WO2021160053A1 - 一种降低果葡糖浆中 5- 羟甲基糠醛含量的系统及方法 - Google Patents

一种降低果葡糖浆中 5- 羟甲基糠醛含量的系统及方法 Download PDF

Info

Publication number
WO2021160053A1
WO2021160053A1 PCT/CN2021/075695 CN2021075695W WO2021160053A1 WO 2021160053 A1 WO2021160053 A1 WO 2021160053A1 CN 2021075695 W CN2021075695 W CN 2021075695W WO 2021160053 A1 WO2021160053 A1 WO 2021160053A1
Authority
WO
WIPO (PCT)
Prior art keywords
fructose syrup
fructose
heat exchanger
content
syrup
Prior art date
Application number
PCT/CN2021/075695
Other languages
English (en)
French (fr)
Inventor
陈升荣
诸葛珺
程雨晴
韩新峰
罗家星
Original Assignee
浙江华康药业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江华康药业股份有限公司 filed Critical 浙江华康药业股份有限公司
Priority to US17/775,002 priority Critical patent/US20220389526A1/en
Priority to EP21753256.3A priority patent/EP4023773B1/en
Priority to JP2022524000A priority patent/JP7367210B2/ja
Publication of WO2021160053A1 publication Critical patent/WO2021160053A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/06Glucose; Glucose-containing syrups obtained by saccharification of starch or raw materials containing starch
    • C13K1/08Purifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/026Column or bed processes using columns or beds of different ion exchange materials in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/026Column or bed processes using columns or beds of different ion exchange materials in series
    • B01J47/028Column or bed processes using columns or beds of different ion exchange materials in series with alternately arranged cationic and anionic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/04Mixed-bed processes

Definitions

  • the invention belongs to the technical field of fructose-glucose syrup preparation, and particularly relates to a system and method for reducing 5-hydroxymethyl furfural content in fruct-glucose syrup.
  • Fructose syrup is an important sweetener produced mainly from corn starch, mainly composed of fructose and glucose.
  • the current production process is that starch is converted into glucose through liquefaction and saccharification. Part of glucose is isomerized into fructose into F42 fructose syrup. After decolorization, separation and concentration, part of F42 fructose syrup is separated by chromatography to obtain F90 fructose syrup, F42 Fructose syrup and F90 fructose syrup are blended into F55 fructose syrup.
  • F55 fructose syrup is decolorized, mixed and concentrated to obtain F55 fructose syrup with a mass concentration of 77%.
  • HMF 5-hydroxymethyl furfural
  • the main method of reducing HMF in fructose syrup is to remove semi-finished products and finally concentrate them into finished products.
  • the semi-finished product of fructose syrup is pre-treated (controlling the color below 30RBU) and then The content of HMF absorbed by anion exchange resin is less than 5mg/kg, and then the conductivity is controlled by anion and cation exchange to 5 ⁇ s/cm and the pH value is between 3 ⁇ 8.
  • the chromaticity is controlled by decolorization to be less than 5RBU and the light transmittance is greater than 99%, and finally concentrated.
  • this method reprocesses the prepared fructose syrup, which increases the number of processes and increases the cost.
  • the technical problem to be solved by the present invention is to provide a system and method for reducing the content of 5-hydroxymethyl furfural in fructose syrup.
  • the content of 5-hydroxymethyl furfural (HMF) The content of Fructose is an index.
  • the present invention is achieved in this way, and provides a system for reducing 5-hydroxymethyl furfural content in fructose syrup, which includes the ionization of F42 fructose syrup obtained after isomerization and first decolorization to remove cations and anions in sequence.
  • fructose syrup glucose and fructose, especially fructose, are easily converted into HMF under low pH and high temperature conditions.
  • the pH of the material is 2 ⁇ 3, which is acidic, and the temperature is 55 ⁇ 58°C.
  • fructose will be converted into more HMF.
  • HMF will be converted into more HMF at high temperature. Under the conditions, it will become a colored substance, which will affect the adsorption of HMF etc. by the mixed bed resin.
  • the present invention analyzes each production process and determines that the separation and mixed bed processes have a significant influence on it.
  • the double-group operation mode of yang-column-yang-column-yin-column shall be changed to the single-group operation mode of yang-in-column, so that the fructose slurry is liquid.
  • the running time of the male column is doubled, which can effectively reduce the production of HMF.
  • the feed temperature of the mixed bed column is lowered to prevent the HMF in the fructose syrup from turning into colored substances due to high temperature, so as to improve the adsorption of HMF by the mixed bed resin and further reduce the HMF content in the fructose syrup.
  • the present invention is achieved in this way and provides a method for reducing the content of 5-hydroxymethyl furfural in fructose syrup, which includes the following steps:
  • Step 1 The starch is liquefied, saccharified, and refined to obtain glucose syrup with a glucose content of 95.5-9.5%;
  • Step 2 Mix the glucose syrup in Step 1 with the raffinate in Step 6, and concentrate to obtain a glucose syrup solution with a refractive index of 42-45%;
  • Step 3 The glucose syrup solution in step 2 is adjusted to a temperature of 56-58°C and a pH of 7.7-7.9 and then enters the isomerization column to obtain F42 fructose syrup;
  • Step 4 After the F42 fructose syrup in step 3 is decolorized, it enters the cation column and the cation column in turn to remove anions and cations to obtain refined F42 fructose syrup;
  • Step 5 The F42 fructose syrup refined in step 4 is concentrated to obtain a finished product of F42 fructose syrup;
  • Step 6 About 42-50% of the finished F42 fructose syrup in step 5 enters chromatographic separation to obtain an F90 fructose syrup extract with 90% fructose content and a raffinate with 80-85% glucose content, and the raffinate is returned Go to step 2 to reuse;
  • Step 7 Blend the F90 fructose syrup extract in step 6 with part of the F42 fructose syrup product in step 5 to obtain F55 fructose syrup;
  • Step 8 After the F55 fructose syrup in step 7 is decolorized, it enters the mixed bed column; in order to increase the feed temperature of the evaporation tank in step 9, the F55 fructose syrup is used to exchange heat with the mixed bed column before entering the mixed bed column.
  • the second-stage heat exchange method of heat exchange with cooling water is to install a regulating valve on the cooling water inlet pipe of the second-stage heat exchanger, and set a thermometer on the discharge pipe connecting the second-stage heat exchanger and the mixed bed column to adjust The valve is linked with the outlet thermometer to obtain refined F55 fructose syrup;
  • Step 9 The F55 fructose syrup refined in step 8 is evaporated and concentrated to obtain a finished product of F55 fructose syrup.
  • the system and method for reducing 5-hydroxymethyl furfural content in fructose syrup according to the present invention have the following characteristics:
  • the operating column pressure of the separation column is reduced by 0.2 MPa, which reduces the resin damage rate.
  • the feed temperature of the mixed bed column is reduced to ⁇ 38 degrees, the HMF is effectively controlled, and the exchange volume is increased by 15-25%.
  • Figure 1 is a schematic diagram of the structural principle of the system for reducing the content of 5-hydroxymethyl furfural in fructose syrup according to the present invention.
  • a preferred embodiment of the system for reducing 5-hydroxymethyl furfural content in fructose syrup according to the present invention includes performing cations and cations on F42 fructose syrup obtained after isomerization and first decolorization.
  • a heat exchanger 3 a mixed bed column 4 for purifying the heat exchanged F55 fructose syrup, and an evaporation tank 5 for concentrating the F55 fructose syrup after the mixed bed treatment.
  • the bottom of the evaporation tank 5 is provided with an F55 fructose syrup product outlet.
  • the heat exchanger 3 includes a first heat exchanger 6 and a second heat exchanger 7 connected in series.
  • the first heat exchanger 6 and the second heat exchanger 7 respectively include a first inlet and a second inlet, and a first outlet and a second outlet.
  • F55 fructose syrup enters the first heat exchanger 6 from the first inlet 61 of the first heat exchanger 6, and then exits from the first outlet 62 of the second heat exchanger 7.
  • An inlet 71 enters the second heat exchanger 7 and then exits from its first outlet 72 and then enters the liquid inlet 41 of the mixed bed column 4 through the liquid inlet pipe 8.
  • the F55 fructose syrup purified by the mixed bed column 4 enters the second inlet 63 of the first heat exchanger 6 from the outlet 42 of the mixed bed column 4, and then enters the second outlet 64 of the first heat exchanger 6
  • the second inlet 73 of the second heat exchanger 7 is in communication with the cooling water through the water inlet pipe 9, and the cooling water after heat exchange comes out of the second outlet 74 of the second heat exchanger 7.
  • a regulating valve 10 is provided on the water inlet pipe 9, and a thermometer 11 is provided on the liquid inlet pipe 8.
  • the regulating valve 10 and the thermometer 11 are interlocked with each other, and the regulating valve 10 automatically adjusts the opening degree of the valve according to the temperature of the thermometer 11.
  • the invention also discloses a method for reducing the content of 5-hydroxymethyl furfural in fructose syrup, which comprises the following steps:
  • Step 1 The starch is liquefied, saccharified, and refined to obtain glucose syrup with a glucose content of 95.5-96.5 percent.
  • Step 2 Mix the glucose syrup in Step 1 with the raffinate in Step 6, and concentrate to obtain a glucose syrup solution with a refractive index of 42-45%.
  • Step 3 The glucose syrup solution in step 2 is adjusted to a temperature of 56-58°C and a pH of 7.7-7.9 and then enters the isomerization column to obtain F42 fructose syrup with a fructose content of 42-45%.
  • Step 4 After decolorizing the F42 fructose syrup in step 3, as shown by the arrow in the figure, it enters the separated cationic column and the separated cationic column to remove the anions and cations to obtain the refined F42 fructose syrup, and the refined F42 fruit
  • the discharge pH of the glucose syrup is 3.5 ⁇ 8.0, and the conductivity is less than or equal to 30us/cm.
  • Step 5 Concentrate the refined F42 fructose syrup in step 4 to obtain a finished product of F42 fructose syrup with a refractive index of 58-60%.
  • Step 6 About 42-50% of the finished F42 fructose syrup in step 5 enters chromatographic separation to obtain an F90 fructose syrup extract with 90% fructose content and a raffinate with 80-85% glucose content, and the raffinate is returned Go to step 2 for reuse.
  • Step 7 Blend the F90 fructose syrup extract in step 6 with part of the finished F42 fructose syrup in step 5 to obtain F55 fructose syrup with a fructose content of 55 to 57%.
  • Step 8 After decolorizing the F55 fructose syrup in step 7, enter the mixed bed column.
  • the F55 fructose syrup first exchanges heat with the mixed bed column before it enters the mixed bed column and then exchanges heat with the cooling water in the second stage heat exchanger.
  • the cooling water inlet pipeline is equipped with a regulating valve, and a thermometer is installed on the discharge pipeline connecting the second-stage heat exchanger and the mixed bed column.
  • the regulating valve is interlocked with the outlet thermometer to control the discharge temperature of the second-stage heat exchanger 35 ⁇ 38 °C, discharge pH 4.0 ⁇ 7.0, conductivity ⁇ 20 ⁇ s/cm, IU ⁇ 10, and refined F55 fructose syrup is obtained.
  • Step 9 The F55 fructose syrup refined in Step 8 is evaporated and concentrated to obtain a finished F55 fructose syrup with a solid content of more than 77%.
  • the embodiment of the first method for reducing 5-hydroxymethylfurfural content in fructose syrup of the present invention includes the following steps:
  • Glucose syrup is isomerized to obtain F42 fructose syrup with a temperature of 57-58°C and a fructose content of 44-44.5%, in which the HMF content is 14 ppm.
  • step (12) After the F42 fructose syrup in step (11) is decolorized, it enters the yang column and the yang column in turn to obtain refined F42 fructose syrup. Among them, the F42 fructose syrup runs on the yang column. The time is about 10 minutes, the pH of the discharged material after separation is 3.5, the conductivity is 25 ⁇ s/cm, and the HMF content is 25 ppm.
  • the refined F42 fructose syrup in step (12) is concentrated, chromatographically separated, blended, and then decolorized by activated carbon, and then enters the mixed bed column to obtain refined F55 fructose syrup. Before entering the mixed bed column, it exchanges heat with the discharge of the mixed bed column, and then exchanges heat with the cooling water.
  • the temperature of the fructose syrup entering the mixed bed column is 35 ⁇ 36°C
  • the discharge pH of the mixed bed column is 4.0 ⁇ 4.5
  • the conductivity is ⁇ 2 ⁇ s/ cm
  • IU 2.0, of which the HMF content is 14ppm.
  • the embodiment of the second method for reducing the content of 5-hydroxymethylfurfural in fructose syrup of the present invention includes the following steps:
  • Glucose syrup is isomerized to obtain F42 fructose syrup with a temperature of 56-57°C and a fructose content of 42-42.5%, of which the HMF content is 13 ppm.
  • step (22) After the F42 fructose syrup in step (21) is decolorized, it enters the separated positive column and the separated negative column in turn to obtain refined F42 fructose syrup. Among them, the F42 fructose syrup runs in the separated positive column. The time is about 10 minutes, the pH of the discharged material after separation is 8.0, the conductivity is 30 ⁇ s/cm, and the HMF content is 20 ppm.
  • the refined F42 fructose syrup of step (22) is concentrated, chromatographically separated, blended, and then decolorized by activated carbon, and then enters the mixed bed column to obtain refined F55 fructose syrup. Before entering the mixed bed column, it exchanges heat with the output of the mixed bed column, and then exchanges heat with the cooling water.
  • the temperature of the fructose syrup entering the mixed bed column is 36 ⁇ 37°C
  • the output pH of the mixed bed column is 6.5 ⁇ 7.0
  • the conductivity is ⁇ 12 ⁇ s/ cm
  • the third embodiment of the method for reducing the content of 5-hydroxymethyl furfural in fructose syrup of the present invention includes the following steps:
  • Glucose syrup is isomerized to obtain F42 fructose syrup with a temperature of 57-58°C and a fructose content of 43-43.5%, in which the HMF content is 14 ppm.
  • step (32) After the F42 fructose syrup in step (31) is decolorized, it enters the yang column and the yang column in turn to obtain refined F42 fructose syrup. Among them, the F42 fructose syrup runs on the yang column. The time is about 10 minutes, the pH of the discharged material after separation is 6.5, the conductivity is 20 ⁇ s/cm, and the HMF content is 24 ppm.
  • the refined F42 fructose syrup of step (32) is concentrated, chromatographically separated, blended, and then decolorized by activated carbon, and then enters the mixed bed column to obtain refined F55 fructose syrup. Before entering the mixed bed column, it exchanges heat with the discharge of the mixed bed column, and then exchanges heat with the cooling water.
  • the temperature of the fructose syrup entering the mixed bed column is 37 ⁇ 38°C
  • the discharge pH of the mixed bed column is 5.5 ⁇ 6.0
  • the conductivity is ⁇ 15 ⁇ s/ cm
  • the first comparative example of the present invention includes the following steps:
  • Glucose syrup is isomerized to obtain F42 fructose syrup with a temperature of 57-58°C and a fructose content of 44-44.5%, in which the HMF content is 14 ppm.
  • step (42) After the F42 fructose syrup in step (41) is decolorized, it enters the divorced positive column, the dilated negative column, the dilated positive column and the dilated negative column in sequence to obtain refined F42 fructose syrup, in which F42
  • the running time of the fructose syrup in the separated positive column is 20 minutes
  • the discharge pH after separation is 3.6
  • the conductivity is 25 ⁇ s/cm
  • the HMF content is 49 ppm.
  • the refined F42 fructose syrup in step (42) is concentrated, chromatographically separated, blended, and then decolorized by activated carbon, and then enters the mixed bed column to obtain refined F55 fructose syrup.
  • the temperature entering the mixed bed column is 58°C
  • the output pH of the mixed bed column is 4.2 ⁇ 4.5
  • the conductivity is ⁇ 2 ⁇ s/cm
  • IU 2.5
  • the HMF content is 35ppm.
  • the method of the present invention can effectively reduce the 5-hydroxymethyl furfural content in the fructose syrup during the production process of preparing fructose syrup, and the effect is obvious.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Saccharide Compounds (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明涉及一种降低果葡糖浆中5-羟甲基糠醛含量的系统,包括对经过异构和第一次脱色后得到的F42果葡糖浆依次进行阳离子和阴离子去除的离交阳柱和离交阴柱,以及对离交后的F42果葡糖浆依次经过浓缩、色谱分离、勾兑和第二次脱色后得到的F55果葡糖浆进行换热降温的换热器,以及对换热后的F55果葡糖浆进行净化处理的混床柱和对混床处理后的F55果葡糖浆进行浓缩处理的蒸发罐。本发明还公开一种降低果葡糖浆中5-羟甲基糠醛含量的方法。本发明通过对离交、混床运行方式及参数进行优化,在保证果葡糖浆产品质量情况下,降低果葡糖浆产品中HMF的含量,提高果葡糖浆产品品质。

Description

一种降低果葡糖浆中5-羟甲基糠醛含量的系统及方法 技术领域
本发明属于果葡糖浆制备技术领域,特别涉及一种降低果葡糖浆中5-羟甲基糠醛含量的系统及方法。
背景技术
果葡糖浆是一种主要以玉米淀粉为原料生产的重要甜味剂,主要由果糖和葡萄糖组成。目前的生产工艺是淀粉经过液化、糖化转化成葡萄糖,葡萄糖部分异构成果糖变成F42果葡糖浆,F42果葡糖浆经脱色、离交、浓缩后部分经色谱分离得到F90果葡糖浆,F42果葡糖浆与F90果葡糖浆勾兑成F55果葡糖浆,F55果葡糖浆经脱色、混床、浓缩,得到质量浓度77%的F55果葡糖浆成品。
在果葡糖浆生产过程中,葡萄糖和果糖脱水会生成5-羟甲基糠醛(HMF),该物质对人体横纹肌和内脏有害,且该化合物稳定性差,果葡糖浆储存过程中,会发生聚合反应,尤其是高温条件下,更易发生反应,使产品变黄,影响产品的保质期,因此,在成品中HMF含量越低越好。虽然GB/T 20882-2007中未对HMF含量提出要求,但个别采购果葡糖浆的企业明确要求产品中HMF含量≤75ppm。
目前,降低果葡糖浆中HMF的方法主要是采用半成品去除的办法,最终再浓缩成成品。如在公开号为CN102326728A的专利公开了一种除去果葡糖浆中的5-羟甲基糠醛的方法中提到,果葡糖浆半成品先经料液前处理(控制色度30RBU以下),再经阴离子交换树脂吸附HMF含量小于5mg/kg,再经阴阳离子交换控制电导5μs/cm且pH值在3~8之间,最后经脱色控制色度小于5RBU且透光率大于99%,最后再浓缩到质量浓度为75~78%的果葡糖浆成品。但该方法是对制备的果葡糖浆进行再处理,增加工序,增加了成本。
技术问题
本发明所要解决的技术问题在于,提供一种降低果葡糖浆中5-羟甲基糠醛含量的系统及方法,在制备果葡糖浆的生产过程中,以5-羟甲基糠醛含量(HMF)的含量为指标,通过对离交、混床运行方式及参数进行优化,在保证果葡糖浆产品质量情况下,降低果葡糖浆产品中HMF的含量,提高果葡糖浆产品品质。
技术解决方案
本发明是这样实现的,提供一种降低果葡糖浆中5-羟甲基糠醛含量的系统,包括对经过异构和第一次脱色后得到的F42果葡糖浆依次进行阳离子和阴离子去除的离交阳柱和离交阴柱,以及对离交后的F42果葡糖浆依次经过浓缩、色谱分离、勾兑和第二次脱色后得到的F55果葡糖浆进行换热降温的换热器,以及对换热后的F55果葡糖浆进行净化处理的混床柱和对混床处理后的F55果葡糖浆进行浓缩处理的蒸发罐。
在制备果葡糖浆的生产过程中,葡萄糖和果糖,特别是果糖在低pH,高温条件下易转化为HMF。在离交阳柱中果葡糖浆中的阳离子与H +离子交换后,物料pH2~3,呈酸性,温度55~58℃,该条件下果糖会转化成较多的HMF,另外,HMF在高温条件下会变成有色物质,影响混床树脂对HMF等有吸附作用。本发明为了降低果葡糖浆中HMF的含量,分析各生产工序,确定离交、混床工序对其有显著影响。在保证离交出液指标合格情况下,将离交由阳柱-阴柱-阳柱-阴柱的双组运行方式,改为阳柱-阴柱单组运行方式,使得果葡糖浆料液在阳柱的运行时间减少一倍,可以有效的降低HMF的产生。再通过增加换热工序,将混床柱的进料温度降低,避免果葡糖浆中HMF因高温变成有色物质,以提高混床树脂对HMF的吸附,进一步降低果葡糖浆中HMF的含量。
本发明是这样实现的,提供一种降低果葡糖浆中5-羟甲基糠醛含量的方法,包括如下步骤:
步骤1、淀粉经液化、糖化、精制后得到葡萄糖含量95.5~96.5%的葡萄糖糖浆;
步骤2、将步骤1中的葡萄糖浆与步骤6中的提余液混合,浓缩得到折光42~45%的葡萄糖浆溶液;
步骤3、将步骤2中的葡萄糖浆溶液经过调整温度56~58℃和pH7.7~7.9后进入异构柱,得到F42果葡糖浆;
步骤4、将步骤3中的F42果葡糖浆经脱色后,依次进入离交阳柱、离交阴柱去除阴阳离子,得到精制的F42果葡糖浆;
步骤5、将步骤4中精制的F42果葡糖浆经浓缩得到F42果葡糖浆成品;
步骤6、将步骤5中的F42果葡糖浆成品约42~50%进入色谱分离,得到果糖含量90%的F90果葡糖浆提取液和葡萄糖含量80~85%的提余液,提余液返回到步骤2中再利用;
步骤7、将步骤6中的F90果葡糖浆提取液与步骤5中的部分F42果葡糖浆成品勾兑,得到F55果葡糖浆;
步骤8、将步骤7中的F55果葡糖浆经脱色后,进入混床柱;为了提高步骤9中蒸发罐的进料温度,采用F55果葡糖浆进混床柱前先与混床柱出料换热后再与冷却水换热的二级换热方式,在第二级换热器的冷却水进水管路上设置调节阀,在第二级换热器与混床柱连通的出料管路上设置温度计,调节阀与出口温度计连锁,得到精制的F55果葡糖浆;
步骤9、将步骤8中精制的F55果葡糖浆经过蒸发浓缩后得到F55果葡糖浆成品。
有益效果
与现有技术相比,本发明的降低果葡糖浆中5-羟甲基糠醛含量的系统及方法具有以下特点:
1.   离交柱运行柱压降低0.2MPa,降低树脂破损率。
2.   混床柱进料温度降低至≤38度,HMF得到有效控制,交换量提高15~25%。
3.   酸碱单耗、纯化水单耗、污水处理成本等整体降低2~6%。
4.   不增加设备,不影响生产效率。
5.    果葡糖浆中5-羟甲基糠醛的含量下降35~45%,提高了果葡糖浆产品品质。
附图说明
图1为本发明的降低果葡糖浆中5-羟甲基糠醛含量的系统结构原理示意图。
本发明的最佳实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参照图1所示,本发明降低果葡糖浆中5-羟甲基糠醛含量的系统的较佳实施例,包括对经过异构和第一次脱色后得到的F42果葡糖浆依次进行阳离子和阴离子去除的离交阳柱1和离交阴柱2,以及对离交后的F42果葡糖浆依次经过浓缩、色谱分离、勾兑和第二次脱色后得到的F55果葡糖浆进行换热降温的换热器3,以及对换热后的F55果葡糖浆进行净化处理的混床柱4和对混床处理后的F55果葡糖浆进行浓缩处理的蒸发罐5。蒸发罐5底部设有F55果葡糖浆成品出口。
所述换热器3包括相互串联的第一换热器6和第二换热器7。所述第一换热器6和第二换热器7分别包括第一进口和第二进口,以及第一出口和第二出口。
按照图中箭头所示,F55果葡糖浆从第一换热器6的第一进口61进入第一换热器6后从其第一出口62出来,然后再从第二换热器7的第一进口71进入第二换热器7,再从其第一出口72出来后通过进液管路8进入混床柱4的进液口41。
经混床柱4净化后的F55果葡糖浆从混床柱4的出口42进入到第一换热器6的第二进口63,然后从第一换热器6的第二出口64出来后再进入到蒸发罐5的进液口51。第二换热器7的第二进口73通过进水管路9与冷却水连通,换热后的冷却水从第二换热器7的第二出口74出来。
在所述进水管路9上设置了调节阀10,在所述进液管路8上设置了温度计11。所述调节阀10与温度计11相互连锁,所述调节阀10根据温度计11的温度高低自动地调节阀门的开度大小。
本发明还公开一种降低果葡糖浆中5-羟甲基糠醛含量的方法,包括如下步骤:
步骤1、淀粉经液化、糖化、精制后得到葡萄糖含量95.5~96.5%的葡萄糖糖浆。
步骤2、将步骤1中的葡萄糖浆与步骤6中的提余液混合,浓缩得到折光42~45%的葡萄糖浆溶液。
步骤3、将步骤2中的葡萄糖浆溶液经过调整温度56~58℃和pH7.7~7.9后进入异构柱,得到果糖含量42~45%的F42果葡糖浆。
步骤4、将步骤3中的F42果葡糖浆经脱色后,按照图中箭头所示,依次进入离交阳柱、离交阴柱去除阴阳离子,得到精制的F42果葡糖浆,精制的F42果葡糖浆的出料pH3.5~8.0,电导率≤30us/cm。
步骤5、将步骤4中精制的F42果葡糖浆经浓缩得到折光58~60%的F42果葡糖浆成品。
步骤6、将步骤5中的F42果葡糖浆成品约42~50%进入色谱分离,得到果糖含量90%的F90果葡糖浆提取液和葡萄糖含量80~85%的提余液,提余液返回到步骤2中再利用。
步骤7、将步骤6中的F90果葡糖浆提取液与步骤5中的部分F42果葡糖浆成品勾兑,得到果糖含量55~57%的F55果葡糖浆。
步骤8、将步骤7中的F55果葡糖浆经脱色后,进入混床柱。为了提高步骤9中蒸发罐的进料温度,采用F55果葡糖浆进混床柱前先与混床柱出料换热后再与冷却水换热的二级换热方式,在第二级换热器的冷却水进水管路上设置调节阀,在第二级换热器与混床柱连通的出料管路上设置温度计,调节阀与出口温度计连锁,控制第二级换热器的出料温度35~38℃,出料pH4.0~7.0,电导率≤20µs/cm,IU≤10,得到精制的F55果葡糖浆。
步骤9、将步骤8中精制的F55果葡糖浆经过蒸发浓缩后得到固形物77%以上的F55果葡糖浆成品。
本发明的实施方式
下面结合具体实施例来进一步说明本发明的降低果葡糖浆中5-羟甲基糠醛含量的方法。
实施例1
本发明的第一种降低果葡糖浆中5-羟甲基糠醛含量的方法的实施例,包括如下步骤:
(11)葡萄糖浆经异构后得到温度57~58℃,果糖含量44~44.5%的F42果葡糖浆,其中,HMF含量14ppm。
(12)将步骤(11)的F42果葡糖浆经过脱色后,依次进入离交阳柱、离交阴柱,得到精制的F42果葡糖浆,其中,F42果葡糖浆在离交阳柱的运行时间约10min,离交后的出料pH3.5,电导率25µs/cm,HMF含量25ppm。
(13)将步骤(12)的精制的F42果葡糖浆经浓缩,色谱分离、勾兑,再经过活性炭脱色后进入混床柱,得到精制的F55果葡糖浆。进入混床柱前先与混床柱的出料换热,再与冷却水换热,果葡糖浆进入混床柱的温度35~36℃,混床柱的出料pH4.0~4.5,电导率≤2µs/cm,IU=2.0,其中,HMF含量14ppm。
(14)将步骤(13)中精制的F55果葡糖浆经蒸发浓缩得到固形物77%以上的F55果葡糖浆成品,其中,HMF含量23ppm,IU=3.2,pH3.8。
实施例2
本发明的第二种降低果葡糖浆中5-羟甲基糠醛含量的方法的实施例,包括如下步骤:
(21)葡萄糖浆经异构后得到温度56~57℃,果糖含量42~42.5%的F42果葡糖浆,其中,HMF含量13ppm。
(22)将步骤(21)的F42果葡糖浆经过脱色后,依次进入离交阳柱、离交阴柱,得到精制的F42果葡糖浆,其中,F42果葡糖浆在离交阳柱的运行时间约10min,离交后的出料pH8.0,电导率30µs/cm,HMF含量20ppm。
(23)将步骤(22)的精制的F42果葡糖浆经浓缩,色谱分离、勾兑,再经过活性炭脱色后进入混床柱,得到精制的F55果葡糖浆。进入混床柱前先与混床柱的出料换热,再与冷却水换热,果葡糖浆进入混床柱的温度36~37℃,混床柱的出料pH6.5~7.0,电导率≤12µs/cm,IU=5.0,其中,HMF含量13ppm。
(24)将步骤(23)中精制的F55果葡糖浆经蒸发浓缩得到固形物77%以上的F55果葡糖浆成品,其中,HMF含量22ppm,IU=5.2,pH6.3。
实施例3
本发明的第三种降低果葡糖浆中5-羟甲基糠醛含量的方法的实施例,包括如下步骤:
(31)葡萄糖浆经异构后得到温度57~58℃,果糖含量43~43.5%的F42果葡糖浆,其中,HMF含量14ppm。
(32)将步骤(31)的F42果葡糖浆经过脱色后,依次进入离交阳柱、离交阴柱,得到精制的F42果葡糖浆,其中,F42果葡糖浆在离交阳柱的运行时间约10min,离交后的出料pH6.5,电导率20µs/cm,HMF含量24ppm。
(33)将步骤(32)的精制的F42果葡糖浆经浓缩,色谱分离、勾兑,再经过活性炭脱色后进入混床柱,得到精制的F55果葡糖浆。进入混床柱前先与混床柱的出料换热,再与冷却水换热,果葡糖浆进入混床柱的温度37~38℃,混床柱的出料pH5.5~6.0,电导率≤15µs/cm,IU=10.0,其中,HMF含量16ppm。
(34)将步骤(33)中精制的F55果葡糖浆经蒸发浓缩得到固形物77%以上的F55果葡糖浆成品,其中,HMF含量23ppm,IU=3.2,pH3.8。
对比例
本发明的第一种对比例,包括如下步骤:
(41)葡萄糖浆经异构后得到温度57~58℃,果糖含量44~44.5%的F42果葡糖浆,其中,HMF含量14ppm。
(42)将步骤(41)的F42果葡糖浆经过脱色后,依次进入离交阳柱、离交阴柱、离交阳柱和离交阴柱,得到精制的F42果葡糖浆,其中,F42果葡糖浆在离交阳柱的运行时间20min,离交后的出料pH3.6,电导率25µs/cm,HMF含量49ppm。
(43)将步骤(42)的精制的F42果葡糖浆经浓缩,色谱分离、勾兑,再经过活性炭脱色后进入混床柱,得到精制的F55果葡糖浆。进入混床柱的温度58℃,混床柱的出料pH4.2~4.5,电导率≤2µs/cm,IU=2.5,HMF含量35ppm。
(44)将步骤(43)中精制的F55果葡糖浆经浓缩得到固形物77%以上的F55果葡糖浆成品,HMF含量56ppm,成品IU=4.0,pH3.9。
从上述对比例可以看出,采用本发明方法在制备果葡糖浆的生产过程中,可以有效地降低果葡糖浆中5-羟甲基糠醛含量,效果明显。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
工业实用性
在此处键入工业实用性描述段落。
序列表自由内容
在此处键入序列表自由内容描述段落。

Claims (10)

  1. 一种降低果葡糖浆中5-羟甲基糠醛含量的系统,其特征在于,包括对经过异构和第一次脱色后得到的F42果葡糖浆依次进行阳离子和阴离子去除的离交阳柱和离交阴柱,以及对离交后的F42果葡糖浆依次经过浓缩、色谱分离、勾兑和第二次脱色后得到的F55果葡糖浆进行换热降温的换热器,以及对换热后的F55果葡糖浆进行净化处理的混床柱和对混床处理后的F55果葡糖浆进行浓缩处理的蒸发罐。
  2. 如权利要求1所述的降低果葡糖浆中5-羟甲基糠醛含量的系统,其特征在于,所述换热器包括相互串联的第一换热器和第二换热器,所述第一换热器和第二换热器分别包括第一进口和第二进口,以及第一出口和第二出口,F55果葡糖浆从第一换热器的第一进口进入第一换热器后从其第一出口出来,然后再从第二换热器的第一进口进入第二换热器,再从其第一出口出来后通过进液管路进入混床柱的进液口,经混床柱净化后的F55果葡糖浆从混床柱的出口进入到第一换热器的第二进口,然后从第一换热器的第二出口出来后再进入到蒸发罐的进液口,第二换热器的第二进口通过进水管路与冷却水连通,换热后的冷却水从第二换热器的第二出口出来。
  3. 如权利要求2所述的降低果葡糖浆中5-羟甲基糠醛含量的系统,其特征在于,在所述进水管路上设置了调节阀,在所述进液管路上设置了温度计,所述调节阀与温度计相互连锁。
  4. 一种降低果葡糖浆中5-羟甲基糠醛含量的方法,其特征在于,包括如下步骤:
    步骤1、淀粉经液化、糖化、精制后得到葡萄糖糖浆;
    步骤2、将步骤1中的葡萄糖浆与步骤6中的提余液混合,浓缩得到葡萄糖浆溶液;
    步骤3、将步骤2中的葡萄糖浆溶液进入异构柱,得到F42果葡糖浆;
    步骤4、将步骤3中的F42果葡糖浆经脱色后,依次进入离交阳柱、离交阴柱去除阴阳离子,得到精制的F42果葡糖浆;
    步骤5、将步骤4中精制的F42果葡糖浆经浓缩得到F42果葡糖浆成品;
    步骤6、将步骤5中的F42果葡糖浆成品约42~50%进入色谱分离,得到果糖F90果葡糖浆提取液和提余液,提余液返回到步骤2中再利用;
    步骤7、将步骤6中的F90果葡糖浆提取液与步骤5中的部分F42果葡糖浆成品勾兑,得到F55果葡糖浆;
    步骤8、将步骤7中的F55果葡糖浆经脱色后,进入混床柱;为了提高步骤9中蒸发罐的进料温度,采用F55果葡糖浆进混床柱前先与混床柱出料换热后再与冷却水换热的二级换热方式,在第二级换热器的冷却水进水管路上设置调节阀,在第二级换热器与混床柱连通的出料管路上设置温度计,调节阀与出口温度计连锁,得到精制的F55果葡糖浆;
    步骤9、将步骤8中精制的F55果葡糖浆经过蒸发浓缩后得到F55果葡糖浆成品。
  5. 如权利要求4所述的降低果葡糖浆中5-羟甲基糠醛含量的方法,其特征在于,在步骤4中,得到精制的F42果葡糖浆的果糖含量42~45%。
  6. 如权利要求4所述的降低果葡糖浆中5-羟甲基糠醛含量的方法,其特征在于,在步骤4中,得到精制的F42果葡糖浆的出料pH3.5~8.0,电导率≤30us/cm。
  7. 如权利要求4所述的降低果葡糖浆中5-羟甲基糠醛含量的方法,其特征在于,在步骤5中,得到F42果葡糖浆成品的折光58~60%。
  8. 如权利要求4所述的降低果葡糖浆中5-羟甲基糠醛含量的方法,其特征在于,在步骤7中,F55果葡糖浆的果糖含量55~57%。
  9. 如权利要求4所述的降低果葡糖浆中5-羟甲基糠醛含量的方法,其特征在于,在步骤8中,控制第二级换热器的出料温度35~38℃,出料pH4.0~7.0,电导率≤20µs/cm,IU≤10。
  10. 如权利要求4所述的降低果葡糖浆中5-羟甲基糠醛含量的方法,其特征在于,在步骤9中,F55果葡糖浆成品的固形物77%以上。
PCT/CN2021/075695 2020-02-11 2021-02-07 一种降低果葡糖浆中 5- 羟甲基糠醛含量的系统及方法 WO2021160053A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/775,002 US20220389526A1 (en) 2020-02-11 2021-02-07 System and method for reducing content of 5-hydroxymethylfurfural in high fructose corn syrup
EP21753256.3A EP4023773B1 (en) 2020-02-11 2021-02-07 System for reducing content of 5-hydroxymethylfurfural in high-fructose corn syrup
JP2022524000A JP7367210B2 (ja) 2020-02-11 2021-02-07 果糖ブドウ糖液糖における5-ヒドロキシメチルフルフラールの含有量を低減させるシステムであって及び方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010087317.9 2020-02-11
CN202010087317.9A CN111139319B (zh) 2020-02-11 2020-02-11 一种降低果葡糖浆中5-羟甲基糠醛含量的系统及方法

Publications (1)

Publication Number Publication Date
WO2021160053A1 true WO2021160053A1 (zh) 2021-08-19

Family

ID=70527237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075695 WO2021160053A1 (zh) 2020-02-11 2021-02-07 一种降低果葡糖浆中 5- 羟甲基糠醛含量的系统及方法

Country Status (5)

Country Link
US (1) US20220389526A1 (zh)
EP (1) EP4023773B1 (zh)
JP (1) JP7367210B2 (zh)
CN (1) CN111139319B (zh)
WO (1) WO2021160053A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111139319B (zh) * 2020-02-11 2024-10-18 浙江华康药业股份有限公司 一种降低果葡糖浆中5-羟甲基糠醛含量的系统及方法
CN112546674B (zh) * 2020-12-23 2024-09-13 浙江华康药业股份有限公司 抑制葡萄糖在阴离子交换柱中异构为果糖的系统及方法
CN113774099A (zh) * 2021-09-23 2021-12-10 黑龙江昊天玉米开发有限公司 一种低5-羟基-2-糠醛含量的果葡糖浆的制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102326728A (zh) 2011-06-30 2012-01-25 山东香驰健源生物科技有限公司 一种除去果葡糖浆中的5-羟甲基糠醛的方法
CN104498639A (zh) * 2014-12-10 2015-04-08 广州双桥股份有限公司 一种高果糖浆的生产工艺
CN204710317U (zh) * 2015-05-27 2015-10-21 宋昭语 一种高效反应釜
CN105255968A (zh) * 2015-11-18 2016-01-20 昆山品青生物科技有限公司 一种f55果葡糖浆的制备方法
CN206478858U (zh) * 2017-01-20 2017-09-08 北京易科联盟清洁技术发展有限公司 利用热泵回收巴氏杀菌装置余热用于加热生产用热水系统
CN109136302A (zh) * 2018-08-23 2019-01-04 湖南汇升生物科技有限公司 一种在淀粉糖生产中控制糠醛超标的生产方法
CN109402191A (zh) * 2018-01-15 2019-03-01 吉林中粮生化有限公司 大米f55果葡糖浆的制备方法
CN110551776A (zh) * 2019-10-10 2019-12-10 中粮融氏生物科技有限公司 一种抗结晶果葡糖浆及其制备方法
CN111139319A (zh) * 2020-02-11 2020-05-12 浙江华康药业股份有限公司 一种降低果葡糖浆中5-羟甲基糠醛含量的系统及方法
CN211848008U (zh) * 2020-02-11 2020-11-03 浙江华康药业股份有限公司 一种降低果葡糖浆中5-羟甲基糠醛含量的系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1239776A (en) * 1968-10-02 1971-07-21 Corn Products Co Improved process for preparing sweet syrup
JPS5241340B2 (zh) * 1973-05-16 1977-10-18
JPS56148300A (en) * 1980-04-21 1981-11-17 Organo Kk Purification of saccharide containing fructose in high concentration
JPS5747499A (en) * 1980-09-05 1982-03-18 Mitsui Toatsu Chemicals Purification of particulate saccharified solution
JPH0693840B2 (ja) * 1985-10-04 1994-11-24 昭和産業株式会社 糖液の精製方法
JP4210396B2 (ja) * 1999-08-27 2009-01-14 オルガノ株式会社 デンプン糖液脱塩処理方法及び脱塩処理システム
FR2912036B1 (fr) * 2007-02-01 2009-10-02 Nutritis Sirops de sucres de fruits a haute teneur en fructose,et procede de preparation.
JP5989459B2 (ja) * 2012-08-28 2016-09-07 オルガノ株式会社 糖液精製システム及び糖液精製方法
CN102876758A (zh) * 2012-09-28 2013-01-16 浙江华康药业股份有限公司 一种果葡糖浆的制备方法
CN103549237A (zh) * 2013-11-11 2014-02-05 山东西王糖业有限公司 除去果葡糖浆中糠醛的方法
CN105316374A (zh) * 2014-07-11 2016-02-10 武汉中粮食品科技有限公司 一种制糖的方法
CN104651541A (zh) * 2015-01-20 2015-05-27 西王药业有限公司 结晶果糖生产过程中降低5-羟甲基糠醛的工艺方法
CN205512099U (zh) * 2016-01-25 2016-08-31 鲁洲生物科技(四川)有限公司 一种制备f55果糖的系统
CN107058428B (zh) * 2016-12-22 2020-10-09 河南飞天农业开发股份有限公司 一种果糖、麦芽糖同线生产工艺
CN107012262B (zh) * 2017-03-21 2020-11-06 广州双桥股份有限公司 一种液体糖的生产方法
CN107495084B (zh) * 2017-09-08 2020-08-18 宁波大学 一种去除f55果葡糖浆中异戊醛的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102326728A (zh) 2011-06-30 2012-01-25 山东香驰健源生物科技有限公司 一种除去果葡糖浆中的5-羟甲基糠醛的方法
CN104498639A (zh) * 2014-12-10 2015-04-08 广州双桥股份有限公司 一种高果糖浆的生产工艺
CN204710317U (zh) * 2015-05-27 2015-10-21 宋昭语 一种高效反应釜
CN105255968A (zh) * 2015-11-18 2016-01-20 昆山品青生物科技有限公司 一种f55果葡糖浆的制备方法
CN206478858U (zh) * 2017-01-20 2017-09-08 北京易科联盟清洁技术发展有限公司 利用热泵回收巴氏杀菌装置余热用于加热生产用热水系统
CN109402191A (zh) * 2018-01-15 2019-03-01 吉林中粮生化有限公司 大米f55果葡糖浆的制备方法
CN109136302A (zh) * 2018-08-23 2019-01-04 湖南汇升生物科技有限公司 一种在淀粉糖生产中控制糠醛超标的生产方法
CN110551776A (zh) * 2019-10-10 2019-12-10 中粮融氏生物科技有限公司 一种抗结晶果葡糖浆及其制备方法
CN111139319A (zh) * 2020-02-11 2020-05-12 浙江华康药业股份有限公司 一种降低果葡糖浆中5-羟甲基糠醛含量的系统及方法
CN211848008U (zh) * 2020-02-11 2020-11-03 浙江华康药业股份有限公司 一种降低果葡糖浆中5-羟甲基糠醛含量的系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS (FINE WATER, LONG FLOW): "Energy-saving evaluation report for the comprehensive project of 200,000 tons of feed and 200,000 tons of fructose syrup per year", DOCIN.COM, 16 September 2013 (2013-09-16), pages 1 - 99, XP009529763 *
CHU, CHUANG: "The Research on Controlling the Production of Acetaldehyde and5-hydroxymethyl Furfural in the Industrial High Fructose Syrup Production Process", SCIENCE-ENGINEERING (A), CHINA MASTER’S THESES FULL-TEXT DATABASE (ELECTRONIC JOURNALS), vol. S2, 15 November 2013 (2013-11-15), XP055836208, ISSN: ISSN 1674 *
See also references of EP4023773A4

Also Published As

Publication number Publication date
EP4023773C0 (en) 2024-02-14
EP4023773A1 (en) 2022-07-06
US20220389526A1 (en) 2022-12-08
JP7367210B2 (ja) 2023-10-23
CN111139319A (zh) 2020-05-12
EP4023773A4 (en) 2022-12-28
JP2022553391A (ja) 2022-12-22
EP4023773B1 (en) 2024-02-14
CN111139319B (zh) 2024-10-18

Similar Documents

Publication Publication Date Title
WO2021160053A1 (zh) 一种降低果葡糖浆中 5- 羟甲基糠醛含量的系统及方法
CN101565762B (zh) 一种淀粉糖生产方法
CN104630312A (zh) 一种用葡萄糖母液生产果葡糖浆的方法
CN102912043B (zh) 一种纯化果糖生产方法
CN111269107A (zh) 一种l-乳酸提纯精制方法
CN104673942A (zh) 一种蔗糖生产结晶果糖的方法
CN107058428B (zh) 一种果糖、麦芽糖同线生产工艺
CN113004320A (zh) 一种肌醇生产时可降低解吸剂用量的方法
CN211848008U (zh) 一种降低果葡糖浆中5-羟甲基糠醛含量的系统
CN114605257A (zh) 一种l-乳酸的提纯方法
CN116462168B (zh) 一种植物源磷酸二氢钾的生产工艺
CN116606192A (zh) 一种利用玉米浆低成本生产肌醇和副产物的方法
CN106928288A (zh) 一种硫酸双氢链霉素的制备方法
CN101381354A (zh) 一种粗品维生素c钠盐转化成粗维生素c的生产工艺
JP2024507514A (ja) キシリトール発酵液の精製システム及びその方法
CN108034773B (zh) 一种利用模拟移动床连续离交生产结晶糖的方法
CN112522346A (zh) 一种高纯度低聚麦芽糖的制备方法
CN114835600A (zh) 一种l-谷氨酰胺的提取方法
CN112552164B (zh) 一种从不合格柠檬酸钠母液中提取苹果酸的工艺方法
CN114105849B (zh) 一种l-羟基脯氨酸的提取方法
CN115088829B (zh) 提高味精产品色度的生产工艺
CN113234773B (zh) 一种麦芽糖浆的制备方法
CN118290231A (zh) 一种防止山梨醇生产过程中糖液发黄的方法
CN117844991A (zh) 米制果葡糖浆离子交换洗脱水回收工艺
CN106632523A (zh) 一种d‑阿拉伯糖的纯化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21753256

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 21753256.3

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021753256

Country of ref document: EP

Effective date: 20220331

ENP Entry into the national phase

Ref document number: 2022524000

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE