-RTT positioning scheme.
  • Embodiment 2 is based on network-side solution 2, and:
  • step 1) on the UE side a cell-specific SSB signal is used as the first PRS;
  • step 3 on the UE side, report the reported value of the first beam information to the serving gNB;
  • step 4) on the UE side the UE obtains the second PRS configuration information of the second downlink beam set DLBeamSet2 through the LPP message, where the second downlink beam set DLBeamSet2 of each UE has only one optimal PRS beam for each cell.
  • the positioning measurement value is the UE receiving and sending time difference (Rx-Tx time difference) used in the Multi-RTT positioning scheme.
  • Step 1 After the UE establishes a connection with the BS, the UE is in a radio resource control connection (RRC_CONNECTED) state.
  • RRC_CONNECTED radio resource control connection
  • Step 2 All gNBs respectively send cell-specific SSB signals to UEs in different cells.
  • Step 3 The UE uses the SSB signal to perform measurement to obtain the first beam state information measurement value.
  • Step 4 The UE reports the first beam state information report value to the serving gNB, including the beam direction with the largest measured value of different cells measured by the UE.
  • Step 4a Each gNB exchanges the reported values of the first beam state information of different UEs.
  • Step 5 The positioning server sends a "request positioning capability" message to the UE, requesting the UE to notify the server of the positioning functions supported by the UE.
  • Step 6 The UE responds to the positioning server by sending a "provide positioning capability” message.
  • the "Provide Positioning Capability” message reports that the UE means that the terminal supports the positioning capabilities of NG-RAN and OTDOA.
  • Step 7 When the downlink positioning assistance data is needed, the UE sends a "request positioning assistance data" message to the positioning server. This message includes requesting the positioning server to provide OTDOA assistance data.
  • Step 8 The LMF determines the second downlink beam subset DLBeamSet2 corresponding to different cells according to the beam information measurement value RSRP and base station information reported by the UE, and the QCL relationship between PRS and SSB.
  • Step 9 The positioning server sends a "Multi-RTT information request (including UE-specific second PRS configuration)" message to the BS.
  • Step 10 The BS sends a "Multi-RTT information response (including UE-specific second PRS configuration)" message to the positioning server.
  • the positioning server provides positioning assistance data (UE-specific second PRS configuration, including the second downlink beam set DLBeamSet2) to the UE.
  • positioning assistance data UE-specific second PRS configuration, including the second downlink beam set DLBeamSet2
  • Step 12 All BSs send a UE-specific second PRS to the UE.
  • Step 13 The positioning server sends a "request positioning information" message to the UE.
  • Step 14 The UE uses positioning assistance data (UE-specific second PRS configuration) to measure the downlink second PRS to obtain a positioning measurement value.
  • positioning assistance data UE-specific second PRS configuration
  • Step 15 The UE provides positioning information (including the positioning measurement value of the best quality beam direction) to the LMF.
  • Step 16 The LMF calculates the position of the terminal by using the obtained positioning measurement value and base station antenna position and other information.
  • the cell-specific NR PRS is used as the first PRS
  • the cell-specific first PRS and the UE-specific second PRS may use different PRS time-frequency resources, PRS patterns, and PRS sequences.
  • the cell-specific first PRS is based on the P-PRS with regular density and the number of OFDM symbols
  • the UE-specific second PRS is based on the S-PRS with higher density and the number of OFDM symbols.
  • the first beam information measurement value uses RSRQ instead of RSRP.
  • Embodiment 3 is based on network-side solution 1, and:
  • step 1) on the UE side the cell-specific NR PRS is used as the first PRS;
  • step 3 on the UE side, report the reported value of the first beam information to the LMF;
  • step 4) on the UE side the UE obtains the PRS configuration information of the second downlink beam set DLBeamSet2 through the LPP message, where the second downlink beam set DLBeamSet2 of each UE has 2 preferred PRS beams (optimum) for each cell. Beam and sub-optimal beam);
  • the positioning measurement value is the RSTD used in the OTDOA positioning scheme.
  • Step 1 After the UE establishes a connection with the BS, the UE is in a radio resource control connection (RRC_CONNECTED) state.
  • RRC_CONNECTED radio resource control connection
  • Step 2 The positioning server sends a "request positioning capability" message to the UE, requesting the UE to notify the server of the positioning function supported by the UE.
  • Step 3 The UE responds to the positioning server by sending a "provide positioning capability” message.
  • the "Provide Positioning Capability” message reports that the UE means that the terminal supports the positioning capabilities of NG-RAN and OTDOA.
  • Step 4 When the downlink positioning assistance data is needed, the UE sends a "request positioning assistance data" message to the positioning server. This message includes requesting the positioning server to provide OTDOA assistance data.
  • the positioning server sends an "OTDOA Information Request (NRPPa OTDOA INFORMATION REQUEST)" message to the BS, which requests the BS to provide downlink positioning assistance data, including cell-specific PRS configuration information, that is, first PRS configuration information.
  • the PRS configuration information includes the PRS time-frequency resource, PRS pattern, and PRS sequence information corresponding to the first downlink beam set DLBeamSet1.
  • Step 7 The positioning server provides the positioning assistance data requested by the UE in the "provide positioning assistance data" message, which carries the cell-specific first PRS configuration information, including the first downlink beam set DLBeamSet1.
  • Step 7a All BSs send the cell-specific first PRS to the UE.
  • Step 8 The positioning server sends a "request positioning information" message to the UE. This message requests the UE to measure the downlink PRS of the BS and responds with the measured positioning measurement value.
  • Step 9 The UE uses positioning assistance data (for example: PRS configuration data) to measure the downlink signal to obtain a positioning measurement value (for example: RSTD).
  • positioning assistance data for example: PRS configuration data
  • RSTD positioning measurement value
  • Step 10 The UE provides positioning information to the LMF, including the positioning measurement value and the first beam information report value, where the first beam information report value includes two first beam information measurement values RSRQ (corresponding to the largest value and the second largest value). Optimal and suboptimal beam directions).
  • Step 11 The LMF calculates the position of the terminal by using the obtained positioning measurement value and base station antenna position and other information; according to the first optimal beam information measurement value in different cells reported by the UE, and the second PRS and the first PRS The QCL association relationship determines the second PRS configuration information of the UE in a different cell.
  • Step 12 The positioning server sends an "OTDOA information request (UE-specific second PRS configuration)" message to the BS.
  • Step 13 The BS sends an "OTDOA information response (NRPPa OTDOA INFORMATION RESPONSE)" message to the positioning server.
  • OTDOA INFORMATION RESPONSE "OTDOA information response
  • Step 14 The positioning server provides positioning assistance data to the UE (UE-specific second PRS configuration, including a second downlink beam set DLBeamSet2, where each UE’s second downlink beam set DLBeamSet2 has 2 preferred for each cell PRS beam).
  • UE-specific second PRS configuration including a second downlink beam set DLBeamSet2, where each UE’s second downlink beam set DLBeamSet2 has 2 preferred for each cell PRS beam).
  • Step 14a All BSs send UE-specific second PRS to the UE.
  • Step 15 The positioning server sends a "request positioning information" message to the UE.
  • Step 16 The UE uses positioning assistance data (UE-specific second PRS configuration) to measure the downlink signal to obtain a positioning measurement value.
  • positioning assistance data UE-specific second PRS configuration
  • Step 17 The UE provides positioning information (including the positioning measurement value of the best quality beam direction) to the LMF.
  • Step 18 The LMF calculates the position of the terminal by using the obtained positioning measurement value and base station antenna position and other information.
  • the UE uses a cell-specific SSB signal as the first PRS.
  • the measurement value of the first beam information uses SINR instead of RSRP.
  • step 3 the reported value of the first beam information is reported to the serving gNB.
  • the positioning measurement value is the UE receiving and sending time difference (Rx-Tx time difference) used in the Multi-RTT positioning scheme.
  • Embodiment 4 is based on network-side solution 2, and:
  • step 1) on the UE side a cell-specific SSB signal is used as the first PRS;
  • step 3 on the UE side, report the reported value of the first beam information to the serving gNB;
  • step 4) on the UE side the UE obtains the second PRS configuration information of the second downlink beam set DLBeamSet2 through the LPP message, wherein the second downlink beam set DLBeamSet2 of each UE is for each cell 2 preferred PRS beams (the most Optimal beam and suboptimal beam).
  • the positioning measurement value is the UE receiving and sending time difference (Rx-Tx time difference) used in the Multi-RTT positioning scheme.
  • Step 1 After the UE establishes a connection with the BS, the UE is in a radio resource control connection (RRC_CONNECTED) state.
  • RRC_CONNECTED radio resource control connection
  • Step 2 All gNBs respectively send cell-specific SSB signals to UEs in different cells.
  • Step 3 The UE uses the SSB signal to perform measurement to obtain the first beam state information measurement value.
  • Step 4 The UE reports the first beam state information report value to the serving gNB, including the two beam directions with the largest and the second largest SINR measured by the UE in different cells.
  • Step 4a Each gNB exchanges the reported values of the first beam state information of different UEs.
  • Step 5 The positioning server sends a "request positioning capability" message to the UE, requesting the UE to notify the server of the positioning functions supported by the UE.
  • Step 6 The UE responds to the positioning server by sending a "provide positioning capability” message.
  • the "Provide Positioning Capability” message reports that the UE means that the terminal supports the positioning capabilities of NG-RAN and OTDOA.
  • Step 7 When the downlink positioning assistance data is needed, the UE sends a "request positioning assistance data" message to the positioning server. This message includes requesting the positioning server to provide OTDOA assistance data.
  • Step 8 Determine the second downlink beam subset DLBeamSet2 corresponding to different cells according to the beam information measurement value SINR and base station information reported by the UE, and the QCL relationship between the PRS and the SSB.
  • Step 9 The positioning server sends a "Multi-RTT information request (including UE-specific second PRS configuration)" message to the BS.
  • Step 10 The BS sends a "Multi-RTT information response (including UE-specific second PRS configuration)" message to the positioning server.
  • the positioning server provides positioning assistance data (UE-specific second PRS configuration, including the second downlink beam set DLBeamSet2) to the UE.
  • positioning assistance data UE-specific second PRS configuration, including the second downlink beam set DLBeamSet2
  • Step 12 All BSs send a UE-specific second PRS to the UE.
  • Step 13 The positioning server sends a "request positioning information" message to the UE.
  • Step 14 The UE uses positioning assistance data (UE-specific second PRS configuration) to measure the downlink second PRS to obtain a positioning measurement value.
  • positioning assistance data UE-specific second PRS configuration
  • Step 15 The UE provides positioning information (including the positioning measurement value of the best quality beam direction) to the LMF.
  • Step 16 The LMF calculates the position of the terminal by using the obtained positioning measurement value and base station antenna position and other information.
  • a signal measurement and reporting apparatus provided in an embodiment of the present application includes:
  • the memory 620 is used to store program instructions
  • the processor 600 is configured to call the program instructions stored in the memory, and execute according to the obtained program:
  • the second downlink beam set is determined by the network using the reported value of the first beam information.
  • the reported value of the first beam information includes one or a combination of the following information: a first beam information measurement value, a cell ID, an RS resource ID, and a beam direction.
  • the first beam information measurement value includes: reference signal received power RSRP, signal to interference plus noise ratio SINR, and/or reference signal received quality RSRQ.
  • the reported value of the second beam information includes one or a combination of the following information: a reference signal time difference RSTD, and a terminal receiving and sending time difference.
  • RSTD reference signal time difference
  • the second RS configuration information is configured by the network in a terminal-level UE-specific or terminal group-level UE group-specific configuration mode; wherein, the UE-specific configuration mode means that each terminal is independent The beam direction is configured, and the UE group-specific configuration mode means that a group of terminals in the same cell configure the same beam direction.
  • the UE-specific or UE group-specific configuration mode is periodic reference signal RS configuration, semi-persistent RS configuration, and aperiodic RS configuration.
  • the periodic PRS configuration is triggered by radio resource control RRC signaling, downlink control information DCI signaling, or a long-term evolution positioning protocol LPP message; the semi-persistent RS configuration and aperiodic RS configuration are triggered by DCI signaling.
  • the second RS has a quasi co-location QCL association relationship with the first RS.
  • the first RS includes a new air interface NR positioning reference signal PRS, a synchronization block signal SSB, or a channel state information reference signal CSI-RS;
  • the second RS includes the new air interface NR positioning reference signal PRS.
  • the transceiver 610 is configured to receive and send data under the control of the processor 600.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 600 and various circuits of the memory represented by the memory 620 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 610 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 630 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, etc.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 600 when performing operations.
  • the processor 600 may be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a CPLD (Complex Programmable Logic Device). , Complex programmable logic device).
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD Complex Programmable Logic Device
  • a signal transmission apparatus provided by an embodiment of the present application includes:
  • the memory 520 is used to store program instructions
  • the processor 500 is configured to call the program instructions stored in the memory, and execute according to the obtained program:
  • sending the cell-level first reference signal RS in the M downlink beam directions of the first downlink beam set for different cells specifically includes: according to the cell-level first RS configuration information, in the first downlink beam direction for different cells A cell-level first reference signal RS is sent in M downlink beam directions of a downlink beam set; wherein, the first RS configuration information is obtained through a positioning server LMF;
  • Sending the second RS in the N downlink beam directions of the second downlink beam set for different cells specifically includes: according to the second RS configuration information, sending the second RS in the N downlink beam directions of the second downlink beam set for different cells RS, where the second RS configuration information is obtained through the LMF.
  • sending the cell-level first reference signal RS in the M downlink beam directions of the first downlink beam set for different cells specifically includes: according to the cell-level first RS configuration information, in the first downlink beam direction for different cells A cell-level first reference signal RS is sent in M downlink beam directions of a downlink beam set; wherein, the first RS configuration information is obtained through a positioning server LMF;
  • the processor 500 is further configured to obtain the first beam information reported value for different cells reported by the terminal in the cell, and use the QCL association relationship between the first RS and the second RS, and the first beam information reported value Determining a second downlink beam set for different cells; interacting the second downlink beam set between the serving gNB and non-serving gNB of the terminal; notifying the terminal of the second RS configuration information of the second downlink beam set;
  • Sending the second RS in the N downlink beam directions of the second downlink beam set for different cells specifically includes: according to the second RS configuration information, sending the second RS in the N downlink beam directions of the second downlink beam set. RS.
  • using the QCL association relationship between the first RS and the second RS and the reported value of the first beam information to determine the second downlink beam set specifically includes:
  • the QCL association relationship between the first RS and the second RS is used to configure second terminals with the same beam direction for the multiple terminals in the same cell.
  • Downlink beam collection when multiple terminals in the same cell have the same one or more beam directions, the QCL association relationship between the first RS and the second RS is used to configure second terminals with the same beam direction for the multiple terminals in the same cell.
  • the second RS configuration information is configured in a terminal-level UE-specific or terminal group-level UE group-specific configuration mode; wherein, the UE-specific configuration mode means that each terminal is configured separately The beam direction, the UE group-specific configuration mode means that a group of terminals in the same cell configure the same beam direction.
  • the UE-specific or UE group-specific configuration mode is periodic reference signal RS configuration, semi-persistent RS configuration, and aperiodic RS configuration.
  • the periodic PRS configuration is triggered by radio resource control RRC signaling, downlink control information DCI signaling, or a long-term evolution positioning protocol LPP message; the semi-persistent RS configuration and aperiodic RS configuration are triggered by DCI signaling.
  • the transceiver 510 is configured to receive and send data under the control of the processor 500.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 500 and various circuits of the memory represented by the memory 520 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 510 may be a plurality of elements, that is, including a transmitter and a transceiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 can store data used by the processor 500 when performing operations.
  • the processor 500 can be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device). , CPLD).
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • FPGA field programmable gate array
  • CPLD complex programmable logic device
  • a positioning device provided by an embodiment of the present application includes:
  • the memory 505 is used to store program instructions
  • the processor 504 is configured to call the program instructions stored in the memory, and execute according to the obtained program:
  • An RS is a cell-level first RS sent to the terminal in M downlink beam directions of the first downlink beam set for different cells, where M is greater than 1;
  • processor 504 is further configured to:
  • the second downlink beam set Using the QCL association relationship between the first RS and the second RS, and the reported value of the first beam information, determine the second downlink beam set, and notify the base station and the terminal of the second RS configuration of the second downlink beam set information.
  • using the QCL association relationship between the first RS and the second RS and the reported value of the first beam information to determine the second downlink beam set specifically includes:
  • the QCL association relationship between the first RS and the second RS is used to configure second terminals with the same beam direction for the multiple terminals in the same cell.
  • Downlink beam collection when multiple terminals in the same cell have the same one or more beam directions, the QCL association relationship between the first RS and the second RS is used to configure second terminals with the same beam direction for the multiple terminals in the same cell.
  • the second RS configuration information is configured in a terminal-level UE-specific or terminal group-level UE group-specific configuration mode; wherein, the UE-specific configuration mode means that each terminal is configured separately The beam direction, the UE group-specific configuration mode means that a group of terminals in the same cell configure the same beam direction.
  • the UE-specific or UE group-specific configuration mode is periodic reference signal RS configuration, semi-persistent RS configuration, and aperiodic RS configuration.
  • the periodic RS configuration is triggered by radio resource control RRC signaling, downlink control information DCI signaling, or a long-term evolution positioning protocol LPP message; the semi-persistent RS configuration and aperiodic RS configuration are triggered by DCI signaling.
  • the transceiver 501 is configured to receive and send data under the control of the processor 504.
  • bus architecture (represented by bus 506), bus 506 can include any number of interconnected buses and bridges, bus 506 will include one or more processors represented by processor 504 and memory represented by memory 505
  • the various circuits are linked together.
  • the bus 500 may also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further description will be given herein.
  • the bus interface 503 provides an interface between the bus 506 and the transceiver 501.
  • the transceiver 501 may be one element or multiple elements, such as multiple receivers and transmitters, and provide a unit for communicating with various other devices on a transmission medium.
  • the data processed by the processor 504 is transmitted on the wireless medium through the antenna 502, and further, the antenna 502 also receives the data and transmits the data to the processor 504.
  • the processor 504 is responsible for managing the bus 506 and general processing, and can also provide various functions, including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 505 may be used to store data used by the processor 504 when performing operations.
  • the processor 504 may be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device ( Complex Programmable Logic Device, CPLD).
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD Complex Programmable Logic Device
  • another signal measurement and reporting apparatus provided in an embodiment of the present application includes:
  • the first reporting unit 131 is configured to obtain the cell-level first reference signal RS sent by the network in the M downlink beam directions of the first downlink beam set for different cells, and use the first RS configuration information to compare the first reference signal RS.
  • RS performs measurement to obtain the reported value of the first beam information and report it to the network, where M is greater than 1;
  • the second reporting unit 132 is configured to obtain the second RS sent by the network in the N downlink beam directions of the second downlink beam set for different cells, and use the second RS configuration information to measure the second RS to obtain the second beam
  • the reported value of the first beam information includes one or a combination of the following information: a first beam information measurement value, a cell ID, an RS resource ID, and a beam direction.
  • the first beam information measurement value includes: reference signal received power RSRP, signal to interference plus noise ratio SINR, and/or reference signal received quality RSRQ.
  • the reported value of the second beam information includes one or a combination of the following information: a reference signal time difference RSTD, and a terminal receiving and sending time difference.
  • RSTD reference signal time difference
  • the second RS configuration information is configured by the network in a terminal-level UE-specific or terminal group-level UE group-specific configuration mode; wherein, the UE-specific configuration mode means that each terminal is independent The beam direction is configured, and the UE group-specific configuration mode means that a group of terminals in the same cell configure the same beam direction.
  • the UE-specific or UE group-specific configuration mode is periodic reference signal RS configuration, semi-persistent RS configuration, and aperiodic RS configuration.
  • the periodic PRS configuration is triggered by radio resource control RRC signaling, downlink control information DCI signaling, or a long-term evolution positioning protocol LPP message; the semi-persistent RS configuration and aperiodic RS configuration are triggered by DCI signaling.
  • the second RS has a quasi co-location QCL association relationship with the first RS.
  • the first RS includes a new air interface NR positioning reference signal PRS, a synchronization block signal SSB, or a channel state information reference signal CSI-RS;
  • the second RS includes the new air interface NR positioning reference signal PRS.
  • another signal transmission apparatus provided by an embodiment of the present application includes:
  • the first RS sending unit 141 is configured to send the cell-level first reference signal RS in the M downlink beam directions of the first downlink beam set for different cells, where M is greater than 1;
  • the device further includes:
  • the configuration information notification unit (not shown in the figure) is used to obtain the reported value of the first beam information for different cells reported by the terminal in the cell; use the QCL association relationship between the first RS and the second RS, and the first The reported value of beam information determines the second downlink beam set for different cells; the second downlink beam set is exchanged between the serving gNB and the non-serving gNB of the terminal; the second RS configuration information of the second downlink beam set is notified To the terminal.
  • using the QCL association relationship between the first RS and the second RS and the reported value of the first beam information to determine the second downlink beam set specifically includes:
  • the QCL association relationship between the first RS and the second RS is used to configure second terminals with the same beam direction for the multiple terminals in the same cell.
  • Downlink beam collection when multiple terminals in the same cell have the same one or more beam directions, the QCL association relationship between the first RS and the second RS is used to configure second terminals with the same beam direction for the multiple terminals in the same cell.
  • the second RS configuration information is configured in a terminal-level UE-specific or terminal group-level UE group-specific configuration mode; wherein, the UE-specific configuration mode means that each terminal is configured separately The beam direction, the UE group-specific configuration mode means that a group of terminals in the same cell configure the same beam direction.
  • the UE-specific or UE group-specific configuration mode is periodic reference signal RS configuration, semi-persistent RS configuration, and aperiodic RS configuration.
  • the periodic PRS configuration is triggered by radio resource control RRC signaling, downlink control information DCI signaling, or a long-term evolution positioning protocol LPP message; the semi-persistent RS configuration and aperiodic RS configuration are triggered by DCI signaling.
  • another positioning device provided in an embodiment of the present application includes:
  • the configuration information notification unit 151 is configured to notify the base station and the terminal of cell-level first reference signal RS configuration information, so that the base station sends the first RS to the terminal according to the first RS configuration information, and the terminal receives the first RS according to the first RS configuration information.
  • the configuration information notification unit 151 is further configured to:
  • the second downlink beam set Using the QCL association relationship between the first RS and the second RS, and the reported value of the first beam information, determine the second downlink beam set, and notify the base station and the terminal of the second RS configuration of the second downlink beam set information.
  • using the QCL association relationship between the first RS and the second RS and the reported value of the first beam information to determine the second downlink beam set specifically includes:
  • the QCL association relationship between the first RS and the second RS is used to configure second terminals with the same beam direction for the multiple terminals in the same cell.
  • Downlink beam collection when multiple terminals in the same cell have the same one or more beam directions, the QCL association relationship between the first RS and the second RS is used to configure second terminals with the same beam direction for the multiple terminals in the same cell.
  • the second RS configuration information is configured in a terminal-level UE-specific or terminal group-level UE group-specific configuration mode; wherein, the UE-specific configuration mode means that each terminal is configured separately The beam direction, the UE group-specific configuration mode means that a group of terminals in the same cell configure the same beam direction.
  • the UE-specific or UE group-specific configuration mode is periodic reference signal RS configuration, semi-persistent RS configuration, and aperiodic RS configuration.
  • the periodic RS configuration is triggered by radio resource control RRC signaling, downlink control information DCI signaling, or a long-term evolution positioning protocol LPP message; the semi-persistent RS configuration and aperiodic RS configuration are triggered by DCI signaling.
  • each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including a number of instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • the embodiments of the present application provide a computing device, and the computing device may specifically be a desktop computer, a portable computer, a smart phone, a tablet computer, a personal digital assistant (Personal Digital Assistant, PDA), etc.
  • the computing device may include a central processing unit (CPU), a memory, an input/output device, etc.
  • the input device may include a keyboard, a mouse, a touch screen, etc.
  • an output device may include a display device, such as a liquid crystal display (Liquid Crystal Display, LCD), Cathode Ray Tube (CRT), etc.
  • the memory may include read-only memory (ROM) and random access memory (RAM), and provides the processor with program instructions and data stored in the memory.
  • ROM read-only memory
  • RAM random access memory
  • the memory may be used to store the program of any of the methods provided in the embodiment of the present application.
  • the processor calls the program instructions stored in the memory, and the processor is configured to execute any of the methods provided in the embodiments of the present application according to the obtained program instructions.
  • the embodiment of the present application provides a computer storage medium for storing computer program instructions used by the device provided in the foregoing embodiment of the present application, which includes a program for executing any method provided in the foregoing embodiment of the present application.
  • the computer storage medium may be any available medium or data storage device that can be accessed by the computer, including but not limited to magnetic storage (such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (such as CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state drive (SSD)), etc.
  • magnetic storage such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage such as CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state drive (SSD)
  • the method provided in the embodiments of the present application can be applied to terminal equipment, and can also be applied to network equipment.
  • the terminal equipment can also be called User Equipment (User Equipment, referred to as "UE"), Mobile Station (Mobile Station, referred to as “MS”), Mobile Terminal (Mobile Terminal), etc.
  • UE User Equipment
  • MS Mobile Station
  • Mobile Terminal Mobile Terminal
  • the terminal can It has the ability to communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the terminal can be a mobile phone (or called a "cellular" phone), or a mobile computer, etc.
  • the terminal may also be a portable, pocket-sized, handheld, computer built-in or vehicle-mounted mobile device.
  • the network device may be a base station (for example, an access point), which refers to a device that communicates with a wireless terminal through one or more sectors on an air interface in an access network.
  • the base station can be used to convert received air frames and IP packets into each other, and act as a router between the wireless terminal and the rest of the access network, where the rest of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate the attribute management of the air interface.
  • the base station can be a base station (BTS, Base Transceiver Station) in GSM or CDMA, a base station (NodeB) in WCDMA, or an evolved base station (NodeB or eNB or e-NodeB, evolutional NodeB) in LTE. B), or it can also be gNB in the 5G system.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • e-NodeB evolutional NodeB
  • the above-mentioned method processing flow can be implemented by a software program, which can be stored in a storage medium, and when the stored software program is called, the above-mentioned method steps are executed.
  • the present application can effectively reduce the resource overhead of the PRS and reduce the receiving power consumption of the UE while ensuring the positioning and measurement accuracy of the PRS.
  • the embodiments of the present application can be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本申请公开了一种信号传输、信号测量上报、定位方法及装置,用以节约参考信号的资源开销,降低终端功耗。本申请提供的一种信号测量上报方法包括:获取网络在针对不同小区的第一下行波束集合的M个下行波束方向发送的小区级的第一参考信号RS,并利用第一RS配置信息对所述第一RS进行测量,得到第一波束信息上报值并上报给网络,其中,M大于1;获取网络在针对不同小区的第二下行波束集合的N个下行波束方向发送的第二RS,并利用第二RS配置信息对第二RS进行测量,得到第二波束信息上报值并上报给网络,其中,1<=N<M,所述第二下行波束集合是网络利用所述第一波束信息上报值确定的。

Description

信号传输、信号测量上报、定位方法及装置
相关申请的交叉引用
本申请要求在2019年04月30日提交中国专利局、申请号为201910362318.7、申请名称为“信号传输、信号测量上报、定位方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种信号传输、信号测量上报、定位方法及装置。
背景技术
长期演进(Long Term Evolution,LTE)定义的定位参考信号(Positioning Reference Signal,PRS)是基于小区级(cell-specific)发送,5G NR尚未定义具体如何配置PRS,但都支持基于cell-specific发送。
但是,PRS的cell-specific发送带来的问题是当基站具有多个下行发送波束时,基站需要针对多个下行波束分别分配正交的PRS时频资源,从而产生了较大的PRS资源开销,增大了终端的接收功耗。
发明内容
本申请实施例提供了一种信号传输、信号测量上报、定位方法及装置,用以节约参考信号的资源开销,降低终端功耗。
本申请实施例提供的一种信号测量上报方法,应用于终端,包括:
获取网络侧在针对不同小区的第一下行波束集合的M个下行波束方向发送的小区级的第一参考信号RS,并利用第一RS配置信息对所述第一RS进行测量,得到第一波束信息上报值并上报给网络侧,其中,M大于1;
获取网络侧在针对不同小区的第二下行波束集合的N个下行波束方向发送的第二RS,并利用第二RS配置信息对第二RS进行测量,得到第二波束信息上报值并上报给网络侧,其中,1<=N<M,所述第二下行波束集合是网络侧利用所述第一波束信息上报值确定的。
可选地,所述第一波束信息上报值,包括下列信息之一或组合:第一波束信息测量值、小区ID、RS资源ID和波束方向。
可选地,所述第一波束信息测量值包括:参考信号接收功率RSRP、信号与干扰加噪声比SINR和/或参考信号接收质量RSRQ。
可选地,所述第二波束信息上报值,包括下列信息之一或组合:参考信号时间差RSTD,以及终端接收和发送时间差。
可选地,所述第二RS配置信息,是网络侧采用终端级UE-specific或者终端组级UE group-specific的配置方式配置的;其中,所述UE-specific的配置方式表示为每个终端单独配置波束方向,所述UE group-specific的配置方式表示为同一个小区内的一组终端配置相同的波束方向。
可选地,所述UE-specific或者UE group-specific的配置方式,是周期参考信号RS配置、半持续RS配置和非周期RS配置的。
可选地,所述周期RS配置通过无线资源控制RRC信令、下行控制信息DCI信令或者长期演进定位协议LPP消息触发;所述半持续RS配置和非周期RS配置通过DCI信令触发。
可选地,所述第二RS与所述第一RS具有准共站址QCL关联关系。
可选地,第一RS包括新空口NR定位参考信号PRS、同步块信号SSB或者信道状态信息参考信号CSI-RS;
第二RS包括新空口NR定位参考信号PRS。
在基站侧,本申请实施例提供的一种信号传输方法,应用于网络侧,包括:
在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS,其中,M大于1;
在针对不同小区的第二下行波束集合的N个下行波束方向发送第二RS,其中,1<=N<M。
可选地,在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS,具体包括:根据小区级的第一RS配置信息,在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS;其中,所述第一RS配置信息是通过定位服务器LMF获得的;
在针对不同小区的第二下行波束集合的N个下行波束方向发送第二RS,具体包括:根据第二RS配置信息,在针对不同小区的第二下行波束集合的N个下行波束方向发送第二RS,其中,所述第二RS配置信息是通过所述LMF获得的。
可选地,在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS,具体包括:根据小区级的第一RS配置信息,在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS;其中,所述第一RS配置信息是通过定位服务器LMF获得的;
该方法还包括:获得本小区内终端上报的针对不同小区的第一波束信息上报值,并利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值确定针对不同小区的第二下行波束集合;在终端的服务gNB与非服务gNB之间交互所述第二下行波束集合;将所述第二下行波束集合的第二RS配置信息通知给终端;
在针对不同小区的第二下行波束集合的N个下行波束方向发送第二RS,具体包括:根据所述第二RS配置信息,在所述第二下行波束集合的N个下行波束方向发送第二RS。
可选地,利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值确定第二下行波束集合,具体包括:
利用第一RS和第二RS的QCL关联关系,针对不同小区的每个终端分别配置一个或者多个不同波束方向的第二下行波束集合;
或者,当同一个小区内多个终端具有相同的一个或者多个波束方向时,利用第一RS和第二RS的QCL关联关系,为该同一个小区内多个终端配置波束方向相同的第二下行波束集合。
可选地,所述第二RS配置信息,是采用终端级UE-specific或者终端组级UE group-specific的配置方式配置的;其中,所述UE-specific的配置方式表示为每个终端单独配置波束方向,所述UE group-specific的配置方式表示为同一个小区内的一组终端配置相同的波束方向。
可选地,所述UE-specific或者UE group-specific的配置方式,是周期参考信号RS配置、半持续RS配置和非周期RS配置的。
可选地,所述周期RS配置通过无线资源控制RRC信令、下行控制信息DCI信令或者长期演进定位协议LPP消息触发;所述半持续RS配置和非周期RS配置通过DCI信令触发。
在定位服务器侧,本申请实施例提供的一种定位方法,应用于网络侧,包括:
分别向基站和终端通知小区级的第一参考信号RS配置信息,使得基站根据第一RS配置信息向终端发送第一RS,以及终端根据第一RS配置信息接收第一RS;其中,所述第一RS是在针对不同小区的第一下行波束集合的M个下行波束方向向所述终端发送的小区级的第一RS,其中,M大于1;
获取终端利用针对不同小区的第二下行波束集合的第二RS配置信息对第二RS的测量所上报的第二波束信息上报值,并基于所述第二波束信息上报值,计算终端位置,其中,第二下行波束集合包含N个下行波束方向,1<=N<M。
可选地,该方法还包括:
获取终端基于对第一RS的测量所上报的第一波束信息上报值;
利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值,确定所述 第二下行波束集合,并向基站和终端通知所述第二下行波束集合的第二RS配置信息。
可选地,利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值确定第二下行波束集合,具体包括:
利用第一RS和第二RS的QCL关联关系,针对不同小区的每个终端分别配置一个或者多个不同波束方向的第二下行波束集合;
或者,当同一个小区内多个终端具有相同的一个或者多个波束方向时,利用第一RS和第二RS的QCL关联关系,为该同一个小区内多个终端配置波束方向相同的第二下行波束集合。
可选地,所述第二RS配置信息,是采用终端级UE-specific或者终端组级UE group-specific的配置方式配置的;其中,所述UE-specific的配置方式表示为每个终端单独配置波束方向,所述UE group-specific的配置方式表示为同一个小区内的一组终端配置相同的波束方向。
可选地,所述UE-specific或者UE group-specific的配置方式,是周期参考信号RS配置、半持续RS配置和非周期RS配置的。
可选地,所述周期RS配置通过无线资源控制RRC信令、下行控制信息DCI信令或者长期演进定位协议LPP消息触发;所述半持续RS配置和非周期RS配置通过DCI信令触发。
在终端侧,本申请实施例提供的一种信号测量上报装置包括:
存储器,用于存储程序指令;
处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
获取网络侧在针对不同小区的第一下行波束集合的M个下行波束方向发送的小区级的第一参考信号RS,并利用第一RS配置信息对所述第一RS进行测量,得到第一波束信息上报值并上报给网络侧,其中,M大于1;
获取网络侧在针对不同小区的第二下行波束集合的N个下行波束方向发送的第二RS,并利用第二RS配置信息对第二RS进行测量,得到第二波束信息上报值并上报给网络侧,其中,1<=N<M,所述第二下行波束集合是网络侧利用所述第一波束信息上报值确定的。
可选地,所述第一波束信息上报值,包括下列信息之一或组合:第一波束信息测量值、小区ID、RS资源ID和波束方向。
可选地,所述第一波束信息测量值包括:参考信号接收功率RSRP、信号与干扰加噪声比SINR和/或参考信号接收质量RSRQ。
可选地,所述第二波束信息上报值,包括下列信息之一或组合:参考信号时间差RSTD,以及终端接收和发送时间差。
可选地,所述第二RS配置信息,是网络侧采用终端级UE-specific或者终端组级UE  group-specific的配置方式配置的;其中,所述UE-specific的配置方式表示为每个终端单独配置波束方向,所述UE group-specific的配置方式表示为同一个小区内的一组终端配置相同的波束方向。
可选地,所述UE-specific或者UE group-specific的配置方式,是周期参考信号RS配置、半持续RS配置和非周期RS配置的。
可选地,所述周期PRS配置通过无线资源控制RRC信令、下行控制信息DCI信令或者长期演进定位协议LPP消息触发;所述半持续RS配置和非周期RS配置通过DCI信令触发。
可选地,所述第二RS与所述第一RS具有准共址QCL关联关系。
可选地,第一RS包括新空口NR定位参考信号PRS、同步块信号SSB或者信道状态信息参考信号CSI-RS;
第二RS包括新空口NR定位参考信号PRS。
在基站侧,本申请实施例提供的一种信号传输装置,包括:
存储器,用于存储程序指令;
处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS,其中,M大于1;
在针对不同小区的第二下行波束集合的N个下行波束方向发送第二RS,其中,1<=N<M。
可选地,在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS,具体包括:根据小区级的第一RS配置信息,在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS;其中,所述第一RS配置信息是通过定位服务器LMF获得的;
在针对不同小区的第二下行波束集合的N个下行波束方向发送第二RS,具体包括:根据第二RS配置信息,在针对不同小区的第二下行波束集合的N个下行波束方向发送第二RS,其中,所述第二RS配置信息是通过所述LMF获得的。
可选地,在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS,具体包括:根据小区级的第一RS配置信息,在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS;其中,所述第一RS配置信息是通过定位服务器LMF获得的;
所述处理器还用于:获得本小区内终端上报的针对不同小区的第一波束信息上报值,并利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值确定针对不同小区的第二下行波束集合;在终端的服务gNB与非服务gNB之间交互所述第二下行波束 集合;将所述第二下行波束集合的第二RS配置信息通知给终端;
在针对不同小区的第二下行波束集合的N个下行波束方向发送第二RS,具体包括:根据所述第二RS配置信息,在所述第二下行波束集合的N个下行波束方向发送第二RS。
可选地,利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值确定第二下行波束集合,具体包括:
利用第一RS和第二RS的QCL关联关系,针对不同小区的每个终端分别配置一个或者多个不同波束方向的第二下行波束集合;
或者,当同一个小区内多个终端具有相同的一个或者多个波束方向时,利用第一RS和第二RS的QCL关联关系,为该同一个小区内多个终端配置波束方向相同的第二下行波束集合。
可选地,所述第二RS配置信息,是采用终端级UE-specific或者终端组级UE group-specific的配置方式配置的;其中,所述UE-specific的配置方式表示为每个终端单独配置波束方向,所述UE group-specific的配置方式表示为同一个小区内的一组终端配置相同的波束方向。
可选地,所述UE-specific或者UE group-specific的配置方式,是周期参考信号RS配置、半持续RS配置和非周期RS配置的。
可选地,所述周期PRS配置通过无线资源控制RRC信令、下行控制信息DCI信令或者长期演进定位协议LPP消息触发;所述半持续RS配置和非周期RS配置通过DCI信令触发。
在定位服务器侧,本申请实施例提供的一种定位装置,包括:
存储器,用于存储程序指令;
处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
分别向基站和终端通知小区级的第一参考信号RS配置信息,使得基站根据第一RS配置信息向终端发送第一RS,以及终端根据第一RS配置信息接收第一RS;其中,所述第一RS是在针对不同小区的第一下行波束集合的M个下行波束方向向所述终端发送的小区级的第一RS,其中,M大于1;
获取终端利用针对不同小区的第二下行波束集合的第二RS配置信息对第二RS的测量所上报的第二波束信息上报值,并基于所述第二波束信息上报值,计算终端位置,其中,第二下行波束集合包含N个下行波束方向,1<=N<M。
可选地,所述处理器还用于:
获取终端基于对第一RS的测量所上报的第一波束信息上报值;
利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值,确定所述第二下行波束集合,并向基站和终端通知所述第二下行波束集合的第二RS配置信息。
可选地,利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值确定第二下行波束集合,具体包括:
利用第一RS和第二RS的QCL关联关系,针对不同小区的每个终端分别配置一个或者多个不同波束方向的第二下行波束集合;
或者,当同一个小区内多个终端具有相同的一个或者多个波束方向时,利用第一RS和第二RS的QCL关联关系,为该同一个小区内多个终端配置波束方向相同的第二下行波束集合。
可选地,所述第二RS配置信息,是采用终端级UE-specific或者终端组级UE group-specific的配置方式配置的;其中,所述UE-specific的配置方式表示为每个终端单独配置波束方向,所述UE group-specific的配置方式表示为同一个小区内的一组终端配置相同的波束方向。
可选地,所述UE-specific或者UE group-specific的配置方式,是周期参考信号RS配置、半持续RS配置和非周期RS配置的。
可选地,所述周期RS配置通过无线资源控制RRC信令、下行控制信息DCI信令或者长期演进定位协议LPP消息触发;所述半持续RS配置和非周期RS配置通过DCI信令触发。
在终端侧,本申请实施例提供的另一种信号测量上报装置,包括:
第一上报单元,用于获取网络侧在针对不同小区的第一下行波束集合的M个下行波束方向发送的小区级的第一参考信号RS,并利用第一RS配置信息对所述第一RS进行测量,得到第一波束信息上报值并上报给网络侧,其中,M大于1;
第二上报单元,用于获取网络侧在针对不同小区的第二下行波束集合的N个下行波束方向发送的第二RS,并利用第二RS配置信息对第二RS进行测量,得到第二波束信息上报值并上报给网络侧,其中,1<=N<M,所述第二下行波束集合是网络侧利用所述第一波束信息上报值确定的。
在基站侧,本申请实施例提供的另一种信号传输装置,包括:
第一RS发送单元,用于在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS,其中,M大于1;
第二RS发送单元,用于在针对不同小区的第二下行波束集合的N个下行波束方向发送第二RS,其中,1<=N<M。
可选地,所述装置还包括:
配置信息通知单元,用于获得本小区内终端上报的针对不同小区的第一波束信息上报值;利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值确定针对不同小区的第二下行波束集合;在终端的服务gNB与非服务gNB之间交互所述第二下行波 束集合;将所述第二下行波束集合的第二RS配置信息通知给终端。
在定位服务器侧,本申请实施例提供的另一种定位装置,包括:
配置信息通知单元,用于分别向基站和终端通知小区级的第一参考信号RS配置信息,使得基站根据第一RS配置信息向终端发送第一RS,以及终端根据第一RS配置信息接收第一RS;其中,所述第一RS是在针对不同小区的第一下行波束集合的M个下行波束方向向所述终端发送的小区级的第一RS,其中,M大于1;
定位单元,用于获取终端利用针对不同小区的第二下行波束集合的第二RS配置信息对第二RS的测量所上报的第二波束信息上报值,并基于所述第二波束信息上报值,计算终端位置,其中,第二下行波束集合包含N个下行波束方向,1<=N<M。
可选地,所述配置信息通知单元,还用于:
获取终端基于对第一RS的测量所上报的第一波束信息上报值;
利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值,确定所述第二下行波束集合,并向基站和终端通知所述第二下行波束集合的第二RS配置信息。
本申请另一实施例提供了一种计算设备,其包括存储器和处理器,其中,所述存储器用于存储程序指令,所述处理器用于调用所述存储器中存储的程序指令,按照获得的程序执行上述任一种方法。
本申请另一实施例提供了一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述任一种方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的网络侧的方案1的示意图;
图2为本申请实施例提供的网络侧的方案2的示意图;
图3为本申请实施例提供的终端侧的一种信号测量上报方法的流程示意图;
图4为本申请实施例提供的基站侧的一种信号传输方法的流程示意图;
图5为本申请实施例提供的定位服务器侧的一种定位方法的流程示意图;
图6为本申请实施例提供的基于UE-specific PRS的定位流程示意图;
图7为本申请实施例提供的基于UE-specific PRS的定位流程示意图;
图8为本申请实施例提供的基于UE-specific PRS的定位流程示意图;
图9为本申请实施例提供的基于UE-specific PRS的定位流程示意图;
图10为本申请实施例提供的终端侧的一种信号测量上报装置的结构示意图;
图11为本申请实施例提供的基站侧的一种信号传输装置的结构示意图;
图12为本申请实施例提供的定位服务器侧的一种定位装置的结构示意图;
图13为本申请实施例提供的终端侧的另一种信号测量上报装置的结构示意图;
图14为本申请实施例提供的基站侧的另一种信号传输装置的结构示意图;
图15为本申请实施例提供的定位服务器侧的另一种定位装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供了一种信号传输、信号测量上报、定位方法及装置,用以节约参考信号的资源开销,降低终端功耗。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
本申请实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G系统以及5G NR系统等。这多种系统中均包括终端设备和网络设备。
本申请实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(user equipment,UE)。无线终端设备可以经RAN与一个或多个核心网进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线 接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiated protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本申请实施例中并不限定。
本申请实施例涉及的网络设备,可以是基站,该基站可以包括多个小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(internet protocol,IP)分组进行相互转换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本申请实施例涉及的网络设备可以是全球移动通信系统(global system for mobile communications,GSM)或码分多址接入(code division multiple access,CDMA)中的网络设备(base transceiver station,BTS),也可以是带宽码分多址接入(wide-band code division multiple access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站,也可是家庭演进基站(home evolved node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本申请实施例中并不限定。
下面结合说明书附图对本申请各个实施例进行详细描述。需要说明的是,本申请实施例的展示顺序仅代表实施例的先后顺序,并不代表实施例所提供的技术方案的优劣。
本申请实施例提供的技术方案中,UE接收网络预先配置的不同小区在第一下行波束集合(DLBeamSet1)内的所有M个(M是大于1的整数)下行波束方向发送的小区级(cell-specific)的第一参考信号(RS)并进行测量,得到本UE针对不同小区的一个最优下行波束方向或者多个优化下行波束方向的第一波束信息测量值并且向网络上报,其中,第一RS包括NR PRS、SSB(主同步信号(PSS)/辅同步信号(SSS或SS)/物理广播信道(PBCH))或者信道状态指示参考信号(Channel State Indication Reference Signal,CSI-RS);网络针对UE上报的第一波束信息上报值,进一步向UE提供针对不同小区的第二下行波束集合(DLBeamSet2)对应的第二RS配置信息以及第二RS(第二RS包括NR PRS),其中,第二下行波束集合DLBeamSet2包含N个(1<=N<M)优化下行波束方向;UE利用第二RS配置信息,对第二RS进行测量,得到最优或者优化波束方向对应的RS定位测量值,并上报网络,由网络进行定位计算。
其中,第一波束信息测量值包括但不限于参考信号接收功率(RSRP)、信号与干扰加噪声比(SINR)和/或参考信号接收质量(RSRQ);最优或者优化波束方向对应的RS定位测量值包括但不限于参考信号时间差(RSTD)以及UE接收和发送时间差(Rx-Tx time difference),其中,测量值RSTD对应于到达观察时间差(Observed Time Difference of Arrival,OTDOA)的定位方案,测量值UE接收和发送时间差对应于增强的小区标识(Enhanced cell ID,E-CID)或者多往返时间(Multi Round-trip time,Multi-RTT)的定位方案。
其中,不同小区的第二下行波束集合DLBeamSet2的第二RS配置信息可以是UE-specific或者UE group-specific,其中,UE-specific表示每个UE单独配置RS波束方向,UE group-specific表示为同一个小区内的一组UE配置相同的RS波束方向。UE-specific或者UE group-specific的RS配置方式可以是周期RS、半持续RS和非周期RS配置,其中,所述周期RS配置通过无线资源控制(RRC)信令、下行控制信息(DCI)信令或者长期演进定位协议(LTE Positioning Protocol,LPP)消息触发;所述半持续RS配置和非周期RS配置通过DCI信令触发。可选地,第二RS与第一RS具有准共站址(Quasi Co-Location,QCL)关联关系。QCL是指某个天线端口上的符号所经历的信道的大尺度参数可以从另一个天线端口上的符号所经历的信道所推断出来。其中的大尺度参数可以包括时延扩展、平均时延、多普勒扩展、多普勒偏移、平均增益以及空间接收参数等。本发明重点关注空间接收参数(即波束方向)。当第二RS和第一RS具有QCL关系时,第二RS能够从第一RS中获得该QCL定义的包含空间接收参数在内的大尺度参数。
在终端侧,参见图3,本申请实施例提供的一种信号测量上报方法,应用于终端,该方法包括:
S101、获取网络侧在针对不同小区的第一下行波束集合的M个下行波束方向发送的小区级的第一参考信号RS,并利用第一RS配置信息对所述第一RS进行测量,得到第一波束信息上报值并上报给网络侧,其中,M大于1;
S102、获取网络侧在针对不同小区的第二下行波束集合的N个下行波束方向发送的第二RS,并利用第二RS配置信息对第二RS进行测量,得到第二波束信息上报值并上报给网络侧,其中,1<=N<M,所述第二下行波束集合是网络利用所述第一波束信息上报值确定的。
可选地,所述第一波束信息上报值,包括下列信息之一或组合:第一波束信息测量值、小区ID、RS资源ID和波束方向。
可选地,所述第一波束信息测量值包括:参考信号接收功率RSRP、信号与干扰加噪声比SINR和/或参考信号接收质量RSRQ。
可选地,所述第二波束信息上报值,包括下列信息之一或组合:参考信号时间差RSTD,以及终端接收和发送时间差。
可选地,所述第二RS配置信息,是网络采用终端级UE-specific或者终端组级UE group-specific的配置方式配置的;其中,所述UE-specific的配置方式表示为每个终端单独配置波束方向,所述UE group-specific的配置方式表示为同一个小区内的一组终端配置相同的波束方向。
可选地,所述UE-specific或者UE group-specific的配置方式,是周期参考信号RS配置、半持续RS配置和非周期RS配置的。
可选地,所述周期RS配置通过无线资源控制RRC信令、下行控制信息DCI信令或者长期演进定位协议LPP消息触发;所述半持续RS配置和非周期RS配置通过DCI信令触发。
可选地,所述第二RS与所述第一RS具有准共站址QCL关联关系。
可选地,第一RS包括新空口NR定位参考信号PRS、同步块信号SSB或者信道状态信息参考信号CSI-RS;
第二RS包括新空口NR定位参考信号PRS。
下面以第一RS和第二RS都为PRS为例(第一RS不限于NR PRS,还可以是SSB或者CSI-RS等参考信号),给出具体实现方案的举例说明,分别从终端、网络侧gNB和网络侧定位服务器(LMF)三个实体角度描述。
具体地,例如在终端侧执行如下步骤:
步骤1)、UE获得不同小区的cell-specific的第一PRS配置信息,其中,第一PRS配置信息包括第一下行波束集合DLBeamSet1对应的PRS的时频资源、PRS pattern和PRS序列等信息。
步骤2)、UE根据该第一PRS配置信息对不同小区在第一下行波束集合DLBeamSet1内的所有M个下行波束方向的第一PRS进行测量得到第一波束信息测量值(包括但不限于RSRP、SINR和/或RSRQ),并确定包含第一波束信息测量值的第一波束信息上报值,其中,第一波束信息上报值可以只包括取值最大的测量值(对应于最优波束方向),也可以包括是大于预设门限的前面P个的测量值(对应于优化的P个波束方向),其中,1<=P<M。
步骤3)、UE把第一波束信息上报值上报给LMF或者服务gNB,具体地,可以根据网络预先配置是发给LMF或者gNB,或者UE自主确定上报给LMF或者服务gNB。
其中,上报的第一波束信息上报值例如包括:第一波束信息测量值(RSRP、SINR和/或RSRQ)、小区ID、PRS资源(resource)ID和波束方向。
步骤4)、UE通过RRC信令、DCI信令或者LPP消息获取第二下行波束集合DLBeamSet2对应的第二PRS配置信息。
步骤5)、UE根据第二PRS配置信息,分别针对该第二下行波束集合DLBeamSet2对应的第二PRS进行测量,得到最优波束方向对应的定位测量值,并向LMF上报第二波 束信息上报值,第二波束信息上报值中包括该定位测量值。定位测量值包含但不限于RSTD以及UE接收和发送时间差(Rx-Tx time difference)。第二波束信息上报值中还可以包括小区ID、PRS资源(resource)ID和波束方向。
其中,UE的步骤3)包含两种情况:
CASE1:UE把第一波束信息上报值上报给LMF;
CASE2:UE把第一波束信息上报值上报给服务gNB。
针对两种CASE,根据向UE提供第二下行波束集合DLBeamSet2对应的第二PRS配置信息的网络侧实体不同(gNB或者LMF),网络侧包括两种方案:
方案1(对应上述CASE1):LMF确定UE接收的不同小区的第二下行波束集合DLBeamSet2,并把对应的第二PRS配置信息通过LPP信令通知给UE。
方案2(对应上述CASE2):服务gNB确定UE接收的不同小区的第二下行波束集合DLBeamSet2,并且通过基站之间的Xn接口与非服务gNB进行交互,然后由各个服务基站把各自管理的UE对应的第二PRS配置信息通过RRC或者DCI信令通知给UE。
相应地,在基站侧,参见图4,本申请实施例提供的一种信号传输方法,该方法包括:
S201、在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS,其中,M大于1;
S202、在针对不同小区的第二下行波束集合的N个下行波束方向发送第二RS,其中,1<=N<M。
可选地,方案1:
在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS,具体包括:根据小区级的第一RS配置信息,在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS;其中,所述第一RS配置信息是通过定位服务器LMF获得的;
在针对不同小区的第二下行波束集合的N个下行波束方向发送第二RS,具体包括:根据第二RS配置信息,在针对不同小区的第二下行波束集合的N个下行波束方向发送第二RS,其中,所述第二RS配置信息是通过所述LMF获得的。
可选地,方案2:
在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS,具体包括:根据小区级的第一RS配置信息,在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS;其中,所述第一RS配置信息是通过定位服务器LMF获得的;
该方法还包括:获得本小区内终端上报的针对不同小区的第一波束信息上报值,并利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值确定针对不同小区 的第二下行波束集合;在终端的服务gNB与非服务gNB之间交互所述第二下行波束集合;将所述第二下行波束集合的第二RS配置信息通知给终端;
在针对不同小区的第二下行波束集合的N个下行波束方向发送第二RS,具体包括:根据所述第二RS配置信息,在所述第二下行波束集合的N个下行波束方向发送第二RS。
可选地,利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值确定第二下行波束集合,具体包括:
利用第一RS和第二RS的QCL关联关系,针对不同小区的每个终端分别配置一个或者多个不同波束方向的第二下行波束集合;
或者,当同一个小区内多个终端具有相同的一个或者多个波束方向时,利用第一RS和第二RS的QCL关联关系,为该同一个小区内多个终端配置波束方向相同的第二下行波束集合。
可选地,所述第二RS配置信息,是采用终端级UE-specific或者终端组级UE group-specific的配置方式配置的;其中,所述UE-specific的配置方式表示为每个终端单独配置波束方向,所述UE group-specific的配置方式表示为同一个小区内的一组终端配置相同的波束方向。
可选地,所述UE-specific或者UE group-specific的配置方式,是周期定位参考信号PRS配置、半持续PRS配置和非周期PRS配置的。
可选地,所述周期PRS配置通过无线资源控制RRC信令、下行控制信息DCI信令或者长期演进定位协议LPP消息触发;所述半持续PRS配置和非周期PRS配置通过DCI信令触发。
上述本申请实施例提供的基站侧的方法,适用于终端的服务基站gNB,也适用于终端的非服务gNB。即,对于任意一个基站,都适用。
相应地,在LMF侧,参见图5,本申请实施例提供的一种定位方法,该方法(对应于上述方案2)包括:
S301、分别向基站和终端通知小区级的第一参考信号RS配置信息,使得基站根据第一RS配置信息向终端发送第一RS,以及终端根据第一RS配置信息接收第一RS;其中,所述第一RS是在针对不同小区的第一下行波束集合的M个下行波束方向向所述终端发送的小区级的第一RS,其中,M大于1;
S302、获取终端利用针对不同小区的第二下行波束集合的第二RS配置信息对第二RS的测量所上报的第二波束信息上报值,并基于所述第二波束信息上报值,计算终端位置,其中,第二下行波束集合包含N个下行波束方向,1<=N<M。
可选地,对于上述方案1,则该方法还包括:
获取终端基于对第一RS的测量所上报的第一波束信息上报值;
利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值,确定所述第二下行波束集合,并向基站和终端通知所述第二下行波束集合的第二RS配置信息。
可选地,利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值确定第二下行波束集合,具体包括:
利用第一RS和第二RS的QCL关联关系,针对不同小区的每个终端分别配置一个或者多个不同波束方向的第二下行波束集合;
或者,当同一个小区内多个终端具有相同的一个或者多个波束方向时,利用第一RS和第二RS的QCL关联关系,为该同一个小区内多个终端配置波束方向相同的第二下行波束集合。
可选地,所述第二RS配置信息,是采用终端级UE-specific或者终端组级UE group-specific的配置方式配置的;其中,所述UE-specific的配置方式表示为每个终端单独配置波束方向,所述UE group-specific的配置方式表示为同一个小区内的一组终端配置相同的波束方向。
可选地,所述UE-specific或者UE group-specific的配置方式,是周期定位参考信号PRS配置、半持续PRS配置和非周期PRS配置的。
可选地,所述周期PRS配置通过无线资源控制RRC信令、下行控制信息DCI信令或者长期演进定位协议LPP消息触发;所述半持续PRS配置和非周期PRS配置通过DCI信令触发。
下面具体介绍两种网络侧方案。
网络侧方案1,参见图1,包括定位服务器(LMF)、第一基站gNB1、第二基站gNB2,UE11、UE12、UE21、UE22,其中gNB1是UE11和UE12的服务基站,gNB2是UE21和UE22的服务基站。
网络侧gNB:
步骤1)、服务gNB和非服务gNB通过LMF获得cell-specific的第一PRS(NR PRS、SSB信号或者CSI-RS)配置信息,其中,第一PRS配置信息包括第一下行波束集合DLBeamSet1对应的PRS时频资源、PRS pattern和PRS序列等信息。
步骤2)、服务gNB和非服务gNB根据该第一PRS配置信息向UE发送cell-specific的第一PRS(NR PRS、SSB信号或者CSI-RS),其中,gNB在不同的第一PRS时频资源上分别采用不同的下行波束发送第一PRS,以实现针对所有下行波束的发送波束扫描。
步骤3)、服务gNB和非服务gNB接收LMF通知的第二下行波束集合DLBeamSet2的第二PRS配置信息。
步骤4)、服务gNB和非服务gNB采用第二下行波束集合DLBeamSet2的第二PRS配置信息向UE发送第二PRS(NR PRS、SSB信号或者CSI-RS)。
以上基站侧的步骤流程,可以适用于终端的服务基站,也可以适用于终端的非服务基站,即对于图中的gNB1和gNB2均适用。
相应地,在网络侧LMF侧执行:
步骤1)、LMF分别向所有gNB和UE通知cell-specific的第一PRS(NR PRS、SSB信号或者CSI-RS)配置信息,其中,第一PRS配置信息包括第一下行波束集合DLBeamSet1对应的PRS时频资源、PRS pattern和PRS序列等信息;
其中,LMF可以通过LPP信令直接发给UE(即承载在RRC信令中透传给UE),也可以LMF通过LPP信令发送给gNB,由gNB转换为RRC信令,之后gNB再发给UE。
步骤2)、LMF获得不同小区内所有UE上报的第一波束信息上报值(其中包括波束信息测量值),利用第一RS和第二RS的QCL关联关系,根据该上报的波束信息测量值确定第二下行波束集合DLBeamSet2,具体包括两种确定方式:
第一,针对不同小区的每个用户分别配置其一个最优的或者N1个优化的不同波束方向的第二下行波束集合DLBeamSet2;
第二,当同一个小区内多个用户具有相同的一个或者N2个波束方向时,为这一组用户配置波束方向相同的第二下行波束集合DLBeamSet2。
步骤3)、LMF分别向所有gNB和UE通过LPP信令通知第二下行波束集合DLBeamSet2的第二PRS配置信息。
步骤4)、LMF接收UE针对第二PRS进行测量上报的第二波束信息上报值,从中获取定位测量值,并结合基站天线位置等信息,计算所述UE终端的位置。其中,该定位测量值包含但不限于RSTD,以及UE接收和发送时间差(Rx-Tx time difference)。
网络侧方案2,参见图2,包括定位服务器(LMF)、第一基站gNB1、第二基站gNB2,UE11、UE12、UE21、UE22,其中gNB1是UE11和UE12的服务基站,gNB2是UE21和UE22的服务基站。
方案2与方案1的主要区别在于网络侧gNB的步骤3)不同,以及网络侧LMF只包含方案1的步骤1)和步骤4)。
网络侧gNB:
步骤1)、同网络侧方案1中gNB的步骤1)。
步骤2)、同网络侧方案1中gNB的步骤2)。
步骤3)、服务gNB获得本小区内所有UE上报的针对不同小区的第一波束信息上报值(其中包括波束信息测量值),利用第一RS和第二RS的QCL关联关系,根据第一波束信息上报值中包含的波束信息测量值确定第二下行波束集合DLBeamSet2,具体的,例如可以包括两种方式:第一,针对不同小区的每个UE分别配置其最优的一个或者N1个波束方向的第二下行波束集合DLBeamSet2;第二,当同一个小区内多个UE具有相同的 一个或者N2个波束方向时,为这一组UE配置波束方向相同的第二下行波束集合DLBeamSet2。
步骤3.1)、服务gNB和非服务gNB交互第二下行波束集合DLBeamSet2。
步骤3.2)、服务gNB和非服务gNB把第二下行波束集合DLBeamSet2的第二PRS配置信息通知本gNB所管理小区内的UE,其中,该通知可以通过RRC信令或者DCI信令携带。
步骤4)、同网络侧方案1中gNB的步骤4)。
以上基站侧的步骤流程,可以适用于终端的服务基站,也可以适用于终端的非服务基站,即对于图中的gNB1和gNB2均适用。
相应地,在网络侧LMF侧:
步骤1)、同网络侧方案1中LMF的步骤1)。
步骤2)、同网络侧方案1中LMF的步骤4)。下面给出几个整体流程实施例。
实施例1:
实施例1基于网络侧方案1,并且:
UE侧的步骤1)中,采用cell-specific的NR PRS作为第一PRS;
UE侧的步骤2)中,第一波束信息测量值采用RSRP,其中,第一波束信息上报值只包括取值最大的第一波束信息测量值(即N=1);
UE侧的步骤3)中,把第一波束信息上报值上报给LMF;
UE侧的步骤4)中,UE通过LPP消息获取第二下行波束集合DLBeamSet2对应的第二PRS配置信息,其中,每个UE的第二下行波束集合DLBeamSet2针对每个小区只有一个最优的PRS波束。
UE侧的Step5)中,定位测量值是用于OTDOA定位方案的RSTD。
如图6所示,下面给出具体步骤介绍。
步骤1、在UE建立与BS的连接之后,UE处于无线资源控制连接(RRC_CONNECTED)状态。
步骤2、定位服务器向UE发送“请求定位能力”消息,请求UE通知服务器该UE所能支持的定位功能。
步骤3、UE发送“提供定位能力”消息来响应定位服务器。“提供定位能力”消息上报UE即终端支持新一代无线接入网络(New Generation Radio Access Network,NG-RAN)OTDOA的定位能力。
步骤4、当需要下行定位辅助数据时,UE向定位服务器发送“请求定位辅助数据”消息。该消息包括请求定位服务器提供OTDOA辅助数据。
步骤5、定位服务器向基站(BS)发送“OTDOA信息请求(NRPPa OTDOA  INFORMATION REQUEST)”消息,该消息请求BS提供下行定位辅助数据,包括cell-specific的第一PRS配置信息,其中,第一PRS配置信息包括第一下行波束集合DLBeamSet1对应的PRS时频资源、PRS pattern和PRS序列等信息。
步骤6、基站向定位服务器发送“OTDOA信息响应(NRPPa OTDOA INFORMATION RESPONSE)”消息。向定位服务器提供所请求的下行定位辅助数据,包括第一下行波束集合的cell-specific的第一PRS配置信息。
步骤7、定位服务器在“提供定位辅助数据”消息中提供UE所请求的定位辅助数据,其中携带cell-specific的第一PRS配置信息,包括第一下行波束集合DLBeamSet1。
步骤7a、所有BS向UE发送cell-specific的第一PRS。
步骤8、定位服务器向UE发送“请求定位信息”消息。该消息请求UE测量BS的下行PRS,并回复测量到的定位测量值。
步骤9、UE利用定位辅助数据(例如:PRS配置数据)来测量下行信号以获得定位测量值(例如:RSTD)。
步骤10、UE向LMF提供定位信息,包括定位测量值和第一波束信息上报值,其中,第一波束信息上报值只包括取值最大的第一波束信息测量值RSRP(对应于最优波束方向)。
步骤11、LMF利用获得的定位测量值和基站天线位置等信息,计算所述终端的位置,根据UE上报的第一波束信息上报值,以及第二PRS和第一PRS的QCL关联关系确定不同小区对应的第二下行波束子集合DLBeamSet2,其中,每个UE的第二下行波束集合DLBeamSet2针对每个小区只有一个最优的PRS波束。
步骤12、定位服务器向BS发送“OTDOA信息请求(UE-specific的第二PRS配置)”消息。
步骤13、BS向定位服务器发送“OTDOA信息响应(UE-specific的第二PRS配置)”消息。
步骤14、定位服务器向UE提供定位辅助数据(UE-specific的第二PRS配置,包括第二下行波束集合DLBeamSet2)。
步骤14a、所有BS向UE发送UE-specific的第二PRS。
步骤15、定位服务器向UE发送“请求定位信息”消息。
步骤16、UE利用定位辅助数据(UE-specific的第二PRS配置信息),测量下行链路信号以获得定位测量值。
步骤17、UE向LMF提供定位信息(包括质量最好波束方向的定位测量值)。
步骤18、LMF利用获得的定位测量值和基站天线位置等信息,计算终端的位置。
实施例2:
实施例2与实施例1的区别在于:
第一,UE采用cell-specific的SSB信号作为第一PRS。
第二,UE侧的步骤3)中,把第一波束信息上报值上报给服务gNB。
第三,定位测量值是用于Multi-RTT定位方案的UE接收和发送时间差(Rx-Tx time difference)。
实施例2基于网络侧方案2,并且:
UE侧的步骤1)中,采用cell-specific的SSB信号作为第一PRS;
UE侧的步骤2)中,第一波束信息测量值采用RSRP,其中,第一波束信息上报值包括取值最大的第一波束信息测量值(即N=1);
UE侧的步骤3)中,把第一波束信息上报值上报给服务gNB;
UE侧的步骤4)中,UE通过LPP消息获取第二下行波束集合DLBeamSet2的第二PRS配置信息,其中,每个UE的第二下行波束集合DLBeamSet2针对每个小区只有一个最优的PRS波束。
UE侧的步骤5)中,定位测量值是用于Multi-RTT定位方案的UE接收和发送时间差(Rx-Tx time difference)。
如图7所示,下面给出本实施例2具体步骤介绍。
步骤1、在UE建立与BS的连接之后,UE处于无线资源控制连接(RRC_CONNECTED)状态。
步骤2:所有gNB分别向不同小区的UE发送cell-specific的SSB信号。
步骤3、UE利用SSB信号进行测量,获取第一波束状态信息测量值。
步骤4、UE向服务gNB上报第一波束状态信息上报值,包括本UE测量得到的不同小区的测量值最大的波束方向。
步骤4a、各个gNB之间交互不同UE的第一波束状态信息上报值。
步骤5、定位服务器向UE发送“请求定位能力”消息,请求UE通知服务器该UE所能支持的定位功能。
步骤6、UE发送“提供定位能力”消息来响应定位服务器。“提供定位能力”消息上报UE即终端支持NG-RAN OTDOA的定位能力。
步骤7、当需要下行定位辅助数据时,UE向定位服务器发送“请求定位辅助数据”消息。该消息包括请求定位服务器提供OTDOA辅助数据。
步骤8、LMF根据UE上报的波束信息测量值RSRP和基站信息,以及PRS和SSB的QCL关系,确定不同小区对应的第二下行波束子集合DLBeamSet2。
步骤9、定位服务器向BS发送“Multi-RTT信息请求(包含UE-specific的第二PRS配置)”消息。
步骤10、BS向定位服务器发送“Multi-RTT信息响应(包含UE-specific的第二PRS 配置)”消息。
步骤11、定位服务器向UE提供定位辅助数据(UE-specific的第二PRS配置,包括第二下行波束集合DLBeamSet2)。
步骤12、所有BS向UE发送UE-specific的第二PRS。
步骤13、定位服务器向UE发送“请求定位信息”消息。
步骤14、UE利用定位辅助数据(UE-specific的第二PRS配置),测量下行链路第二PRS以获得定位测量值。
步骤15、UE向LMF提供定位信息(包括质量最好波束方向的定位测量值)。
步骤16、LMF利用获得的定位测量值和基站天线位置等信息,计算所述终端的位置。
实施例3:
实施例3与实施例1的区别在于有三点:
第一,采用cell-specific的NR PRS作为第一PRS,并且cell-specific的第一PRS和UE-specific的第二PRS可以采用不同的PRS时频资源、PRS pattern和PRS序列。例如:cell-specific的第一PRS基于常规密度和OFDM符号个数的P-PRS,UE-specific的第二PRS基于更高密度和更多OFDM符号个数的S-PRS。
第二,第一波束信息上报值包括取值最大和次大的2个第一波束信息测量值(即N=2)。
第三,第一波束信息测量值采用RSRQ,而不是RSRP。
实施例3基于网络侧方案1,并且:
UE侧的步骤1)中,采用cell-specific的NR PRS作为第一PRS;
UE侧的步骤2)中,第一波束信息测量值采用RSRQ,其中,第一波束信息上报值包括取值最大和次大的2个第一波束信息测量值(即N=2);
UE侧的步骤3)中,把第一波束信息上报值上报给LMF;
UE侧的步骤4)中,UE通过LPP消息获取第二下行波束集合DLBeamSet2的PRS配置信息,其中,每个UE的第二下行波束集合DLBeamSet2针对每个小区有2个优选的PRS波束(最优波束和次优波束);
UE侧的步骤5)中,定位测量值是用于OTDOA定位方案的RSTD。
如图8所示,下面给出本实施例3具体步骤介绍。
步骤1、在UE建立与BS的连接之后,UE处于无线资源控制连接(RRC_CONNECTED)状态。
步骤2、定位服务器向UE发送“请求定位能力”消息,请求UE通知服务器该UE所能支持的定位功能。
步骤3、UE发送“提供定位能力”消息来响应定位服务器。“提供定位能力”消息上报UE即终端支持NG-RAN OTDOA的定位能力。
步骤4、当需要下行定位辅助数据时,UE向定位服务器发送“请求定位辅助数据”消息。该消息包括请求定位服务器提供OTDOA辅助数据。
步骤5、定位服务器向BS发送“OTDOA信息请求(NRPPa OTDOA INFORMATION REQUEST)”消息,该消息请求BS提供下行定位辅助数据,包括cell-specific的PRS配置信息,即第一PRS配置信息。其中,PRS配置信息包括第一下行波束集合DLBeamSet1对应的PRS时频资源、PRS pattern和PRS序列等信息。
步骤7、定位服务器在“提供定位辅助数据”消息中提供UE所请求的定位辅助数据,其中携带cell-specific的第一PRS配置信息,包括第一下行波束集合DLBeamSet1。
步骤7a、所有BS向UE发送cell-specific的第一PRS。
步骤8、定位服务器向UE发送“请求定位信息”消息。该消息请求UE测量BS的下行PRS,并回复测量到的定位测量值。
步骤9、UE利用定位辅助数据(例如:PRS配置数据)来测量下行信号以获得定位测量值(例如:RSTD)。
步骤10、UE向LMF提供定位信息,包括定位测量值和第一波束信息上报值,其中,第一波束信息上报值包括取值最大和次大的2个第一波束信息测量值RSRQ(对应于最优和次优波束方向)。
步骤11、LMF利用获得的定位测量值和基站天线位置等信息,计算所述终端的位置;根据UE上报的不同小区下的第一最优波束信息测量值,以及第二PRS和第一PRS的QCL关联关系,确定该UE在不同小区下的第二PRS配置信息。
步骤12、定位服务器向BS发送“OTDOA信息请求(UE-specific的第二PRS配置)”消息。
步骤13、BS向定位服务器发送“OTDOA信息响应(NRPPa OTDOA INFORMATION RESPONSE)”消息。向定位服务器提供所请求的下行定位辅助数据,包括PRS配置数据。
步骤14、定位服务器向UE提供定位辅助数据(UE-specific的第二PRS配置,包括第二下行波束集合DLBeamSet2,其中,每个UE的第二下行波束集合DLBeamSet2针对每个小区有2个优选的PRS波束)。
步骤14a、所有BS向UE发送UE-specific的第二PRS。
步骤15、定位服务器向UE发送“请求定位信息”消息。
步骤16、UE利用定位辅助数据(UE-specific的第二PRS配置),测量下行链路信号以获得定位测量值。
步骤17、UE向LMF提供定位信息(包括质量最好波束方向的定位测量值)。
步骤18、LMF利用获得的定位测量值和基站天线位置等信息,计算所述终端的位置。
实施例4:
实施例4与实施例1的区别在于:
第一,UE采用cell-specific的SSB信号作为第一PRS。
第二,第一波束信息测量值采用SINR,而不是RSRP。
第三,UE侧的步骤3)中,把第一波束信息上报值上报给服务gNB。
第四,定位测量值是用于Multi-RTT定位方案的UE接收和发送时间差(Rx-Tx time difference)。
实施例4基于网络侧方案2,并且:
UE侧的步骤1)中,采用cell-specific的SSB信号作为第一PRS;
UE侧的步骤2)中,第一波束信息测量值采用SINR,其中,第一波束信息上报值包括取值最大和次大的2个的第一波束信息测量值(即N=2);
UE侧的步骤3)中,把第一波束信息上报值上报给服务gNB;
UE侧的步骤4)中,UE通过LPP消息获取第二下行波束集合DLBeamSet2的第二PRS配置信息,其中,每个UE的第二下行波束集合DLBeamSet2针对每个小区2个优选的PRS波束(最优波束和次优波束)。
UE侧的步骤5)中,定位测量值是用于Multi-RTT定位方案的UE接收和发送时间差(Rx-Tx time difference)。
如图9所示,下面给出本实施例4具体步骤介绍。
步骤1、在UE建立与BS的连接之后,UE处于无线资源控制连接(RRC_CONNECTED)状态。
步骤2:所有gNB分别向不同小区的UE发送cell-specific的SSB信号。
步骤3、UE利用SSB信号进行测量,获取第一波束状态信息测量值。
步骤4、UE向服务gNB上报第一波束状态信息上报值,包括本UE测量得到的不同小区的测量值SINR最大和次大的2个波束方向。
步骤4a、各个gNB之间交互不同UE的第一波束状态信息上报值。
步骤5、定位服务器向UE发送“请求定位能力”消息,请求UE通知服务器该UE所能支持的定位功能。
步骤6、UE发送“提供定位能力”消息来响应定位服务器。“提供定位能力”消息上报UE即终端支持NG-RAN OTDOA的定位能力。
步骤7、当需要下行定位辅助数据时,UE向定位服务器发送“请求定位辅助数据”消息。该消息包括请求定位服务器提供OTDOA辅助数据。
步骤8、根据UE上报的波束信息测量值SINR和基站信息,以及PRS和SSB的QCL关系,确定不同小区对应的第二下行波束子集合DLBeamSet2。
步骤9、定位服务器向BS发送“Multi-RTT信息请求(包含UE-specific的第二PRS配 置)”消息。
步骤10、BS向定位服务器发送“Multi-RTT信息响应(包含UE-specific的第二PRS配置)”消息。
步骤11、定位服务器向UE提供定位辅助数据(UE-specific的第二PRS配置,包括第二下行波束集合DLBeamSet2)。
步骤12、所有BS向UE发送UE-specific的第二PRS。
步骤13、定位服务器向UE发送“请求定位信息”消息。
步骤14、UE利用定位辅助数据(UE-specific的第二PRS配置),测量下行链路第二PRS以获得定位测量值。
步骤15、UE向LMF提供定位信息(包括质量最好波束方向的定位测量值)。
步骤16、LMF利用获得的定位测量值和基站天线位置等信息,计算所述终端的位置。
下面介绍一下本申请实施例提供的装置。
在终端侧,参见图10,本申请实施例提供的一种信号测量上报装置包括:
存储器620,用于存储程序指令;
处理器600,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
获取网络在针对不同小区的第一下行波束集合的M个下行波束方向发送的小区级的第一参考信号RS,并利用第一RS配置信息对所述第一RS进行测量,得到第一波束信息上报值并上报给网络,其中,M大于1;
获取网络在针对不同小区的第二下行波束集合的N个下行波束方向发送的第二RS,并利用第二RS配置信息对第二RS进行测量,得到第二波束信息上报值并上报给网络,其中,1<=N<M,所述第二下行波束集合是网络利用所述第一波束信息上报值确定的。
可选地,所述第一波束信息上报值,包括下列信息之一或组合:第一波束信息测量值、小区ID、RS资源ID和波束方向。
可选地,所述第一波束信息测量值包括:参考信号接收功率RSRP、信号与干扰加噪声比SINR和/或参考信号接收质量RSRQ。
可选地,所述第二波束信息上报值,包括下列信息之一或组合:参考信号时间差RSTD,以及终端接收和发送时间差。
可选地,所述第二RS配置信息,是网络采用终端级UE-specific或者终端组级UE group-specific的配置方式配置的;其中,所述UE-specific的配置方式表示为每个终端单独配置波束方向,所述UE group-specific的配置方式表示为同一个小区内的一组终端配置相同的波束方向。
可选地,所述UE-specific或者UE group-specific的配置方式,是周期参考信号RS配置、半持续RS配置和非周期RS配置的。
可选地,所述周期PRS配置通过无线资源控制RRC信令、下行控制信息DCI信令或者长期演进定位协议LPP消息触发;所述半持续RS配置和非周期RS配置通过DCI信令触发。
可选地,所述第二RS与所述第一RS具有准共址QCL关联关系。
可选地,第一RS包括新空口NR定位参考信号PRS、同步块信号SSB或者信道状态信息参考信号CSI-RS;
第二RS包括新空口NR定位参考信号PRS。
收发机610,用于在处理器600的控制下接收和发送数据。
其中,在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口630还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
可选的,处理器600可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件)。
在基站侧,参见图11,本申请实施例提供的一种信号传输装置,包括:
存储器520,用于存储程序指令;
处理器500,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS,其中,M大于1;
在针对不同小区的第二下行波束集合的N个下行波束方向发送第二RS,其中,1<=N<M。
可选地,在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS,具体包括:根据小区级的第一RS配置信息,在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS;其中,所述第一RS配置信息是通过定位服务器LMF获得的;
在针对不同小区的第二下行波束集合的N个下行波束方向发送第二RS,具体包括:根据第二RS配置信息,在针对不同小区的第二下行波束集合的N个下行波束方向发送第 二RS,其中,所述第二RS配置信息是通过所述LMF获得的。
可选地,在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS,具体包括:根据小区级的第一RS配置信息,在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS;其中,所述第一RS配置信息是通过定位服务器LMF获得的;
所述处理器500还用于:获得本小区内终端上报的针对不同小区的第一波束信息上报值,并利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值确定针对不同小区的第二下行波束集合;在终端的服务gNB与非服务gNB之间交互所述第二下行波束集合;将所述第二下行波束集合的第二RS配置信息通知给终端;
在针对不同小区的第二下行波束集合的N个下行波束方向发送第二RS,具体包括:根据所述第二RS配置信息,在所述第二下行波束集合的N个下行波束方向发送第二RS。
可选地,利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值确定第二下行波束集合,具体包括:
利用第一RS和第二RS的QCL关联关系,针对不同小区的每个终端分别配置一个或者多个不同波束方向的第二下行波束集合;
或者,当同一个小区内多个终端具有相同的一个或者多个波束方向时,利用第一RS和第二RS的QCL关联关系,为该同一个小区内多个终端配置波束方向相同的第二下行波束集合。
可选地,所述第二RS配置信息,是采用终端级UE-specific或者终端组级UE group-specific的配置方式配置的;其中,所述UE-specific的配置方式表示为每个终端单独配置波束方向,所述UE group-specific的配置方式表示为同一个小区内的一组终端配置相同的波束方向。
可选地,所述UE-specific或者UE group-specific的配置方式,是周期参考信号RS配置、半持续RS配置和非周期RS配置的。
可选地,所述周期PRS配置通过无线资源控制RRC信令、下行控制信息DCI信令或者长期演进定位协议LPP消息触发;所述半持续RS配置和非周期RS配置通过DCI信令触发。
收发机510,用于在处理器500的控制下接收和发送数据。
其中,在图11中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机510可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的 单元。处理器500负责管理总线架构和通常的处理,存储器520可以存储处理器500在执行操作时所使用的数据。
处理器500可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。
在定位服务器侧,参见图12,本申请实施例提供的一种定位装置,包括:
存储器505,用于存储程序指令;
处理器504,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
分别向基站和终端通知小区级的第一参考信号RS配置信息,使得基站根据第一RS配置信息向终端发送第一RS,以及终端根据第一RS配置信息接收第一RS;其中,所述第一RS是在针对不同小区的第一下行波束集合的M个下行波束方向向所述终端发送的小区级的第一RS,其中,M大于1;
获取终端利用针对不同小区的第二下行波束集合的第二RS配置信息对第二RS的测量所上报的第二波束信息上报值,并基于所述第二波束信息上报值,计算终端位置,其中,第二下行波束集合包含N个下行波束方向,1<=N<M。
可选地,所述处理器504还用于:
获取终端基于对第一RS的测量所上报的第一波束信息上报值;
利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值,确定所述第二下行波束集合,并向基站和终端通知所述第二下行波束集合的第二RS配置信息。
可选地,利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值确定第二下行波束集合,具体包括:
利用第一RS和第二RS的QCL关联关系,针对不同小区的每个终端分别配置一个或者多个不同波束方向的第二下行波束集合;
或者,当同一个小区内多个终端具有相同的一个或者多个波束方向时,利用第一RS和第二RS的QCL关联关系,为该同一个小区内多个终端配置波束方向相同的第二下行波束集合。
可选地,所述第二RS配置信息,是采用终端级UE-specific或者终端组级UE group-specific的配置方式配置的;其中,所述UE-specific的配置方式表示为每个终端单独配置波束方向,所述UE group-specific的配置方式表示为同一个小区内的一组终端配置相同的波束方向。
可选地,所述UE-specific或者UE group-specific的配置方式,是周期参考信号RS配置、半持续RS配置和非周期RS配置的。
可选地,所述周期RS配置通过无线资源控制RRC信令、下行控制信息DCI信令或者 长期演进定位协议LPP消息触发;所述半持续RS配置和非周期RS配置通过DCI信令触发。
收发机501,用于在处理器504的控制下接收和发送数据。
在图12中,总线架构(用总线506来代表),总线506可以包括任意数量的互联的总线和桥,总线506将包括由处理器504代表的一个或多个处理器和存储器505代表的存储器的各种电路链接在一起。总线500还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口503在总线506和收发机501之间提供接口。收发机501可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器504处理的数据通过天线502在无线介质上进行传输,进一步,天线502还接收数据并将数据传送给处理器504。
处理器504负责管理总线506和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器505可以被用于存储处理器504在执行操作时所使用的数据。
可选的,处理器504可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。
在终端侧,参见图13,本申请实施例提供的另一种信号测量上报装置,包括:
第一上报单元131,用于获取网络在针对不同小区的第一下行波束集合的M个下行波束方向发送的小区级的第一参考信号RS,并利用第一RS配置信息对所述第一RS进行测量,得到第一波束信息上报值并上报给网络,其中,M大于1;
第二上报单元132,用于获取网络在针对不同小区的第二下行波束集合的N个下行波束方向发送的第二RS,并利用第二RS配置信息对第二RS进行测量,得到第二波束信息上报值并上报给网络,其中,1<=N<M,所述第二下行波束集合是网络利用所述第一波束信息上报值确定的。
可选地,所述第一波束信息上报值,包括下列信息之一或组合:第一波束信息测量值、小区ID、RS资源ID和波束方向。
可选地,所述第一波束信息测量值包括:参考信号接收功率RSRP、信号与干扰加噪声比SINR和/或参考信号接收质量RSRQ。
可选地,所述第二波束信息上报值,包括下列信息之一或组合:参考信号时间差RSTD,以及终端接收和发送时间差。
可选地,所述第二RS配置信息,是网络采用终端级UE-specific或者终端组级UE group-specific的配置方式配置的;其中,所述UE-specific的配置方式表示为每个终端单独 配置波束方向,所述UE group-specific的配置方式表示为同一个小区内的一组终端配置相同的波束方向。
可选地,所述UE-specific或者UE group-specific的配置方式,是周期参考信号RS配置、半持续RS配置和非周期RS配置的。
可选地,所述周期PRS配置通过无线资源控制RRC信令、下行控制信息DCI信令或者长期演进定位协议LPP消息触发;所述半持续RS配置和非周期RS配置通过DCI信令触发。
可选地,所述第二RS与所述第一RS具有准共址QCL关联关系。
可选地,第一RS包括新空口NR定位参考信号PRS、同步块信号SSB或者信道状态信息参考信号CSI-RS;
第二RS包括新空口NR定位参考信号PRS。
在基站侧,参见图14,本申请实施例提供的另一种信号传输装置,包括:
第一RS发送单元141,用于在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS,其中,M大于1;
第二RS发送单元142,用于在针对不同小区的第二下行波束集合的N个下行波束方向发送第二RS,其中,1<=N<M。
可选地,所述装置还包括:
配置信息通知单元(图中未示出),用于获得本小区内终端上报的针对不同小区的第一波束信息上报值;利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值确定针对不同小区的第二下行波束集合;在终端的服务gNB与非服务gNB之间交互所述第二下行波束集合;将所述第二下行波束集合的第二RS配置信息通知给终端。
可选地,利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值确定第二下行波束集合,具体包括:
利用第一RS和第二RS的QCL关联关系,针对不同小区的每个终端分别配置一个或者多个不同波束方向的第二下行波束集合;
或者,当同一个小区内多个终端具有相同的一个或者多个波束方向时,利用第一RS和第二RS的QCL关联关系,为该同一个小区内多个终端配置波束方向相同的第二下行波束集合。
可选地,所述第二RS配置信息,是采用终端级UE-specific或者终端组级UE group-specific的配置方式配置的;其中,所述UE-specific的配置方式表示为每个终端单独配置波束方向,所述UE group-specific的配置方式表示为同一个小区内的一组终端配置相同的波束方向。
可选地,所述UE-specific或者UE group-specific的配置方式,是周期参考信号RS配 置、半持续RS配置和非周期RS配置的。
可选地,所述周期PRS配置通过无线资源控制RRC信令、下行控制信息DCI信令或者长期演进定位协议LPP消息触发;所述半持续RS配置和非周期RS配置通过DCI信令触发。
在定位服务器侧,参见图15,本申请实施例提供的另一种定位装置,包括:
配置信息通知单元151,用于分别向基站和终端通知小区级的第一参考信号RS配置信息,使得基站根据第一RS配置信息向终端发送第一RS,以及终端根据第一RS配置信息接收第一RS;其中,所述第一RS是在针对不同小区的第一下行波束集合的M个下行波束方向向所述终端发送的小区级的第一RS,其中,M大于1;
定位单元152,用于获取终端利用针对不同小区的第二下行波束集合的第二RS配置信息对第二RS的测量所上报的第二波束信息上报值,并基于所述第二波束信息上报值,计算终端位置,其中,第二下行波束集合包含N个下行波束方向,1<=N<M。
可选地,所述配置信息通知单元151,还用于:
获取终端基于对第一RS的测量所上报的第一波束信息上报值;
利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值,确定所述第二下行波束集合,并向基站和终端通知所述第二下行波束集合的第二RS配置信息。
可选地,利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值确定第二下行波束集合,具体包括:
利用第一RS和第二RS的QCL关联关系,针对不同小区的每个终端分别配置一个或者多个不同波束方向的第二下行波束集合;
或者,当同一个小区内多个终端具有相同的一个或者多个波束方向时,利用第一RS和第二RS的QCL关联关系,为该同一个小区内多个终端配置波束方向相同的第二下行波束集合。
可选地,所述第二RS配置信息,是采用终端级UE-specific或者终端组级UE group-specific的配置方式配置的;其中,所述UE-specific的配置方式表示为每个终端单独配置波束方向,所述UE group-specific的配置方式表示为同一个小区内的一组终端配置相同的波束方向。
可选地,所述UE-specific或者UE group-specific的配置方式,是周期参考信号RS配置、半持续RS配置和非周期RS配置的。
可选地,所述周期RS配置通过无线资源控制RRC信令、下行控制信息DCI信令或者长期演进定位协议LPP消息触发;所述半持续RS配置和非周期RS配置通过DCI信令触发。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分, 实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例提供了一种计算设备,该计算设备具体可以为桌面计算机、便携式计算机、智能手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)等。该计算设备可以包括中央处理器(Center Processing Unit,CPU)、存储器、输入/输出设备等,输入设备可以包括键盘、鼠标、触摸屏等,输出设备可以包括显示设备,如液晶显示器(Liquid Crystal Display,LCD)、阴极射线管(Cathode Ray Tube,CRT)等。
存储器可以包括只读存储器(ROM)和随机存取存储器(RAM),并向处理器提供存储器中存储的程序指令和数据。在本申请实施例中,存储器可以用于存储本申请实施例提供的任一所述方法的程序。
处理器通过调用存储器存储的程序指令,处理器用于按照获得的程序指令执行本申请实施例提供的任一所述方法。
本申请实施例提供了一种计算机存储介质,用于储存为上述本申请实施例提供的装置所用的计算机程序指令,其包含用于执行上述本申请实施例提供的任一方法的程序。
所述计算机存储介质可以是计算机能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本申请实施例提供的方法可以应用于终端设备,也可以应用于网络设备。
其中,终端设备也可称之为用户设备(User Equipment,简称为“UE”)、移动台(Mobile Station,简称为“MS”)、移动终端(Mobile Terminal)等,可选的,该终端可以具备经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信的能力,例如,终端可以是移动电话(或称为“蜂窝”电话)、或具有移动性质的计算机等,例如,终端还 可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
网络设备可以为基站(例如,接入点),指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以是5G系统中的gNB等。本申请实施例中不做限定。
上述方法处理流程可以用软件程序实现,该软件程序可以存储在存储介质中,当存储的软件程序被调用时,执行上述方法步骤。
综上所述,在基站具有多个下行发送波束时,本申请能够在保证PRS的定位测量精度条件下,有效地降低PRS的资源开销,并且减少UE的接收功耗。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和 范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (50)

  1. 一种信号测量上报方法,应用于终端,其特征在于,该方法包括:
    获取网络侧在针对不同小区的第一下行波束集合的M个下行波束方向发送的小区级的第一参考信号RS,并利用第一RS配置信息对所述第一RS进行测量,得到第一波束信息上报值并上报给网络侧,其中,M大于1;
    获取网络侧在针对不同小区的第二下行波束集合的N个下行波束方向发送的第二RS,并利用第二RS配置信息对第二RS进行测量,得到第二波束信息上报值并上报给网络侧,其中,1<=N<M,所述第二下行波束集合是网络侧利用所述第一波束信息上报值确定的。
  2. 根据权利要求1所述的方法,其特征在于,所述第一波束信息上报值,包括下列信息之一或组合:第一波束信息测量值、小区ID、RS资源ID和波束方向。
  3. 根据权利要求2所述的方法,其特征在于,所述第一波束信息测量值包括:参考信号接收功率RSRP、信号与干扰加噪声比SINR和/或参考信号接收质量RSRQ。
  4. 根据权利要求1所述的方法,其特征在于,所述第二波束信息上报值,包括下列信息之一或组合:参考信号时间差RSTD,以及终端接收和发送时间差。
  5. 根据权利要求1所述的方法,其特征在于,所述第二RS配置信息,是网络侧采用终端级UE-specific或者终端组级UE group-specific的配置方式配置的;其中,所述UE-specific的配置方式表示为每个终端单独配置波束方向,所述UE group-specific的配置方式表示为同一个小区内的一组终端配置相同的波束方向。
  6. 根据权利要求5所述的方法,其特征在于,所述UE-specific或者UE group-specific的配置方式,是周期参考信号RS配置、半持续RS配置和非周期RS配置的。
  7. 根据权利要求6所述的方法,其特征在于,所述周期RS配置通过无线资源控制RRC信令、下行控制信息DCI信令或者长期演进定位协议LPP消息触发;所述半持续RS配置和非周期RS配置通过DCI信令触发。
  8. 根据权利要求1所述的方法,其特征在于,所述第二RS与所述第一RS具有准共站址QCL关联关系。
  9. 根据权利要求1所述的方法,其特征在于,第一RS包括新空口NR定位参考信号PRS、同步块信号SSB或者信道状态信息参考信号CSI-RS;
    第二RS包括新空口NR定位参考信号PRS。
  10. 一种信号传输方法,应用于网络侧,其特征在于,该方法包括:
    在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS,其中,M大于1;
    在针对不同小区的第二下行波束集合的N个下行波束方向发送第二RS,其中, 1<=N<M。
  11. 根据权利要求10所述的方法,其特征在于,在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS,具体包括:根据小区级的第一RS配置信息,在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS;其中,所述第一RS配置信息是通过定位服务器LMF获得的;
    在针对不同小区的第二下行波束集合的N个下行波束方向发送第二RS,具体包括:根据第二RS配置信息,在针对不同小区的第二下行波束集合的N个下行波束方向发送第二RS,其中,所述第二RS配置信息是通过所述LMF获得的。
  12. 根据权利要求10所述的方法,其特征在于,在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS,具体包括:根据小区级的第一RS配置信息,在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS;其中,所述第一RS配置信息是通过定位服务器LMF获得的;
    该方法还包括:获得本小区内终端上报的针对不同小区的第一波束信息上报值,并利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值确定针对不同小区的第二下行波束集合;在终端的服务gNB与非服务gNB之间交互所述第二下行波束集合;将所述第二下行波束集合的第二RS配置信息通知给终端;
    在针对不同小区的第二下行波束集合的N个下行波束方向发送第二RS,具体包括:根据所述第二RS配置信息,在所述第二下行波束集合的N个下行波束方向发送第二RS。
  13. 根据权利要求12所述的方法,其特征在于,利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值确定第二下行波束集合,具体包括:
    利用第一RS和第二RS的QCL关联关系,针对不同小区的每个终端分别配置一个或者多个不同波束方向的第二下行波束集合;
    或者,当同一个小区内多个终端具有相同的一个或者多个波束方向时,利用第一RS和第二RS的QCL关联关系,为该同一个小区内多个终端配置波束方向相同的第二下行波束集合。
  14. 根据权利要求12所述的方法,其特征在于,所述第二RS配置信息,是采用终端级UE-specific或者终端组级UE group-specific的配置方式配置的;其中,所述UE-specific的配置方式表示为每个终端单独配置波束方向,所述UE group-specific的配置方式表示为同一个小区内的一组终端配置相同的波束方向。
  15. 根据权利要求14所述的方法,其特征在于,所述UE-specific或者UE group-specific的配置方式,是周期参考信号RS配置、半持续RS配置和非周期RS配置的。
  16. 根据权利要求15所述的方法,其特征在于,所述周期RS配置通过无线资源控制RRC信令、下行控制信息DCI信令或者长期演进定位协议LPP消息触发;所述半持续RS 配置和非周期RS配置通过DCI信令触发。
  17. 一种定位方法,应用于网络侧,其特征在于,该方法包括:
    分别向基站和终端通知小区级的第一参考信号RS配置信息,使得基站根据第一RS配置信息向终端发送第一RS,以及终端根据第一RS配置信息接收第一RS;其中,所述第一RS是在针对不同小区的第一下行波束集合的M个下行波束方向向所述终端发送的小区级的第一RS,其中,M大于1;
    获取终端利用针对不同小区的第二下行波束集合的第二RS配置信息对第二RS的测量所上报的第二波束信息上报值,并基于所述第二波束信息上报值,计算终端位置,其中,第二下行波束集合包含N个下行波束方向,1<=N<M。
  18. 根据权利要求17所述的方法,其特征在于,该方法还包括:
    获取终端基于对第一RS的测量所上报的第一波束信息上报值;
    利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值,确定所述第二下行波束集合,并向基站和终端通知所述第二下行波束集合的第二RS配置信息。
  19. 根据权利要求18所述的方法,其特征在于,利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值确定第二下行波束集合,具体包括:
    利用第一RS和第二RS的QCL关联关系,针对不同小区的每个终端分别配置一个或者多个不同波束方向的第二下行波束集合;
    或者,当同一个小区内多个终端具有相同的一个或者多个波束方向时,利用第一RS和第二RS的QCL关联关系,为该同一个小区内多个终端配置波束方向相同的第二下行波束集合。
  20. 根据权利要求18所述的方法,其特征在于,所述第二RS配置信息,是采用终端级UE-specific或者终端组级UE group-specific的配置方式配置的;其中,所述UE-specific的配置方式表示为每个终端单独配置波束方向,所述UE group-specific的配置方式表示为同一个小区内的一组终端配置相同的波束方向。
  21. 根据权利要求20所述的方法,其特征在于,所述UE-specific或者UE group-specific的配置方式,是周期参考信号RS配置、半持续RS配置和非周期RS配置的。
  22. 根据权利要求21所述的方法,其特征在于,所述周期RS配置通过无线资源控制RRC信令、下行控制信息DCI信令或者长期演进定位协议LPP消息触发;所述半持续RS配置和非周期RS配置通过DCI信令触发。
  23. 一种信号测量上报装置,应用于终端,其特征在于,该装置包括:
    存储器,用于存储程序指令;
    处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
    获取网络侧在针对不同小区的第一下行波束集合的M个下行波束方向发送的小区级 的第一参考信号RS,并利用第一RS配置信息对所述第一RS进行测量,得到第一波束信息上报值并上报给网络侧,其中,M大于1;
    获取网络侧在针对不同小区的第二下行波束集合的N个下行波束方向发送的第二RS,并利用第二RS配置信息对第二RS进行测量,得到第二波束信息上报值并上报给网络侧,其中,1<=N<M,所述第二下行波束集合是网络侧利用所述第一波束信息上报值确定的。
  24. 根据权利要求23所述的装置,其特征在于,所述第一波束信息上报值,包括下列信息之一或组合:第一波束信息测量值、小区ID、RS资源ID和波束方向。
  25. 根据权利要求24所述的装置,其特征在于,所述第一波束信息测量值包括:参考信号接收功率RSRP、信号与干扰加噪声比SINR和/或参考信号接收质量RSRQ。
  26. 根据权利要求23所述的装置,其特征在于,所述第二波束信息上报值,包括下列信息之一或组合:参考信号时间差RSTD,以及终端接收和发送时间差。
  27. 根据权利要求23所述的装置,其特征在于,所述第二RS配置信息,是网络侧采用终端级UE-specific或者终端组级UE group-specific的配置方式配置的;其中,所述UE-specific的配置方式表示为每个终端单独配置波束方向,所述UE group-specific的配置方式表示为同一个小区内的一组终端配置相同的波束方向。
  28. 根据权利要求27所述的装置,其特征在于,所述UE-specific或者UE group-specific的配置方式,是周期参考信号RS配置、半持续RS配置和非周期RS配置的。
  29. 根据权利要求28所述的装置,其特征在于,所述周期PRS配置通过无线资源控制RRC信令、下行控制信息DCI信令或者长期演进定位协议LPP消息触发;所述半持续RS配置和非周期RS配置通过DCI信令触发。
  30. 根据权利要求23所述的装置,其特征在于,所述第二RS与所述第一RS具有准共址QCL关联关系。
  31. 根据权利要求23所述的装置,其特征在于,第一RS包括新空口NR定位参考信号PRS、同步块信号SSB或者信道状态信息参考信号CSI-RS;
    第二RS包括新空口NR定位参考信号PRS。
  32. 一种信号传输装置,应用于网络侧,其特征在于,该装置包括:
    存储器,用于存储程序指令;
    处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
    在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS,其中,M大于1;
    在针对不同小区的第二下行波束集合的N个下行波束方向发送第二RS,其中,1<=N<M。
  33. 根据权利要求32所述的装置,其特征在于,在针对不同小区的第一下行波束集 合的M个下行波束方向发送小区级的第一参考信号RS,具体包括:根据小区级的第一RS配置信息,在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS;其中,所述第一RS配置信息是通过定位服务器LMF获得的;
    在针对不同小区的第二下行波束集合的N个下行波束方向发送第二RS,具体包括:根据第二RS配置信息,在针对不同小区的第二下行波束集合的N个下行波束方向发送第二RS,其中,所述第二RS配置信息是通过所述LMF获得的。
  34. 根据权利要求32所述的装置,其特征在于,在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS,具体包括:根据小区级的第一RS配置信息,在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS;其中,所述第一RS配置信息是通过定位服务器LMF获得的;
    所述处理器还用于:获得本小区内终端上报的针对不同小区的第一波束信息上报值,并利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值确定针对不同小区的第二下行波束集合;在终端的服务gNB与非服务gNB之间交互所述第二下行波束集合;将所述第二下行波束集合的第二RS配置信息通知给终端;
    在针对不同小区的第二下行波束集合的N个下行波束方向发送第二RS,具体包括:根据所述第二RS配置信息,在所述第二下行波束集合的N个下行波束方向发送第二RS。
  35. 根据权利要求34所述的装置,其特征在于,利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值确定第二下行波束集合,具体包括:
    利用第一RS和第二RS的QCL关联关系,针对不同小区的每个终端分别配置一个或者多个不同波束方向的第二下行波束集合;
    或者,当同一个小区内多个终端具有相同的一个或者多个波束方向时,利用第一RS和第二RS的QCL关联关系,为该同一个小区内多个终端配置波束方向相同的第二下行波束集合。
  36. 根据权利要求34所述的装置,其特征在于,所述第二RS配置信息,是采用终端级UE-specific或者终端组级UE group-specific的配置方式配置的;其中,所述UE-specific的配置方式表示为每个终端单独配置波束方向,所述UE group-specific的配置方式表示为同一个小区内的一组终端配置相同的波束方向。
  37. 根据权利要求36所述的装置,其特征在于,所述UE-specific或者UE group-specific的配置方式,是周期参考信号RS配置、半持续RS配置和非周期RS配置的。
  38. 根据权利要求37所述的装置,其特征在于,所述周期PRS配置通过无线资源控制RRC信令、下行控制信息DCI信令或者长期演进定位协议LPP消息触发;所述半持续RS配置和非周期RS配置通过DCI信令触发。
  39. 一种定位装置,应用于网络侧,其特征在于,该装置包括:
    存储器,用于存储程序指令;
    处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
    分别向基站和终端通知小区级的第一参考信号RS配置信息,使得基站根据第一RS配置信息向终端发送第一RS,以及终端根据第一RS配置信息接收第一RS;其中,所述第一RS是在针对不同小区的第一下行波束集合的M个下行波束方向向所述终端发送的小区级的第一RS,其中,M大于1;
    获取终端利用针对不同小区的第二下行波束集合的第二RS配置信息对第二RS的测量所上报的第二波束信息上报值,并基于所述第二波束信息上报值,计算终端位置,其中,第二下行波束集合包含N个下行波束方向,1<=N<M。
  40. 根据权利要求39所述的装置,其特征在于,所述处理器还用于:
    获取终端基于对第一RS的测量所上报的第一波束信息上报值;
    利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值,确定所述第二下行波束集合,并向基站和终端通知所述第二下行波束集合的第二RS配置信息。
  41. 根据权利要求40所述的装置,其特征在于,利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值确定第二下行波束集合,具体包括:
    利用第一RS和第二RS的QCL关联关系,针对不同小区的每个终端分别配置一个或者多个不同波束方向的第二下行波束集合;
    或者,当同一个小区内多个终端具有相同的一个或者多个波束方向时,利用第一RS和第二RS的QCL关联关系,为该同一个小区内多个终端配置波束方向相同的第二下行波束集合。
  42. 根据权利要求40所述的装置,其特征在于,所述第二RS配置信息,是采用终端级UE-specific或者终端组级UE group-specific的配置方式配置的;其中,所述UE-specific的配置方式表示为每个终端单独配置波束方向,所述UE group-specific的配置方式表示为同一个小区内的一组终端配置相同的波束方向。
  43. 根据权利要求42所述的装置,其特征在于,所述UE-specific或者UE group-specific的配置方式,是周期参考信号RS配置、半持续RS配置和非周期RS配置的。
  44. 根据权利要求43所述的装置,其特征在于,所述周期RS配置通过无线资源控制RRC信令、下行控制信息DCI信令或者长期演进定位协议LPP消息触发;所述半持续RS配置和非周期RS配置通过DCI信令触发。
  45. 一种信号测量上报装置,应用于终端,其特征在于,所述装置包括:
    第一上报单元,用于获取网络侧在针对不同小区的第一下行波束集合的M个下行波束方向发送的小区级的第一参考信号RS,并利用第一RS配置信息对所述第一RS进行测量,得到第一波束信息上报值并上报给网络侧,其中,M大于1;
    第二上报单元,用于获取网络侧在针对不同小区的第二下行波束集合的N个下行波束方向发送的第二RS,并利用第二RS配置信息对第二RS进行测量,得到第二波束信息上报值并上报给网络侧,其中,1<=N<M,所述第二下行波束集合是网络侧利用所述第一波束信息上报值确定的。
  46. 一种信号传输装置,应用于网络侧,其特征在于,所述装置包括:
    第一RS发送单元,用于在针对不同小区的第一下行波束集合的M个下行波束方向发送小区级的第一参考信号RS,其中,M大于1;
    第二RS发送单元,用于在针对不同小区的第二下行波束集合的N个下行波束方向发送第二RS,其中,1<=N<M。
  47. 根据权利要求46所述的装置,其特征在于,所述装置还包括:
    配置信息通知单元,用于获得本小区内终端上报的针对不同小区的第一波束信息上报值;利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值确定针对不同小区的第二下行波束集合;在终端的服务gNB与非服务gNB之间交互所述第二下行波束集合;将所述第二下行波束集合的第二RS配置信息通知给终端。
  48. 一种定位装置,应用于网络侧,其特征在于,所述装置包括:
    配置信息通知单元,用于分别向基站和终端通知小区级的第一参考信号RS配置信息,使得基站根据第一RS配置信息向终端发送第一RS,以及终端根据第一RS配置信息接收第一RS;其中,所述第一RS是在针对不同小区的第一下行波束集合的M个下行波束方向向所述终端发送的小区级的第一RS,其中,M大于1;
    定位单元,用于获取终端利用针对不同小区的第二下行波束集合的第二RS配置信息对第二RS的测量所上报的第二波束信息上报值,并基于所述第二波束信息上报值,计算终端位置,其中,第二下行波束集合包含N个下行波束方向,1<=N<M。
  49. 根据权利要求48所述的装置,其特征在于,所述配置信息通知单元,还用于:
    获取终端基于对第一RS的测量所上报的第一波束信息上报值;
    利用第一RS和第二RS的QCL关联关系,以及所述第一波束信息上报值,确定所述第二下行波束集合,并向基站和终端通知所述第二下行波束集合的第二RS配置信息。
  50. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行权利要求1至22任一项所述的方法。
PCT/CN2020/076259 2019-04-30 2020-02-21 信号传输、信号测量上报、定位方法及装置 WO2020220803A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20799353.6A EP3965438B1 (en) 2019-04-30 2020-02-21 Methods and apparatuses for signal transmission, signal measurement reporting, and positioning
US17/607,900 US20220322105A1 (en) 2019-04-30 2020-02-21 Methods and apparatuses for signal transmission, signal measurement reporting, and positioning
EP23207627.3A EP4294072A3 (en) 2019-04-30 2020-02-21 Methods and apparatuses for signal transmission, signal measurement reporting, and positioning
KR1020217038887A KR20220005543A (ko) 2019-04-30 2020-02-21 신호 전송, 신호 측정 보고, 측위 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910362318.7 2019-04-30
CN201910362318.7A CN111954147B (zh) 2019-04-30 2019-04-30 信号传输、信号测量上报、定位方法及装置

Publications (1)

Publication Number Publication Date
WO2020220803A1 true WO2020220803A1 (zh) 2020-11-05

Family

ID=73029528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076259 WO2020220803A1 (zh) 2019-04-30 2020-02-21 信号传输、信号测量上报、定位方法及装置

Country Status (6)

Country Link
US (1) US20220322105A1 (zh)
EP (2) EP4294072A3 (zh)
KR (1) KR20220005543A (zh)
CN (1) CN111954147B (zh)
TW (1) TWI822969B (zh)
WO (1) WO2020220803A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022149065A1 (en) * 2021-01-05 2022-07-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Measurement and reporting for downlink angle of departure positioning
WO2022152211A1 (zh) * 2021-01-18 2022-07-21 大唐移动通信设备有限公司 终端定位方法及设备
WO2022152291A1 (zh) * 2021-01-18 2022-07-21 大唐移动通信设备有限公司 信号处理方法及装置
WO2023011321A1 (zh) * 2021-08-06 2023-02-09 大唐移动通信设备有限公司 一种定位方法、装置、设备及存储介质
WO2023049548A1 (en) * 2021-09-22 2023-03-30 Qualcomm Incorporated Optimized beam selection using quasi-colocation information

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115278765A (zh) * 2019-07-04 2022-11-01 大唐移动通信设备有限公司 信号传输方法及装置
US11888610B2 (en) * 2020-02-26 2024-01-30 Qualcomm Incorporated Method and apparatus for positioning with LTE-NR dynamic spectrum sharing (DSS)
CN114521012B (zh) * 2020-11-18 2023-10-24 维沃移动通信有限公司 定位方法、装置、终端设备、基站及位置管理服务器
CN112311482B (zh) * 2020-11-26 2023-06-09 Oppo(重庆)智能科技有限公司 定位方法、装置、系统、接收节点、发射节点和存储介质
CN113037339B (zh) * 2021-03-25 2022-06-03 展讯通信(上海)有限公司 小区干扰消除的分组方法、装置及设备
CN115243188A (zh) * 2021-04-01 2022-10-25 大唐移动通信设备有限公司 一种信息处理方法、装置、终端及网络侧设备
CN113727446A (zh) * 2021-07-16 2021-11-30 中国信息通信研究院 一种感知信号动态发送方法和设备
WO2023050092A1 (zh) * 2021-09-28 2023-04-06 北京小米移动软件有限公司 定位测量方法、装置、设备及存储介质
CN116264710A (zh) * 2021-12-13 2023-06-16 维沃移动通信有限公司 波束报告方法、装置及网络侧设备
US20230308149A1 (en) * 2022-03-25 2023-09-28 Dish Wireless L.L.C. Dynamic beamforming in a cellular network
CN117041998A (zh) * 2022-04-28 2023-11-10 中兴通讯股份有限公司 波束管理方法、基站、用户装置、存储介质及程序产品
CN117835434A (zh) * 2022-09-23 2024-04-05 北京紫光展锐通信技术有限公司 信息上报方法、装置、设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108401264A (zh) * 2017-02-07 2018-08-14 中兴通讯股份有限公司 一种波束信息反馈方法及装置
CN108632836A (zh) * 2017-03-17 2018-10-09 维沃移动通信有限公司 波束信息获取方法和上报方法、网络侧设备及终端

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209475B (zh) * 2012-01-16 2016-05-25 华为技术有限公司 定位方法、定位服务器、终端和基站
TW201907680A (zh) * 2017-06-14 2019-02-16 美商Idac控股公司 無線網路中統一波束管理
CN109392000A (zh) * 2017-08-09 2019-02-26 电信科学技术研究院 一种定位、测量上报方法及装置
US10757583B2 (en) * 2017-08-10 2020-08-25 Qualcomm Incorporated Uplink-based positioning reference signaling in multi-beam systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108401264A (zh) * 2017-02-07 2018-08-14 中兴通讯股份有限公司 一种波束信息反馈方法及装置
CN108632836A (zh) * 2017-03-17 2018-10-09 维沃移动通信有限公司 波束信息获取方法和上报方法、网络侧设备及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA ET AL.: "On Beam Grouping Reporting in NR", 3GPP TSG-RAN WG1#88 R1-1703160, 17 February 2017 (2017-02-17), XP051210297, DOI: 20200509094631A *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022149065A1 (en) * 2021-01-05 2022-07-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Measurement and reporting for downlink angle of departure positioning
WO2022152211A1 (zh) * 2021-01-18 2022-07-21 大唐移动通信设备有限公司 终端定位方法及设备
WO2022152291A1 (zh) * 2021-01-18 2022-07-21 大唐移动通信设备有限公司 信号处理方法及装置
WO2023011321A1 (zh) * 2021-08-06 2023-02-09 大唐移动通信设备有限公司 一种定位方法、装置、设备及存储介质
WO2023049548A1 (en) * 2021-09-22 2023-03-30 Qualcomm Incorporated Optimized beam selection using quasi-colocation information

Also Published As

Publication number Publication date
CN111954147B (zh) 2021-10-29
EP4294072A3 (en) 2024-03-20
CN111954147A (zh) 2020-11-17
EP3965438B1 (en) 2023-12-20
KR20220005543A (ko) 2022-01-13
EP4294072A2 (en) 2023-12-20
EP3965438A1 (en) 2022-03-09
TWI822969B (zh) 2023-11-21
EP3965438A4 (en) 2022-07-06
TW202042576A (zh) 2020-11-16
US20220322105A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
WO2020220803A1 (zh) 信号传输、信号测量上报、定位方法及装置
WO2021057175A1 (zh) 信号传输方法及装置
WO2021000951A1 (zh) 信号传输方法及装置
TWI760931B (zh) 資訊傳輸方法、裝置及電腦存儲介質
TWI731395B (zh) 定位方法、裝置、電腦設備及電腦存儲介質
WO2021155742A1 (zh) 信号传输方法及装置
WO2019228425A1 (zh) 一种定位方法及装置
CN111757374B (zh) 一种波束管理方法及装置
WO2020156562A1 (zh) 通信方法和装置
CN111194084B (zh) 信息传输方法及装置
CN111194072B (zh) 多波束场景下监听寻呼的方法及装置
WO2020199898A1 (zh) 一种定位测量值的确定方法及装置
TW202410714A (zh) 信號傳輸、信號測量上報、定位方法及裝置
WO2022237501A1 (zh) 一种定位方法及装置
WO2022206774A1 (zh) 一种prs配置信息的确定方法及装置
WO2022206918A1 (zh) 一种prs资源确定方法及装置
WO2023197804A1 (zh) 一种通信方法、装置及设备
WO2020043002A1 (zh) 一种空间复用方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20799353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217038887

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020799353

Country of ref document: EP

Effective date: 20211130