WO2018051916A1 - 有機酸の製造方法 - Google Patents

有機酸の製造方法 Download PDF

Info

Publication number
WO2018051916A1
WO2018051916A1 PCT/JP2017/032469 JP2017032469W WO2018051916A1 WO 2018051916 A1 WO2018051916 A1 WO 2018051916A1 JP 2017032469 W JP2017032469 W JP 2017032469W WO 2018051916 A1 WO2018051916 A1 WO 2018051916A1
Authority
WO
WIPO (PCT)
Prior art keywords
microalgae
organic acid
acid
culture
aqueous medium
Prior art date
Application number
PCT/JP2017/032469
Other languages
English (en)
French (fr)
Inventor
誠久 蓮沼
真実 松田
Original Assignee
国立大学法人神戸大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人神戸大学 filed Critical 国立大学法人神戸大学
Priority to JP2018539683A priority Critical patent/JPWO2018051916A1/ja
Publication of WO2018051916A1 publication Critical patent/WO2018051916A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/48Tricarboxylic acids, e.g. citric acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/46Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/54Acetic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to a method for producing an organic acid using microalgae.
  • Succinic acid belongs to organic acids and is used as a raw material for polymers such as polyester and polyamide.
  • Organic acids such as lactic acid and succinic acid are widely used as synthetic raw materials for foods, pharmaceuticals, and other chemicals. These organic acids are currently manufactured industrially from raw materials derived from fossil resources.
  • CO 2 atmospheric carbon dioxide
  • Microalgae are aquatic organisms that can produce carbohydrate energy from CO 2 using light. Because it is aquatic, it can avoid competition with food and land use, and is attracting attention as a promising biological system for bioenergy production. However, a common challenge in the production of bio-based chemicals is to enable mass production and lower prices. For this reason, although productivity efficiency improvement is calculated
  • a microalgae photosynthesis evaluation system has been developed by the present inventors (Non-patent Documents 1 and 2), and a method for increasing the cell density by identifying and enhancing the factors that determine the microalgae's growth potential has been sought. Various studies are underway.
  • Patent Document 1 There is a disclosure of a method for producing succinic acid including a step of converting an organic raw material into succinic acid in the presence of a microorganism or a processed product thereof in an aqueous medium.
  • Patent Document 1 a method for producing succinic acid including a step of converting an organic raw material into succinic acid in the presence of a microorganism or a processed product thereof in an aqueous medium.
  • the production rate of succinic acid is increased by setting the concentration of the alkali metal succinate in the aqueous medium to a specific range and then adding ammonia and / or an ammonium salt.
  • An object of the present invention is to provide an environmentally friendly and effective method for producing an organic acid without using fossil resources.
  • the culture of microalgae has been generally carried out at a temperature of 25-30 ° C., which is considered suitable from the viewpoint of growth. .
  • the present inventors have included a step of culturing microalgae at a temperature of 35 to 40 ° C., so that CO 2 and light energy are directly resourced from microalgae. And by recovering the organic acid which is an intracellular metabolite, it becomes possible to produce the organic acid effectively, and as a result, it is found that an organic acid producing method which is environmentally friendly and effective can be provided. Was completed.
  • microalgae are cultured in an aqueous medium containing carbonate ions and / or bicarbonate ions, and organic acids that are intracellular metabolites are recovered.
  • microalgae with enhanced NADPH-O 2 oxidoreductase function and / or rate-limiting enzyme function in glycolysis from glycogen to citrate cycle are cultured in aqueous medium, and are organic metabolites that are intracellular metabolites. By recovering the acid.
  • this invention consists of the following. 1.
  • a method for producing an organic acid from microalgae comprising a step of culturing the microalgae at a temperature of 35 to 40 ° C. 2.
  • the production method according to item 1 wherein the culture under a temperature condition of 35 to 40 ° C. is performed under anaerobic culture conditions of microalgae culture. 3.
  • the production method according to item 1, wherein the culture under a temperature condition of 35 to 40 ° C. is performed under anaerobic and dark culture conditions of microalgae culture. 4).
  • the method for producing an organic acid from microalgae comprising the following steps (A) and (B): (A) a step of culturing microalgae in an aqueous medium having a carbonate ion and / or bicarbonate ion content of 20 to 2000 mM; (B) The process of collect
  • An aqueous medium having a carbonate ion and / or bicarbonate ion content of 20 to 2000 mM is (1) filled with carbon dioxide and / or (2) sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, carbonate 6.
  • the production method according to item 5 above which is an aqueous medium obtained by adding any one or two or more carbonates selected from magnesium. 7).
  • the production method according to 6 above which is performed under anaerobic culture conditions for culturing microalgae. 8).
  • 9. The method for producing an organic acid according to any one of 1 to 8 above, wherein the microalga is a genus Cyanobacteria and / or Chlamydomonas. 10. 10.
  • microalga is a microalga having at least one enzyme function selected from PEP carboxylase, pyruvate ferredoxin oxidoreductase and phosphoglucomutase.
  • Production method. 14 14. The method for producing an organic acid according to any one of 1 to 13 above, wherein the microalga is a microalga transformed so as to express or enhance expression of NADPH-O 2 oxidoreductase.
  • an organic acid By culturing microalgae at a temperature of 35 to 40 ° C., an organic acid can be more effectively produced from the fine layer. Furthermore, the citrate cycle in the microalgae can be activated by culturing in an aqueous medium containing carbonate ions and / or bicarbonate ions. According to the method for producing an organic acid of the present invention, an organic acid that is an intracellular metabolite is effectively produced by effectively utilizing glycogen synthesized by photosynthesis of microalgae and a carbon source taken up from an aqueous medium. Yes.
  • FIG. 3 shows the results of measuring the amount of succinic acid produced when PCC6803 (GT) was added at 0 to 500 mM sodium bicarbonate (NaHCO 3 ) to an aqueous medium and cultured at 37.5 ° C.
  • Example 2 It is a figure which shows the production pathway of succinic acid by a micro algae.
  • Example 3 It is a figure which shows the result of having measured the production of succinic acid in 37.5 degreeC culture
  • FIG. 3 is a graph showing the results of measuring the amount of succinic acid produced when PCC6803 (PEPox) and PCC6803 (WT) are cultured in the presence of 0 to 500 mM sodium bicarbonate (NaHCO 3 ).
  • Example 4 It is a figure which shows the result of having measured the production amount of succinic acid and lactic acid when PCC6803 (PEPox) was cultured at different temperatures.
  • Example 5 It is a figure which shows the result of having measured the production amount of fumaric acid, malic acid, and gluconic acid when it culture
  • Example 6 It is a figure which shows the result of having measured the production amount of the succinic acid when carrying out high-density culture about PCC6803 (WT).
  • Example 7 It is a figure which shows the result of having measured the production amount of the succinic acid when it culture
  • Example 8 It is a figure which shows the result of having measured the production amount of the succinic acid when it culture
  • the present invention relates to a method for producing an organic acid from microalgae, comprising a step of culturing microalgae at a temperature of 35 to 40 ° C.
  • microalgae refers to a microorganism having chlorophyll (chlorophyll) and performing photosynthesis. Microalgae can synthesize saccharides (eg, glycogen) by immobilizing CO 2 in the atmosphere by photosynthesis, while generating oxygen (O 2 ) from water (H 2 O) (“oxygen-generating photosynthesis”) Also called).
  • the microalgae may have a single cell morphology or may have a colony morphology (eg, filaments, sheets or balls). The microalgae may be propagated in either the ocean or fresh water.
  • the microalgae of the present invention may be any of prokaryotic cyanobacteria (Cyanobacteria) and eukaryotes (for example, green algae, diatoms, dinoflagellates, red algae, prasino algae, Euglena algae, true ocular algae, etc.) There may be.
  • prokaryotic cyanobacteria Cyanobacteria
  • eukaryotes for example, green algae, diatoms, dinoflagellates, red algae, prasino algae, Euglena algae, true ocular algae, etc.
  • Cyanobacteria examples include, for example, Synechocystis, Arthrospira, Spirulina, Anabaena, Synechococcus, Thermosynechococcus, Thermosynechococcus, Stock genus (Nostoc), Prochlorococcus (Prochlorococcu), Microcystis (Microcystis), Gloeobacter (Gloeobacter) etc. are mentioned.
  • Examples of eukaryotes include green algae such as Chlamydomonas, Chlorella, Dunaliella, Hematococcus, Volvox, and Botryococcus; Rhizosolenia Rhizosolenia, Chaetoceros, Cyclotella, Cylindrotheca, Navicula, Phaeodactylum, Thalassiosira, Fitzlifera Genus; Amphidinium, Symbiodinium and other dinoflagellates; Cyanidioschyzon, Phorphyridium and other red algae; Ostreococcus, etc.
  • Plasinophytic algae such as Euglena -Grenade algae
  • true eye spot algae such as Nannochloropsis.
  • microbial species of microalgae are Synechocystis PCC6803 (Synechocystis sp. PCC6803), Synecococcus PCsp. Spirulina maxima, Spirulina subsalsa, Anabaena PCC7120 (Anabaena sp.
  • the microalgae that can be used in the method of the present invention may be a wild type or a microalga modified so as to effectively produce an organic acid.
  • a modification method a method known per se or any method developed in the future can be applied.
  • the modification can be performed by a technique such as gene recombination.
  • examples of such microalgae include genetically modified microalgae that can overexpress an enzyme capable of enhancing the production of organic acids.
  • NADPH-O 2 oxidoreductase refers to converting reduced nicotinamide adenine dinucleotide phosphate (NADPH) to oxidized nicotinamide adenine dinucleotide phosphate (NADP + ), and from O 2 to H
  • NADPH reduced nicotinamide adenine dinucleotide phosphate
  • NADP + oxidized nicotinamide adenine dinucleotide phosphate
  • O 2 O An enzyme that catalyzes the production of 2 O.
  • the enzyme can convert NADPH generated by conversion from NADP + by electron transfer from reduced ferredoxin to NADP + again, and generate water from oxygen.
  • Examples of the NADPH-O 2 oxidoreductase of the present invention include flavodi iron protein (hereinafter also referred to as “Flv”).
  • Examples of the flavodi iron protein include Flv3 and Flv1, and Flv3 is particularly preferable.
  • Examples of the flavodi iron protein include those derived from the above-mentioned microalgae.
  • Flv3 and Flv1 are involved in the photoreduction of O 2 in the photosynthetic photosystem I.
  • examples of Flv3 include those derived from the above-mentioned microalgae.
  • Flv3 or Flv1 is specified by the amino acid sequence disclosed in the database for Flv3 or Flv1, and one or several amino acids in the disclosed amino acid sequence are deleted, substituted or added It is also possible to specify an amino acid sequence having an enzyme activity necessary for the present invention. Alternatively, for example, an amino acid sequence having 70% or more sequence identity with the amino acid sequence disclosed in the database for Flv3 or Flv1 and having the enzyme activity required in the present invention can be specified.
  • the gene related to NADPH-O 2 oxidoreductase used in the present invention refers to a gene capable of expressing the above flavodi iron protein, specifically refers to a gene capable of expressing Flv3 or Flv1, particularly preferably Flv3.
  • a gene that can be expressed may be a DNA having a base sequence disclosed in a database, or a gene that hybridizes with a DNA having a base sequence complementary to the DNA under stringent conditions.
  • Stringent conditions refer to the conditions disclosed on pages 1.101 to 1.104 of Molecular Cloning, 2nd. Ed., Cold Spring Harbor Laboratory 1989, New York, for example.
  • sequence-specific binding is brought about, so such a functional oligonucleotide is also included in the gene related to NADPH-O 2 oxidoreductase of the present invention.
  • Such a gene for example, using primers designed based on the disclosed or known base sequences, DNA extracted from various organisms, various cDNA libraries or genomic DNA libraries etc. as a template, For example, it can be obtained as a nucleic acid fragment by PCR amplification.
  • a nucleic acid fragment can be obtained by performing hybridization using a nucleic acid derived from the above library as a template and a DNA fragment that is a part of a gene encoding an enzyme to be expressed or expressed in the present invention as a probe. Can do.
  • the gene may be synthesized as a nucleic acid fragment by various nucleic acid sequence synthesis methods known in the art such as chemical synthesis methods.
  • the gene may be codon optimized to optimize expression in the host microorganism. Codon optimization can be performed using any means and apparatus commonly used by those skilled in the art.
  • fine algae function of NADPH-O 2 oxidoreductase is enhanced refers to a "transformed microalgae to express or enhanced expression of NADPH-O 2 oxidoreductase".
  • expression or enhancement of expression of NADPH-O 2 oxidoreductase means that expression of a gene related to NADPH-O 2 oxidoreductase is enhanced.
  • the form in which the expression of the gene of the NADPH-O 2 oxidoreductase is enhanced, as compared with the prior modified to enhance expression of these genes in microalgae of the invention is carried out, the NADPH-O 2 oxide
  • the modification that enhances gene expression may be a method known per se, or any method developed in the future.
  • any endogenous gene is linked under the control of a stronger promoter (which can be either a constitutive promoter or an inducible promoter).
  • a stronger promoter which can be either a constitutive promoter or an inducible promoter.
  • an embodiment in which either an endogenous gene and / or an exogenous gene is additionally introduced can be mentioned.
  • Any additionally introduced gene is preferably operably retained by a strong promoter, such as a constitutive promoter.
  • the enhancement of expression is also referred to as “overexpression” in the present specification.
  • any promoter that functions in microalgae can be used.
  • the microalga is cyanobacteria (Cyanobacteria)
  • promoters such as sbDII, psbA3, psbA2, nirA, petE, nrsRS, nrsABCD, ndhF3, rbcL, rbcX, glnA, atp1, atp2, petF1, etc. Is mentioned.
  • a plasmid vector for introducing the above gene into microalgae is the pTCP2031V vector.
  • the pTCP2031V vector include a psbA2 (slr1311) promoter, a part of the coding region of slr2030 and slr2031 (as a platform for homologous recombination), and a recombinant plasmid containing a chloramphenicol resistance cassette (Satoh S et al., 2001, J. Biol. Chem. 276, 4293-4297; Horiuchi M et al., 2010, Biochem. J. 431, 135-140).
  • a recombination construct for example, an expression vector or a chromosome-integrated vector prepared as described above can be introduced into a host microalgae to produce a transformed microalgae.
  • gene homologous recombination methods can be used for transformation of transformed microalgae (particularly cyanobacteria).
  • the pTCP2031V vector can be preferably used.
  • a method known per se or any method developed in the future can be applied. Examples thereof include electroporation method, protoplast-PEG method, microinjection method, particle gun method, calcium phosphate method, lipofection method, calcium ion method and the like.
  • the transformed strain is selected by using a selection marker or the like possessed by the expression vector used for gene transfer or the chromosome integration type vector.
  • Antibiotics or drugs corresponding to the selection marker can be added to a medium suitable for each host microorganism.
  • a selective medium any medium suitable for the growth of microalgae can be used.
  • BG-11 agar eg described in Rippka R et al., 1979, J Gen Microbiol 111: 1-61: can be used for cyanobacteria
  • HSM agar and TAP agar (these are for example Fukuzawa et al., 2009, Cryogenic Science, 67: 17-21: Can be used for eukaryotes such as green algae).
  • transformants are selected based on this selection marker, and then transformants are selected by analyzing the expression of the target gene (ie, NADPH-O 2 oxidoreductase gene) or its product. Can do.
  • the NADPH-O 2 oxidoreductase expression product can be confirmed, for example, by Western blotting.
  • rate-limiting enzymes in the glycolysis system in this specification include phosphoenolpyruvate carboxylase (PEP carboxylase: PEPC), phosphoglucomutase (PGM), and pyruvate ferredoxin oxidoreductase (PFO). (See FIG. 3).
  • PEP carboxylase refers to an enzyme that synthesizes oxaloacetate from phosphoenolpyruvate and CO 2 through the C 4 pathway of the carbonic acid fixation pathway.
  • PGM phosphoglucomutase
  • G1P glucose-1-phosphate
  • G6P glucose-6-phosphate
  • PFO pyruvate ferredoxin oxidoreductase
  • aqueous medium refers to an aqueous solution used for seed culture and / or main culture.
  • an aqueous solution containing a nitrogen source, an inorganic salt and the like is preferable.
  • artificial or natural seawater or fresh water for example, distilled water
  • BG-11 medium J Gen Microbiol 111: 1-61 (1979)
  • HSM medium and TAP medium Cellular Science, 67: 17-21 (2009)
  • Cramer-Myers medium CM medium
  • a medium having the composition shown in Table 1 below may be used.
  • an organic raw material may be added to the medium as a carbon source in the aqueous medium.
  • the organic raw material used in the main culture is not particularly limited as long as the microalgae can be assimilated and proliferated.
  • carbohydrates such as galactose, lactose, glucose, fructose, sucrose, saccharose, starch, and cellulose; Fermentable carbohydrates such as polyalcohols such as mannitol, xylitol, and ribitol are used, can be selected according to the target organic acid, and can be selected from general organic raw materials.
  • glucose, sucrose, or fructose is preferable, and glucose or sucrose is particularly preferable.
  • sugar are also used,
  • organic materials can be used alone or in combination.
  • the aqueous medium can contain carbonate ions, bicarbonate ions or CO 2 .
  • the pH of the aqueous medium is adjusted to any pH suitable for the growth of microalgae, for example, pH 5 to 10, preferably pH 6 to 9, more preferably pH 6 to 8. can do.
  • the pH can be appropriately adjusted by adding sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, magnesium carbonate, sodium hydroxide, calcium hydroxide, magnesium hydroxide or the like.
  • the present invention is characterized by including a step of culturing under a temperature condition of 35 to 40 ° C.
  • the organic acid of the present invention can be produced by pre-culturing microalgae in advance and then performing a main culturing step by photoautotrophic, anaerobic, or dark culture. For example, after preculture, (a) main culture (photoautotrophic), (b) main culture (anaerobic, dark place) can be used for culture. In the present invention, culture under a temperature condition of 35 to 40 ° C.
  • main culture (photoautotrophic) and main culture (anaerobic, dark place) can be performed in 12 hours or more and within 5 days, respectively. In culture (light autotrophic), 12 hours or more and 3 days or less are preferable, and (b) in main culture (anaerobic, dark place), 24 hours or more and 5 days or less are preferable.
  • photoautotrophic is used in a general sense, and microalgae make sugar from CO 2 and water by photosynthesis, and use this as an energy source. A mechanism for growth.
  • the light irradiation condition at the time of photoautotrophic may be either natural light or artificial light, and the intensity thereof can be appropriately adjusted depending on the algal body density in the aqueous medium, the depth of the culture tank, and the like.
  • natural or artificial light of 30 to 2000 ⁇ mol photons m ⁇ 2 s ⁇ 1 , preferably 30 to 1000 ⁇ mol photons m ⁇ 2 s ⁇ 1 , more preferably 50 to 600 ⁇ mol photons m ⁇ 2 s ⁇ 1 may be used.
  • microalgae can perform photosynthesis and grow smoothly.
  • the light irradiation may be continuous or periodic.
  • a light / dark cycle may be provided to minimize costs and avoid the additional cost of artificial lighting.
  • anaerobic culture refers to culturing while keeping the dissolved oxygen concentration in the solution low.
  • the container is sealed and reacted without aeration, supplied with an inert gas such as nitrogen gas (N 2 ), or reacted with a CO 2 -containing inert gas. This method can be used.
  • an inert gas such as nitrogen gas (N 2 )
  • CO 2 -containing inert gas This method can be used.
  • the organic acid is discharged into the aqueous medium.
  • carbonate ions, bicarbonate ions and / or CO 2 are contained. It is preferable that the carbonate ions and bicarbonate ions contain 20 to 2000 mM, preferably 20 to 500 mM, more preferably 20 to 150 mM.
  • the introduction of carbonate ions and / or bicarbonate ions into the aqueous medium is selected from (1) filling of CO 2 and / or (2) sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, magnesium carbonate. Any one or two or more carbonates can be added. In the case of filling with CO 2 , the filling can be performed until saturation occurs. When CO 2 is saturated, the carbonate ion concentration is 20 to 2000 mM.
  • Organic acid produced by the above method is separated and purified from an aqueous medium as necessary by a method known per se or any separation and purification method developed in the future. can do. Specifically, after separation from microalgae and their products by ultrafiltration membrane separation, centrifugation, concentration, etc., purification by known methods such as column method, crystallization method, etc., and drying as crystals The method of collecting is mentioned.
  • the organic acid to be produced is not particularly limited, but is an intracellular metabolic organic acid produced in a citric acid cycle, specifically, an organic carboxylic acid.
  • organic carboxylic acids examples include succinic acid, lactic acid, acetic acid, fumaric acid, 2-ketoglutaric acid, malic acid, Examples include citric acid and gluconic acid.
  • organic acids aliphatic dicarboxylic acids such as succinic acid, fumaric acid, 2-ketoglutaric acid and malic acid are preferred, and succinic acid is particularly preferred.
  • organic acid By collecting the organic acid produced from the microalgae by the above method, the organic acid can be produced effectively in an environmentally friendly manner without using fossil resources. That is, organic acid can be produced from biomass by photosynthesis of microalgae and a carbon source taken into the microalgae, and the organic acid can be produced effectively and environmentally.
  • the supply of carbonate ions and / or bicarbonate ions to the aqueous medium can be effectively utilized using, for example, CO 2 in the atmosphere discharged industrially in the manufacturing process of electricity, steel, and the like. It has an excellent effect on the natural environment in that it can effectively utilize CO 2 in the atmosphere.
  • the aqueous medium used as biomass can utilize not only fresh water but also seawater, and can be stably and effectively utilized regardless of the depletion of water resources or the limits of cultivated land. be able to.
  • the present invention relates to a method for activating a citric acid circuit in a microalgae, which comprises culturing microalgae in an aqueous medium having a carbonate ion and / or bicarbonate ion content of 20 to 2000 mM. It also extends. According to the method of the present invention, the citric acid cycle is activated, and as a result, the production of organic acids that are intracellular metabolites is enhanced.
  • Example 1 Production of organic acid by microalgae (Sinechocystis)
  • Synechocystis sp. PCC6803 glucose tolerance (GT) (Williams JGK, 1988, Methods Enzymol 167: 766-778) (hereinafter referred to as “PCC6803 (GT)” in this example and each example).
  • GT glucose tolerance
  • Pre-culture PCC6803 (GT) colonies grown on BG-11 agar medium (BG-11 containing 1.5% Agar) were picked with a platinum loop and added to an aqueous medium (70 mL). Then, the cells were cultured for 4 to 5 days at 30 ° C. in 50 ⁇ mol photons m ⁇ 2 s- 1 under aeration conditions.
  • a culture solution containing 17.6 mM NaNO 3 and 20 mM Hepes-KOH in a BG-11 liquid medium (Rippka R et al., 1J Gen Microbiol 111: 1-61 (1979)) was used as an aqueous medium.
  • the algal density was measured by OD 750 using a Shimadzu UV mini spectrophotometer (ultraviolet visible spectrophotometer: manufactured by Shimadzu Corporation).
  • the OD 750 after culture was 1 to 1.5.
  • the ventilation means air ventilation unless otherwise specified. The same applies to the following embodiments.
  • Pre-culture PCC6803 (GT) pre-cultured in (1) above is added to an aqueous medium (150 mL) so that OD 750 is 0.1, and 50 ⁇ mol photons m ⁇ at pH 7.8 under aeration conditions. They were cultured for 4 to 5 days at 30 °C in 2 s- 1.
  • a culture solution containing 17.6 mM NaNO 3 and 20 mM Hepes-KOH in a BG-11 liquid medium was used as an aqueous medium.
  • the OD 750 after culture was 1 to 1.5.
  • the aqueous medium recovered in (b) above is centrifuged for 5 minutes at 14000 g and 4 ° C., respectively, and the supernatant is recovered and filtered using a 0.45 ⁇ m pore size Mini-UniPrep (manufactured by GE Healthcare Japan, Inc.). did.
  • the amount of succinic acid produced was equipped with a high performance liquid chromatography (HPLC) column (Aminex HPX-87H; manufactured by Bio-Rad) and a refractive index detector (RID-10A; manufactured by Shimadzu Corporation). Measured by HPLC. As a result, it was confirmed that when cultured at 35, 37.5, or 40 ° C., the amount of succinic acid produced increased by 1.5 times or more compared to when cultured at 30 ° C. (FIG. 1).
  • Example 2 Production of organic acid by microalgae (Sinecocystis)
  • 0 to 500 mM sodium bicarbonate (NaHCO 3 ) was added to an aqueous medium and cultured at 37.5 ° C.
  • the amount of succinic acid produced was confirmed.
  • each of the steps (1) to (3) was cultured in the same manner as in Example 1.
  • Example 3 Production of an organic acid by microalgae overexpressing PEP carboxylase 1
  • production of organic acid was confirmed by overexpression of PEP carboxylase in microalgae (cinekocystis).
  • a PEP carboxylase overexpression strain PCC6803 (PEPox) was prepared by gene recombination using PCC6803 (GT) shown in Example 1.
  • the production method of PCC6803 (PEPox) is as follows. The production route of succinic acid by microalgae is shown in FIG. 3, and the PEP carboxylase action point is shown.
  • the rbcL terminator and a part of the coding region downstream of the slr0168 region use the oligonucleotides shown in SEQ ID NOs: 3 and 4 and the oligonucleotides shown in SEQ ID NOs: 5 and 6 as a primer set from genomic DNA extracted from PCC6803 (GT) And amplified by PCR.
  • the obtained amplified fragment was inserted into PstI and HindIII digested pBluescriptBlueII SK (+) (AgilentgilTechnologies, Palo Alto, CA) using In-Fusion HD Cloning Kit (manufactured by Clonetech, Takara Bio Inc.).
  • PBluescript-TrbcL-slr0168 was obtained.
  • Sequence number 3 5'-CCTCTAGAGTCGACCTGCAGGTTACAGTTTTGGCAATTAC-3 ' Sequence number 4: 5'-GCCAGCCCCAACACCTGACGCGTTTCCCCACTTAGATAAAAAATCC-3 ' Sequence number 5: 5'-TCTAAGTGGGGAAACGCGTCAGGTGTTGGGGCTGGC-3 ' Sequence number 6: 5'-TGATTACGCCAAGCTTCTAAGTCAGCGTAAATCTGACAATG-3 '
  • the kanamycin resistance cassette and the rbcL promoter consisted of the oligonucleotides shown in SEQ ID NOs: 7 and 8, and the oligonucleotides shown in SEQ ID NOs: 9 and 10 as primer sets from the genomic DNA of pCRII-TOPO (Invitrogen, Carlsbad, CA) And amplified by PCR.
  • Sequence number 7 5'-CGGGCCCCCCCTCGAGCCGGAATTGCCAGCTGGGGC-3 ' Sequence number 8: 5'-TGGACTTTCTAATTAGAGCGGCCGCTCAGAAGAACTCGTCAAGA-3 ' Sequence number 9: 5'-TCTTGACGAGTTCTTCTGAGCGGCCGCTCTAATTAGAAAGTCCA-3 ' SEQ ID NO: 10: 5'-CCGGGGATCCTCTAGACATATGGGTCAGTCCTCCAT-3 '
  • a part of the coding region upstream of the slr0168 region was amplified by PCR from the genomic DNA extracted from PCC6803 (GT) using the oligonucleotides shown in SEQ ID NOs: 11 and 12 as primer sets.
  • the obtained amplified fragment was inserted into In-Fusion HD Cloning Kit KpnI and XhoI digested pBluescript-Km r with (Clonetech Inc., Takara available from Bio Inc.) -PrbcL-TrbcL-slr0168, pBluescript -slr0168- Km r -PrbcL-TrbcL-slr0168 was obtained.
  • Sequence number 11 5'-TATAGGGCGAATTGGGTACCATGACTATTCAATACACCCCCCTAG-3 ' Sequence number 12: 5'-TACCGTCGACCTCGAGCACCAGACCAAAGCCGGGAATTTC-3 '
  • CACATG digested with AatII and EcoRI was substituted for the NdeI site (CATATG) of pUC19 (Takara Bio), and the synthetic DNA was inserted.
  • pBluescript-slr0168-Km r -PrbcL- TrbcL-slr0168 was digested with KpnI and HindIII, a fragment containing Slr0168 is inserted into KpnI / HindIII sites of pUC19 vector prepared above to prepare a pSKrbcL-slr0168.
  • PEP (sll0920) encoding PEP carboxylase was amplified by PCR from genomic DNA extracted from PCC6803 (GT) using the oligonucleotides shown in SEQ ID NO: 13 and SEQ ID NO: 14 as a primer set. The obtained amplified fragment was inserted into NdeI / SalI digested pSKtrc-slr0168 using In-Fusion®HD®Cloning®Kit (available from Clontech, Takara Bio Inc.) to obtain pSKtrc-slr0168 / sll0920.
  • SEQ ID NO: 13 5'-AGGAAACAGACCCATATGAACTTGGCAGTTCCTGC-3 '
  • SEQ ID NO: 14 5'-AACCTGCAGGTCGACTCAACCAGTATTACGCA-3 '
  • PCC6803 (GT) was transformed with the obtained plasmid pSKtrc-slr0168 / sll0920 vector (including the sll0920 coding region). As a control, transformation with an empty vector (plasmid pSKtrc-slr0168 vector not containing the sll0920 coding region) was performed.
  • PCC6803 (GT) transformed so as to overexpress sll0920 is referred to as PCC6803 (PEPox).
  • PCC6803 (WT) wild-type PCC6803 (GT) that has not been transformed.
  • Example 4 Production of organic acid by microalgae overexpressing PEP carboxylase 2
  • PCC6803 (WT) of microalgae (Synecocystis) and PCC6803 (PEPox) prepared in Example 3 each concentration of NaHCO 3 of 0 to 500 mM was added to an aqueous medium, and the temperature was increased to 37.5 ° C. The amount of succinic acid produced when cultured for 72 hours was measured. The cells were cultured in the same manner as in Example 3 except that each concentration of NaHCO 3 was added.
  • Example 5 Production of organic acid by microalgae overexpressing PEP carboxylase 3
  • the production amounts of succinic acid and lactic acid were measured for PCC6803 (PEPox), a microalga produced in Example 3, at different temperatures.
  • PCC6803 (PEPox) was pre-cultured, pre-cultured and main-cultured (using light independently) in the same manner as in Examples 1 (1) to (3) a.
  • 100 mM Hepes-KOH (pH 7.8) was used as an aqueous medium.
  • NaHCO 3 was not added, the culture temperature was 30 ° C. or 37.5 ° C., and the fermentation treatment was performed under anaerobic and dark conditions for 72 hours.
  • an aqueous medium containing PCC6803 (PEPox) was recovered.
  • the production amount of succinic acid and lactic acid was measured by the same method as Example 1.
  • the same treatment was performed on the strain transformed with an empty vector (plasmid pSKtrc-slr0168 vector not containing the sll0920 coding region) as in Example 3.
  • a large difference was observed in the production amounts of succinic acid and lactic acid as compared with the case where the culture was performed at 30 ° C. (FIG. 6).
  • Example 6 Production this example of an organic acid by the temperature and sodium bicarbonate concentration of the wild strain, the P CC6803 microalgae (Synechocystis) (WT), when cultured by changing the temperature and sodium bicarbonate concentration
  • the production amounts of fumaric acid, malic acid and gluconic acid were confirmed by capillary electrophoresis mass spectrometry (CEMS).
  • PCC6803 (WT) was pre-cultured, pre-cultured and main-cultured (light independent use) in the same manner as (1) to (3) a of Example 1.
  • PCC6803 (WT) recovered after the main culture was added to an aqueous medium (10 mL) so that the OD 750 was 20.
  • 100 mM Hepes-KOH (pH 7.8) was used as an aqueous medium.
  • 0, 50, 100, 200, 300 or 500 mM NaHCO 3 was added, the culture temperature was set to 30 ° C. or 37.5 ° C., and the fermentation treatment was performed under anaerobic and dark conditions for 72 hours.
  • Example 7 Production of organic acid by high-density culture of wild strains
  • WT PCC6803
  • PCC6803 (WT) was pre-cultured, pre-cultured and main-cultured (light independent use) in the same manner as (1) to (3) a of Example 1.
  • PCC6803 (WT) collected after the main culture was added to an aqueous medium (10 mL) so that the OD 750 was 20 or 150.
  • 300 mM Hepes-KOH (pH 7.8) was used as an aqueous medium.
  • 100 mM NaHCO 3 was added, the culture temperature was 37.5 ° C., and fermentation was performed under anaerobic and dark conditions for 72 hours.
  • Chlamydomonas reinhardtii strain was used as a microbial species of microalgae. Hereinafter referred to as “C. reinhardtii”.
  • TAP agar medium TAP medium containing 1.5% Agar
  • aqueous medium 70 mL
  • CO 2 aqueous medium
  • the cells were cultured at 30 ° C. for 4 to 5 days at 100 ⁇ mol photons m ⁇ 2 s- 1 .
  • the OD 750 after culture was 2.5-3.5.
  • TAP medium was used as an aqueous medium.
  • Table 2 The composition of the TAP medium is shown in Table 2.
  • Pre-culture C. reinhardtii previously cultured in (1) above is added to an aqueous medium (150 mL) so that OD 750 is 0.1, and 50 ⁇ mol photons m at pH 7.8 under CO 2 aeration conditions.
  • the cells were cultured at ⁇ 2 s- 1 at 30 ° C. for 4 to 5 days.
  • TAP medium was used as an aqueous medium.
  • C. reinhardtii pre-cultured in (2) above is added to an aqueous medium (70 mL) so that the OD 750 is 0.4, and 120 ⁇ mol photons m ⁇ 2 s- 1 at pH 7.8 under CO 2 aeration.
  • the cells were cultured at 30 ° C. for 5 days.
  • TAP medium was used as an aqueous medium, and NH 4 Cl at concentrations of 1 mM, 3 mM and 5 mM were added.
  • the OD 750 after culture was 3.5 to 4.5.
  • C. reinhardtii was recovered by centrifugation (14000 g, 5 minutes, 4 ° C.).
  • the aqueous medium cultivated and collected in (4) above was centrifuged at 14000 g and 4 ° C. for 5 minutes, respectively, and the supernatant was collected by the same method as in Example 1. 0.45 ⁇ m pore size Mini-UniPrep (GE Healthcare Japan) Filtered). About the filtrate, the production amount of succinic acid was measured by the same method as in Example 1. As a result, regardless of the concentration of NH 4 Cl, the amount of succinic acid produced was higher when cultured at 37.5 ° C. (FIG. 9). The amount of NH 4 Cl added was higher in 1 mM than in 5 mM.
  • the biomass can be effectively utilized by culturing the microalgae by the method of the present invention including the step of culturing the microalgae at a temperature of 35 to 40 ° C.
  • Organic acids can be produced from biomass by photosynthesis of microalgae and carbon sources incorporated into microalgae. Furthermore, according to the microalga with enhanced NADPH-O 2 oxidoreductase function and / or rate-limiting enzyme function in glycolysis from glycogen to citrate cycle, organic metabolites that are intracellular metabolites are more effective. The acid can be recovered.
  • the supply of carbonate ions and / or bicarbonate ions to the aqueous medium can be effectively utilized using, for example, CO 2 in the atmosphere discharged industrially in the manufacturing process of electricity, steel, and the like.
  • CO 2 for example, succinic acid among organic acids has been produced using petroleum or the like as a raw material, but CO 2 was emitted at that time, whereas according to the method of the present invention, the production process of organic acid in not only does not emit CO 2, in that it can effectively utilize the CO 2 in the atmosphere, it has an excellent effect against the natural environment.
  • the aqueous medium used as biomass can utilize not only fresh water but also seawater, and can be stably and effectively utilized regardless of the depletion of water resources or the limits of cultivated land. be able to.
  • the organic acid produced is effectively used in food, pharmaceuticals and other various fields.
  • succinic acid is used for pharmaceutical excipients, pH adjusters, seasonings as foods, other food additives, and industrially for plating. It is also used as a component such as a bathing agent that foams carbon dioxide gas.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

微細藻から二酸化炭素と光エネルギーを直接資源化して、効果的に有機酸を産生しうる、有機酸の製造方法を提供する。 微細藻を35~40℃の温度条件で培養する工程を含み、さらに炭酸イオン及び/又は重炭酸イオンを含む系で微細藻を培養することで、微細藻の光合成と微細藻に取り込まれた炭素源により、効果的に有機酸を産生することができる。例えば有機酸のうちコハク酸は石油等を原料として産生されていたが、本発明の方法によりバイオマスを有効活用して有機酸を産生することができる。産生された有機酸は、食品、医薬品、その他各種分野において有効に利用される。

Description

有機酸の製造方法
 本発明は、微細藻による有機酸の製造方法に関する。
 本出願は、参照によりここに援用されるところの日本出願特願2016-179467号優先権を請求する。
 コハク酸は有機酸に属し、ポリエステル、ポリアミド等のポリマー原料として用いられる。また、乳酸やコハク酸等の有機酸は、食品、医薬品、その他化学品の合成原料として広く用いられている。これら有機酸は、現在、化石資源由来の原料より、工業的に製造されているが、近年の化石資源枯渇への危惧や大気中の二酸化炭素(CO2)増加という地球規模での環境問題の背景から、再生可能エネルギーの1つとして、デンプン及びセルロースなどの糖質系バイオマスからの生産が期待されている。
 微細藻類は、水生生物であり、光を利用してCO2から糖質エネルギーを生産することが可能である。水生であることから、食糧や土地利用との競合を回避することができ、バイオエネルギー生産に有望な生体システムとして注目されている。しかし、バイオベース化学品の製造に共通する課題は、大量生産を可能にし、そして価格を安くすることにある。このため、生産性効率向上が求められているが、微細藻類を利用する場合の大きな課題の1つが、細胞密度が低い点である。微細藻類の光合成評価システムが本発明者らにより開発され(非特許文献1及び2)、微細藻類の増殖性を決定する因子を特定及び強化することにより、細胞密度を増大させる方法を模索しており、各種検討が進められている。
 微細藻類の増殖性に関し、シアノバクテリアの1種であるシネコシスティスPCC6803種(Synechocystis sp. PCC6803)において、フラボジアイロンタンパク質(Flavodiiron protein)であるFlv1及びFlv3のそれぞれを欠損させた場合、変動光下での細胞増殖及び光合成が阻止されたことが報告されている(非特許文献3)。
 水性媒体中で微生物又はその処理物の存在下で、有機原料をコハク酸に変換する工程を含むコハク酸の製造方法について開示がある(特許文献1)。ここでは、水性媒体中のコハク酸アルカリ金属塩の濃度を特定の範囲とし、次いでアンモニア及び/又はアンモニウム塩を添加することにより、コハク酸の産生速度が高まることが開示されている。
 化石資源を用いず、環境に優しい方法でより効率的に有機酸を製造する方法の開発が望まれている。
Hasunuma Tら, 2010, J Exp Bot 61: 1041-1051 Hasunuma Tら, 2013, J Exp Bot 64: 2943-2954 Allahverdiyeva Yら, 2013, PNAS 110: 4111-4116
国際公開WO2013/69786号公報
 本発明は、化石資源を用いず、環境に優しく効果的な有機酸の製造方法を提供することを課題とする。
 従来、微細藻を利用したバイオベース化学品(有機酸など)の製造にあたり、微細藻の培養は、生育面から好適と考えられる25~30℃の温度条件で実施するのが一般的であった。本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、微細藻を35~40℃の温度条件で培養する工程を含むことで、微細藻からCO2と光エネルギーを直接資源化して、細胞内代謝物である有機酸を回収することで効果的に有機酸を産生可能となり、その結果環境に優しく効果的な有機酸の製造方法を提供することができることを見出し、本発明を完成した。さらには、微細藻を炭酸イオン及び/又は重炭酸イオンを含む水性媒体中で培養し、細胞内代謝物である有機酸を回収することによる。さらに、NADPH-O2オキシドレダクターゼの機能及び/又はグリコーゲンからクエン酸回路に至る解糖系での律速酵素の機能が増強された微細藻を水性媒体中で培養し、細胞内代謝物である有機酸を回収することによる。
 即ち、本発明は以下よりなる。
1.微細藻を35~40℃の温度条件で培養する工程を含むことを特徴とする、微細藻からの有機酸の製造方法。
2.35~40℃の温度条件での培養が、微細藻の培養の嫌気培養条件下で行われる、前項1に記載の製造方法。
3.35~40℃の温度条件での培養が、微細藻の培養の嫌気的かつ暗所にての培養条件下で行われる、前項1に記載の製造方法。
4.微細藻を35~40℃の温度条件で、24時間以上、5日以内、培養する工程を含む、前項2又は3に記載の製造方法。
5.以下の(A)及び(B)の工程を含む、前項1~4のいずれかに記載の微細藻からの有機酸の製造方法:
(A)炭酸イオン及び/又は重炭酸イオンの含有量が20~2000mMの水性媒体中で微細藻を培養する工程;
(B)前記(A)の微細藻から産生された有機酸を回収する工程。
6.炭酸イオン及び/又は重炭酸イオンの含有量が20~2000mMの水性媒体が、(1)二酸化炭素の充填、及び/又は、(2)炭酸ナトリウム、重炭酸ナトリウム、炭酸カリウム、重炭酸カリウム、炭酸マグネシウムより選択されるいずれか1種又は2種以上の炭酸塩の添加、による水性媒体である、前項5に記載の製造方法。
7.(1)二酸化炭素の充填、及び/又は、(2)炭酸ナトリウム、重炭酸ナトリウム、炭酸カリウム、重炭酸カリウム、炭酸マグネシウムより選択されるいずれか1種又は2種以上の炭酸塩の添加が、微細藻の培養の嫌気培養条件下で行われる、前項6に記載の製造方法。
8.二酸化炭素の充填が、水性媒体中で飽和状態になるまで行われる、前項6又は7に記載の製造方法。
9.前記微細藻がシアノバクテリア及び/又はクラミドモナス属である、前項1~8のいずれかに記載の有機酸の製造方法。
10.シアノバクテリアが、シネコシスティス属である、前項9に記載の有機酸の製造方法。
11.前記有機酸が、脂肪族ジカルボン酸である、前項1~10のいずれかに記載の有機酸の製造方法。
12.前記有機酸が、コハク酸、乳酸、酢酸、フマル酸、2-ケトグルタル酸、リンゴ酸、クエン酸及びグルコン酸から選択されるいずれか1種又は2種以上である、前項1~10のいずれかに記載の有機酸の製造方法。
13.微細藻が、PEPカルボキシラーゼ、ピルビン酸フェレドキシン酸化還元酵素及びホスフォグルコムターゼから選択される少なくとも1種の酵素機能が増強された微細藻である、前項1~12のいずれかに記載の有機酸の製造方法。
14.微細藻が、NADPH-O2オキシドレダクターゼの発現又は発現増強するように形質転換された微細藻である、前項1~13のいずれかに記載の有機酸の製造方法。
 微細藻を35~40℃の温度条件で培養することで、より効果的に微細層から有機酸を産生することができる。さらに、炭酸イオン及び/又は重炭酸イオンを含む水性媒体中で培養することで微細藻内のクエン酸回路を活性化することができる。本発明の有機酸の製造方法によれば、微細藻の光合成によって合成されたグリコーゲンと、水性媒体から取り込まれた炭素源とを有効活用して細胞内代謝物である有機酸を効果的に産生しうる。そして、NADPH-O2オキシドレダクターゼの機能及び/又はグリコーゲンからクエン酸回路に至る解糖系での律速酵素の機能が増強された微細藻を水性媒体中で培養することで、より効果的に有機酸を産生することができる。その結果、化石資源を用いず、環境に優しく効果的に有機酸を製造することができる。
PCC6803(GT)を、35、37.5又は40℃にて嫌気条件下で培養したときの、各温度におけるコハク酸の産生量を測定した結果を示す図である。(実施例1) PCC6803(GT)を、0~500 mMの炭酸水素ナトリウム(NaHCO3)を水性媒体に添加し、37.5℃にて培養したときのコハク酸の産生量を測定した結果を示す図である。(実施例2) 微細藻によるコハク酸の産生経路を示す図である。(実施例3) PCC6803(PEPox)の37.5℃培養でのコハク酸の産生を測定した結果を示す図である。(実施例3) PCC6803(PEPox)及びPCC6803(WT)について、0~500 mMの炭酸水素ナトリウム(NaHCO3)存在下で培養したときのコハク酸の産生量を測定した結果を示す図である。(実施例4) PCC6803(PEPox)について、温度を変えて培養したときのコハク酸及び乳酸の産生量を測定した結果を示す図である。(実施例5) PCC6803(WT)について、温度及び炭酸水素ナトリウム濃度を変えて培養したときのりフマル酸、リンゴ酸及びグルコン酸の産生量を測定した結果を示す図である。(実施例6) PCC6803(WT)について、高密度培養したときのコハク酸の産生量を測定した結果を示す図である。(実施例7) 微生物種としてクラミドモナス(Chlamydomonas reinhardtii)株について、温度を変えて培養したときのコハク酸の産生量を測定した結果を示す図である。(実施例8)
 本発明は、微細藻を35~40℃の温度条件で培養する工程を含むことを特徴とする、微細藻からの有機酸の製造方法に関する。
1.微細藻
 本明細書において、「微細藻」とは、葉緑素(クロロフィル)を持ち、光合成を行う微生物をいう。微細藻は、光合成によって大気中のCO2を固定化して糖類(例えば、グリコーゲン)を合成し、他方、水(H2O)から酸素(O2)を発生させ得る(「酸素発生型光合成」ともいう)。微細藻は、単細胞形態を有するものであってもよく、又はコロニー形態(例えば、フィラメント、シート又はボール)を有するものであってもよい。微細藻は、海洋又は淡水のいずれで繁殖するものであってもよい。
 本発明の微細藻は、原核生物のシアノバクテリア(ラン藻類)及び真核生物(例えば、緑藻類、珪藻類、渦鞭毛藻、紅藻、プラシノ藻、ユーグレナ藻、真正眼点藻など)の何れであってもよい。シアノバクテリア(ラン藻類)としては、例えばシネコシスティス属(Synechocystis)、アルスロスピラ属(Arthrospira)、スピルリナ属(Spirulina)、アナベナ属(Anabaena)、シネココッカス属(Synechococcus)、サーモシネココッカス属(Thermosynechococcus)、ノストック属(Nostoc)、プロクロロコッカス属(Prochlorococcu)、ミクロシスティス属(Microcystis)、グロエオバクター属(Gloeobacter)などが挙げられる。真核生物としては、例えばクラミドモナス属(Chlamydomonas)、クロレラ属(Chlorella)、ドナリエラ属(Dunaliella)、ヘマトコッカス属(Hematococcus)、ボルボックス属(Volvox)、ボトリオコッカス属(Botryococcus)などの緑藻類;リゾソレニア属(Rhizosolenia)、ケトセロス属(Chaetoceros)、シクロテラ属(Cyclotella)、シリンドロテカ(Cylindrotheca)、ナビクラ属(Navicula)、フェオダクチラム属(Phaeodactylum)、タラシオシラ属(Thalassiosira)、フィッツリフェラ属(Fistulifera)などの珪藻類;アンフィジニウム属(Amphidinium)、シンビオジニウム属(Symbiodinium)などの渦鞭毛藻;シアニディオシゾン属(Cyanidioschyzon)、ポルフィリジウム属(Phorphyridium)などの紅藻;オストレオコッカス属(Ostreococcus)などのプラシノ藻;ユーグレナ属(Euglena)などのユーグレナ藻;ナンノクロロプシス属(Nannochloropsis)などの真正眼点藻などが挙げられる。例えば、微細藻類の微生物種としては、シネコシスティスPCC6803種(Synechocystis sp. PCC6803)、シネココッカスPCC7002種(Synechococcus sp. PCC7002)、アルスロルピラ・プラテンシス(Arthrospira platensis)(「スピルリナ(Spirulina)」とも称される)、スピルリナ・マキシマ(Spirulina maxima)、スピルリナ・サブサルサ(Spirulina subsalsa)、アナベナPCC7120種(Anabaena sp. PCC7120)、クラミドモナス(Chlamydomonas reinhardtii)、クラミドモナス種(Chlamydomonas sp.)、クロレラ・ブルガリス(Chlorella vulgaris)、クロレラ・ピレノイドーサ(Chlorella pyrenoidosa)、ドナリエラ・サリナ(Dunaliella salina)、ドナリエラ種(Dunaliella sp.)、ヘマトコッカス・プルビアリス(Hematococcus pluvialis)、ボルボックス・カルテリ(Volvox carteri)、ボトリオコッカス・ブラウニイ(Botryococcus braunii)、シクロテラ・クリプティカ(Cyclotella cryptica)、シリンドロテカ・フジフォルミス(Cylindrotheca fusiformis)、ナビクラ・サプロフィラ(Navicula saprophila)、フェオダクチラム・トリコルヌツム(Phaeodactylum tricornutum)、タラシオシラ・シュードナナ(Thalassiosira pseudonana)、フィッツリフェラ種(Fistulifera sp.)、アンフィジニウム種(Amphidinium sp.)、シンビオジニウム・ミクロアドリアチクム(Symbiodinium microadriaticum)、シアニディオシゾン・メロレ(Cyanidioschyzon merolae)、ポルフィリジウム種(Porphyridium sp.)、オストレオコッカス・タウリ(Ostreococcus tauri)、ユーグレナ・グラシリス(Euglena gracilis)、ナンノクロロプシス・オキュラタ(Nannochloropsis oculata)などが挙げられる。
 本発明の方法に使用可能な微細藻は、野生型であってもよいし、有機酸を効果的に産生するように改変された微細藻であってもよい。改変の方法は、自体公知の方法や今後開発されるあらゆる方法を適用することができ、例えば遺伝子組換え等の手法により改変することができる。そのような微細藻として、例えば有機酸の産生を増強しうる酵素を過剰発現しうる遺伝子組換え微細藻が挙げられる。例えば、NADPH-O2オキシドレダクターゼの機能及び/又はグリコーゲンからクエン酸回路に至る解糖系での律速酵素の機能が増強された微細藻を利用することができる。
 本明細書において「NADPH-O2オキシドレダクターゼ」とは、還元型ニコチンアミドアデニンジヌクレオチドリン酸(NADPH)を酸化型ニコチンアミドアデニンジヌクレオチドリン酸(NADP+)に変換し、かつO2からH2Oを生成することを触媒する酵素をいう。当該酵素は、微細藻類が保有する光合成光化学系Iにおいて、還元型フェレドキシンからの電子伝達によりNADP+からの変換により生じたNADPHを再度NADP+に変換し、かつ酸素から水を生成し得る。
 本発明のNADPH-O2オキシドレダクターゼとしては、例えば、フラボジアイロンタンパク質(以下「Flv」ともいう。)が挙げられる。フラボジアイロンタンパク質としては、例えば、Flv3、Flv1などが挙げられ、特に好適にはFlv3である。フラボジアイロンタンパク質は、上記微細藻に由来するものが挙げられる。Flv3及びFlv1は、光合成光化学系IにおけるO2の光還元に関与している。例えば、Flv3としては、上記微細藻に由来するものが挙げられる。例えば、微細藻の形質転換のために、シネコシスティスPCC6803種(Synechocystis sp. PCC6803)由来のflv3遺伝子(sll0550:コード領域の塩基配列及びアミノ酸配列を配列番号1及び2に示す)が用いられ得る。本明細書において、例えばFlv3又はFlv1は、Flv3又はFlv1についてデータベースにて開示されたアミノ酸配列で特定されるほか、前記開示されたアミノ酸配列のうち1又は数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列からなり、本発明において必要な酵素活性を有するアミノ酸配列でも特定することができる。あるいはFlv3又はFlv1についてデータベースにて開示されたアミノ酸配列と例えば、70%以上の配列同一性を有し、本発明において必要な酵素活性を有するアミノ酸配列でも特定することができる。
 本発明で用いられるNADPH-O2オキシドレダクターゼに係る遺伝子は、上記フラボジアイロンタンパク質を発現しうる遺伝子をいい、具体的にはFlv3又はFlv1を発現しうる遺伝子をいい、特に好適にはFlv3を発現しうる遺伝子をいう。具体的には、データベースにて開示される塩基配列からなるDNAであっても良いし、当該DNAと相補的な塩基配列からなるDNAとストリンジェントな条件でハイブリダイズする遺伝子が挙げられる。ストリンジェントな条件とは、例えばMolecular Cloning, 2nd. Ed., Cold Spring Harbor Laboratory 1989, New Yorkの1.101~1.104頁に開示される条件をいう。前記DNAにハイブリダイズしうる限り、配列特異的な結合がもたらされるので、このような機能性オリゴヌクレオチドも本発明のNADPH-O2オキシドレダクターゼに係る遺伝子に包含される。
 このような遺伝子は、例えば、開示される又は公知の塩基配列に基づいて設計したプライマーを用いて、各種生物から抽出したDNA、各種cDNAライブラリー又はゲノムDNAライブラリー等由来の核酸を鋳型とし、例えばPCR増幅を行うことにより、核酸断片として得ることができる。また、上記ライブラリーなどに由来する核酸を鋳型とし、本発明で発現又は発現しようとする酵素をコードする遺伝子の一部であるDNA断片をプローブとしてハイブリダイゼーションを行うことにより、核酸断片として得ることができる。あるいは遺伝子は、化学合成法等の当技術分野で公知の各種の核酸配列合成法によって、核酸断片として合成してもよい。遺伝子は、宿主微生物での発現を最適にするように、コドンが最適化されてもよい。コドンの最適化は、当業者が通常用いる任意の手段、装置を用いて実施することができる。
 本明細書において、「NADPH-O2オキシドレダクターゼの機能が増強された微細藻」とは、「NADPH-O2オキシドレダクターゼの発現又は発現増強するように形質転換された微細藻」をいう。本明細書において、「NADPH-O2オキシドレダクターゼの発現又は発現増強する」とは、NADPH-O2オキシドレダクターゼに係る遺伝子の発現が増強されることをいう。本明細書において、NADPH-O2オキシドレダクターゼに係る遺伝子の発現が増強される形態は、発明の微細藻においてこれら遺伝子の発現を増強する改変が行われる前に比べて、当該NADPH-O2オキシドレダクターゼの生産量又は活性の増大が確認される形態であればよく、特に限定されない。遺伝子の発現を増強する改変は、自体公知の方法によっても良いし、今後開発されるあらゆる方法によっても良い。遺伝子の発現が増強されている実施形態としては、例えば、内因性のいずれかの遺伝子がより強力なプロモーター(構成的プロモーター又は誘導性プロモーターのいずれであってもよい)の制御下に連結された実施形態が挙げられる。また、追加的に内因性及び/又は外因性のいずれかの遺伝子が導入されている実施形態が挙げられる。追加的に導入されたいずれかの遺伝子は、好ましくは構成的プロモーターなど強力なプロモーターで作動可能に保持されている。発現の増強について、本明細書中においては「過剰発現」ともいう。
 プロモーターとしては、微細藻にて機能する任意のプロモーターを使用することができる。例えば、微細藻がシアノバクテリア(ラン藻類)の場合、ラン藻に由来し得るsbDII、psbA3、psbA2、nirA、petE、nrsRS、nrsABCD、ndhF3、rbcL、rbcX、glnA、atp1、atp2、petF1などのプロモーターが挙げられる。
 上記遺伝子を微細藻に導入するためのプラスミドベクターの一例は、pTCP2031Vベクターである。pTCP2031Vベクターは、psbA2(slr1311)プロモーター、並びにslr2030及びslr2031のコード領域の一部(相同組換え用プラットフォームとして)、及びクロラムフェニコール耐性カセットを含む組換えプラスミドなどが挙げられる(Satoh Sら, 2001, J. Biol. Chem. 276, 4293-4297;Horiuchi Mら, 2010, Biochem. J. 431, 135-140)。
 組換え用構築物、例えば、上記のように作製された発現ベクター又は染色体組込み型ベクターを、宿主微細藻に導入し、形質転換微細藻を作製することができる。
 形質転換微細藻(特にシアノバクテリア)の形質転換には、多くの場合、遺伝子相同組換え法が用いられ得る。遺伝子相同組換え法のために、例えば、pTCP2031Vベクターが好適に用いられ得る。形質転換のための発現ベクター又は複製可能なプラスミドの導入は、自体公知の方法又は今後開発されるあらゆる方法を適用することができる。例えば、エレクトロポレーション法、プロトプラスト-PEG法、マイクロインジェクション法、パーティクル・ガン法、リン酸カルシウム法、リポフェクション法、カルシウムイオン法などが挙げられる。
 形質転換株は、遺伝子導入に用いられた発現ベクター又は染色体組込み型ベクターが有する選択マーカーなどを利用して選択される。宿主微生物それぞれに適した培地に、選択マーカーに応じた抗生物質又は薬剤を添加することができる。このような選択用培地として、微細藻の生育に適した任意の培地を使用することができる。例えば、BG-11寒天培地(例えば、Rippka Rら, 1979, J Gen Microbiol 111: 1-61に記載される:シアノバクテリアに用いられ得る);HSM寒天培地及びTAP寒天培地(これらは、例えば、福澤ら、2009,低温科学,67:17-21に記載される:緑藻などの真核生物に用いられ得る)などが挙げられる。まずこの選択マーカーに基づき形質転換体の選抜を行い、次いで、目的とする遺伝子(すなわち、NADPH-O2オキシドレダクターゼ遺伝子)又はその産物の発現を解析することにより、形質転換体の選抜を行うことができる。NADPH-O2オキシドレダクターゼ発現産物は、例えば、ウエスタンブロット法によって確認することができる。
 本明細書における解糖系での律速酵素の例として、ホスフォエノールピルビン酸カルボキシラーゼ(PEPカルボキシラーゼ:PEPC)、ホスフォグルコムターゼ(PGM:phosphoglucomutase)、ピルビン酸フェレドキシン酸化還元酵素(PFO)が挙げられる(図3参照)。
 本明細書において、PEPカルボキシラーゼとは、炭酸固定経路のC4経路でホスフォエノールピルビン酸とCO2からオキサロ酢酸を合成する酵素をいう。本明細書において、ホスフォグルコムターゼ(PGM:phosphoglucomutase)とは、グリコーゲンの代謝において、グルコース-1-リン酸(G1P)とグルコース-6-リン酸(G6P)とを相互変換する酵素である。本明細書において、ピルビン酸フェレドキシン酸化還元酵素(PFO)とは、酸化還元酵素に分類され、解糖系におけるピルビン酸とアセチルCoAとを相互変換する酵素である。
2.水性媒体
 上記において「水性媒体」とは、種培養及び/又は本培養に用いられる水溶液をいう。後述するように窒素源、無機塩などを含む水溶液であることが好ましい。具体的には、微細藻に応じて、人工又は天然の海水、あるいは淡水(例えば、蒸留水)を用いてもよい。例えば、BG-11培地(J Gen Microbiol 111: 1-61 (1979));HSM培地及びTAP培地(低温科学,67:17-21 (2009))、Cramer-Myers培地(CM培地)等を使用することができる。具体的には、以下の表1に示す組成の培地を用いてもよい。
Figure JPOXMLDOC01-appb-T000001
 培養での有機酸の生産反応を効率的に行うために、水性媒体には、前記培地に炭素源として有機原料を添加しても良い。本培養に用いる有機原料は、前記微細藻が資化して増殖し得るものであれば特に限定されないが、通常、ガラクトース、ラクトース、グルコース、フルクトース、スクロース、サッカロース、デンプン、セルロース等の炭水化物;グリセロール、マンニトール、キシリトール、リビトール等のポリアルコール類等の発酵性糖質が用いられ、目的とする有機酸に応じて選択可能であり、一般的な有機原料から選択できる。例えば、グルコース、スクロース、又はフルクトースが好ましく、特にグルコース又はスクロースが好ましい。また、前記発酵性糖質を含有する澱粉糖化液、糖蜜なども使用され、前記発酵性糖質がサトウキビ、甜菜、サトウカエデ等の植物から搾取した糖液であってもよい。これらの有機原料は、単独でも組み合わせても使用できる。水性媒体には炭酸イオン、重炭酸イオン又CO2を含有させることができる。
3.培養条件
 微細藻の培養において、水性媒体のpHは、微細藻の増殖に適した任意のpH、例えば、pH 5~10、好ましくは、pH 6~9、より好ましくは、pH 6~8に調整することができる。pHは、炭酸ナトリウム、重炭酸ナトリウム、炭酸カリウム、重炭酸カリウム、炭酸マグネシウム、水酸化ナトリウム、水酸化カルシウム、水酸化マグネシウム等を添加することによって適宜調整することができる。
 本発明は、35~40℃の温度条件で培養する工程を含むことを特徴とする。本発明の有機酸は、微細藻を予め前培養し、その後光独立栄養や嫌気、暗所培養による本培養のステップを経て製造することができる。例えば、前培養の後、(a)本培養(光独立栄養)、(b)本培養(嫌気、暗所)を経て培養することができる。本発明において、35~40℃の温度条件での培養は、いずれの工程においても含めることができるが、好ましくは(a)本培養(光独立栄養)及び/又は(b)本培養(嫌気、暗所)の工程で行うことができ、より好適には(b)本培養(嫌気、暗所)の工程で行うことができる。
 また、培養時間については、(a)本培養(光独立栄養)、(b)本培養(嫌気、暗所)ともに、それぞれ12時間以上、5日以内で行うことができるが、(a)本培養(光独立栄養)では、12時間以上、3日以内が好ましく、(b)本培養(嫌気、暗所)では、24時間以上、5日以内が好ましい。
 本明細書の(a)本培養(光独立栄養)において、「光独立栄養」とは一般的な意味で使用され、微細藻が光合成によってCO2と水から糖を作り、これをエネルギー源として成長する仕組みをいう。光独立栄養時の光照射条件は自然光又は人工光のいずれであってもよく、その強さは、水性媒体中の藻体密度及び培養槽の深さ等によって、適宜調節することができる。例えば、30~2000μmol photons m-2 s-1、好ましくは、30~1000μmol photons m-2 s-1、より好ましくは、50~600μmol photons m-2 s-1の自然光又は人工光が用いられ得る。上記範囲であると、微細藻が光合成を行って順調に増殖し得る。光照射は、連続的であっても周期的であってもよい。屋外の大規模培養については、コストを最小限にし、かつ人工照明の追加費用を回避するために、明/暗周期を設けてもよい。
 本明細書の(b)本培養(嫌気、暗所)において、「嫌気培養」とは、溶液中の溶存酸素濃度を低く抑えて培養することをいう。嫌気的条件とするために、例えば容器を密閉して無通気で反応させる、窒素ガス(N2)等の不活性ガスを供給して反応させる、又はCO2含有の不活性ガスを通気する等の方法を用いることができる。嫌気・暗所条件の工程で、有機酸は水性媒体中に排出される。
 本明細書の(b)本培養(嫌気、暗所)において、炭酸イオン、重炭酸イオン及び/又はCO2が含有されていることが重要である。炭酸イオン、重炭酸イオンは、20~2000 mM、好ましくは20~500 mM、さらに好ましくは20~150 mMが含有されているのが好適である。水性媒体への炭酸イオン及び/又は重炭酸イオンの導入は、(1)CO2の充填、及び/又は、(2)炭酸ナトリウム、重炭酸ナトリウム、炭酸カリウム、重炭酸カリウム、炭酸マグネシウムより選択されるいずれか1種又は2種以上の炭酸塩の添加によることができる。CO2を充填する場合は、飽和状態になるまで充填することができる。CO2が飽和状態になることで、炭酸イオン濃度は20~2000 mMとなる。
4.微細藻から産生された有機酸の回収
 以上の様な方法で産生された有機酸は、必要に応じて、水性媒体から、自体公知の方法又は今後開発されるあらゆる分離、精製方法により分離、精製することができる。具体的には、限外ろ過膜分離、遠心分離、濃縮等により微細藻及びその産生物と分離した後、カラム法、晶析法等の公知の方法で精製し、乾燥させる事により、結晶として採取する方法等が挙げられる。本発明で、製造の対象となる有機酸としては、特に限定されるものではないが、クエン酸回路において産生される細胞内代謝有機酸であり、具体的には有機カルボン酸である。有機カルボン酸として、例えばコハク酸(succinic acid)、乳酸(lactic acid)、酢酸(acetic acid)、フマル酸(fumaric acid)、2-ケトグルタル酸(α-ketoglutaric acid)、リンゴ酸(malic acid)、クエン酸(citric acid)及びグルコン酸(gluconic acid)等が挙げられる。有機酸のうちコハク酸、フマル酸、2-ケトグルタル酸、リンゴ酸等の脂肪族ジカルボン酸が好適であり、特にコハク酸が好適である。
5.有機酸の製造
 上記方法で微細藻から産生された有機酸を回収することで、化石資源を用いず、環境に優しく効果的に有機酸を製造することができる。すなわち、微細藻の光合成と微細藻に取り込まれた炭素源によりバイオマスから有機酸を産生可能となり、環境に優しく効果的に有機酸を製造することができる。水性媒体への炭酸イオン及び/又は重炭酸イオンの供給は、例えば電気や鉄鋼等の製造工程において産業的に排出された大気中のCO2を利用し、有効活用することができる。大気中のCO2を有効活用できる点で、自然環境に対して優れた効果を有する。さらに、本発明の微細藻によれば、バイオマスとして使用される水性媒体は淡水のみならず海水を活用することができ、水資源の枯渇や耕作地の限界に左右されず安定的に有効活用することができる。
6.クエン酸回路
 本発明は、微細藻を炭酸イオン及び/又は重炭酸イオンの含有量が20~2000 mMの水性媒体中で培養することを特徴とする、微細藻内クエン酸回路の活性化方法にも及ぶ。本発明の方法によれば、クエン酸回路が活性化され、その結果、細胞内代謝物である有機酸の産生が増強される。
 以下に実施例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)微細藻(シネコシスティス)による有機酸の産生
 本実施例において、微細藻類の微生物種としてシネコシスティスPCC6803種(Synechocystis sp. PCC6803)グルコース耐性(GT)(Williams JGK, 1988, Methods Enzymol 167: 766-778)(以下、本実施例及び各実施例において「PCC6803(GT)」という。)を用いた。
(1)前々培養
 BG-11寒天培地(1.5% Agarを含むBG-11)上で生育したPCC6803(GT)のコロニーを白金耳でとり、水性媒体(70 mL)に加え、pH7.8にて通気条件下、50μmol photons m-2 s-1で30℃にて4~5日間培養した。ここでは水性媒体として、BG-11液体培地(Rippka Rら, 1J Gen Microbiol 111: 1-61 (1979))に17.6 mM NaNO3, 20 mM Hepes-KOHを含む培養液を用いた。藻体密度は、Shimadzu UV mini spectrophotometer(紫外可視分光光度計:株式会社島津製作所製)を用いてOD750により測定した。培養後のOD750は1~1.5であった。通気とは、特に言及しない場合は空気による通気を意味する。以下の実施例についても同様である。
(2)前培養
 上記(1)で前々培養したPCC6803(GT)を、OD750が0.1になるように水性媒体(150 mL)に加え、pH7.8にて通気条件下、50μmol photons m-2 s-1で30℃にて4~5日間培養した。ここでは水性媒体として、BG-11液体培地に17.6 mM NaNO3, 20 mM Hepes-KOHを含む培養液を用いた。培養後のOD750は1~1.5であった。
(3)本培養
(a)本培養(光独立利用)
 上記(2)で前培養したPCC6803(GT)を、OD750が0.4になるように水性媒体(70 mL)に加え、pH7.8にてCO2通気条件下、120μmol photons m-2 s-1で30℃にて3日間培養した。ここでは、水性媒体としてBG-11液体培地に5 mM NH4Cl, 50 mM Hepes-KOHを含む培養液を用いた。培養後のOD750は6~7であった。培養後、フィルター(polytetrafluoroethylene膜、孔径1μm)濾過にてPCC6803(GT)を回収した。
(b)本培養(嫌気、暗所)
 上記(a)で回収したPCC6803(GT)を、OD750が20になるように水性媒体(10 mL)に加えた。ここでは水性媒体として100 mM Hepes-KOH(pH7.8)を用いた。10分間のN2通気後、35、37.5又は40℃にて嫌気条件下で培養を開始し、72時間後にPCC6803(GT)を含む水性媒体を回収した。コントロールは30℃とした他は同条件で培養を行った。
 上記(b)で回収した水性媒体を、各々14000g、4℃にて5分間遠心分離し、上清を回収し、0.45μm孔径Mini-UniPrep(GEヘルスケア・ジャパン株式会社製)を用いて濾過した。濾過液について、コハク酸の産生量を、高速液体クロマトグラフィー(HPLC)カラム(Aminex HPX-87H;Bio-Rad社製)及び屈折率検出器(RID-10A;株式会社島津製作所製)を備えたHPLCにより測定した。その結果、35、37.5又は40℃にて培養した場合、30℃で培養したときに比べて、コハク酸の産生量が1.5倍以上増加したことが確認された(図1)。
(実施例2)微細藻(シネコシスティス)による有機酸の産生
 本実施例では、微細藻類を0~500 mMの炭酸水素ナトリウム(NaHCO3)を水性媒体に添加し、37.5℃にて培養したときのコハク酸の産生量について確認した。炭酸水素ナトリウム(NaHCO3)を添加する以外は、実施例1と同様に(1)~(3)の工程について各々培養を行った。
 上記(3)(b)で回収した水性媒体について、各濃度の炭酸水素ナトリウム(NaHCO3)を添加したときのコハク酸の産生量を、実施例1と同手法により測定した。その結果、何れの場合も30℃で培養したときに比べて37.5℃にて培養した場合にコハク酸の産生量が高く、NaHCO3の添加により、さらに産生量が増加することが確認された(図2)。
(実施例3)PEPカルボキシラーゼ過剰発現微細藻による有機酸の産生1
 本実施例では微細藻(シネコシスティス)のPEPカルボキシラーゼ過剰発現による有機酸の産生を確認した。本実施例では実施例1に示すPCC6803(GT)を用いて、遺伝子組換え操作によりPEPカルボキシラーゼ過剰発現株PCC6803(PEPox)を作製した。PCC6803(PEPox)の作製方法は以下のとおりである。微細藻によるコハク酸の産生経路を図3に示し、PEPカルボキシラーゼ作用点を示した。
3-1.rbcLターミネーター及びslr0168領域下流のコード領域の一部は、PCC6803(GT)から抽出したゲノムDNAから、プライマーセットとして、配列番号3及び4に示すオリゴヌクレオチド、配列番号5及び6に示すオリゴヌクレオチドを用いて、PCRにより増幅した。得られた増幅断片を、In-Fusion HD Cloning Kit(Clonetech社製、タカラバイオ株式会社より入手)を用いてPstI及びHindIII消化pBluescript II SK(+)(Agilent Technologies, Palo Alto, CA)に挿入し、 pBluescript-TrbcL-slr0168を得た。
配列番号3:5'-CCTCTAGAGTCGACCTGCAGGTTACAGTTTTGGCAATTAC-3'
配列番号4:5'-GCCAGCCCCAACACCTGACGCGTTTCCCCACTTAGATAAAAAATCC-3'
配列番号5:5'-TCTAAGTGGGGAAACGCGTCAGGTGTTGGGGCTGGC-3'
配列番号6:5'-TGATTACGCCAAGCTTCTAAGTCAGCGTAAATCTGACAATG-3'
3-2.カナマイシン耐性カセット及びrbcLプロモーターは、pCRII-TOPO (Invitrogen, Carlsbad, CA) 及びPCC6803(GT)のゲノムDNAからプライマーセットとして配列番号7及び8に示すオリゴヌクレオチド、配列番号9及び10に示すオリゴヌクレオチドを用いて、PCRにより増幅した。得られた増幅断片を、In-Fusion HD Cloning Kit(Clonetech社製、タカラバイオ株式会社より入手)を用いて XhoI及びXbaI消化pBluescript-TrbcL-slr0168に挿入し、pBluescript-Kmr-PrbcL-TrbcL-slr0168を得た。
配列番号7:5'-CGGGCCCCCCCTCGAGCCGGAATTGCCAGCTGGGGC-3'
配列番号8:5'-TGGACTTTCTAATTAGAGCGGCCGCTCAGAAGAACTCGTCAAGA-3'
配列番号9:5'-TCTTGACGAGTTCTTCTGAGCGGCCGCTCTAATTAGAAAGTCCA-3'
配列番号10:5'-CCGGGGATCCTCTAGACATATGGGTCAGTCCTCCAT-3'
3-3.slr0168領域上流のコード領域の一部は、PCC6803(GT)から抽出したゲノムDNAから、プライマーセットとして配列番号11及び12に示すオリゴヌクレオチドを用いて、PCRにより増幅した。得られた増幅断片を、In-Fusion HD Cloning Kit(Clonetech社製、タカラバイオ株式会社より入手)を用いて KpnI及びXhoI消化pBluescript-Kmr-PrbcL-TrbcL-slr0168に挿入し、pBluescript-slr0168-Kmr-PrbcL-TrbcL-slr0168を得た。
配列番号11:5'-TATAGGGCGAATTGGGTACCATGACTATTCAATACACCCCCCTAG-3'
配列番号12:5'-TACCGTCGACCTCGAGCACCAGACCAAAGCCGGGAATTTC-3'
3-4.pUC19(タカラバイオ)のNdeI部位(CATATG)にAatII及びEcoRIで消化されたCACATGを置き換え、合成DNAを挿入した。pBluescript-slr0168-Kmr-PrbcL-TrbcL-slr0168をKpnI及びHindIIIで消化した後、slr0168を含む断片は、上記作製したpUC19ベクターのKpnI/HindIII部位に挿入し、pSKrbcL-slr0168を作製した。
3-5.PEPカルボキシラーゼをコードするPEP(sll0920)は、PCC6803(GT)から抽出したゲノムDNAから、プライマーセットとして配列番号13及び配列番号14に示すオリゴヌクレオチドを用いて、PCRにより増幅した。得られた増幅断片を、In-Fusion HD Cloning Kit(Clontech社製、タカラバイオ株式会社より入手)を用いてNdeI/SalI消化pSKtrc-slr0168に挿入し、pSKtrc-slr0168/sll0920を得た。
配列番号13:5'- AGGAAACAGACCCATATGAACTTGGCAGTTCCTGC -3'
配列番号14:5'- AACCTGCAGGTCGACTCAACCAGTATTACGCA -3'
3-6.得られたプラスミドpSKtrc-slr0168/sll0920ベクター(sll0920コード領域を含む)によりPCC6803(GT)を形質転換した。コントロールとして、空ベクター(sll0920コード領域を含まないプラスミドpSKtrc-slr0168ベクター)での形質転換を行った。上記により形質転換され、sll0920が過剰発現するよう作製されたPCC6803(GT)をPCC6803(PEPox)ということとする。また、形質転換されていない野生型のPCC6803(GT)をPCC6803(WT)ということとする。
3-7.上記作製されたPCC6803(PEPox)及びPCC6803(WT)について、実施例1の(1)~(3)(a)と同様の培養条件に基づいて、培養した。(3)(b)の嫌気・暗所条件下での本培養において、100 mM又は200 mMのNaHCO3を水性媒体に添加し、10分間のN2通気後、嫌気条件下で培養を開始し、72時間後にPCC6803(PEPox)又はPCC6803(WT)を含む水性媒体を回収した。回収した水性媒体について、実施例1と同手法によりコハク酸の産生量を測定した。その結果、コハク酸はPEPカルボキシラーゼ過剰発現株PCC6803(PEPox)の方が高い産生能を示した(図4)。
(実施例4)PEPカルボキシラーゼ過剰発現微細藻による有機酸の産生2
  本実施例では、微細藻(シネコシスティス)のPCC6803(WT)及び実施例3で作製したPCC6803(PEPox)について、0~500 mMの各濃度のNaHCO3を水性媒体に添加し、37.5℃にて72時間培養したときのコハク酸の産生量を測定した。各濃度のNaHCO3を添加する以外は、実施例3と同様に各々培養した。
 上記培養後、PCC6803(WT)又はPCC6803(PEPox)を含む水性媒体を回収した。回収した水性媒体について、実施例1と同手法によりコハク酸の産生量を測定した。その結果、100 mM以上の濃度のNaHCO3を水性媒体に添加して培養した場合に、コハク酸はPEPカルボキシラーゼ過剰発現株PCC6803(PEPox)の方が高い産生能を示した(図5)。
(実施例5)PEPカルボキシラーゼ過剰発現微細藻による有機酸の産生3
 本実施例では、実施例3で作製した微細藻(シネコシスティス)のPCC6803(PEPox)について、温度を変えて培養したときのコハク酸及び乳酸の産生量を測定した。
 PCC6803(PEPox)、実施例1の(1)~(3)aと同手法で前々培養、前培養及び本培養(光独立利用)した。前記本培養後回収したPCC6803(PEPox)を、OD750が20になるように水性媒体(10 mL)に加えた。ここでは水性媒体として100 mM Hepes-KOH(pH7.8)を用いた。本実施例ではNaHCO3は添加せず、培養温度を30℃又は37.5℃とし、72時間嫌気、暗所条件下で発酵処理を行った。
 上記培養後、PCC6803(PEPox)を含む水性媒体を回収した。回収した水性媒体について、実施例1と同手法によりコハク酸及び乳酸の産生量を測定した。コントロールとして、実施例3と同様に空ベクター(sll0920コード領域を含まないプラスミドpSKtrc-slr0168ベクター)で形質転換した株について同様の処理を行った。その結果、37.5℃にて培養した場合、30℃で培養したときに比べて、コハク酸及び乳酸の産生量に大きな違いが確認された(図6)。
(実施例6)野生株の温度条件及び炭酸水素ナトリウム濃度による有機酸の産生
 本実施例では、微細藻(シネコシスティス)のPCC6803(WT)について、温度及び炭酸水素ナトリウム濃度を変えて培養したときのフマル酸、リンゴ酸及びグルコン酸の産生量をキャピラリー電気泳動質量分析(CEMS)で確認 した。
 PCC6803(WT)について、実施例1の(1)~(3)aと同手法で前々培養、前培養及び本培養(光独立利用)した。前記本培養後回収したPCC6803(WT)を、OD750が20になるように水性媒体(10 mL)に加えた。ここでは水性媒体として100 mM Hepes-KOH(pH7.8)を用いた。本実施例では0、50、100、200、300又は500 mMのNaHCO3を添加し、培養温度を30℃又は37.5℃とし、72時間嫌気、暗所条件下で発酵処理を行った。
 上記培養後、PCC6803(WT)を含む水性媒体を回収した。回収した水性媒体について、フマル酸、リンゴ酸及びグルコン酸の産生量をCEMSにて測定した。その結果、37.5℃にて培養した場合、30℃で培養したときに比べて、各有機酸の産生量が増加したことが確認された(図7)。
(実施例7)野生株の高密度培養による有機酸の産生
 本実施例では、微細藻(シネコシスティス)のPCC6803(WT)について、高密度培養したときのコハク酸の産生量の違いを確認した。
 PCC6803(WT)について、実施例1の(1)~(3)aと同手法で前々培養、前培養及び本培養(光独立利用)した。前記本培養後回収したPCC6803(WT)を、OD750が20又は150になるように水性媒体(10 mL)に加えた。ここでは水性媒体として300 mM Hepes-KOH(pH7.8)を用いた。本実施例では100mMのNaHCO3を添加し、培養温度を37.5℃とし、72時間嫌気、暗所条件下で発酵処理を行った。
 上記培養後、PCC6803(WT)を含む水性媒体を回収した。回収した水性媒体について、実施例1と同手法によりコハク酸の産生量を測定した。その結果、OD750が150にて培養した場合には、1.25g/Lのコハク酸を産生し、OD750が20℃で培養したときに比べて、コハク酸の産生量が3倍以上増加したことが確認された(図8)。
(実施例8)微細藻(クラミドモナス)による有機酸の産生
 本実施例において、微細藻類の微生物種としてクラミドモナス(Chlamydomonas reinhardtii)株を用いた。以下「C. reinhardtii」という。
(1)前々培養
 TAP寒天培地(1.5%Agarを含むTAP培地)上で生育したC. reinhardtiiのコロニーを白金耳でとり、水性媒体(70 mL)に加え、pH7.8にてCO2通気条件下、100μmol photons m-2 s-1で30℃にて4~5日間培養した。培養後のOD750は2.5~3.5であった。ここでは水性媒体としてTAP培地を用いた。TAP培地の組成は表2に示した。
Figure JPOXMLDOC01-appb-T000002
(2)前培養
 上記(1)で前々培養したC. reinhardtiiを、OD750が0.1になるように水性媒体(150 mL)に加え、pH7.8にてCO2通気条件下、50μmol photons m-2 s-1で30℃にて4~5日間培養した。ここでは水性媒体としてTAP培地を用いた。
(3)本培養(光独立利用)
 上記(2)で前培養したC. reinhardtiiを、OD750が0.4になるように水性媒体(70 mL)に加え、pH7.8にてCO2通気条件下、120μmol photons m-2 s-1で30℃にて5日間培養した。ここでは水性媒体としてTAP培地を用い、1 mM、3 mM及び 5 mMの各濃度のNH4Clを添加した。培養後のOD750は3.5~4.5であった。培養後、遠心分離(14000g、5分、4℃)でC. reinhardtiiを回収した。
(4)本培養(嫌気・暗所)
 上記(3)で回収したC. reinhardtiiを、OD750が20になるように水性媒体(10 mL)に加えた。ここでは水性媒体として100mM Hepes-KOH (pH7.8)を用いて30℃又は37.5℃で72時間培養した。密閉状態を維持したままC. reinhardtiiを含む水性媒体を回収した。
 上記(4)で培回収した水性媒体を、各々14000g、4℃にて5分間遠心分離し、実施例1と同手法により上清を回収し、0.45μm孔径Mini-UniPrep(GEヘルスケア・ジャパン株式会社製)を用いて濾過した。濾過液について、実施例1と同手法により、コハク酸の産生量を測定した。その結果、何れの濃度のNH4Clを添加した場合でも37.5℃で培養したほうがコハク酸の産生量が高かった(図9)。NH4Cl添加量は5 mMよりは1 mMの方が産生量が高かった。
 以上詳述したように、微細藻を35~40℃の温度条件で培養する工程を含む、本発明の方法で微細藻を培養することで、バイオマスを有効活用することができる。微細藻の光合成と微細藻に取り込まれた炭素源によりバイオマスから有機酸を産生することができる。さらに、NADPH-O2オキシドレダクターゼの機能及び/又はグリコーゲンからクエン酸回路に至る解糖系での律速酵素の機能が増強された微細藻によれば、より効果的に細胞内代謝物である有機酸を回収することができる。水性媒体への炭酸イオン及び/又は重炭酸イオンの供給は、例えば電気や鉄鋼等の製造工程において産業的に排出された大気中のCO2を利用し、有効活用することができる。従来は、有機酸のうち例えばコハク酸等は石油等を原料として産生されていたが、その際にCO2が排出されていたのに対し、本発明の方法によれば、有機酸の製造工程でCO2を排出しないばかりか、大気中のCO2を有効活用できる点で、自然環境に対して優れた効果を有する。さらに、本発明の微細藻によれば、バイオマスとして使用される水性媒体は淡水のみならず海水を活用することができ、水資源の枯渇や耕作地の限界に左右されず安定的に有効活用することができる。
 製造された有機酸は、食品、医薬品、その他各種分野において有効に利用される。例えばコハク酸では医薬品の賦形剤、pH調整剤、食品として調味料、その他の食品添加物、工業的にはメッキ等にも利用される。また、炭酸ガスを発泡する入浴剤等の成分としても利用される。

Claims (14)

  1. 微細藻を35~40℃の温度条件で培養する工程を含むことを特徴とする、微細藻からの有機酸の製造方法。
  2. 35~40℃の温度条件での培養が、微細藻の培養の嫌気培養条件下で行われる、請求項1に記載の製造方法。
  3. 35~40℃の温度条件での培養が、微細藻の培養の嫌気的かつ暗所にての培養条件下で行われる、請求項1に記載の製造方法。
  4. 微細藻を35~40℃の温度条件で、24時間以上、5日以内、培養する工程を含む、請求項2又は3に記載の製造方法。
  5. 以下の(A)及び(B)の工程を含む、請求項1~4のいずれかに記載の微細藻からの有機酸の製造方法:
    (A)炭酸イオン及び/又は重炭酸イオンの含有量が20~2000mMの水性媒体中で微細藻を培養する工程;
    (B)前記(A)の微細藻から産生された有機酸を回収する工程。
  6. 炭酸イオン及び/又は重炭酸イオンの含有量が20~2000mMの水性媒体が、(1)二酸化炭素の充填、及び/又は、(2)炭酸ナトリウム、重炭酸ナトリウム、炭酸カリウム、重炭酸カリウム、炭酸マグネシウムより選択されるいずれか1種又は2種以上の炭酸塩の添加、による水性媒体である、請求項5に記載の製造方法。
  7. (1)二酸化炭素の充填、及び/又は、(2)炭酸ナトリウム、重炭酸ナトリウム、炭酸カリウム、重炭酸カリウム、炭酸マグネシウムより選択されるいずれか1種又は2種以上の炭酸塩の添加が、微細藻の培養の嫌気培養条件下で行われる、請求項6に記載の製造方法。
  8. 二酸化炭素の充填が、水性媒体中で飽和状態になるまで行われる、請求項6又は7に記載の製造方法。
  9. 前記微細藻がシアノバクテリア及び/又はクラミドモナス属である、請求項1~8のいずれかに記載の有機酸の製造方法。
  10. シアノバクテリアが、シネコシスティス属である、請求項9に記載の有機酸の製造方法。
  11. 前記有機酸が、脂肪族ジカルボン酸である、請求項1~10のいずれかに記載の有機酸の製造方法。
  12. 前記有機酸が、コハク酸、乳酸、酢酸、フマル酸、2-ケトグルタル酸、リンゴ酸、クエン酸及びグルコン酸から選択されるいずれか1種又は2種以上である、請求項1~10のいずれかに記載の有機酸の製造方法。
  13. 微細藻が、PEPカルボキシラーゼ、ピルビン酸フェレドキシン酸化還元酵素及びホスフォグルコムターゼから選択される少なくとも1種の酵素機能が増強された微細藻である、請求項1~12のいずれかに記載の有機酸の製造方法。
  14. 微細藻が、NADPH-O2オキシドレダクターゼの発現又は発現増強するように形質転換された微細藻である、請求項1~13のいずれかに記載の有機酸の製造方法。
PCT/JP2017/032469 2016-09-14 2017-09-08 有機酸の製造方法 WO2018051916A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018539683A JPWO2018051916A1 (ja) 2016-09-14 2017-09-08 有機酸の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016179467 2016-09-14
JP2016-179467 2016-09-14

Publications (1)

Publication Number Publication Date
WO2018051916A1 true WO2018051916A1 (ja) 2018-03-22

Family

ID=61619087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032469 WO2018051916A1 (ja) 2016-09-14 2017-09-08 有機酸の製造方法

Country Status (2)

Country Link
JP (1) JPWO2018051916A1 (ja)
WO (1) WO2018051916A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021162099A1 (ja) * 2020-02-14 2021-08-19 国立大学法人神戸大学 組換え微細藻及び微細藻を用いた有機酸の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08168389A (ja) * 1992-10-07 1996-07-02 Agency Of Ind Science & Technol 藍藻を用いる有機分泌物の製造方法
JP2010507369A (ja) * 2006-10-20 2010-03-11 アリゾナ ボード オブ リージェンツ フォー アンド オン ビハーフ オブ アリゾナ ステイト ユニバーシティ 改変されたシアノバクテリア
US8846354B1 (en) * 2012-05-15 2014-09-30 Wisconsin Alumni Research Foundation Microorganisms for producing organic acids
JP2015073469A (ja) * 2013-10-08 2015-04-20 国立大学法人神戸大学 微細藻の生育機能を増強する方法
WO2015115520A1 (ja) * 2014-01-30 2015-08-06 国立研究開発法人理化学研究所 藍藻においてプラスチック原料を生産する方法
WO2016129636A1 (ja) * 2015-02-13 2016-08-18 国立研究開発法人理化学研究所 藍藻変異株及びそれを用いたコハク酸及びd-乳酸産生方法
JP2017123816A (ja) * 2016-01-14 2017-07-20 学校法人明治大学 食品、食品の加熱処理方法、フィコシアニンの製造方法、有機酸の製造方法、及び水素の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08168389A (ja) * 1992-10-07 1996-07-02 Agency Of Ind Science & Technol 藍藻を用いる有機分泌物の製造方法
JP2010507369A (ja) * 2006-10-20 2010-03-11 アリゾナ ボード オブ リージェンツ フォー アンド オン ビハーフ オブ アリゾナ ステイト ユニバーシティ 改変されたシアノバクテリア
US8846354B1 (en) * 2012-05-15 2014-09-30 Wisconsin Alumni Research Foundation Microorganisms for producing organic acids
JP2015073469A (ja) * 2013-10-08 2015-04-20 国立大学法人神戸大学 微細藻の生育機能を増強する方法
WO2015115520A1 (ja) * 2014-01-30 2015-08-06 国立研究開発法人理化学研究所 藍藻においてプラスチック原料を生産する方法
WO2016129636A1 (ja) * 2015-02-13 2016-08-18 国立研究開発法人理化学研究所 藍藻変異株及びそれを用いたコハク酸及びd-乳酸産生方法
JP2017123816A (ja) * 2016-01-14 2017-07-20 学校法人明治大学 食品、食品の加熱処理方法、フィコシアニンの製造方法、有機酸の製造方法、及び水素の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUTEKUNST, K. ET AL.: "The bidirectional NiFe-hydrogenase in Synechocystis sp. PCC 6803 is reduced by flavodoxin and ferredoxin and is essential under mixotrophic, nitrate-limiting conditions", J. BIOL. CHEM., vol. 289, no. 4, 2014, pages 1930 - 1937, XP055319969, ISSN: 0021-9258 *
HASUNUMA, T. ET AL.: "Overexpression of flv3 improves photosynthesis in the cyanobacterium Synechocystis sp. PCC6803 by enhancement of alternative electron flow", BIOTECHNOL. BIOFUELS., vol. 7, no. 1, 2014, pages 493, XP021210424, ISSN: 1754-6834 *
LIAN, L. ET AL.: "Role of two phosphohexomutase genes in glycogen synthesis in Synechocystis sp. PCC6803", CHIN. SCI. BULL., vol. 58, no. 36, 2013, pages 4616 - 4621, XP036176488, ISSN: 1001-6538 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021162099A1 (ja) * 2020-02-14 2021-08-19 国立大学法人神戸大学 組換え微細藻及び微細藻を用いた有機酸の製造方法

Also Published As

Publication number Publication date
JPWO2018051916A1 (ja) 2019-06-27

Similar Documents

Publication Publication Date Title
Wei et al. Enhancing photosynthetic biomass productivity of industrial oleaginous microalgae by overexpression of RuBisCO activase
Drosg et al. Photo-autotrophic production of poly (hydroxyalkanoates) in cyanobacteria
Salama et al. Enhancement of microalgal growth and biocomponent-based transformations for improved biofuel recovery: a review
Doebbe et al. Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: impacts on biological H2 production
Ducat et al. Rerouting carbon flux to enhance photosynthetic productivity
Mirończuk et al. Heterologous overexpression of bacterial hemoglobin VHb improves erythritol biosynthesis by yeast Yarrowia lipolytica
Chandra et al. Role of cultural variables in augmenting carbohydrate accumulation in the green microalga Scenedesmus acuminatus for bioethanol production
CN102690774A (zh) 重组微生物、重组载体及制备3-羟基丙酸的方法
WO2015017721A1 (en) 3-hydroxypropionic acid production by recombinant yeasts expressing an insect aspartate 1-decarboxylase
Allahverdiyeva et al. Recent developments on cyanobacteria and green algae for biohydrogen photoproduction and its importance in CO2 reduction
US9914947B2 (en) Biological production of organic compounds
ES2697757T3 (es) Uso de enzimas que catalizan la síntesis de piruvato a partir de formiato y acetil-CoA y bacterias que expresan la misma
Zhu et al. Efficient utilization of carbon to produce aromatic valencene in Saccharomyces cerevisiae using mannitol as the substrate
JP7176787B2 (ja) 有機酸の製造方法
US9309541B2 (en) Biological production of organic compounds
Lim et al. Use of an extremophile red microalga (Galdieria sulphuraria) to produce phycocyanin from tangerine peel waste
WO2018051916A1 (ja) 有機酸の製造方法
CN106574236A (zh) 遗传修饰的产生(r)‑乳酸的嗜热细菌
JP6249456B2 (ja) 藍藻においてプラスチック原料を生産する方法
JP2015073469A (ja) 微細藻の生育機能を増強する方法
US10138489B2 (en) Cyanobacterial strains capable of utilizing phosphite
Leite et al. Engineered cyanobacteria: research and application in bioenergy
Fang Metabolic engineering and molecular biotechnology of microalgae for fuel production
Tiwari et al. Algal photobiohydrogen production
WO2021162099A1 (ja) 組換え微細藻及び微細藻を用いた有機酸の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850818

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018539683

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850818

Country of ref document: EP

Kind code of ref document: A1