CN110651512A - 在第五代无线网络中用于定位移动装置的系统及方法 - Google Patents

在第五代无线网络中用于定位移动装置的系统及方法 Download PDF

Info

Publication number
CN110651512A
CN110651512A CN201880033463.4A CN201880033463A CN110651512A CN 110651512 A CN110651512 A CN 110651512A CN 201880033463 A CN201880033463 A CN 201880033463A CN 110651512 A CN110651512 A CN 110651512A
Authority
CN
China
Prior art keywords
location
lpp
message
measurement
utra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880033463.4A
Other languages
English (en)
Other versions
CN110651512B (zh
Inventor
S·W·埃奇
S·菲舍尔
北添雅人
H·齐斯莫普罗斯
L·F·B·洛佩斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Priority to CN202011319650.4A priority Critical patent/CN112543504B/zh
Publication of CN110651512A publication Critical patent/CN110651512A/zh
Application granted granted Critical
Publication of CN110651512B publication Critical patent/CN110651512B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/05Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing aiding data
    • G01S19/06Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing aiding data employing an initial estimate of the location of the receiver as aiding data or in generating aiding data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0036Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0236Assistance data, e.g. base station almanac
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/18Service support devices; Network management devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/50Connection management for emergency connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本文中所描述的技术涉及通过利用现有LTE位置支持来实现针对由用户设备UE进行的5G新无线电NR无线接入的位置支持。更具体来说,可经由NG‑RAN在具有NR无线接入的UE与5G核心网络中的位置服务器(例如LMF)之间传达LTE定位协议LPP消息。所述LPP消息可支持由所述UE进行的RAT非相依及E‑UTRA方位方法,例如用于E‑UTRA的A‑GNSS或OTDOA。所述位置服务器可从支持LTE无线接入的eNB及ng‑eNB获得OTDOA相关信息。UE可向5G基站(例如gNB)请求测量间隙以便获得用于RAT非相依及E‑UTRA方位方法的测量,且可请求空闲时段以便获得为E‑UTRA测量所需要的LTE时序。

Description

在第五代无线网络中用于定位移动装置的系统及方法
技术领域
本文中所揭示的主题涉及电子装置,且更特定来说,涉及用于使用第五代(5G)无线网络来支持移动装置的位置的方法及设备。
背景技术
第三代合作伙伴计划(3GPP)正在开发用以支持5G无线网络的标准。在5G的第一版本(3GPP版本15)中,5G核心网络(5GC)被预期为支持语音服务及紧急呼叫。在一些地区(例如美国、日本),支持紧急呼叫可能需要支持移动装置的准确位置。然而,在用以支持5G无线接入的下一代无线电接入网络(NG-RAN)的第一版本(版本15)中可能不存在本机5G定位支持。虽然经由5G发起的紧急呼叫可经由回退至存在位置支持的第四代(4G,或长期演进(LTE))而重定向,但所述回退可能会降低紧急呼叫的可靠性(例如当4G无线覆盖范围不可用时),且可能不符合一些国家的法规要求。因此,需要一种解决方案,借此可使用具有位置支持的5G无线接入但无需使用5G无线接入定位方法的位置支持来设置紧急呼叫。
发明内容
本文中所描述的技术涉及通过利用现有LTE位置支持来实现针对5G无线接入的位置支持。更具体来说,可经由用于位置支持的NG-RAN在用户设备(UE)与5GC中的位置管理功能(LMF)之间传达LTE定位协议(LPP)消息。UE还可使用现有LTE基站来接收时序信息且采取测量。
根据本发明,一种在用户设备(UE)处支持具有第五代(5G)新无线电(NR)无线接入的所述UE的位置的实例方法包括:从位置服务器接收第一长期演进(LTE)定位协议(LPP)消息,其中所述第一LPP消息包括位置请求且是经由服务5G基站被接收。所述方法进一步包括基于所述第一LPP消息而获得至少一个位置测量,其中所述至少一个位置测量包括用于无线电接入技术(RAT)非相依方位方法的测量或用于演进式通用陆地无线电接入(E-UTRA)方位方法的测量。所述方法还包括基于所述至少一个位置测量而确定位置信息,及将第二LPP消息发送至所述位置服务器,其中所述第二LPP消息包括所述位置信息且是经由所述服务5G基站被发送。
所述方法的替代实施例可包含以下特征中的一或多者。所述位置服务器可包括位置管理功能(LMF)。所述位置信息可包括针对所述UE的位置估计。所述位置信息可包括所述至少一个位置测量。所述第一LPP消息可包括LPP请求位置信息消息,且所述第二LPP消息包括LPP提供位置信息消息。所述至少一个位置测量可包括用于所述RAT非相依方位方法的位置测量,且所述RAT非相依方位方法可包括辅助全球导航卫星系统(A-GNSS)、实时运动学(RTK)、精确点定位(PPP)、差动A-GNSS、无线局域网(WLAN)、蓝牙、传感器,或其任何组合。所述至少一个位置测量可包括用于所述E-UTRA方位方法的位置测量,且所述E-UTRA方位方法可包括用于E-UTRA的观测到达时间差(OTDOA)或用于E-UTRA的增强型小区ID(ECID),或其任何组合。所述方法可进一步包括从所述位置服务器接收第三LPP消息,其中所述第三LPP消息包括用于所述RAT非相依方位方法或所述E-UTRA方位方法的辅助数据且是经由所述服务5G基站被接收,且其中获得所述至少一个位置测量是基于所述辅助数据。所述第三LPP消息可包括LPP提供辅助数据消息。所述方法可进一步包括将针对测量间隙的请求发送至所述服务5G基站,及在测量间隙期间获得所述至少一个位置测量。针对测量间隙的所述请求可包括NR无线电资源控制(RRC)消息。所述至少一个位置测量可包括用于E-UTRA的OTDOA的参考信号时间差(RSTD)测量,且所述方法可进一步包括将针对空闲时段的请求发送至所述服务5G基站,及在所述空闲时段期间获得用于OTDOA参考小区的LTE时序及系统帧号(SFN),其中针对测量间隙的所述请求是基于所述LTE时序及所述SFN。所述OTDOA参考小区可包括用于E-UTRA网络(E-UTRAN)中的演进式节点B(eNB)的小区或用于下一代无线电接入网络(NG-RAN)中的下一代eNB(ng-eNB)的小区,其中所述服务5G基站在所述NG-RAN中。针对空闲时段的所述请求可包括NR无线电资源控制(RRC)消息。所述方法可进一步包括从所述位置服务器接收第四LPP消息,其中所述第四LPP消息包括针对所述UE的LPP定位能力的请求且是经由所述服务5G基站被接收,且所述方法还包括将第五LPP消息发送至所述位置服务器,其中所述第五LPP消息包括在所述UE具有NR无线接入时的所述UE的所述LPP定位能力且是经由所述服务5G基站被发送。所述第四LPP消息可包括LPP请求能力消息,且所述第五LPP消息可包括LPP提供能力消息。所述方法可进一步包括将指示发送至接入管理功能(AMF),其中所述指示包括所述UE支持具有NR无线接入的LPP的指示,其中所述AMF将所述指示传送至所述位置服务器。所述第一LPP消息可在非接入层(NAS)输送消息中被接收,且所述第二LPP消息可在NAS输送消息中被发送。
根据本发明,一种具有第五代(5G)新无线电(NR)无线接入的实例用户设备(UE)包括:无线通信接口;存储器;及处理单元,其与所述无线通信接口及所述存储器以通信方式耦合,且经配置以致使所述UE使用所述无线通信接口从位置服务器接收第一长期演进(LTE)定位协议(LPP)消息,其中所述第一LPP消息包括位置请求且是经由服务第五代(5G)基站被接收。所述处理单元经进一步配置以致使所述UE使用所述无线通信接口基于所述第一LPP消息而获得至少一个位置测量,其中所述至少一个位置测量包括用于无线电接入技术(RAT)非相依方位方法的测量或用于演进式通用陆地无线电接入(E-UTRA)方位方法的测量。所述处理单元还经配置以致使所述UE基于所述至少一个位置测量而确定位置信息,及使用所述无线通信接口将第二LPP消息发送至所述位置服务器,其中所述第二LPP消息包括所述位置信息且是经由所述服务5G基站被发送。
一种UE的替代实施例可包含以下特征中的一或多者。所述处理单元可经进一步配置以致使所述UE通过确定针对所述UE的位置估计来确定所述位置信息。所述处理单元可经配置以致使所述UE获得包括用于所述RAT非相依方位方法的所述测量的所述至少一个位置测量,其中所述RAT非相依方位方法可包括辅助全球导航卫星系统(A-GNSS)、实时运动学(RTK)、精确点定位(PPP)、差动A-GNSS、无线局域网(WLAN)、蓝牙、传感器,或其任何组合。所述处理单元可经配置以致使所述UE获得包括用于所述E-UTRA方位方法的所述测量的所述至少一个位置测量,其中所述E-UTRA方位方法可包括用于E-UTRA的观测到达时间差(OTDOA)或用于E-UTRA的增强型小区ID(ECID),或其任何组合。所述处理单元可经进一步配置以:致使所述UE使用所述无线通信接口从所述位置服务器接收第三LPP消息,其中所述第三LPP消息包括用于所述RAT非相依方位方法或所述E-UTRA方位方法的辅助数据且是经由所述服务5G基站被接收;及基于所述辅助数据而获得所述至少一个位置测量。所述处理单元可经进一步配置以致使所述UE接收包括LPP提供辅助数据消息的所述第三LPP消息。所述处理单元可经进一步配置以致使所述UE使用所述无线通信接口将针对测量间隙的请求发送至所述服务5G基站,及在测量间隙期间获得所述至少一个位置测量。所述处理单元可经配置以致使所述UE使用NR无线电资源控制(RRC)消息来发送针对测量间隙的所述请求。所述至少一个位置测量可包括用于E-UTRA的OTDOA的参考信号时间差(RSTD)测量,且所述处理单元可经配置以致使所述UE使用所述无线通信接口将针对空闲时段的请求发送至所述服务5G基站,在所述空闲时段期间获得用于OTDOA参考小区的LTE时序及系统帧号(SFN),及使针对测量间隙的所述请求基于所述LTE时序及所述SFN。所述处理单元可经进一步配置以:致使所述UE使用所述无线通信接口从所述位置服务器接收第四LPP消息,其中所述第四LPP消息包括针对所述UE的LPP定位能力的请求且是经由所述服务5G基站被接收;及使用所述无线通信接口将第五LPP消息发送至所述位置服务器,其中所述第五LPP消息包括在所述UE具有NR无线接入时的所述UE的所述LPP定位能力且是经由所述服务5G基站被发送。所述处理单元可经进一步配置以致使所述UE使用所述无线通信接口将指示发送至接入管理功能(AMF),其中所述指示是指示所述UE支持具有NR无线接入的LPP,其中所述AMF将所述指示传送至所述位置服务器。
根据所述描述,一种实例装置包括用于从位置服务器接收第一长期演进(LTE)定位协议(LPP)消息的装置,其中所述第一LPP消息包括位置请求且是经由服务第五代(5G)基站被接收。所述实例装置进一步包括用于基于所述第一LPP消息而获得至少一个位置测量的装置,其中所述至少一个位置测量包括用于无线电接入技术(RAT)非相依方位方法的测量或用于演进式通用陆地无线电接入(E-UTRA)方位方法的测量。所述实例装置还包括用于基于所述至少一个位置测量而确定位置信息的装置,及用于将第二LPP消息发送至所述位置服务器的装置,其中所述第二LPP消息包括所述位置信息且是经由所述服务5G基站被发送。替代实施例可包含各种额外功能中的任一者。举例来说,在一些实施例中,所述位置信息可包括针对所述装置的位置估计。
根据所述描述,一种实例非暂时性计算机可读媒体具有嵌入于其上的指令,所述指令用以致使用户设备(UE)支持具有第五代(5G)新无线电(NR)无线接入的所述UE的位置。所述指令经进一步配置以在由所述UE的处理单元执行时致使所述UE从位置服务器接收第一长期演进(LTE)定位协议(LPP)消息,其中所述第一LPP消息包括位置请求且是经由服务5G基站被接收。指令经进一步配置以致使所述UE基于所述第一LPP消息而获得至少一个位置测量,其中所述至少一个位置测量包括用于无线电接入技术(RAT)非相依方位方法的测量或用于演进式通用陆地无线电接入(E-UTRA)方位方法的测量。所述指令还经配置以致使所述UE基于所述至少一个位置测量而确定位置信息,及将第二LPP消息发送至所述位置服务器,其中所述第二LPP消息包括所述位置信息且是经由所述服务5G基站被发送。
附图说明
参考下图来描述非限制性且非详尽性的方面,其中贯穿各种图,类似附图标记是指类似部分,除非另有指定。
图1为根据一实施例的通信系统的图解。
图2及3为根据一些实施例的通信系统的说明性实例,所述通信系统具有可实施本文中的技术的不同架构。
图4为根据一实施例的绘示LPP位置会话期间在通信系统的组件之间发送的各种消息的信令流程图。
图5为根据一实施例的绘示通信系统的各种组件之间传达的另外消息的信令流程图。
图6为绘示具有定位参考信号(PRS)定位出现时刻的示范性LTE子帧序列的结构的基于时间的图解。
图7为绘示用于由eNB支持的LTE小区的PRS传输的另外方面的基于时间的图解。
图8至10为根据不同实施例的绘示支持具有5G无线接入的UE的位置的方法的方面的流程图。
图11为UE的实施例的框图。
图12为计算机系统的实施例的框图。
不同附图中具有相同附图标记的元件、阶段、步骤及动作可彼此对应(例如可彼此相似或相同)。此外,各种附图中的一些元件是使用数字前缀后跟字母或数字后缀予以标记。具有相同数字前缀但具有不同后缀的元件可为相同类型的元件的不同例子。因而本文中使用无任何后缀的数字前缀来参考具有此数字前缀的任何元件。举例来说,在图1中展示演进式节点B(eNB)的不同例子170-1、170-2及170-3。因而,对eNB 170的参考可指eNB 170-1、eNB 170-2及eNB 170-3中的任一者。
具体实施方式
现在将关于形成本发明的部分的附图来描述若干说明性实施例。后续描述仅提供实施例,且并不意图限制本发明的范围、适用性或配置。更确切地说,实施例的后续描述将向所属领域的技术人员提供用于实施实施例的令人能够实现的描述。应理解,可在不脱离本发明的精神及范围的情况下对元件的功能及配置作出各种改变。
本文中所描述的技术涉及针对能够以无线方式接入NG-RAN的UE提供位置支持。根据一些实施例,可使用以下各者来定位此UE(能够以无线方式接入NG-RAN):(i)无线电接入技术(RAT)非相依方位方法(例如辅助全球导航卫星系统(A-GNSS)、WiFi、蓝牙、传感器等等),及/或(ii)用于演进式通用陆地无线电接入(E-UTRA)的RAT相依方位方法(例如增强型小区ID(ECID)、观测到达时间差(OTDOA)等等),其不取决于针对5G无线接入的新类型的位置支持。为了管理UE的位置,可针对由UE进行的5G无线接入重新使用(几乎没有改变)3GPP技术规范(TS)36.355中被定义用于经由LTE支持UE位置的LTE定位协议(LPP)。这可通过使用例如5G非接入层(NAS)协议(在本文中被称作5G NAS)的输送协议在UE与5GC位置服务器(例如位置管理功能(LMF))之间传送LPP消息而实现。作为正常5G操作的部分,可经由NG-RAN在5GC中的接入管理功能(AMF)与UE之间传送用以输送用于其它服务(例如网络接入、移动性管理、会话管理)的消息的输送(例如5G NAS)消息。接着,一或多个合适输送(例如5GNAS)消息可在UE与AMF之间携载LPP消息,而对NG-RAN几乎没有额外影响。可使用新5GC协议在AMF与LMF之间传送LPP消息。新5GC协议可相似于3GPP TS 29.171中定义的位置服务(LCS)应用协议(LCS AP),其在移动性管理功能(MME)与增强型服务移动定位中心(E-SMLC)之间使用以支持具有4G(LTE)无线接入的UE的位置。此新5GC协议(用于AMF与LMF之间的通信)在本文中被称作“5G LCS AP”。AMF还可向LMF告知(例如使用5G LCS AP)UE具有5G无线接入且可向LMF提供5G服务小区ID。
以上文所描述的方式使用LPP可允许将由LPP针对由UE进行的LTE接入所支持的现有定位方法重新用于定位具有5G无线接入的UE。在一些实施例中,对于RAT非相依方位方法,可重新使用现有UE支持,及/或可使用下文在P1至P4中所描述的过程的部分以允许UE进行RAT非相依方位测量。在使用E-UTRA RAT相依方位方法(例如ECID及/或OTDOA)的实施例中,UE可能够调谐偏离5G无线接入以进行LTE测量。在这些实施例中,可使用下文在P1至P4中所描述的过程。
P1.UE可向服务5G基站(在本文中被称作gNB)请求短空闲时段(例如10至50毫秒(ms))——例如使用5G无线电资源控制(RRC)协议。
P2.UE可在空闲时段期间调谐偏离5G无线接入,且获取用于由LMF先前提供至UE的LPP辅助数据(AD)中由LMF指示的特定参考小区的LTE时序(例如LTE系统帧号(SFN)及子帧边界)。
P3.UE可使用从P2获取的LTE时序及已经从先前5G无线接入所知的5G时序以在5G时序方面确定一系列周期性测量间隙(例如各自持续6ms)。对于用于E-UTRA的OTDOA,测量间隙可对应于由LMF提供至UE作为OTDOA AD的用于LTE参考及相邻小区的定位参考信号(PRS)定位出现时刻(且如本文中结合图6及7进一步所描述)。UE可确定5G信令边界,例如与第一测量间隙重合的5G无线电帧或5G子帧的开始。UE接着可将针对测量间隙的请求发送至服务gNB——例如使用5G RRC协议。此请求可被假定为由gNB接受或可由gNB确认(例如经由5G RRC响应消息)。
P4.UE可在每一测量间隙期间调谐偏离5G无线接入,且获得一或多个LTE测量(例如针对OTDOA的参考信号时间差(RSTD)测量)。
可在LPP消息中将由UE获得的测量(例如上文在P1至P4中所描述)返回至LMF(例如在NAS输送消息中发送至AMF且由AMF使用5G LCS AP发送至LMF)。
如果针对空闲时段及测量间隙的请求由NG-RAN支持以用于其它类型的测量(例如用以支持小区改变及移交的5G测量),那么这些技术可对UE产生有限的影响且对NG-RAN产生零或低影响。下文参考附图来描述额外细节及实施例。
图1为根据一实施例的能够实施本文中所描述的技术的通信系统100的图解。此处,通信系统100包括用户设备(UE)105,包括NG-RAN 135及5GC 140的5G系统(5GS)185的组件。NG-RAN 135也可被称作5G无线电接入网络(5G RAN)或被称作用于NR的无线电接入网络(RAN)。通信系统100进一步包括支持LTE无线接入的演进式分组系统(EPS)145的组件,其包含演进式通用陆地无线电接入(E-UTRA)网络(E-UTRAN)150及演进式分组核心(EPC)155。通信系统100可进一步利用来自GNSS人造卫星(SV)190的信息。下文描述通信系统100的额外组件。应理解,通信系统100可包含额外或替代组件。EPS 145在一些实施例中可属于管理或拥有5GS 185的同一网络运营商或由其管理(或在其它实施例中可由不同网络运营商管理或拥有)。
应注意,图1仅提供各种组件的一般化绘示,适当时可利用所述组件中的任一者或全部,且必要时可重复所述组件中的每一者。具体来说,尽管绘示了仅一个UE 105,但应理解,许多UE(例如数百个、数千个、数百万个等等)可利用通信系统100。相似地,通信系统100可包含更多或更少数目个SV 190、eNB 170、gNB 110、ng-eNB 180、外部客户端130及/或其它组件。所属领域的一般技术人员将认识到对所绘示组件的许多修改。连接通信系统100中的各种组件的所绘示连接包括数据及信令连接,其可包含额外(中间)组件、直接或间接物理及/或无线连接,及/或额外网络。此外,取决于所要功能性,可重新布置、组合、分离、取代及/或省略组件。
UE 105可包括及/或在本文中被称作装置、移动装置、无线装置、移动终端、终端、移动站(MS)、具有安全用户平面位置(SUPL)功能的终端(SET),或某一其它名称。此外,UE105可对应于移动电话、智能电话、膝上型计算机、平板计算机、个人数字助理(PDA)、跟踪装置,或某一其它便携式或可移动装置。典型地,尽管未必,但UE 105可使用一或多种无线电接入技术(RAT)来支持无线通信,例如使用GSM、码分多址接入(CDMA)、宽带CDMA(WCDMA)、LTE(例如EPS 145)、高速率分组数据(HRPD)、IEEE 802.11WiFi(也被称作Wi-Fi)、(BT)、微波接入全球互通(WiMAX)、5G新无线电(NR),也被仅仅称作“5G”(例如使用NG-RAN 135及5GC 140)等等。UE 105还可使用无线局域网(WLAN)来支持无线通信,WLAN可使用例如数字订户线(DSL)或分组电缆而连接至其它网络(例如互联网)。使用这些RAT中的一或多者可使UE 105能够与外部客户端130通信(经由图1中未展示的5GC 140的元件,或可能经由网关移动定位中心(GMLC)125),及/或使外部客户端130能够接收关于UE 105的位置信息(例如经由GMLC 125)。
UE 105可包括单一实体或可包括多个实体,例如在个人局域网中,其中用户可使用音频、视频及/或数据I/O装置及/或身体传感器以及单独有线或无线调制解调器。UE 105的位置的估计可被称作位置、位置估计、位置定点、定点、方位、方位估计或方位定点,且可为大地测量的,因此提供UE 105的位置坐标(例如纬度及经度),其可能或可能不包含海拔分量(例如海平面上方的高度、地平面上方的高度或地平面下方的深度、楼板平面,或地下室层)。替代地,UE 105的位置可被表达为市镇位置(例如表达为邮政地址,或建筑物中例如特定房间或楼层的某一点或小区域的名称)。UE 105的位置还可被表达为UE 105被预期为以某一概率或置信度水平(例如67%、95%等等)而定位的面积或体积(以大地测量方式或以市镇形式而界定)。UE 105的位置可进一步为相对位置,包括例如相对于已知位置处的某一原点而界定的距离及方向或相对X、Y(及Z)坐标,所述已知位置可以大地测量方式而界定,以市镇方式而界定,或参考地图、平面布置图或建筑平面图上所指示的点、面积或体积而界定。在本文中所含有的描述中,术语位置的使用可包括这些变体中的任一者,除非另有指示。
E-UTRAN 150(4G RAN)中的基站包括演进式节点B(eNodeB或eNB)170-1、170-2及170-3(在本文中被集体地且一般地称作eNB 170)。NG-RAN 135中的基站包括NR NodeB(gNB)110-1及110-2(在本文中被集体地且一般地称作gNB 110)以及下一代eNB(ng-eNB)180-1及180-2(在本文中被集体地且一般地称作ng-NB 180)。经由UE 105与一或多个eNB170之间的无线通信将对由EPS 145支持的LTE网络的接入提供至UE 105。eNB 170可使用LTE而代表UE 105来提供对EPC 155的无线通信接入。相似地,经由UE 105与一或多个gNB110之间的无线通信将对5GS 185的接入提供至UE 105,这可使用5G NR来提供对5GS 185的无线通信接入。在一些实施例中,经由UE 105与一或多个ng-eNB 180之间的无线通信将对5GS 185的接入提供至UE 105,这可使用LTE来提供对5GS 185的无线通信接入。Ng-eNB 180可提供对UE 105的LTE无线接入,所述LTE无线接入与由eNB 170在物理层级处提供至UE105的LTE无线接入相似或相同。此外,在一些实施例中,NG-RAN 135可含有gNB 110但不含有ng-eNB 180,或可含有ng-eNB 180但不含有gNB 110。另外,在一些实施例中,可能不存在EPS 145。
在通信系统100中,针对UE 105的位置支持可使用LMF 120与UE 105之间的LPP输送,所述LPP输送使用例如5G NAS协议及5G LCS AP的输送协议,如先前所描述。LPP的使用及LPP的输送针对由UE 105经由gNB 110而对5GC 140的接入及由UE 105经由ng-eNB 180而对5GC 140的接入两者可相似或相同。
对于LTE无线接入,EPC 155包括移动性管理实体(MME)165,其可用作EPC 155中的主信令节点,且可支持UE 105的移动性以及信令接入及语音承载路径至UE 105的预配。对于定位功能性,MME 165可向及从增强型服务移动定位中心(E-SMLC)160中继信息。E-SMLC160可在UE 105接入E-UTRAN 150时支持UE 105的定位(也被称作UE 105的位置),且可支持例如所属领域中所熟知的辅助GNSS(A-GNSS)、OTDOA、ECID、实时运动学(RTK)及/或WLAN定位(也被称作WiFi定位)的方位方法。E-SMLC 160还可处理针对UE 105的位置服务请求——例如从MME 165接收。EPC 155含有图1中未展示的其它元件,例如分组数据网络(PDN)网关及/或GMLC。
对于NR(5G)无线接入,gNB 110可直接或间接与接入管理功能(AMF)115通信,AMF115针对方位功能性而与LMF 120通信。相似地,对于对NG-RAN 135的LTE无线接入,ng-eNB180可直接或间接与AMF 115通信。此外,gNB 110及/或ng-eNB 180可彼此直接通信,这可允许一些gNB 110及/或一些ng-eNB 180经由一或多个其它gNB 110及/或ng-eNB 180而仅间接与AMF 115通信。AMF 115可支持包含小区改变及移交的UE 105的移动性,且可参与支持至UE 105的信令连接且可能有助于为UE 105建立数据及语音承载。LMF 120可在UE接入NG-RAN 135时支持UE 105的定位,且可支持例如相似于E-SMLC 160的辅助GNSS(A-GNSS)、OTDOA、ECID、RTK及/或WLAN定位的方位方法。LMF 120还可处理针对UE 105的位置服务请求——例如从AMF 115或从GMLC 125接收。在一些实施例中,LMF 120可实施相似于例如E-SMLC 160的E-SMLC的功能性,其将使LMF 120能够查询E-UTRAN 150中的eNB 170(例如使用3GPP TS 36.455中所定义的LTE定位协议A(LPPa)),且在UE 105经由NG-RAN 135具有NR或LTE无线接入时从eNB 170获得辅助数据以支持UE 105的OTDOA定位。另外或替代地,可经由E-SMLC 160启用此功能性。举例来说,LMF 120可与E-SMLC 160组合于同一物理实体中,或可具有对E-SMLC 160的通信接入。
如图1所绘示,LMF 120及eNB 170可使用LPPa而通信,其中经由MME 165及E-SMLC160在eNB 170与LMF 120之间传送LPPa消息。此处,E-SMLC 160与eNB 170之间的LPPa输送(经由MME 165)可如针对3GPP TS 36.305中的现有LTE位置所定义,且E-SMLC 160与LMF120之间的LPPa消息的输送可为内部的(例如如果LMF 120及E-SMLC 160被组合),或可在LMF 120及E-SMLC 160分离的情况下使用专有协议。在UE 105经由对NG-RAN 135中的ng-eNB 180的LTE接入而接入5GC 140的实施例中,可经由AMF 115在ng-eNB 180与LMF 120之间传送相似于LPPa的消息(如由图1中的虚线箭头191所展示)。如由虚线箭头191所展示而传送的相似于LPPa的消息可为用于3GPP TS 38.455中所定义的NR定位协议A(NRPPa)的消息,其可支持与使用LPPa所传送的信息相同或相似的信息传送。
如图1进一步所展示,可经由AMF115及NG-RAN135(例如经由NG-RAN 135中的gNB110-1或ng-eNB 180-1)在UE 105与LMF 120之间交换LPP消息,如由图1中的实线箭头192所展示。举例来说,可使用5G LCS应用协议(AP)在LMF 120与AMF 115之间传送LPP消息,且可使用5G NAS经由服务gNB 110或服务ng-eNB 180在AMF 115与UE 105之间传送LPP消息。因为AMF 115可在5G NAS消息内部向及从UE 105中继LPP通信,所以LPP通信可能对NG-RAN135几乎没有影响(其可传达5G NAS消息,如同任何其它5G NAS信息)。
LPPa及NRPPa协议可使位置服务器能够向基站请求且从基站获得关于特定UE的位置或基站的位置配置的位置相关信息。使用LPPa由eNB 170提供至LMF 120(例如经由E-SMLC 160及MME 165)的位置相关信息可包含时序信息、用于由eNB 170进行的PRS传输的信息(如稍后结合图6及7所描述),及eNB 170的位置坐标。相似地,使用NRPPa由ng-eNB 180提供至LMF 120的位置相关信息可包含时序信息、用于由ng-eNB 180进行的PRS传输的信息(如稍后结合图6及7所描述),及ng-eNB 180的位置坐标。举例来说,在LPPa的状况下,E-SMLC 160或LMF 120可经由MME 165(且在从LMF 120发送的LPPa消息的状况下可能经由E-SMLC 160)将LPPa消息发送至eNB 170-1,以请求与UE 105的位置相关的信息(例如,例如用于由eNB 170-1获得或由UE 105获得且传送至eNB 170-1的ECID定位的位置测量)或与eNB170-1的位置配置相关的信息(例如,例如用于OTDOA定位的eNB 170-1的位置或用于eNB170-1的PRS配置)。ENB 170-1接着可获得任何经请求位置配置信息或位置测量(例如当请求用于UE 105的位置信息时),且经由MME 165(且当由LMF 120请求经请求信息时可能经由E-SMLC 160)将所述信息返回至E-SMLC 160或LMF 120。NRPPa的使用可以相似方式发生,其中例如LMF 120经由AMF 115将NRPPa消息发送至gNB 110-1或ng-eNB 180-1,以请求与UE105的位置相关的信息或用于gNB 110-1或ng-eNB 180-1的位置配置,且其中gNB 110-1或ng-eNB 180-1经由AMF 115在另一NRPPa消息中将经请求信息返回至LMF 120。
在发送至ng-eNB 180-1的NRPPa消息的状况下,LMF 120可请求与可使用LPPa向eNB 170-1请求的信息相似或相同的信息:此信息因此可包括用于UE 105的ECID位置测量、ng-eNB 180-1的位置,或适用于UE 105的OTDOA定位的用于ng-eNB 180-1的PRS配置信息。在发送至gNB 110-1的NRPPa消息的状况下,LMF 120可请求用于UE 105的服务小区标识(ID),或由UE 105获得且由UE 105提供至gNB 110-1(例如使用RRC)的位置测量(例如用于LTE的参考信号接收功率(RSRP)或参考信号接收质量(RSRQ))。LMF 120还可请求(例如在稍后3GPP版本中)由gNB 110-1针对UE 105所获得的NR相关位置测量,或用于gNB 110-1的位置配置信息,例如用于gNB 110-1的NR PRS配置信息。
LMF 120可将从eNB 170、ng-eNB 180及/或gNB 110接收(例如使用LPPa及/或NRPPa)的位置相关信息中的一些或全部提供至UE 105,作为经由NG-RAN 135及5GC 140发送至UE 105的LPP消息中的辅助数据。
取决于所要功能性,从LMF 120传达至UE 105(例如经由NG-RAN 135)的LPP消息可指示UE 105进行各种事物中的任一者。举例来说,LPP消息可含有用于使UE 105获得用于GNSS(或A-GNSS)、WLAN定位、RTK及/或OTDOA的测量的指令。在OTDOA的状况下,LPP消息可告知UE 105采取特定eNB 170及/或ng-eNB 180的一或多个测量(例如参考信号时间差(RSTD)的测量)。因此,如果UE 105由NG-RAN 135中的gNB 110或ng-eNB 180服务,那么在特定eNB170的测量的状况下,UE 105可表现得好像其正由E-UTRAN 150及EPC 155服务(而非由NG-RAN 135及5GC 140服务)。相似地,如果UE 105由NG-RAN 135中的gNB 110服务,那么在特定ng-eNB 180的测量的状况下,UE 105可表现得好像其正由NG-RAN 135中的ng-eNB 180服务。UE 105接着可经由NG-RAN 135在LPP消息中(例如在5G NAS消息内)将测量发送回至LMF120。
应注意,在图1中将ng-eNB 180识别为NG-RAN 135的部分部分地为术语问题。举例来说,ng-eNB 180-1可被视为E-UTRAN 150的部分而非NG-RAN 135的部分,且可被称作eNB170-1而非ng-eNB 180-1。如由虚线193所指示,此eNB 170-1仍可连接至AMF 115而非连接至MME 165,以经由5GC 140而非经由EPC 155提供对UE 105的LTE无线接入。在那种状况下,eNB 170-1可与ng-eNB 180-1完全相同地运行。在此状况下,eNB 170-1可使用NRPPa(或LPPa)与LMF 120通信,而非使用LPPa与E-SMLC 120通信,其中可经由AMF 115且可能经由gNB 110(例如gNB 110-1)在eNB 170-1与LMF 120之间传送NRPPa(或LPPa)消息,如稍后针对UE 105由ng-eNB 180-1服务时参考图2所描述。相似地,当UE 105由eNB 170-1服务时,其中eNB 170-1提供对5GC 140而非对EPC 155的LTE接入,可经由AMF 115、eNB 170-1及可能gNB 110(例如gNB 110-1)在UE 105与LMF 120之间传送LPP消息,这相似于稍后结合图2针对UE 105由ng-eNB 180-1服务时的LPP消息传送所描述。
如先前所指示,本文中所提供的技术的实施例可用于具有不同架构的系统中。图2及3分别为根据一些实施例的通信系统200及300的说明性实例,其展示可实施本文中的技术的不同架构。由图2及3所绘示的不同架构提供用于NG-RAN 135的不同基站布置,及将NG-RAN 135中的基站连接至用于通信系统100的5GC 140的不同方式。因此,通信系统200及300可表示通信系统100的不同变体。通信系统200及300的组件对应于图1所绘示及上文所描述的通信系统100中所绘示的组件。这些组件包含UE 105、ng-eNB 180-1、gNB 110-1、NG-RAN135、5GC 140、AMF 115及LMF 120。以虚线绘示任选的组件、接口及协议,如下文更详细地所描述。此处,NR接口(NR-Uu)、LTE或增强型或演进式LTE接口(eLTE-Uu)、AMF至NG-RAN接口(N2)、AMF至LMF接口(NLs)及gNB至ng-eNB接口(Xn)(其还可为gNB至gNB及ng-eNB至ng-eNB接口)被展示为组件之间的虚线或实线。通过虚线及实线双箭头进一步绘示在一对组件之间使用的协议LPP及NRPPa,其中每一箭头接合所述一对组件。穿过中间组件的箭头绘示中间组件可中继用于由所述箭头所绘示的协议的消息之处。举例来说,如所绘示,经由充当中间组件的AMF 115中继在LMF 120与其它组件之间的图2及3中的通信。所属领域的一般技术人员应理解,图2至3所绘示的架构可包含未绘示的额外及/或替代组件(例如图1的GMLC125及外部客户端130)。此外,可进一步注意,尽管绘示了NG-RAN 135及5GC 140,但可运用其它RAN及/或CORE组件来实施本文中所描述的实施例。
在图2中的通信系统200中,gNB 110存在于NG-RAN 135中,且直接连接至5GC 140中的AMF,如通过将NG-RAN 135中的gNB 110-1连接至5GC 140中的AMF 115所示范。当NG-RAN 135中不存在ng-eNB 180(例如任选的ng-eNB 180-1)时,通信系统200可被称作独立5G(或NR)架构,在3GPP中也被称作“选项2”。运用此布置或选项,可经由gNB 110-1及AMF 115在UE 105与LMF 120之间交换LPP消息210,且可经由AMF 115在gNB 110-1与LMF 120之间交换NRPPa消息220。当NG-RAN 135中存在ng-eNB 180(例如任选的ng-eNB 180-1)时,通信系统200可被称作具有非独立E-UTRA架构的独立5G(或NR)架构,在3GPP中也被称作“选项4”。运用此布置或选项,当UE 105由ng-eNB 180-1服务时,可经由gNB 110-1、ng-eNB 180-1及AMF 115在UE 105与LMF 120之间交换LPP消息230,且可经由gNB 110-1及AMF 115在ng-eNB180-1与LMF 120之间交换NRPPa消息240。运用此(选项4)布置,可能不在AMF 115与ng-eNB180-1之间直接传送LPP及NRPPa消息,而可代替地使用Xn接口经由gNB 110-1传送以在gNB 110-1与ng-eNB 180-1之间传送所述消息。
相似于图2,图3绘示可取决于所要功能性而实施的不同实施例。然而,此处,gNB110-1及ng-eNB 180-1的角色被颠倒。因此,在通信系统300中,ng-eNBs 180存在于NG-RAN135中,且直接连接至5GC 140中的AMF,如通过将NG-RAN 135中的ng-eNB 180-1连接至5GC140中的AMF 115所示范。当NG-RAN 135中不存在gNBs 110(例如任选的gNB 110-1)时,通信系统300可被称作独立E-UTRA 5GS架构,在3GPP中也被称作“选项5”。运用此布置或选项,可经由ng-eNB 180-1及AMF 115在UE 105与LMF 120之间交换LPP消息310,且可经由AMF 115在ng-eNB 180-1与LMF 120之间交换NRPPa消息320。当NG-RAN 135中存在gNBs 110(例如任选的gNB 110-1)时,通信系统300可被称作具有非独立NR架构的独立E-UTRA,在3GPP中也被称作“选项7”。运用此布置或选项,当UE 105由gNB 110-1服务时,可经由gNB 110-1、ng-eNB180-1及AMF 115在UE 105与LMF 120之间交换LPP消息330,且可经由ng-eNB 180-1及AMF115在gNB 110-1与LMF 120之间交换NRPPa消息340。运用此(选项7)布置,可能不在AMF 115与gNB 110-1之间直接传送LPP及NRPPa消息,而可代替地使用Xn接口经由ng-eNB 180-1传送以在gNB 110-1与ng-eNB 180-1之间传送所述消息。
可注意,如先前参考图1至3所描述及绘示的用于定位能够接入NG-RAN 135的UE105的现有LPP协议的使用可被适配或替换为用于NG-RAN 135(或另一RAN,如果被利用)的新或经修改协议。在一些实施例中,适配可包含LPP的扩展或LPP的替换,其可为支持UE 105获得由一或多个gNB 110传输的NR信号的测量的方位方法所需要。这些NR相关测量可包含RSRP、RSRQ、RSTD、往返信号传播时间(RTT)及/或到达角(AOA)的测量。在被称作替代方案A1的一项实施例中,可扩展LPP以支持例如与用于LTE接入的OTDOA或ECID相似的NR RAT相依方位方法的新NR RAT相依(及可能其它RAT非相依)方位方法。在被称作替代方案A2的另一实施例中,可定义全新协议(例如NR定位协议(NPP或NRPP))以代替LPP而使用,其中新协议提供针对NR RAT相依及其它RAT非相依方位方法的支持。在被称作替代方案A3的另外实施例中,可定义新协议(例如NPP或NRPP),其限定于仅支持NR RAT相依方位方法且在需要NRRAT相依及RAT非相依定位两者(及/或LTE RAT相依定位)时结合LPP而使用。替代方案A3可使用三种变体中的一者。在A3的第一变体中,根据3GPP TS 36.355中的EPDU的定义,可将用于新协议的消息作为新外部协议数据单元(EPDU)而嵌入于LPP消息内部。在A3的第二变体中,例如使用与3GPP TS 36.355中的EPDU的定义相似的EPDU,可将LPP消息嵌入于用于新协议的消息内部。在A3的第三变体中,新协议可与LPP分离(例如不嵌入于LPP内或不能够嵌入于LPP内),但其中LMF 120及UE 105能够使用同一NAS输送容器来交换用于新协议及LPP两者的一或多个消息。在被称作为替代方案A4的另一实施例中,可定义新协议,其嵌入LPP的部分以支持RAT非相依方位方法及/或E-UTRA RAT相依方位方法(例如经由导入来自LPP的抽象语法记法1(ASN.1)数据类型)。
虽然以上不同替代方案A1至A4可能最适用于定位能够对NG-RAN 135中的gNB 110进行NR无线接入的UE 105,但其还可适用于定位能够对NG-RAN 135中的ng-eNB 180进行LTE接入的UE 105,这是由于将NR RAT相依方位方法用于信号可由UE 105测量的在UE 105附近的gNB 110的可能性。
图4为根据一实施例的绘示UE 105与LMF 120之间使用LPP的位置会话(也被称作会话、LPP会话或LPP位置会话)期间在通信系统100的组件之间发送的各种消息的信令流程图。图4中的信令流程可在UE 105具有对NG-RAN 135中的gNB 110的NR(5G)无线接入时适用,gNB 110在图4中的实例中被假定为gNB 110-1。当LMF 120接收针对UE 105的位置请求时,可通过动作401来触发LPP会话。取决于情境及5GC 140中的位置支持类型,位置请求可到达LMF 120,来自AMF 115,或来自GMLC 125。LMF 120可向AMF 115查询用于UE 105的信息,或AMF 115可将用于UE 105的信息发送至LMF 120(例如如果AMF 115在动作401处将位置请求发送至LMF 120)(图4中未展示)。所述信息可指示UE 105具有对NG-RAN 135的NR无线接入,可为UE 105提供当前NR服务小区(例如由gNB 110-1支持的小区,其可为用于UE105的服务gNB),及/或可指示UE 105在UE 105具有NR无线接入时(或在UE 105能够接入NG-RAN 135时)使用LPP来支持位置。此信息中的一些或全部可能已由AMF 115从UE 105及/或从gNB 110-1而获得——例如当UE 105向AMF 115执行注册(例如使用NAS)时。
为了开始LPP会话(例如且基于UE 105支持具有NR无线接入的LPP的指示),LMF120可在动作402处将LPP请求能力消息发送至服务UE 105的AMF 115(例如使用5G LCSAP)。AMF 115可在5G NAS输送消息内包含LPP请求能力消息,在动作403处将5G NAS输送消息发送至UE 105(例如经由NG-RAN 135中的NAS通信路径,如图1至3所绘示)。接着,在动作404处,UE 105可通过还在5G NAS输送消息内将LPP提供能力消息发送至AMF 115而对AMF115作出响应。AMF 115可从5G NAS输送消息提取LPP提供能力消息,且在动作405处将LPP提供能力消息中继至LMF 120(例如使用5G LCS AP)。
此处,在动作404及405处发送的LPP提供能力消息可指示UE 105的定位能力(例如由UE 105支持的方位方法,例如A-GNSS定位、RTK定位、OTDOA定位、ECID定位、WLAN定位等等),同时使用NR来接入5G网络。这意味着UE 105的一些定位能力可能与当UE 105正在使用LTE经由E-UTRAN 150接入EPC 155时不同。举例来说,在一些情境中,尽管UE 105可能具有在接入LTE网络时支持用于LTE的OTDOA定位(也被称作用于E-UTRA的OTDOA)的能力,但UE105可能不具有在使用NR来接入5G网络时支持用于LTE的OTDOA定位的能力。如果状况如此,那么UE 105可能不在动作404及405处发送的LPP提供能力消息中指示其具有用于LTE的OTDOA定位能力。在一些其它情境中,当使用NR来接入5G网络时(例如基于本文中所描述的技术),UE 105可能够支持例如OTDOA及/或ECID的LTE方位方法,在此状况下,在动作404及405处发送的LPP提供能力消息可指示此UE支持。在动作404及405处发送的UE 105的定位能力使LMF 120能够确定UE 105在接入5G网络时具有哪些能力。
运用UE 105的定位能力,LMF 120可确定用于UE 105的辅助数据以支持由如所支持的UE 105指示的方位方法中的一或多者。举例来说,如果在动作404及405处UE 105指示针对用于LTE的OTDOA的支持,那么LMF 120可在动作406处将NRPPa OTDOA信息请求消息发送至ng-eNB 180-1(在动作407处经由AMF 115中继至ng-eNB 180-1)。在动作408处,ng-eNB180-1可运用NRPPa OTDOA信息响应作出响应(在动作409处经由AMF 115中继至LMF 120)。LMF 120可相似地在动作410处将LPPa OTDOA信息请求消息发送至eNB 170-1(在动作411处经由MME 165中继至eNB 170-1)。在动作412处,eNB 170-1可运用LPPa OTDOA信息响应作出响应(在动作413处经由AMF 115中继至LMF 120)。应理解,可发生LMF 120与其它eNB 170及/或其它ng-eNB 180之间的相似通信以收集OTDOA辅助数据,且在一些情境中,LMF 120可仅向eNB 170请求信息(使用LPPa)或可仅向ng-eNB 180请求信息(使用NRPPa)。此外,如图4所指示及针对图1所描述,可经由E-SMLC 160中继eNB 170与LMF 120之间的通信。由每一eNB 170及每一ng-eNB 180在LPPa或NRPPa OTDOA信息响应中提供至LMF 120的信息(例如在动作408至409及412至413处)可包含eNB 170或ng-eNB 180的位置坐标、用于eNB 170或ng-eNB 180的PRS时序信息及PRS配置信息(例如PRS配置参数),如稍后针对图6及7所描述。
LMF 120接着可将在动作409及413处接收的一些或全部辅助数据经由在动作414处发送至AMF 115的LPP提供辅助数据消息发送至UE 105(例如可发送用于eNB 170-1及/或ng-eNB 180-1的PRS配置信息),且在动作415处由AMF 115在5G NAS输送消息中中继至UE105。此后可为LPP请求位置信息消息,再次在动作416处从LMF 120发送至AMF 115,其在动作417处由AMF 115且经由gNB 110-1在5G NAS输送消息中中继至UE 105。LPP请求位置信息消息可根据在动作404及405处发送至LMF 120的UE 105的定位能力而请求来自UE 105的一或多个位置测量及/或位置估计。位置测量可例如包含用于LTE的OTDOA的参考信号时间差(RSTD)测量、用于A-GNSS的虚拟距离或码相位测量、用于RTK的载波相位测量、用于WLAN定位的WiFi测量,及/或用于LTE的ECID(也被称作用于E-UTRA的ECID)的AOA、RSRP及/或RSRQ测量。
作为响应,在框418处,UE 105可获得在动作416及417处请求的一些或全部位置测量。在一些实施例中,且如果在动作416及417处被请求,那么UE 105还可基于位置测量且可能还基于在动作415处接收的一些或全部辅助数据而在框418处获得位置估计。可在LPP提供位置消息中提供位置测量或位置估计,LPP提供位置消息可在动作419中经由gNB 110-1在5G NAS输送消息中由UE 105发送至AMF 115。AMF 115可从5G NAS输送消息提取LPP提供位置消息,且在动作420处将其中继至LMF 120(例如使用5G LCS AP)。运用此信息,LMF 120可在框421处确定或验证UE位置,且在动作422处将含有经确定或经验证位置的位置响应提供至请求实体。
在图4中,在动作416及417处,LMF 120可请求UE 105获得用于LTE的OTDOA RSTD测量,且可从ng-eNB 180(例如ng-eNB 180-1)及/或从eNB 170(例如eNB 170-1)获得在框418处获得的OTDOA RSTD测量。这可能在用于由ng-eNB 180及/或由eNB 170用于LTE无线接入的载波频率不同于用于NR无线接入的5G网络的载波频率时或仅仅测量ng-eNB 180及/或eNB 170无线信号(例如PRS信号)会阻止或阻碍UE 105进行正常NR无线接入时的状况下呈现问题。此外,NG-RAN 135中的ng-eNB 180的LTE时序及/或E-UTRAN 150中的eNB 170的LTE时序可不同于由NG-RAN 135中的gNB 110所使用的时序,从而使对PRS信号进行RSTD测量以获得OTDOA(例如针对图6及7所描述)对于UE 105困难或不可能。
为了解决这些问题,UE 105可经配置以调谐偏离对gNB 110-1的NR接入达一段时间(例如达10至50ms),以使UE 105能够寻找及找到在UE 105的区域中提供LTE覆盖范围的合适参考LTE小区(例如由ng-eNB 180-1或由eNB 170-1支持)。可在动作414及415处由LMF120将关于特定参考LTE小区的信息提供至UE 105。举例来说,在动作414之前,LMF 120可基于用于UE的NR服务小区而确定参考LTE小区——例如通过选择具有相似或相同覆盖范围区域的LTE参考小区。UE 105可从参考LTE小区获得LTE时序(例如LTE系统帧号(SFN))及系统信息。为了允许UE 105调谐偏离一段时间,UE 105可向服务gNB 110-1请求空闲时段。图5中提供关于此过程的额外细节。
图5为根据一实施例的绘示通信系统100的各种组件之间传达的消息的信令流程图,其使UE 105能够调谐偏离针对5G网络中的服务gNB 110的NR无线接入,以便从LTE网络中的ng-eNB 180及/或eNB 170搜集OTDOA时序信息。图5可对应于(例如可部分地或完全地支持)图4中的框418。应注意,虽然图5绘示了调谐偏离NR无线接入以获得用于LTE的OTDOA测量,但可使用相同或相似的过程以使UE 105能够调谐偏离NR无线接入以获得其它类型的位置测量,例如用于LTE、A-GNSS、RTK及/或WLAN定位的ECID定位的测量。
在动作501处,UE 105将NR无线电资源控制(RRC)空闲时段请求发送至gNB 110-1。GNB 110-1典型地可为用于UE 105的服务gNB(或主要服务gNB)。所述请求可包含空闲时段的经请求长度(例如50ms),且可能在空闲时段应发生时足以稍后在框506处测量及获得LTE时序信息。取决于所要功能性,gNB 110-1可通过在动作502处发送RRC确认空闲时段消息而回复。(否则,在一些实施例中,UE 105可假定在动作501处发送的请求被接受。)在经请求空闲时段期间,在框503处,gNB 110-1可暂停至UE 105的NR传输且暂停从UE 105的NR接收,以便允许UE 105在空闲时段期间调谐偏离NR无线接入。
UE 105接着可在空闲时段期间从5G NR载波频率(例如针对gNB 110-1)调谐偏离至由ng-eNB 180及/或由eNB 170支持的LTE载波频率。在框506处,UE 105接着可在空闲时段期间获得用于ng-eNB 180-1或eNB 170-1的OTDOA参考小区的LTE小区时序及系统帧号(SFN)。用于由ng-eNB 180-1或eNB 170-1支持的参考小区的LTE小区时序及SFN可分别在动作504或动作505处由UE 105从分别由ng-eNB 180-1或eNB 170-1广播的RRC系统信息块(SIB)获得。举例来说,UE 105可获取及测量由ng-eNB 180-1或eNB 170-1广播的主要信息块(MIB)及SIB。用于参考小区的标识及载波频率可能先前已由LMF 120提供至UE 105,作为在动作414及415处发送至UE 105的辅助数据的部分。UE 105接着可调谐回至对gNB 110-1的NR无线接入。
在框507处,UE 105可将用于由LMF 120提供(在动作414及415处发送的LPP辅助数据中)的ng-eNB 180及/或eNB 170的参考及相邻小区的PRS定位出现时刻的LTE时序转换为用于gNB 110-1的对应NR时序。这可意味着将如稍后针对图6及7所描述的LTE PRS子帧时序转换为等效NR时序(例如在NR子帧、NR无线电帧或其它NR信令单位方面)。在执行此转换时,UE 105可确定适合于测量来自ng-eNB 180及/或eNB 170的LTE PRS信号的NR测量间隙(在NR时序方面)。
如图5所指示,可注意,在动作501至502及504至505以及框503、506及507处所描述的功能是任选的,且在需要时可用于OTDOA测量。即,在一些实施例中,LMF 120将向UE 105提供关于由ng-eNB 180及/或eNB 170传输的PRS信号的信息,包含传输那些PRS信号的时间。然而,这些时间可能相对于LTE时序。因此,通过在框506处从LTE OTDOA参考小区(或某一其它LTE小区)获得时序信息,UE 105可探索LTE时序及将传输PRS信号的对应绝对时间(例如全球定位系统(GPS)时间)或当地时间(例如UE内部时间)。这可允许UE 105将用于PRS出现时刻的LTE信号时序转换为对应NR时序。
对于由在动作414及415处由LMF 120请求UE 105进行测量的参考及相邻小区所使用的每一单独PRS载波频率,可由UE 105重复在框506及507处执行的动作,这是因为ng-eNB180及/或eNB 170典型地将针对每一不同载波频率使用不同LTE时序,但当使用如稍后针对图6及7所描述的相同LTE载波频率时将被同步。这可使UE 105能够确定对应于用于每一单独LTE载波频率的LTE时序的NR时序。然而,如果LMF 120向UE 105提供用于每一单独PRS载波频率的LTE时序之间的关系(例如由LPP所支持且如稍后结合图6及7所描述),那么UE 105可仅需要在框506及507处获得对应于一个PRS载波频率的NR时序,这是因为UE 105可使用用于每一单独PRS载波频率的LTE时序之间的关系来推断对应于每一PRS载波频率的NR时序。
UE 105接着可在动作508处将NR RRC测量间隙请求发送至gNB 110-1以请求相对于NR时序的测量间隙(例如其在一些实施例中可包括大约5至10ms的一系列周期性短时段)。GNB 110-1可任选地在动作509处确认所述请求(例如通过将RRC确认消息发送至UE105),或UE 105可假定将支持所述请求。在测量间隙中的每一者期间,在框510处,gNB 110-1可暂停至UE 105的NR传输且暂停从UE 105的NR接收,以便允许UE 105在每一测量间隙期间调谐偏离NR无线接入。
UE 105接着可在动作511处周期性地(当每一测量间隙发生时)调谐偏离对gNB110-1的NR接入以获取及测量用于针对ng-eNB 180-1的参考或相邻小区的PRS广播的到达时间(TOA),且在动作512处获取及测量用于针对eNB 170-1的参考或相邻小区的PRS广播的TOA。UE 105接着可从两个TOA测量的差获得框513处的OTDOA RSTD测量,如稍后针对图6及7所描述。应注意,在此实例中,UE 105被假定为测量用于ng-eNB 180-1及eNB 170-1中的每一者的小区中的PRS广播,且其中这些小区中的一者为用于OTDOA的参考小区,然而,UE 105测量用于一对eNB 170或一对ng eNB 180的小区中的PRS广播的其它情境是可能的,其中这些小区中的一者为参考小区。此外,在所有情境中,UE 105可在用于其它ng-eNB 180及/或其它eNB 170针对其它相邻小区的PRS广播的测量间隙期间获得额外TOA测量,且可在框513处使用这些额外TOA测量来确定额外RSTD测量。另外或代替地,UE 105可在框513处在例如针对SV 190的GNSS或RTK测量的测量间隙期间获得其它测量。此情形可在获得足够测量以前或在最大响应间隔已过期以前完成。在动作514处,UE 105接着可任选地将RRC测量间隙停止消息发送至gNB 110-1以向gNB 110-1通知不再需要测量间隙。
UE 105接着可将测量包含于LPP提供位置消息中(例如在动作419处,继续图4所绘示的过程)。
在图5所展示的过程的一个变体中,LMF 120可在动作414及415处发送的辅助数据中将用于gNB 110-1的NR时序与LTE时序(例如用于ng-eNB 180-1或eNB 170-1的OTDOA参考小区)之间的关系提供至UE 105。举例来说,LMF 120可通过使用与用以在动作406至409处从ng-eNB 180-1获得OTDOA相关信息的过程相同或相似的过程使用NRPPa向gNB 110-1请求且从gNB 110-1获得信息。如果从gNB 110-1获得的信息及在动作406至409处从ng-eNB180-1及/或在动作410至413处从eNB 170-1获得的OTDOA相关信息包含时序信息(例如相对于例如gNB 110-1的GPS时间的绝对时间的NR时序信息及相对于ng-eNB 180-1及/或eNB170-1的绝对时间的LTE时序),那么LMF 120可能够推断NR时序与LTE时序之间的关系,且在动作414及415处将此作为辅助数据提供至UE 105。在此状况下,UE 105可能不需要执行动作501至502、动作504至505以及框506及507,且gNB 110-1可能不需要执行框503。
图6为根据一实施例的具有PRS定位出现时刻的LTE子帧序列的结构的绘示。在图6中,水平地(例如在X轴上)表示时间,其中时间从左至右增加,而竖直地(例如在Y轴上)表示频率,其中频率从下至上增加(或减低),如所绘示。如图6所展示,下行链路及上行链路LTE无线电帧610各自为10ms的持续时间。对于下行链路频分双工(FDD)模式,无线电帧610被组织成各自为1ms的持续时间的十个子帧612。每一子帧612包括两个时隙614,每一时隙614为0.5ms的持续时间。
在频域中,可将可用带宽划分成均一间隔的正交副载波616。举例来说,对于使用15kHz间隔的正常长度循环前缀,副载波616可被分组成一群12个副载波。图6中的每一分组(其包含12个副载波616)被称作资源块,且在以上实例中,资源块中的副载波的数目可被写为
Figure BDA0002281155720000191
对于给定信道带宽,每一信道622(其也被称作传输带宽配置622)上的可用资源块的数目被指示为
Figure BDA0002281155720000192
622。举例来说,对于以上实例中的3MHz信道带宽,每一信道622上的可用资源块的数目是由
Figure BDA0002281155720000201
给出。
在图1所绘示的架构中,ng-eNB 180及/或eNB 170可传输PRS(即,下行链路(DL)PRS),例如图6及(如稍后所描述)图7所绘示的PRS,其可被测量且用于UE(例如UE 105)方位确定。因为由ng-eNB 180及/或eNB 170进行的PRS传输被引导至无线电范围内的所有UE,所以ng-eNB 180及/或eNB 170还可被认为广播PRS。
已在3GPP LTE版本-9及稍后版本中定义的PRS可在适当配置(例如通过操作及维护(O&M)服务器)之后由ng-eNB 180及/或eNB 170传输。PRS可在特殊定位子帧中传输,所述特殊定位子帧被分组成定位出现时刻(也被称作PRS定位出现时刻或PRS出现时刻)。举例来说,在LTE中,PRS定位出现时刻可包括数目NPRS个连续定位子帧,其中数目NPRS可在1与160之间(例如可包含值1、2、4及6以及其它值)。可以毫秒(或子帧)间隔的间隔(由数目TPRS表示)周期性地发生用于由ng-eNB 180或eNB 170支持的小区的PRS定位出现时刻,其中TPRS可等于5、10、20、40、80、160、320、640,或1280。作为一实例,图6绘示定位出现时刻的周期性,其中NPRS等于4且TPRS大于或等于20。在一些实施例中,TPRS可在连续PRS定位出现时刻开始之间的子帧数目方面测量。
在每一定位出现时刻内,PRS可以恒定功率传输。PRS还可以零功率传输(即,静音)。当相同或几乎同时发生不同小区之间的PRS信号重叠时,关断定期调度的PRS传输的静音可能为有用的。在此状况下,来自一些小区的PRS信号可被静音,而来自其它小区的PRS信号被传输(例如以恒定功率)。静音可通过避免来自已经静音的PRS信号的干扰来辅助UE105对尚未经静音的PRS信号进行信号获取及RSTD测量。静音可被视为针对特定小区的给定定位出现时刻不传输PRS。可使用位串将静音模式用信号发送(例如使用LPP)至UE 105。举例来说,在用信号发送静音模式的位串中,如果方位j处的位被设定为“0”,那么UE 105可推断针对第j定位出现时刻使PRS静音。
为了进一步改进PRS的可听性,定位子帧可能为无需用户数据信道传输的低干扰子帧。因此,在理想同步网络中,PRS可能接收具有相同PRS模式索引(即,具有相同频移)的其它小区PRS的干扰,但不能从数据传输中接收干扰。LTE中的频移例如被定义为小区或传输点(TP)的PRS ID的函数(被表示为
Figure BDA0002281155720000202
),或在未指派任何PRS ID的情况下被定义为物理小区标识符(PCI)的函数(被表示为
Figure BDA0002281155720000203
),这引起6倍的有效频率重复使用。
为了进一步改进PRS的可听性(例如当PRS带宽受到限制时,例如仅有对应于1.4MHz带宽的6个资源块),连续PRS定位出现时刻(或连续PRS子帧)的频带可经由跳频以已知且可预测的方式改变。另外,由ng-eNB 180或eNB 170支持的小区可支持多于一个PRS配置,其中每一PRS配置包括一系列相异PRS定位出现时刻,其中每定位出现时刻具有特定数目个子帧(NPRS)及特定周期性(TPRS)。PRS的进一步增强还可由ng-eNB 180或eNB 170支持。
OTDOA辅助数据通常由位置服务器(例如E-SMLC 160或LMF 120)针对“参考小区”及相对于“参考小区”的一或多个“相邻小区(neighbor cell/neighboring cell)”提供至UE 105。举例来说,所述辅助数据可提供每一小区的中心信道频率(也被称作载波频率)、各种PRS配置参数(例如NPRS、TPRS、静音序列、跳频序列、PRS ID、PRS码序列、PRS带宽)、小区全局ID,及/或适用于OTDOA的其它小区相关参数。
通过在OTDOA辅助数据中包含用于UE 105的服务小区(例如其中参考小区被指示为服务小区),可促进UE 105的PRS定位。在具有NR无线接入的UE 105的状况下,参考小区可由LMF 120选择为在UE 105的预期大致位置(例如由用于UE 105的已知NR服务小区所指示)处具有良好覆盖范围的用于ng-eNB 180或eNB 170的某一小区。
OTDOA辅助数据还可包含“预期RSTD”参数,其向UE 105提供关于UE 105预期在其介于参考小区与每一相邻小区之间的当前位置处测量的RSTD值的信息,连同预期RSTD参数的不确定性。预期RSTD连同不确定性一起界定UE 105的搜索窗,在所述搜索窗内,UE 105被预期为测量RSTD值(或对应于RSTD值的TOA值)。OTDOA辅助信息还可包含PRS配置信息参数,其允许UE 105确定何时在从各种相邻小区接收的信号相对于参考小区的PRS定位出现时刻发生PRS定位出现时刻,且确定从各种小区传输的PRS序列以便测量信号到达时间(TOA)或RSTD。
使用RSTD测量、每一小区的已知绝对或相对传输时序以及用于参考及相邻小区的ng-eNB 180及/或eNB 170物理传输天线的已知方位,可运算UE 105的方位(例如由LMF 120或由UE 105)。相邻小区“k”相对于参考小区“Ref”的RSTD可被给出为(TOAk-TOARef)。接着可将用于不同小区的TOA测量转换为RSTD测量(例如名为“Physical layer;Measurements”的3GPP TS 36.214中所定义)且由UE 105发送至位置服务器(例如LMF120)。使用(i)RSTD测量、(ii)每一小区的已知绝对或相对传输时序以及(iii)用于参考及相邻小区的ng-eNB180及/或eNB 170物理传输天线的已知方位,可确定UE 105的方位。
图7绘示用于由ng-eNB 180或eNB 170支持的小区的PRS传输的方面。图7展示PRS定位出现时刻如何由系统帧号(SFN)、小区特定子帧偏移(ΔPRS)及PRS周期性(TPRS)620确定。典型地,小区特定PRS子帧配置是由包含于OTDOA辅助数据中的“PRS配置索引”IPRS界定。PRS周期性(TPRS)620及小区特定子帧偏移(ΔPRS)(例如图7所展示)是基于名为“Physicalchannels and modulation”的3GPP TS 36.211中的PRS配置索引IPRS而定义,如以下表1中所示范。
Figure BDA0002281155720000221
表1
参考传输PRS的小区的系统帧号(SFN)来定义PRS配置。对于包括第一PRS定位出现时刻的NPRS个下行链路子帧中的第一子帧,PRS例子可满足:
Figure BDA0002281155720000222
其中,
nf为SFN,其中0≤nf≤1023,
ns为由nf定义的无线电帧内的时隙号,其中0≤ns≤19,
TPRS为PRS周期性,且
ΔPRS为小区特定子帧偏移。
如图7所展示,小区特定子帧偏移ΔPRS 752可在从系统帧号0、时隙号0 750开始传输至第一(后续)PRS定位出现时刻的开始的子帧的数目方面定义。在图7中,连续定位子帧618的数目(NPRS)等于4。
在一些实施例中,当UE 105接收用于特定小区的TDOA辅助数据中的PRS配置索引IPRS时,UE 105可使用表1来确定PRS周期性TPRS及PRS子帧偏移ΔPRS。UE 105接着可在小区中调度PRS时(例如使用方程式(1))来确定无线电帧、子帧及时隙。OTDOA辅助数据可由LMF120确定,且包含用于参考小区的辅助数据,以及由ng-eNB 180及/或eNB 170支持的相邻小区的数目。
典型地,来自网络中使用相同载波频率的所有小区的PRS出现时刻在时间上对准,且可相对于网络中使用不同载波频率的其它小区具有固定已知时间偏移。在SFN同步网络中,所有ng-eNB 180及所有eNB 170可在帧边界及系统帧号两者上对准。因此,在SFN同步网络中,由ng-eNB 180及eNB 170支持的所有小区可将相同PRS配置索引用于任何特定频率的PRS传输。另一方面,在SFN非同步网络中,所有ng-eNB 180及所有eNB 170可在帧边界而非系统帧号上对准。因此,在SFN非同步网络中,用于每一小区的PRS配置索引可由网络单独地配置使得PRS出现时刻在时间上对准。
如果UE 105可获得用于OTDOA定位的参考及相邻小区中的至少一者(例如参考小区)的小区时序(例如SFN或帧号),那么UE 105可确定所述小区的PRS出现时刻的LTE时序(也被称作PRS时序)——例如在图5中的框506处。其它小区的LTE时序接着可由UE 105例如基于来自不同小区的PRS出现时刻重叠的假定而派生。
图6及7展示可如何在图5中的框506、507及513处传送、转换及/或测量LTE PRS时序。
图8为根据一实施例的绘示支持具有5G NR无线接入的UE的位置的方法800的流程图。可注意,如同本文所附的各图,图8被提供为非限制性实例。取决于所要功能性,其它实施例可变化。举例来说,可组合、分离或重新布置方法800中所绘示的功能框以适应不同实施例。方法800可由例如UE 105的UE执行。用于执行方法800的功能性的装置可包含例如用于图1至5且在图11中所展示及上文所描述的UE 105的UE的硬件及/或软件装置。
框810处的功能性包括从例如位置管理功能(例如LMF 120)的位置服务器接收第一长期演进(LTE)定位协议(LPP)消息,其中第一LPP消息包括位置请求且是经由例如gNB(例如gNB 110-1)的服务5G基站被接收。框810可对应于图4中的动作417。用于执行框810处的功能性的装置可包含例如处理单元1110、总线1105、存储器1160、无线通信接口1130、无线通信天线1132,及/或如图11所展示及下文所描述的UE 105的其它硬件及/或软件组件。
在框820处,基于第一LPP消息而获得至少一个位置测量,其中至少一个位置测量为用于无线电接入技术(RAT)非相依方位方法的测量或用于演进式通用陆地无线电接入(E-UTRA)方位方法的测量。在一些实施例中,RAT非相依方位方法可包括辅助全球导航卫星系统(A-GNSS)、实时运动学(RTK)、精确点定位(PPP)、差动A-GNSS、无线局域网(WLAN)(也被称作WiFi定位)、蓝牙、传感器,或其任何组合。E-UTRA方位方法可包括用于E-UTRA的观测到达时间差(OTDOA)或用于E-UTRA的增强型小区ID(ECID)。框820可对应于图4中的框418。
用于执行框820处的功能性的装置可包含例如处理单元1110、总线1105、存储器1160、无线通信接口1130、无线通信天线1132,及/或如图11所展示及下文所描述的UE 105的其它硬件及/或软件组件。
框830处的功能性包含基于至少一个位置测量而确定位置信息。举例来说,位置信息可包括针对UE的位置估计。替代地,位置信息可包括至少一个位置测量。框830可对应于图4中的框418。用于执行框830处的功能性的装置可包含例如处理单元1110、总线1105、存储器1160、无线通信接口1130、无线通信天线1132,及/或如图11所展示及下文所描述的UE105的其它硬件及/或软件组件。
框840处的功能性包含将第二LPP消息发送至位置服务器,其中第二LPP消息包括位置信息且是经由服务5G基站被发送。框840可对应于图4中的动作419。用于执行框840处的功能性的装置可包含例如处理单元1110、总线1105、存储器1160、无线通信接口1130、无线通信天线1132,及/或如图11所展示及下文所描述的UE 105的其它硬件及/或软件组件。
取决于所要功能性,方法800的替代实施例可包含额外特征。举例来说,在一些实施例中,第一LPP消息为LPP请求位置信息消息,且第二LPP消息为LPP提供位置信息消息。一些实施例可进一步包含从位置服务器接收第三LPP消息,其中第三LPP消息包括用于RAT非相依方位方法或E-UTRA方位方法的辅助数据且是经由服务5G基站被接收,且其中获得至少一个位置测量是基于辅助数据。第三LPP消息可为LPP提供辅助数据消息(例如在图4中的动作415处)。
一些实施例可进一步包含:从位置服务器接收第四LPP消息,其中第四LPP消息包括针对UE的LPP定位能力的请求且是经由服务5G基站被接收;及将第五LPP消息发送至位置服务器。第五LPP消息可包括在UE具有NR无线接入时的UE的LPP定位能力且是经由服务5G基站被发送。第四LPP消息可包括LPP请求能力消息(例如在图4中的动作403),且第五LPP消息可包括LPP提供能力消息(例如在图4中的动作404处)。
在一些实施例中,方法800可进一步包括将针对测量间隙的请求发送至服务5G基站(例如在图5中的动作508处),及在测量间隙期间获得至少一个位置测量(例如在图5的动作511、动作512或框513处)。在这些实施例中,针对测量间隙的请求可包括NR无线电资源控制(RRC)消息。此外,在一些实施例中,至少一个位置测量可包括用于E-UTRA的OTDOA的参考信号时间差(RSTD)测量,且所述方法可进一步包括将针对空闲时段的请求发送至服务5G基站(例如在图5中的动作501处),及在空闲时段期间获得用于OTDOA参考小区(例如用于LTE)的LTE时序及系统帧号(SFN)(例如在图5中的框506处),其中针对测量间隙的请求是基于LTE时序及/或SFN(例如针对图5的框507所描述)。针对空闲时段的请求可包括NR RRC消息。OTDOA参考小区可为用于E-UTRAN(例如E-UTRAN 150)中的eNB(例如eNB 170)的小区,或可为用于NG-RAN(例如NG-RAN 135)中的ng-eNB(例如ng-eNB 180)的小区,其可包含服务5G基站。
一些实施例可进一步包括将指示发送至接入管理功能(AMF)(例如AMF 115),这可作为向AMF的注册的部分而发生,其中指示为UE支持具有NR无线接入的LPP的指示,且其中AMF将指示传送至位置服务器。另外或替代地,第一LPP消息可在非接入层(NAS)输送消息(例如5G NAS输送消息)中被接收,且第二LPP消息可在NAS输送消息(例如5G NAS输送消息)中被发送,例如针对图1至3所描述。
图9为根据一实施例的绘示在位置服务器(例如LMF(例如LMF 120))处用于支持具有第五代(5G)NR无线接入的用户设备(UE)(例如UE 105)的位置的方法900的流程图。可注意,如同本文所附的各图,图9被提供为非限制性实例。取决于所要功能性,其它实施例可变化。举例来说,可组合、分离或重新布置方法900中所绘示的功能框以适应不同实施例。方法900可由例如LMF 120的LMF执行。用于执行方法900的功能性的装置可包含例如图12所展示及下文更详细地所描述的计算机系统1200的计算机系统的硬件及/或软件装置。
框910处的功能性包含将第一长期演进(LTE)定位协议(LPP)消息发送至UE,其中第一LPP消息包括位置请求且是经由用于UE的接入管理功能(AMF)(例如AMF 115)及服务5G基站(例如gNB 110-1)被发送。框910可对应于图4中的动作416。用于执行框910处的功能性的装置可包含例如处理单元1210、总线1205、通信子系统1230、无线通信接口1233、工作存储器1235、操作系统1240、应用程序1245,及/或如图12所展示及下文所描述的计算机系统1200的其它硬件及/或软件组件。
在框920处,从UE接收第二LPP消息,其中第二LPP消息包括用于UE的位置信息且是经由AMF及服务5G基站被接收,且其中位置信息是基于由UE获得的至少一个位置测量。至少一个位置测量可为用于无线电接入技术(RAT)非相依方位方法的测量或用于演进式通用陆地无线电接入(E-UTRA)方位方法的测量。在一些实施例中,RAT非相依方位方法可包括辅助全球导航卫星系统(A-GNSS)、实时运动学(RTK)、精确点定位、差动A-GNSS、无线局域网(WLAN)、蓝牙、传感器,或其任何组合。E-UTRA方位方法可包括用于E-UTRA的观测到达时间差(OTDOA)及/或用于E-UTRA的增强型小区ID(ECID)。框920可对应于图4中的动作420。用于执行框920处的功能性的装置可包含例如处理单元1210、总线1205、通信子系统1230、无线通信接口1233、工作存储器1235、操作系统1240、应用程序1245,及/或如图12所展示及下文所描述的计算机系统1200的其它硬件及/或软件组件。
在框930处,功能性包含基于位置信息而确定针对UE的位置估计。在一些实施例中,位置信息包括位置估计。在一些其它实施例中,位置信息包括至少一个位置测量。框930可对应于图4中的框421。用于执行框930处的功能性的装置可包含例如处理单元1210、总线1205、工作存储器1235、操作系统1240、应用程序1245,及/或如图12所展示及下文所描述的计算机系统1200的其它硬件及/或软件组件。
方法900的替代实施例可具有一或多个额外特征。举例来说,第一LPP消息可包括LPP请求位置信息消息,且第二LPP消息可包括LPP提供位置信息消息。
在一些实施例中,方法900可进一步包括将第三LPP消息发送至UE,其中第三LPP消息包括用于RAT非相依方位方法及/或E-UTRA方位方法的辅助数据且是经由AMF及服务5G基站被发送,且其中至少一个位置测量是至少部分地基于辅助数据。在这些实施例中,第三LPP消息可包括LTP提供辅助数据消息(例如在图4中的动作414处)。在这些实施例中,至少一个位置测量可为用于E-UTRA的OTDOA的位置测量,其中辅助数据包括用于E-UTRAN(例如E-UTRAN 150)中的至少一个eNB(例如eNB 170)或可包含服务5G基站的NG-RAN(例如NG-RAN135)中的至少一个ng-eNB(例如eNB 180)的辅助数据。在这些实施例中,辅助数据可包括用于由至少一个eNB或由至少一个ng-eNB传输的PRS的配置信息(例如针对图4的动作414所描述)。
方法900可任选地包括:将第四LPP消息发送至UE,其中第四LPP消息包括针对UE的LPP定位能力的请求且是经由AMF及服务5G基站被发送;及从UE接收第五LPP消息,其中第五LPP消息包括在UE具有NR无线接入时的UE的LPP定位能力且是经由AMF及服务5G基站被接收。在一些实施例中,第四LPP消息可包括LPP请求能力消息(例如在图4中的动作402),且第五LPP消息可包括LPP提供能力消息(例如在图4中的动作405处)。此外,方法900可任选地包括从AMF接收指示,其中指示为UE支持具有NR无线接入的LPP的指示,且其中发送第四LPP消息是基于指示。
图10为根据一实施例的绘示在5G基站(例如gNB)处用于支持具有NR无线接入的用户设备(UE)(例如UE 105)的位置的方法1000的流程图。可注意,如同本文所附的各图,图10被提供为非限制性实例。取决于所要功能性,其它实施例可变化。举例来说,可组合、分离或重新布置方法1000中所绘示的功能框以适应不同实施例。方法1000可由例如gNB 110的gNB执行。用于执行方法1000的功能性的装置可包含例如图12所展示及下文更详细地所描述的计算机系统1200的计算机系统的硬件及/或软件装置。
框1010处的功能性包含将从AMF(例如AMF 115)接收的第一LPP消息发送至UE。举例来说,框1010可包含从AMF(或经由例如ng-eNB 180的ng-eNB从AMF)接收NAS输送消息内部的第一LPP消息(例如LPP请求位置信息消息),及将NAS输送消息内部的第一LPP消息发送至UE,如先前结合图1至3所描述。在一实施例中,5G基站可为用于UE的服务基站。框1010可对应于由图4中的gNB 110-1对动作417的支持。用于执行框1010处的功能性的装置可包含例如处理单元1210、总线1205、通信子系统1230、无线通信接口1233、天线1250、工作存储器1235、操作系统1240、应用程序1245,及/或如图12所展示及下文所描述的计算机系统1200的其它硬件及/或软件组件。
在框1020处,功能性包含从UE接收针对测量间隙的请求(例如在图5中的动作508处)。举例来说,针对测量间隙的请求可包括NR无线电资源控制(RRC)消息。用于执行框1020处的功能性的装置可包含例如处理单元1210、总线1205、通信子系统1230、无线通信接口1233、天线1250、工作存储器1235、操作系统1240、应用程序1245,及/或如图12所展示及下文所描述的计算机系统1200的其它硬件及/或软件组件。
在框1030处,功能性包含在测量间隙期间暂停至UE的NR传输且暂停从UE的NR接收,其中UE在测量间隙期间基于第一LPP消息而获得至少一个位置测量,且其中至少一个位置测量为用于无线电接入技术(RAT)非相依方位方法的测量或用于演进式通用陆地无线电接入(E-UTRA)方位方法的测量。在一些实施例中,RAT非相依方位方法可包括辅助全球导航卫星系统(A-GNSS)、实时运动学(RTK)、精确点定位(PPP)、差动A-GNSS、无线局域网(WLAN)、蓝牙、传感器,或其任何组合。此外,E-UTRA方位方法可包括用于E-UTRA的观测到达时间差(OTDOA)及/或用于E-UTRA的增强型小区ID(ECID)。框1030可对应于图5中的框510。用于执行框1030处的功能性的装置可包含例如处理单元1210、总线1205、通信子系统1230、无线通信接口1233、天线1250、工作存储器1235、操作系统1240、应用程序1245,及/或如图12所展示及下文所描述的计算机系统1200的其它硬件及/或软件组件。
在框1040处,功能性包含将从UE接收的第二LPP消息传送至AMF,其中第二LPP消息包括用于UE的位置信息,且其中位置信息是基于至少一个位置测量。举例来说,框1040可包含从UE接收NAS输送消息内部的第二LPP消息(例如LPP提供位置信息消息),及将NAS输送消息内部的第二LPP消息发送至AMF(或经由例如ng-eNB 180的ng-eNB将第二LPP消息发送至AMF),如先前结合图1至3所描述。在一项实施例中,位置信息包括针对UE的位置估计。在另一实施例中,位置信息包括至少一个位置测量。框1040可对应于由图4中的gNB 110-1对动作419的支持。用于执行框1040处的功能性的装置可包含例如处理单元1210、总线1205、通信子系统1230、无线通信接口1233、天线1250、工作存储器1235、操作系统1240、应用程序1245,及/或如图12所展示及下文所描述的计算机系统1200的其它硬件及/或软件组件。
方法1000的替代实施例可具有一或多个额外特征。举例来说,且如在图5中的动作509处,方法1000可任选地包括将RRC消息发送至UE,其中RRC消息在框1010处确认由UE请求的测量间隙。此外,在一些实施例中,至少一个位置测量包含用于E-UTRA的OTDOA的参考信号时间差(RSTD)测量。在这些实施例中,方法1000可任选地进一步包括从UE接收针对空闲时段的请求(例如在图5中的动作501处),及在空闲时段期间暂停至UE的NR传输且暂停从UE的NR接收(例如在图5中的动作503处),其中UE在空闲时段期间获得用于OTDOA参考小区的LTE时序及/或系统帧号(SFN)(例如在图5中的框506处),且其中针对测量间隙的请求是基于LTE时序及/或SFN(例如针对图5的框507所描述)。在这些实施例中,针对空闲时段的请求可包括NR无线电资源控制(RRC)消息。在这些实施例中,方法1000可进一步包括将RRC消息发送至UE,其中RRC消息确认空闲时段(例如在图5中的动作502处)。
图11为UE 105的实施例的框图,UE 105可如上文所描述的实施例中且结合图1至10所描述而利用。应注意,图11仅意图提供UE 105的各种组件的一般化绘示,可在适当时利用所述组件中的任一者或全部。换句话说,因为UE可在功能性上广泛地变化,所以其可仅包含图11所展示的组件的部分。可注意,在一些情况下,由图11所绘示的组件可局部化至单一物理装置及/或分布于各种联网装置之间,所述联网装置可安置于不同物理位置处。
UE 105被展示为包括可经由总线1105而电耦合(或在适当时可以其它方式通信)的硬件元件。硬件元件可包含处理单元1110,处理单元1110可包括但不限于一或多个通用处理器、一或多个专用处理器(例如数字信号处理(DSP)芯片、图形加速处理器、专用集成电路(ASIC)等等),及/或其它处理结构或装置,其可经配置以执行本文中所描述的方法中的一或多者。如图11所展示,一些实施例可取决于所要功能性而具有单独DSP 1120。UE 105还可包括:一或多个输入装置1170,其可包括但不限于一或多个触摸屏、触摸垫、麦克风、按钮、拨号盘、开关等等;及一或多个输出装置1115,其可包括但不限于一或多个显示器、发光二极管(LED)、扬声器等等。
UE 105还可包含无线通信接口1130,无线通信接口1130可包括但不限于调制解调器、网络卡、红外通信装置、无线通信装置,及/或芯片组(例如
Figure BDA0002281155720000281
装置、IEEE802.11装置、IEEE 802.15.4装置、WiFi装置、WiMAXTM装置、蜂窝通信设施等等)等等,其可使UE 105能够经由上文关于图1至3所描述的网络而通信。无线通信接口1130可准许与网络、eNB、ng-eNB、gNB及/或其它网络组件、计算机系统及/或本文中所描述的任何其它电子装置传达数据。可经由发送及/或接收无线信号1134的一或多个无线通信天线1132实行所述传达。
取决于所要功能性,无线通信接口1130可包括单独收发器以与基站(例如eNB、ng-eNB及/或gNB)以及例如无线装置及接入点的其它陆地收发器通信。UE 105可与可包括各种网络类型的不同数据网络通信。举例来说,无线广域网(WWAN)可为码分多址接入(CDMA)网络、时分多址接入(TDMA)网络、频分多址接入(FDMA)网络、正交频分多址接入(OFDMA)系统、单载波频分多址接入(SC-FDMA)网络、WiMax(IEEE 802.16)等等。CDMA网络可实施一或多种无线电接入技术(“RAT”),例如cdma2000、宽带CDMA(WCDMA)等等。cdma2000包含IS-95、IS-2000及/或IS-856标准。TDMA网络可实施全球移动通信系统(GSM)、数字高级移动电话系统(D-AMPS)或某一其它RAT。OFDMA网络可使用LTE、高级LTE、新无线电(NR)等等。5G、LTE、高级LTE、GSM及WCDMA被描述于来自3GPP的文献中。cdma2000被描述于来自名称为“第3代合作伙伴计划2”(3GPP2)的协会的文献中。3GPP及3GPP2文献是公开可得的。无线局域网(WLAN)还可为IEEE 802.11x网络,且无线个人局域网(WPAN)可为蓝牙网络、IEEE 802.15x或某一其它类型的网络。本文中所描述的技术还可用于WWAN、WLAN及/或WPAN的任何组合。
UE 105可进一步包含传感器1140。这些传感器可包括但不限于一或多个惯性传感器(例如加速计、陀螺仪及/或其它惯性测量单元(IMU))、相机、磁力计、指南针、高度计、麦克风、近程传感器、光传感器、气压计等等,其中的一些可用以补充及/或促进本文中所描述的方位确定。
UE 105的实施例还可包含能够使用GNSS天线1182(其可在一些实施方案中与天线1132组合)从一或多个GNSS卫星(例如SV 190)接收信号1184的GNSS接收器1180。此定位可用以补充及/或结合本文中所描述的技术。GNSS接收器1180可使用常规技术从GNSS系统的GNSS SV(例如SV 190)提取UE 105的方位,GNSS系统是例如全球定位系统(GPS)、伽利略定位系统(Galileo)、全球导航卫星系统(Glonass)、日本的准天顶卫星系统(QZSS)、印度的印度地区导航卫星系统(IRNSS)、中国北斗卫星导航系统等等。此外,GNSS接收器1180可使用各种扩增系统(例如星基扩增系统(SBAS)),所述扩增系统可与一或多个全球及/或地区导航卫星系统相关联或以其它方式被启用以与一或多个全球及/或地区导航卫星系统一起使用。作为实例而非限制,SBAS可包含提供完整性信息、差动校正等等的扩增系统,例如广域扩增系统(WAAS)、欧洲地球同步导航覆盖服务(EGNOS)、多功能卫星扩增系统(MSAS)、GPS辅助型同步扩增导航或GPS及同步扩增导航系统(GAGAN)等等。因此,如本文中所使用,GNSS可包含一或多个全球及/或地区导航卫星系统及/或扩增系统的任何组合,且GNSS信号可包含GNSS、类GNSS,及/或与此一或多个GNSS相关联的其它信号。
UE 105可进一步包含存储器1160及/或与存储器1160通信。存储器1160可包括但不限于本地及/或网络可接入存储装置、磁盘驱动器、磁盘驱动器阵列、光学存储装置、固态存储装置,例如随机存取存储器(“RAM”)及/或只读存储器(“ROM”),其可编程、可闪速更新等等。这些存储装置可经配置以实施任何适当数据存储区,包含但不限于各种文件系统、数据库结构等等。
UE 105的存储器1160还可包括软件元件(未展示),包含操作系统、装置磁盘驱动器、可执行库,及/或其它代码,例如一或多个应用程序,其可包括由各种实施例提供的计算机程序,及/或可经设计以实施由其它实施例提供的方法及/或配置由其它实施例提供的系统,如本文中所描述。仅仅作为实例,关于上文所论述的功能性所描述的一或多个过程可被实施为可由UE 105(及/或UE 105内的处理单元)执行的代码及/或指令。在一方面中,接着,可使用此代码及/或这些指令来配置及/或适配通用计算机(或其它装置)以执行根据所描述方法的一或多个操作。
图12为计算机系统1200的实施例的框图,计算机系统1200可整体地或部分地用以提供如以上实施例中所描述的一或多个网络组件(例如LMF 120、AMF 115、gNB 110、ng-eNB180、eNB 170等等)的功能。应注意,图12仅意图提供各种组件的一般化绘示,可在适当时利用所述组件中的任一者或全部。因此,图12概括地绘示可如何以相对单独或相对更集成的方式实施个别系统元件。另外,可注意,由图12所绘示的组件可局部化至单一装置及/或分布于各种联网装置之间,所述联网装置可安置于不同地理位置处。
计算机系统1200被展示为包括可经由总线1205而电耦合(或在适当时可以其它方式通信)的硬件元件。硬件元件可包含处理单元1210,处理单元1210可包括但不限于一或多个通用处理器、一或多个专用处理器(例如数字信号处理芯片、图形加速处理器等等),及/或其它处理结构,其可经配置以执行本文中所描述的方法中的一或多者。计算机系统1200还可包括:一或多个输入装置1215,其可包括但不限于鼠标、键盘、相机、麦克风等等;及一或多个输出装置1220,其可包括但不限于显示装置、打印机等等。
计算机系统1200可进一步包含一或多个非暂时性存储装置1225(及/或与一或多个非暂时性存储装置1225通信),一或多个非暂时性存储装置1225可包括但不限于本地及/或网络可接入存储装置,及/或可包括但不限于磁盘驱动器、磁盘驱动器阵列、光学存储装置、固态存储装置,例如随机存取存储器(“RAM”)及/或只读存储器(“ROM”),其可编程、可闪速更新等等。这些存储装置可经配置以实施任何适当数据存储区,包含但不限于各种文件系统、数据库结构等等。这些数据存储区可包含数据库,及/或用以存储及管理消息及/或其它信息以经由集线器发送至一或多个装置的其它数据结构,如本文中所描述。
计算机系统1200还可包含通信子系统1230,其可包括由无线通信接口1233管理及控制的无线通信技术,以及有线技术(例如以太网、同轴通信、通用串行总线(USB)等等)。无线通信接口1233可经由无线天线1250发送及接收无线信号1255(例如根据NR或LTE的信号)。因此,通信子系统1230可包括调制解调器、网络卡(无线或有线)、红外通信装置、无线通信装置,及/或芯片组等等,其可使计算机系统1200能够在本文中所描述的通信网络中的任一者或全部上与相应网络上的任何装置通信,所述装置包含UE(例如UE 105)、其它计算机系统(例如AMF 115、gNB 110、ng-eNB 180及/或eNB 170),及/或本文中所描述的其它电子装置。因此,通信子系统1230可用以接收及发送数据,如本文中的实施例中所描述。
在许多实施例中,计算机系统1200将进一步包括工作存储器1235,其可包括RAM或ROM装置,如上文所描述。被展示为位于工作存储器1235内的软件元件可包括操作系统1240、装置磁盘驱动器、可执行库,及/或其它代码,例如一或多个应用程序1245,其可包括由各种实施例提供的计算机程序,及/或可经设计以实施由其它实施例提供的方法及/或配置由其它实施例提供的系统,如本文中所描述。仅仅作为实例,关于上文所论述的方法所描述的一或多个过程可被实施为可由计算机(及/或计算机内的处理单元)执行的代码及/或指令;在一方面中,接着,可使用此代码及/或这些指令来配置及/或适配通用计算机(或其它装置)以执行根据所描述方法的一或多个操作。
一组这些指令及/或代码可存储于例如上文所描述的存储装置1225的非暂时性计算机可读存储媒体上。在一些状况下,存储媒体可并入于例如计算机系统1200的计算机系统内。在其它实施例中,存储媒体可与计算机系统(例如可卸除媒体,例如光盘)分离,及/或提供于安装包装中,使得存储媒体可用以编程、配置及/或适配通用计算机,其中在通用计算机上存储有指令/代码。这些指令可呈可由计算机系统1200执行的可执行代码的形式,及/或可呈原始代码及/或可安装代码的形式,其在电系统1200上编译及/或安装(例如使用各种通常可用编译器、安装程序、压缩/解压缩实用程序等等中的任一者)后就接着呈可执行代码的形式。
对于所属领域的技术人员来说将显而易见,可根据特定要求作出大量变化。举例来说,还可使用定制硬件,及/或可以硬件、软件(包含便携式软件,例如小程序等等)或两者实施特定元件。此外,可使用至例如网络输入/输出装置的其它计算装置的连接。
另外,对于所属领域的技术人员来说将显而易见,本文中所描述的实施例可在UE、位置服务器及/或基站处产生新颖功能性。
举例来说,实施例可包含在位置服务器处执行功能以支持具有5G NR无线接入的UE的位置的方法、用于在位置服务器处执行功能以支持具有5G NR无线接入的UE的位置的装置,或经配置以在位置服务器处执行功能以支持具有5G NR无线接入的UE的位置的装置,其中功能包含将第一LPP消息发送至UE,其中第一LPP消息包含位置请求且是经由用于UE的AMF及服务5G基站被发送。功能进一步包含从UE接收第二LPP消息,其中第二LPP消息包括用于UE的位置信息且是经由AMF及服务5G基站被接收,其中位置信息是基于由UE获得的至少一个位置测量,且其中至少一个位置测量包括用于RAT非相依方位方法的测量或用于E-UTRA方位方法的测量。功能还包含基于位置信息而确定针对UE的位置估计。
替代实施例可另外包含以下特征中的一或多者。位置信息可包括位置估计或至少一个位置测量。第一LPP消息可包括LPP请求位置信息消息,且第二LPP消息可包括LPP提供位置信息消息。RAT非相依方位方法可包括辅助全球导航卫星系统(A-GNSS)、实时运动学(RTK)、精确点定位、差动A-GNSS、无线局域网(WLAN)、蓝牙、传感器,或其任何组合。E-UTRA方位方法可包括用于E-UTRA的观测到达时间差(OTDOA)或用于E-UTRA的增强型小区ID(ECID),或其任何组合。功能可进一步包含将第三LPP消息发送至UE,其中第三LPP消息包括用于RAT非相依方位方法或E-UTRA方位方法的辅助数据且是经由AMF及服务5G基站被发送,且其中至少一个位置测量是至少部分地基于辅助数据。第三LPP消息可包括LPP提供辅助数据消息。至少一个位置测量可包括用于E-UTRA的OTDOA的位置测量,其中辅助数据包括用于E-UTRA网络(E-UTRAN)中的至少一个演进式节点B(eNB)或下一代无线接入网络(NG-RAN)中的至少一个下一代eNB(ng-eNB)的辅助数据,其中服务5G基站在NG-RAN中。辅助数据可包括用于由至少一个eNB或由至少一个ng-eNB传输的定位参考信号(PRS)的配置信息。功能可进一步包括:将第四LPP消息发送至UE,其中第四LPP消息包括针对UE的LPP定位能力的请求且是经由AMF及服务5G基站被发送;及从UE接收第五LPP消息,其中第五LPP消息包括在UE具有NR无线接入时的UE的LPP定位能力且是经由AMF及服务5G基站被接收。第四LPP消息可包括LPP请求能力消息,且第五LPP消息包括LPP提供能力消息。功能可进一步包括从AMF接收指示,其中指示包括UE支持具有NR无线接入的LPP的指示,且其中发送第四LPP消息是基于指示。
在另一实例中,实施例可包含在5G新无线电(NR)基站处执行功能以支持具有5GNR无线接入的UE的位置的方法、用于在5G新无线电(NR)基站处执行功能以支持具有5G NR无线接入的UE的位置的装置,或经配置以在5G新无线电(NR)基站处执行功能以支持具有5GNR无线接入的UE的位置的装置。此处,功能包括将从接入管理功能(AMF)接收的第一长期演进(LTE)定位协议(LPP)消息发送至UE,从UE接收针对测量间隙的请求,在测量间隙期间暂停至UE的NR传输及从UE的NR接收,其中UE在测量间隙期间基于第一LPP消息而获得至少一个位置测量,且其中至少一个位置测量为用于无线电接入技术(RAT)非相依方位方法的测量或用于演进式通用陆地无线电接入(E-UTRA)方位方法的测量。功能进一步包括将从UE接收的第二LPP消息传送至AMF,其中第二LPP消息包括用于UE的位置信息,且其中位置信息是基于至少一个位置测量。
替代实施例可另外包含以下特征中的一或多者。5G NR基站可包括用于UE的服务基站。5G NR基站可在非接入层(NAS)输送消息内部传送第一LPP消息及第二LPP消息。RAT非相依方位方法可包括辅助全球导航卫星系统(A-GNSS)、实时运动学(RTK)、精确点定位(PPP)、差动A-GNSS、无线局域网(WLAN)、蓝牙、传感器,或其任何组合。E-UTRA方位方法可包括用于E-UTRA的观测到达时间差(OTDOA)或用于E-UTRA的增强型小区ID(ECID),或其任何组合。位置信息可包括针对UE的位置估计。位置信息可包括至少一个位置测量。针对测量间隙的请求可包括NR无线电资源控制(RRC)消息。功能还可包括将RRC消息发送至UE,其中RRC消息确认测量间隙。至少一个位置测量可包括用于E-UTRA的OTDOA的参考信号时间差(RSTD)测量,且功能可进一步包括从UE接收针对空闲时段的请求,及在空闲时段期间暂停至UE的NR传输及从UE的NR接收,其中UE在空闲时段期间获得用于OTDOA参考小区的LTE时序及系统帧号(SFN),且其中针对测量间隙的请求是基于LTE时序及SFN。针对空闲时段的请求可包括NR无线电资源控制(RRC)消息。功能可进一步包括将RRC消息发送至UE,其中RRC消息确认空闲时段。
参考附图,可包括存储器的组件可包括非暂时性机器可读媒体。如本文中所使用的术语“机器可读媒体”及“计算机可读媒体”是指参与提供致使机器以特定方式操作的数据的任何存储媒体。在上文中所提供的实施例中,各种机器可读媒体可涉及到将指令/代码提供至处理单元及/或其它装置以供执行。另外或替代地,机器可读媒体可用以存储及/或携载这些指令/代码。在许多实施方案中,计算机可读媒体为物理及/或有形存储媒体。此媒体可呈许多形式,包含但不限于非易失性媒体、易失性媒体及传输媒体。计算机可读媒体的常见形式包含例如磁性及/或光学媒体、打孔卡、纸带、具有孔图案的任何其它物理媒体、随机存取存储器(RAM)、可编程只读存储器(PROM)、可擦除PROM(EPROM)、闪速EPROM、任何其它存储器芯片或盒、如下文中所描述的载波,或可供计算机读取指令及/或代码的任何其它媒体。
本文中所论述的方法、系统及装置为实例。各种实施例可在适当时省略、取代或添加各种过程或组件。举例来说,可将关于某些实施例所描述的特征组合于各种其它实施例中。实施例的不同方面及元件可以相似方式组合。本文中所提供的图的各种组件可以硬件及/或软件予以体现。此外,技术会演进,且因此,元件中的许多者为并不将本发明的范围限于那些特定实例的实例。
贯穿本说明书对“一项实例”、“一实例”、“某些实例”或“示范性实施方案”的参考意味着结合特征及/或实例所描述的特定特征、结构或特性可包含于所主张主题的至少一个特征及/或实例中。因此,在贯穿本说明书的各种地方中的出现的短语“在一项实例中”、“一实例”、“在某些实例中”或“在某些实施方案中”或其它类似短语未必皆是指同一特征、实例及/或限制。此外,可将特定特征、结构或特性组合于一或多项实例及/或特征中。
本文中所包含的具体实施方式的一些部分是在存储于特定设备或专用计算装置或平台的存储器内的二进制数字信号的操作的算法或符号表示方面予以呈现。在此特定说明书的上下文中,术语特定设备等等在其经编程以根据来自程序软件的指令而执行特定操作后就包含通用计算机。算法描述或符号表示为由所属领域的一般技术人员用于信号处理或相关技术中以向所属领域的技术人员传达其工作的本质的技术的实例。算法在此处且通常被认为自洽操作序列或产生所要结果的相似信号处理。在此上下文中,操作或处理涉及物理量的物理操纵。典型地,但未必,这些量可呈能够被存储、传送、组合、比较或以其它方式操纵的电或磁信号的形式。主要出于常见使用的原因,有时已证明便利的是将这些信号称作位、数据、值、元素、符号、字符、项、数字、数值等等。然而,应理解,所有这些或相似术语应与适当物理量相关联且仅为便利标签。除非另有具体规定,否则从本文中的论述显而易见,应了解,贯穿本说明书,利用例如“处理”、“计算”、“运算”、“确定”等等的术语的论述是指例如专用计算机、专用计算设备或相似专用电子计算装置的特定设备的动作或过程。因此,在本说明书的上下文中,专用计算机或相似专用电子计算装置能够操纵或变换信号,典型地在专用计算机或相似专用电子计算装置的存储器、寄存器或其它信息存储装置、传输装置或显示装置内被表示为物理电子或磁量。
在前述具体实施方式中,已阐明众多特定细节以提供对所主张主题的透彻理解。然而,所属领域的技术人员应理解,可在没有这些特定细节的情况下实践所主张主题。在其它情况下,尚未详细地描述所属领域的一般技术人员将知晓的方法及设备以免混淆所主张主题。
如本文中所使用的术语“及”、“或”与“及/或”可包含各种意义,其还被预期为至少部分地取决于其被使用的上下文。典型地,“或”在用以例如A、B或C的列表相关联的情况下意图意指A、B及C(此处以包含意义使用),以及A、B或C(此处以排除意义使用)。另外,如本文中所使用的术语“一或多个”可用于以单数形式描述任何特征、结构或特性,或可用于描述特征、结构或特性中的多者或其某一组合。然而,应注意,这仅仅为说明性实例且所主张主题并不限于此实例。
虽然已绘示及描述目前被认为是实例特征的内容,但所属领域的技术人员应理解,可作出各种其它修改,且可取代等效物,而不脱离所主张主题。另外,可作出许多修改以使特定情形适应于所主张主题的技术,而不脱离本文中所描述的中心概念。
因此,希望所主张主题不限于所揭示的特定实例,而是此所主张主题还可包含属于随附权利要求书的范围内的所有方面,及其等效物。

Claims (30)

1.一种在用户设备UE处支持具有第五代5G新无线电NR无线接入的所述UE的位置的方法,所述方法包括:
从位置服务器接收第一长期演进LTE定位协议LPP消息,其中所述第一LPP消息包括位置请求且是经由服务5G基站被接收;
基于所述第一LPP消息而获得至少一个位置测量,其中所述至少一个位置测量包括用于无线电接入技术RAT非相依方位方法的测量或用于演进式通用陆地无线电接入E-UTRA方位方法的测量;
基于所述至少一个位置测量而确定位置信息;及
将第二LPP消息发送至所述位置服务器,其中所述第二LPP消息包括所述位置信息且是经由所述服务5G基站被发送。
2.根据权利要求1所述的方法,其中所述位置服务器包括位置管理功能LMF。
3.根据权利要求1所述的方法,其中所述位置信息包括针对所述UE的位置估计。
4.根据权利要求1所述的方法,其中所述位置信息包括所述至少一个位置测量。
5.根据权利要求1所述的方法,其中所述第一LPP消息包括LPP请求位置信息消息,且所述第二LPP消息包括LPP提供位置信息消息。
6.根据权利要求1所述的方法,其中所述至少一个位置测量包括用于所述RAT非相依方位方法的所述测量,且所述RAT非相依方位方法包括辅助全球导航卫星系统A-GNSS、实时运动学RTK、精确点定位PPP、差动A-GNSS、无线局域网WLAN、蓝牙、传感器,或其任何组合;或其中所述至少一个位置测量包括用于所述E-UTRA方位方法的所述测量,且所述E-UTRA方位方法包括用于E-UTRA的观测到达时间差OTDOA或用于E-UTRA的增强型小区ID ECID,或其任何组合。
7.根据权利要求1所述的方法,且其进一步包括:
从所述位置服务器接收第三LPP消息,其中所述第三LPP消息包括用于所述RAT非相依方位方法或所述E-UTRA方位方法的辅助数据且是经由所述服务5G基站被接收,且其中获得所述至少一个位置测量是基于所述辅助数据。
8.根据权利要求7所述的方法,其中所述第三LPP消息包括LPP提供辅助数据消息。
9.根据权利要求8所述的方法,且其进一步包括:
将针对测量间隙的请求发送至所述服务5G基站;及
在测量间隙期间获得所述至少一个位置测量。
10.根据权利要求9所述的方法,其中针对测量间隙的所述请求包括NR无线电资源控制RRC消息。
11.根据权利要求9所述的方法,其中所述至少一个位置测量包括用于E-UTRA的观测到达时间差OTDOA的参考信号时间差RSTD测量,且所述方法进一步包括:
将针对空闲时段的请求发送至所述服务5G基站;及
在所述空闲时段期间获得用于OTDOA参考小区的LTE时序及系统帧号SFN,其中针对测量间隙的所述请求是基于所述LTE时序及所述SFN。
12.根据权利要求11所述的方法,其中所述OTDOA参考小区包括用于E-UTRA网络E-UTRAN中的演进式节点B eNB的小区或用于下一代无线电接入网络NG-RAN中的下一代eNBng-eNB的小区,其中所述服务5G基站在所述NG-RAN中。
13.根据权利要求11所述的方法,其中针对所述空闲时段的所述请求包括NR无线电资源控制RRC消息。
14.根据权利要求1所述的方法,且其进一步包括:
从所述位置服务器接收第四LPP消息,其中所述第四LPP消息包括针对所述UE的LPP定位能力的请求且是经由所述服务5G基站被接收;及
将第五LPP消息发送至所述位置服务器,其中所述第五LPP消息包括在所述UE具有NR无线接入时所述UE的所述LPP定位能力且是经由所述服务5G基站被发送。
15.根据权利要求14所述的方法,其中所述第四LPP消息包括LPP请求能力消息,且所述第五LPP消息包括LPP提供能力消息。
16.根据权利要求1所述的方法,且其进一步包括:
将指示发送至接入管理功能AMF,其中所述指示包括所述UE支持具有NR无线接入的LPP的指示,其中所述AMF将所述指示传送至所述位置服务器。
17.根据权利要求1所述的方法,其中所述第一LPP消息在非接入层NAS输送消息中被接收,且所述第二LPP消息在NAS输送消息中被发送。
18.一种具有第五代5G新无线电NR无线接入的用户设备UE,其包括:
无线通信接口;
存储器;及
处理单元,其与所述无线通信接口及所述存储器以通信方式耦合,且经配置以致使所述UE:
使用所述无线通信接口从位置服务器接收第一长期演进LTE定位协议LPP消息,其中所述第一LPP消息包括位置请求且是经由服务第五代5G基站被接收;
使用所述无线通信接口基于所述第一LPP消息而获得至少一个位置测量,其中所述至少一个位置测量包括用于无线电接入技术RAT非相依方位方法的测量或用于演进式通用陆地无线电接入E-UTRA方位方法的测量;
基于所述至少一个位置测量而确定位置信息;及
使用所述无线通信接口将第二LPP消息发送至所述位置服务器,其中所述第二LPP消息包括所述位置信息且是经由所述服务5G基站被发送。
19.根据权利要求18所述的UE,其中所述处理单元经进一步配置以致使所述UE通过确定针对所述UE的位置估计来确定所述位置信息。
20.根据权利要求18所述的UE,其中所述处理单元经配置以致使所述UE获得包括用于所述RAT非相依方位方法的所述测量的所述至少一个位置测量,所述RAT非相依方位方法包括辅助全球导航卫星系统A-GNSS、实时运动学RTK、精确点定位PPP、差动A-GNSS、无线局域网WLAN、蓝牙、传感器,或其任何组合;或其中所述处理单元经配置以致使所述UE获得用于所述E-UTRA方位方法的所述至少一个位置测量,所述E-UTRA方位方法包括用于E-UTRA的观测到达时间差OTDOA或用于E-UTRA的增强型小区ID ECID,或其任何组合。
21.根据权利要求18所述的UE,其中所述处理单元经进一步配置以致使所述UE:
使用所述无线通信接口从所述位置服务器接收第三LPP消息,其中所述第三LPP消息包括用于所述RAT非相依方位方法或所述E-UTRA方位方法的辅助数据且是经由所述服务5G基站被接收;及
基于所述辅助数据而获得所述至少一个位置测量。
22.根据权利要求21所述的UE,其中所述处理单元经进一步配置以致使所述UE接收包括LPP提供辅助数据消息的所述第三LPP消息。
23.根据权利要求22所述的UE,其中所述处理单元经进一步配置以致使所述UE:
使用所述无线通信接口将针对测量间隙的请求发送至所述服务5G基站;及
在测量间隙期间获得所述至少一个位置测量。
24.根据权利要求22所述的UE,其中所述处理单元经配置以致使所述UE使用NR无线电资源控制RRC消息来发送针对测量间隙的所述请求。
25.根据权利要求22所述的UE,其中所述至少一个位置测量包括用于E-UTRA的观测到达时间差OTDOA的参考信号时间差RSTD测量,且所述处理单元经配置以致使所述UE:
使用所述无线通信接口将针对空闲时段的请求发送至所述服务5G基站;
在所述空闲时段期间获得用于OTDOA参考小区的LTE时序及系统帧号SFN;及
使针对测量间隙的所述请求基于所述LTE时序及所述SFN。
26.根据权利要求18所述的UE,其中所述处理单元经进一步配置以致使所述UE:
使用所述无线通信接口从所述位置服务器接收第四LPP消息,其中所述第四LPP消息包括针对所述UE的LPP定位能力的请求且是经由所述服务5G基站被接收;及
使用所述无线通信接口将第五LPP消息发送至所述位置服务器,其中所述第五LPP消息包括在所述UE具有NR无线接入时的所述UE的所述LPP定位能力且是经由所述服务5G基站被发送。
27.根据权利要求18所述的UE,其中所述处理单元经进一步配置以致使所述UE:
使用所述无线通信接口将指示发送至接入管理功能AMF,其中所述指示是指示所述UE支持具有NR无线接入的LPP,其中所述AMF将所述指示传送至所述位置服务器。
28.一种装置,其包括:
用于从位置服务器接收第一长期演进LTE定位协议LPP消息的装置,其中所述第一LPP消息包括位置请求且是经由服务第五代5G基站被接收;
用于基于所述第一LPP消息而获得至少一个位置测量的装置,其中所述至少一个位置测量包括用于无线电接入技术RAT非相依方位方法的测量或用于演进式通用陆地无线电接入E-UTRA方位方法的测量;
用于基于所述至少一个位置测量而确定位置信息的装置;及
用于将第二LPP消息发送至所述位置服务器的装置,其中所述第二LPP消息包括所述位置信息且是经由所述服务5G基站被发送。
29.根据权利要求28所述的装置,其中所述位置信息包括针对所述装置的位置估计。
30.一种非暂时性计算机可读媒体,其上嵌入有指令,所述指令用以致使用户设备UE支持具有第五代5G新无线电NR无线接入的所述UE的位置,所述指令经配置以在由所述UE的处理单元执行时致使所述UE:
从位置服务器接收第一长期演进LTE定位协议LPP消息,其中所述第一LPP消息包括位置请求且是经由服务5G基站被接收;
基于所述第一LPP消息而获得至少一个位置测量,其中所述至少一个位置测量包括用于无线电接入技术RAT非相依方位方法的测量或用于演进式通用陆地无线电接入E-UTRA方位方法的测量;
基于所述至少一个位置测量而确定位置信息;及
将第二LPP消息发送至所述位置服务器,其中所述第二LPP消息包括所述位置信息且是经由所述服务5G基站被发送。
CN201880033463.4A 2017-05-26 2018-04-13 在第五代无线网络中用于定位移动装置的系统及方法 Active CN110651512B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011319650.4A CN112543504B (zh) 2017-05-26 2018-04-13 在第五代无线网络中用于定位移动装置的系统及方法

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762511958P 2017-05-26 2017-05-26
US62/511,958 2017-05-26
US15/951,870 US10433275B2 (en) 2017-05-26 2018-04-12 Systems and methods for positioning mobile devices in a fifth generation wireless network
US15/951,870 2018-04-12
PCT/US2018/027460 WO2018217323A1 (en) 2017-05-26 2018-04-13 Systems and methods for positioning mobile devices in a fifth generation wireless network

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202011319650.4A Division CN112543504B (zh) 2017-05-26 2018-04-13 在第五代无线网络中用于定位移动装置的系统及方法

Publications (2)

Publication Number Publication Date
CN110651512A true CN110651512A (zh) 2020-01-03
CN110651512B CN110651512B (zh) 2021-11-26

Family

ID=62111221

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201880033463.4A Active CN110651512B (zh) 2017-05-26 2018-04-13 在第五代无线网络中用于定位移动装置的系统及方法
CN202011319650.4A Active CN112543504B (zh) 2017-05-26 2018-04-13 在第五代无线网络中用于定位移动装置的系统及方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202011319650.4A Active CN112543504B (zh) 2017-05-26 2018-04-13 在第五代无线网络中用于定位移动装置的系统及方法

Country Status (9)

Country Link
US (2) US10433275B2 (zh)
EP (2) EP3632170A1 (zh)
JP (2) JP7220158B2 (zh)
KR (1) KR102635511B1 (zh)
CN (2) CN110651512B (zh)
BR (1) BR112019024571A2 (zh)
CA (1) CA3060621A1 (zh)
TW (1) TWI706682B (zh)
WO (1) WO2018217323A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021169676A1 (zh) * 2020-02-26 2021-09-02 大唐移动通信设备有限公司 信息传输方法及装置
WO2021179323A1 (zh) * 2020-03-13 2021-09-16 北京小米移动软件有限公司 一种信息处理方法及装置、通信设备及存储介质
CN113518302A (zh) * 2020-04-09 2021-10-19 大唐移动通信设备有限公司 一种定位参考信号配置方法、lmf、基站及终端
CN113518301A (zh) * 2020-04-09 2021-10-19 大唐移动通信设备有限公司 一种定位参考信号配置方法、lmf、终端及基站
CN113973366A (zh) * 2020-07-24 2022-01-25 大唐移动通信设备有限公司 一种信息处理方法、终端、设备和可读存储介质
WO2022110176A1 (zh) * 2020-11-30 2022-06-02 北京小米移动软件有限公司 一种定位方法、装置、设备及存储介质
WO2022188586A1 (zh) * 2021-03-09 2022-09-15 大唐移动通信设备有限公司 基于下行链路dl信道信息的定位方法、设备和装置
TWI797682B (zh) * 2020-07-30 2023-04-01 芬蘭商諾基亞科技公司 用於定位之完整性相關資訊之報告

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9998856B2 (en) * 2016-05-13 2018-06-12 Qualcomm Incorporated Method and/or system for positioning of a mobile device
WO2018070913A1 (en) * 2016-10-10 2018-04-19 Telefonaktiebolaget Lm Ericsson (Publ) Otdoa network assistance to mtc/nb-iot user equipment
US10772064B2 (en) 2017-02-02 2020-09-08 Apple Inc. Positioning enhancements for narrowband internet of things
US10433275B2 (en) * 2017-05-26 2019-10-01 Qualcomm Incorporated Systems and methods for positioning mobile devices in a fifth generation wireless network
CN109257779A (zh) * 2017-07-14 2019-01-22 华为技术有限公司 网络切换方法及装置
RU2741626C1 (ru) * 2017-07-20 2021-01-28 Гуандун Оппо Мобайл Телекоммьюникейшнс Корп., Лтд. Способ конфигурирования измерений и относящийся к нему продукт
CN109905903B (zh) * 2017-12-11 2021-11-09 宏达国际电子股份有限公司 处理系统重新定向程序的通信装置、基站及核心网络节点
US11252628B2 (en) * 2018-01-09 2022-02-15 Htc Corporation Device and method for handling new radio capabilities
WO2019165629A1 (zh) * 2018-03-01 2019-09-06 华为技术有限公司 会话管理方法及装置、通信系统
US10880857B2 (en) * 2018-04-02 2020-12-29 Intel Corporation Inter-radio access technology positioning measurements in new radio systems
CN113691943B (zh) * 2018-04-09 2022-11-04 华为技术有限公司 一种定位方法及相关设备
US10575230B2 (en) * 2018-07-20 2020-02-25 Google Llc Network slicing for WLAN
US20200053830A1 (en) * 2018-08-13 2020-02-13 Apple Inc. 5G New Radio NAS Notification Procedures
CN110881216A (zh) * 2018-09-05 2020-03-13 电信科学技术研究院有限公司 一种定位消息的传输处理方法、设备及终端
WO2020069757A1 (en) * 2018-10-05 2020-04-09 Huawei Technologies Co., Ltd. Location management component and method for a mobile communication network
KR20200083049A (ko) * 2018-12-31 2020-07-08 삼성전자주식회사 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치
EP3681217A1 (en) * 2019-01-10 2020-07-15 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Methods and apparatuses for rtt measurement procedure in a telecomunications network
US11310762B2 (en) 2019-01-11 2022-04-19 Nokia Technologies Oy Method for idle-mode positioning of UEs using observed time difference of arrival
WO2020160775A1 (en) * 2019-02-07 2020-08-13 Nokia Technologies Oy Localization estimation for non-terrestrial networks
CN115551079A (zh) 2019-02-14 2022-12-30 大唐移动通信设备有限公司 一种定位方法、装置、系统、终端、lmf实体及介质
CN111586833A (zh) * 2019-02-15 2020-08-25 电信科学技术研究院有限公司 一种定位方法、装置、终端、基站及管理功能实体
WO2020164352A1 (zh) * 2019-02-15 2020-08-20 华为技术有限公司 配置信息的方法和装置
US11181609B2 (en) * 2019-02-15 2021-11-23 Qualcomm Incorporated Positioning assistance data procedures
CN113767666A (zh) * 2019-02-25 2021-12-07 诺基亚通信公司 装置、方法和计算机程序
WO2020204961A1 (en) * 2019-04-05 2020-10-08 Google Llc Supporting location services at a base station
CN111818634B (zh) * 2019-04-11 2021-12-28 上海华为技术有限公司 一种5g场景下的定位方法、定位平台及用户终端
CN110536412B (zh) * 2019-04-29 2023-03-24 中兴通讯股份有限公司 上行定位的实现方法、装置和存储介质
BR112021021991A2 (pt) * 2019-05-02 2021-12-21 Ericsson Telefon Ab L M Método desempenhado por um dispositivo sem fio, método desempenhado por nó de rede, dispositivo sem fio e nó de rede
KR20200144013A (ko) * 2019-06-17 2020-12-28 삼성전자주식회사 이동통신 시스템에서 동시에 발생하는 단말의 위치 정보 서비스 요청을 처리하는 방법
CN111629320B (zh) * 2019-06-24 2022-03-25 维沃移动通信有限公司 用于定位终端设备的方法和设备
CN115278765A (zh) * 2019-07-04 2022-11-01 大唐移动通信设备有限公司 信号传输方法及装置
US11115951B2 (en) * 2019-07-12 2021-09-07 Qualcomm Incorporated Virtual boundary marking techniques in beamformed wireless communications
US10805402B1 (en) 2019-08-13 2020-10-13 International Business Machines Corporation Automated location verification
US11502800B2 (en) 2019-08-13 2022-11-15 Huawei Technologies Co., Ltd. Methods and apparatuses for configuration of sounding reference signal for serving and neighboring cell measurements
CN112398624B (zh) * 2019-08-16 2022-05-31 华为技术有限公司 用于接收定位参考信号的方法和相关设备
US20220299589A1 (en) * 2019-08-19 2022-09-22 Nokia Technologies Oy Ue location tracking in an inactive state
US20210067990A1 (en) * 2019-08-28 2021-03-04 Qualcomm Incorporated Measurement gaps for positioning measurements outside bandwidth part
US11477613B2 (en) 2019-09-25 2022-10-18 Qualcomm Incorporated Direct current (DC) tone signaling
CN112838916B (zh) * 2019-11-25 2022-10-18 大唐移动通信设备有限公司 信息传输方法及装置
WO2021133239A1 (en) * 2019-12-23 2021-07-01 Telefonaktiebolaget Lm Ericsson (Publ) Gnss measurement gaps
CN111123317A (zh) * 2019-12-31 2020-05-08 泰斗微电子科技有限公司 一种卫星定位装置、卫星信号接收机及终端设备
US11956654B2 (en) 2020-02-12 2024-04-09 Apple Inc. Method and apparatus for searcher resource sharing for measurement without measurement gap
CN113301594A (zh) * 2020-02-21 2021-08-24 大唐移动通信设备有限公司 一种定位业务处理方法、设备、装置及介质
US10764721B1 (en) * 2020-02-24 2020-09-01 Verizon Patent And Licensing Inc. Systems and methods for UE location and mobility
US11044693B1 (en) * 2020-05-08 2021-06-22 Qualcomm Incorporated Efficient positioning enhancement for dynamic spectrum sharing
US11653178B2 (en) * 2020-05-18 2023-05-16 Ofinno, Llc Positioning service level
US20220116906A1 (en) * 2020-10-09 2022-04-14 Qualcomm Incorporated Systems and methods for improving positioning of a mobile device using channel conditions
CN116349317A (zh) * 2020-10-23 2023-06-27 中兴通讯股份有限公司 用于同步辅助的系统和方法
WO2022082706A1 (en) * 2020-10-23 2022-04-28 Qualcomm Incorporated Design of sensing gap for wireless sensing
WO2022087907A1 (en) * 2020-10-28 2022-05-05 Zte Corporation Method, device and computer program product for wireless communication
CN114531641B (zh) * 2020-10-31 2024-04-23 华为技术有限公司 一种通信方法及通信装置
US11902894B2 (en) 2020-12-10 2024-02-13 Nokia Technologies Oy Determining radio frequency (RF) conditions using sensing information
US11627549B2 (en) 2020-12-10 2023-04-11 Nokia Technologies Oy Associating sensing information with a user
TWI768679B (zh) * 2021-01-25 2022-06-21 國立虎尾科技大學 具有低功耗與抗干擾之追蹤系統及其方法
KR20220152861A (ko) * 2021-05-10 2022-11-17 삼성전자주식회사 무선 통신 시스템에서 위치 추정 서비스를 제공하기 위한 방법 및 장치
CN117957912A (zh) * 2021-09-10 2024-04-30 诺基亚技术有限公司 用于减轻利用haps和ntn进行定位时的透明定时延迟的方法
KR102472509B1 (ko) * 2021-10-05 2022-11-30 주식회사 블랙핀 무선 통신 시스템에서 인액티브 위치확인과 관련된 정보를 송수신하는 방법 및 장치
KR20230053945A (ko) * 2021-10-15 2023-04-24 삼성전자주식회사 무선 통신 시스템에서 정확한 위치 측정을 위한 위치 참조 장치의 운용 방법
CN117546450A (zh) * 2021-12-20 2024-02-09 英特尔公司 关于位置管理对位置管理功能的性能测量
CN116546478A (zh) * 2022-01-25 2023-08-04 维沃移动通信有限公司 近距离通信的发现方法、装置、ue及介质
GB202211618D0 (en) * 2022-08-09 2022-09-21 Samsung Electronics Co Ltd Use of multiple reference UEs to support localization of a target UE
CN117835396A (zh) * 2022-09-27 2024-04-05 大唐移动通信设备有限公司 一种信息处理方法、装置及可读存储介质
WO2024071908A1 (ko) * 2022-09-29 2024-04-04 엘지전자 주식회사 무선 통신 시스템에서 포지셔닝 방법 및 이를 위한 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100232362A1 (en) * 2009-03-12 2010-09-16 Qualcomm Incorporated Method and apparatus for providing position related data
CN101883427A (zh) * 2010-07-07 2010-11-10 新邮通信设备有限公司 一种长期演进技术的后续演进系统中的定位方法
US20120083221A1 (en) * 2010-10-01 2012-04-05 Nokia Siemens Networks Oy Inter-frequency measurements for observed time difference of arrival

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010006653A1 (en) * 2008-07-18 2010-01-21 Telefonaktiebolaget Lm Ericsson (Publ) Method, wireless telecommunications network and node for pre-ad justing transmission parameters of radio base station in advance of arrival of groups of mobile stations
CN102595450B (zh) * 2011-01-10 2014-12-24 华为技术有限公司 测量间隙的配置方法和通信装置
EP2850855B1 (en) 2012-05-14 2019-02-20 Telefonaktiebolaget LM Ericsson (publ) Localization configuration to make location information available in user equipment
US9432809B2 (en) 2013-07-12 2016-08-30 Qualcomm Incorporated Providing OTDOA PRS assistance data
US10219217B2 (en) * 2014-01-31 2019-02-26 Telefonaktiebolaget Lm Ericsson (Publ) Assisting measurements in small cells with an on/off scheme
CN106465326A (zh) * 2014-12-31 2017-02-22 华为技术有限公司 一种定位方法及移动终端
US9986373B2 (en) * 2015-01-12 2018-05-29 Intel Corporation LTE-A systems and method of DRS based positioning
US9869750B2 (en) * 2015-01-30 2018-01-16 Alcatel Lucent OTDOA in unlicensed band for enhancements of horizontal and vertical positioning
EP3375216B1 (en) * 2015-11-12 2021-04-07 Sony Corporation Dynamic positioning method for mobile cells
WO2017111185A1 (ko) * 2015-12-22 2017-06-29 엘지전자(주) 무선통신 시스템에서 데이터를 송수신하기 위한 방법 및 장치
US9998856B2 (en) * 2016-05-13 2018-06-12 Qualcomm Incorporated Method and/or system for positioning of a mobile device
US11678291B2 (en) 2016-08-21 2023-06-13 Qualcomm Incorporated Methods and systems for support of location for the Internet of Things
US20180141871A1 (en) * 2016-11-18 2018-05-24 General Electric Company Composite material and method for making
CN111212378B (zh) * 2016-11-20 2021-03-09 上海朗帛通信技术有限公司 一种ue、基站和服务中心中的方法和设备
US10492684B2 (en) * 2017-02-21 2019-12-03 Arc Devices Limited Multi-vital-sign smartphone system in an electronic medical records system
CN110476466B (zh) * 2017-04-03 2022-06-07 苹果公司 到定位服务器的ue能力指示
US10433275B2 (en) * 2017-05-26 2019-10-01 Qualcomm Incorporated Systems and methods for positioning mobile devices in a fifth generation wireless network
US11320511B2 (en) * 2017-09-29 2022-05-03 Futurewei Technologies, Inc. Observed time difference of arrival (OTDOA) positioning in wireless communication networks
US20190230618A1 (en) * 2018-01-23 2019-07-25 Nokia Technologies Oy Using sidelink information in radio-based positioning
US11646921B2 (en) * 2018-08-09 2023-05-09 Qualcomm Incorporated Using physical channels for positioning measurement signals
US10560204B1 (en) * 2018-09-05 2020-02-11 Verizon Patent And Licensing Inc. 5G fixed wireless access device self-installation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100232362A1 (en) * 2009-03-12 2010-09-16 Qualcomm Incorporated Method and apparatus for providing position related data
CN101883427A (zh) * 2010-07-07 2010-11-10 新邮通信设备有限公司 一种长期演进技术的后续演进系统中的定位方法
US20120083221A1 (en) * 2010-10-01 2012-04-05 Nokia Siemens Networks Oy Inter-frequency measurements for observed time difference of arrival

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP: "3rd Generation Partnership Project;Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access Network (E-UTRAN);Stage 2 functional specification of User Equipment (UE) positioning in E-UTRAN(Release 14)", 《3GPP》 *
QUALCOMM INCORPORATED: "Location Services Alternatives for 5G System Architecture and 5G Procedures", 《SA WG2 MEETING #120 S2-171982》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021169676A1 (zh) * 2020-02-26 2021-09-02 大唐移动通信设备有限公司 信息传输方法及装置
WO2021179323A1 (zh) * 2020-03-13 2021-09-16 北京小米移动软件有限公司 一种信息处理方法及装置、通信设备及存储介质
CN113518302A (zh) * 2020-04-09 2021-10-19 大唐移动通信设备有限公司 一种定位参考信号配置方法、lmf、基站及终端
CN113518301A (zh) * 2020-04-09 2021-10-19 大唐移动通信设备有限公司 一种定位参考信号配置方法、lmf、终端及基站
CN113973366A (zh) * 2020-07-24 2022-01-25 大唐移动通信设备有限公司 一种信息处理方法、终端、设备和可读存储介质
TWI797682B (zh) * 2020-07-30 2023-04-01 芬蘭商諾基亞科技公司 用於定位之完整性相關資訊之報告
US11933908B2 (en) 2020-07-30 2024-03-19 Nokia Technologies Oy Reporting of integrity-related information for positioning
WO2022110176A1 (zh) * 2020-11-30 2022-06-02 北京小米移动软件有限公司 一种定位方法、装置、设备及存储介质
WO2022188586A1 (zh) * 2021-03-09 2022-09-15 大唐移动通信设备有限公司 基于下行链路dl信道信息的定位方法、设备和装置

Also Published As

Publication number Publication date
JP2020522167A (ja) 2020-07-27
KR102635511B1 (ko) 2024-02-07
US20180343635A1 (en) 2018-11-29
CA3060621A1 (en) 2018-11-29
KR20200013692A (ko) 2020-02-07
CN112543504A (zh) 2021-03-23
US10433275B2 (en) 2019-10-01
BR112019024571A2 (pt) 2020-06-09
US10779256B2 (en) 2020-09-15
EP3632170A1 (en) 2020-04-08
JP2023065361A (ja) 2023-05-12
JP7220158B2 (ja) 2023-02-09
CN110651512B (zh) 2021-11-26
TW201902276A (zh) 2019-01-01
CN112543504B (zh) 2024-03-19
US20200037283A1 (en) 2020-01-30
TWI706682B (zh) 2020-10-01
WO2018217323A1 (en) 2018-11-29
EP3825715A1 (en) 2021-05-26
WO2018217323A8 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
CN110651512B (zh) 在第五代无线网络中用于定位移动装置的系统及方法
US10863319B2 (en) Systems and methods for locating a user equipment using generic position methods for a 5G network
US10375669B2 (en) Methods and systems for locating a mobile device using an asynchronous wireless network
CN109983788B (zh) 用于限制定位协议的消息大小的系统和方法
US20220417890A1 (en) Navigation and positioning system using radio beam
EP3692661A1 (en) Methods and systems for segmentation of positioning protocol messages
CN115462138A (zh) 用于动态频谱共享的有效定位增强

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant