JP7176787B2 - 有機酸の製造方法 - Google Patents

有機酸の製造方法 Download PDF

Info

Publication number
JP7176787B2
JP7176787B2 JP2021073858A JP2021073858A JP7176787B2 JP 7176787 B2 JP7176787 B2 JP 7176787B2 JP 2021073858 A JP2021073858 A JP 2021073858A JP 2021073858 A JP2021073858 A JP 2021073858A JP 7176787 B2 JP7176787 B2 JP 7176787B2
Authority
JP
Japan
Prior art keywords
acid
aqueous medium
microalgae
pcc6803
synechocystis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021073858A
Other languages
English (en)
Other versions
JP2021106614A (ja
Inventor
誠久 蓮沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
Original Assignee
Kobe University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC filed Critical Kobe University NUC
Publication of JP2021106614A publication Critical patent/JP2021106614A/ja
Application granted granted Critical
Publication of JP7176787B2 publication Critical patent/JP7176787B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/46Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、微細藻による有機酸の製造方法に関する。
本出願は、参照によりここに援用されるところの日本出願特願2015-78889号及び2015-228518号優先権を請求する。
コハク酸は有機酸に属し、ポリエステル、ポリアミド等のポリマー原料として用いられる。また、乳酸やコハク酸等の有機酸は、食品、医薬品、その他化学品の合成原料として広く用いられている。これら有機酸は、現在、化石燃料資源由来の原料より、工業的に製造されているが、近年の化石燃料資源枯渇への危惧や大気中の二酸化炭素(CO2)増加という地球規模での環境問題の背景から、再生可能エネルギーの1つとして、デンプン及びセルロースなどの糖質系バイオマスからの生産が期待されている。
微細藻類は、水生生物であり、光を利用してCO2から糖質エネルギーを生産することが可能である。水生であることから、食糧や土地利用との競合を回避することができ、バイオエネルギー生産に有望な生体システムとして注目されている。しかし、バイオベース化学品の製造に共通する課題は、大量生産を可能にし、そして価格を安くすることにある。このため、生産性効率向上が求められているが、微細藻類を利用する場合の大きな課題の1つが、細胞密度が低い点である。微細藻類の光合成評価システムが本発明者らにより開発され(非特許文献1及び2)、微細藻類の増殖性を決定する因子を特定及び強化することにより、細胞密度を増大させる方法を模索しており、各種検討が進められている。
微細藻類の増殖性に関し、シアノバクテリアの1種であるシネコシスティスPCC6803種(Synechocystis sp. PCC6803)において、フラボジアイロンタンパク質(Flavodiiron protein)であるFlv1及びFlv3のそれぞれを欠損させた場合、変動光下での細胞増殖及び光合成が阻止されたことが報告されている(非特許文献3)。
水性媒体中で微生物又はその処理物の存在下で、有機原料をコハク酸に変換する工程を含むコハク酸の製造方法について開示がある(特許文献1)。ここでは、水性媒体中のコハク酸アルカリ金属塩の濃度を特定の範囲とし、次いでアンモニア及び/又はアンモニウム塩を添加することにより、コハク酸の産生速度が高まることが開示されている。しかしながら、微細藻を用いた方法については検討されていない。
化石燃料資源を用いず、環境に優しい方法でより効率的に有機酸を製造する方法の開発が望まれている。例えば微細藻について、コハク酸を含む有機酸について、細胞外産生はほとんど知られておらず、微細藻についての代謝物についても十分に解明されていない。
Hasunuma Tら, 2010, J Exp Bot 61: 1041-1051 Hasunuma Tら, 2013, J Exp Bot 64: 2943-2954 Allahverdiyeva Yら, 2013, PNAS 110: 4111-4116
国際公開WO2013/69786号公報
本発明は、化石燃料資源を用いず、環境に優しく効果的な有機酸の製造方法を提供することを課題とする。
本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、微細藻からCO2と光エネルギーを直接資源化して、細胞内代謝物である有機酸を回収することで効果的に有機酸を産生可能となり、その結果環境に優しく効果的な有機酸の製造方法を提供しうることを見出し、本発明を完成した。具体的には、シネコシスティスを炭酸イオン及び/又は重炭酸イオンを含む水性媒体中で培養し、細胞内代謝物である有機酸を回収することによる。さらにホスフォエノールピルビン酸カルボキシラーゼ(PEPカルボキシラーゼ)、ピルビン酸フェレドキシン酸化還元酵素、及びホスフォグルコムターゼより選択される1種又は複数種の酵素機能が増強されたシネコシスティスを水性媒体中で培養し、細胞内代謝物である有機酸を回収することによる。
即ち、本発明は以下よりなる。
1.以下の(A)及び(B)の工程を含む、シネコシスティスからの有機酸の製造方法:
(A)炭酸イオン及び/又は重炭酸イオンの含有量が0~500mMの水性媒体中、暗所及び嫌気培養条件下ホスフォエノールピルビン酸カルボキシラーゼ(PEPカルボキシラーゼ)、ピルビン酸フェレドキシン酸化還元酵素、及びホスフォグルコムターゼより選択される1種又は複数種の酵素機能が増強されたシネコシスティスを培養する工程;
(B)前記(A)のシネコシスティスから産生された有機酸を回収する工程。
2.炭酸イオン及び/又は重炭酸イオンの含有量が0~500mMの水性媒体が、(1)二酸化炭素の充填、及び/又は、(2)炭酸ナトリウム、重炭酸ナトリウム、炭酸カリウム、重炭酸カリウム、炭酸マグネシウムより選択されるいずれか1種又は2種以上の炭酸塩の添加、による水性媒体である、前項1に記載の製造方法。
.二酸化炭素の充填が、水性媒体中で飽和状態になるまで行われる、前項に記載の製造方法。
.前記有機酸が、脂肪族ジカルボン酸である、前項1~のいずれかに記載の有機酸の製造方法。
.前記有機酸が、コハク酸、乳酸及び酢酸から選択されるいずれか1種又は2種以上である、前項1~のいずれかに記載の有機酸の製造方法。
.以下の(a)及び(b)の工程を含む、シネコシスティスからのコハク酸、酢酸及び乳酸から選択されるいずれか1種又は2種以上の有機酸の製造方法:
(a)PEPカルボキシラーゼの機能が増強されたシネコシスティス100~500mMの炭酸イオン及び/又は重炭酸イオンを含む水性媒体中で、暗所及び嫌気培養条件下で培養する工程;
(b)前記(a)のシネコシスティスから産生されたコハク酸、酢酸及び乳酸から選択されるいずれか1種又は2種以上の有機酸を回収する工程。
.以下の(c)及び(d)の工程を含む、シネコシスティスからのコハク酸、乳酸及び酢酸から選択されるいずれか1種又は2種以上の有機酸の製造方法:
(c)ピルビン酸フェレドキシン酸化還元酵素の機能が増強されたシネコシスティス100~500mMの炭酸イオン及び/又は重炭酸イオンを含む水性媒体中で、暗所及び嫌気培養条件下で培養する工程;
(d)前記(c)のシネコシスティスから産生されたコハク酸、乳酸及び酢酸から選択されるいずれか1種又は2種以上の有機酸を回収する工程。
.以下の(e)及び(f)の工程を含む、シネコシスティスからのコハク酸、乳酸及び酢酸から選択されるいずれか1種又は2種以上の有機酸の製造方法:
(e)ホスフォグルコムターゼの機能が増強されたシネコシスティスを水性媒体中で、暗所及び嫌気培養条件下で培養する工程;
(f)前記(e)のシネコシスティスから産生されたコハク酸、乳酸及び酢酸から選択されるいずれか1種又は2種以上の有機酸を回収する工程。
微細藻を炭酸イオン及び/又は重炭酸イオンを含む水性媒体中で培養することで微細藻内のクエン酸回路を活性化することができる。本発明の有機酸の製造方法によれば、微細藻の光合成によって合成されたグリコーゲンと、水性媒体から取り込まれた炭素源とを有効活用して細胞内代謝物である有機酸を効果的に産生しうる。さらに、NADPH-O2オキシドレダクターゼの機能及び/又はグリコーゲンからクエン酸回路に至る解糖系での律速酵素の機能が増強された微細藻を水性媒体中で培養することで、より効果的に有機酸を産生することができる。その結果、化石燃料資源を用いず、環境に優しく効果的に有機酸を製造することができる。
微細藻(シネコシスティス)による有機酸の産生結果を示す図である。(実施例1) 微細藻(シネコシスティス)による有機酸の産生結果を示す図である。(実施例1) 微細藻(ユーグレナ)による有機酸の産生結果を示す図である。(実施例2) 微細藻(クラミドモナス)による有機酸の産生結果を示す図である。(実施例3) CO2通気条件下での微細藻(シネコシスティス)による有機酸の産生結果を示す図である。(実施例4) 微細藻によるコハク酸の産生経路を示す図である。(実施例5) PEPカルボキシラーゼを過剰発現させた微細藻(シネコシスティス)による有機酸の産生結果を示す図である。(実施例5) PGMを過剰発現させたPCC6803(PGMox)の作製方法を示す図である。(実施例6) PCC6803(PGMox)による有機酸の産生結果を示す図である。(実施例6) PFOを過剰発現させたPCC6803(PFORox)の作製方法を示す図である。(実施例7) PCC6803(PFORox)による有機酸の産生結果を示す図である。(実施例7) Flv3過剰発現微細藻の培養による乳酸及びコハク酸の産生を確認した結果図である。(実施例8) Flv3過剰発現微細藻の培養によるグリコーゲン及びATPの細胞内蓄積量を確認した結果図である。(実施例9) 微細藻(シネコシスティス)細胞内代謝物質の13C標識率の経時変化を示す図である。(参考例1) 微細藻(シネコシスティス)の細胞内代謝経路を示す図である。(参考例1) 微細藻の培養による、細胞密度及びグリコーゲンの細胞内蓄積量を経時的に測定した結果図である。(参考例2) 微細藻の培養による、酢酸、乳酸及びコハク酸の細胞内蓄積量を経時的に測定した結果図である。(参考例3) 微細藻の培養による細胞内代謝プロファイルを調べた結果を示す図である。クエン酸回路のうち、ホスフォエノールピルビン酸、ピルビン酸、乳酸の細胞内蓄積量を経時的に測定した結果を示す図である。(参考例4)。 微細藻の培養による細胞内代謝プロファイルを調べた結果を示す図である。クエン酸回路のうち、ホスフォエノールピルビン酸、リンゴ酸、フマル酸及びコハク酸の細胞内蓄積量を経時的に測定した結果を示す図である。(参考例4) 微細藻の培養による有機酸の産生に伴うATPの利用を確認した図である。即ちATP、ADP及びAMPの経時的変化を測定することで、ATPの利用を確認した結果を示す図である。(参考例5)
本発明は、有機酸の製造方法に関し、特に以下の工程を含む、微細藻からの有機酸の製造方法に関する。
(A)炭酸イオン及び/又は重炭酸イオンを20~2000 mM含む水性媒体中で微細藻を培養する工程;
(B)前記(A)の微細藻から産生された有機酸を回収する工程。
1.微細藻
本明細書において、「微細藻」とは、葉緑素(クロロフィル)を持ち、光合成を行う微生物をいう。微細藻は、光合成によって大気中のCO2を固定化して糖類(例えば、グリコーゲン)を合成し、他方、水(H2O)から酸素(O2)を発生させ得る(「酸素発生型光合成」ともいう)。微細藻は、単細胞形態を有するものであってもよく、又はコロニー形態(例えば、フィラメント、シート又はボール)を有するものであってもよい。微細藻は、海洋又は淡水のいずれで繁殖するものであってもよい。
本発明の微細藻は、原核生物のシアノバクテリア(ラン藻類)及び真核生物(例えば、緑藻類、珪藻類、渦鞭毛藻、紅藻、プラシノ藻、ユーグレナ藻、真正眼点藻など)の何れであってもよい。シアノバクテリア(ラン藻類)としては、例えばシネコシスティス属(Synechocystis)、アルスロスピラ属(Arthrospira)、スピルリナ属(Spirulina)、アナベナ属(Anabaena)、シネココッカス属(Synechococcus)、サーモシネココッカス属(Thermosynechococcus)、ノストック属(Nostoc)、プロクロロコッカス属(Prochlorococcu)、ミクロシスティス属(Microcystis)、グロエオバクター属(Gloeobacter)などが挙げられる。真核生物としては、例えばクラミドモナス属(Chlamydomonas)、クロレラ属(Chlorella)、ドナリエラ属(Dunaliella)、ヘマトコッカス属(Hematococcus)、ボルボックス属(Volvox)、ボトリオコッカス属(Botryococcus)などの緑藻類;リゾソレニア属(Rhizosolenia)、ケトセロス属(Chaetoceros)、シクロテラ属(Cyclotella)、シリンドロテカ(Cylindrotheca)、ナビクラ属(Navicula)、フェオダクチラム属(Phaeodactylum)、タラシオシラ属(Thalassiosira)、フィッツリフェラ属(Fistulifera)などの珪藻類;アンフィジニウム属(Amphidinium)、シンビオジニウム属(Symbiodinium)などの渦鞭毛藻;シアニディオシゾン属(Cyanidioschyzon)、ポルフィリジウム属(Phorphyridium)などの紅藻;オストレオコッカス属(Ostreococcus)などのプラシノ藻;ユーグレナ属(Euglena)などのユーグレナ藻;ナンノクロロプシス属(Nannochloropsis)などの真正眼点藻などが挙げられる。例えば、微細藻類の微生物種としては、シネコシスティスPCC6803種(Synechocystis sp. PCC6803)、シネココッカスPCC7002種(Synechococcus sp. PCC7002)、アルスロルピラ・プラテンシス(Arthrospira platensis)(「スピルリナ(Spirulina)」とも称される)、スピルリナ・マキシマ(Spirulina maxima)、スピルリナ・サブサルサ(Spirulina subsalsa)、アナベナPCC7120種(Anabaena sp. PCC7120)、クラミドモナス(Chlamydomonas reinhardtii)、クラミドモナス種(Chlamydomonas sp.)、クロレラ・ブルガリス(Chlorella vulgaris)、クロレラ・ピレノイドーサ(Chlorella pyrenoidosa)、ドナリエラ・サリナ(Dunaliella salina)、ドナリエラ種(Dunaliella sp.)、ヘマトコッカス・プルビアリス(Hematococcus pluvialis)、ボルボックス・カルテリ(Volvox carteri)、ボトリオコッカス・ブラウニイ(Botryococcus braunii)、シクロテラ・クリプティカ(Cyclotella cryptica)、シリンドロテカ・フジフォルミス(Cylindrotheca fusiformis)、ナビクラ・サプロフィラ(Navicula saprophila)、フェオダクチラム・トリコルヌツム(Phaeodactylum tricornutum)、タラシオシラ・シュードナナ(Thalassiosira pseudonana)、フィッツリフェラ種(Fistulifera sp.)、アンフィジニウム種(Amphidinium sp.)、シンビオジニウム・ミクロアドリアチクム(Symbiodinium microadriaticum)、シアニディオシゾン・メロレ(Cyanidioschyzon merolae)、ポルフィリジウム種(Porphyridium sp.)、オストレオコッカス・タウリ(Ostreococcus tauri)、ユーグレナ・グラシリス(Euglena gracilis)、ナンノクロロプシス・オキュラタ(Nannochloropsis oculata)などが挙げられる。
本発明の方法に使用可能な微細藻は、野生型であってもよいし、有機酸を効果的に産生するように改変された微細藻であってもよい。改変の方法は、自体公知の方法や今後開発されるあらゆる方法を適用することができ、例えば遺伝子組換え等の手法により改変することができる。そのような微細藻として、例えば有機酸の産生を増強しうる酵素を過剰発現しうる遺伝子組換え微細藻が挙げられる。例えば、NADPH-O2オキシドレダクターゼの機能及び/又はグリコーゲンからクエン酸回路に至る解糖系での律速酵素の機能が増強された微細藻を利用することができる。
本明細書において「NADPH-O2オキシドレダクターゼ」とは、還元型ニコチンアミドアデニンジヌクレオチドリン酸(NADPH)を酸化型ニコチンアミドアデニンジヌクレオチドリン酸(NADP+)に変換し、かつO2からH2Oを生成することを触媒する酵素をいう。当該酵素は、微細藻類が保有する光合成光化学系Iにおいて、還元型フェレドキシンからの電子伝達によりNADP+からの変換により生じたNADPHを再度NADP+に変換し、かつ酸素から水を生成し得る。
本発明のNADPH-O2オキシドレダクターゼとしては、例えば、フラボジアイロンタンパク質(以下「Flv」ともいう。)が挙げられる。フラボジアイロンタンパク質としては、例えば、Flv3、Flv1などが挙げられ、特に好適にはFlv3である。フラボジアイロンタンパク質は、上記微細藻に由来するものが挙げられる。Flv3及びFlv1は、光合成光化学系IにおけるO2の光還元に関与している。例えば、Flv3としては、上記微細藻に由来するものが挙げられる。例えば、微細藻の形質転換のために、シネコシスティスPCC6803種(Synechocystis sp. PCC6803)由来のflv3遺伝子(sll0550:コード領域の塩基配列及びアミノ酸配列を配列番号1及び2に示す)が用いられ得る。本明細書において、例えばFlv3又はFlv1は、Flv3又はFlv1についてデータベースにて開示されたアミノ酸配列で特定されるほか、前記開示されたアミノ酸配列のうち1又は数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列からなり、本発明において必要な酵素活性を有するアミノ酸配列でも特定することができる。あるいはFlv3又はFlv1についてデータベースにて開示されたアミノ酸配列と例えば、70%以上の配列同一性を有し、本発明において必要な酵素活性を有するアミノ酸配列でも特定することができる。
本発明で用いられるNADPH-O2オキシドレダクターゼに係る遺伝子は、上記フラボジアイロンタンパク質を発現しうる遺伝子をいい、具体的にはFlv3又はFlv1を発現しうる遺伝子をいい、特に好適にはFlv3を発現しうる遺伝子をいう。具体的には、データベースにて開示される塩基配列からなるDNAであっても良いし、当該DNAと相補的な塩基配列からなるDNAとストリンジェントな条件でハイブリダイズする遺伝子が挙げられる。ストリンジェントな条件とは、例えばMolecular Cloning, 2nd. Ed., Cold Spring Harbor Laboratory 1989, New Yorkの1.101~1.104頁に開示される条件をいう。前記DNAにハイブリダイズしうる限り、配列特異的な結合がもたらされるので、このような機能性オリゴヌクレオチドも本発明のNADPH-O2オキシドレダクターゼに係る遺伝子に包含される。
このような遺伝子は、例えば、開示される又は公知の塩基配列に基づいて設計したプライマーを用いて、各種生物から抽出したDNA、各種cDNAライブラリー又はゲノムDNAライブラリー等由来の核酸を鋳型とし、例えばPCR増幅を行うことにより、核酸断片として得ることができる。また、上記ライブラリーなどに由来する核酸を鋳型とし、本発明で発現又は発現しようとする酵素をコードする遺伝子の一部であるDNA断片をプローブとしてハイブリダイゼーションを行うことにより、核酸断片として得ることができる。あるいは遺伝子は、化学合成法等の当技術分野で公知の各種の核酸配列合成法によって、核酸断片として合成してもよい。遺伝子は、宿主微生物での発現を最適にするように、コドンが最適化されてもよい。コドンの最適化は、当業者が通常用いる任意の手段、装置を用いて実施することができる。
本明細書において、「NADPH-O2オキシドレダクターゼの機能が増強された微細藻」とは、「NADPH-O2オキシドレダクターゼの発現又は発現増強するように形質転換された微細藻」をいう。本明細書において、「NADPH-O2オキシドレダクターゼの発現又は発現増強する」とは、NADPH-O2オキシドレダクターゼに係る遺伝子の発現が増強されることをいう。本明細書において、NADPH-O2オキシドレダクターゼに係る遺伝子の発現が増強される形態は、発明の微細藻においてこれら遺伝子の発現を増強する改変が行われる前に比べて、当該NADPH-O2オキシドレダクターゼの生産量又は活性の増大が確認される形態であればよく、特に限定されない。遺伝子の発現を増強する改変は、自体公知の方法によっても良いし、今後開発されるあらゆる方法によっても良い。遺伝子の発現が増強されている実施形態としては、例えば、内因性のいずれかの遺伝子がより強力なプロモーター(構成的プロモーター又は誘導性プロモーターのいずれであってもよい)の制御下に連結された実施形態が挙げられる。また、追加的に内因性及び/又は外因性のいずれかの遺伝子が導入されている実施形態が挙げられる。追加的に導入されたいずれかの遺伝子は、好ましくは構成的プロモーターなど強力なプロモーターで作動可能に保持されている。発現の増強について、本明細書中においては「過剰発現」ともいう。
プロモーターとしては、微細藻にて機能する任意のプロモーターを使用することができる。例えば、微細藻がシアノバクテリア(ラン藻類)の場合、ラン藻に由来し得るsbDII、psbA3、psbA2、nirA、petE、nrsRS、nrsABCD、ndhF3、rbcL、rbcX、glnA、atp1、atp2、petF1などのプロモーターが挙げられる。
上記遺伝子を微細藻に導入するためのプラスミドベクターの一例は、pTCP2031Vベクターである。pTCP2031Vベクターは、psbA2(slr1311)プロモーター、並びにslr2030及びslr2031のコード領域の一部(相同組換え用プラットフォームとして)、及びクロラムフェニコール耐性カセットを含む組換えプラスミドなどが挙げられる(Satoh Sら, 2001, J. Biol. Chem. 276, 4293-4297;Horiuchi Mら, 2010, Biochem. J. 431, 135-140)。
組換え用構築物、例えば、上記のように作製された発現ベクター又は染色体組込み型ベクターを、宿主微細藻に導入し、形質転換微細藻を作製することができる。
形質転換微細藻(特にシアノバクテリア)の形質転換には、多くの場合、遺伝子相同組換え法が用いられ得る。遺伝子相同組換え法のために、例えば、pTCP2031Vベクターが好適に用いられ得る。形質転換のための発現ベクター又は複製可能なプラスミドの導入は、自体公知の方法又は今後開発されるあらゆる方法を適用することができる。例えば、エレクトロポレーション法、プロトプラスト-PEG法、マイクロインジェクション法、パーティクル・ガン法、リン酸カルシウム法、リポフェクション法、カルシウムイオン法などが挙げられる。
形質転換株は、遺伝子導入に用いられた発現ベクター又は染色体組込み型ベクターが有する選択マーカーなどを利用して選択される。宿主微生物それぞれに適した培地に、選択マーカーに応じた抗生物質又は薬剤を添加することができる。このような選択用培地として、微細藻の生育に適した任意の培地を使用することができる。例えば、BG-11寒天培地(例えば、Rippka Rら, 1979, J Gen Microbiol 111: 1-61に記載される:シアノバクテリアに用いられ得る);HSM寒天培地及びTAP寒天培地(これらは、例えば、福澤ら、2009,低温科学,67:17-21に記載される:緑藻などの真核生物に用いられ得る)などが挙げられる。まずこの選択マーカーに基づき形質転換体の選抜を行い、次いで、目的とする遺伝子(すなわち、NADPH-O2オキシドレダクターゼ遺伝子)又はその産物の発現を解析することにより、形質転換体の選抜を行うことができる。NADPH-O2オキシドレダクターゼ発現産物は、例えば、ウエスタンブロット法によって確認することができる。
本明細書における解糖系での律速酵素の例として、ホスフォエノールピルビン酸カルボキシラーゼ(PEPカルボキシラーゼ:PEPC)、ホスフォグルコムターゼ(PGM:phosphoglucomutase)、ピルビン酸フェレドキシン酸化還元酵素(PFO)が挙げられる(図6参照)。
本明細書において、PEPカルボキシラーゼとは、炭酸固定経路のC4経路でホスフォエノールピルビン酸とCO2からオキサロ酢酸を合成する酵素をいう。本明細書において、ホスフォグルコムターゼ(PGM:phosphoglucomutase)とは、グリコーゲンの代謝において、グルコース-1-リン酸(G1P)とグルコース-6-リン酸(G6P)とを相互変換する酵素である。本明細書において、ピルビン酸フェレドキシン酸化還元酵素(PFO)とは、酸化還元酵素に分類され、解糖系におけるピルビン酸とアセチルCoAとを相互変換する酵素である。
2.水性媒体
上記において「水性媒体」とは、種培養及び/又は本培養に用いられる水溶液をいう。後述するように窒素源、無機塩などを含む水溶液であることが好ましい。具体的には、微細藻に応じて、人工又は天然の海水、あるいは淡水(例えば、蒸留水)を用いてもよい。例えば、BG-11培地(J Gen Microbiol 111: 1-61 (1979));HSM培地及びTAP培地(低温科学,67:17-21 (2009))、Cramer-Myers培地(CM培地)等を使用することができる。具体的には、以下の表1に示す組成の培地を用いてもよい。
Figure 0007176787000001
培養での有機酸の生産反応を効率的に行うために、水性媒体には、前記培地に炭素源として有機原料を添加しても良い。本培養に用いる有機原料は、前記微細藻が資化して増殖し得るものであれば特に限定されないが、通常、ガラクトース、ラクトース、グルコース、フルクトース、スクロース、サッカロース、デンプン、セルロース等の炭水化物;グリセロール、マンニトール、キシリトール、リビトール等のポリアルコール類等の発酵性糖質が用いられ、目的とする有機酸に応じて選択可能であり、一般的な有機原料から選択できる。例えば、グルコース、スクロース、又はフルクトースが好ましく、特にグルコース又はスクロースが好ましい。また、前記発酵性糖質を含有する澱粉糖化液、糖蜜なども使用され、前記発酵性糖質がサトウキビ、甜菜、サトウカエデ等の植物から搾取した糖液であってもよい。これらの有機原料は、単独でも組み合わせても使用できる。水性媒体には炭酸イオン、重炭酸イオン又CO2を含有させることができる。
3.培養条件
微細藻の培養温度は、通常15~40℃、好ましくは20~37℃であり、より好ましくは25℃~35℃である。水性媒体のpHは、微細藻の増殖に適した任意のpH、例えば、pH 5~10、好ましくは、pH 6~9、より好ましくは、pH 6~8に調整することができる。pHは、炭酸ナトリウム、重炭酸ナトリウム、炭酸カリウム、重炭酸カリウム、炭酸マグネシウム、水酸化ナトリウム、水酸化カルシウム、水酸化マグネシウム等を添加することによって適宜調整することができる。
本発明の有機酸の製造方法に関し、微細藻は予め前培養することができる。例えば、(1)前々培養、(2)前培養、(3)本培養(光独立栄養)、(4)本培養(嫌気、暗所)等のステップを経て培養することができる。(1)~(3)の培養では、通気培養を行うことができ、培養期間としては、好ましくは各々3日~14日、より好ましくは3日~5日である。通気培養のために、空気やCO2を混合した空気を水性媒体に通気することができる。
本明細書の(3)本培養(光独立栄養)において、「光独立栄養」とは一般的な意味で使用され、微細藻が光合成によってCO2と水から糖を作り、これをエネルギー源として成長する仕組みをいう。光独立栄養時の光照射条件は自然光又は人工光のいずれであってもよく、その強さは、水性媒体中の藻体密度及び培養槽の深さ等によって、適宜調節することができる。例えば、30~2000μmol photons m-2 s-1、好ましくは、30~1000μmol photons m-2 s-1、より好ましくは、50~600μmol photons m-2 s-1の自然光又は人工光が用いられ得る。上記範囲であると、微細藻が光合成を行って順調に増殖し得る。光照射は、連続的であっても周期的であってもよい。屋外の大規模培養については、コストを最小限にし、かつ人工照明の追加費用を回避するために、明/暗周期を設けてもよい。
本明細書の(4)本培養(嫌気、暗所)において、「嫌気培養」とは、溶液中の溶存酸素濃度を低く抑えて培養することをいう。嫌気的条件とするために、例えば容器を密閉して無通気で反応させる、窒素ガス(N2)等の不活性ガスを供給して反応させる、又はCO2含有の不活性ガスを通気する等の方法を用いることができる。嫌気・暗所条件の工程で、有機酸は水性媒体中に排出される。
本明細書の(4)本培養(嫌気、暗所)において、炭酸イオン、重炭酸イオン及び/又はCO2が含有されていることが重要である。炭酸イオン、重炭酸イオンは、20~2000 mM、好ましくは20~500 mM、さらに好ましくは20~150 mMが含有されているのが好適である。水性媒体への炭酸イオン及び/又は重炭酸イオンの導入は、(1)CO2の充填、及び/又は、(2)炭酸ナトリウム、重炭酸ナトリウム、炭酸カリウム、重炭酸カリウム、炭酸マグネシウムより選択されるいずれか1種又は2種以上の炭酸塩の添加によることができる。CO2を充填する場合は、飽和状態になるまで充填することができる。CO2が飽和状態になることで、炭酸イオン濃度は20~2000 mMとなる。
4.微細藻から産生された有機酸の回収
以上の様な方法で産生された有機酸は、必要に応じて、水性媒体から、自体公知の方法又は今後開発されるあらゆる分離、精製方法により分離、精製することができる。具体的には、限外ろ過膜分離、遠心分離、濃縮等により微細藻及びその産生物と分離した後、カラム法、晶析法等の公知の方法で精製し、乾燥させる事により、結晶として採取する方法等が挙げられる。本発明で、製造の対象となる有機酸としては、特に限定されるものではないが、クエン酸回路において産生される細胞内代謝有機酸であり、具体的には有機カルボン酸である。有機カルボン酸として、例えばコハク酸、乳酸、酢酸、フマル酸、2-ケトグルタル酸、リンゴ酸、クエン酸等が挙げられる。有機酸のうちコハク酸、フマル酸、2-ケトグルタル酸、リンゴ酸等の脂肪族ジカルボン酸が好適であり、特にコハク酸が好適である。
5.有機酸の製造
上記方法で微細藻から産生された有機酸を回収することで、化石燃料資源を用いず、環境に優しく効果的に有機酸を製造することができる。すなわち、微細藻の光合成と微細藻に取り込まれた炭素源によりバイオマスから有機酸を産生可能となり、環境に優しく効果的に有機酸を製造することができる。水性媒体への炭酸イオン及び/又は重炭酸イオンの供給は、例えば電気や鉄鋼等の製造工程において産業的に排出された大気中のCO2を利用し、有効活用することができる。大気中のCO2を有効活用できる点で、自然環境に対して優れた効果を有する。さらに、本発明の微細藻によれば、バイオマスとして使用される水性媒体は淡水のみならず海水を活用することができ、水資源の枯渇や耕作地の限界に左右されず安定的に有効活用することができる。
6.クエン酸回路
本発明は、微細藻を炭酸イオン及び/又は重炭酸イオンの含有量が20~2000 mMの水性媒体中で培養することを特徴とする、微細藻内クエン酸回路の活性化方法にも及ぶ。本発明の方法によれば、クエン酸回路が活性化され、その結果、細胞内代謝物である有機酸の産生が増強される。
以下に実施例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)微細藻(シネコシスティス)による有機酸の産生
本実施例において、微細藻類の微生物種としてシネコシスティスPCC6803種(Synechocystis sp. PCC6803)グルコース耐性(GT)(Williams JGK, 1988, Methods Enzymol 167: 766-778)(以下、本実施例及び各実施例において「PCC6803(GT)」という。)を用いた。
(1)前々培養
BG-11寒天培地(1.5% Agarを含むBG-11)上で生育したPCC6803(GT)のコロニーを白金耳でとり、水性媒体(70 mL)に加え、pH7.8にて通気条件下、50μmol photons m-2 s-1で30℃にて4~5日間培養した。ここでは水性媒体として、BG-11液体培地(Rippka Rら, 1J Gen Microbiol 111: 1-61 (1979))に17.6 mM NaNO3, 20 mM Hepes-KOHを含む培養液を用いた。藻体密度は、Shimadzu UV mini spectrophotometer(紫外可視分光光度計:株式会社島津製作所製)を用いてOD750により測定した。培養後のOD750は1~1.5であった。通気とは、特に言及しない場合は空気による通気を意味する。以下の実施例についても同様である。
(2)前培養
上記(1)で前々培養したPCC6803(GT)を、OD750が0.1になるように水性媒体(150 mL)に加え、pH7.8にて通気条件下、50μmol photons m-2 s-1で30℃にて4~5日間培養した。ここでは水性媒体として、BG-11液体培地に17.6 mM NaNO3, 20 mM Hepes-KOHを含む培養液を用いた。培養後のOD750は1~1.5であった。
(3)本培養(光独立利用)
上記(2)で前培養したPCC6803(GT)を、OD750が0.4になるように水性媒体(70 mL)に加え、pH7.8にてCO2通気条件下、120μmol photons m-2 s-1で30℃にて3日間培養した。ここでは、水性媒体としてBG-11液体培地に5 mM NH4Cl, 50 mM Hepes-KOHを含む培養液を用いた。培養後のOD750は6~7であった。培養後、フィルター(polytetrafluoroethylene膜、孔径1μm)濾過にてPCC6803(GT)を回収した。
(4)本培養(嫌気・暗所)
上記(3)で回収したPCC6803(GT)を、OD750が20になるように水性媒体(10 mL)に加えた。ここでは水性媒体として100 mM Hepes-KOH(pH7.8)を用いた。0~500 mMの炭酸水素ナトリウム(NaHCO3)を水性媒体に添加し、10分間のN2通気後、嫌気条件下で培養を開始し、72時間後にPCC6803(GT)を含む水性媒体を回収した。
上記(4)で回収した水性媒体を、各々14000g、4℃にて5分間遠心分離し、上清を回収し、0.45μm孔径Mini-UniPrep(GEヘルスケア・ジャパン株式会社製)を用いて濾過した。濾過液について、コハク酸、乳酸、酢酸及びグリコーゲンの産生量を、高速液体クロマトグラフィー(HPLC)カラム(Aminex HPX-87H;Bio-Rad社製)及び屈折率検出器(RID-10A;株式会社島津製作所製)を備えたHPLCにより測定した。フマル酸、2-ケトグルタル酸、リンゴ酸、クエン酸の産生量は非特許文献2に記載の通り、細胞内代謝物を抽出し、そしてキャピラリー電気泳動/質量分析(CE/MS)システム(CE:Agilent G7100;MS,Agilent G6224AA LC/MSD TOF; Agilent Technologies社製)及びMassHunter Workstation Data Acquisitionソフトウェア(Agilent Technologies社製)により制御される液体クロマトグラフィー-トリプル四重極質量分析(LC/QqQ-MS)システム(LC:Agilent 1200 series;MS,Agilent 6460 with Jet Stream Technology;Agilent Technologies社製)を用いて分析し、測定した。その結果、NaHCO3濃度の増加に伴って、有機酸(コハク酸、乳酸、酢酸、フマル酸、2-ケトグルタル酸、リンゴ酸、クエン酸)の産生量は増加の傾向を示した(図1、2)。NaHCO3濃度を調節することで、PCC6803(GT)によりコハク酸、乳酸及び酢酸を効果的に産生可能であることが確認された。
(実施例2)微細藻(ユーグレナ)による有機酸の産生
本実施例において、微細藻類の微生物種としてユーグレナ(Euglena gracilis (NIES-48))株を用いた。以下「NIES-48」という。
(1)前々培養
Cramer-Myers寒天培地(1.5% Agarを含むCM培地)上で生育したNIES-48のコロニーを白金耳でとり、水性媒体(70 mL)に加え、pH7.8にて通気条件下、50μmol photons m-2 s-1で30℃にて4~5日間培養した。ここでは水性媒体として、表2に示す組成のCM培地に7.5mM (NH4)2HPO4を含む培養液を用いた。培養後のOD750は1~1.5であった。
Figure 0007176787000002
(2)前培養
上記(1)で前々培養したNIES-48を、OD750が0.1になるように水性媒体(150 mL)に加え、pH3.5にて通気条件下、50μmol photons m-2 s-1で30℃にて4~5日間培養した。ここでは水性媒体として、CM培地に7.5 mM (NH4)2HPO4を含む培養液を用いた。培養後のOD750は1~1.5であった。
(3)本培養(光独立利用)
上記(2)で前培養したNIES-48を、OD750が0.4になるように水性媒体(70 mL)に加え、pH3.5にてCO2通気条件下、120μmol photons m-2 s-1で30℃にて5日間培養した。ここでは、水性媒体としてCM培地に3 mM (NH4)2HPO4を含む培養液を用いた。培養後のOD750は6~7であった。培養後、遠心分離(3000g、5分、4℃)によりNIES-48を回収した。
(4)本培養(嫌気・暗所)
上記(3)で回収したNIES-48を、OD750が20になるように水性媒体(10 mL)に加えた。ここでは水性媒体として100 mM Hepes-KOH(pH7.8)を用いた。そして、0、100、200 mMとなるようにNaHCO3を水性媒体に添加し、10分間のN2通気後、嫌気条件下で170rpmで撹拌しながら30℃で培養を開始し、72時間培養した。密閉状態を維持したままNIES-48を含む水性媒体を回収した。
上記(4)で培養したNIES-48を含む水性媒体を、各々14000g、4℃にて5分間遠心分離し、上清を回収し、実施例1と同手法により濾過した。さらに実施例1と同手法により、コハク酸、乳酸、酢酸及びクエン酸の産生量を測定した。その結果、NaHCO3濃度が100 mMでコハク酸、乳酸及び酢酸の産生量は各々増加し、200 mMでは、乳酸及び酢酸の産生量は減少の傾向を示した(図3)。一方、クエン酸はNaHCO3濃度の増加に伴って、産生量は増加の傾向を示した(図3)。NaHCO3濃度を調節することで、ユーグレナにより有機酸(コハク酸、乳酸、酢酸、クエン酸)を効果的に産生可能であることが確認された。
(実施例3)微細藻(クラミドモナス)による有機酸の産生
本実施例において、微細藻類の微生物種としてクラミドモナス(Chlamydomonas reinhardtii)株を用いた。以下「C. reinhardtii」という。
(1)前々培養
TAP寒天培地(1.5%Agarを含むTAP培地)上で生育したC. reinhardtiiのコロニーを白金耳でとり、水性媒体(70 mL)に加え、pH7.8にてCO2通気条件下、100μmol photons m-2 s-1で30℃にて4~5日間培養した。ここでは水性媒体としてMB6N培地を用いた。培養後のOD750は2.5~3.5であった。TAP培地及びMB6N培地の組成は表3に示した。
Figure 0007176787000003
(2)前培養
上記(1)で前々培養したC. reinhardtiiを、OD750が0.1になるように水性媒体(150 mL)に加え、pH7.8にてCO2通気条件下、120μmol photons m-2 s-1で30℃にて3日間培養した。ここでは水性媒体としてMB6N培地を用いた。培養後のOD750は2.5~3.5であった。
(3)本培養(光独立利用)
上記(2)で前培養したC. reinhardtiiを、OD750が0.4になるように水性媒体(70 mL)に加え、pH7.8にてCO2通気条件下、120μmol photons m-2 s-1で30℃にて5日間培養した。ここでは水性媒体としてMB6N培地を用いた。培養後のOD750は3.5~4.5であった。培養後、遠心分離(14000g、5分、4℃)でC. reinhardtiiを回収した。
(4)本培養(嫌気・暗所)
上記(3)で回収したC. reinhardtiiを、OD750が20になるように水性媒体(10 mL)に加えた。ここでは水性媒体として50 mM Hepes-KOH (pH7.8)を用いた。また、0、100 mMとなるようにNaHCO3を添加し、10分間のN2通気後、嫌気条件下170rpmで撹拌しながら、30℃で培養を開始し、72時間培養した。密閉状態を維持したままC. reinhardtiiを含む水性媒体を回収した。
上記(4)で回収した水性媒体を、各々14000g、4℃にて5分間遠心分離し、実施例1と同手法により上清を回収し、0.45μm孔径Mini-UniPrep(GEヘルスケア・ジャパン株式会社製)を用いて濾過した。濾過液について、さらに実施例1と同手法により、コハク酸、乳酸及び酢酸の産生量を測定した。その結果、NaHCO3濃度が100 mMの場合にコハク酸、乳酸及び酢酸の産生量は各々増加した(図4)。NaHCO3濃度を調節することで、クラミドモナスにより有機酸(コハク酸、乳酸、酢酸)を効果的に産生可能であることが確認された。
(実施例4)微細藻(シネコシスティス)による有機酸の産生
本実施例では、微細藻類を飽和状態のCO2条件下で培養したときの有機酸の産生について確認した。本実施例では、実施例1と同様にPCC6803(GT)を用いた。
(1)前々培養
BG-11寒天培地(1.5% Agarを含むBG-11)上で生育したPCC6803(GT)のコロニーを白金耳でとり、水性媒体(70 mL)に加え、pH7.8にて通気条件下、50μmol photons m-2 s-1で30℃にて4~5日間培養した。ここでは水性媒体として、BG-11液体培地(Rippka Rら, 1J Gen Microbiol 111: 1-61 (1979))に17.6 mM NaNO3, 20 mM Hepes-KOHを含む培養液を用いた。藻体密度は、Shimadzu UV mini spectrophotometer(紫外可視分光光度計:株式会社島津製作所製)を用いてOD750により測定した。培養後のOD750は1~1.5であった。通気とは、特に言及しない場合は空気による通気を意味する。以下の実施例についても同様である。
(2)前培養
上記(1)で前々培養したPCC6803(GT)を、OD750が0.1になるように水性媒体(150 mL)に加え、pH7.8にて通気条件下、50μmol photons m-2 s-1で30℃にて4~5日間培養した。ここでは水性媒体として、BG-11液体培地に17.6 mM NaNO3, 20 mM Hepes-KOHを含む培養液を用いた。培養後のOD750は1~1.5であった。
(3)本培養(光独立利用)
上記(2)で前培養したPCC6803(GT)を、OD750が0.4になるように水性媒体(70 mL)に加え、pH7.8にてCO2通気条件下、120μmol photons m-2 s-1で30℃にて3日間培養した。ここでは、水性媒体としてBG-11液体培地に5 mM NH4Cl, 50 mM Hepes-KOHを含む培養液を用いた。培養後のOD750は6~7であった。培養後、フィルター(polytetrafluoroethylene膜、孔径1μm)濾過にてPCC6803(GT)を回収した。
(4)本培養(嫌気・暗所)
上記(3)で回収したPCC6803(GT)を、OD750が20になるように水性媒体(10 mL)に加えた。ここでは水性媒体として100 mM Hepes-KOH(pH7.8)を用いた。72時間N2を通気する条件及び72時間CO2を通気する条件下で培養し、PCC6803(GT)を含む水性媒体を回収した。この条件により、液体培地においてN2及びCO2は飽和状態となった。
上記(4)で回収した水性媒体を、各々14000g、4℃にて5分間遠心分離し、上清を回収し、0.45μm孔径Mini-UniPrep(GEヘルスケア・ジャパン株式会社製)を用いて濾過した。濾過液について、コハク酸、乳酸、酢酸及びグリコーゲンの産生量を、高速液体クロマトグラフィー(HPLC)カラム(Aminex HPX-87H;Bio-Rad社製)及び屈折率検出器(RID-10A;株式会社島津製作所製)を備えたHPLCにより測定した。フマル酸、2-ケトグルタル酸、リンゴ酸、クエン酸の産生量は非特許文献2に記載の通り、細胞内代謝物を抽出し、そしてキャピラリー電気泳動/質量分析(CE/MS)システム(CE:Agilent G7100;MS,Agilent G6224AA LC/MSD TOF; Agilent Technologies社製)及びMassHunter Workstation Data Acquisitionソフトウェア(Agilent Technologies社製)により制御される液体クロマトグラフィー-トリプル四重極質量分析(LC/QqQ-MS)システム(LC:Agilent 1200 series;MS,Agilent 6460 with Jet Stream Technology;Agilent Technologies社製)を用いて分析し、測定した。その結果、CO2での培養条件下で、コハク酸及び酢酸の産生量は増加の傾向を示した(図5)。
(実施例5)PEPカルボキシラーゼ過剰発現微細藻による有機酸の産生
本実施例ではPEPカルボキシラーゼ過剰発現微細藻による有機酸の産生を確認した。本実施例では実施例1に示すPCC6803(GT)を用いて、遺伝子組換え操作によりPEPカルボキシラーゼ過剰発現株PCC6803(PEPox)を作製した。PCC6803(PEPox)の作製方法は以下のとおりである。微細藻によるコハク酸の産生経路を図6に示し、PEPカルボキシラーゼ作用点を示した。
5-1.rbcLターミネーター及びslr0168領域下流のコード領域の一部は、PCC6803(GT)から抽出したゲノムDNAから、プライマーセットとして、配列番号1及び2に示すオリゴヌクレオチド、配列番号3及び4に示すオリゴヌクレオチドを用いて、PCRにより増幅した。得られた増幅断片を、In-Fusion HD Cloning Kit(Clonetech社製、タカラバイオ株式会社より入手)を用いてPstI及びHindIII消化pBluescript II SK(+)(Agilent Technologies, Palo Alto, CA)に挿入し、 pBluescript-TrbcL-slr0168を得た。
配列番号3:5'-CCTCTAGAGTCGACCTGCAGGTTACAGTTTTGGCAATTAC-3'
配列番号4:5'-GCCAGCCCCAACACCTGACGCGTTTCCCCACTTAGATAAAAAATCC-3'
配列番号5:5'-TCTAAGTGGGGAAACGCGTCAGGTGTTGGGGCTGGC-3'
配列番号6:5'-TGATTACGCCAAGCTTCTAAGTCAGCGTAAATCTGACAATG-3'
5-2.カナマイシン耐性カセット及びrbcLプロモーターはpCRII-TOPO (Invitrogen, Carlsbad, CA) 及びPCC6803(GT)のゲノムDNAからプライマーセットとして配列番号5及び6に示すオリゴヌクレオチド、配列番号7及び8に示すオリゴヌクレオチドを用いて、PCRにより増幅した。得られた増幅断片を、In-Fusion HD Cloning Kit(Clonetech社製、タカラバイオ株式会社より入手)を用いて XhoI及びXbaI消化pBluescript-TrbcL-slr0168に挿入し、pBluescript-Kmr-PrbcL-TrbcL-slr0168を得た。
配列番号7:5'-CGGGCCCCCCCTCGAGCCGGAATTGCCAGCTGGGGC-3'
配列番号8:5'-TGGACTTTCTAATTAGAGCGGCCGCTCAGAAGAACTCGTCAAGA-3'
配列番号9:5'-TCTTGACGAGTTCTTCTGAGCGGCCGCTCTAATTAGAAAGTCCA-3'
配列番号10:5'-CCGGGGATCCTCTAGACATATGGGTCAGTCCTCCAT-3'
5-3.slr0168領域上流のコード領域の一部は、PCC6803(GT)から抽出したゲノムDNAから、プライマーセットとして配列番号9及び10に示すオリゴヌクレオチドを用いて、PCRにより増幅した。得られた増幅断片を、In-Fusion HD Cloning Kit(Clonetech社製、タカラバイオ株式会社より入手)を用いて KpnI及びXhoI消化pBluescript-Kmr-PrbcL-TrbcL-slr0168に挿入し、pBluescript-slr0168-Kmr-PrbcL-TrbcL-slr0168を得た。
配列番号11:5'-TATAGGGCGAATTGGGTACCATGACTATTCAATACACCCCCCTAG-3'
配列番号12:5'-TACCGTCGACCTCGAGCACCAGACCAAAGCCGGGAATTTC-3'
5-4.pUC19(タカラバイオ)のNdeI部位(CATATG)にAatII及びEcoRIで消化されたCACATGを置き換え、合成DNAを挿入した。pBluescript-slr0168-KMR-PrbcL-TrbcL-slr0168をKpnI及びHindIIIで消化した後、slr0168を含む断片は、上記作製したpUC19ベクターのKpnI/HindIII部位に挿入し、pSKrbcL-slr0168を作製した。
5-5.PEPカルボキシラーゼをコードするppc(sll0920)は、PCC6803(GT)から抽出したゲノムDNAから、プライマーセットとして配列番号11及び配列番号12に示すオリゴヌクレオチドを用いて、PCRにより増幅した。得られた増幅断片を、In-Fusion HD Cloning Kit(Clontech社製、タカラバイオ株式会社より入手)を用いてNdeI/SalI消化pSKtrc-slr0168に挿入し、pSKtrc-slr0168/sll0920を得た。
配列番号13:5'- AGGAAACAGACCCATATGAACTTGGCAGTTCCTGC -3'
配列番号14:5'- AACCTGCAGGTCGACTCAACCAGTATTACGCA -3'
5-6.得られたプラスミドpSKtrc-slr0168/sll0920ベクター(sll0920コード領域を含む)によりPCC6803(GT)を形質転換した。コントロールとして、空ベクター(sll0920コード領域を含まないプラスミドpSKtrc-slr0168ベクター)での形質転換を行った。上記により形質転換され、sll0920が過剰発現するよう作製されたPCC6803(GT)をPCC6803(PEPox)ということとする。また、形質転換されていない野生型のPCC6803(GT)をPCC6803(VC)ということとする。
5-7.上記作製されたPCC6803(PEPox)及びPCC6803(VC)について、実施例1の(1)~(3)と同様の培養条件に基づいて、培養した。(4)の嫌気・暗所条件下での本培養において、0又は100 mMのNaHCO3を水性媒体に添加し、10分間のN2通気後、嫌気条件下で培養を開始し、72時間後にPCC6803(PEPox)又はPCC6803(VC)を含む水性媒体を回収した。回収した水性媒体について、実施例1と同手法によりコハク酸、乳酸及び酢酸の産生量を測定した。その結果、コハク酸及び酢酸は、NaHCO3添加の有無にかかわらず、PEPカルボキシラーゼ過剰発現株PCC6803(PEPox)の方が高い産生能を示したのに対し、乳酸はNaHCO3添加の有無により産生能に変動することが確認された(図7)。
(実施例6)PGM過剰発現微細藻による有機酸の産生
本実施例では、PGM過剰発現微細藻による有機酸の産生を確認した。本実施例では実施例1に示すPCC6803(GT)を用いて、遺伝子組換え操作によりPGM過剰発現株PCC6803(PGMox)を作製した。PCC6803(PGMox)の作製方法は、図8に示した。微細藻によるコハク酸の産生経路を図6に示し、PGM作用点を示した。
上記実施例5の5-1.~5-3.と同手法によりpBluescript-slr0168-Kmr-PrbcL-TrbcL-slr0168を作製した。pSKtrc-slr0168/sll0726によりPCC6803(GT)を形質転換し、sll0726が過剰発現するよう作製されたPCC6803(GT)を、本実施例においてPCC6803(PGMox)という。また、形質転換されていない野生型のPCC6803(GT)を、実施例5-6.と同様にPCC6803(VC)という。
上記作製されたPCC6803(PGMox)及びPCC6803(VC)について、実施例1の(1)~(3)と同様の培養条件に基づいて、培養した。(4)の嫌気・暗所条件下での本培養において、10分間のN2通気後、嫌気条件下で培養を開始し、72時間後にPCC6803(PGMox)又はPCC6803(VC)を含む水性媒体を回収した。回収した水性媒体について、実施例1と同手法によりコハク酸、乳酸及び酢酸の産生量を測定した。その結果いずれについても、PGM過剰発現株PCC6803(PGMox)の方が高い産生能を示した(図9)。
(実施例7)PFOR過剰発現微細藻による有機酸の産生
本実施例では、PFOR過剰発現微細藻による有機酸の産生を確認した。本実施例では実施例1に示すPCC6803(GT)を用いて、遺伝子組換え操作によりSynechococcus sp. PCC7002由来PFOR遺伝子(A1443)を過剰発現する株PCC6803(PFORox)を作製した。PCC6803(PFORox)の作製方法は、図10に示した。微細藻によるコハク酸の産生経路を図6に示し、PFOの作用点を示した。
上記実施例5の5-1.~5-3.と同手法によりpBluescript-slr0168-Kmr-PrbcL-TrbcL-slr0168を作製した。pSKtrc-PFOR(A1443)によりPCC6803(GT)を形質転換した。PFOR(A1443)が過剰発現するよう作製されたPCC6803(GT)を本実施例においてPCC6803(PFORox)ということとする。また、形質転換されていない野生型のPCC6803(GT)を実施例5-6.と同様にPCC6803(VC)という。
上記作製されたPCC6803(PFORox)及びPCC6803(VC)について、実施例1の(1)~(3)と同様の培養条件に基づいて、培養した。(4)の嫌気・暗所条件下での本培養において、0又は100 mMのNaHCO3を水性媒体に添加し、10分間のN2通気後、嫌気条件下で培養を開始し、72時間後にPCC6803(PFORox)又はPCC6803(VC)を含む水性媒体を回収した。回収した水性媒体について、実施例1と同手法によりコハク酸、乳酸及び酢酸の産生量を測定した。その結果、コハク酸はNaHCO3添加の有無にかかわらずPFOR過剰発現株PCC6803(PFORox)の方が高い産生能を示し、NaHCO3を添加することでより高く産生されることが確認された。乳酸はNaHCO3の添加によって高い産生能が確認され、PFOR過剰発現株PCC6803(PFORox)の方が高い産生能を示した(図11A)。また、細胞密度(Cell concentration)も、光培養72時間後のOD750により測定した。その結果、細胞密度については殆ど差を認めなかった(図11B)。
(実施例8)Flv3過剰発現微細藻による有機酸の産生
8-1.Flv3過剰発現微細藻の作製
本実施例では実施例1に示すPCC6803(GT)を用いて、遺伝子組換え操作によりFlv3過剰発現株PCC6803(Flv3ox)を作製した。PCC6803(Flv3ox)の作製方法は以下のとおりである。
PCC6803(GT)から抽出したゲノムDNAから、フォワードプライマー(5'-GGAATTATAACCATAATGTTCACTACCCCCCTCCC-3':配列番号15)及びリバースプライマー(5'-GGCATGGAGGACATATTAGTAATAATTGCCGACTT-3':配列番号16)を用いて、flv3(sll0550)コード領域をPCRにより増幅した。
得られた1.7kb増幅断片を、In-Fusion Cloning Kit(Clonetech社製、タカラバイオ株式会社より入手)を用いてNdeI消化pTCP2031Vベクターに挿入した。pTCP2031Vベクターは、psbA2(slr1311)プロモーター、及びslr2030及びslr2031のコード領域の一部(相同組換え用プラットフォームとして)、及びクロラムフェニコール耐性カセットを含む組換えプラスミドである(Satoh Sら, 2001, J. Biol. Chem. 276, 4293-4297;Horiuchi Mら, 2010, Biochem. J. 431, 135-140)。
得られたプラスミドpTCP2031Vベクター(flv3コード領域を含む)によりPCC6803(GT)を形質転換し、PCC6803(Flv3ox)を作製した。コントロールとして、空ベクター(flv3コード領域を含まないプラスミドpTCP2031Vベクター)での形質転換を行った。また、形質転換されていない野生型のPCC6803(GT)をPCC6803(VC)ということとする。
8-2.有機酸産生プロセスの検討
本実施例では、PCC6803(Flv3ox)を用いて有機酸産生プロセスの検討を行った。
(1)前々培養
BG11寒天培地(1.5%Agarを含むBG11)上で生育したPCC6803(Flv3ox)のコロニーを白金耳でとり、水性媒体(70 mL)に加え、pH7.8にて通気条件下、50μmol photons m-2 s-1で30℃にて4~5日間培養した。ここでは水性媒体として、BG-11液体培地(Rippka Rら, 1979, J Gen Microbiol 111: 1-61)に17.6 mM NaNO3, 20 mM Hepes-KOHを含む培養液を用いた。Shimadzu UV mini spectrophotometer(紫外可視分光光度計:株式会社島津製作所製)を用いてOD750により細胞密度を測定した。培養後のOD750は1~1.5であった。
(2)前培養
上記(1)で前々培養したPCC6803(Flv3ox)を、OD750が0.1になるように水性媒体(150 mL)に加え、pH7.8にて通気条件下、50μmol photons m-2 s-1で30℃にて4~5日間培養した。ここでは水性媒体として、G-11液体培地に17.6 mM NaNO3, 20 mM Hepes-KOHを含む培養液を用いた。培養後のOD750は1~1.5であった。
(3)本培養(光独立利用)
上記(2)で前培養したPCC6803(Flv3ox)を、OD750が0.4になるように水性媒体(70 mL)に加え、pH7.8にて1% CO2通気条件下、120μmol photons m-2 s-1で30℃にて3日間培養した。ここでは、水性媒体としてBG-11液体培地に5 mM NH4Cl/NaNO3, 50 mM Hepes-KOHを含む培養液を用いた。培養後のOD750は6~7であった。培養後、菌体を遠心分離(14000g、5分、4℃)で回収した。
(4)本培養(嫌気・暗所)
上記(3)で培養したPCC6803(Flv3ox)を、OD750が20になるように水性媒体(10 mL)に加え、N2通気による嫌気条件下で10分後に170rpmで撹拌し、30℃で培養を開始した。ここでは水性媒体として50 mM Hepes-KOHを用いた。密閉状態を維持したまま水性媒体を回収し、OD/pHを測定し、有機酸分析、メタボローム解析、グリコーゲン分析を行った。
8-3.PCC6803(Flv3ox)の培養による有機酸の産生
上記8-2の嫌気・暗所条件下で培養したPCC6803(Flv3ox)及び比較例としてのPCC6803(VC)について、コハク酸及び乳酸の産生量を確認した。水性媒体中の窒素源として塩化アンモニウム(NH4Cl)を用いた。
上記8-2の(4)で培養したPCC6803(Flv3ox)培養液及び比較例の培養液を、各々14000g、4℃にて5分間遠心分離し、上清を回収した。0.45μm孔径Mini-uniPrep(GEヘルスケア・ジャパン株式会社製)を用いて濾過し、HPLCカラム(Aminex HPX-87H;Bio-Rad社製)及び屈折率検出器(RID-10A;株式会社島津製作所製)を備えた高速液体クロマトグラフィー(HPLC)(株式会社島津製作所製)を用いて、コハク酸及び乳酸の産生量を測定した。その結果、Flv3過剰発現させたPCC6803(Flv3ox)がコハク酸及び乳酸のいずれについても高い産生量を示した(図12)。
(実施例9)PCC6803(Flv3ox)の培養による細胞内グリコーゲン及びATP
実施例8(8-2)の嫌気・暗所条件下で培養したPCC6803(Flv3ox)及び比較例としてのPCC6803(VC)について、細胞内グリコーゲン及びATPの蓄積量を測定した。水性媒体中の窒素源として塩化アンモニウム(NH4Cl)を用いた。その結果、グリコーゲン及びATPのいずれについてもFlv3過剰発現させたPCC6803(Flv3ox)が高い蓄積量を示した(図13)。
(1)グリコーゲン定量
1μm孔径ポリテトラフルオロエチレン(PTEE)メンブレンフィルター(Omnipore;Millipore社製)を用いて5 mg乾燥重のPCC6803(Flv3ox)を採取した。濾過直後、細胞を20 mMの予冷した炭酸アンモニウムで洗浄した。すぐに、メンブレンフィルター上のPCC6803(Flv3ox)を液体窒素中で凍結し、凍結乾燥機(Labconco社製)内で凍結乾燥した。既報(Izumi Yら, 2013, J Chromatogr B Analyt Technol Biomed Life Sci 930: 90-97)の通り、細胞からグリコーゲンを抽出した後、サイズ排除HPLCカラム(OHpak SB-806M HQ;昭和電工株式会社製)及び屈折率検出器(RID-10A;株式会社島津製作所製)を備えた高速液体クロマトグラフィー(HPLC)(株式会社島津製作所製)を用いて、グリコーゲン含量を測定した。
(2)ATP定量
ATP量は、非特許文献2に記載の通り、細胞内代謝物を抽出し、そしてキャピラリー電気泳動/質量分析(CE/MS)システム(CE:Agilent G7100;MS,Agilent G6224AA LC/MSD TOF; Agilent Technologies社製)及びMassHunter Workstation Data Acquisitionソフトウェア(Agilent Technologies社製)により制御される液体クロマトグラフィー-トリプル四重極質量分析(LC/QqQ-MS)システム(LC:Agilent 1200 series;MS,Agilent 6460 with Jet Stream Technology;Agilent Technologies社製)を用いて分析し、測定した。
(参考例1)微細藻(シネコシスティス)における細胞内代謝物の確認
本参考例では、微細藻として実施例1に示したPCC6803(GT)を用い、細胞内代謝物質の13C標識率の経時変化を確認した。PCC6803(GT)を100 mMのNaH13CO3を含む100 mM Hepes-KOH水性媒体(pH7.8)に懸濁し、N2通気後嫌気条件下で培養した。ラベル後24時間目に、1μm孔径ポリテトラフルオロエチレン(PTEE)メンブレンフィルター(Omnipore;Millipore社製)を用いて5 mg乾燥重のPCC6803(GT)を採取した。濾過直後、細胞を20 mMの予冷した炭酸アンモニウムで洗浄した。すぐに、メンブレンフィルター上のPCC6803(GT)を液体窒素中で凍結し、凍結乾燥機(Labconco社製)内で凍結乾燥した。非特許文献2に記載の通り、細胞内代謝物を抽出し、そしてキャピラリー電気泳動/質量分析(CE/MS)システム(CE:Agilent G7100;MS,Agilent G6224AA LC/MSD TOF; Agilent Technologies社製)及びMassHunter Workstation Data Acquisitionソフトウェア(Agilent Technologies社製)により制御される液体クロマトグラフィー-トリプル四重極質量分析(LC/QqQ-MS)システム(LC:Agilent 1200 series;MS,Agilent 6460 with Jet Stream Technology;Agilent Technologies社製)を用いて分析し、測定した。その結果を、図14に示した。細胞内代謝経路は図15に示した。上記結果より、PCC6803(GT)の嫌気条件培養により、微細藻に取り込まれたNaHCO3は、有機酸に異化されることが確認された。
(参考例2)微細藻の培養による細胞密度及びグリコーゲン蓄積量の確認
本参考例では微細藻としてPCC6803(GT)を用い、実施例8の嫌気・暗所条件下で培養したときの、細胞密度変化、グリコーゲン蓄積量を確認した。水性媒体中の窒素源として塩化アンモニウム(NH4Cl)又は硝酸ナトリウム(NaNO3)を用いた。
(1)細胞密度
上記培養したPCC6803(GT)について、Shimadzu UV mini spectrophotometer(紫外可視分光光度計:株式会社島津製作所製)を用いてOD750により細胞密度を測定した。
その結果、窒素源の違いによる細胞密度はほとんど差がなかった(図16A)。
(2)グリコーゲン定量
グリコーゲンは、実施例9)と同手法により測定した。その結果、窒素源の違いによるグリコーゲンの細胞内蓄積量はほとんど差がなかった(図16B)。
(参考例3)微細藻の培養による有機酸の定量
本参考例ではPCC6803(GT)を参考例2と同手法にて培養したときの酢酸、乳酸及びコハク酸の産生を確認した。乳酸及びコハク酸の産生量は、非特許文献2に記載の通り、細胞内代謝物を抽出し、そしてキャピラリー電気泳動/質量分析(CE/MS)システム(CE:Agilent G7100;MS,Agilent G6224AA LC/MSD TOF; Agilent Technologies社製)及びMassHunter Workstation Data Acquisitionソフトウェア(Agilent Technologies社製)により制御される液体クロマトグラフィー-トリプル四重極質量分析(LC/QqQ-MS)システム(LC:Agilent 1200 series;MS,Agilent 6460 with Jet Stream Technology;Agilent Technologies社製)を用いて分析し、測定した。
その結果、自己発酵において酢酸、乳酸及びコハク酸の細胞内蓄積量は、培養時間と共に増加、又はやや増加傾向が認められた。酢酸の細胞内蓄積量は、窒素源の違いによる差はほとんど認められなかったが(図17A)、乳酸及びコハク酸については塩化アンモニウムを窒素源として用いたほうが蓄積量が多いことが観察された(図17B、C)。
(参考例4)微細藻の培養による細胞内代謝プロファイル
本参考例では、PCC6803(GT)を参考例2と同手法にて培養したときの細胞内代謝プロファイルを調べた。細胞内代謝プロファイルは、非特許文献2に記載の通り、細胞内代謝物を抽出し、そしてキャピラリー電気泳動/質量分析(CE/MS)システム(CE:Agilent G7100;MS,Agilent G6224AA LC/MSD TOF; Agilent Technologies社製)及びMassHunter Workstation Data Acquisitionソフトウェア(Agilent Technologies社製)により制御される液体クロマトグラフィー-トリプル四重極質量分析(LC/QqQ-MS)システム(LC:Agilent 1200 series;MS,Agilent 6460 with Jet Stream Technology;Agilent Technologies社製)を用いて分析し、測定した。
その結果、上記培養によりコハク酸、乳酸及びリンゴ酸等の有機酸の細胞内蓄積が確認された(図18、19)。特に培養開始6~24時間の間に、微細藻内にコハク酸、乳酸及びリンゴ酸の蓄積がピークになることを観察した。
(参考例5)微細藻の培養によるATPの利用
本参考例では、PCC6803(GT)を参考例2と同手法にて培養したときの細胞内のATP量を調べた。即ち、コハク酸、乳酸及びリンゴ酸等の有機酸の産生に伴うATPの利用を確認した。その結果、有機酸の産生に伴い、ATPがADP及びAMPに分解することが確認された(図20)。即ち、細胞内に蓄積されたATPを有効活用し、コハク酸、乳酸及びリンゴ酸等の有機酸が効果的に産生されることが確認された。即ち、本発明のFlv3が過剰発現するよう作製されたPCC6803(Flv3ox)によれば、より効果的に有機酸が産生されることが示唆された。
以上詳述したように、本発明の方法で微細藻を培養することで、バイオマスを有効活用することができる。微細藻の光合成と微細藻に取り込まれた炭素源によりバイオマスから有機酸を産生することができる。さらに、NADPH-O2オキシドレダクターゼの機能及び/又はグリコーゲンからクエン酸回路に至る解糖系での律速酵素の機能が増強された微細藻によれば、より効果的に細胞内代謝物である有機酸を回収することができる。水性媒体への炭酸イオン及び/又は重炭酸イオンの供給は、例えば電気や鉄鋼等の製造工程において産業的に排出された大気中のCO2を利用し、有効活用することができる。従来は、有機酸のうち例えばコハク酸等は石油等を原料として産生されていたが、その際にCO2が排出されていたのに対し、本発明の方法によれば、有機酸の製造工程でCO2を排出しないばかりか、大気中のCO2を有効活用できる点で、自然環境に対して優れた効果を有する。さらに、本発明の微細藻によれば、バイオマスとして使用される水性媒体は淡水のみならず海水を活用することができ、水資源の枯渇や耕作地の限界に左右されず安定的に有効活用することができる。
製造された有機酸は、食品、医薬品、その他各種分野において有効に利用される。例えばコハク酸では医薬品の賦形剤、pH調整剤、食品として調味料、その他の食品添加物、工業的にはメッキ等にも利用される。また、炭酸ガスを発泡する入浴剤等の成分としても利用される。

Claims (4)

  1. シネコシスティスからの有機酸の製造方法であり、前記有機酸がコハク酸及び/又は酢酸であり、
    以下の(A)及び(B)の工程を含む、シネコシスティスからの有機酸の製造方法:
    (A)炭酸イオン及び/又は重炭酸イオンの含有量が100~500mMの水性媒体中、暗所及び嫌気培養条件下でホスフォエノールピルビン酸カルボキシラーゼ(PEPカルボキシラーゼ)の酵素機能が増強されたシネコシスティスを培養する工程;
    (B)前記(A)のシネコシスティスから産生された有機酸を回収する工程。
  2. シネコシスティスからの有機酸の製造方法であり、前記有機酸がコハク酸及び/又は乳酸であり、
    以下の(C)及び(D)の工程を含む、シネコシスティスからの有機酸の製造方法:
    (C)炭酸イオン及び/又は重炭酸イオンの含有量が100~500mMの水性媒体中、暗所及び嫌気培養条件下でピルビン酸フェレドキシン酸化還元酵素(PFO)の酵素機能が増強されたシネコシスティスを培養する工程;
    (D)前記(C)のシネコシスティスから産生された有機酸を回収する工程。
  3. 炭酸イオン及び/又は重炭酸イオンの含有量が100~500mMの水性媒体が、(1)二酸化炭素の充填、及び/又は、(2)炭酸ナトリウム、重炭酸ナトリウム、炭酸カリウム、重炭酸カリウム、炭酸マグネシウムより選択されるいずれか1種又は2種以上の炭酸塩の添加、による水性媒体である、請求項1又は2に記載の製造方法。
  4. 二酸化炭素の充填が、水性媒体中で飽和状態になるまで行われる、請求項に記載の製造方法。
JP2021073858A 2015-04-08 2021-04-26 有機酸の製造方法 Active JP7176787B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2015078889 2015-04-08
JP2015078889 2015-04-08
JP2015228518 2015-11-24
JP2015228518 2015-11-24
JP2017511006A JP6883330B2 (ja) 2015-04-08 2016-04-06 有機酸の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017511006A Division JP6883330B2 (ja) 2015-04-08 2016-04-06 有機酸の製造方法

Publications (2)

Publication Number Publication Date
JP2021106614A JP2021106614A (ja) 2021-07-29
JP7176787B2 true JP7176787B2 (ja) 2022-11-22

Family

ID=57073101

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017511006A Active JP6883330B2 (ja) 2015-04-08 2016-04-06 有機酸の製造方法
JP2021073858A Active JP7176787B2 (ja) 2015-04-08 2021-04-26 有機酸の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017511006A Active JP6883330B2 (ja) 2015-04-08 2016-04-06 有機酸の製造方法

Country Status (2)

Country Link
JP (2) JP6883330B2 (ja)
WO (1) WO2016163382A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180112175A1 (en) * 2015-05-08 2018-04-26 Riken Method for producing an organic acid using euglena

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507369A (ja) 2006-10-20 2010-03-11 アリゾナ ボード オブ リージェンツ フォー アンド オン ビハーフ オブ アリゾナ ステイト ユニバーシティ 改変されたシアノバクテリア
JP2015073469A (ja) 2013-10-08 2015-04-20 国立大学法人神戸大学 微細藻の生育機能を増強する方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012040698A2 (en) * 2010-09-24 2012-03-29 Montana State University Bicarbonate trigger for inducing lipid accumulation in algal systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507369A (ja) 2006-10-20 2010-03-11 アリゾナ ボード オブ リージェンツ フォー アンド オン ビハーフ オブ アリゾナ ステイト ユニバーシティ 改変されたシアノバクテリア
JP2015073469A (ja) 2013-10-08 2015-04-20 国立大学法人神戸大学 微細藻の生育機能を増強する方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Appl. Biochem. Biotechnol.,2013年10月04日,Vol. 172,pp. 447-457
Bioresource Technology,2013年02月09日,Vol. 133,pp. 513-521
Bioresource Technology,2014年07月10日,Vol. 169,pp. 462-467
Biotechnology for Biofuels,2014年06月,7:99,pp. 1-15
Chin. Sci. Bull.,2013年12月,Vol. 58, No. 36,pp. 4616-4621
Frontiers in Microbiology,2015年10月06日,Vol. 6,Article 1064 (pp. 1-10)
J. Biol. Chem.,2013年12月05日,Vol. 289, No. 4,pp. 1930-1937

Also Published As

Publication number Publication date
JP2021106614A (ja) 2021-07-29
JPWO2016163382A1 (ja) 2018-02-01
JP6883330B2 (ja) 2021-06-09
WO2016163382A1 (ja) 2016-10-13

Similar Documents

Publication Publication Date Title
Hasunuma et al. Temperature enhanced succinate production concurrent with increased central metabolism turnover in the cyanobacterium Synechocystis sp. PCC 6803
Salama et al. Enhancement of microalgal growth and biocomponent-based transformations for improved biofuel recovery: a review
Hasunuma et al. Improved sugar-free succinate production by Synechocystis sp. PCC 6803 following identification of the limiting steps in glycogen catabolism
Hoffmann et al. Cascaded valorization of brown seaweed to produce l-lysine and value-added products using Corynebacterium glutamicum streamlined by systems metabolic engineering
MX2008008970A (es) Procedimientos y composiciones para cianobacterias productoras de etanol.
CN107709540A (zh) 新型库德里阿兹威氏毕赤酵母菌种ng7及其用途
CN105431520A (zh) 利用表达昆虫天冬氨酸1-脱羧酶的重组酵母的3-羟基丙酸生产
JP2017099397A (ja) ブタノールおよび関連する高級アルコールのデザイナカルビン回路チャンネルおよび水素化による生産
Zhang et al. Multiple gene integration to promote erythritol production on glycerol in Yarrowia lipolytica
Hu et al. Efficient production of d-1, 2, 4-butanetriol from d-xylose by engineered Escherichia coli whole-cell biocatalysts
Zhu et al. Efficient utilization of carbon to produce aromatic valencene in Saccharomyces cerevisiae using mannitol as the substrate
JP7176787B2 (ja) 有機酸の製造方法
WO2016105405A1 (en) Improved methods for making marker free microbial host cells
WO2018051916A1 (ja) 有機酸の製造方法
Cui et al. Construction of an artificial consortium of Escherichia coli and cyanobacteria for clean indirect production of volatile platform hydrocarbons from CO2
US20130203136A1 (en) Biological production of organic compounds
JP2015073469A (ja) 微細藻の生育機能を増強する方法
CN109825441B (zh) 一种用于提高微藻固碳效率的方法及转基因衣藻和应用
US9970016B2 (en) Genetic engineered bacteria and methods for promoting production of succinic acid or lactic acid
WO2019110492A1 (en) Recombinant yeast cell
CN111304138B (zh) 一种生产β-胡萝卜素的重组大肠杆菌及构建方法与应用
WO2021162099A1 (ja) 組換え微細藻及び微細藻を用いた有機酸の製造方法
Tiwari et al. Algal photobiohydrogen production
CN114561417B (zh) 用于制备阿洛酮糖的谷氨酸棒杆菌工程菌株及其应用
WO2019110491A1 (en) Recombinant yeast cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221102

R150 Certificate of patent or registration of utility model

Ref document number: 7176787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150