WO2021162099A1 - 組換え微細藻及び微細藻を用いた有機酸の製造方法 - Google Patents

組換え微細藻及び微細藻を用いた有機酸の製造方法 Download PDF

Info

Publication number
WO2021162099A1
WO2021162099A1 PCT/JP2021/005284 JP2021005284W WO2021162099A1 WO 2021162099 A1 WO2021162099 A1 WO 2021162099A1 JP 2021005284 W JP2021005284 W JP 2021005284W WO 2021162099 A1 WO2021162099 A1 WO 2021162099A1
Authority
WO
WIPO (PCT)
Prior art keywords
microalgae
organic acid
recombinant
acid
producing
Prior art date
Application number
PCT/JP2021/005284
Other languages
English (en)
French (fr)
Inventor
誠久 蓮沼
真実 松田
近藤 昭彦
Original Assignee
国立大学法人神戸大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人神戸大学 filed Critical 国立大学法人神戸大学
Priority to JP2022500474A priority Critical patent/JPWO2021162099A1/ja
Publication of WO2021162099A1 publication Critical patent/WO2021162099A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids

Definitions

  • the present invention relates to recombinant microalgae and a method for producing an organic acid using microalgae.
  • Organic acids such as lactic acid and succinic acid are widely used as synthetic raw materials for foods, pharmaceuticals, and other chemicals. These organic acids are also expected to be produced from sugar-based biomass such as starch and cellulose.
  • biodegradable plastics such as polybutylene succinate (PBS), which is widely used in agricultural mulch films, packaging materials, agricultural and civil engineering materials, etc., use succinic acid as a raw material derived from petroleum to biomass. There is a trend to switch to something.
  • PBS polybutylene succinate
  • Microalgae and cyanobacteria absorb CO 2 in a light environment and directly produce oil, starch, glycogen, organic acids, and other functional substances (pigments, functional lipids, etc.). Is possible.
  • the use of marine algae can avoid the limits of arable land and the depletion of water resources.
  • Non-Patent Document 1 and 2 a method of increasing the cell density and increasing the production amount of useful substances by strengthening the factors that determine the growth of microalgae has been studied. Further, a method has been developed in which organic acids can be produced more efficiently from microalgae by culturing the microalgae at a temperature of 35 ° C. to 40 ° C., which is higher than the conventional one (Patent Document 1). However, since the production efficiency of organic acids by these methods is not sufficient, it is strongly desired to develop a method capable of producing organic acids more efficiently, stably supplying them, and mass-producing them.
  • the present inventors overexpressed phosphoenolpyruvate carboxylase (Pepck) and pyruvate carboxylase (Pyc) in orchid algae to obtain succinic acid and the like. It has been found that the production amount and yield of organic acids can be increased. Furthermore, by adding sodium bicarbonate and corn steep liquor to the culture solution, we succeeded in significantly increasing the production of organic acids such as succinic acid. That is, the gist of the present invention is as follows.
  • a method for producing an organic acid using microalgae which comprises the step of culturing the recombinant microalgae according to any one of [1] to [4].
  • (B) The organic acid production step of culturing the recombinant microalgae grown and propagated in the above step (a) in a dark place under anaerobic conditions to produce an organic acid, and (c) the above (b).
  • a method for producing an organic acid using microalgae which comprises a step of culturing microalgae in a medium containing corn steep liquor.
  • phosphoenolpyruvate carboxylase (Pepck) and / or pyruvate carboxylase (Pyc) in microalgae such as cyanobacteria produces and yields organic acids such as succinic acid. Can be increased. Furthermore, by adding sodium bicarbonate or corn steep liquor to the culture solution, it is possible to significantly increase the production of organic acids such as succinic acid by microalgae such as cyanobacteria. Therefore, according to the present invention, the organic acid can be produced more efficiently, so that the stable supply and mass production of the organic acid can be made possible.
  • FIG. 1 is a diagram showing that the production amount of succinic acid was increased by expressing Pepck in microalgae.
  • FIG. 2 is a diagram showing that the production amount of succinic acid was increased by expressing Pyc in microalgae.
  • FIG. 3 is a diagram showing that the optimum range of sodium hydrogen carbonate concentration in succinic acid production in the medium was changed by expressing Pepck in microalgae.
  • FIG. 4 is a diagram showing the effect of adding corn steep liquor on the production of succinic acid from microalgae.
  • FIG. 5 is a diagram showing the effect of adding corn steep liquor on the production of succinic acid from microalgae (comparison of a plurality of types of corn steep liquor).
  • FIG. 1 is a diagram showing that the production amount of succinic acid was increased by expressing Pepck in microalgae.
  • FIG. 2 is a diagram showing that the production amount of succinic acid was increased by expressing Pyc in microalga
  • FIG. 6 is a diagram showing the results of examining the effect of sodium hydrogen carbonate concentration under the condition of adding corn steep liquor on the production of succinic acid from microalgae.
  • FIG. 7 is a diagram showing the results of examining the effect of cell density on the production of succinic acid from microalgae.
  • FIG. 8 is a diagram showing the results of examining the effects of the HEPES concentration and the corn steep liquor concentration on the production of succinic acid from microalgae.
  • microalgae of the present invention and the method for producing an organic acid using the microalgae will be described in detail.
  • a molecular biological method such as preparation of DNA or a vector can be carried out by a method described in a general experimental document known to those skilled in the art or a method similar thereto.
  • the terms used herein are to be interpreted in the meaning commonly used in the art unless otherwise specified.
  • ⁇ Recombinant microalgae> The recombinant microalgae of the present invention have been transformed so that phosphoenolpyruvate carboxylase (Pepck) and / or pyruvate carboxylase (Pyc) is expressed or enhanced in the microalgae. Further, it is preferable that the recombinant microalgae of the present invention is further transformed so that phosphoenolpyruvate carboxylase (Ppc) is expressed or enhanced.
  • Ppck phosphoenolpyruvate carboxylase
  • Pyc pyruvate carboxylase
  • the "microalgae” refers to a microorganism having chlorophyll and performing photosynthesis. Microalgae can immobilize CO 2 in the atmosphere by photosynthesis to synthesize sugars (eg, glycogen), while generating oxygen (O 2 ) from water (H 2 O) (“oxygen-evolving photosynthesis””. Also called).
  • the microalgae may have a unicellular morphology or a colony morphology (eg, filaments, sheets or balls). Further, the microalgae may be propagated in either the ocean or fresh water.
  • the microalgae of the present invention are either prokaryotic cyanobacteria (orchid algae) or eukaryotic organisms (eg, green algae, diatomaceae, whirlpool algae, red algae, placeno algae, Euglena algae, eukaryotic algae, etc.).
  • cyanobacteria include Synechocystis, Arthrospira, Spirulina, Anabaena, Synechococcus, Thermosynechococcus.
  • Examples include the genus Stock (Nostoc), the genus Prochlorococcu, the genus Microcystis, and the genus Gloeobacter.
  • Eukaryotic organisms include, for example, green algae such as Chlamydomonas, Chlorella, Dunaliella, Hematococcus, Volvox, Botryococcus; Genus (Rhizosolenia), Ketoceros (Chaetoceros), Cyclotella, Cylindrotheca, Navicula, Phaeodactylum, Thalassiosira, Fistulifera, etc. kind; whirlpool algae such as Amphidinium, Symbiodinium; red algae such as Cyanidioschyzon, Phorphyridium; Ostreococcus, etc.
  • Placeno algae such as the genus Euglena
  • genuine eye spot algae such as the genus Nannochloropsis.
  • Synechocystis PCC6803 species Synechocystis sp. PCC6803
  • Synechococcus PCC7002 species Synechococcus sp. PCC7002
  • Arthrospira platensis also known as Spirulina
  • Spirulina maxima Spirulina subsalsa
  • the microalgae of the present invention are preferably cyanobacteria (Cyanobacteria), more preferably Synechocystis, and particularly preferably Synechocystis PCC6803 (Synechocystis sp. PCC6803).
  • the microalgae of the present invention are recombinant microalgae modified to effectively produce organic acids.
  • a method of modification a conventionally known method or any method developed in the future can be applied, and the modification can be performed by, for example, a method such as gene recombination.
  • the microalgae of the present invention have been transformed to express or enhance the expression of phosphoenolpyruvate carboxylase (Pepck) and / or pyruvate carboxylase (Pyc) in order to enhance the ability to produce organic acids. .. Further, it is preferable that the phosphoenolpyruvate carboxylase (Ppc) is transformed to express or enhance the expression.
  • phosphoenolpyruvate carboxylase (Pepck) and / or pyruvate carboxylase (Pyc) has been transformed to express or enhance expression
  • phosphoenolpyruvate carboxylase (Ppc) is expressed.
  • “transformed so as to enhance the expression” means to introduce each gene into the microalgae, or to modify the gene so as to enhance the expression of those genes.
  • a form in which a gene relating to Pepck, Pyc, or Ppc is introduced or a gene is modified so as to enhance the expression of the gene is introduced or modified in the microalgae of the present invention.
  • Examples of the embodiment in which the gene is introduced include those in which an exogenous gene of the same species or a heterogeneity is introduced, and preferably, it is operably retained by a strong promoter such as a constitutive promoter.
  • heterogeneous means a species different from the recombinant microalgae of the present invention.
  • the heterogeneous species include Escherichia coli, Pseudomonas aeruginosa, and the like. Bacteria and the like. It also includes a natural coding region or a portion thereof that has been reintroduced into a host cell in a form different from the corresponding natural gene. For example, those that are not in their natural position in the genome are also included.
  • the purpose of introducing a polynucleotide encoding a heterologous enzyme group in the recombinant microalgae of the present invention is to introduce a polynucleotide encoding a protein such as an enzyme that the host cell does not originally have. , To function and / or enhance the production pathway of organic acids.
  • polynucleotide means both a single nucleic acid and a plurality of nucleic acids, and includes nucleic acid molecules such as mRNA, plasmid RNA, full-length cDNA and fragments thereof.
  • the polynucleotide is composed of any polyribonucleotide or polydeoxyribonucleotide and may be modified or unmodified. It may be single-stranded or double-stranded, or a mixture of both.
  • any of the endogenous genes is controlled by a stronger promoter (either a constitutive promoter or an inducible promoter). Examples thereof are linked to. Also included are embodiments in which either endogenous and / or extrinsic genes have been additionally introduced. Any additionally introduced gene is preferably retained operably by a strong promoter, such as a constitutive promoter. Enhancement of gene expression is achieved by increasing the number of copies of the gene. For example, a fragment containing the gene is linked to a vector that functions in the target microalgae, preferably multicopy is linked to another vector to prepare recombinant DNA, which is then transformed into a microalgae capable of producing organic acids.
  • the recombinant DNA may be introduced into the parent strain to obtain a transformant, and then the transformant may be imparted with an organic acid-producing ability.
  • the enhancement of expression is also referred to as "overexpression" in the present specification.
  • any promoter that functions in microalgae can be used.
  • the microalgae are cyanobacteria (cyanobacteria), sbDII, psbA3, psbA2, trc, nirA, petE, nrsRS, nrsABCD, ndhF3, rbcL, rbcX, glnA, atp1, atp2, petF1 etc. Promoters can be mentioned.
  • the plasmid vector for introducing the above gene into microalgae is not particularly limited as long as it is a plasmid vector capable of introducing the gene into microalgae, and various ones can be used.
  • pTCP2031V Vectors can be mentioned.
  • the pTCP2031V vector include the psbA2 (slr1311) promoter, a part of the coding region of slr2030 and slr2031 (as a platform for homologous recombination), and a recombinant plasmid containing a chloramphenicol-resistant cassette (Satoh S et al.,, 2001, J.Biol. Chem. 276, 4293-4297; Horiuchi M et al., 2010, Biochem. J. 431, 135-140).
  • a recombinant construct for example, an expression vector or a chromosome-integrated vector prepared as described above can be introduced into a host microalgae to prepare a transformed microalgae.
  • a gene homologous recombination method can be used for transformation of transformed microalgae (particularly cyanobacteria).
  • the gene homologous recombination method for example, the above pTCP2031V vector can be preferably used.
  • a conventionally known method or any method developed in the future can be applied.
  • the electroporation method, the protoplast-PEG method, the microinjection method, the particle gun method, the calcium phosphate method, the lipofection method, the calcium ion method and the like can be mentioned.
  • the transformant is selected using the expression vector used for gene transfer or the selectable marker possessed by the chromosome-integrated vector.
  • Antibiotics or drugs according to the selectable marker can be added to the medium suitable for each host microorganism.
  • a selection medium any medium suitable for the growth of microalgae can be used.
  • BG-11 agar medium eg, described in Rippka R et al., 1979, J Gen Microbiol 111: 1-61: can be used for cyanobacteria
  • HSM agar medium and TAP agar medium these are eg, eg, Fukuzawa et al., 2009, Agar Science, 67: 17-21: Can be used for eukaryotic organisms such as cyanobacteria).
  • Transformants are first selected based on this selection marker, and then the gene of interest (ie, phosphoenolpyruvate carboxylase (Pepck) gene, pyruvate carboxylase (Pyc) gene, phosphoenolpyruvate carboxylase (Ppc)).
  • Transformants can be selected by analyzing the expression of genes, etc.) or their products. These expression products can be confirmed by, for example, Western blotting.
  • each enzyme whose expression has been introduced and / or whose expression has been enhanced in the recombinant microalgae of the present invention will be described.
  • the recombinant microalgae of the present invention are transformed so that the phosphoenolpyruvate carboxylase (Pepck), pyruvate carboxylase (Pyc), and phosphoenolpyruvate carboxylase (Ppc) described below are expressed or enhanced. Therefore, an organic acid such as succinic acid can be efficiently produced.
  • the phosphoenolpyruvate carboxykinase is an enzyme that reversibly catalyzes the reaction of producing oxaloacetate (OAA) from phosphoenolpyruvate (Pep) by carbon dioxide fixation.
  • the Pepck activity refers to an activity that catalyzes a reaction for producing OAA from this Pep.
  • the Pepck used in the present invention preferably has a reaction equilibrium that is inclined toward producing Pep or OAA. Enzymatic activity can be determined, for example, by measuring ATP production at 37 ° C.
  • the increase in enzyme activity may be increased as compared with the parent strain, but for example, it is preferably 1.5 times or more, more preferably 2 times or more, and 3 times or more that of the parent strain. Is more preferable, and 5 times or more is particularly preferable.
  • the Pepck for introduction into microalgae may be one that more efficiently catalyzes the reaction of producing oxaloacetate (OAA) by carbon dioxide fixation by culturing in the dark under anaerobic conditions.
  • OAA oxaloacetate
  • Actinobacillus succinogenes Mannheimia succiniciproducens
  • An Aero which are some bacterial groups capable of producing succinic acid under high carbon dioxide concentration.
  • Pepck for introduction into microalgae is more preferably an enzyme derived from Actinobacillus succinogenes.
  • the Pepck gene Since some sequences of the Pepck gene have already been clarified, it can be obtained by using a primer prepared based on those base sequences. For example, using the prepared primer, the coding region of Pepck of Actinobacillus succinogenes and the adjacent region including the control region thereof can be obtained by the PCR method using the chromosomal DNA of Actinobacillus succinogenes as a template. Can be done. Alternatively, it is also possible to totally synthesize a sequence designed in a codon-optimized form with respect to the base sequence (SEQ ID NO: 1) corresponding to those wild types (SEQ ID NO: 2). Pepck gene homologues of other microorganisms can be obtained in the same manner.
  • the Pepck gene homolog is a gene derived from another microorganism, showing high homology with the Pepck gene of Actinobacillus succinogenes, and encoding a protein having Pepck activity.
  • the base sequence of the Pepck gene may differ depending on the species and strain of the bacterium belonging to the family Enterobacteriaceae
  • the Pepck gene used in the present invention is not limited to SEQ ID NO: 2, and its expression is expressed in microalgae.
  • Substitution or deletion of one or several amino acids at one or more positions in the amino acid sequence encoded by the polynucleotide of SEQ ID NO: 2 as long as the enhancement can improve the succinic acid-producing ability of the microalgae.
  • Insertion or addition, etc. may be a variant or an artificial variant encoding a protein having a sequence.
  • “several” is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 5, although it varies depending on the position and type of the amino acid residue in the protein structure. be.
  • amino acid substitutions, deletions, insertions, additions, or inversions include those caused by naturally occurring mutations such as those based on individual differences and species differences of microorganisms carrying the Pepck gene. Is done.
  • the polynucleotide encoding the Pepck protein (peptide) is at least 70% or more, preferably 80% or more, more preferably 90% or more, still more preferably 95% or more, and particularly preferably 97% or more with respect to the above specific sequence.
  • a protein having the above identity (and a polynucleotide encoding the same) and having a Pepck activity (phosphoenolpyruvate carboxykinase activity) (and a polynucleotide encoding the same) can be used in the present invention. Is understood to be.
  • the degeneracy of the gene differs depending on the host into which the Pepck gene is introduced, it may be replaced with a codon that is easy to use in each host into which it is introduced.
  • the Pepck gene can be a gene encoding a protein whose N-terminal side or C-terminal side is extended, or a protein that has been scraped, as long as it has a function of improving the organic acid production ability of microalgae by enhancing its expression. good.
  • pyruvate carboxylase (Pyruvate carboxylase (Pyc))
  • pyruvate carboxylase is a ligase group enzyme that irreversibly carboxylates pyruvate to oxaloacetate.
  • oxaloacetate is fixed to sugar-derived pyruvic acid accumulated in the microalgae by culturing under photoautotrophic conditions. It is possible to generate (OAA).
  • the increase in enzyme activity may be increased as compared with the parent strain, but for example, it is preferably 1.5 times or more, more preferably 2 times or more, and 3 times or more that of the parent strain. Is more preferable, and 5 times or more is particularly preferable.
  • the Pyc for introduction into microalgae is not particularly limited as long as it more efficiently catalyzes the reaction for producing oxaloacetate (OAA) from Pyruvate, but for example, Corinebacterium glutamicum.
  • Pyc Even if it is known by a name different from Pyc, it can be used as Pyc in the present invention as long as it has the above-mentioned catalytic activity.
  • Pyc for introduction into microalgae among these, Pyc derived from Corynebacterium glutamicum is preferable.
  • the Pyc gene Since some sequences of the Pyc gene have already been clarified, it can be obtained by using a primer prepared based on those base sequences.
  • the Pyc coding region (SEQ ID NO: 3) of Corynebacterium glutamicum and the Pyc coding region (SEQ ID NO: 3) of Corynebacterium glutamicum were subjected to the PCR method using the chromosomal DNA of Corynebacterium glutamicum as a template.
  • the adjacent area including the control area can be acquired.
  • the amino acid sequence encoded by SEQ ID NO: 3 is shown as SEQ ID NO: 4.
  • Pyc gene homologues of other microorganisms can be obtained in the same manner.
  • the Pyc gene homolog is a gene derived from another microorganism, showing high homology with the Pyc gene of Corynebacterium glutamicum, and encoding a protein having Pyc activity.
  • the Pyc gene used in the present invention is not limited to SEQ ID NO: 3, and the expression of the Pyc gene is enhanced in the microalgae to enhance the microalgae.
  • substitution, deletion, insertion or addition of one or several amino acids at one or more positions may be performed as long as the succinic acid production ability of the above can be improved. It may be a variant or an artificial variant encoding a protein having a containing sequence.
  • “several” is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 5, although it varies depending on the position and type of the amino acid residue in the protein structure. be.
  • amino acid substitutions, deletions, insertions, additions, or inversions include those caused by naturally occurring mutations such as those based on individual differences and species differences of microorganisms carrying the Pepck gene. Is done.
  • the polynucleotide encoding the Pyc protein (peptide) is at least 70% or more, preferably 80% or more, more preferably 90% or more, still more preferably 95% or more, and particularly preferably 97, with respect to the above specific sequence.
  • a protein having% or more identity (and a polynucleotide encoding it) and having Pyc activity (pyruvate carboxyloxylase activity) (and a polynucleotide encoding it) can be used in the present invention. Is understood to be.
  • the degeneracy of the gene differs depending on the host into which the Pyc gene is introduced, it may be replaced with a codon that is easy to use in each host into which the gene is introduced.
  • the Pyc gene can be a gene encoding a protein whose N-terminal side or C-terminal side is extended, or a protein that has been scraped, as long as it has a function of improving the organic acid production ability of microalgae by enhancing its expression. good.
  • Ppc phosphoenolpyruvate carboxylase
  • Ppc is an enzyme that reversibly catalyzes the reaction of producing oxaloacetate (OAA) from phosphoenolpyruvate (Pep) by carbon dioxide fixation.
  • OAA oxaloacetate
  • Pep phosphoenolpyruvate
  • the Ppc activity refers to an activity that catalyzes the reaction of producing OAA from this Pep.
  • the Ppc used in the present invention preferably has a reaction equilibrium that is inclined toward producing Pep or OAA.
  • the sugar-derived PEP accumulated in the microalgae by culturing under photoautotrophic conditions is subjected to anaerobic conditions.
  • OAA oxaloacetate
  • the increase in enzyme activity may be increased as compared with the parent strain, but for example, it is preferably 1.5 times or more, more preferably 2 times or more, and 3 times or more that of the parent strain. Is more preferable, and 5 times or more is particularly preferable.
  • the reaction of producing oxaloacetate (OAA) by carbon dioxide fixation is more efficiently catalyzed by culturing in a dark place under anaerobic conditions.
  • OAA oxaloacetate
  • the genus Synechocystis is more preferable, and specifically, PCC6803 species (Synechocystis sp. PCC6803) is particularly preferable.
  • PCC6803 species Synechocystis sp. PCC6803
  • Ppc of cyanobacteria cyanobacteria
  • the Ppc gene Since some sequences of the Ppc gene have already been clarified, it can be obtained by using a primer prepared based on those base sequences.
  • the coding region (SEQ ID NO: 5) of Synechocystis Ppc and the adjacent region containing the control region can be obtained by the PCR method using the chromosomal DNA of Synechocystis cyanobacterium as a template. ..
  • the amino acid sequence encoded by SEQ ID NO: 5 is shown as SEQ ID NO: 6.
  • Specific examples of the cyanobacterial Synechocystis include PCC6803 strain (Synechocystis sp. PCC6803).
  • Ppc gene homologues of other microorganisms can be obtained in the same manner.
  • the Ppc gene homolog is a gene derived from another microorganism, showing high homology with the Ppc gene of Synechocystis cyanobacterium, and encoding a protein having Ppc activity.
  • the base sequence of the Ppc gene may differ depending on the species and strain of the bacterium belonging to the family of enterobacteriaceae, the Ppc gene used in the present invention is not limited to SEQ ID NO: 5, and its expression is expressed in microalgae.
  • Substitution or deletion of one or several amino acids at one or more positions in the amino acid sequence encoded by the polynucleotide of SEQ ID NO: 5 as long as the enhancement can improve the succinic acid-producing ability of the microalgae.
  • Insertion or addition, etc. may be a variant or an artificial variant encoding a protein having a sequence.
  • “several” is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 5, although it varies depending on the position and type of the amino acid residue in the protein structure. be.
  • amino acid substitutions, deletions, insertions, additions, or inversions include those caused by naturally occurring mutations such as those based on individual differences and species differences of microorganisms carrying the Ppc gene. Is done.
  • the polynucleotide encoding the Ppc protein (peptide) is at least 70% or more, preferably 80% or more, more preferably 90% or more, still more preferably 95% or more, and particularly preferably 97, with respect to the above specific sequence.
  • a protein having an identity of% or more (and a polynucleotide encoding it) and having Ppc activity (pyruvate carboxyxylase activity) (and a polynucleotide encoding it) can be used in the present invention. Is understood to be.
  • the degeneracy of the gene differs depending on the host into which the Ppc gene is introduced, it may be replaced with a codon that is easy to use in each host into which the gene is introduced.
  • the Ppc gene can be a gene encoding a protein whose N-terminal side or C-terminal side is extended, or a protein that has been scraped, as long as it has a function of improving the organic acid production ability of microalgae by enhancing its expression. good.
  • the method for producing an organic acid of the present invention is characterized by including the above-mentioned step of culturing the recombinant microalgae of the present invention. Part of the above-mentioned culturing step of the recombinant microalgae is preferably carried out under anaerobic conditions and further preferably in a dark place. Further, the culture of the recombinant microalgae is preferably carried out in a medium having a carbonate ion and / or bicarbonate ion content of 10 to 1,000 mM, and such conditions are filled with carbon dioxide and / Or preferably prepared by the addition of carbonate.
  • the method for producing an organic acid of the present invention will be specifically described.
  • the method for producing an organic acid of the present invention is characterized by comprising a step of culturing the above-mentioned recombinant microalgae of the present invention transformed so as to efficiently produce an organic acid. Specifically, it is as follows.
  • the step of culturing the recombinant microalgae of the present invention in the method for producing an organic acid of the present invention includes the following steps (a) and (b). Further, the organic acid recovery step (step (c)) of recovering the organic acid produced by these steps may be included.
  • A Recombinant microalgae growth / proliferation step of growing / propagating the above-mentioned recombinant microalgae of the present invention under photoautotrophic conditions
  • (b) Recombinant fineness grown / propagated in the above-mentioned step
  • (a) Organic acid production step of culturing algae in a dark place under anaerobic conditions to produce an organic acid
  • (c) An organic acid recovery step of recovering the organic acid produced in the above (b) step.
  • Recombinant microalgae In the method for producing an organic acid of the present invention, phosphoenolpyruvate carboxylase (Pepck) and / or pyruvate carboxylase (Pyc) is expressed or enhanced so as to efficiently produce the organic acid described above.
  • the recombinant microalgae of the present invention which have been transformed into, and further transformed so that phosphoenolpyruvate carboxylase (Ppc) is expressed or enhanced, are used.
  • the description in the section of "recombinant microalgae" can be applied.
  • the medium for culturing microalgae in the method for producing an organic acid of the present invention is used for seed culture and / or main culture of microalgae, and is an aqueous solution containing a nitrogen source, an inorganic salt and the like as described later. Is preferable.
  • artificial or natural seawater or fresh water for example, distilled water
  • BG-11 medium J Gen Microbiol 111: 1-61 (1979)
  • HSM medium and TAP medium low temperature science, 67: 17-21 (2009)
  • Cramer-Myers medium (CM medium), etc. are used. can do.
  • an organic raw material may be added to the medium as a carbon source.
  • the organic raw material used for the main culture is not particularly limited as long as it can be assimilated and proliferated by the microalgae, but usually, carbohydrates such as galactose, lactose, glucose, fructose, sucrose, sucrose, starch and cellulose; glycerol, Fructose sugars such as polyalcohols such as mannitol, xylitol, and ribitol are used and can be selected according to the target organic acid, and can be selected from general organic raw materials.
  • glucose, sucrose, or fructose is preferable, and glucose or sucrose is particularly preferable.
  • a starch saccharified solution containing the fermentable sugar, molasses and the like are also used, and the fermentable sugar may be a sugar solution extracted from plants such as sugar cane, sugar beet and sugar maple. These organic raw materials can be used alone or in combination.
  • the medium can contain carbonate ions, bicarbonate ions or CO 2 .
  • the pH of the medium is any pH suitable for the growth of microalgae in both steps (a) and (b), for example, pH 5 to 10, preferably pH 6 to 9, more preferably.
  • the pH can be adjusted to 6-8.
  • the pH can be appropriately adjusted by adding sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, magnesium carbonate, sodium hydroxide, calcium hydroxide, magnesium hydroxide and the like.
  • the temperature condition for culturing microalgae is usually in the range of 25 ° C. to 45 ° C., preferably 30 ° C. to 40 ° C., and is preferably 35 ° C. to 40 ° C. in both steps (a) and (b). Is more preferable.
  • microalgae are pre-cultured in advance, and then main culture under photoautotrophic conditions is performed in step (a), and main culture is performed in a dark place under anaerobic conditions in step (b).
  • the temperature in the step (a) and / or the step (b) is preferably 35 ° C. to 40 ° C.
  • the temperature in the step (b) is 35 ° C. to 40 ° C. Is more preferable.
  • both the steps (a) and (b) can be carried out within 12 hours or more and 5 days or less, respectively, but in the step (a), 12 hours or more and 3 days or less are preferable, and (b) The process is preferably 24 hours or more and 5 days or less.
  • Photoautotrophic in step (a) of the production method of the present invention is used in a general sense, and refers to a state in which microalgae produce sugar from CO 2 and water by photosynthesis and grow using this as an energy source.
  • the light irradiation conditions during light autotrophing may be either natural light or artificial light, and the intensity of the light irradiation can be appropriately adjusted depending on the density of algae in the medium, the depth of the culture tank, and the like. ..
  • 30-2,000 ⁇ mol photons m -2 s -1 preferably 30-1,000 ⁇ mol photons m -2 s -1 , more preferably 50-600 ⁇ mol photons m -2 s -1 , natural or artificial light.
  • microalgae can photosynthesize and proliferate smoothly.
  • the light irradiation may be continuous or periodic. For large outdoor cultures, light / dark cycles may be provided to minimize costs and avoid additional costs of artificial lighting.
  • the "anaerobic" in the step (b) of the production method of the present invention means a state in which the dissolved oxygen concentration in the solution is suppressed to a low level.
  • an inert gas such as nitrogen gas (N 2 ) is supplied for reaction, or an inert gas containing CO 2 is aerated. Etc. can be used.
  • the "dark place” means a state in which light is not irradiated. In the process of anaerobic and dark conditions, the recombinant microalgae of the present invention secrete organic acids into the medium.
  • the medium contains carbonate ion, bicarbonate ion and / or CO 2.
  • concentrations of carbonate ion and bicarbonate ion are 5 to 2,000 mM, preferably 10 to 1,000 mM, more preferably 20 to 500 mM, further preferably 50 mM to 400 mM, and even more preferably 100 mM. It is particularly preferably ⁇ 300 mM.
  • the introduction of carbonate and / or bicarbonate into the medium is by filling with CO 2 or adding at least one carbonate selected from sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate and magnesium carbonate. be able to. When CO 2 is filled, it can be filled until it becomes saturated. When CO 2 is saturated, the carbonate ion concentration becomes 20 to 2,000 mM.
  • the concentration of the buffer in the medium for culturing the microalgae in the step (b) of the production method of the present invention is in the range of 20 mM to 500 mM, preferably 50 mM to 400 mM. , 100 mM to 300 mM, more preferably 100 to 200 mM.
  • step (b) of the production method of the present invention the efficiency of organic acid production in microalgae can be significantly increased by adding corn steep liquor to the medium.
  • the corn steep liquor is Corn Steep Liquor (CSL), which is produced by lactic acid fermentation with soluble components eluted from corn in the dipping step of corn wet milling, which is one of the purification methods of corn starch (starch). It refers to a liquid in which the immersion liquid containing the components is concentrated, or a solid (powder) in which it is dried. That is, it corresponds to the residue when starch is extracted from corn.
  • CSL Corn Steep Liquor
  • the corn steep liquor in the production method of the present invention is commercially available as a corn steep liquor, and is particularly limited as long as it can significantly increase the production efficiency of organic acids in microalgae. is not it.
  • Examples of the corn steep liquor that can be used include, but are not limited to, those manufactured by Oriental Yeast Co., Ltd. and Spectrum Chemical Co., Ltd.
  • the concentration of corn steep liquor in the medium in the production method of the present invention is preferably 10 mg / L to 100 g / L, preferably 100 mg / L to 20 g / L, and preferably 300 mg / L to 10 g / L.
  • 500 mg / L to 5 g / L is further preferable, and 500 mg / L to 4 g / L is particularly preferable.
  • the cell density of the microalgae to be fermented was such that the cells obtained by culturing under photoautotrophic conditions (step (a)) had an OD750 of 20 to 200. It is preferably added to the medium so as to be in the range, more preferably added to the medium so that the OD750 is 20 to 150, and further preferably added to the medium so that the OD750 is 50 to 120. By seeding cells at such an initial density, organic acids can be efficiently produced.
  • the organic acid to be produced in the present invention is not particularly limited, but is an intracellularly metabolized organic acid produced in the citric acid cycle, and specifically, an organic carboxylic acid.
  • organic carboxylic acids include succinic acid, lactic acid, acetic acid, fumaric acid, 2-ketoglutaric acid, malic acid, and the like.
  • examples thereof include aliphatic carboxylic acids such as citric acid and gluconic acid.
  • aliphatic dicarboxylic acids such as succinic acid, fumaric acid, 2-ketoglutaric acid and malic acid are preferable, and succinic acid is more preferable.
  • Step (c) the organic acid produced in the steps (a) and (b) can be separated and purified from the medium by a conventionally known method or any separation and purification method developed in the future, if necessary. can. Specifically, after separating from microalgae and their products by ultrafiltration membrane separation, centrifugation, concentration, etc., they are purified by a known method such as a column method or a crystallization method, and dried to form crystals. Examples include a method of collecting.
  • the present invention also includes a method for producing an organic acid by a semi-permanent cycle, which repeats the above-mentioned steps (a), (b) and (c). That is, in the step (a), the microalgae immobilize CO 2 in the atmosphere to synthesize saccharides (for example, glycogen) under photoautotrophic conditions, and grow and proliferate. Next, by setting the culture environment in a dark place under anaerobic conditions in the step (b), the recombinant microalgae can efficiently produce an organic acid from the glycogen accumulated in the step (a).
  • saccharides for example, glycogen
  • the microalgae When the produced organic acid has been recovered in the step (c), the microalgae can be suspended in a new medium, and the steps (a), (b), and (c) can be continuously carried out again. .. According to the method for producing an organic acid by this semi-permanent cycle, a large amount of organic acid can be produced more efficiently and continuously as compared with the conventional method.
  • the present invention also includes a method for producing an organic acid using microalgae, which comprises a step of culturing microalgae in a medium containing corn steep liquor. According to this method, the production efficiency of organic acid can be improved not only by using the above-mentioned microalgae of the present invention but also by using conventional microalgae.
  • the photosynthesis of microalgae and the carbon source incorporated into the microalgae make it possible to produce organic acids from biomass, and it is possible to produce organic acids in an environmentally friendly and effective manner.
  • the supply of carbonate ion and / or bicarbonate ion to the aqueous medium can be effectively utilized by utilizing, for example, CO 2 in the atmosphere industrially emitted in the manufacturing process of electricity, steel and the like. It has an excellent effect on the natural environment in that it can effectively utilize CO 2 in the atmosphere.
  • the medium used as biomass can utilize not only fresh water but also seawater, and can be stably and effectively utilized regardless of the depletion of water resources and the limit of cultivated land. Can be done.
  • amplified by PCR The obtained amplified fragment was inserted into PstI and HindIII digestion pBluescript II SK (+) (Agilent Technologies, Palo Alto, CA) using the In-Fusion HD Cloning Kit (obtained from Takara Bio Inc., manufactured by Clonetech). , PBluescript-TrbcL-slr0168 was obtained.
  • the canamycin resistance cassette and the rbcL promoter are the oligonucleotides shown in SEQ ID NOs: 11 and 12 and the oligonucleotides shown in SEQ ID NOs: 13 and 14 as primer sets from the genomic DNA of pCRII-TOPO (Invitrogen, Carlsbad, CA) and PCC6803 (GT). Used and amplified by PCR.
  • the obtained amplified fragment was inserted into XhoI and XbaI digestion pBluescript-TrbcL-slr0168 using In-Fusion HD Cloning Kit (manufactured by Clonetech, obtained from Takara Bio Inc.) and inserted into pBluescript-Kmr-PrbcL-TrbcL-slr0168.
  • a part of the coding region upstream of the slr0168 region was amplified by PCR using the oligonucleotides shown in SEQ ID NOs: 15 and 16 as a primer set from the genomic DNA extracted from PCC6803 (GT).
  • the obtained amplified fragment was inserted into KpnI and XhoI digestion pBluescript-Kmr-PrbcL-TrbcL-slr0168 using In-Fusion HD Cloning Kit (manufactured by Clonetech, obtained from Takara Bio Inc.), and pBluescript-slr0168-Kmr.
  • -PrbcL-TrbcL-slr0168 was obtained.
  • CACATG digested with AatII and EcoRI was replaced with the NdeI site (CATATG) of pUC19 (Takara Bio), and synthetic DNA was inserted.
  • the fragment containing slr0168 was inserted into the KpnI / HindIII site of the prepared pUC19 vector to prepare pSKrbcL-slr0168.
  • the pSKrbcL-slr0168 vector prepared above was cleaved at NotI and NdeI sites.
  • pTrcHis A, B Cvector (manufactured by Invitrogen) as a template and the oligonucleotides shown in SEQ ID NOs: 17 and 18 (F; TTCTTCTGAGCGGCCGCCGACTGCACGGTGCACCAAT, and R; TCGACTCTAGACATATGGGTCTGTTTCCTGTGTGAA) as primers
  • the trc promoter was amplified by PCR. ..
  • the obtained amplified fragment was cloned into the plasmid vector pSKrbcL-slr0168 cleaved at the above NotI and NdeI sites using the In-Fusion HD Cloning Kit (manufactured by Clonetech, obtained from Takara Bio Inc.).
  • the plasmid pSKtrc-slr0168 was recovered by transformation into E. coli (Nova blue).
  • PEP (sll0920) encoding PEP carboxylase was amplified by PCR from genomic DNA extracted from PCC6803 (GT) using the oligonucleotides shown in SEQ ID NOs: 19 and 20 as a primer set. The obtained amplified fragment was inserted into NdeI / SalI digestion pSKtrc-slr0168 using an In-Fusion HD Cloning Kit (manufactured by Clontech, obtained from Takara Bio Inc.) to obtain pSKtrc-slr0168 / sll0920.
  • PCC6803 (GT) was transformed with the obtained plasmid pSKtrc-slr0168 / sll0920 vector (including the sll0920 coding region). As a control, transformation was performed with an empty vector (plasmid pSKtrc-slr0168 vector containing no sll0920 coding region).
  • PCC6803 (GT) transformed by the above and prepared to overexpress sll0920 is referred to as PCC6803 (Ppc-ox).
  • SEQ ID NO: 7 5'-CCTCTAGAGTCGACCTGCAGGTTACAGTTTTGGCAATTAC-3'
  • SEQ ID NO: 8 5'-GCCAGCCCCAACACCTGACGCGTTTCCCCACTTAGATAAAAAATCC-3'
  • SEQ ID NO: 9 5'-TCTAAGTGGGGAAACGCGTCAGGTGTTGGGGCTGGC-3'
  • SEQ ID NO: 10 5'-TGATTACGCCAAGCTTCTAAGTCAGCGTAAATCTGACAATG-3' SEQ ID NO: 11: 5'-CGGGCCCCCCTCGAGCCGGAATTGCCAGCTGGGGC-3'
  • SEQ ID NO: 13 5'-TCTTGACGAGTTCTTCTGAGCGGCCGCTCTAATTAGAAAGTCCA-3'
  • SEQ ID NO: 14 5'-CCGGATCCTCTAGACATATGGGTCAGTCCTC
  • the obtained amplified fragment was cloned into the plasmid vector pTCP2013 cleaved at the above Nde 1 site using the In-Fusion HD Cloning Kit (manufactured by Clonetech, obtained from Takara Bio Inc.).
  • the plasmid pTCP2031-PEPCK was recovered by transformation into E. coli (Nova blue).
  • PCC6803 (GT) was transformed with the obtained plasmid pTCP2031-PEPCK vector to obtain PCC6803 (Ppc-ox / Pepck-ox) co-expressing Ppc / Pepck.
  • the obtained amplified fragment was cloned into the plasmid vector pSKtrc-slr0168 / sll0920 cleaved at the above KpnI, XhoI site using the In-Fusion HD Cloning Kit (manufactured by Clonetech, obtained from Takara Bio Inc.).
  • the plasmid was recovered by transformation into E. coli (Nova blue).
  • the above-mentioned recovered plasmid was cleaved at the MluI, HindIII site.
  • genomic DNA of Synechocystis sp.PCC6803 as a template and the oligonucleotides shown in SEQ ID NOs: 25 and 26 (F; TCTAAGTGGGGAAACGCGTTACCCACAACGCTCTGCAAA, and R; CCATGATTACGCCAAGCTTGGCATTTACGGCATCGACAC) as primers
  • slr1556 stop was amplified by PCR.
  • the obtained amplified fragment was cloned into a plasmid vector cleaved at the above MluI, HindIII site using an In-Fusion HD Cloning Kit (manufactured by Clonetech, obtained from Takara Bio Inc.).
  • the plasmid was recovered by transforming into E. coli (Nova blue).
  • Spr spectinomycin resistance gene
  • F CCAAACCCTACACTCGAGGGGGTCTGACGCTCAGTGGAAC
  • R ACCGTGCAGTCGGCGGCCGCGTGGCACTTTTCGGGGAAATGTG
  • the obtained amplified fragment was cloned into a plasmid vector cleaved at the above XhoI, NotI site using an In-Fusion HD Cloning Kit (manufactured by Clonetech, obtained from Takara Bio Inc.).
  • the plasmid pSStrc-slr1556 was recovered by transformation into E. coli (Nova blue).
  • the plasmid vector pSStrc-slr1556 was cleaved at MluI and HindIII sites.
  • the genomic DNA of Synechocystis sp. PCC6803 was used as a template, and the slr0646 downstream fragment was amplified. That is, the oligonucleotides shown in SEQ ID NOs: 29 and 30 (F; TTTTTTATCTAAGTGGGGAAACGCGTAAGCCCATTTACGTCGTGTTG, and R; ATAGTCACCTGGAACCGTTGGAAGCTTGGCGTAATCATGGTCATAGC) were used as primers and amplified by PCR.
  • the obtained amplified fragment was cloned into the plasmid vector pSStrc-slr1556 cleaved at the above MluI and HindIII sites using the In-Fusion HD Cloning Kit (manufactured by Clonetech, obtained from Takara Bio Inc.).
  • the plasmid pSStrc-slr1556up-slr0646down was recovered by transformation into E. coli (DH5 ⁇ ).
  • the plasmid vector pSStrc-slr1556up-slr0646down was cleaved at EcoRI and XhoI site.
  • the genomic DNA of Synechocystis sp. PCC6803 was used as a template, and the upstream fragment of slr0646 was amplified. That is, the oligonucleotides shown in SEQ ID NOs: 31 and 32 (F; GACGGCCAGTGAATTCTTCGATCGTTAGCGCCAACACCAAGGCG, and R; CCAGTAGCATTTAGCGCTGATCCCCATCTCGAGGGGGTCTGAC) were used as primers and amplified by PCR.
  • the obtained amplified fragment was cloned into the plasmid vector pSStrc-slr1556up-slr0646down cleaved at the above EcoRI and XhoI site using the In-Fusion HD Cloning Kit (manufactured by Clonetech, obtained from Takara Bio Inc.).
  • the plasmid pSStrc-slr0646 was recovered by transformation into E. coli (DH5 ⁇ ).
  • the plasmid vector pSStrc-slr0646 was cleaved at NdeI and SalI sites.
  • the genomic DNA of the Corynebacterium glutamicum ATCC 13032 strain was used as a template, and the pyc fragment was amplified. That is, the oligonucleotides shown in SEQ ID NOs: 33 and 34 (F; GGAAACAGACCCATATGtCGACTCACACATCTTCAACGCTTCC, and R; CGACTTGATCGTCGTCGTTTCCTAAGTCGACCTGCAGGTTA) were used as primers and amplified by PCR.
  • the obtained amplified fragment was cloned into the plasmid vector pSStrc-slr0646 cleaved at the above NdeI and SalI sites using the In-Fusion HD Cloning Kit (manufactured by Clonetech, obtained from Takara Bio Inc.).
  • the plasmid pSStrc-slr0646-pyc was recovered by transformation into E. coli (DH5 ⁇ ).
  • PCC6803 (GT) was transformed with the obtained plasmid pSStrc-slr0646-pyc vector to obtain PCC6803 (Ppc-ox / Pyc-ox) co-expressing Ppc / Pyc.
  • SEQ ID NO: 21 5'-CATAAGGAATTATAACCATATGACCGATTTGAACAAATTGG-3' SEQ ID NO: 22: 5'-CGGGGCATGGAGGAGTCGACTTAGGCTTTGGGCCCGGCAC-3' SEQ ID NO: 23: 5'-CAGTGAATTCGAGCTCGGTACCCAATGATGGAGCGGGCAATG-3' SEQ ID NO: 24: 5'-CTGGCAATTCCGGCTCGAGTGTAGGGTTTGGCCTCCAAC-3' SEQ ID NO: 25: 5'-TCTAAGTGGGGAAACGCGTTACCCACAACGCTCTGCAAA-3' SEQ ID NO: 26: 5'-CCATGATTACGCCAAGCTTGGCATTTACGGCATCGACAC-3' SEQ ID NO: 27: 5'-CCAAACCCTACACTCGAGGGGGTCTGACGCTCAGTGGAAC-3' SEQ ID NO: 28: 5'-ACCGTGCAGTCGGCGGCCGCGCGTGGCACTTTTCGGGGAAATGTG-3' SEQ ID
  • the algae density was measured by OD750 using a Shimadzu UV mini spectrophotometer (ultraviolet-visible spectrophotometer: manufactured by Shimadzu Corporation).
  • the OD750 after culturing was 1 to 1.5.
  • ventilation means ventilation by air unless otherwise specified. The same applies to the following examples.
  • the sodium hydrogencarbonate concentration in the medium in the anaerobic / dark place culture step should be 0 mM, 50 mM, 100 mM, 200 mM, 300 mM, or 400 mM.
  • Ppc-ox and Ppc-ox / Pepck-ox were prepared in the same manner as in the section "2.
  • Organic acid production by Pepck-expressing microalgae and Pyc-expressing microalgae except that the time was only 72 hours. The amount of succinic acid produced was measured. The results are shown in FIG.
  • the amount of succinic acid produced was similarly significantly increased when the corn steep liquor manufactured by Oriental Yeast Co., Ltd. was used and when the corn steep liquor manufactured by Spectrum Chemical Co., Ltd. was used.
  • the amount of succinic acid produced increased depending on the concentration of sodium hydrogen carbonate, and reached the maximum at 300 mM.
  • the amount of succinic acid produced by Ppc-ox / Pepck-ox under the condition of 300 mM sodium hydrogen carbonate and 1 g / L corn steep liquor was much higher than the world's highest yield so far.
  • HEPES concentration and corn steep liquor concentration in organic acid production of microalgae The effects of HEPES concentration and corn steep liquor concentration on the amount of organic acid produced from microalgae were examined.
  • the corn steep liquor concentration in the medium was set to 1 g / L, 2 g / L, 3 g / L, 4 g / L, or 5 g / L, and the HEPES concentration was 100 mM.
  • culture time should be only 72 hours, and each cell line obtained by culturing under photoautotrophic conditions of the main culture should be added to the medium (10 mL) so that OD750 becomes 100.
  • phosphoenolpyruvate carboxylase (Pepck) and / or pyruvate carboxylase (Pyc) in microalgae such as cyanobacteria produces and yields organic acids such as succinic acid. Can be increased. Furthermore, by adding sodium hydrogen carbonate or corn steep liquor to the culture solution, it is possible to significantly increase the production of organic acids such as succinic acid by microalgae such as cyanobacteria. Therefore, according to the present invention, the organic acid can be produced more efficiently, so that the stable supply and mass production of the organic acid can be made possible. From the above, according to the present invention, the production of a biodegradable plastic raw material from aquatic biomass becomes realistic.

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本発明は、組換え微細藻類を用いてより効率よく有機酸を生産することができ、安定供給及び大量生産に適した方法を提供することを課題とする。 本発明は、ホスホエノールピルビン酸カルボキシキナーゼ(Pepck)及びピルビン酸カルボキシラーゼ(Pyc)からなる群より選択される少なくとも一種の酵素機能が増強された組換え微細藻を培養する工程を含む、微細藻を用いた有機酸の製造方法である。上記組換え微細藻の培養は、嫌気性条件下、暗所で行われることが好ましい。また、上記組換え微細藻の培養は、コーンスティープリカーを含有する培地中で行われることが好ましい。

Description

組換え微細藻及び微細藻を用いた有機酸の製造方法
 本発明は、組換え微細藻及び微細藻を用いた有機酸の製造方法に関する。
 現代社会ではプラスチックをはじめ繊維、ゴム、溶剤、塗料、洗剤、液体燃料等の多くの材料の生産が石油化学産業に依存している。しかし、これ以上の石油の利用拡大は資源の枯渇や環境負荷の増大を深刻化させるため、石油依存から脱却し、植物系バイオマスから得られるデンプンや糖蜜、セルロース等から燃料・化学品を生産することに期待が寄せられている。
 乳酸やコハク酸等の有機酸は、食品、医薬品、その他化学品の合成原料として広く用いられている。これら有機酸についても、デンプン及びセルロース等の糖質系バイオマスからの生産が期待されている。例えば、農業用マルチフィルム、包装材、農業・土木資材等に広く活用されているポリブチレンサクシネート(PBS)等の生分解性プラスチックは、原材料となるコハク酸を石油由来のものからバイオマス由来のものに切り替えていこうという流れがある。
 微細藻類やシアノバクテリア(ラン藻)は、光環境下でCOを吸収し、オイル、デンプン、グリコーゲン、有機酸、その他の機能性物質(色素類や機能性脂質等)等を直接生産することが可能である。加えて、海洋性の藻類を利用すれば、耕作地の限界や水資源の枯渇を回避することも可能である。近年は、遺伝子組換えが可能な微細藻類やシアノバクテリアも増えたため、藻類が元々作らない有用物質を作らせる試みも行われるようになってきている。
 このような微細藻類を利用した有用物質生産の大きな問題点は、安定供給及び大量生産が困難なことである。それを解決する方法としては、例えば、微細藻類の増殖性を決定する因子を強化することにより細胞密度を増大させ、有用物質の生産量を増大させる方法が検討されている(非特許文献1及び2)。また、微細藻類を35℃~40℃の、従来より高い温度条件で培養することで、より効率的に微細藻類から有機酸を生産できる方法も開発されている(特許文献1)。しかし、これらの方法による有機酸の生産効率は十分とはいえないため、より効率的に有機酸を生産でき、安定供給及び大量生産が可能な方法の開発が強く望まれている。
国際公開公報2018/051916号
Hasunuma Tら, 2010, J Exp Bot 61: 1041-1051 Hasunuma Tら, 2013, J Exp Bot 64: 2943-2954
 このような状況の中、本発明は、微細藻類を用いてより効率よく有機酸を生産することができ、安定供給及び大量生産に適した方法を提供することを課題とする。
 本発明者らは、上記課題を解決するために、鋭意研究した結果、ラン藻にてホスホエノールピルビン酸カルボキシキナーゼ(Pepck)、ピルビン酸カルボキシラーゼ(Pyc)を過剰発現させることで、コハク酸等の有機酸の生産量や収率を増大させることができることを見出した。さらに、重炭酸ナトリウムやコーンスティープリカーを培養液中に添加することで、コハク酸等の有機酸の生産量を顕著に増大させることにも成功した。即ち、本発明の要旨は、以下のとおりである。
[1]ホスホエノールピルビン酸カルボキシキナーゼ(Pepck)及び/又はピルビン酸カルボキシラーゼ(Pyc)が発現又は発現増強するように形質転換されている、組換え微細藻。
[2]上記微細藻がラン藻(シアノバクテリア)である、[1]に記載の組換え微細藻。
[3]上記ラン藻(シアノバクテリア)が、シネコシスティス属である、[2]に記載の組換え微細藻。
[4]上記微細藻において、ホスホエノールピルビン酸カルボキシラーゼ(Ppc)が発現又は発現増強するように形質転換されている、[1]から[3]のいずれかに記載の組換え微細藻。
[5][1]から[4]のいずれかに記載の組換え微細藻を培養する工程を含む、微細藻を用いた有機酸の製造方法。
[6]上記組換え微細藻の培養工程の一部が、嫌気性条件下で行われる、[5]に記載の有機酸の製造方法。
[7]上記組換え微細藻の培養工程の一部が、さらに暗所にて行われる、[6]に記載の有機酸の製造方法。
[8]上記組換え微細藻の培養が、炭酸イオン及び/又は重炭酸イオンの含有量が10~1,000mMの培地中で行われる、[5]から[7]のいずれかに記載の有機酸の製造方法。
[9]上記炭酸イオン及び/又は重炭酸イオンの含有量が10~1,000mMの培地が、二酸化炭素の充填、及び/又は炭酸塩の添加により調製される、[8]に記載の有機酸の製造方法。
[10]上記組換え微細藻の培養が、コーンスティープリカーを含有する培地中で行われる、[5]から[9]のいずれかに記載の有機酸の製造方法。
[11]上記有機酸が、脂肪族カルボン酸である、[5]から[10]のいずれかに記載の有機酸の製造方法。
[12]上記有機酸が、コハク酸、乳酸、酢酸、フマル酸、2-ケトグルタル酸、リンゴ酸、クエン酸及びグルコン酸からなる群より選択される少なくとも1種である、[5]から[11]のいずれかに記載の有機酸の製造方法。
[13](a)光独立栄養条件下にて[1]から[4]のいずれかに記載の組換え微細藻を生育・増殖させる組換え微細藻生育・増殖工程、
(b)上記(a)工程において生育・増殖させた組換え微細藻を、嫌気性条件下、暗所にて培養し、有機酸を産生させる有機酸産生工程、及び
(c)上記(b)工程において産生させた有機酸を回収する、有機酸回収工程
を繰り返す、半永久サイクルによる有機酸の製造方法。
[14]微細藻を、コーンスティープリカーを含有する培地中で培養する工程を含むことを特徴とする、微細藻を用いた有機酸の製造方法。
 本発明によると、ラン藻等の微細藻類にてホスホエノールピルビン酸カルボキシキナーゼ(Pepck)及び/又はピルビン酸カルボキシラーゼ(Pyc)を過剰発現させることで、コハク酸等の有機酸の生産量や収率を増大させることができる。さらに、重炭酸ナトリウムやコーンスティープリカーを培養液中に添加することで、ラン藻等の微細藻類によるコハク酸等の有機酸の生産量を顕著に増大させることも可能である。したがって、本発明によると、より効率的に有機酸を生産することができるため、有機酸の安定供給及び大量生産を可能とすることができる。
図1は、微細藻にPepckを発現させることにより、コハク酸の産生量が増大したことを示す図である。 図2は、微細藻にPycを発現させることにより、コハク酸の産生量が増大したことを示す図である。 図3は、微細藻にPepckを発現させることにより、培地中の炭酸水素ナトリウム濃度のコハク酸産生における至適範囲が変化したことを示す図である。 図4は、微細藻からのコハク酸産生におけるコーンスティープリカー添加の効果を示す図である。 図5は、微細藻からのコハク酸産生におけるコーンスティープリカー添加の効果(複数種のコーンスティープリカーの比較)を示す図である。 図6は、微細藻からのコハク酸産生において、コーンスティープリカー添加条件での炭酸水素ナトリウム濃度の影響を検討した結果を示す図である。 図7は、微細藻からのコハク酸産生における細胞密度の影響を検討した結果を示す図である。 図8は、微細藻からのコハク酸産生におけるHEPES濃度及びコーンスティープリカー濃度の影響を検討した結果を示す図である。
 以下、本発明の組換え微細藻、微細藻を用いた有機酸の製造方法について詳細に説明する。なお、本明細書において、DNAやベクターの調製等の分子生物学的手法は、特に明記しない限り、当業者に公知の一般的実験書に記載の方法又はそれに準じた方法により行うことができる。また、本明細書中で使用される用語は、特に言及しない限り、当該技術分野で通常用いられる意味で解釈される。
<組換え微細藻>
 本発明の組換え微細藻は、微細藻において、ホスホエノールピルビン酸カルボキシキナーゼ(Pepck)及び/又はピルビン酸カルボキシラーゼ(Pyc)が発現又は発現増強するように形質転換されている。また、本発明の組換え微細藻は、さらにホスホエノールピルビン酸カルボキシラーゼ(Ppc)が発現又は発現増強するように形質転換されていることが好ましい。以下に本発明の組換え微細藻について詳細に説明する。
(微細藻)
 本発明において、「微細藻」とは、葉緑素(クロロフィル)を持ち、光合成を行う微生物をいう。微細藻は、光合成によって大気中のCOを固定化して糖類(例えば、グリコーゲン)を合成し、他方、水(HO)から酸素(O)を発生させ得る(「酸素発生型光合成」ともいう)。微細藻は、単細胞形態を有するものであってもよく、コロニー形態(例えば、フィラメント、シート又はボール)を有するものであってもよい。また、微細藻は、海洋又は淡水のいずれで繁殖するものであってもよい。
 本発明の微細藻は、原核生物のシアノバクテリア(ラン藻類)及び真核生物(例えば、緑藻類、珪藻類、渦鞭毛藻、紅藻、プラシノ藻、ユーグレナ藻、真正眼点藻など)の何れであってもよい。シアノバクテリア(ラン藻類)としては、例えばシネコシスティス属(Synechocystis)、アルスロスピラ属(Arthrospira)、スピルリナ属(Spirulina)、アナベナ属(Anabaena)、シネココッカス属(Synechococcus)、サーモシネココッカス属(Thermosynechococcus)、ノストック属(Nostoc)、プロクロロコッカス属(Prochlorococcu)、ミクロシスティス属(Microcystis)、グロエオバクター属(Gloeobacter)などが挙げられる。真核生物としては、例えばクラミドモナス属(Chlamydomonas)、クロレラ属(Chlorella)、ドナリエラ属(Dunaliella)、ヘマトコッカス属(Hematococcus)、ボルボックス属(Volvox)、ボトリオコッカス属(Botryococcus)などの緑藻類;リゾソレニア属(Rhizosolenia)、ケトセロス属(Chaetoceros)、シクロテラ属(Cyclotella)、シリンドロテカ(Cylindrotheca)、ナビクラ属(Navicula)、フェオダクチラム属(Phaeodactylum)、タラシオシラ属(Thalassiosira)、フィッツリフェラ属(Fistulifera)などの珪藻類;アンフィジニウム属(Amphidinium)、シンビオジニウム属(Symbiodinium)などの渦鞭毛藻;シアニディオシゾン属(Cyanidioschyzon)、ポルフィリジウム属(Phorphyridium)などの紅藻;オストレオコッカス属(Ostreococcus)などのプラシノ藻;ユーグレナ属(Euglena)などのユーグレナ藻;ナンノクロロプシス属(Nannochloropsis)などの真正眼点藻などが挙げられる。例えば、微細藻類の微生物種としては、シネコシスティスPCC6803種(Synechocystis sp. PCC6803)、シネココッカスPCC7002種(Synechococcus sp. PCC7002)、アルスロルピラ・プラテンシス(Arthrospira platensis)(「スピルリナ(Spirulina)」とも称される)、スピルリナ・マキシマ(Spirulina maxima)、スピルリナ・サブサルサ(Spirulina subsalsa)、アナベナPCC7120種(Anabaena sp. PCC7120)、クラミドモナス(Chlamydomonas reinhardtii)、クラミドモナス種(Chlamydomonas sp.)、クロレラ・ブルガリス(Chlorella vulgaris)、クロレラ・ピレノイドーサ(Chlorella pyrenoidosa)、ドナリエラ・サリナ(Dunaliella salina)、ドナリエラ種(Dunaliella sp.)、ヘマトコッカス・プルビアリス(Hematococcus pluvialis)、ボルボックス・カルテリ(Volvox carteri)、ボトリオコッカス・ブラウニイ(Botryococcus braunii)、シクロテラ・クリプティカ(Cyclotella cryptica)、シリンドロテカ・フジフォルミス(Cylindrotheca fusiformis)、ナビクラ・サプロフィラ(Navicula saprophila)、フェオダクチラム・トリコルヌツム(Phaeodactylum tricornutum)、タラシオシラ・シュードナナ(Thalassiosira pseudonana)、フィッツリフェラ種(Fistulifera sp.)、アンフィジニウム種(Amphidinium sp.)、シンビオジニウム・ミクロアドリアチクム(Symbiodinium microadriaticum)、シアニディオシゾン・メロレ(Cyanidioschyzon merolae)、ポルフィリジウム種(Porphyridium sp.)、オストレオコッカス・タウリ(Ostreococcus tauri)、ユーグレナ・グラシリス(Euglena gracilis)、ナンノクロロプシス・オキュラタ(Nannochloropsis oculata)などが挙げられる。
 これらのうち、本発明の微細藻は、シアノバクテリア(ラン藻類)であることが好ましく、中でもシネコシスティス属(Synechocystis)であることがより好ましく、特にシネコシスティスPCC6803種(Synechocystis sp. PCC6803)が好ましい。
(本発明の組換え微細藻)
 本発明の微細藻は、有機酸を効果的に産生するように改変された組換え微細藻である。改変の方法としては、従来公知の方法や今後開発されるあらゆる方法を適用することができ、例えば遺伝子組換え等の手法により改変することができる。本発明の微細藻は、有機酸の産生能を増強するために、ホスホエノールピルビン酸カルボキシキナーゼ(Pepck)、及び/又はピルビン酸カルボキシラーゼ(Pyc)を発現又は発現増強するように形質転換されている。さらにホスホエノールピルビン酸カルボキシラーゼ(Ppc)を発現又は発現増強するように形質転換されていることが好ましい。
 本発明において、「ホスホエノールピルビン酸カルボキシキナーゼ(Pepck)、及び/又はピルビン酸カルボキシラーゼ(Pyc)を発現又は発現増強するように形質転換されている」、「ホスホエノールピルビン酸カルボキシラーゼ(Ppc)を発現又は発現増強するように形質転換されている」とは、微細藻において、それぞれの遺伝子を導入すること、又はそれらの遺伝子発現を増強するように遺伝子改変を行うこと等をいう。本明細書において、Pepck、Pyc、Ppcに係る遺伝子を導入すること、又はその遺伝子の発現を増強するように遺伝子改変を行った形態は、本発明の微細藻においてこれらの導入、改変が行われる前に比べて、各遺伝子に係るタンパク質の生産量又は活性の増大が確認される形態であればよく、特に限定されない。遺伝子の導入や、その発現を増強する改変は、従来公知の方法によって行われてもよいし、今後開発されるあらゆる方法によって行われてもよい。
 遺伝子が導入されている実施形態としては、例えば、同種又は異種の外因性の遺伝子が導入されているものが挙げられ、好ましくは構成的プロモーターなど強力なプロモーターで作動可能に保持されている。
 ここで「異種」とは、本発明の組換え微細藻とは異なる種であることを言い、例えば本発明の組換え微細藻がシアノバクテリアである場合、異種としては、大腸菌、緑膿菌等のバクテリア等が挙げられる。また、対応する天然遺伝子とは異なる形態で宿主細胞中に再導入された天然コード領域又はその一部も含む。例えば、ゲノム中のその天然位置にはないものも含まれる。なお、本発明の組換え微細藻において異種由来の酵素群をコードするポリヌクレオチドを導入する目的は、元来その宿主細胞が有していない酵素等のタンパク質をコードするポリヌクレオチドを異種から導入し、有機酸の産生経路を機能させ及び/又は亢進させることである。
 本発明において「ポリヌクレオチド」という用語は、単一の核酸及び複数の核酸の両方を意味し、mRNA等の核酸分子、プラスミドRNA、全長のcDNA及びその断片等を含む。ポリヌクレオチドは、任意のポリリボヌクレオチド又はポリデオキシリボヌクレオチドから構成され、修飾、非修飾のどちらでもよい。一本鎖でも二本鎖でもよく、両者の混合でもよい。
 本発明において、遺伝子の発現が増強されている実施形態としては、例えば、内因性のいずれかの遺伝子がより強力なプロモーター(構成的プロモーター又は誘導性プロモーターのいずれであってもよい)の制御下に連結された実施形態が挙げられる。また、追加的に内因性及び/又は外因性のいずれかの遺伝子が導入されている実施形態も挙げられる。追加的に導入されたいずれかの遺伝子は、好ましくは構成的プロモーターなど強力なプロモーターで作動可能に保持されている。遺伝子の発現の増強は、該遺伝子のコピー数を高めることによって達成される。例えば、該遺伝子を含む断片を、目的の微細藻内で機能するベクター、好ましくはマルチコピーが他のベクターと連結して組換えDNAを作製し、これを、有機酸産生能を有する微細藻に導入して形質転換すればよい。また、親株に、上記組換えDNAを導入して形質転換株を得、その後当該形質転換株に有機酸産生能を付与してもよい。なお、発現の増強について、本明細書においては「過剰発現」ともいう。
 上記遺伝子の導入、発現の増強のために用いられるプロモーターとしては、微細藻にて機能する任意のプロモーターを使用することができる。例えば、微細藻がシアノバクテリア(ラン藻類)の場合、ラン藻に由来し得るsbDII、psbA3、psbA2、trc、nirA、petE、nrsRS、nrsABCD、ndhF3、rbcL、rbcX、glnA、atp1、atp2、petF1などのプロモーターが挙げられる。
 上記遺伝子を微細藻に導入するためのプラスミドベクターとしては、微細藻への遺伝子導入が可能となるプラスミドベクターであれば特に限定されず、種々のものが使用可能であるが、一例としては、pTCP2031Vベクターが挙げられる。pTCP2031Vベクターは、psbA2(slr1311)プロモーター、並びにslr2030及びslr2031のコード領域の一部(相同組換え用プラットフォームとして)、及びクロラムフェニコール耐性カセットを含む組換えプラスミドなどが挙げられる(Satoh Sら, 2001, J.Biol. Chem. 276, 4293-4297;Horiuchi Mら, 2010, Biochem. J. 431, 135-140)。
 組換え用構築物、例えば、上記のように作製された発現ベクター又は染色体組込み型ベクターを、宿主微細藻に導入し、形質転換微細藻を作製することができる。
 形質転換微細藻(特にシアノバクテリア)の形質転換には、多くの場合、遺伝子相同組換え法が用いられ得る。遺伝子相同組換え法のために、例えば、上記pTCP2031Vベクターが好適に用いられ得る。形質転換のための発現ベクター又は複製可能なプラスミドの導入は、従来公知の方法又は今後開発されるあらゆる方法を適用することができる。例えば、エレクトロポレーション法、プロトプラスト-PEG法、マイクロインジェクション法、パーティクル・ガン法、リン酸カルシウム法、リポフェクション法、カルシウムイオン法などが挙げられる。
