WO2021160053A1 - 一种降低果葡糖浆中 5- 羟甲基糠醛含量的系统及方法 - Google Patents
一种降低果葡糖浆中 5- 羟甲基糠醛含量的系统及方法 Download PDFInfo
- Publication number
- WO2021160053A1 WO2021160053A1 PCT/CN2021/075695 CN2021075695W WO2021160053A1 WO 2021160053 A1 WO2021160053 A1 WO 2021160053A1 CN 2021075695 W CN2021075695 W CN 2021075695W WO 2021160053 A1 WO2021160053 A1 WO 2021160053A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fructose syrup
- fructose
- heat exchanger
- content
- syrup
- Prior art date
Links
- NOEGNKMFWQHSLB-UHFFFAOYSA-N 5-hydroxymethylfurfural Chemical compound OCC1=CC=C(C=O)O1 NOEGNKMFWQHSLB-UHFFFAOYSA-N 0.000 title claims abstract description 66
- RJGBSYZFOCAGQY-UHFFFAOYSA-N hydroxymethylfurfural Natural products COC1=CC=C(C=O)O1 RJGBSYZFOCAGQY-UHFFFAOYSA-N 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims abstract description 28
- 235000019534 high fructose corn syrup Nutrition 0.000 title abstract 11
- 150000001768 cations Chemical class 0.000 claims abstract description 15
- 238000001704 evaporation Methods 0.000 claims abstract description 12
- 230000008020 evaporation Effects 0.000 claims abstract description 12
- 238000004042 decolorization Methods 0.000 claims abstract description 9
- 150000001450 anions Chemical class 0.000 claims abstract description 8
- 238000013375 chromatographic separation Methods 0.000 claims abstract description 7
- 238000006317 isomerization reaction Methods 0.000 claims abstract description 7
- 238000001816 cooling Methods 0.000 claims abstract description 4
- 238000002156 mixing Methods 0.000 claims abstract description 4
- 235000021433 fructose syrup Nutrition 0.000 claims description 156
- 239000008103 glucose Substances 0.000 claims description 27
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 26
- 229930091371 Fructose Natural products 0.000 claims description 24
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 claims description 24
- 239000005715 Fructose Substances 0.000 claims description 24
- 239000006188 syrup Substances 0.000 claims description 19
- 235000020357 syrup Nutrition 0.000 claims description 19
- 239000000498 cooling water Substances 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 9
- 230000001105 regulatory effect Effects 0.000 claims description 9
- 238000000926 separation method Methods 0.000 claims description 9
- 235000008504 concentrate Nutrition 0.000 claims description 6
- 239000012141 concentrate Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 229920002472 Starch Polymers 0.000 claims description 4
- 239000008107 starch Substances 0.000 claims description 4
- 235000019698 starch Nutrition 0.000 claims description 4
- 238000000746 purification Methods 0.000 claims description 2
- 238000010494 dissociation reaction Methods 0.000 claims 1
- 230000005593 dissociations Effects 0.000 claims 1
- 238000005349 anion exchange Methods 0.000 abstract description 2
- 238000005341 cation exchange Methods 0.000 abstract description 2
- 238000005342 ion exchange Methods 0.000 abstract 1
- 239000000047 product Substances 0.000 description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 4
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000011265 semifinished product Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- PJVXUVWGSCCGHT-ZPYZYFCMSA-N (2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanal;(3s,4r,5r)-1,3,4,5,6-pentahydroxyhexan-2-one Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O.OC[C@@H](O)[C@@H](O)[C@H](O)C(=O)CO PJVXUVWGSCCGHT-ZPYZYFCMSA-N 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 210000003699 striated muscle Anatomy 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C13—SUGAR INDUSTRY
- C13K—SACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
- C13K1/00—Glucose; Glucose-containing syrups
- C13K1/06—Glucose; Glucose-containing syrups obtained by saccharification of starch or raw materials containing starch
- C13K1/08—Purifying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J47/00—Ion-exchange processes in general; Apparatus therefor
- B01J47/02—Column or bed processes
- B01J47/026—Column or bed processes using columns or beds of different ion exchange materials in series
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J47/00—Ion-exchange processes in general; Apparatus therefor
- B01J47/02—Column or bed processes
- B01J47/026—Column or bed processes using columns or beds of different ion exchange materials in series
- B01J47/028—Column or bed processes using columns or beds of different ion exchange materials in series with alternately arranged cationic and anionic exchangers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J47/00—Ion-exchange processes in general; Apparatus therefor
- B01J47/02—Column or bed processes
- B01J47/04—Mixed-bed processes
Definitions
- the invention belongs to the technical field of fructose-glucose syrup preparation, and particularly relates to a system and method for reducing 5-hydroxymethyl furfural content in fruct-glucose syrup.
- Fructose syrup is an important sweetener produced mainly from corn starch, mainly composed of fructose and glucose.
- the current production process is that starch is converted into glucose through liquefaction and saccharification. Part of glucose is isomerized into fructose into F42 fructose syrup. After decolorization, separation and concentration, part of F42 fructose syrup is separated by chromatography to obtain F90 fructose syrup, F42 Fructose syrup and F90 fructose syrup are blended into F55 fructose syrup.
- F55 fructose syrup is decolorized, mixed and concentrated to obtain F55 fructose syrup with a mass concentration of 77%.
- HMF 5-hydroxymethyl furfural
- the main method of reducing HMF in fructose syrup is to remove semi-finished products and finally concentrate them into finished products.
- the semi-finished product of fructose syrup is pre-treated (controlling the color below 30RBU) and then The content of HMF absorbed by anion exchange resin is less than 5mg/kg, and then the conductivity is controlled by anion and cation exchange to 5 ⁇ s/cm and the pH value is between 3 ⁇ 8.
- the chromaticity is controlled by decolorization to be less than 5RBU and the light transmittance is greater than 99%, and finally concentrated.
- this method reprocesses the prepared fructose syrup, which increases the number of processes and increases the cost.
- the technical problem to be solved by the present invention is to provide a system and method for reducing the content of 5-hydroxymethyl furfural in fructose syrup.
- the content of 5-hydroxymethyl furfural (HMF) The content of Fructose is an index.
- the present invention is achieved in this way, and provides a system for reducing 5-hydroxymethyl furfural content in fructose syrup, which includes the ionization of F42 fructose syrup obtained after isomerization and first decolorization to remove cations and anions in sequence.
- fructose syrup glucose and fructose, especially fructose, are easily converted into HMF under low pH and high temperature conditions.
- the pH of the material is 2 ⁇ 3, which is acidic, and the temperature is 55 ⁇ 58°C.
- fructose will be converted into more HMF.
- HMF will be converted into more HMF at high temperature. Under the conditions, it will become a colored substance, which will affect the adsorption of HMF etc. by the mixed bed resin.
- the present invention analyzes each production process and determines that the separation and mixed bed processes have a significant influence on it.
- the double-group operation mode of yang-column-yang-column-yin-column shall be changed to the single-group operation mode of yang-in-column, so that the fructose slurry is liquid.
- the running time of the male column is doubled, which can effectively reduce the production of HMF.
- the feed temperature of the mixed bed column is lowered to prevent the HMF in the fructose syrup from turning into colored substances due to high temperature, so as to improve the adsorption of HMF by the mixed bed resin and further reduce the HMF content in the fructose syrup.
- the present invention is achieved in this way and provides a method for reducing the content of 5-hydroxymethyl furfural in fructose syrup, which includes the following steps:
- Step 1 The starch is liquefied, saccharified, and refined to obtain glucose syrup with a glucose content of 95.5-9.5%;
- Step 2 Mix the glucose syrup in Step 1 with the raffinate in Step 6, and concentrate to obtain a glucose syrup solution with a refractive index of 42-45%;
- Step 3 The glucose syrup solution in step 2 is adjusted to a temperature of 56-58°C and a pH of 7.7-7.9 and then enters the isomerization column to obtain F42 fructose syrup;
- Step 4 After the F42 fructose syrup in step 3 is decolorized, it enters the cation column and the cation column in turn to remove anions and cations to obtain refined F42 fructose syrup;
- Step 5 The F42 fructose syrup refined in step 4 is concentrated to obtain a finished product of F42 fructose syrup;
- Step 6 About 42-50% of the finished F42 fructose syrup in step 5 enters chromatographic separation to obtain an F90 fructose syrup extract with 90% fructose content and a raffinate with 80-85% glucose content, and the raffinate is returned Go to step 2 to reuse;
- Step 7 Blend the F90 fructose syrup extract in step 6 with part of the F42 fructose syrup product in step 5 to obtain F55 fructose syrup;
- Step 8 After the F55 fructose syrup in step 7 is decolorized, it enters the mixed bed column; in order to increase the feed temperature of the evaporation tank in step 9, the F55 fructose syrup is used to exchange heat with the mixed bed column before entering the mixed bed column.
- the second-stage heat exchange method of heat exchange with cooling water is to install a regulating valve on the cooling water inlet pipe of the second-stage heat exchanger, and set a thermometer on the discharge pipe connecting the second-stage heat exchanger and the mixed bed column to adjust The valve is linked with the outlet thermometer to obtain refined F55 fructose syrup;
- Step 9 The F55 fructose syrup refined in step 8 is evaporated and concentrated to obtain a finished product of F55 fructose syrup.
- the system and method for reducing 5-hydroxymethyl furfural content in fructose syrup according to the present invention have the following characteristics:
- the operating column pressure of the separation column is reduced by 0.2 MPa, which reduces the resin damage rate.
- the feed temperature of the mixed bed column is reduced to ⁇ 38 degrees, the HMF is effectively controlled, and the exchange volume is increased by 15-25%.
- Figure 1 is a schematic diagram of the structural principle of the system for reducing the content of 5-hydroxymethyl furfural in fructose syrup according to the present invention.
- a preferred embodiment of the system for reducing 5-hydroxymethyl furfural content in fructose syrup according to the present invention includes performing cations and cations on F42 fructose syrup obtained after isomerization and first decolorization.
- a heat exchanger 3 a mixed bed column 4 for purifying the heat exchanged F55 fructose syrup, and an evaporation tank 5 for concentrating the F55 fructose syrup after the mixed bed treatment.
- the bottom of the evaporation tank 5 is provided with an F55 fructose syrup product outlet.
- the heat exchanger 3 includes a first heat exchanger 6 and a second heat exchanger 7 connected in series.
- the first heat exchanger 6 and the second heat exchanger 7 respectively include a first inlet and a second inlet, and a first outlet and a second outlet.
- F55 fructose syrup enters the first heat exchanger 6 from the first inlet 61 of the first heat exchanger 6, and then exits from the first outlet 62 of the second heat exchanger 7.
- An inlet 71 enters the second heat exchanger 7 and then exits from its first outlet 72 and then enters the liquid inlet 41 of the mixed bed column 4 through the liquid inlet pipe 8.
- the F55 fructose syrup purified by the mixed bed column 4 enters the second inlet 63 of the first heat exchanger 6 from the outlet 42 of the mixed bed column 4, and then enters the second outlet 64 of the first heat exchanger 6
- the second inlet 73 of the second heat exchanger 7 is in communication with the cooling water through the water inlet pipe 9, and the cooling water after heat exchange comes out of the second outlet 74 of the second heat exchanger 7.
- a regulating valve 10 is provided on the water inlet pipe 9, and a thermometer 11 is provided on the liquid inlet pipe 8.
- the regulating valve 10 and the thermometer 11 are interlocked with each other, and the regulating valve 10 automatically adjusts the opening degree of the valve according to the temperature of the thermometer 11.
- the invention also discloses a method for reducing the content of 5-hydroxymethyl furfural in fructose syrup, which comprises the following steps:
- Step 1 The starch is liquefied, saccharified, and refined to obtain glucose syrup with a glucose content of 95.5-96.5 percent.
- Step 2 Mix the glucose syrup in Step 1 with the raffinate in Step 6, and concentrate to obtain a glucose syrup solution with a refractive index of 42-45%.
- Step 3 The glucose syrup solution in step 2 is adjusted to a temperature of 56-58°C and a pH of 7.7-7.9 and then enters the isomerization column to obtain F42 fructose syrup with a fructose content of 42-45%.
- Step 4 After decolorizing the F42 fructose syrup in step 3, as shown by the arrow in the figure, it enters the separated cationic column and the separated cationic column to remove the anions and cations to obtain the refined F42 fructose syrup, and the refined F42 fruit
- the discharge pH of the glucose syrup is 3.5 ⁇ 8.0, and the conductivity is less than or equal to 30us/cm.
- Step 5 Concentrate the refined F42 fructose syrup in step 4 to obtain a finished product of F42 fructose syrup with a refractive index of 58-60%.
- Step 6 About 42-50% of the finished F42 fructose syrup in step 5 enters chromatographic separation to obtain an F90 fructose syrup extract with 90% fructose content and a raffinate with 80-85% glucose content, and the raffinate is returned Go to step 2 for reuse.
- Step 7 Blend the F90 fructose syrup extract in step 6 with part of the finished F42 fructose syrup in step 5 to obtain F55 fructose syrup with a fructose content of 55 to 57%.
- Step 8 After decolorizing the F55 fructose syrup in step 7, enter the mixed bed column.
- the F55 fructose syrup first exchanges heat with the mixed bed column before it enters the mixed bed column and then exchanges heat with the cooling water in the second stage heat exchanger.
- the cooling water inlet pipeline is equipped with a regulating valve, and a thermometer is installed on the discharge pipeline connecting the second-stage heat exchanger and the mixed bed column.
- the regulating valve is interlocked with the outlet thermometer to control the discharge temperature of the second-stage heat exchanger 35 ⁇ 38 °C, discharge pH 4.0 ⁇ 7.0, conductivity ⁇ 20 ⁇ s/cm, IU ⁇ 10, and refined F55 fructose syrup is obtained.
- Step 9 The F55 fructose syrup refined in Step 8 is evaporated and concentrated to obtain a finished F55 fructose syrup with a solid content of more than 77%.
- the embodiment of the first method for reducing 5-hydroxymethylfurfural content in fructose syrup of the present invention includes the following steps:
- Glucose syrup is isomerized to obtain F42 fructose syrup with a temperature of 57-58°C and a fructose content of 44-44.5%, in which the HMF content is 14 ppm.
- step (12) After the F42 fructose syrup in step (11) is decolorized, it enters the yang column and the yang column in turn to obtain refined F42 fructose syrup. Among them, the F42 fructose syrup runs on the yang column. The time is about 10 minutes, the pH of the discharged material after separation is 3.5, the conductivity is 25 ⁇ s/cm, and the HMF content is 25 ppm.
- the refined F42 fructose syrup in step (12) is concentrated, chromatographically separated, blended, and then decolorized by activated carbon, and then enters the mixed bed column to obtain refined F55 fructose syrup. Before entering the mixed bed column, it exchanges heat with the discharge of the mixed bed column, and then exchanges heat with the cooling water.
- the temperature of the fructose syrup entering the mixed bed column is 35 ⁇ 36°C
- the discharge pH of the mixed bed column is 4.0 ⁇ 4.5
- the conductivity is ⁇ 2 ⁇ s/ cm
- IU 2.0, of which the HMF content is 14ppm.
- the embodiment of the second method for reducing the content of 5-hydroxymethylfurfural in fructose syrup of the present invention includes the following steps:
- Glucose syrup is isomerized to obtain F42 fructose syrup with a temperature of 56-57°C and a fructose content of 42-42.5%, of which the HMF content is 13 ppm.
- step (22) After the F42 fructose syrup in step (21) is decolorized, it enters the separated positive column and the separated negative column in turn to obtain refined F42 fructose syrup. Among them, the F42 fructose syrup runs in the separated positive column. The time is about 10 minutes, the pH of the discharged material after separation is 8.0, the conductivity is 30 ⁇ s/cm, and the HMF content is 20 ppm.
- the refined F42 fructose syrup of step (22) is concentrated, chromatographically separated, blended, and then decolorized by activated carbon, and then enters the mixed bed column to obtain refined F55 fructose syrup. Before entering the mixed bed column, it exchanges heat with the output of the mixed bed column, and then exchanges heat with the cooling water.
- the temperature of the fructose syrup entering the mixed bed column is 36 ⁇ 37°C
- the output pH of the mixed bed column is 6.5 ⁇ 7.0
- the conductivity is ⁇ 12 ⁇ s/ cm
- the third embodiment of the method for reducing the content of 5-hydroxymethyl furfural in fructose syrup of the present invention includes the following steps:
- Glucose syrup is isomerized to obtain F42 fructose syrup with a temperature of 57-58°C and a fructose content of 43-43.5%, in which the HMF content is 14 ppm.
- step (32) After the F42 fructose syrup in step (31) is decolorized, it enters the yang column and the yang column in turn to obtain refined F42 fructose syrup. Among them, the F42 fructose syrup runs on the yang column. The time is about 10 minutes, the pH of the discharged material after separation is 6.5, the conductivity is 20 ⁇ s/cm, and the HMF content is 24 ppm.
- the refined F42 fructose syrup of step (32) is concentrated, chromatographically separated, blended, and then decolorized by activated carbon, and then enters the mixed bed column to obtain refined F55 fructose syrup. Before entering the mixed bed column, it exchanges heat with the discharge of the mixed bed column, and then exchanges heat with the cooling water.
- the temperature of the fructose syrup entering the mixed bed column is 37 ⁇ 38°C
- the discharge pH of the mixed bed column is 5.5 ⁇ 6.0
- the conductivity is ⁇ 15 ⁇ s/ cm
- the first comparative example of the present invention includes the following steps:
- Glucose syrup is isomerized to obtain F42 fructose syrup with a temperature of 57-58°C and a fructose content of 44-44.5%, in which the HMF content is 14 ppm.
- step (42) After the F42 fructose syrup in step (41) is decolorized, it enters the divorced positive column, the dilated negative column, the dilated positive column and the dilated negative column in sequence to obtain refined F42 fructose syrup, in which F42
- the running time of the fructose syrup in the separated positive column is 20 minutes
- the discharge pH after separation is 3.6
- the conductivity is 25 ⁇ s/cm
- the HMF content is 49 ppm.
- the refined F42 fructose syrup in step (42) is concentrated, chromatographically separated, blended, and then decolorized by activated carbon, and then enters the mixed bed column to obtain refined F55 fructose syrup.
- the temperature entering the mixed bed column is 58°C
- the output pH of the mixed bed column is 4.2 ⁇ 4.5
- the conductivity is ⁇ 2 ⁇ s/cm
- IU 2.5
- the HMF content is 35ppm.
- the method of the present invention can effectively reduce the 5-hydroxymethyl furfural content in the fructose syrup during the production process of preparing fructose syrup, and the effect is obvious.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Saccharide Compounds (AREA)
- Jellies, Jams, And Syrups (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
Claims (10)
- 一种降低果葡糖浆中5-羟甲基糠醛含量的系统,其特征在于,包括对经过异构和第一次脱色后得到的F42果葡糖浆依次进行阳离子和阴离子去除的离交阳柱和离交阴柱,以及对离交后的F42果葡糖浆依次经过浓缩、色谱分离、勾兑和第二次脱色后得到的F55果葡糖浆进行换热降温的换热器,以及对换热后的F55果葡糖浆进行净化处理的混床柱和对混床处理后的F55果葡糖浆进行浓缩处理的蒸发罐。
- 如权利要求1所述的降低果葡糖浆中5-羟甲基糠醛含量的系统,其特征在于,所述换热器包括相互串联的第一换热器和第二换热器,所述第一换热器和第二换热器分别包括第一进口和第二进口,以及第一出口和第二出口,F55果葡糖浆从第一换热器的第一进口进入第一换热器后从其第一出口出来,然后再从第二换热器的第一进口进入第二换热器,再从其第一出口出来后通过进液管路进入混床柱的进液口,经混床柱净化后的F55果葡糖浆从混床柱的出口进入到第一换热器的第二进口,然后从第一换热器的第二出口出来后再进入到蒸发罐的进液口,第二换热器的第二进口通过进水管路与冷却水连通,换热后的冷却水从第二换热器的第二出口出来。
- 如权利要求2所述的降低果葡糖浆中5-羟甲基糠醛含量的系统,其特征在于,在所述进水管路上设置了调节阀,在所述进液管路上设置了温度计,所述调节阀与温度计相互连锁。
- 一种降低果葡糖浆中5-羟甲基糠醛含量的方法,其特征在于,包括如下步骤:步骤1、淀粉经液化、糖化、精制后得到葡萄糖糖浆;步骤2、将步骤1中的葡萄糖浆与步骤6中的提余液混合,浓缩得到葡萄糖浆溶液;步骤3、将步骤2中的葡萄糖浆溶液进入异构柱,得到F42果葡糖浆;步骤4、将步骤3中的F42果葡糖浆经脱色后,依次进入离交阳柱、离交阴柱去除阴阳离子,得到精制的F42果葡糖浆;步骤5、将步骤4中精制的F42果葡糖浆经浓缩得到F42果葡糖浆成品;步骤6、将步骤5中的F42果葡糖浆成品约42~50%进入色谱分离,得到果糖F90果葡糖浆提取液和提余液,提余液返回到步骤2中再利用;步骤7、将步骤6中的F90果葡糖浆提取液与步骤5中的部分F42果葡糖浆成品勾兑,得到F55果葡糖浆;步骤8、将步骤7中的F55果葡糖浆经脱色后,进入混床柱;为了提高步骤9中蒸发罐的进料温度,采用F55果葡糖浆进混床柱前先与混床柱出料换热后再与冷却水换热的二级换热方式,在第二级换热器的冷却水进水管路上设置调节阀,在第二级换热器与混床柱连通的出料管路上设置温度计,调节阀与出口温度计连锁,得到精制的F55果葡糖浆;步骤9、将步骤8中精制的F55果葡糖浆经过蒸发浓缩后得到F55果葡糖浆成品。
