WO2020043002A1 - 一种空间复用方法及装置 - Google Patents

一种空间复用方法及装置 Download PDF

Info

Publication number
WO2020043002A1
WO2020043002A1 PCT/CN2019/102019 CN2019102019W WO2020043002A1 WO 2020043002 A1 WO2020043002 A1 WO 2020043002A1 CN 2019102019 W CN2019102019 W CN 2019102019W WO 2020043002 A1 WO2020043002 A1 WO 2020043002A1
Authority
WO
WIPO (PCT)
Prior art keywords
trp
isolation
downlink
scheduled
user
Prior art date
Application number
PCT/CN2019/102019
Other languages
English (en)
French (fr)
Inventor
刘杨
苏进喜
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2020043002A1 publication Critical patent/WO2020043002A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method and a device for spatial multiplexing.
  • the distributed antenna arrangement of distributed antennas Due to the distributed antenna arrangement of distributed antennas, factors such as the distance between antennas and obstacles can cause power differences in the power of the signals received by the distributed antennas at the same receiving point. This power difference can be referred to as the distribution of the receiving points. Spatial isolation between antennas. When the space between a pair of distributed antennas is sufficiently large, then the two distributed antennas or multiple distributed antennas multiplex the same time-frequency resource in parallel to transmit multi-stream data, and the mutual interference will be weak. It can even be ignored to ensure the efficiency of parallel data transmission.
  • the base station measures the uplink signal of the terminal to infer the downlink space interval; or to ensure that the downlink isolation at any position between the distributed antennas is sufficiently large during network planning, so that statically configured distributed antennas that can perform air separation are used.
  • the base station only needs to simply determine the distributed antenna of the user and no longer care about the spatial isolation between the antenna and other antennas in the cell. Then, the base station can perform the air division scheduling according to the statically configured air division antenna; Distributed antennas all transmit data for the same user.
  • the method of inferring downlink spatial isolation based on the measurement of uplink signals is suitable for TDD (Time Division Duplexing, Time Division Duplexing) systems, but this scheme is not entirely suitable for FDD (Frequency Division Division Duplexing, Frequency Division Duplexing) due to different uplink and downlink frequency bands. system. Even if the TDD system uses uplink testing to determine the accuracy of downlink isolation judgment, the practical application effect of 4G isolation judgment based on SRS (Sounding Reference Signal) is not good. After all, the uplink and downlink channels are not exactly the same. Various interference analysis in practice finds that the uplink and downlink interference are usually not the same.
  • Uplink interference usually comes from the neighboring cell terminal, and downlink interference usually comes from different signals from the neighboring cell base station or different antennas in the same cell.
  • Downlink interference comes from base stations in the same system, and under the condition of stable cell power, the downlink interference at fixed locations is usually relatively fixed and changes little; while the uplink interference is affected by terminal movement, uplink scheduling, uplink power control, initial access, and uplink out-of-step terminals, etc.
  • the influence of factors on the formation of uplink interference is very complex. Changes in uplink interference are usually frequent and large. This will also affect the accuracy of uplink measurements and affect the separation judgment of air separation.
  • the embodiments of the present application provide a method and a device for spatial multiplexing, which are used to perform space division scheduling and control transmit power of each transmitting and receiving point by improving accuracy of downlink spatial isolation.
  • the base station sends different downlink reference signals DLRS under different transmit and receive points TRP, and can accurately obtain the spatial isolation of terminals at any position with respect to the distributed antennas in the logical cell, providing a basis for spatial multiplexing.
  • each said TRP includes one or more distributed antennas.
  • the antennas divided into the same group are considered to be the same TRP, and each distributed antenna may also be considered to be a TRP.
  • the method further includes judging downlink spatial isolation according to a terminal reporting measurement results of different DLRSs.
  • the method further includes: determining, according to downlink spatial isolation, that users capable of space division scheduling exist, and sending respective downlink service data at each home TRP of the space division scheduling user.
  • the method further includes:
  • the TRP corresponding to the maximum received signal power of the DLRS is determined as TRP_L0 to which the user of the terminal belongs.
  • the first-dimensional users scheduled according to the conventional scheduling logic are preferentially guaranteed, and other air separation users that match the scheduling based on this improve the overall cell throughput.
  • determining that there are users who can perform space division scheduling includes:
  • the first-dimensional user who needs to be scheduled determines whether other TRPs have downstream spatial isolation between TRPx and TRP_L0 that meet the spatial isolation requirements, where TRP_L0 is the home TRP of the first-dimensional user;
  • TRPx that meets the requirements of the downstream space isolation degree are sorted in descending order of isolation degree, and are denoted as TRP_L1, ..., TRP_Lx.
  • the downstream spatial isolation from TRP_L0 meets the spatial isolation requirements, including:
  • the number of users scheduled on TRP_Li is unlimited, where TRP_Li is TRP_L1, ..., any TRP of TRP_Lx, and all TRP_Li is scheduled
  • TRP_Li is TRP_L1
  • ... any TRP of TRP_Lx
  • all TRP_Li is scheduled
  • the resource location of the user is exactly the same as or partially the same as the resource location of the first-dimensional user.
  • the isolation between any TRP of the user to be scheduled and the scheduled user is greater than the SDM threshold , it is determined that the user to be scheduled can be scheduled;
  • the method further includes:
  • the power adjustment for determining the transmit power of TRP i is:
  • the ratio i is the total amount of other traffic TRP i TRP i addition to the total amount of traffic outside the cell ratio.
  • the adjusted power of TRP i is:
  • power max is the maximum transmit power of TRP
  • power min is the minimum transmit power of TRP
  • An embodiment of the present application provides a device for spatial multiplexing.
  • the device includes:
  • Memory for storing program instructions
  • a processor for invoking program instructions stored in the memory and executing according to the obtained program :
  • the downlink spatial isolation between the terminal and the TRP is determined through a measurement result of the received signal power of the DLRS reported by the receiving terminal.
  • each said TRP includes one or more distributed antennas.
  • the downlink spatial isolation between the terminal and the TRP it is determined that there are users who can perform space division scheduling, and send respective downlink service data at the respective home TRP of the space division scheduling user;
  • the TRP corresponding to the maximum received signal power of the DLRS is determined as TRP_L0 to which the user of the terminal belongs.
  • determining that there are users who can perform space division scheduling includes:
  • TRP_L0 is the home TRP of the first-dimensional user. Schedule the first-dimensional user on TRP_L0;
  • TRPx that meets the requirements of the downstream space isolation degree are sorted in descending order of isolation degree, and are denoted as TRP_L1, ..., TRP_Lx.
  • the downlink spatial isolation from the TRP to which the first-dimensional user belongs meets spatial isolation requirements, including:
  • the determination of the TRP's downlink spatial isolation needs to satisfy the condition that is greater than the SDM threshold of the space division.
  • the number of users scheduled on TRP_Li is unlimited, where TRP_Li is TRP_L1, ..., any TRP of TRP_Lx, and all TRP_Li is scheduled
  • TRP_Li is TRP_L1
  • ... any TRP of TRP_Lx
  • all TRP_Li is scheduled
  • the resource location of the user is exactly the same as or partially the same as the resource location of the first-dimensional user.
  • the isolation between any TRP of the user to be scheduled and the scheduled user is greater than the SDM threshold , it is determined that the user to be scheduled can be scheduled;
  • the method further includes:
  • the power adjustment for determining the transmit power of TRP i is:
  • the ratio j is the ratio of the total traffic volume under the TRP except the TRP i to the total traffic volume of the cell.
  • the adjusted power of TRP i is:
  • power max is the maximum transmit power of TRP
  • power min is the minimum transmit power of TRP
  • An embodiment of the present application provides a spatial multiplexing device, where the device includes:
  • Sending unit used to send different downlink measurement signals DLRS under different transceiver points TRP, where different DLRS occupy different time-frequency resources;
  • a determining unit configured to determine a downlink spatial isolation between the terminal and the TRP by using a measurement result of a received signal power of the DLRS reported by the receiving terminal.
  • the computer storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause the computer to execute any one of the foregoing methods.
  • FIG. 1 is a schematic flowchart of a space division multiplexing method according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a sending relationship between a TRP and a DLRS provided in Embodiment 1 of the present application;
  • FIG. 3 is a schematic diagram of RSRP of each DLRS reported by a UE (User Equipment) provided in Embodiment 1 of this application;
  • FIG. 4 is a schematic diagram of a UE's isolation from each TRP according to the first embodiment of the present application.
  • FIG. 5 is a schematic diagram of an average isolation between TRPs provided in Embodiment 3 of the present application.
  • FIG. 6 is a schematic diagram of a ratio of a service volume to a total service volume of a cell under a TRP provided in Embodiment 3 of the present application;
  • FIG. 7 is a schematic flowchart of a spatial multiplexing apparatus according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a computing device according to an embodiment of the present application.
  • the embodiments of the present application provide a method and a device for spatial multiplexing, which are used to perform space division scheduling and control transmit power of each transmitting and receiving point by improving accuracy of downlink spatial isolation.
  • the distributed antenna wireless system has distributed antennas and spatial isolation. Therefore, it is possible to consider spatial multiplexing of wireless signals and multiplex the same time-frequency resources in parallel and multi-stream transmission to improve cell throughput and cell spectrum efficiency.
  • the base station needs to know the spatial isolation to determine whether it can be used for space division multiplexing. Otherwise, multiple streams will cause mutual interference.
  • a method for spatial multiplexing proposed in the embodiments of the present application is to send different downlink measurement signals DLRS under different sending and receiving points TRP, wherein different DLRSs occupy different time-frequency resources; The measurement result of the received signal power determines the downlink spatial isolation between the terminal and the TRP.
  • the spatial multiplexing method proposed in the embodiment of the present application can accurately obtain the downlink spatial isolation of a terminal at any position relative to each distributed antenna in a logical cell, and use this as a basis for space division scheduling to adjust the distributed antennas in parallel.
  • the amount of power during stream transmission to reduce mutual interference and improve the efficiency of space division multi-stream parallel transmission.
  • the applicable system may be a GSM (global system of mobile communication) system, a CDMA (code division multiple access) system, a WCDMA (Wideband Code Division Multiple Access) GPRS (Wideband Code Division Multiple Access) general packet radio service (General Packet Radio Service) system, LTE (long term evolution) system, LTE FDD (long term evolution Frequency Division Duplex) system, LTE TDD (long term evolution division time) Duplex (long-term evolution time division duplex), UMTS (universal mobile telecommunication system), WiMAX (worldwide interoperability for microwave access) system, 5G system, and 5G NR (New Media Radio) system Wait.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS Wideband Code Division Multiple Access
  • General Packet Radio Service General Packet Radio Service
  • LTE long term evolution
  • LTE FDD long term evolution Frequency Division Duplex
  • LTE TDD long term evolution division time
  • the terminal device involved in this embodiment of the present application may be a device that provides voice and / or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • the names of the terminal devices may be different.
  • the terminal device may be called a UE (User Equipment).
  • a wireless terminal device can communicate with one or more core networks via RAN (Radio Access Network, Radio Access Network).
  • the wireless terminal device can be a mobile terminal device, such as a mobile phone (or "cellular" phone) and mobile
  • the computer of the terminal device may be, for example, a portable, pocket, handheld, built-in computer or vehicle-mounted mobile device, which exchanges language and / or data with a wireless access network.
  • a wireless terminal device can also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, and an access point.
  • Remote terminal device remote terminal
  • access terminal device access terminal
  • user terminal device user terminal
  • user agent user agent
  • user device user device
  • the network device involved in this embodiment of the present application may be a base station, and the base station may include multiple cells.
  • the base station may also be called an access point, or it may refer to a device in the access network that communicates with the wireless terminal device through one or more sectors on the air interface, or another name.
  • Network equipment can be used to convert the received IP (internet protocol) packets into and from each other, as a router between the wireless terminal equipment and the rest of the access network, where the rest of the access network can include IP (internet protocol) communication network.
  • the network equipment can also coordinate the management of the attributes of the air interface.
  • the network device involved in the embodiment of the present application may be a global transmission system (GSM) or a base station (BTS) in CDMA (code division multiple access). (Letter station), or network equipment (NodeB) in WCDMA (wide-band code division multiple access), or an evolved type in a long term evolution (LTE) system Network equipment (evolutional node B, eNB or e-NodeB), 5G base station in 5G network architecture (next generation system), or home evolved node (HeNB), relay node (relay node), home Base stations (femto), pico base stations (pico), etc. are not limited in the embodiments of the present application.
  • GSM global transmission system
  • BTS base station
  • NodeB network equipment
  • WCDMA wide-band code division multiple access
  • LTE long term evolution
  • Network equipment evolutional node B, eNB or e-NodeB
  • 5G base station in 5G network architecture next generation system
  • HeNB home evolved node
  • relay node
  • the resources occupied by the downlink measurement signal DLRS no longer reuse resources for transmitting service data.
  • the method includes steps:
  • S102 Determine a downlink spatial isolation between the terminal and the TRP by receiving a measurement result of a received signal power of the DLRS reported by the terminal.
  • To determine the downlink spatial isolation between the terminal and the TRP first determine the received signal power value of the DLRS received by the terminal from each TRP, and calculate the downlink spatial isolation between the terminal and the TRP according to the received signal power measurement result.
  • the spatial multiplexing method provided in the embodiment of the present application enables a base station to send different downlink reference signals DLRS under different transmit and receive points TRP, and can accurately obtain the space of a terminal at any position relative to each distributed antenna in a logical cell. Isolation provides a basis for spatial reuse.
  • each said TRP includes one or more distributed antennas.
  • the antennas divided into the same group are considered to be the same TRP, and each distributed antenna can also be considered to be a TRP.
  • the method further includes performing downlink space isolation judgment according to the terminal reporting the measurement results of the received signal power of different DLRSs.
  • the method further includes: determining that there are users capable of space division scheduling according to downlink spatial isolation, and sending respective downlink service data at each home TRP of the space division scheduling user.
  • the first-dimensional users scheduled according to the conventional scheduling logic are preferentially guaranteed, and other air separation users that match the scheduling based on this improve the overall cell throughput.
  • Embodiment 1 A downlink spatial isolation measurement scheme:
  • Step 1 Different TRPs send different DLRSs. See Figure 2 for the sending relationship between TRPs and DLRSs.
  • Step 2 All terminals perform channel estimation on all DLRSs, and measure useful received signal power values of the received DLRSs.
  • step three all the terminals periodically report the received signal power values of the DLRS, and the period is configurable, see FIG. 3.
  • the base station calculates the home TRP of each terminal according to the measurement report of each terminal, and the downlink spatial isolation between the TRP to which the terminal belongs and other TRPs.
  • the way to determine the TRP to which each terminal belongs is to represent any terminal as UEx, and the reference signal received power of the DLRS received by the UEx from each TRP is recorded
  • the value of i ranges from 0 to n, which specifically represents the number of the TRP, n is a positive integer, and represents the number of TRPs. Then, it is determined that the TRP corresponding to the maximum DLRS received power is the TRP to which the UEx belongs.
  • the corresponding TRP is determined as the TRP to which UEx belongs, and UEx ⁇ ⁇ all UEs in the cell ⁇ .
  • the way to determine the downlink spatial isolation between the TRP to which the UEx belongs and other TRPs is to determine It is the downlink spatial isolation between the TRP to which the UEx belongs and other TRPs.
  • the value of i ranges from 0 to n, and the number of the TRP to which the UEx belongs is excluded.
  • the downlink spatial isolation is a measure of the interference of non-attributed TRP for individual users in the home TRP relative to each TRP. The less interference a user receives from a TRP, the greater the isolation. Bigger. See Figure 4 for the isolation of the UE from each TRP.
  • the home TRP of the UEx can be defined from two perspectives.
  • the TRP corresponding to the above-mentioned maximum DLRS received power can be the TRP to which the UEx belongs, that is, The corresponding TRP, on the other hand, can also be defined from the perspective of isolation, defining a TRP with an isolation of 0 as the home TRP of the UEx.
  • the above embodiments measure and report the period update, and the base station also calculates the period update as described above.
  • the period size is configurable and the unit is time slot.
  • the maximum period supported by 5G is 320 time slots.
  • For 30KHz subcarrier spacing (SCS) That is 160 ms.
  • SCS subcarrier spacing
  • the latest measurement information reported recently is used to judge the isolation degree, so as to track the impact of the change in terminal position on the isolation degree.
  • Embodiment two a downlink space division transmission scheme:
  • the scheduling algorithm will consider many factors such as cell throughput, user fairness, service priority, service delay, and quality of service.
  • the embodiments of this application give priority to ensuring the first-dimensional users scheduled according to conventional scheduling logic, and Based on this, an air separation cell that matches the scheduling is determined, which improves the overall throughput of the cell.
  • Step 1 Perform traffic channel scheduling for the first-dimensional user according to the non-space division conventional scheduling logic, and determine the first-tier scheduling user and corresponding resource allocation;
  • Step 2 Perform the following steps for all users in the first dimension:
  • TRP_L0 1. Determine the TRP that the first-dimensional user belongs to and record it as TRP_L0;
  • TRP_L0 determines whether other TRPs other than TRP_L0 have TRPx and the first-dimensional user-owned TRP ’s downstream spatial isolation is greater than the spatial separation threshold SDM threshold , where the other TRPs are sorted according to the isolation level, and if not, determine It is not possible to perform spatial division scheduling for the first-dimensional user, and only the first-dimensional user can be scheduled on TRP_L0; if it exists, the TRPs that meet the spatial isolation are sorted from highest to lowest, and recorded as TRP_L1, ..., TRP_Lx, where x represents the number of TRPs that satisfy spatial isolation;
  • Service scheduling is performed among users who use TRP_Li as the home TRP. There is no limit to the number of users scheduled on TRP_Li, but the resource locations and total number of users scheduled on TRP_Li are exactly the same as or only part of the resource locations of the first-dimensional users;
  • the isolation of any TRP between the scheduled user and the scheduled user is greater than the SDM threshold , then the user can be scheduled, otherwise the user cannot be scheduled. user. That is to say, the isolation between any airspace scheduling user and any non-attribute TRP with airspace scheduling needs to satisfy a condition greater than the SDM threshold .
  • step three each scheduled user sends downlink service data in its home TRP, and the non-home TRP does not send service data of the corresponding user.
  • the specific value of the SDM threshold is configurable; when the SDM threshold is configured to be maximum, all users cannot meet the air separation condition, that is, the air separation function is disabled.
  • the number of users in each dimension is not greater than the user capacity and the number of streams supported by the SU-MIMO of the TRP antenna.
  • Embodiment three power control scheme:
  • the downlink spatial isolation described in the above embodiments is defined by each user relative to each TRP from the perspective of the user, and its size is related to the location of the user and is a variation.
  • the consideration of power control in this embodiment needs to periodically adjust the transmission power of each TRP according to the statistical information of a large number of users.
  • the average isolation of TRP a relative to TRP b It is defined as the average value of the isolation between TRP a and TRP b measured by all users who use TRP a as the home TRP.
  • the average isolation of TRP a relative to TRP b is a statistical value of the isolation of a large number of users and their distribution.
  • the average isolation of TRP a from TRP b if The average isolation of TRP a relative to TRP b is less than the air separation threshold, which can reduce the power of TRP b ; If the average isolation between TRP a and TRP b is greater than the air separation threshold, the power of TRP b can be increased.
  • multi-TRP performs power control as follows:
  • Step 1 In a certain statistical period, report the statistical measurement of the home users of each TRP. For the average isolation between the TRPs, see Figure 5. Among them, the statistical period unit is second and the size is configurable.
  • Step 2 Count the service throughput under each TRP in the same statistical period, and obtain the ratio i of the traffic under TRP to the total traffic in the cell, as shown in FIG. 6.
  • Step 3 Calculate the power adjustment amount for all TRPs according to the following formula:
  • ratio j is the proportion of the total traffic volume under the TRP other than TRP i to the total traffic volume of the cell.
  • Each cycle is based on the powerctrloffset TRPi calculated in the previous cycle , and the power is adjusted according to the powerctrloffset TRPi based on the current power TRPi of TRP i .
  • Step 4 The adjusted power of TRP i is:
  • the maximum transmit power of the TRP is set to power max
  • the minimum transmit power is set to power min
  • the specific value can be configured.
  • the amount of traffic determines the impact of each TRP in power adjustment.
  • the TRP with a larger traffic volume has a smaller power adjustment, and the TRP with a smaller traffic volume is more controlled by the TRP with a large traffic volume.
  • an embodiment of the present application provides a spatial multiplexing device. Referring to FIG. 7, it includes:
  • the sending unit 11 sends different downlink measurement signals DLRS under different sending and receiving points TRP, where different DLRSs occupy different time-frequency resources;
  • the determining unit 12 determines a downlink spatial isolation between the terminal and the TRP by using a received signal power measurement result for the DLRS reported by the terminal.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.
  • the integrated unit When the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially a part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device
  • the aforementioned storage media include: U disk, mobile hard disk, ROM (Read-Only Memory, Read-Only Memory), RAM (Random Access Memory, Random Access Memory), magnetic disks or optical disks and other media that can store program codes .
  • the computing device may specifically be a desktop computer, a portable computer, a smart phone, a tablet computer, a PDA (Personal Digital Assistant), or the like.
  • the computing device may include a CPU (Center Processing Unit), a memory, an input / output device, etc.
  • the input device may include a keyboard, a mouse, a touch screen, etc.
  • the output device may include a display device, such as an LCD (Liquid Crystal Display, liquid crystal display). Display), CRT (Cathode Ray Tube).
  • the memory may include ROM (Read-Only Memory, read-only memory) and RAM (Random Access Memory, random access memory), and provide the processor with program instructions and data stored in the memory.
  • the memory may be used to store a program of any of the methods provided in the embodiments of the present application.
  • the processor invokes program instructions stored in the memory, and the processor is configured to execute any of the methods provided in the embodiments of the present application according to the obtained program instructions.
  • an embodiment of the present application provides a computing device, including:
  • a memory 520 configured to store program instructions
  • the processor 500 is configured to call a program instruction stored in the memory and execute the program instruction according to the obtained program:
  • the processor 500 sends different downlink measurement signals DLRS, where different DLRSs occupy different time-frequency resources;
  • the transceiver 510 determines a downlink spatial isolation between the terminal and the TRP by receiving a measurement result of a received signal power of the DLRS reported by the terminal.
  • each said TRP includes one or more distributed antennas.
  • the downlink spatial isolation between the terminal and the TRP it is determined that there is a user capable of space division scheduling, and the respective downlink service data is sent at the home TRP of the space division scheduling user.
  • the TRP corresponding to the maximum received signal power of the DLRS is determined as TRP_L0 to which the user of the terminal belongs.
  • determining that there are users who can perform space division scheduling includes:
  • the scheduling logic determines whether there is a downstream space isolation requirement between TRPx and other TRPs, where TRP_L0 is the home TRP of the first-dimensional user;
  • TRPx that meets the requirements of the downstream space isolation degree are sorted in descending order of isolation degree, and are denoted as TRP_L1, ..., TRP_Lx.
  • the downlink spatial isolation from TRP_L0 meets the spatial isolation requirements, including:
  • TRP_Li is TRP_L1,...
  • the resource location of the user is exactly the same as or partially the same as the resource location of the first-dimensional user.
  • the isolation between any TRP of the user to be scheduled and the scheduled user is greater than the SDM threshold , it is determined that the user to be scheduled can be scheduled;
  • the spatial multiplexing method further includes:
  • the power adjustment for determining the transmit power of TRP i is:
  • the ratio j is the ratio of the total traffic volume under the TRP except the TRP i to the total traffic volume of the cell.
  • the adjusted power of TRP i is:
  • power max is the maximum transmit power of TRP
  • power min is the minimum transmit power of TRP i .
  • the transceiver 510 is configured to receive and send data under the control of the processor 500.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 500 and various circuits of the memory represented by the memory 520 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface provides an interface.
  • the transceiver 510 may be multiple elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over a transmission medium.
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 may store data used by the processor 500 when performing operations.
  • the processor 500 may be a CPU (Center Processing Unit), an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a CPLD (Complex Programmable Logic Device) , Complex programmable logic device).
  • CPU Center Processing Unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • the embodiment of the present application provides a computer storage medium for storing computer program instructions for the above-mentioned apparatus provided in the embodiment of the present application, which includes a program for executing any one of the methods provided in the embodiment of the present application.
  • the computer storage medium may be any available medium or data storage device that can be accessed by a computer, including but not limited to magnetic storage (such as a floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (such as CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state hard disk (SSD)).
  • magnetic storage such as a floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage such as CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state hard disk (SSD)
  • the method provided in the embodiment of the present application may be applied to a terminal device or a network device.
  • the terminal device can also be called UE (User Equipment), MS (Mobile Station, Mobile Station), Mobile Terminal (mobile terminal), etc.
  • the terminal can be provided with a RAN (Radio Access Network, Radio access network) the ability to communicate with one or more core networks, for example, the terminal can be a mobile phone (or called a "cellular" phone), or a computer with a mobile nature, for example, the terminal can also be portable, Pocket, handheld, computer-built or vehicle-mounted mobile device.
  • RAN Radio Access Network, Radio access network
  • a network device may be a base station (for example, an access point), which refers to a device in an access network that communicates with a wireless terminal through one or more sectors on an air interface.
  • the base station can be used to convert the received air frames and IP packets to each other and act as a router between the wireless terminal and the rest of the access network, where the rest of the access network can include the Internet Protocol IP (network).
  • the base station can also coordinate the attribute management of the air interface.
  • the base station can be a BTS (Base Transceiver Station) in GSM or CDMA, or a NodeB (base station) in WCDMA, or a NodeB or eNB or e-NodeB (evolutionary Node B, evolving type) in LTE. Base station), or gNB in a 5G system. It is not limited in the embodiments of the present application.
  • the process flow of the above method may be implemented by a software program, and the software program may be stored in a storage medium.
  • the stored software program is called, the above method steps are executed.
  • different downlink measurement signals DLRS are transmitted under different transmit and receive points TRP.
  • different DLRSs occupy different time-frequency resources.
  • the measurement result of the received signal power of the DLRS determines the downlink spatial isolation between the terminal and the TRP. It is possible to perform space division scheduling and control the transmit power of each transmitting and receiving point by improving the accuracy of downlink spatial isolation.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Therefore, this application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Moreover, the present application may take the form of a computer program product implemented on one or more computer-usable storage media (including, but not limited to, disk storage, optical storage, and the like) containing computer-usable program code.
  • a computer-usable storage media including, but not limited to, disk storage, optical storage, and the like
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing device to work in a particular manner such that the instructions stored in the computer-readable memory produce a manufactured article including an instruction device, the instructions
  • the device implements the functions specified in one or more flowcharts and / or one or more blocks of the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing device, so that a series of steps can be performed on the computer or other programmable device to produce a computer-implemented process, which can be executed on the computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种空间复用方法及装置,用以通过提高下行空间隔离度的准确度来进行空分调度以及对各收发点发射功率的控制。本申请提供的一种空间复用方法及装置包括:在不同的收发点TRP下发送不同的下行测量信号DLRS,其中,不同的DLRS占用不同的时频资源;通过接收终端上报的针对所述DLRS的接收信号功率测量结果,确定所述终端与所述TRP的下行空间隔离度。

Description

一种空间复用方法及装置
相关申请的交叉引用
本申请要求在2018年08月27日提交中国专利局、申请号为201810983039.8、申请名称为“一种空间复用方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种空间复用方法及装置。
背景技术
分布式天线由于天线分散布置,天线间的距离、阻挡物等因素可以造成同一接收点接收到的各分布式天线的信号的功率存在功率差,此功率差可以称之为此接收点的各分布式天线间的空间隔离度。当一对分布式天线之间的空间隔度足够大,那这两个分布式天线间或者多个分布式天线间复用相同时频资源并行传输多流数据,相互之间的干扰会比较弱甚至可以忽略,以保证多路数据并行传输的效率。
现有技术通常由基站测量终端上行信号来推断下行的空间隔度;或者在网络规划时保证分布式天线间任意位置的下行隔离足够大,从而静态配置可以进行空分的分布式天线,应用时基站只需简单判断用户所处的分布式天线而不再关心与小区内的其他天线间的空间隔离度,即可按静态配置的空分天线进行空分调度;再或者放弃空分,多个分布式天线都传输相同用户的数据。
基于上行信号的测量来推测下行空间隔离度的方法适用于TDD(Time Division Duplexing,时分双工)系统,但由于上下行频段不同此方案并不完全适合FDD(Frequency Division Duplexing,频分双工)系统。即使TDD系统使用上行测试来进行下行隔离度判断准确性也不太高,4G基于SRS(Sounding Reference Signal,参考信号)的隔离度判断的实际应用效果也不 好。毕竟上下行信道并不是完全相同,实践中的各种干扰分析发现上下行干扰通常并不一致。除了基站定时同步跑偏、干扰器、同系统异运营商相邻频段的带外干扰、杂散干扰、谐波干扰、互调干扰等异常因素可能造成上下行干扰不同外,还会由于无线系统内部造成上下行干扰的原因不同而在上下行体现出不同的干扰情况。上行干扰通常来自邻小区终端,下行干扰通常来自邻小区基站或同小区的不同天线的不同信号。下行干扰来自同系统基站,小区功率稳定的条件下,固定地点的下行干扰通常也比较固定、变化小;而上行干扰受终端移动、上行调度、上行功控、初始接入、上行失步终端等因素的影响,上行干扰形成因素非常复杂,上行干扰的变化通常比较频繁、变化大。从而也会影响上行测量的准确性,影响空分隔离度判断。
在网络规划时保证分布式天线间任意位置的下行隔离足够大,进而静态配置可以进行空分的分布式天线的方案缺点在于适应性差,网络规划等前期工作量巨大,不便于部署。而放弃空分的分布式天线系统在小区吞吐、频谱效率、业务承载能力上必然是远差于分布式空分系统的。
发明内容
本申请实施例提供了一种空间复用方法及装置,用以通过提高下行空间隔离度的准确度来进行空分调度以及对各收发点发射功率的控制。
本申请实施例提供的一种空间复用方法,包括:
在不同的TRP(Transmission/Reception Point,收发点)下发送不同的DLRS(Downlink Reference Signal,下行参考信号);其中,不同的DLRS占用不同的时频资源;通过接收终端上报的针对所述DLRS的接收信号功率测量结果,确定所述终端与所述TRP的下行空间隔离度。
通过该方法,基站在不同的收发点TRP下发送不同的下行参考信号DLRS,并且能够准确获得任意位置的终端相对于逻辑小区内各分布式天线的空间隔离度,为空间复用提供了依据。
可选地,每一所述TRP包括一个或多个分布式天线。
当基于规划信息并根据分布式天线的位置对分布式天线进行分组时,分为相同组的天线认为是相同的TRP,也可以将每个分布式天线认为是一个TRP。
可选地,该方法还包括依据终端对不同DLRS的测量结果上报进行下行空间隔离度判断。
可选地,该方法还包括:根据下行空间隔离度,确定存在能进行空分调度的用户,并在空分调度用户各自的归属TRP发送各自的下行业务数据。
可选地,该方法还包括:
根据终端上报的针对所述DLRS的接收信号功率测量结果,确定最大的DLRS的接收信号功率对应的TRP,为所述终端的用户归属的TRP_L0。
通过此方法优先保证了按常规调度逻辑调度出的第一维用户,其他在此基础上匹配调度的空分用户提升了小区整体吞吐。
可选地,确定存在能进行空分调度的用户,包括:
按照调度逻辑确定需要调度的第一维用户判断其他TRP是否存在TRPx与TRP_L0的下行空间隔离度满足空间隔离度要求,其中,TRP_L0为第一维用户的归属TRP;
如果不存在,确定仅在TRP_L0上调度第一维用户;
如果存在,则对满足下行空间隔离度要求的TRPx按隔离度由大到小排序,记为TRP_L1,......,TRP_Lx。
与TRP_L0的下行空间隔离度满足空间隔离度要求,包括:
与TRP_L0的下行空间隔离度大于空分门限SDM threshold时,确定满足空间隔离度要求。
可选地,在以TRP_Li为归属TRP的用户中进行业务调度时,TRP_Li上调度的用户数量不限,其中,TRP_Li为TRP_L1,......,TRP_Lx中任一个TRP,所有TRP_Li上调度的用户的资源位置与第一维用户的资源位置完全相同或部分相同。
可选地,如果待调度用户与已调度用户的任意TRP的隔离度大于SDM threshold,则确定能够调度该待调度用户;
否则,不能调度该待调度用户。
可选地,该方法还包括:
确定TRP间的平均隔离度
Figure PCTCN2019102019-appb-000001
确定TRP i下的业务量占小区总业务量的比例ratio i
确定TRP i的发射功率的功率调整量为:
Figure PCTCN2019102019-appb-000002
其中ratio i为除TRP i外其他TRP i下业务量总量占小区总业务量的比例。
可选地,TRP i调整后的功率为:
Figure PCTCN2019102019-appb-000003
其中power max为TRP的最大发射功率,power min为TRP的最小发射功率。
本申请实施例提供一种空间复用的装置,该装置包括:
存储器,用于存储程序指令;
处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
在不同的收发点TRP下发送不同的下行测量信号DLRS,其中,不同的DLRS占用不同的时频资源;
通过接收终端上报的针对所述DLRS的接收信号功率测量结果,确定所述终端与所述TRP的下行空间隔离度。
可选地,每一所述TRP包括一个或多个分布式天线。
可选地,根据所述终端与所述TRP的下行空间隔离度确定存在能进行空分调度的用户,并在空分调度用户各自的归属TRP发送各自的下行业务数据;
可选地,根据终端上报的针对所述DLRS的接收信号功率测量结果,确定最大的DLRS的接收信号功率对应的TRP,为所述终端的用户归属的 TRP_L0。
可选地,确定存在能进行空分调度的用户,包括:
按照调度逻辑确定需要调度的第一维用户,判断其他TRP是否存在TRPx与TRP_L0的下行空间隔离度满足空间隔离度要求,其中,TRP_L0为第一维用户的归属TRP;如果不存在,则确定仅在TRP_L0上调度第一维用户;
如果存在,则对满足下行空间隔离度要求的TRPx按隔离度由大到小排序,记为TRP_L1,......,TRP_Lx。
可选地,与第一维用户归属的TRP的下行空间隔离度满足空间隔离度要求,包括:
确定TRP的下行空间隔离度需要满足大于空分门限SDM threshold的条件。
可选地,在以TRP_Li为归属TRP的用户中进行业务调度时,TRP_Li上调度的用户数量不限,其中,TRP_Li为TRP_L1,......,TRP_Lx中任一个TRP,所有TRP_Li上调度的用户的资源位置与第一维用户的资源位置完全相同或部分相同。
可选地,如果待调度用户与已调度用户的任意TRP的隔离度大于SDM threshold,则确定能够调度该待调度用户;
否则,不能调度该待调度用户。
可选地,该方法还包括:
确定TRP间的平均隔离度
Figure PCTCN2019102019-appb-000004
确定TRP i下的业务量占小区总业务量的比例ratio i
确定TRP i的发射功率的功率调整量为:
Figure PCTCN2019102019-appb-000005
其中ratio j为除TRP i外其他TRP下业务量总量占小区总业务量的比例。
可选地,TRP i调整后的功率为:
Figure PCTCN2019102019-appb-000006
其中power max为TRP的最大发射功率,power min为TRP的最小发射功率。
本申请实施例提供一种空间复用装置,该装置包括:
发送单元:用于在不同的收发点TRP下发送不同的下行测量信号DLRS,其中,不同的DLRS占用不同的时频资源;
确定单元:用于通过接收终端上报的针对所述DLRS的接收信号功率测量结果,确定所述终端与所述TRP的下行空间隔离度。
本申请另一实施例提供了一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述任一种方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的空分复用方法流程示意图;
图2为本申请实施例一提供的TRP与DLRS的发送关系示意图;
图3为本申请实施例一提供的UE(User Equipment,用户设备)上报的各DLRS的RSRP示意图;
图4为本申请实施例一提供的UE相对各TRP的隔离度示意图;
图5为本申请实施例三提供的TRP间的平均隔离度的示意图;
图6为本申请实施例三提供的TRP下业务量占小区总业务量的比例示意图;
图7为本申请实施例提供的一种空间复用装置的流程示意图;
图8为本申请实施例提供的一种计算设备示意图。
具体实施方式
本申请实施例提供了一种空间复用方法及装置,用以通过提高下行空间隔离度的准确度来进行空分调度以及对各收发点发射功率的控制。
分布式天线无线系统由于天线分布分散,存在空间隔离度,因此可以考虑无线信号的空间复用,复用相同时频资源并行多流传输提升小区吞吐、小区频谱效率。但是基站侧需要明确知道空间隔离度的情况下才有是否能够空分复用的依据,否则多流之间会造成相互干扰。本申请实施例提出的一种空间复用方法,在不同的收发点TRP下发送不同的下行测量信号DLRS,其中,不同的DLRS占用不同的时频资源;通过接收终端上报的针对所述DLRS的接收信号功率测量结果,确定所述终端与所述TRP的下行空间隔离度。
本申请实施例提出的空间复用方法能够准确获得任意位置的终端相对于逻辑小区内各分布式天线的下行空间隔离度,并以此作为空分调度的依据来调整各分布式天线在并行多流传输时的功率大小,以减少相互干扰,提升空分多流并行传输的效率。
本申请实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是GSM(global system of mobile communication,全球移动通讯)系统、CDMA(code division multiple access,码分多址)系统、WCDMA(Wideband Code Division Multiple Access,宽带码分多址)GPRS(general packet radio service,通用分组无线业务)系统、LTE(long term evolution,长期演进)系统、LTE FDD(long term evolution Frequency Division Duplex,长期演进频分双工)系统、LTE TDD(long term evolution Time Division Duplex,长期演进时分双工)、UMTS(universal mobile telecommunication system,通用移动系统)、WiMAX(worldwide interoperability for microwave access,全球互联微波接入)系统、5G系统以及5G NR(New Radio,新媒体)系统等。这多种系统中均包括终端设备和网络设备。
本申请实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为UE(User Equipment,用户设备)。无线终端设备可以经RAN(Radio Access Network,无线接入网)与一个或多个核心网进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,PCS(Personal Communication Service,个人通信业务)电话、无绳电话、SIP(Session Initiated Protocol,会话发起协议)话机、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字助理)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本申请实施例中并不限定。
本申请实施例涉及的网络设备,可以是基站,该基站可以包括多个小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的IP(internet protocol,空中帧与网际协议)分组进行相互转换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP(internet protocol,空中帧与网际协议)通信网络。网络设备还可协调对空中接口的属性管理。例如,本申请实施例涉及的网络设备可以是GSM(global system for mobile communications,全球移动通信系统)或CDMA(code division multiple access,码分多址接入)中的BTS(base transceiver station,基站收发信台),也可以是WCDMA(wide-band code division multiple access,带宽码分多址接入)中的网络设备(NodeB),还可以是长期 演进(long term evolution,LTE)系统中的演进型网络设备(evolutional node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站,也可是家庭演进基站(home evolved node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本申请实施例中并不限定。
在不同的TRP下发送不同的下行测量信号DLRS,不同的下行测量信号DLRS占用不同的时频资源;通知终端所有下行测量信号DLRS的资源位置,并配置终端对所有下行测量信号DLRS进行接收信号功率测量,并周期上报对所有下行测量信号DLRS接收信号功率,其中,上述周期可配置。为了使下行测量信号DLRS不影响业务信道,下行测量信号DLRS占用的资源不再复用传输业务数据的资源。
基于终端对下行信号的准确测量,进行空间复用,提升小区频谱效率。下面结合说明书附图对本申请各个实施例进行详细描述。需要说明的是,本申请实施例的展示顺序仅代表实施例的先后顺序,并不代表实施例所提供的技术方案的优劣。
本申请实施例提供的一种空间复用方法的流程,参见图1,该方法包括步骤:
S101、在不同的收发点TRP下发送不同的下行测量信号DLRS,其中,不同的DLRS占用不同的时频资源;
S102、通过接收终端上报的针对所述DLRS的接收信号功率测量结果,确定所述终端与所述TRP的下行空间隔离度。其中确定终端与所述TRP的下行空间隔离度,首先需要确定终端从各个TRP接收的DLRS的接收信号功率值,根据接收信号功率测量结果计算终端与所述TRP的下行空间隔离度。
本申请实施例提供的这种空间复用方法实现了基站能在不同的收发点TRP下发送不同的下行参考信号DLRS,并且能够准确获得任意位置的终端相对于逻辑小区内各分布式天线的空间隔离度,为空间复用提供了依据。
可选地,每一所述TRP包括一个或多个分布式天线。
当基于规划信息并根据分布式天线的位置对分布式天线进行分组时,分 为相同组的天线认为是相同的TRP,也可以将每个分布式天线认为是一个TRP。
可选地,该方法还包括依据终端对不同DLRS的收信号功率测量结果上报进行下行空间隔离度判断。
可选地,该方法还包括:根据下行空间隔离度确定存在能进行空分调度的用户,并在空分调度用户各自的归属TRP发送各自的下行业务数据。
通过此方法优先保证了按常规调度逻辑调度出的第一维用户,其他在此基础上匹配调度的空分用户提升了小区整体吞吐。
下面给出几个具体实施例。
实施例一、一种下行空间隔离度测量方案:
步骤一,不同的TRP发送不同的DLRS,TRP与DLRS的发送关系参见图2;
步骤二,所有终端对所有DLRS进行信道估计,并测量接收的DLRS的有用接收信号功率值;
步骤三,所有终端周期上报各自测量的DLRS的接收信号功率值,其中周期可配置,参见图3。
基站根据每个终端的测量上报,分别计算各终端的归属TRP,以及该终端归属的TRP与其他TRP的下行空间隔离度。其中,在确定各终端归属的TRP的方式为,对任一终端表示为UEx,将该UEx从各个TRP接收的DLRS的参考信号接收功率,记为
Figure PCTCN2019102019-appb-000007
i的取值范围为0~n,具体表示TRP的编号,n为正整数,表示TRP的个数,则确定其中最大的DLRS接收功率对应的TRP为该UEx归属的TRP,可选地,如果用公式表示,则表示为取
Figure PCTCN2019102019-appb-000008
Figure PCTCN2019102019-appb-000009
Figure PCTCN2019102019-appb-000010
对应的TRP确定为UEx归属的TRP,UEx∈{小区内的所有UE}。确定UEx归属的TRP之后,确定该UEx归属的TRP与其他TRP之间下行空间隔离度的方式为,确定
Figure PCTCN2019102019-appb-000011
为该UEx归属的TRP与其他TRP之间 下行空间隔离度,该式中,i的取值范围为0~n,且排除UEx归属的TRP的编号。
下行空间隔离度是各用户相对各TRP而言,是用户个体在归属TRP下进行业务受到非归属TRP的干扰程度的衡量标准,某用户受某TRP干扰越小,即隔离度越大,
Figure PCTCN2019102019-appb-000012
越大。UE相对各TRP的隔离度参见图4。
作为一种可选的实施方式,可以从两个角度定义UEx的归属TRP,一方面可以根据上述最大的DLRS接收功率对应的TRP为该UEx归属的TRP,即
Figure PCTCN2019102019-appb-000013
对应的TRP,另一方面,还可以从隔离度的角度定义,定义隔离度为0的TRP为UEx的归属TRP。
以上实施例测量上报周期更新,基站也按上述周期更新进行计算,周期大小可配置,单位为时隙,5G支持的最大周期为320个时隙,对30KHz子载波间隔(Subcarrier Spacing,SCS)来说即160毫秒。空分调度时使用最近上报的最新测量信息判断隔离度,以跟踪终端位置的变化对隔离度的影响。
实施例二、下行空分发送方案:
一般来说,调度算法会考虑小区吞吐量、用户公平性、业务优先级、业务时延、服务质量等众多因素,本申请实施例优先保证了按常规调度逻辑调度出的第一维用户,并确定了在此基础上匹配调度的空分小区,提升了小区整体吞吐。
以下为本申请实施例提出的基站业务信道的调度步骤:
步骤一,按非空分常规调度逻辑进行第一维用户的业务信道调度,确定第一层调度用户以及相应的资源分配;
步骤二,对第一维所有用户遍历执行以下步骤:
1、确定第一维用户归属TRP,记为TRP_L0;
2、判断除TRP_L0外的其他TRP,是否存在TRPx与第一维用户归属TRP的下行空间隔离度大于空分门限SDM threshold,其中,所述其他TRP按照隔离度 大小排序,如果不存在,则确定不能对该第一维用户进行空分调度,只能在TRP_L0上调度第一维用户;如果存在,则对满足空间隔离度的TRP按隔离度由大到小排序,记为TRP_L1,……,TRP_Lx,其中x表示满足空间隔离度的TRP的数量;
3、对按隔离度大小排列的TRP_L1,……,TRP_Lx依次遍历。
在以TRP_Li为归属TRP的用户中进行业务调度。TRP_Li上调度的用户不限用户数,但所有TRP_Li上调度的用户的资源位置及总量与第一维用户的资源位置完全相同或只是其中部分;
对以TRP_Li为归属TRP的待调度用户判断其与已经调度用户的所有TRP的隔离度,待调度用户与已调度用户的任意TRP的隔离度大于SDM threshold,则可以调度该用户,否则不能调度该用户。即任意空分调度用户与任意有空分调度的非归属TRP隔离度均需要满足大于SDM threshold的条件。
步骤三,对调度出的每个用户在其归属TRP进行下行业务数据发送,非归属TRP不发送相应用户的业务数据。
其中,SDM threshold具体值可配置;SDM threshold配置为极大时,所有用户均不能满足空分条件,即相当于空分功能关闭。每一维用户的流数不大于用户能力以及TRP天线的SU—MIMO支持的流数。
实施例三、功率控制方案:
以上实施例所述下行空间隔离度都是各用户相对各TRP而言,是从用户的角度定义的,其大小与用户位置有关,是一个变化量。而本实施例对于功率控制的考虑需要根据大量用户的统计信息来周期性地调整各TRP的发射功率。
为了给功率控制提供依据,增加如下TRP间的平均隔离度定义。TRP a相对TRP b的平均隔离度
Figure PCTCN2019102019-appb-000014
定义为以TRP a为归属TRP的所有用户测量上报的TRP a、TRP b间的隔离度的均值。TRP a相对TRP b的平均隔离度是大量用户及其分布情况下的隔离度统计值。
就TRP a相对TRP b的平均隔离度而言,若
Figure PCTCN2019102019-appb-000015
TRP a相对TRP b的平均隔离度小于空分门限,则可以降低TRP b功率;若
Figure PCTCN2019102019-appb-000016
TRP a相对TRP b的平均隔离度大于空分门限,则可以提高TRP b功率。
考虑不同TRP下用户量、业务量的差异,多TRP按如下方法进行功率控制:
步骤一,在一定统计周期内,对每个TRP的归属用户统计测量上报,所得TRP间的平均隔离度参见图5,其中,统计周期单位为秒,大小可配置。
步骤二,在相同统计周期内统计每个TRP下的业务吞吐量,得到TRP下的业务量占小区总业务量的比例ratio i,参见图6。
步骤三,对所有TRP按如下公式计算功率调整量:
Figure PCTCN2019102019-appb-000017
其中,ratio j为除TRP i外其他TRP下业务量总量占小区总业务量的比例。
每个周期基于上一周期计算出的powerctrloffset TRPi,在TRP i的当前功率power TRPi基础上按powerctrloffset TRPi调整功率。
步骤四,TRP i调整后的功率为:
Figure PCTCN2019102019-appb-000018
其中,TRP的最大发送功率设置为power max,最小发送功率设置为power min,具体值可配置。
业务量大小决定各个TRP在功率调整中的影响大小,业务量越大的TRP自身功率调整越小,业务量越小的TRP功率越受控于大业务量的TRP。
在网络侧,本申请实施例提供一种空间复用装置,参见图7,包括:
发送单元11,在不同的收发点TRP下发送不同的下行测量信号DLRS,其中,不同的DLRS占用不同的时频资源;
确定单元12,通过接收终端上报的针对所述DLRS的接收信号功率测量结果,确定所述终端与所述TRP的下行空间隔离度。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM(Read-Only Memory,只读存储器)、RAM(Random Access Memory,随机存取存储器)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例提供了一种计算设备,该计算设备具体可以为桌面计算机、便携式计算机、智能手机、平板电脑、PDA(Personal Digital Assistant,个人数字助理)等。该计算设备可以包括CPU(Center Processing Unit,中央处理器)、存储器、输入/输出设备等,输入设备可以包括键盘、鼠标、触摸屏等,输出设备可以包括显示设备,如LCD(Liquid Crystal Display,液晶显示器)、CRT(Cathode Ray Tube,阴极射线管)等。
存储器可以包括ROM(Read-Only Memory,只读存储器)和RAM(Random Access Memory,随机存取存储器),并向处理器提供存储器中存储的程序指令和数据。在本申请实施例中,存储器可以用于存储本申请实施例提供的任一所述方法的程序。
处理器通过调用存储器存储的程序指令,处理器用于按照获得的程序指 令执行本申请实施例提供的任一所述方法。
在网络侧,参见图8,本申请实施例提供一种计算设备,包括:
存储器520,用于存储程序指令;
处理器500,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
在不同的收发点TRP下,处理器500发送不同的下行测量信号DLRS,其中,不同的DLRS占用不同的时频资源;
收发机510通过接收终端上报的针对所述DLRS的接收信号功率测量结果,确定所述终端与所述TRP的下行空间隔离度。
可选地,每一所述TRP包括一个或多个分布式天线。
可选地,根据所述终端与所述TRP的下行空间隔离度,确定存在能进行空分调度的用户,并在空分调度用户各自的归属TRP发送各自的下行业务数据。
可选地,根据终端上报的针对所述DLRS的接收信号功率测量结果,确定最大的DLRS的接收信号功率对应的TRP,为所述终端的用户归属的TRP_L0。
可选地,确定存在能进行空分调度的用户,包括:
按照调度逻辑确定需要调度的第一维用户判断其他TRP是否存在TRPx与的下行空间隔离度要求,其中,TRP_L0为第一维用户的归属TRP;
如果不存在,确定仅在TRP_L0上调度第一维用户;
如果存在,则对满足下行空间隔离度要求的TRPx按隔离度由大到小排序,记为TRP_L1,......,TRP_Lx。
可选地,与TRP_L0的下行空间隔离度满足空间隔离度要求,包括:
与TRP_L0的下行空间隔离度大于空分门限SDM threshold时,确定满足空间隔离度要求。
可选地,在以TRP_Li为归属TRP的用户中进行业务调度时,TRP_Li上调度的用户数量不限,其中,TRP_Li为TRP_L1,......,TRP_Lx中任一个TRP, 所有TRP_Li上调度的用户的资源位置与第一维用户的资源位置完全相同或部分相同。
可选地,如果待调度用户与已调度用户的任意TRP的隔离度大于SDM threshold,则确定能够调度该待调度用户;
否则,不能调度该用户。
可选地,该空间复用方法还包括:
确定TRP间的平均隔离度
Figure PCTCN2019102019-appb-000019
确定TRP i下的业务量占小区总业务量的比例ratio i
确定TRP i的发射功率的功率调整量为:
Figure PCTCN2019102019-appb-000020
其中ratio j为除TRP i外其他TRP下业务量总量占小区总业务量的比例。
可选地,TRP i调整后的功率为:
Figure PCTCN2019102019-appb-000021
其中power max为TRP的最大发射功率,power min为TRP i的最小发射功率。
收发机510,用于在处理器500的控制下接收和发送数据。
其中,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机510可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。处理器500负责管理总线架构和通常的处理,存储器520可以存储处理器500在执行操作时所使用的数据。
处理器500可以是CPU(Center Processing Unit,中央处埋器)、ASIC (Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件)。
本申请实施例提供了一种计算机存储介质,用于储存为上述本申请实施例提供的装置所用的计算机程序指令,其包含用于执行上述本申请实施例提供的任一方法的程序。
所述计算机存储介质可以是计算机能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本申请实施例提供的方法可以应用于终端设备,也可以应用于网络设备。
其中,终端设备也可称之为UE(User Equipment,用户设备)、MS(Mobile Station,移动台)、Mobile Terminal(移动终端)等,可选的,该终端可以具备经RAN(Radio Access Network,无线接入网)与一个或多个核心网进行通信的能力,例如,终端可以是移动电话(或称为“蜂窝”电话)、或具有移动性质的计算机等,例如,终端还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
网络设备可以为基站(例如,接入点),指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议IP(网络)。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的BTS(Base Transceiver Station,基站),也可以是WCDMA中的NodeB(基站),还可以是LTE中的NodeB或eNB或e-NodeB(evolutional Node B,演进型基站),或者也可以是5G系统中的gNB等。本申请实施例中不做限定。
上述方法处理流程可以用软件程序实现,该软件程序可以存储在存储介 质中,当存储的软件程序被调用时,执行上述方法步骤。
综上所述,当采用本申请的下行空间复用方法时,在不同的收发点TRP下发送不同的下行测量信号DLRS,其中,不同的DLRS占用不同的时频资源;通过接收终端上报的针对所述DLRS的接收信号功率测量结果,确定所述终端与所述TRP的下行空间隔离度。可以通过提高下行空间隔离度的准确度来进行空分调度以及对各收发点发射功率的控制。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (12)

  1. 一种空间复用方法,其特征在于,该方法包括:
    在不同的收发点TRP下发送不同的下行测量信号DLRS,其中,不同的DLRS占用不同的时频资源;
    通过接收终端上报的针对所述DLRS的接收信号功率测量结果,确定所述终端与所述TRP的下行空间隔离度,每一所述TRP包括一个或多个分布式天线。
  2. 根据权利要求1所述的方法,其特征在于,该方法还包括:
    根据所述终端与所述TRP的下行空间隔离度,确定存在能进行空分调度的用户,并在空分调度用户各自的归属TRP发送各自的下行业务数据。
  3. 根据权利要求2所述的方法,其特征在于,还包括:
    根据终端上报的针对所述DLRS的接收信号功率测量结果,确定最大的DLRS的接收信号功率对应的TRP,为所述终端的用户归属的TRP_L0。
  4. 根据权利要求2或3所述的方法,其特征在于,确定存在能进行空分调度的用户,包括:
    按照调度逻辑确定需要调度的第一维用户判断其他TRP是否存在TRPx与TRP_L0的下行空间隔离度满足空间隔离度要求,其中,TRP_L0为第一维用户的归属TRP;
    如果不存在,确定仅在TRP_L0上调度第一维用户;
    如果存在,则对满足下行空间隔离度要求的TRPx按隔离度由大到小排序,记为TRP_L1,......,TRP_Lx。
  5. 根据权利要求4所述的方法,其特征在于,与TRP_L0的下行空间隔离度满足空间隔离度要求,包括:
    与TRP_L0的下行空间隔离度大于空分门限SDM threshold时,确定满足空间隔离度要求。
  6. 根据权利要求4所述的方法,其特征在于,在以TRP_Li为归属TRP的用户中进行业务调度时,TRP_Li上调度的用户数量不限,其中,TRP_Li为TRP_L1,......,TRP_Lx中任一个TRP,所有TRP_Li上调度的用户的资源位置与第一维用户的资源位置完全相同或部分相同。
  7. 根据权利要求5所述的方法,其特征在于,如果待调度用户与已调度用户的任意TRP的隔离度大于SDM threshold,则确定能够调度该待调度用户;
    否则,不能调度该待调度用户。
  8. 根据权利要求5所述的方法,其特征在于,该方法还包括:
    确定TRP间的平均隔离度
    Figure PCTCN2019102019-appb-100001
    确定TRP i下的业务量占小区总业务量的比例ratio i’
    确定TRP i的发射功率的功率调整量为:
    Figure PCTCN2019102019-appb-100002
    其中ratio j为除TRP i外其他TRP下业务量总量占小区总业务量的比例。
  9. 根据权利要求8所述的方法,其特征在于,TRP i调整后的功率为:
    Figure PCTCN2019102019-appb-100003
    其中power max为TRP的最大发射功率,power min为TRP的最小发射功率。
  10. 一种空间复用的装置,其特征在于,该装置包括:
    存储器,用于存储程序指令;
    处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行权利要求1至9任一项所述的方法。
  11. 一种空间复用的装置,其特征在于,该装置包括:
    发送单元:用于在不同的收发点TRP下发送不同的下行测量信号DLRS,其中,不同的DLRS占用不同的时频资源;
    确定单元:用于通过接收终端上报的针对所述DLRS的接收信号功率测量结果,确定所述终端与所述TRP的下行空间隔离度,每一所述TRP包括一个或多个分布式天线。
  12. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行权利要求1至9任一项所述的方法。
PCT/CN2019/102019 2018-08-27 2019-08-22 一种空间复用方法及装置 WO2020043002A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810983039.8A CN110868751B (zh) 2018-08-27 2018-08-27 一种空间复用方法及装置
CN201810983039.8 2018-08-27

Publications (1)

Publication Number Publication Date
WO2020043002A1 true WO2020043002A1 (zh) 2020-03-05

Family

ID=69643895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102019 WO2020043002A1 (zh) 2018-08-27 2019-08-22 一种空间复用方法及装置

Country Status (2)

Country Link
CN (1) CN110868751B (zh)
WO (1) WO2020043002A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007033676A1 (en) * 2005-09-26 2007-03-29 Aalborg Universitet A method of non-orthogonal spatial multiplexing in a mlmo communication system
CN101267235A (zh) * 2007-03-16 2008-09-17 大唐移动通信设备有限公司 一种实现空分复用的方法及装置
CN101820646A (zh) * 2009-02-27 2010-09-01 中兴通讯股份有限公司 一种提高高速下行分组接入业务吞吐量的方法和装置
CN102104945A (zh) * 2009-12-21 2011-06-22 大唐移动通信设备有限公司 一种空分判断方法和设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764632B (zh) * 2008-12-23 2013-09-11 中兴通讯股份有限公司 Lte-tdd室内分布系统中端口与天线映射方法及装置
CN101771448B (zh) * 2008-12-31 2012-08-08 电信科学技术研究院 空分复用与多输入多输出的结合方法及基站
CN101800584B (zh) * 2009-02-11 2013-07-10 电信科学技术研究院 一种室内分布式系统的空分多址接入方法及设备
CN101873703B (zh) * 2009-04-27 2013-05-15 电信科学技术研究院 一种空分多址资源的调度方法和通信设备
CN102387593B (zh) * 2010-09-06 2014-05-07 电信科学技术研究院 一种采用空分复用接入sdma的通信方法及基站
CN102457952B (zh) * 2010-11-02 2014-10-29 上海中兴软件有限责任公司 为空分复用用户进行物理上行信道功率授权的方法及系统
CN102098794B (zh) * 2011-01-30 2014-06-04 大唐移动通信设备有限公司 随机接入冲突的处理方法和设备
CN102724682A (zh) * 2012-05-25 2012-10-10 中兴通讯股份有限公司 一种基于有源天线的通信系统组网方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007033676A1 (en) * 2005-09-26 2007-03-29 Aalborg Universitet A method of non-orthogonal spatial multiplexing in a mlmo communication system
CN101267235A (zh) * 2007-03-16 2008-09-17 大唐移动通信设备有限公司 一种实现空分复用的方法及装置
CN101820646A (zh) * 2009-02-27 2010-09-01 中兴通讯股份有限公司 一种提高高速下行分组接入业务吞吐量的方法和装置
CN102104945A (zh) * 2009-12-21 2011-06-22 大唐移动通信设备有限公司 一种空分判断方法和设备

Also Published As

Publication number Publication date
CN110868751A (zh) 2020-03-06
CN110868751B (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
CN111954147B (zh) 信号传输、信号测量上报、定位方法及装置
CN112187423B (zh) 信号传输方法及装置
US20220330198A1 (en) Signal transmission method and apparatus
WO2021204239A1 (zh) 计算测量间隔外载波特定缩放因子的方法和通信装置
WO2020142897A1 (zh) 调度方法、装置、存储介质及通信系统
WO2020164151A1 (zh) 无线通信方法、终端设备和网络设备
WO2023051203A1 (zh) 波束测量方法、测量配置方法、装置、终端及网络设备
US20240015544A1 (en) Multi-link measurement reporting
CN111757374A (zh) 一种波束管理方法及装置
WO2018201936A1 (zh) 发送信息的方法、接收信息的方法、网络设备和终端设备
WO2020156562A1 (zh) 通信方法和装置
US11503485B2 (en) Method, system and device for circumventing far-end interference
CN111954302B (zh) 一种信息获取方法及装置
CN111465043B (zh) 一种资源分配方法及装置
WO2023236518A1 (zh) 一种通信方法及终端、存储介质
US11412488B2 (en) Resource allocation method and device
WO2017000269A1 (zh) 一种数据传输方法及装置
WO2020043002A1 (zh) 一种空间复用方法及装置
WO2020199898A1 (zh) 一种定位测量值的确定方法及装置
CN114793364A (zh) 一种下行干扰避免的调度方法、设备、装置及存储介质
CN114554539B (zh) 业务处理方法、装置、网络设备及存储介质
WO2023123477A1 (zh) 无线通信方法、终端设备和网络设备
CN111800808B (zh) 一种远端干扰源的检测方法及装置
US20220256514A1 (en) Resource allocation method and device, and resource determination method and device
WO2021203869A1 (zh) 准共址关系管理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19854470

Country of ref document: EP

Kind code of ref document: A1