 形質転換株は、遺伝子導入に用いられた発現ベクター又は染色体組込み型ベクターが有する選択マーカーなどを利用して選択される。宿主微生物それぞれに適した培地に、選択マーカーに応じた抗生物質又は薬剤を添加することができる。このような選択用培地として、微細藻の生育に適した任意の培地を使用することができる。例えば、BG-11寒天培地(例えば、Rippka Rら, 1979, J Gen Microbiol 111: 1-61に記載される:シアノバクテリアに用いられ得る);HSM寒天培地及びTAP寒天培地(これらは、例えば、福澤ら、2009,低温科学,67:17-21に記載される:緑藻などの真核生物に用いられ得る)などが挙げられる。まずこの選択マーカーに基づき形質転換体の選抜を行い、次いで、目的とする遺伝子(すなわち、ホスホエノールピルビン酸カルボキシキナーゼ(Pepck)遺伝子、ピルビン酸カルボキシラーゼ(Pyc)遺伝子、ホスホエノールピルビン酸カルボキシラーゼ(Ppc)遺伝子等)又はその産物の発現を解析することにより、形質転換体の選抜を行うことができる。これらの発現産物は、例えば、ウエスタンブロット法によって確認することができる。
 以下に、本発明の組換え微細藻において、導入及び/又は発現増強されている各酵素について説明する。本発明の組換え微細藻は、以下に説明するホスホエノールピルビン酸カルボキシキナーゼ(Pepck)、ピルビン酸カルボキシラーゼ(Pyc)、さらにホスホエノールピルビン酸カルボキシラーゼ(Ppc)が発現又は発現増強するように形質転換されていることにより、コハク酸等の有機酸を効率的に生産することができる。
(ホスホエノールピルビン酸カルボキシキナーゼ(Pepck))
 本発明において、ホスホエノールピルビン酸カルボキシキナーゼ(Pepck)とは、ホスホエノールピルビン酸(Pep)から炭酸固定によりオキサロ酢酸(OAA)を生成する反応を可逆的に触媒する酵素である。本発明においてPepck活性とは、このPepからOAAを生成する反応を触媒する活性をいう。本発明に利用するPepckは、反応の平衡がPepかOAAを生産する方向に傾いているものが好ましい。酵素活性は、例えば、Sigma Diagnostics ATP Kitを用いて、37℃におけるATP産生量を測定する方法で決定することができる(Pil,Kim.,et.al., Applied and Enviromental Microbiology, Feb. 2004, p.1238-1241)。本発明においては、微細藻にPepckを発現させた組換え微細藻を用いることで、光独立栄養条件下での培養により微細藻に蓄積した糖由来のPEPに対して、嫌気性条件下、暗所培養を行うことで、炭酸固定によりオキサロ酢酸(OAA)を生成することが可能となる。
 Pepckの活性が親株と比べて増大していることの確認は、上記の方法で酵素活性を測定すること、又はPepckをコードする遺伝子のmRNAの量若しくは発現しているPepckタンパク質の量を親株と比較することによって確認できる。酵素活性の増大については、親株と比較して増大していればよいが、例えば親株の1.5倍以上であることが好ましく、2倍以上であることがより好ましく、3倍以上であることがさらに好ましく、5倍以上であることが特に好ましい。
 本発明において、微細藻に導入するためのPepckとしては、嫌気性条件下、暗所培養を行うことで、炭酸固定によりオキサロ酢酸(OAA)を生成する反応をより効率的に触媒するものであれば特に限定されないが、例えば、二酸化炭素高濃度下でコハク酸生成能を有する一部の細菌群である、アクチノバチルス・サクシノゲネス(Actinobacillus succinogenes)、マンヘイミア・サクシニシプロデューセンス(Mannheimia succiniciproducens)、アンアエロバイオスピリルム・サクシニシプロデューセンス(Anaerobiospirillum succiniciproducens)、セレノモナス・ルミナンティウム(Selenomonas ruminantium)等由来の酵素、これら以外にも、大腸菌(エシェリヒア・コリー;Escherichia coli)、コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)等由来の酵素、「https://www.brenda-enzymes.org/enzyme.php?ecno=4.1.1.32」に開示されている酵素等が挙げられる。なお、Pepckとは異なる名称で知られているものであっても、上記の触媒活性を有するものであれば、本発明におけるPepckとして用いることができる。本発明において、微細藻に導入するためのPepckとしては、中でもアクチノバチルス・サクシノゲネス(Actinobacillus succinogenes)由来の酵素であることがより好ましい。
 Pepck遺伝子は、すでにいくつかの配列が明らかにされているので、それらの塩基配列に基づいて作製したプライマーを用いて得ることができる。例えば、作製したプライマーを用いて、アクチノバチルス・サクシノゲネス(Actinobacillus succinogenes)の染色体DNAを鋳型とするPCR法によって、アクチノバチルス・サクシノゲネスのPepckのコード領域と、その制御領域を含む隣接領域を取得することができる。あるいは、それらの野生型に相当する塩基配列(配列番号1)に対し、コドン最適化した形で設計した配列等を全合成することもできる(配列番号2)。他の微生物のPepck遺伝子ホモログも同様にして取得され得る。Pepck遺伝子ホモログとは、他の微生物に由来し、上記アクチノバチルス・サクシノゲネスのPepck遺伝子と高い相同性を示し、Pepck活性を有するタンパク質をコードする遺伝子をいう。
 腸内細菌科に属する細菌の種や菌株によってPepck遺伝子の塩基配列に差異が存在することがあるため、本発明において使用するPepck遺伝子は、配列番号2に限られず、微細藻内でその発現を増強することにより微細藻のコハク酸生産能を向上させることができる限り、配列番号2のポリヌクレオチドがコードするアミノ酸配列において、1若しくは複数の位置での1若しくは数個のアミノ酸の置換、欠失、挿入又は付加等を含む配列を有するタンパク質をコードする変異体又は人為的な改変体であってもよい。ここで、「数個」とは、アミノ酸残基のタンパク質の立体構造における位置や種類によっても異なるが、好ましくは1から20個、より好ましくは1から10個、さらに好ましくは1から5個である。また、このようなアミノ酸の置換、欠失、挿入、付加、又は逆位等には、Pepck遺伝子を保持する微生物の個体差、種の違いに基づく場合等の天然に生じる変異によって生じるものも含まれる。Pepckタンパク質(ペプチド)をコードするポリヌクレオチドは、上記特定の配列に対して、少なくとも70%以上、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは97%以上の同一性を有するタンパク質(及びそれをコードするポリヌクレオチド)であり、かつPepck活性(ホスホエノールピルビン酸カルボキシキナーゼ活性)を有するタンパク質(及びそれをコードするポリヌクレオチド)は、本発明において使用可能であると理解される。
 Pepck遺伝子を導入する宿主により、遺伝子の縮重性が異なるので、それぞれ導入される宿主で使用しやすいコドンに置換したものでもよい。同様に、Pepck遺伝子は、発現を増強することにより微細藻の有機酸産生能を向上させる機能を有する限り、N末端側、C末端側が延長したタンパク質、或いは削られているタンパク質をコードする遺伝子でもよい。
(ピルビン酸カルボキシラーゼ(Pyc))
 本発明において、ピルビン酸カルボキシラーゼ(Pyc)とは、ピルビン酸を不可逆的にカルボキシル化してオキサロ酢酸にするリガーゼ群の酵素である。本発明においては、微細藻にPycを発現させた組換え微細藻を用いることで、光独立栄養条件下での培養により微細藻に蓄積した糖由来のピルビン酸に対して、炭酸固定によりオキサロ酢酸(OAA)を生成することが可能となる。
 Pycの活性が親株と比べて増大していることの確認は、上記の方法で酵素活性を測定すること、又はPycをコードする遺伝子のmRNAの量若しくは発現しているPycタンパク質の量を親株と比較することによって確認できる。酵素活性の増大については、親株と比較して増大していればよいが、例えば親株の1.5倍以上であることが好ましく、2倍以上であることがより好ましく、3倍以上であることがさらに好ましく、5倍以上であることが特に好ましい。
 本発明において、微細藻に導入するためのPycとしては、ピルビン酸からオキサロ酢酸(OAA)を生成する反応をより効率的に触媒するものであれば特に限定されないが、例えば、コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)、バチルス・サブチリス(Bacillus subtilis)、サッカロマイセス・セルビシアエ(Saccharomyces cerevisiae)、ピキア・パストリス(Pichia pastoris)、大腸菌(エシェリヒア・コリー;Escherichia coli)等由来の酵素、「https://www.brenda-enzymes.org/enzyme.php?ecno=6.4.1.1」に開示されている酵素等が挙げられる。なお、Pycとは異なる名称で知られているものであっても、上記の触媒活性を有するものであれば、本発明におけるPycとして用いることができる。本発明において、微細藻に導入するためのPycとしては、これらのうち、コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)由来のPycが好ましい。
 Pyc遺伝子は、すでにいくつかの配列が明らかにされているので、それらの塩基配列に基づいて作製したプライマーを用いて得ることができる。例えば、作製したプライマーを用いて、コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)の染色体DNAを鋳型とするPCR法によって、コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)のPycのコード領域(配列番号3)と、その制御領域を含む隣接領域を取得することができる。上記配列番号3がコードするアミノ酸配列を配列番号4として示す。あるいは、それらの塩基配列に対し、コドン最適化した形で設計した配列等を全合成することもできる。他の微生物のPyc遺伝子ホモログも同様にして取得され得る。Pyc遺伝子ホモログとは、他の微生物に由来し、上記コリネバクテリウム・グルタミカムのPyc遺伝子と高い相同性を示し、Pyc活性を有するタンパク質をコードする遺伝子をいう。
 細菌株等によっては、Pyc遺伝子の塩基配列に差異が存在することがあるため、本発明において使用するPyc遺伝子は、配列番号3に限られず、微細藻内でその発現を増強することにより微細藻のコハク酸生産能を向上させることができる限り、配列番号3のポリヌクレオチドがコードするアミノ酸配列において、1若しくは複数の位置での1若しくは数個のアミノ酸の置換、欠失、挿入又は付加等を含む配列を有するタンパク質をコードする変異体又は人為的な改変体であってもよい。ここで、「数個」とは、アミノ酸残基のタンパク質の立体構造における位置や種類によっても異なるが、好ましくは1から20個、より好ましくは1から10個、さらに好ましくは1から5個である。また、このようなアミノ酸の置換、欠失、挿入、付加、又は逆位等には、Pepck遺伝子を保持する微生物の個体差、種の違いに基づく場合等の天然に生じる変異によって生じるものも含まれる。Pycタンパク質(ペプチド)をコードするポリヌクレオチドとしては、上記特定の配列に対して、少なくとも70%以上、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは97%以上の同一性を有するタンパク質(及びそれをコードするポリヌクレオチド)であり、かつPyc活性(ピルビン酸カルボキシキシラーゼ活性)を有するタンパク質(及びそれをコードするポリヌクレオチド)は、本発明において使用可能であると理解される。
 Pyc遺伝子を導入する宿主により、遺伝子の縮重性が異なるので、それぞれ導入される宿主で使用しやすいコドンに置換したものでもよい。同様に、Pyc遺伝子は、発現を増強することにより微細藻の有機酸産生能を向上させる機能を有する限り、N末端側、C末端側が延長したタンパク質、或いは削られているタンパク質をコードする遺伝子でもよい。
(ホスホエノールピルビン酸カルボキシラーゼ(Ppc))
 本発明において、ホスホエノールピルビン酸カルボキシラーゼ(PEPカルボキシラーゼ;Ppc)とは、ホスホエノールピルビン酸(Pep)から炭酸固定によりオキサロ酢酸(OAA)を生成する反応を可逆的に触媒する酵素である。本発明においてPpc活性とは、このPepからOAAを生成する反応を触媒する活性をいう。本発明に利用するPpcは、反応の平衡がPepかOAAを生産する方向に傾いているものが好ましい。本発明においては、微細藻のPpc発現を増強させた組換え微細藻を用いることで、光独立栄養条件下での培養により微細藻に蓄積した糖由来のPEPに対して、嫌気性条件下、暗所培養を行うことで、炭酸固定によりオキサロ酢酸(OAA)を効率よく生成することが可能となる。
 Ppcの活性が親株と比べて増強していることの確認は、Ppc酵素活性を測定すること、又はPpcをコードする遺伝子のmRNAの量若しくは発現しているPpcタンパク質の量を親株と比較することによって確認できる。酵素活性の増大については、親株と比較して増大していればよいが、例えば親株の1.5倍以上であることが好ましく、2倍以上であることがより好ましく、3倍以上であることがさらに好ましく、5倍以上であることが特に好ましい。
 本発明において、微細藻に導入、発現増強するためのPpcとしては、嫌気性条件下、暗所培養を行うことで、炭酸固定によりオキサロ酢酸(OAA)を生成する反応をより効率的に触媒するものであれば特に限定されないが、シアノバクテリア(ラン藻類)のPpcであることが好ましく、例えばシネコシスティス属(Synechocystis)、アルスロスピラ属(Arthrospira)、スピルリナ属(Spirulina)、アナベナ属(Anabaena)、シネココッカス属(Synechococcus)、サーモシネココッカス属(Thermosynechococcus)、ノストック属(Nostoc)、プロクロロコッカス属(Prochlorococcu)、ミクロシスティス属(Microcystis)、グロエオバクター属(Gloeobacter)などが挙げられる。中でも、シネコシスティス属がより好ましく、具体的には、PCC6803種(Synechocystis sp. PCC6803)が特に好ましい。なお、シアノバクテリア(ラン藻類)のPpc以外にも、https://www.brenda-enzymes.org/enzyme.php?ecno=4.1.1.31に開示されている酵素等も本発明において使用可能な酵素の候補として挙げられる。なお、Ppcとは異なる名称で知られているものであっても、上記の触媒活性を有するものであれば、本発明におけるPycとして用いることができる。
 Ppc遺伝子は、すでにいくつかの配列が明らかにされているので、それらの塩基配列に基づいて作製したプライマーを用いて得ることができる。例えば、作製したプライマーを用いて、シアノバクテリアのシネコシスティスの染色体DNAを鋳型とするPCR法によって、シネコシスティスのPpcのコード領域(配列番号5)と、その制御領域を含む隣接領域を取得することができる。上記配列番号5がコードするアミノ酸配列を配列番号6として示す。シアノバクテリアのシネコシスティスの具体例としては、PCC6803種(Synechocystis sp. PCC6803)株が挙げられる。あるいは、それらの塩基配列に対し、コドン最適化した形で設計した配列等を全合成することもできる。他の微生物のPpc遺伝子ホモログも同様にして取得され得る。Ppc遺伝子ホモログとは、他の微生物に由来し、上記シアノバクテリアのシネコシスティスのPpc遺伝子と高い相同性を示し、Ppc活性を有するタンパク質をコードする遺伝子をいう。
 腸内細菌科に属する細菌の種や菌株によってPpc遺伝子の塩基配列に差異が存在することがあるため、本発明において使用するPpc遺伝子は、配列番号5に限られず、微細藻内でその発現を増強することにより微細藻のコハク酸生産能を向上させることができる限り、配列番号5のポリヌクレオチドがコードするアミノ酸配列において、1若しくは複数の位置での1若しくは数個のアミノ酸の置換、欠失、挿入又は付加等を含む配列を有するタンパク質をコードする変異体又は人為的な改変体であってもよい。ここで、「数個」とは、アミノ酸残基のタンパク質の立体構造における位置や種類によっても異なるが、好ましくは1から20個、より好ましくは1から10個、さらに好ましくは1から5個である。また、このようなアミノ酸の置換、欠失、挿入、付加、又は逆位等には、Ppc遺伝子を保持する微生物の個体差、種の違いに基づく場合等の天然に生じる変異によって生じるものも含まれる。Ppcタンパク質(ペプチド)をコードするポリヌクレオチドとしては、上記特定の配列に対して、少なくとも70%以上、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは97%以上の同一性を有するタンパク質(及びそれをコードするポリヌクレオチド)であり、かつPpc活性(ピルビン酸カルボキシキシラーゼ活性)を有するタンパク質(及びそれをコードするポリヌクレオチド)は、本発明において使用可能であると理解される。
 Ppc遺伝子を導入する宿主により、遺伝子の縮重性が異なるので、それぞれ導入される宿主で使用しやすいコドンに置換したものでもよい。同様に、Ppc遺伝子は、発現を増強することにより微細藻の有機酸産生能を向上させる機能を有する限り、N末端側、C末端側が延長したタンパク質、或いは削られているタンパク質をコードする遺伝子でもよい。
<有機酸の製造方法>
 本発明の有機酸の製造方法は、上述の本発明の組換え微細藻を培養する工程を含むことを特徴とする。上記組換え微細藻の培養工程の一部は、嫌気性条件下で行われること、さらに暗所にて行われることが好ましい。また、上記組換え微細藻の培養は、炭酸イオン及び/又は重炭酸イオンの含有量が10~1,000mMの培地中で行われることが好ましく、このような条件は、二酸化炭素の充填、及び/又は炭酸塩の添加により調製されることが好ましい。以下に、本発明の有機酸の製造方法を具体的に説明する。
 本発明の有機酸の製造方法は、有機酸を効率的に産生するように形質転換された、上述の本発明の組換え微細藻を培養する工程を含むことを特徴とする。具体的には、以下のとおりである。
 本発明の有機酸の製造方法における本発明の組換え微細藻を培養する工程は、以下の(a)工程及び(b)工程を含む。また、これらの工程によって産生させた有機酸を回収する、有機酸回収工程((c)工程)を含んでもよい。
(a)光独立栄養条件下にて、上述した本発明の組換え微細藻を生育・増殖させる組換え微細藻生育・増殖工程
(b)上記(a)工程において生育・増殖させた組換え微細藻を、嫌気性条件下、暗所にて培養し、有機酸を産生させる有機酸産生工程
(c)上記(b)工程において産生させた有機酸を回収する、有機酸回収工程
(組換え微細藻)
 本発明の有機酸の製造方法においては、上述した、有機酸を効率的に産生するように、ホスホエノールピルビン酸カルボキシキナーゼ(Pepck)及び/又はピルビン酸カルボキシラーゼ(Pyc)が発現又は発現増強するように形質転換されている、さらには、ホスホエノールピルビン酸カルボキシラーゼ(Ppc)が発現又は発現増強するように形質転換されている、本発明の組換え微細藻を用いる。本発明の組換え微細藻の説明としては、「組換え微細藻」の項の説明を適用できる。
(培地)
 本発明の有機酸の製造方法における微細藻の培養用の培地は、微細藻の種培養及び/又は本培養に用いられるものであり、後述するように窒素源、無機塩などを含む水溶液であることが好ましい。具体的には、微細藻に応じて、人工又は天然の海水、あるいは淡水(例えば、蒸留水)を用いてもよい。例えば、BG-11培地(J Gen Microbiol 111: 1-61 (1979));HSM培地及びTAP培地(低温科学,67:17-21 (2009))、Cramer-Myers培地(CM培地)等を使用することができる。
 培養での有機酸の生産反応を効率的に行うために、上記培地には炭素源として有機原料を添加してもよい。本培養に用いる有機原料は、上記微細藻が資化して増殖し得るものであれば特に限定されないが、通常、ガラクトース、ラクトース、グルコース、フルクトース、スクロース、サッカロース、デンプン、セルロース等の炭水化物;グリセロール、マンニトール、キシリトール、リビトール等のポリアルコール類等の発酵性糖質が用いられ、目的とする有機酸に応じて選択可能であり、一般的な有機原料から選択できる。例えば、グルコース、スクロース、又はフルクトースが好ましく、特にグルコース又はスクロースが好ましい。また、上記発酵性糖質を含有する澱粉糖化液、糖蜜なども使用され、前記発酵性糖質がサトウキビ、甜菜、サトウカエデ等の植物から搾取した糖液であってもよい。これらの有機原料は、単独でも組み合わせても使用できる。培地には炭酸イオン、重炭酸イオン又COを含有させることができる。
(培養条件)
 微細藻の培養において、培地のpHは、(a)工程及び(b)工程いずれにおいても、微細藻の増殖に適した任意のpH、例えば、pH5~10、好ましくはpH6~9、より好ましくはpH6~8に調整することができる。pHは、炭酸ナトリウム、重炭酸ナトリウム、炭酸カリウム、重炭酸カリウム、炭酸マグネシウム、水酸化ナトリウム、水酸化カルシウム、水酸化マグネシウム等を添加することによって、適宜調整することができる。
 微細藻の培養の温度条件は、(a)工程及び(b)工程いずれにおいても通常25℃~45℃の範囲であり、30℃~40℃であることが好ましく、35℃~40℃であることがより好ましい。本発明の製造方法においては、微細藻を予め前培養し、その後、(a)工程において光独立栄養条件の本培養、(b)工程において嫌気性条件の暗所培養による本培養を行う。本発明の製造方法においては、(a)工程及び/又は(b)工程での温度を35℃~40℃とすることが好ましく、(b)工程での温度を35℃~40℃とすることがより好ましい。
 培養時間については、(a)工程、(b)工程ともに、それぞれ12時間以上、5日以内で行うことができるが、(a)工程では、12時間以上、3日以内が好ましく、(b)工程では、24時間以上、5日以内が好ましい。
 本発明の製造方法の(a)工程における「光独立栄養」とは、一般的な意味で使用され、微細藻が光合成によってCOと水から糖を作り、これをエネルギー源として成長する状態をいう。光独立栄養時の光照射条件は自然光又は人工光のいずれであってもよく、その光照射の強さは、培地中の藻体密度及び培養槽の深さ等によって、適宜調節することができる。例えば、30~2,000μmol photons m-2 s-1、好ましくは、30~1,000μmol photons m-2 s-1、より好ましくは、50~600μmol photons m-2 s-1の自然光又は人工光が用いられ得る。上記範囲であると、微細藻が光合成を行って順調に増殖し得る。上記光照射は、連続的であっても周期的であってもよい。屋外の大規模培養については、コストを最小限にし、かつ人工照明の追加費用を回避するために、明/暗周期を設けてもよい。
 本発明の製造方法の(b)工程における「嫌気」とは、溶液中の溶存酸素濃度を低く抑えた状態をいう。この嫌気的条件とするために、例えば容器を密閉して無通気で反応させる、窒素ガス(N)等の不活性ガスを供給して反応させる、又はCO含有の不活性ガスを通気する等の方法を用いることができる。また、「暗所」とは、光が照射されない状態をいう。嫌気・暗所条件の工程で、本発明の組換え微細藻は有機酸を培地中に分泌する。
 本発明の製造方法の(b)工程においては、培地に炭酸イオン、重炭酸イオン及び/又はCOが含有されていることが重要である。炭酸イオン、重炭酸イオンの濃度は、5~2,000mMであり、10~1,000mMであることが好ましく、20~500mMであることがより好ましく、50mM~400mMであることがさらに好ましく、100mM~300mMであることが特に好ましい。培地への炭酸イオン及び/又は重炭酸イオンの導入は、COの充填や、炭酸ナトリウム、重炭酸ナトリウム、炭酸カリウム、重炭酸カリウム、炭酸マグネシウムより選択される少なくとも1種の炭酸塩の添加によることができる。COを充填する場合は、飽和状態になるまで充填することができる。COが飽和状態になることで、炭酸イオン濃度は20~2,000mMとなる。
 本発明の製造方法においては、微細藻を培養する培地にHEPES等の緩衝剤を添加することで、培地のpHを安定化させ、有機酸の産生効率を向上させることができる。本発明の製造方法の(b)工程における微細藻を培養する培地中の緩衝剤の濃度としては、HEPES-KOHを用いた場合、20mM~500mMの範囲であり、50mM~400mMであることが好ましく、100mM~300mMであることがより好ましく、100~200mMであることがさらに好ましい。
 本発明の製造方法の(b)工程においては、培地にコーンスティープリカーを添加することで、微細藻における有機酸の産生効率を顕著に増大させることができる。ここで、コーンスティープリカーとは、Corn Steep Liquor(CSL)であり、コーンスターチ(デンプン)の精製方法の一つであるコーンウエットミリングの浸漬工程において、トウモロコシから溶出した可溶性成分と乳酸発酵で生成した成分を含む浸漬液を濃縮した液状のもの、或いはこれを乾燥させた固形状(粉末状)のものをいう。つまり、トウモロコシから澱粉を抽出した際の残渣に当たる。本発明の製造方法におけるコーンスティープリカーとしては、コーンスティープリカーとして市販されているものであり、微細藻における有機酸の産生効率を顕著に増大させることができるものであれば、特に限定されるものではない。使用可能なコーンスティープリカーとしては、例えば、オリエンタル酵母社製、スペクトラムケミカル社製等が挙げられるが、これらに限定されるものではない。本発明の製造方法における培地中のコーンスティープリカーの濃度としては、10mg/L~100g/Lであり、100mg/L~20g/Lであることが好ましく、300mg/L~10g/Lであることがより好ましく、500mg/L~5g/Lであることがさらに好ましく、500mg/L~4g/Lであることが特に好ましい。このような濃度でコーンスティープリカーを含有させた培地を用いて微細藻を培養することで、微細藻における有機酸の産生量を大幅に増大させることができる。
 本発明の製造方法の(b)工程において、発酵に供する微細藻の細胞密度としては、光独立栄養条件下での培養((a)工程)によって得られた細胞を、OD750が20~200の範囲となるように培地に加えることが好ましく、OD750が20~150となるように培地に加えることがより好ましく、OD750が50~120となるように培地に加えることがさらに好ましい。このような初期密度で細胞を播種することで、効率よく有機酸を生産することができる。
 本発明で製造の対象となる有機酸としては、特に限定されるものではないが、クエン酸回路において産生される細胞内代謝有機酸であり、具体的には有機カルボン酸である。有機カルボン酸として、例えばコハク酸(succinic acid)、乳酸(lactic acid)、酢酸(acetic acid)、フマル酸(fumaric acid)、2-ケトグルタル酸(α-ketoglutaric acid)、リンゴ酸(malic acid)、クエン酸(citric acid)グルコン酸(gluconic acid)等の脂肪族カルボン酸が挙げられる。有機酸のうちコハク酸、フマル酸、2-ケトグルタル酸、リンゴ酸等の脂肪族ジカルボン酸が好ましく、コハク酸がより好ましい。
((c)工程)
 本工程において、(a)工程及び(b)工程において産生された有機酸は、必要に応じて、培地から、従来公知の方法又は今後開発されるあらゆる分離、精製方法により分離、精製することができる。具体的には、限外ろ過膜分離、遠心分離、濃縮等により微細藻及びその産生物と分離した後、カラム法、晶析法等の公知の方法で精製し、乾燥させる事により、結晶として採取する方法等が挙げられる。
 上述の(a)工程、(b)工程及び(c)工程を繰り返す、半永久サイクルによる有機酸の製造方法も本発明に含まれる。即ち、微細藻は、(a)工程において、光独立栄養条件下において、大気中のCOを固定化して糖類(例えば、グリコーゲン)を合成し、生育・増殖を行う。次に、(b)工程において、培養環境を嫌気性条件下、暗所とすることで、組換え微細藻は、(a)工程で蓄積したグリコーゲンから有機酸を効率よく生産することができる。(c)工程において、生産された有機酸を回収し終わったところで、新しい培地に微細藻を懸濁し、再び(a)工程、(b)工程、(c)工程を連続的に進めることができる。この半永久サイクルによる有機酸の製造方法によると、従来に比べて、さらに効率よく、継続的に、大量の有機酸を製造することが可能となる。
 本発明は、微細藻を、コーンスティープリカーを含有する培地中で培養する工程を含むことを特徴とする、微細藻を用いた有機酸の製造方法も含む。この方法によると、上述した本発明の微細藻のみならず、従来の微細藻を用いた場合でも、有機酸の生産効率を向上させることができる。
 以上のとおり、上記方法で微細藻から産生された有機酸を回収することで、化石資源を用いず、環境に優しく効果的に有機酸を製造することができる。すなわち、微細藻の光合成と微細藻に取り込まれた炭素源によりバイオマスから有機酸を産生可能となり、環境に優しく効果的に有機酸を製造することができる。水性媒体への炭酸イオン及び/又は重炭酸イオンの供給は、例えば電気や鉄鋼等の製造工程において産業的に排出された大気中のCOを利用し、有効活用することができる。大気中のCOを有効活用できる点で、自然環境に対して優れた効果を有する。さらに、本発明の微細藻によれば、バイオマスとして使用される培地は淡水のみならず海水を活用することができ、水資源の枯渇や耕作地の限界に左右されず安定的に有効活用することができる。
 以下の実施例にて本発明を具体的に説明するが、本発明は実施例によって限定されるものではない。
1.Pepck発現微細藻、Pyc発現微細藻の作製
 Actinobacillus succinogenes由来のホスホエノールピルビン酸カルボキシキナーゼ(Pepck)を導入したラン藻(シネコシスティス)株を以下に示す方法により作成した。
(1)Ppc過剰発現株の作製
 微細藻類の微生物種としてシネコシスティスPCC6803種(Synechocystis sp. PCC6803)グルコース耐性(GT)(Williams JGK, 1988, Methods Enzymol 167:766-778)(以下、「PCC6803(GT)」という。)を用いた。rbcLターミネーター及びslr0168領域下流のコード領域の一部は、PCC6803(GT)から抽出したゲノムDNAから、プライマーセットとして、配列番号7及び8に示すオリゴヌクレオチド、配列番号9及び10に示すオリゴヌクレオチドを用いて、PCRにより増幅した。得られた増幅断片を、In-Fusion HD Cloning Kit(Clonetech社製、タカラバイオ株式会社より入手)を用いてPstI及びHindIII消化pBluescript II SK(+)(Agilent Technologies, Palo Alto, CA)に挿入し、pBluescript-TrbcL-slr0168を得た。
 カナマイシン耐性カセット及びrbcLプロモーターは、pCRII-TOPO (Invitrogen,Carlsbad, CA) 及びPCC6803(GT)のゲノムDNAからプライマーセットとして配列番号11及び12に示すオリゴヌクレオチド、配列番号13及び14に示すオリゴヌクレオチドを用いて、PCRにより増幅した。得られた増幅断片を、In-Fusion HD Cloning Kit(Clonetech社製、タカラバイオ株式会社より入手)を用いて XhoI及びXbaI消化pBluescript-TrbcL-slr0168に挿入し、pBluescript-Kmr-PrbcL-TrbcL-slr0168を得た。
 slr0168領域上流のコード領域の一部は、PCC6803(GT)から抽出したゲノムDNAから、プライマーセットとして配列番号15及び16に示すオリゴヌクレオチドを用いて、PCRにより増幅した。得られた増幅断片を、In-Fusion HD Cloning Kit(Clonetech社製、タカラバイオ株式会社より入手)を用いて KpnI及びXhoI消化pBluescript-Kmr-PrbcL-TrbcL-slr0168に挿入し、pBluescript-slr0168-Kmr-PrbcL-TrbcL-slr0168を得た。
 pUC19(タカラバイオ)のNdeI部位(CATATG)にAatII及びEcoRIで消化されたCACATGを置き換え、合成DNAを挿入した。pBluescript-slr0168-Kmr-PrbcL-TrbcL-slr0168をKpnI及びHindIIIで消化した後、slr0168を含む断片は、上記作製したpUC19ベクターのKpnI/HindIII部位に挿入し、pSKrbcL-slr0168を作製した。
 上記作製したpSKrbcL-slr0168ベクターを、NotI、NdeI siteで切断した。次にpTrcHis A,B,Cvector(インビトロジェン社製)をTemplateとして、配列番号17及び18に示すオリゴヌクレオチド(F;TTCTTCTGAGCGGCCGCCGACTGCACGGTGCACCAAT、及びR;TCGACTCTAGACATATGGGTCTGTTTCCTGTGTGAA)をプライマーとして用いて、trc promoterを、PCRにより増幅した。得られた増幅断片を、In-Fusion HD Cloning Kit(Clonetech社製、タカラバイオ株式会社より入手)を用いて、上記NotI、NdeI siteで切断したプラスミドベクターpSKrbcL-slr0168にクローニングした。大腸菌(E.coli;Nova blue)にトランスフォーメーションして、プラスミドpSKtrc-slr0168を回収した。
 PEPカルボキシラーゼをコードするPEP(sll0920)は、PCC6803(GT)から抽出したゲノムDNAから、プライマーセットとして配列番号19及び20に示すオリゴヌクレオチドを用いて、PCRにより増幅した。得られた増幅断片を、In-Fusion HD Cloning Kit(Clontech社製、タカラバイオ株式会社より入手)を用いてNdeI/SalI消化pSKtrc-slr0168に挿入し、pSKtrc-slr0168/sll0920を得た。
 得られたプラスミドpSKtrc-slr0168/sll0920ベクター(sll0920コード領域を含む)によりPCC6803(GT)を形質転換した。コントロールとして、空ベクター(sll0920コード領域を含まないプラスミドpSKtrc-slr0168ベクター)での形質転換を行った。上記により形質転換され、sll0920が過剰発現するよう作製されたPCC6803(GT)をPCC6803(Ppc-ox)ということとする。
配列番号7:5'-CCTCTAGAGTCGACCTGCAGGTTACAGTTTTGGCAATTAC-3'
配列番号8:5'-GCCAGCCCCAACACCTGACGCGTTTCCCCACTTAGATAAAAAATCC-3'
配列番号9:5'-TCTAAGTGGGGAAACGCGTCAGGTGTTGGGGCTGGC-3'
配列番号10:5'-TGATTACGCCAAGCTTCTAAGTCAGCGTAAATCTGACAATG-3'
配列番号11:5'-CGGGCCCCCCCTCGAGCCGGAATTGCCAGCTGGGGC-3'
配列番号12:5'-TGGACTTTCTAATTAGAGCGGCCGCTCAGAAGAACTCGTCAAGA-3'
配列番号13:5'-TCTTGACGAGTTCTTCTGAGCGGCCGCTCTAATTAGAAAGTCCA-3'
配列番号14:5'-CCGGGGATCCTCTAGACATATGGGTCAGTCCTCCAT-3'
配列番号15:5'-TATAGGGCGAATTGGGTACCATGACTATTCAATACACCCCCCTAG-3'
配列番号16:5'-TACCGTCGACCTCGAGCACCAGACCAAAGCCGGGAATTTC-3'
配列番号17:5'-TTCTTCTGAGCGGCCGCCGACTGCACGGTGCACCAAT-3'
配列番号18:5'-TCGACTCTAGACATATGGGTCTGTTTCCTGTGTGAA-3'
配列番号19:5'- AGGAAACAGACCCATATGAACTTGGCAGTTCCTGC -3'
配列番号20:5'- AACCTGCAGGTCGACTCAACCAGTATTACGCA -3'
(2)Ppc/Pepck共発現株の作製
 プラスミドベクターpTCP2031をNde 1 siteで切断した。次に、insertとなるPepck遺伝子を増幅させた。即ち、TemplateとしてpUC57+PEPCK vectorを用い、配列番号21及び22に示すオリゴヌクレオチド(F;CATAAGGAATTATAACCATATGACCGATTTGAACAAATTGG、及びR;CGGGGGGCATGGAGGAGTCGACTTAGGCTTTGGGCCCGGCAC)をプライマーとして用いて、PCRにより増幅した。得られた増幅断片を、In-Fusion HD Cloning Kit(Clonetech社製、タカラバイオ株式会社より入手)を用いて、上記Nde 1 site で切断したプラスミドベクターpTCP2013にクローニングした。大腸菌(E.coli;Nova blue)にトランスフォーメーションして、プラスミドpTCP2031-PEPCKを回収した。得られたプラスミドpTCP2031-PEPCKベクターによりPCC6803(GT)を形質転換し、Ppc/Pepckを共発現するPCC6803(Ppc-ox/Pepck-ox)を取得した。
(3)Ppc/Pyc共発現株の作製
 プラスミドpSKtrc-slr0168/sll0920ベクターを、KpnI,XhoI siteで切断した。次に、Synechocystis sp.PCC6803のゲノムDNAをTemplateとして、配列番号23及び24に示すオリゴヌクレオチド(F;CAGTGAATTCGAGCTCGGTACCCAATGATGGAGCGGGCAATG、及びR;CTGGCAATTCCGGCTCGAGTGTAGGGTTTGGCCTCCAAC)をプライマーとして用いて、slr1556 startを、PCRにより増幅した。得られた増幅断片を、In-Fusion HD Cloning Kit(Clonetech社製、タカラバイオ株式会社より入手)を用いて、上記KpnI,XhoI siteで切断したプラスミドベクターpSKtrc-slr0168/sll0920にクローニングした。大腸菌(E.coli;Nova blue)にトランスフォーメーションして、プラスミドを回収した。
 次に上記回収したプラスミドを、MluI, HindIII siteで切断した。Synechocystis sp.PCC6803のゲノムDNAをTemplateとして、配列番号25及び26に示すオリゴヌクレオチド(F;TCTAAGTGGGGAAACGCGTTACCCACAACGCTCTGCAAA、及びR;CCATGATTACGCCAAGCTTGGCATTTACGGCATCGACAC)をプライマーとして用いて、slr1556 stopを、PCRにより増幅した。得られた増幅断片を、In-Fusion HD Cloning Kit(Clonetech社製、タカラバイオ株式会社より入手)を用いて、上記MluI, HindIII siteで切断したプラスミドベクターにクローニングした。大腸菌(E.coli;Nova blue)にトランスフォーメーションして、プラスミドを回収した。
 次に上記回収したプラスミドを、XhoI,NotI siteで切断した。スペクチノマイシン耐性遺伝子カセットを持つプラスミドをTemplateとして、配列番号27及び28に示すオリゴヌクレオチド(F;CCAAACCCTACACTCGAGGGGGTCTGACGCTCAGTGGAAC、及びR;ACCGTGCAGTCGGCGGCCGCGTGGCACTTTTCGGGGAAATGTG)をプライマーとして用いてSpr(スペクチノマイシン耐性遺伝子)を、PCRにより増幅した。得られた増幅断片を、In-Fusion HD Cloning Kit(Clonetech社製、タカラバイオ株式会社より入手)を用いて、上記XhoI,NotI siteで切断したプラスミドベクターにクローニングした。大腸菌(E.coli;Nova blue)にトランスフォーメーションして、プラスミドpSStrc-slr1556を回収した。
 プラスミドベクターpSStrc-slr1556を、MluI、HindIII siteで切断した。Synechocystis sp. PCC6803のゲノムDNAをTemplateとし、slr0646下流断片を増幅した。即ち、配列番号29及び30に示すオリゴヌクレオチド(F;TTTTTTATCTAAGTGGGGAAACGCGTAAGCCCATTTACGTCGTGTTG、及びR;ATAGTCACCTGGAACCGTTGGAAGCTTGGCGTAATCATGGTCATAGC)をプライマーとして用いて、PCRにより増幅した。得られた増幅断片を、In-Fusion HD Cloning Kit(Clonetech社製、タカラバイオ株式会社より入手)を用いて、上記MluI、HindIII siteで切断したプラスミドベクターpSStrc-slr1556にクローニングした。大腸菌(E.coli; DH5α)にトランスフォーメーションして、プラスミドpSStrc-slr1556up-slr0646downを回収した。
 次に、プラスミドベクターpSStrc-slr1556up-slr0646downを、EcoRI、 XhoI siteで切断した。Synechocystis sp. PCC6803のゲノムDNAをTemplateとし、slr0646上流断片を増幅した。即ち、配列番号31及び32に示すオリゴヌクレオチド(F;GACGGCCAGTGAATTCTTCGATCGTTAGCGCCAACACCAAGGCG、及びR;CCAGTAGCATTTAGCGCTGATCCCCATCTCGAGGGGGTCTGAC)をプライマーとして用いて、PCRにより増幅した。得られた増幅断片を、In-Fusion HD Cloning Kit(Clonetech社製、タカラバイオ株式会社より入手)を用いて、上記EcoRI、 XhoI siteで切断したプラスミドベクターpSStrc-slr1556up-slr0646downにクローニングした。大腸菌(E.coli; DH5α)にトランスフォーメーションして、プラスミドpSStrc-slr0646を回収した。
 次に、プラスミドベクターpSStrc-slr0646を、NdeI、SalI siteで切断した。Corynebacterium glutamicum ATCC 13032株のゲノムDNAをTemplateとし、pyc断片を増幅した。即ち、配列番号33及び34に示すオリゴヌクレオチド(F;GGAAACAGACCCATATGtCGACTCACACATCTTCAACGCTTCC、及びR;CGACTTGATCGTCGTCGTTTCCTAAGTCGACCTGCAGGTTA)をプライマーとして用いて、PCRにより増幅した。得られた増幅断片を、In-Fusion HD Cloning Kit(Clonetech社製、タカラバイオ株式会社より入手)を用いて、上記NdeI、SalI siteで切断したプラスミドベクターpSStrc-slr0646にクローニングした。大腸菌(E.coli; DH5α)にトランスフォーメーションして、プラスミドpSStrc-slr0646-pycを回収した。
 得られたプラスミドpSStrc-slr0646-pycベクターによりPCC6803(GT)を形質転換し、Ppc/Pycを共発現するPCC6803(Ppc-ox/Pyc-ox)を取得した。
配列番号21:5'-CATAAGGAATTATAACCATATGACCGATTTGAACAAATTGG-3'
配列番号22:5'-CGGGGGGCATGGAGGAGTCGACTTAGGCTTTGGGCCCGGCAC-3'
配列番号23:5'-CAGTGAATTCGAGCTCGGTACCCAATGATGGAGCGGGCAATG-3'
配列番号24:5'-CTGGCAATTCCGGCTCGAGTGTAGGGTTTGGCCTCCAAC-3'
配列番号25:5'-TCTAAGTGGGGAAACGCGTTACCCACAACGCTCTGCAAA-3'
配列番号26:5'-CCATGATTACGCCAAGCTTGGCATTTACGGCATCGACAC-3'
配列番号27:5'-CCAAACCCTACACTCGAGGGGGTCTGACGCTCAGTGGAAC-3'
配列番号28:5'-ACCGTGCAGTCGGCGGCCGCGTGGCACTTTTCGGGGAAATGTG-3'
配列番号29:5'-TTTTTTATCTAAGTGGGGAAACGCGTAAGCCCATTTACGTCGTGTTG-3'
配列番号30:5'-ATAGTCACCTGGAACCGTTGGAAGCTTGGCGTAATCATGGTCATAGC-3'
配列番号31:5'-GACGGCCAGTGAATTCTTCGATCGTTAGCGCCAACACCAAGGCG-3'
配列番号32:5'-CCAGTAGCATTTAGCGCTGATCCCCATCTCGAGGGGGTCTGAC-3'
配列番号33:5'-GGAAACAGACCCATATGtCGACTCACACATCTTCAACGCTTCC-3'
配列番号34:5'-CGACTTGATCGTCGTCGTTTCCTAAGTCGACCTGCAGGTTA-3'
2.Pepck発現微細藻、Pyc発現微細藻による有機酸生産
 上記で作製した、Ppc過剰発現株、Ppc/Pepck共発現株、Ppc/Pyc共発現株による有機酸の産生量測定し、Pepck、Pycを導入したことによる効果を確認した。各細胞株の培養は以下の(1)~(3)のとおりに行い、(4)に記載の方法により各細胞株の有機酸の産生量を測定した。
(1)前々培養
 BG-11寒天培地(1.5% Agarを含むBG-11)上で生育した各細胞株のコロニーを白金耳でとり、培地(70mL)に加え、pH7.8にて通気条件下、50μmol photons m-2 s-1で30℃にて4~5日間培養した。ここでは培地として、BG-11液体培地(Rippka Rら, J Gen Microbiol 111: 1-61 (1979))に17.6mM NaNO3、20mM Hepes-KOHを含む培地を用いた。藻体密度は、Shimadzu UV mini spectrophotometer(紫外可視分光光度計:株式会社島津製作所製)を用いてOD750により測定した。培養後のOD750は1~1.5であった。なお、通気とは、特に言及しない場合は空気による通気を意味する。以下の実施例においても同様である。
(2)前培養
 上記(1)で前々培養した各細胞株を、OD750が0.1になるように培地(150mL)に加え、pH7.8にて通気条件下、50μmol photons m-2 s-1で30℃にて4~5日間培養した。ここでは培地として、BG-11液体培地に17.6mM NaNO、20mM Hepes-KOHを含む培地を用いた。培養後のOD750は1~1.5であった。
(3)本培養
(a)光独立栄養条件下
 上記(2)で前培養した各細胞株を、OD750が0.4になるように培地(70mL)に加え、pH7.8にてCO通気条件下、120μmol photons m-2 s-1で30℃にて3日間培養した。ここでは、培地としてBG-11液体培地に5mM NHCl、50mM Hepes-KOHを含む培地を用いた。培養後のOD750は6~7であった。培養後、フィルター(polytetrafluoroethylene膜、孔径1μm)濾過にて各細胞株を回収した。
(b)嫌気・暗所条件下
 上記で回収した各細胞株を、OD750が20になるように培地(10mL)に加えた。ここでは培地として100mM Hepes-KOH(pH7.8)を用いた。10分間のN通気後、37℃にて嫌気条件下で培養を開始し、24、48、72、96時間後に各細胞株を含む培地を回収した。
(4)有機酸の産生量の測定
 上記(b)で回収した培地を、各々14,000g、4℃にて5分間遠心分離し、上清を回収し、0.45μm孔径Mini-UniPrep(GEヘルスケア・ジャパン株式会社製)を用いて濾過した。濾過液について、コハク酸の産生量を、高速液体クロマトグラフィー(HPLC)カラム(Aminex HPX-87H;Bio-Rad社製)及び屈折率検出器(RID-10A;株式会社島津製作所製)を備えたHPLCにより測定した。結果を図1(Ppc/Pepck共発現株)、図2(Ppc/Pyc共発現株)に示す。
 図1に示すとおり、Pepckを発現させた細胞株(Ppc-ox/Pepck-ox)では、コントロールの細胞株(Ppc-ox)に比べて、培養24、48、72、96時間後の全ての時点において、コハク酸の産生量が増加していた。また、図2に示すとおり、Pycを発現させた細胞株(Ppc-ox/Pyc-ox)でも、コントロールの細胞株(Ppc-ox)に比べて、培養24、48、72、96時間後の全ての時点において、コハク酸の産生量が増加していた。以上の結果から、ラン藻株においてPepck、Pycを発現させることにより、コハク酸等の有機酸の産生量を増大させることができることが明らかとなった。また、データは示していないが、Ppc-ox/Pepck-ox及びPpc-ox/Pyc-oxでは、Ppc-oxと比較して、乳酸及び酢酸の産生量の低減が見られた。
3.微細藻培養における炭酸水素ナトリウム濃度の検討
 微細藻の培養のうち、嫌気・暗所培養の工程における培地中の炭酸水素ナトリウム濃度を0mM、50mM、100mM、200mM、300mM、又は400mMとすること、培養時間を72時間のみとすること以外は、上記「2.Pepck発現微細藻、Pyc発現微細藻による有機酸生産」の項と同様の方法にて、Ppc-ox、Ppc-ox/Pepck-oxが産生するコハク酸量を測定した。結果を図3に示す。
 図3に示すとおり、Ppc-oxでは、炭酸水素ナトリウム濃度が100mMの時にコハク酸の産生量が最大となり、それ以上の濃度においてはコハク酸の産生量が減少したのに対して、Ppc-ox/Pepck-oxでは、炭酸水素ナトリウム濃度が100mM~200mMでコハク酸の産生量が最大となり、それ以上の濃度で減少が見られた。また、データは示していないが、Ppc-ox/Pepck-oxでは、Ppc-oxと比較して、乳酸及び酢酸の産生量の低減が見られた。
4.微細藻の有機酸産生におけるコーンスティープリカー添加効果の検討
(1)コーンスティープリカーの添加効果
 微細藻からの有機酸産生量に、培地へのコーンスティープリカーの添加が与える効果を検討した。微細藻の培養のうち、嫌気・暗所培養の工程において、培地中にコーンスティープリカーを0g又は1g/Lで添加すること、炭酸水素ナトリウムを300mMとすること、培養時間を72時間のみとすること以外は、上記「2.Pepck発現微細藻、Pyc発現微細藻による有機酸生産」の項と同様の方法にて、Ppc-ox 、Ppc-ox/Pepck-ox、Ppc-ox/Pyc-oxが産生するコハク酸量を測定した。結果を図4に示す。なお、コーンスティープリカーとしては、オリエンタル酵母社製(製品名ソルリス)を使用した。
 図4に示すとおり、Ppc-ox、Ppc-ox/Pepck-ox、Ppc-ox/Pyc-oxのいずれの細胞株においても、コーンスティープリカーを添加することにより、コハク酸の産生量が顕著に増加した。その効果は、Ppc-ox/Pepck-oxにおいては、特に顕著であった。また、データは示していないが、コーンスティープリカーを添加することにより、乳酸の産生量は減少し、特にPpc-ox/Pepck-oxにおいては、コーンスティープリカーを添加することにより乳酸の産生がほとんど見られなくなった。一方、酢酸の産生量は、コーンスティープリカーを添加することによりいずれの細胞株においても増加した。
(2)複数種のコーンスティープリカーの効果の比較
 微細藻からの有機酸産生量に、培地へのコーンスティープリカーの添加が与える効果を、複数種のコーンスティープリカーを用いて比較検討した。微細藻の培養のうち、嫌気・暗所培養の工程において、培地中にコーンスティープリカー(オリエンタル酵母社製又はスペクトラムケミカル社製)を0g又は1g/Lで添加すること、炭酸水素ナトリウムを200mM又は300mMとすること、培養時間を72時間のみとすること以外は、上記「2.Pepck発現微細藻、Pyc発現微細藻による有機酸生産」の項と同様の方法にて、Ppc-ox/Pepck-oxが産生するコハク酸量を測定した。結果を図5に示す。
 図5に示すとおり、オリエンタル酵母社製のコーンスティープリカーを用いた場合でも、スペクトラムケミカル社製のコーンスティープリカーを用いた場合でも、同様に、コハク酸の産生量が顕著に増加した。
(3)コーンスティープリカーを添加する条件での、炭酸水素ナトリウム濃度の検討
 炭酸水素ナトリウムを100mM、200mM、300mM又は400mMとすること以外は上記「(1)コーンスティープリカーの添加効果」の項と同様の方法により、Ppc-ox/Pepck-oxが産生するコハク酸量を測定した。結果を図6に示す。
 図6に示すとおり、炭酸水素ナトリウムの濃度依存的にコハク酸の産生量が増加し、300mMで最大となった。300mMの炭酸水素ナトリウム、1g/Lのコーンスティープリカー条件でPpc-ox/Pepck-oxが産生するコハク酸量は、これまでの世界最高収率を大幅に上回る値であった。
5.微細藻の有機酸産生における細胞密度の検討
 微細藻からの有機酸産生量に、発酵に供するラン藻の細胞密度が与える効果を検討した。嫌気・暗所培養の工程において、本培養の光独立栄養条件下での培養によって得られた各細胞株を、OD750が20又は100になるように培地(10mL)に加えること、培養時間を72時間のみとすること以外は、上記「2.Pepck発現微細藻、Pyc発現微細藻による有機酸生産」の項と同様の方法にて、Ppc-ox/Pepck-oxが産生するコハク酸量を測定した。結果を図7に示す。
 図7に示すとおり、Ppc-ox/Pepck-oxでは、細胞密度の指標である初期OD750を100とした場合の方が20とした場合に比べてコハク酸の産生量が顕著に多くなった。発酵に供する細胞密度を初期OD750が100程度の密度とすることで、微細藻から有機酸を効率よく生産できることがわかった。
6.微細藻の有機酸産生におけるHEPES濃度及びコーンスティープリカー濃度の検討
 微細藻からの有機酸産生量に、HEPES濃度及びコーンスティープリカーの濃度が与える効果を検討した。微細藻の培養のうち、嫌気・暗所培養の工程において、培地中のコーンスティープリカー濃度を1g/L、2g/L、3g/L、4g/L、又は5g/Lとし、HEPES濃度を100mM、又は200mMとすること、培養時間を72時間のみとすること、本培養の光独立栄養条件下での培養によって得られた各細胞株をOD750が100になるように培地(10mL)に加えること以外は、上記「2.Pepck発現微細藻、Pyc発現微細藻による有機酸生産」の項と同様の方法にて、Ppc-ox/Pepck-oxが産生するコハク酸量を測定した。結果を図8に示す。なお、コーンスティープリカーとしては、オリエンタル酵母社製(製品名ソルリス)を使用した。
 図8に示すとおり、Ppc-ox/Pepck-oxにおいて、コーンスティープリカー濃度が2g/L~4g/Lであると、1g/Lや5g/Lの場合に比べて、コハク酸生産量が多くなった。また、HEPES濃度と組み合わせて検討すると、コーンスティープリカー濃度2g/LかつHEPES濃度100mMの場合、コーンスティープリカー濃度3g/LかつHEPES濃度100mM又200mMの場合、コーンスティープリカー濃度4g/LかつHEPES濃度200mMの場合には、コハク酸生産量が増加して、5.5g/Lにまで達した。
 本発明によると、ラン藻等の微細藻類にてホスホエノールピルビン酸カルボキシキナーゼ(Pepck)及び/又はピルビン酸カルボキシラーゼ(Pyc)を過剰発現させることで、コハク酸等の有機酸の生産量や収率を増大させることができる。さらに、炭酸水素ナトリウムやコーンスティープリカーを培養液中に添加することで、ラン藻等の微細藻類によるコハク酸等の有機酸の生産量を顕著に増大させることも可能である。したがって、本発明によると、より効率的に有機酸を生産することができるため、有機酸の安定供給及び大量生産を可能とすることができる。以上のことから、本発明によると、水生バイオマスからの生分解性プラスチック原料の生産が現実的なものとなる。そして、コハク酸や乳酸を石油由来からバイオマス由来に切り替えることで、CO排出量を低減することができ、環境への負荷を低減することができる。また、水資源の枯渇や耕作地の限界に左右されないという利点もある。培養液に添加するコーンスティープリカーは、デンプン製造工程における副産物であるため、これを活用できることは産業廃棄物の有効利用に貢献することにもつながるものである。

Claims (14)

  1.  ホスホエノールピルビン酸カルボキシキナーゼ(Pepck)及び/又はピルビン酸カルボキシラーゼ(Pyc)が発現又は発現増強するように形質転換されている、組換え微細藻。
  2.  上記微細藻がラン藻(シアノバクテリア)である、請求項1に記載の組換え微細藻。
  3.  上記ラン藻(シアノバクテリア)が、シネコシスティス属である、請求項2に記載の組換え微細藻。
  4.  上記微細藻において、ホスホエノールピルビン酸カルボキシラーゼ(Ppc)が発現又は発現増強するように形質転換されている、請求項1から3のいずれか1項に記載の組換え微細藻。
  5.  請求項1から4のいずれか1項に記載の組換え微細藻を培養する工程を含む、微細藻を用いた有機酸の製造方法。
  6.  上記組換え微細藻の培養工程の一部が、嫌気性条件下で行われる、請求項5に記載の有機酸の製造方法。
  7.  上記組換え微細藻の培養工程の一部が、さらに暗所にて行われる、請求項6に記載の有機酸の製造方法。
  8.  上記組換え微細藻の培養が、炭酸イオン及び/又は重炭酸イオンの含有量が10~1,000mMの培地中で行われる、請求項5から7のいずれか1項に記載の有機酸の製造方法。
  9.  上記炭酸イオン及び/又は重炭酸イオンの含有量が10~1,000mMの培地が、二酸化炭素の充填、及び/又は炭酸塩の添加により調製される、請求項8に記載の有機酸の製造方法。
  10.  上記組換え微細藻の培養が、コーンスティープリカーを含有する培地中で行われる、請求項5から9のいずれか1項に記載の有機酸の製造方法。
  11.  上記有機酸が、脂肪族カルボン酸である、請求項5から10のいずれか1項に記載の有機酸の製造方法。
  12.  上記有機酸が、コハク酸、乳酸、酢酸、フマル酸、2-ケトグルタル酸、リンゴ酸、クエン酸及びグルコン酸からなる群より選択される少なくとも1種である、請求項5から11のいずれか1項に記載の有機酸の製造方法。
  13. (a)光独立栄養条件下にて請求項1から4のいずれか1項に記載の組換え微細藻を生育・増殖させる組換え微細藻生育・増殖工程、
    (b)上記(a)工程において生育・増殖させた組換え微細藻を、嫌気性条件下、暗所にて培養し、有機酸を産生させる有機酸産生工程、及び
    (c)上記(b)工程において産生させた有機酸を回収する、有機酸回収工程
    を繰り返す、半永久サイクルによる有機酸の製造方法。
  14.  微細藻を、コーンスティープリカーを含有する培地中で培養する工程を含むことを特徴とする、微細藻を用いた有機酸の製造方法。
PCT/JP2021/005284 2020-02-14 2021-02-12 組換え微細藻及び微細藻を用いた有機酸の製造方法 WO2021162099A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022500474A JPWO2021162099A1 (ja) 2020-02-14 2021-02-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-023385 2020-02-14
JP2020023385 2020-02-14

Publications (1)

Publication Number Publication Date
WO2021162099A1 true WO2021162099A1 (ja) 2021-08-19

Family

ID=77292743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005284 WO2021162099A1 (ja) 2020-02-14 2021-02-12 組換え微細藻及び微細藻を用いた有機酸の製造方法

Country Status (2)

Country Link
JP (1) JPWO2021162099A1 (ja)
WO (1) WO2021162099A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06327464A (ja) * 1993-05-21 1994-11-29 Kawasaki Steel Corp 海洋性微細藻類の培養方法
JP2005211041A (ja) * 2004-02-02 2005-08-11 Nippon Shokubai Co Ltd コハク酸の製造方法
JP2013543727A (ja) * 2010-10-28 2013-12-09 アディッソ・フランス・エス.エー.エス. 2,4−ジヒドロキシ酪酸の生成の方法
JP2016537986A (ja) * 2013-11-29 2016-12-08 ロケット フレールRoquette Freres 微細藻類バイオマスのカロテノイドおよびタンパク質を富化するためのプロセス
JP2017216881A (ja) * 2014-12-26 2017-12-14 味の素株式会社 ジカルボン酸の製造方法
WO2018051916A1 (ja) * 2016-09-14 2018-03-22 国立大学法人神戸大学 有機酸の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06327464A (ja) * 1993-05-21 1994-11-29 Kawasaki Steel Corp 海洋性微細藻類の培養方法
JP2005211041A (ja) * 2004-02-02 2005-08-11 Nippon Shokubai Co Ltd コハク酸の製造方法
JP2013543727A (ja) * 2010-10-28 2013-12-09 アディッソ・フランス・エス.エー.エス. 2,4−ジヒドロキシ酪酸の生成の方法
JP2016537986A (ja) * 2013-11-29 2016-12-08 ロケット フレールRoquette Freres 微細藻類バイオマスのカロテノイドおよびタンパク質を富化するためのプロセス
JP2017216881A (ja) * 2014-12-26 2017-12-14 味の素株式会社 ジカルボン酸の製造方法
WO2018051916A1 (ja) * 2016-09-14 2018-03-22 国立大学法人神戸大学 有機酸の製造方法

Also Published As

Publication number Publication date
JPWO2021162099A1 (ja) 2021-08-19

Similar Documents

Publication Publication Date Title
KR101686900B1 (ko) 신규한 피키아 쿠드리압즈비 ng7 균주 및 이의 용도
KR101674361B1 (ko) 유기산 제조에서의 모나스쿠스의 용도
US9914947B2 (en) Biological production of organic compounds
CN106574236A (zh) 遗传修饰的产生(r)‑乳酸的嗜热细菌
JP7176787B2 (ja) 有機酸の製造方法
WO2021162099A1 (ja) 組換え微細藻及び微細藻を用いた有機酸の製造方法
CN102791850B (zh) 生产能力高的异丙醇生产细菌
CN109825441B (zh) 一种用于提高微藻固碳效率的方法及转基因衣藻和应用
KR20130098603A (ko) D―형 젖산 생성 변이균주 및 이를 이용한 광학 순도가 높은 d―형 젖산 생산 방법
WO2018051916A1 (ja) 有機酸の製造方法
KR102211740B1 (ko) 파에오닥틸룸 트리코르누툼(Phaeodactylum tricornutum)의 신규 프로모터 HASP1와 이의 신호 펩타이드 및 이의 용도
KR101773123B1 (ko) 2,3-부탄다이올 생산능을 갖는 유전적으로 조작된 효모 세포 및 그를 사용하여 2,3-부탄다이올을 생산하는 방법
JP2015502168A (ja) 再構成された転写ユニットを有する細菌及びその使用
WO2019213019A1 (en) Materials and methods for differential biosynthesis in species of the genera ralstonia and cupriavidus and organisms related thereto
JP6778870B2 (ja) 藍藻変異株及びそれを用いたコハク酸及びd−乳酸産生方法
WO2019027376A2 (en) METHOD FOR INDUCING MICROBIAL MUTAGENESIS TO PRODUCE LACTIC ACID
CN114561417B (zh) 用于制备阿洛酮糖的谷氨酸棒杆菌工程菌株及其应用
BR112019012259A2 (pt) métodos para produzir fitoeno
KR102602060B1 (ko) 부산물 생성이 저감된 2,3-부탄다이올 생산용 재조합 미생물 및 이를 이용한 2,3-부탄다이올 생산방법
US20240182931A1 (en) Recombinant microorganism for producing 2,3-butanediol with reduced by-product production and method for producing 2,3-butanediol by using same
JP2020191851A (ja) 芳香族系化合物を生産する方法
JP2021153524A (ja) 有機酸の製造方法
US10392623B2 (en) L-arabinose assimilation pathway and uses thereof
JP2024072221A (ja) 光合成微生物を利用した有用有機物の製造方法
CN116240118A (zh) 提高有机酸生产水平和发酵强度的重组菌株及其构建方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21753555

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022500474

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21753555

Country of ref document: EP

Kind code of ref document: A1