- 如权利要求4所述的降低果葡糖浆中5-羟甲基糠醛含量的方法,其特征在于,在步骤4中,得到精制的F42果葡糖浆的果糖含量42~45%。
- 如权利要求4所述的降低果葡糖浆中5-羟甲基糠醛含量的方法,其特征在于,在步骤4中,得到精制的F42果葡糖浆的出料pH3.5~8.0,电导率≤30us/cm。
- 如权利要求4所述的降低果葡糖浆中5-羟甲基糠醛含量的方法,其特征在于,在步骤5中,得到F42果葡糖浆成品的折光58~60%。
- 如权利要求4所述的降低果葡糖浆中5-羟甲基糠醛含量的方法,其特征在于,在步骤7中,F55果葡糖浆的果糖含量55~57%。
- 如权利要求4所述的降低果葡糖浆中5-羟甲基糠醛含量的方法,其特征在于,在步骤8中,控制第二级换热器的出料温度35~38℃,出料pH4.0~7.0,电导率≤20µs/cm,IU≤10。
- 如权利要求4所述的降低果葡糖浆中5-羟甲基糠醛含量的方法,其特征在于,在步骤9中,F55果葡糖浆成品的固形物77%以上。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/775,002 US20220389526A1 (en) | 2020-02-11 | 2021-02-07 | System and method for reducing content of 5-hydroxymethylfurfural in high fructose corn syrup |
EP21753256.3A EP4023773B1 (en) | 2020-02-11 | 2021-02-07 | System for reducing content of 5-hydroxymethylfurfural in high-fructose corn syrup |
JP2022524000A JP7367210B2 (ja) | 2020-02-11 | 2021-02-07 | 果糖ブドウ糖液糖における5-ヒドロキシメチルフルフラールの含有量を低減させるシステムであって及び方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010087317.9 | 2020-02-11 | ||
CN202010087317.9A CN111139319B (zh) | 2020-02-11 | 2020-02-11 | 一种降低果葡糖浆中5-羟甲基糠醛含量的系统及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021160053A1 true WO2021160053A1 (zh) | 2021-08-19 |
Family
ID=70527237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/075695 WO2021160053A1 (zh) | 2020-02-11 | 2021-02-07 | 一种降低果葡糖浆中 5- 羟甲基糠醛含量的系统及方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220389526A1 (zh) |
EP (1) | EP4023773B1 (zh) |
JP (1) | JP7367210B2 (zh) |
CN (1) | CN111139319B (zh) |
WO (1) | WO2021160053A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111139319B (zh) * | 2020-02-11 | 2024-10-18 | 浙江华康药业股份有限公司 | 一种降低果葡糖浆中5-羟甲基糠醛含量的系统及方法 |
CN112546674B (zh) * | 2020-12-23 | 2024-09-13 | 浙江华康药业股份有限公司 | 抑制葡萄糖在阴离子交换柱中异构为果糖的系统及方法 |
CN113774099A (zh) * | 2021-09-23 | 2021-12-10 | 黑龙江昊天玉米开发有限公司 | 一种低5-羟基-2-糠醛含量的果葡糖浆的制备方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102326728A (zh) | 2011-06-30 | 2012-01-25 | 山东香驰健源生物科技有限公司 | 一种除去果葡糖浆中的5-羟甲基糠醛的方法 |
CN104498639A (zh) * | 2014-12-10 | 2015-04-08 | 广州双桥股份有限公司 | 一种高果糖浆的生产工艺 |
CN204710317U (zh) * | 2015-05-27 | 2015-10-21 | 宋昭语 | 一种高效反应釜 |
CN105255968A (zh) * | 2015-11-18 | 2016-01-20 | 昆山品青生物科技有限公司 | 一种f55果葡糖浆的制备方法 |
CN206478858U (zh) * | 2017-01-20 | 2017-09-08 | 北京易科联盟清洁技术发展有限公司 | 利用热泵回收巴氏杀菌装置余热用于加热生产用热水系统 |
CN109136302A (zh) * | 2018-08-23 | 2019-01-04 | 湖南汇升生物科技有限公司 | 一种在淀粉糖生产中控制糠醛超标的生产方法 |
CN109402191A (zh) * | 2018-01-15 | 2019-03-01 | 吉林中粮生化有限公司 | 大米f55果葡糖浆的制备方法 |
CN110551776A (zh) * | 2019-10-10 | 2019-12-10 | 中粮融氏生物科技有限公司 | 一种抗结晶果葡糖浆及其制备方法 |
CN111139319A (zh) * | 2020-02-11 | 2020-05-12 | 浙江华康药业股份有限公司 | 一种降低果葡糖浆中5-羟甲基糠醛含量的系统及方法 |
CN211848008U (zh) * | 2020-02-11 | 2020-11-03 | 浙江华康药业股份有限公司 | 一种降低果葡糖浆中5-羟甲基糠醛含量的系统 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1239776A (en) * | 1968-10-02 | 1971-07-21 | Corn Products Co | Improved process for preparing sweet syrup |
JPS5241340B2 (zh) * | 1973-05-16 | 1977-10-18 | ||
JPS56148300A (en) * | 1980-04-21 | 1981-11-17 | Organo Kk | Purification of saccharide containing fructose in high concentration |
JPS5747499A (en) * | 1980-09-05 | 1982-03-18 | Mitsui Toatsu Chemicals | Purification of particulate saccharified solution |
JPH0693840B2 (ja) * | 1985-10-04 | 1994-11-24 | 昭和産業株式会社 | 糖液の精製方法 |
JP4210396B2 (ja) * | 1999-08-27 | 2009-01-14 | オルガノ株式会社 | デンプン糖液脱塩処理方法及び脱塩処理システム |
FR2912036B1 (fr) * | 2007-02-01 | 2009-10-02 | Nutritis | Sirops de sucres de fruits a haute teneur en fructose,et procede de preparation. |
JP5989459B2 (ja) * | 2012-08-28 | 2016-09-07 | オルガノ株式会社 | 糖液精製システム及び糖液精製方法 |
CN102876758A (zh) * | 2012-09-28 | 2013-01-16 | 浙江华康药业股份有限公司 | 一种果葡糖浆的制备方法 |
CN103549237A (zh) * | 2013-11-11 | 2014-02-05 | 山东西王糖业有限公司 | 除去果葡糖浆中糠醛的方法 |
CN105316374A (zh) * | 2014-07-11 | 2016-02-10 | 武汉中粮食品科技有限公司 | 一种制糖的方法 |
CN104651541A (zh) * | 2015-01-20 | 2015-05-27 | 西王药业有限公司 | 结晶果糖生产过程中降低5-羟甲基糠醛的工艺方法 |
CN205512099U (zh) * | 2016-01-25 | 2016-08-31 | 鲁洲生物科技(四川)有限公司 | 一种制备f55果糖的系统 |
CN107058428B (zh) * | 2016-12-22 | 2020-10-09 | 河南飞天农业开发股份有限公司 | 一种果糖、麦芽糖同线生产工艺 |
CN107012262B (zh) * | 2017-03-21 | 2020-11-06 | 广州双桥股份有限公司 | 一种液体糖的生产方法 |
CN107495084B (zh) * | 2017-09-08 | 2020-08-18 | 宁波大学 | 一种去除f55果葡糖浆中异戊醛的方法 |
-
2020
- 2020-02-11 CN CN202010087317.9A patent/CN111139319B/zh active Active
-
2021
- 2021-02-07 WO PCT/CN2021/075695 patent/WO2021160053A1/zh active Application Filing
- 2021-02-07 US US17/775,002 patent/US20220389526A1/en active Pending
- 2021-02-07 JP JP2022524000A patent/JP7367210B2/ja active Active
- 2021-02-07 EP EP21753256.3A patent/EP4023773B1/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102326728A (zh) | 2011-06-30 | 2012-01-25 | 山东香驰健源生物科技有限公司 | 一种除去果葡糖浆中的5-羟甲基糠醛的方法 |
CN104498639A (zh) * | 2014-12-10 | 2015-04-08 | 广州双桥股份有限公司 | 一种高果糖浆的生产工艺 |
CN204710317U (zh) * | 2015-05-27 | 2015-10-21 | 宋昭语 | 一种高效反应釜 |
CN105255968A (zh) * | 2015-11-18 | 2016-01-20 | 昆山品青生物科技有限公司 | 一种f55果葡糖浆的制备方法 |
CN206478858U (zh) * | 2017-01-20 | 2017-09-08 | 北京易科联盟清洁技术发展有限公司 | 利用热泵回收巴氏杀菌装置余热用于加热生产用热水系统 |
CN109402191A (zh) * | 2018-01-15 | 2019-03-01 | 吉林中粮生化有限公司 | 大米f55果葡糖浆的制备方法 |
CN109136302A (zh) * | 2018-08-23 | 2019-01-04 | 湖南汇升生物科技有限公司 | 一种在淀粉糖生产中控制糠醛超标的生产方法 |
CN110551776A (zh) * | 2019-10-10 | 2019-12-10 | 中粮融氏生物科技有限公司 | 一种抗结晶果葡糖浆及其制备方法 |
CN111139319A (zh) * | 2020-02-11 | 2020-05-12 | 浙江华康药业股份有限公司 | 一种降低果葡糖浆中5-羟甲基糠醛含量的系统及方法 |
CN211848008U (zh) * | 2020-02-11 | 2020-11-03 | 浙江华康药业股份有限公司 | 一种降低果葡糖浆中5-羟甲基糠醛含量的系统 |
Non-Patent Citations (3)
Title |
---|
ANONYMOUS (FINE WATER, LONG FLOW): "Energy-saving evaluation report for the comprehensive project of 200,000 tons of feed and 200,000 tons of fructose syrup per year", DOCIN.COM, 16 September 2013 (2013-09-16), pages 1 - 99, XP009529763 * |
CHU, CHUANG: "The Research on Controlling the Production of Acetaldehyde and5-hydroxymethyl Furfural in the Industrial High Fructose Syrup Production Process", SCIENCE-ENGINEERING (A), CHINA MASTER’S THESES FULL-TEXT DATABASE (ELECTRONIC JOURNALS), vol. S2, 15 November 2013 (2013-11-15), XP055836208, ISSN: ISSN 1674 * |
See also references of EP4023773A4 |
Also Published As
Publication number | Publication date |
---|---|
EP4023773C0 (en) | 2024-02-14 |
EP4023773A1 (en) | 2022-07-06 |
US20220389526A1 (en) | 2022-12-08 |
JP7367210B2 (ja) | 2023-10-23 |
CN111139319A (zh) | 2020-05-12 |
EP4023773A4 (en) | 2022-12-28 |
JP2022553391A (ja) | 2022-12-22 |
EP4023773B1 (en) | 2024-02-14 |
CN111139319B (zh) | 2024-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021160053A1 (zh) | 一种降低果葡糖浆中 5- 羟甲基糠醛含量的系统及方法 | |
CN101565762B (zh) | 一种淀粉糖生产方法 | |
CN104630312A (zh) | 一种用葡萄糖母液生产果葡糖浆的方法 | |
CN102912043B (zh) | 一种纯化果糖生产方法 | |
CN111269107A (zh) | 一种l-乳酸提纯精制方法 | |
CN104673942A (zh) | 一种蔗糖生产结晶果糖的方法 | |
CN107058428B (zh) | 一种果糖、麦芽糖同线生产工艺 | |
CN113004320A (zh) | 一种肌醇生产时可降低解吸剂用量的方法 | |
CN211848008U (zh) | 一种降低果葡糖浆中5-羟甲基糠醛含量的系统 | |
CN114605257A (zh) | 一种l-乳酸的提纯方法 | |
CN116462168B (zh) | 一种植物源磷酸二氢钾的生产工艺 | |
CN116606192A (zh) | 一种利用玉米浆低成本生产肌醇和副产物的方法 | |
CN106928288A (zh) | 一种硫酸双氢链霉素的制备方法 | |
CN101381354A (zh) | 一种粗品维生素c钠盐转化成粗维生素c的生产工艺 | |
JP2024507514A (ja) | キシリトール発酵液の精製システム及びその方法 | |
CN108034773B (zh) | 一种利用模拟移动床连续离交生产结晶糖的方法 | |
CN112522346A (zh) | 一种高纯度低聚麦芽糖的制备方法 | |
CN114835600A (zh) | 一种l-谷氨酰胺的提取方法 | |
CN112552164B (zh) | 一种从不合格柠檬酸钠母液中提取苹果酸的工艺方法 | |
CN114105849B (zh) | 一种l-羟基脯氨酸的提取方法 | |
CN115088829B (zh) | 提高味精产品色度的生产工艺 | |
CN113234773B (zh) | 一种麦芽糖浆的制备方法 | |
CN118290231A (zh) | 一种防止山梨醇生产过程中糖液发黄的方法 | |
CN117844991A (zh) | 米制果葡糖浆离子交换洗脱水回收工艺 | |
CN106632523A (zh) | 一种d‑阿拉伯糖的纯化方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21753256 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 21753256.3 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2021753256 Country of ref document: EP Effective date: 20220331 |
|
ENP | Entry into the national phase |
Ref document number: 2022524000 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |