WO2021157171A1 - 光学積層体の搬送装置及び搬送方法 - Google Patents

光学積層体の搬送装置及び搬送方法 Download PDF

Info

Publication number
WO2021157171A1
WO2021157171A1 PCT/JP2020/044791 JP2020044791W WO2021157171A1 WO 2021157171 A1 WO2021157171 A1 WO 2021157171A1 JP 2020044791 W JP2020044791 W JP 2020044791W WO 2021157171 A1 WO2021157171 A1 WO 2021157171A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical laminate
conveyor
downstream
upstream
transport
Prior art date
Application number
PCT/JP2020/044791
Other languages
English (en)
French (fr)
Inventor
順二 宗本
直隆 吉原
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020217004202A priority Critical patent/KR102336860B1/ko
Priority to CN202080005372.7A priority patent/CN113692388B/zh
Publication of WO2021157171A1 publication Critical patent/WO2021157171A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H35/00Delivering articles from cutting or line-perforating machines; Article or web delivery apparatus incorporating cutting or line-perforating devices, e.g. adhesive tape dispensers
    • B65H35/10Delivering articles from cutting or line-perforating machines; Article or web delivery apparatus incorporating cutting or line-perforating devices, e.g. adhesive tape dispensers from or with devices for breaking partially-cut or perforated webs, e.g. bursters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H5/00Feeding articles separated from piles; Feeding articles to machines
    • B65H5/02Feeding articles separated from piles; Feeding articles to machines by belts or chains, e.g. between belts or chains
    • B65H5/021Feeding articles separated from piles; Feeding articles to machines by belts or chains, e.g. between belts or chains by belts
    • B65H5/025Feeding articles separated from piles; Feeding articles to machines by belts or chains, e.g. between belts or chains by belts between belts and rotary means, e.g. rollers, drums, cylinders or balls, forming a transport nip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/08Control devices operated by article or material being fed, conveyed or discharged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H20/00Advancing webs
    • B65H20/06Advancing webs by friction band
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H29/00Delivering or advancing articles from machines; Advancing articles to or into piles
    • B65H29/12Delivering or advancing articles from machines; Advancing articles to or into piles by means of the nip between two, or between two sets of, moving tapes or bands or rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H5/00Feeding articles separated from piles; Feeding articles to machines
    • B65H5/02Feeding articles separated from piles; Feeding articles to machines by belts or chains, e.g. between belts or chains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H5/00Feeding articles separated from piles; Feeding articles to machines
    • B65H5/06Feeding articles separated from piles; Feeding articles to machines by rollers or balls, e.g. between rollers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/44Moving, forwarding, guiding material
    • B65H2301/443Moving, forwarding, guiding material by acting on surface of handled material
    • B65H2301/4431Moving, forwarding, guiding material by acting on surface of handled material by means with operating surfaces contacting opposite faces of material
    • B65H2301/44312Moving, forwarding, guiding material by acting on surface of handled material by means with operating surfaces contacting opposite faces of material between belts and rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/44Moving, forwarding, guiding material
    • B65H2301/443Moving, forwarding, guiding material by acting on surface of handled material
    • B65H2301/4431Moving, forwarding, guiding material by acting on surface of handled material by means with operating surfaces contacting opposite faces of material
    • B65H2301/44318Moving, forwarding, guiding material by acting on surface of handled material by means with operating surfaces contacting opposite faces of material between rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/17Nature of material
    • B65H2701/172Composite material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/17Nature of material
    • B65H2701/175Plastic
    • B65H2701/1752Polymer film

Definitions

  • the present invention is a transport device and a transport method for transporting a plurality of optical laminates having an adhesive layer, which are cut into a rectangular shape and arranged in a matrix, so that a pair of opposite cut surfaces are parallel to the transport direction.
  • the present invention relates to a transport device and a transport method capable of easily separating the optical laminate in the transport direction and easily separating the cut surface of the optical laminate parallel to the transport direction. ..
  • an optical laminate having a plurality of optical films such as a polarizing film and a retardation film and an adhesive layer has been used in an image display device such as a liquid crystal display device or an organic EL display device.
  • the optical laminate is usually manufactured by sequentially performing various treatments while transporting a long strip-shaped raw film in the longitudinal direction. Then, for example, the long strip-shaped optical laminate wound in a roll shape is unwound and conveyed, and cut into a plurality of optical laminates having dimensions according to the application. Alternatively, after cutting out a large optical laminate from the long strip-shaped optical laminate, the large optical laminate may be cut into a plurality of optical laminates having dimensions according to the application.
  • the plurality of cut optical laminates are usually conveyed by a transfer device provided with a conveyor, and are collected by gravity dropping from the downstream end in the transfer direction of the conveyor.
  • the transfer device described in Patent Document 1 has been proposed.
  • the transport device described in Patent Document 1 is arranged on the upstream side in the transport direction of the plurality of cut polarizing films, and has an upstream conveyor for transporting the plurality of mounted polarizing films and a downstream conveyor in the transport direction of the plurality of polarizing films. It is provided with a downstream conveyor which is arranged on the side and conveys a plurality of mounted polarizing films. Then, the plurality of polarizing films are separated from each other by increasing the transport speed of the polarizing film by the downstream conveyor higher than the transport speed of the polarizing film by the upstream conveyor.
  • FIG. 3 is a diagram schematically showing a schematic configuration example of a conventional transfer device.
  • FIG. 3A is a plan view
  • FIG. 3B is a CC end view of FIG. 3A.
  • the illustration of the upstream side portion of the upstream side conveyor 1 and the downstream side portion of the downstream side conveyor 2 is omitted.
  • the conventional transfer device 200 is cut into rectangles (rectangles having long and short sides in the example shown in FIG. 3) and arranged in a matrix in a plurality of optics including an adhesive layer.
  • This is a transport device that transports the laminated body F so that the pair of cut surfaces facing each other are parallel to the transport direction.
  • the optical laminate F is conveyed in the long side direction (from the left side to the right side in FIG. 3).
  • the transport device 200 is arranged on the upstream side (left side in FIG. 3) of the optical laminate F in the transport direction, and has an upstream conveyor 1 for transporting the mounted optical laminate F and a downstream side in the transport direction of the optical laminate F. It is provided with a downstream conveyor 2 that is arranged (on the right side of FIG. 3) and conveys the mounted optical laminate F.
  • the upstream conveyor 1 has an endless belt 12 spanned by an upstream rotating body (not shown), a downstream rotating body 11, and an upstream rotating body and a downstream rotating body 11. It is a belt conveyor equipped with.
  • the downstream conveyor 2 also includes an upstream rotating body 21, a downstream rotating body (not shown), and an endless belt 22 spanned between the upstream rotating body 21 and the downstream rotating body. It is a conveyor. Then, the transport speed of the optical laminate F by the upstream conveyor 1 (corresponding to the peripheral speed of the downstream rotating body 11) is set to V1, and the transport speed of the optical laminated body by the downstream conveyor 2 (corresponding to the peripheral speed of the upstream rotating body 21). Assuming that (corresponding to) is V3, it is set so as to satisfy V1 ⁇ V3.
  • the optical laminate F that has reached the downstream side conveyor 2 and the upstream side conveyor 1 are placed on the upstream side conveyor 1 by increasing the downstream side transfer speed V3 from the upstream side transfer speed V1.
  • a tensile force acts on the cut surface located between the optical laminate F as it is, that is, the cut surface orthogonal to the transport direction (in the example shown in FIG. 3, the cut surface extending in the short side direction of the optical laminate F). It will be. Therefore, even if this cut surface adheres via the adhesive layer, the adhered state is released by the tensile force, and as shown in FIG.
  • the optical laminate F that has reached the downstream conveyor 2 and the upstream The optical laminate F as it is placed on the side conveyor 1 is separated from the optical laminate F in the transport direction and transported.
  • the transport speed V3 on the downstream side is made larger than the transport speed V1 on the upstream side
  • the plurality of optical laminates F (4 sheets in the example shown in FIG. 3) arranged at the same position in the transport direction may have a higher transport speed V3 on the upstream side.
  • the cut surface parallel to the transport direction cannot be separated and transported. If the cut surface parallel to the transport direction of the optical laminate F cannot be separated, the direction orthogonal to the transport direction is the same when the optical laminate F is gravitationally dropped and collected from the downstream end in the transport direction of the downstream conveyor 2. A plurality of optical laminates F arranged at the position of are collectively dropped. This may cause inconvenience in the recovery of the optical laminate F.
  • the present invention has been made to solve the above-mentioned problems of the prior art, and a plurality of optical laminates having a pressure-sensitive adhesive layer, which are cut into rectangles and arranged in a matrix, are opposed to each other.
  • the optical laminate can be easily separated in the transport direction, and the optical laminate is parallel to the transport direction. It is an object of the present invention to provide a transport device and a transport method capable of easily separating the cut surfaces of the above.
  • the present invention relates a plurality of optical laminates having an adhesive layer, which are cut into a rectangular shape and arranged in a matrix, so that the pair of cut surfaces facing each other are parallel to the transport direction.
  • a transport device for transporting which is arranged on the upstream side in the transport direction of the optical laminate, and is arranged on the upstream side conveyor for transporting the mounted optical laminate and the downstream side in the transport direction of the optical laminate.
  • a downstream side conveyor that conveys the mounted optical laminate, and an upstream side transfer roller that is arranged to face the upstream side conveyor and conveys the optical laminate between the upstream side conveyors.
  • a downstream transport roller that is arranged to face the downstream conveyor and transports the optical laminate by sandwiching it between the downstream conveyor, and the upstream conveyor and the downstream side in the transport direction of the optical laminate.
  • An intermediate transport roller that is arranged between the conveyor and transports the optical laminate with the optical laminate sandwiched therein is provided, and the upstream transport roller and the intermediate transport roller are in a direction orthogonal to the transport direction of the optical laminate.
  • the optical laminate is arranged in a staggered pattern at a pitch corresponding to the dimension perpendicular to the transport direction of the optical laminate, and the transport speed of the optical laminate by the upstream transport roller and the upstream conveyor is V1, the intermediate transport.
  • the upstream transfer roller that sandwiches the optical laminate with the upstream conveyor and the downstream side that sandwiches the optical laminate between the downstream conveyor and conveys the optical laminate.
  • the conveyor is provided with an intermediate conveyor which is arranged between the upstream conveyor and the downstream conveyor and conveys the optical laminate by sandwiching the conveyor.
  • the upstream transfer roller and the intermediate transfer roller are arranged in a staggered pattern in a direction orthogonal to the transfer direction of the optical laminate at a pitch corresponding to the dimension in the direction orthogonal to the transfer direction of the optical laminate. ..
  • first optical laminate an optical laminate that is appropriately sandwiched between intermediate transport rollers
  • second optical laminate an optical laminate that is appropriately sandwiched between intermediate transport rollers
  • the tip of the first optical laminate (the end on the downstream side in the transport direction) is sandwiched between the upstream transport roller and the upstream conveyor and then transported, and then the tip is between the downstream transport roller and the downstream conveyor. It will be sandwiched between them and transported.
  • the transfer speed V1 of the optical laminate by the upstream transfer roller and the upstream conveyor ⁇ the transfer speed V3 of the optical laminate by the downstream transfer roller and the downstream conveyor
  • the first optical laminate Is transported at a high speed after the tip is sandwiched between the downstream transport roller and the downstream conveyor, and the first optical laminate transported at high speed and the first optical laminate located on the upstream side of the first optical laminate are transported at a high speed.
  • the transfer speed of the optical laminate by the upstream conveyor is V1 ⁇ the transfer speed of the optical laminate by the intermediate transfer roller is V2, and as described above, V1 ⁇ V3.
  • the second optical laminate is conveyed at high speed after the tip is sandwiched between the intermediate conveying rollers, and the second optical laminate that is conveyed at high speed and the second optical laminate located on the upstream side of the second optical laminate are conveyed.
  • a tensile force acts on the cut surface located between the body and orthogonal to the transport direction. Therefore, even if the cut surface is adhered via the pressure-sensitive adhesive layer, the adhered state is released by the tensile force, and the second optical laminate is separated and transported in the transport direction.
  • the first optical laminate is conveyed at high speed after the tip is sandwiched between the downstream conveyor and the downstream conveyor, whereas the second optical laminate has the tip conveyed downstream. It will be transported at high speed after being sandwiched between the rollers and the intermediate transport rollers located on the upstream side of the downstream conveyor. That is, since the second optical laminate is conveyed at a higher speed at an earlier timing, it is transferred to a cut surface (a cut surface parallel to the transfer direction) between the first optical laminate and the second optical laminate that are adjacent to each other. Shear force will act. Therefore, even if this cut surface is attached via the adhesive layer, the adhered state is released by the shearing force, and the first optical laminate and the second optical laminate are cut surfaces parallel to the transport direction. Will be separated and transported.
  • one second optical laminate is sandwiched between the intermediate transfer rollers and at the same time between the downstream transfer roller and the downstream conveyor. Even if it is in a state of being transported, the transfer speed V2 of the second optical laminate by the intermediate transfer roller is equal to the transfer speed V3 of the second optical laminate by the downstream transfer roller and the downstream conveyor. In this state, the tensile force in the transport direction does not act on one second optical laminate. Therefore, there is an advantage that the optical characteristics of the second optical laminate are not adversely affected.
  • the "rectangle” is not necessarily a perfect rectangle (rectangle, square), but is a concept including a shape approximated by a rectangle.
  • a shape in which any corner portion is chamfered or a concave portion is provided on any side is also included in the concept of "rectangle” in the present invention.
  • “arranged in a matrix” means that the optical laminates are arranged in a matrix immediately after being cut into a plurality of rectangular optical laminates (adjacent optical laminates are orthogonal to the transport direction and the transport direction). It means that it is in a state (arranged in a straight line in the direction of).
  • a pair of facing cut surfaces are parallel to the transport direction means that the angle formed by the pair of opposite cut surfaces of the optical laminate and the transport direction is exactly 0 °. Not limited to this, it is a concept that includes a range of 0 ⁇ 5 °. Further, in the present invention, the "pitch corresponding to the dimension in the direction orthogonal to the transport direction of the optical laminate” is strictly defined as the dimension in the direction orthogonal to the transport direction of the optical laminate (for example, the length of the short side). It is a concept not limited to the case where it matches.
  • one of the optical laminates has its tip sandwiched between the upstream transport roller and the upstream conveyor. After being conveyed, the tip is sandwiched between the downstream transfer roller and the downstream conveyor and conveyed, and the other optical laminate (second optical laminate) is conveyed with its tip sandwiched between the intermediate transfer rollers.
  • the pitch deviates from the dimension in the direction orthogonal to the transport direction of the optical laminate is also included in the concept. be.
  • the upstream side transport roller and the downstream side transport roller are arranged so as to be separated from each other in the transport direction of the optical laminate by a dimension equal to or larger than the dimension in the transport direction of the optical laminate.
  • one first optical laminate is sandwiched between the upstream transfer roller and the upstream conveyor, and at the same time, is sandwiched between the downstream transfer roller and the downstream conveyor. It is not in a state of being transported, or even if it is in that state, it is a moment. Therefore, the tensile force in the transport direction does not act on one first optical laminate. Therefore, there is an advantage that the optical characteristics of the first optical laminate are not adversely affected.
  • a pair of cut surfaces facing each other of a plurality of optical laminates provided with an adhesive layer, which are cut into a rectangular shape and arranged in a matrix, are parallel to the transport direction.
  • the optical lamination is performed between the upstream conveyor arranged on the upstream side in the conveying direction of the optical laminate and the upstream conveying roller arranged opposite to the upstream conveyor.
  • the optical laminate is transported between the steps of sandwiching the body and the downstream conveyor arranged on the downstream side in the transport direction of the optical laminate and the downstream transport roller arranged on the downstream side facing the downstream conveyor.
  • the upstream transport roller and the intermediate transport roller are arranged in a staggered pattern in a direction orthogonal to the transport direction of the optical laminate at a pitch corresponding to the dimension of the direction orthogonal to the transport direction of the optical laminate.
  • the transfer speed of the optical laminate by the upstream transfer roller and the upstream conveyor is V1
  • the transfer speed of the optical laminate by the intermediate transfer roller is V2
  • the transfer speed of the optical laminate by the downstream transfer roller and the downstream conveyor is V1.
  • the method for transporting an optical laminate according to the present invention is preferably used, for example, when the optical laminate contains a polarizing film.
  • the optical laminate can be easily separated in the transport direction, and the cut surface of the optical laminate parallel to the transport direction can be easily separated. Therefore, the separated optical laminate can be recovered without any problem.
  • transfer device for the optical laminate (hereinafter, simply referred to as “transfer device”) according to the embodiment of the present invention will be described with reference to the attached drawings as appropriate.
  • FIG. 1 is a cross-sectional view showing a schematic configuration example of an optical laminate F transported by the transport device according to the present embodiment.
  • the optical laminate F shown in FIG. 1 is an optical laminate including a polarizing film 6.
  • the optical laminate F has a configuration in which the polarizing film 6, the pressure-sensitive adhesive layer 7, and the release liner 8 are laminated in this order.
  • the polarizing film 6 includes a polarizing element 61 and protective films 62 and 63 bonded to both sides of the polarizing film 6 via an adhesive layer (not shown).
  • the polarizer 61 is produced, for example, by subjecting a hydrophilic polymer film to various known treatments such as swelling treatment, dyeing treatment, cross-linking treatment, stretching treatment, and drying treatment.
  • the hydrophilic polymer film is not particularly limited, and conventionally known films can be used.
  • examples of the hydrophilic polymer film include polyvinyl alcohol (PVA) -based film, partially formalized PVA-based film, polyethylene terephthalate (PET) film, ethylene / vinyl acetate copolymer film, and partial saponification of these. Examples include films.
  • polyene-oriented films such as a dehydrated product of PVA and a dehydrochlorinated product of polyvinyl chloride, a stretch-oriented polyvinylene-based film, and the like can also be used.
  • a PVA-based polymer film is particularly preferable because it is excellent in dyeability with a dichroic substance.
  • the thickness of the polarizer 61 is not particularly limited, and an appropriate thickness can be adopted depending on the intended purpose.
  • the thickness of the polarizer 61 is typically about 1 to 80 ⁇ m. In one aspect, the thickness of the polarizer 61 is preferably 30 ⁇ m or less.
  • polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, cellulose polymers such as diacetyl cellulose and triacetyl cellulose, acrylic polymers such as polymethyl methacrylate, and styrene such as polystyrene and acrylonitrile-styrene copolymer (AS resin).
  • AS resin acrylonitrile-styrene copolymer
  • examples thereof include based polymers and polystyrene polymers.
  • Polymer blends and the like are also examples of polymers that form the protective films 62, 63.
  • the protective films 62, 63 are, for example, coated on the bonded surfaces of the protective films 62, 63 and / or the polarizer 61 with an active energy ray-curable adhesive, and then bonded to both surfaces of the polarizer 61 to form an adhesive layer. Is cured by irradiating it with active energy rays and then dried to be laminated on the polarizer 61.
  • the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer 7 for example, an acrylic pressure-sensitive adhesive, a urethane pressure-sensitive adhesive, a silicone pressure-sensitive adhesive, or the like is used.
  • the release liner 8 for example, a polyethylene terephthalate release film is used.
  • the release liner 8 is peeled off and the optical laminate F is attached to a liquid crystal cell or the like of a liquid crystal display device via an adhesive layer 7.
  • the optical laminate F is an optical laminate containing the polarizing film 6
  • the present invention is not limited to this, and the optical laminate including the retardation film and the like are not limited to this.
  • the pressure-sensitive adhesive layer 7 it can be applied to various optical laminates.
  • FIG. 2 is a diagram schematically showing a schematic configuration example of a transport device according to the present embodiment.
  • 2 (a) is a plan view
  • FIG. 2 (b) is an AA end view of FIG. 2 (a)
  • FIG. 2 (c) is a BB end view of FIG. 2 (a).
  • the illustration of the upstream side portion of the upstream side conveyor 1 and the downstream side portion of the downstream side conveyor 2 is omitted. Further, the rotation shafts of the upstream transfer roller 3, the downstream transfer roller 4, and the intermediate transfer roller 5 are not shown.
  • the upper transport roller 52 does not actually exist, but for reference, the position corresponding to the upper transport roller 52 is shown by a broken line.
  • the upstream transfer roller 3 does not actually exist, but for reference, the position corresponding to the upstream transfer roller 3 is shown by a broken line.
  • the transport device 100 according to the present embodiment is a rectangle (in the example shown in FIG. 2, a rectangle having a long side and a short side) like the conventional transport device 200 described with reference to FIG. ), And the plurality of optical laminates F having the pressure-sensitive adhesive layer 7 (see FIG. 1) arranged in a matrix are conveyed so that the pair of cut surfaces facing each other are parallel to the conveying direction. Is.
  • the optical laminate F is conveyed in the long side direction (from the left side to the right side in FIG. 2).
  • the plurality of optical laminates F are arranged in a matrix means that they are arranged in a matrix immediately after being cut into a plurality of rectangular optical laminates F (adjacent optical laminates F are arranged in a transport direction and in a transport direction). It means that it is in a state (arranged in a straight line in a direction orthogonal to the transport direction).
  • the conveyor 100 according to the present embodiment includes an upstream conveyor 1 and a downstream conveyor 2 as in the conventional conveyor 200. Further, unlike the conventional transfer device 200, the transfer device 100 according to the present embodiment further includes an upstream transfer roller 3, a downstream transfer roller 4, and an intermediate transfer roller 5.
  • the upstream side conveyor 1 is arranged on the upstream side (left side in FIG. 2) in the transport direction of the optical laminate F, and operates so as to transport the mounted optical laminate F.
  • the upstream conveyor 1 of the present embodiment has an upstream rotating body (not shown), a downstream rotating body 11, and an endless belt 12 spanned between the upstream rotating body and the downstream rotating body 11. It is a belt conveyor equipped.
  • the dimension of the endless belt 12 in the direction orthogonal to the transport direction is equal to or larger than the dimension L0 in the direction orthogonal to the transport direction of the entire plurality of optical laminates F arranged in a matrix.
  • all the optical laminates F are conveyed by the upstream conveyor 1.
  • the present invention is not limited to this, and another conveyor such as a roller conveyor can be used as the upstream conveyor 1.
  • the downstream side conveyor 2 is arranged on the downstream side (right side in FIG. 2) in the transport direction of the optical laminate F, and operates so as to transport the mounted optical laminate F.
  • the downstream conveyor 2 of the present embodiment has an upstream rotating body 21, a downstream rotating body (not shown), and an endless belt 22 spanned between the upstream rotating body 21 and the downstream rotating body. It is a belt conveyor equipped.
  • the dimension of the endless belt 22 in the direction orthogonal to the transport direction is equal to or larger than the dimension L0 in the direction orthogonal to the transport direction of the entire plurality of optical laminates F arranged in a matrix.
  • all the optical laminates F are conveyed by the downstream conveyor 2.
  • the present invention is not limited to this, and it is also possible to use another conveyor such as a roller conveyor as the downstream side conveyor 2.
  • the upstream side transport roller 3 is arranged so as to face the upstream side conveyor 1. Specifically, the upstream side transport roller 3 of the present embodiment is arranged so as to face above the downstream side rotating body 11 included in the upstream side conveyor 1.
  • the size of the gap between the upstream transfer roller 3 and the endless belt 12 provided on the upstream conveyor 1 is set to be equal to (same or slightly smaller) as the thickness of the optical laminate F.
  • the upstream transfer roller 3 sandwiches the optical laminate F with the upstream conveyor 1 and conveys the optical laminate F.
  • the upstream transfer roller 3 may be a drive roller driven by a drive source such as a rotary motor, or may be a driven roller that simply rotates.
  • the downstream side transport roller 4 is arranged so as to face the downstream side conveyor 2.
  • the downstream transfer roller 4 of the present embodiment is arranged so as to face above the upstream rotating body 21 included in the downstream conveyor 2.
  • the size of the gap between the downstream transfer roller 4 and the endless belt 22 provided on the downstream conveyor 2 is set to be equal to (same or slightly smaller) as the thickness of the optical laminate F.
  • the downstream side transfer roller 4 transfers the optical laminate F with the downstream side conveyor 2 sandwiched between them.
  • the length of the downstream transfer roller 4 in the rotation axis direction (vertical direction in FIG. 2A) is equal to or greater than the dimension L0 in the direction orthogonal to the transfer direction of the entire plurality of optical laminates F arranged in a matrix. It has become.
  • the downstream transfer roller 4 may be a drive roller driven by a drive source such as a rotary motor, or may be a driven roller that simply rotates.
  • the intermediate transfer roller 5 is arranged between the upstream side conveyor 1 and the downstream side conveyor 2 in the transfer direction of the optical laminate F.
  • the intermediate transfer roller 5 is composed of a lower transfer roller 51 and an upper transfer roller 52 arranged so as to face above the lower transfer roller 51.
  • the length of the lower transport roller 51 in the rotation axis direction (vertical direction in FIG. 2A) is equal to or greater than the dimension L0 in the direction orthogonal to the transport direction of the entire plurality of optical laminates F arranged in a matrix. There is. As a result, all the optical laminates F are conveyed by passing over the lower transfer roller 51. Therefore, there is no possibility that the optical laminate F will fall or the transportation will become unstable between the upstream conveyor 1 and the downstream conveyor 2.
  • the present invention is not necessarily limited to this, and the same number of lower transport rollers 51 having the same length as the upper transport rollers 52 are provided only at positions facing below the upper transport rollers 52 as well as the upper transport rollers 52. It is also possible to adopt a configuration.
  • the size of the gap between the upper transfer roller 52 and the lower transfer roller 51 is set to be the same as (same or slightly smaller) as the thickness of the optical laminate F.
  • the upper transfer roller 52 and the lower transfer roller 51 form a nip roller.
  • the optical laminate F (second optical laminate F2) passing below the upper transfer roller 52 is sandwiched between the intermediate transfer rollers 5 (upper transfer roller 52 and lower transfer roller 51) and conveyed.
  • At least one of the lower transfer roller 51 and the upper transfer roller 52 is a drive roller driven by a drive source such as a rotary motor.
  • the upstream transfer roller 3 and the intermediate transfer roller 5 are arranged in a staggered pattern with a pitch P corresponding to the dimensions in the direction orthogonal to the transfer direction of the optical laminate F in the direction orthogonal to the transfer direction of the optical laminate F.
  • a pitch P corresponding to the dimensions in the direction orthogonal to the transfer direction of the optical laminate F in the direction orthogonal to the transfer direction of the optical laminate F.
  • the direction in which the upstream transfer roller 3 and the upper transfer roller 52 constituting the intermediate transfer roller 5 are orthogonal to the transfer direction of the optical laminate F is orthogonal to the transfer direction of the optical laminate F. It is arranged in a staggered pattern with a pitch P corresponding to the size of.
  • the pitch P is not limited to the case where the pitch P exactly matches the dimension W in the direction orthogonal to the transport direction of the optical laminate F.
  • one of the optical laminates F (first optical laminate F1) has its tip (end on the downstream side in the transport direction) transported on the upstream side. After being sandwiched and conveyed between the roller 3 and the upstream conveyor 1, the tip is sandwiched and conveyed between the downstream transfer roller 4 and the downstream conveyor 2, and the other optical laminate F (second).
  • the optical laminate F2 satisfies the condition that its tip is sandwiched between the intermediate transport rollers 5 and then transported, and then the tip is sandwiched between the downstream transport roller 4 and the downstream conveyor 2 and transported.
  • a pitch P deviating from the dimension W in the direction orthogonal to the transport direction of the optical laminate F.
  • all pitches P have the same value (three pitches P shown in FIG. 2A have the same value), but they do not necessarily have to be the same value, and as long as the above conditions are satisfied, they do not necessarily have the same value. It is also possible to set different values.
  • the transfer speed of the optical laminate F by the upstream transfer roller 3 and the upstream conveyor 1 (corresponding to the peripheral speed of the upstream transfer roller 3 and the downstream rotating body 11) is set to V1, and the optical laminate F by the intermediate transfer roller 5 is used.
  • the transfer speed (corresponding to the peripheral speed of the lower transfer roller 51 and the upper transfer roller 52) is set to V2, and the transfer speed of the optical laminate F by the downstream transfer roller 4 and the downstream conveyor 2 (downstream transfer roller 4 and upstream rotation).
  • V2 V3 ... (3)
  • the transport speed V2 is set to be 2 times or more and 6 times or less the transport speed V1.
  • the transport speed V3 is set to be 2 times or more and 6 times or less the transport speed V1.
  • the upstream side transport roller 3 and the downstream side transport roller 4 have the dimensions of the optical laminate F in the transport direction (the long side in the present embodiment) with respect to the transport direction of the optical laminate F. It is arranged at a distance from the length L) of. That is, the separation distance (distance between the central axes of the rollers 3 and 4) LL between the upstream transfer roller 3 and the downstream transfer roller 4 is set to be larger than the dimension L in the transfer direction of the optical laminate F. Specifically, the separation distance LL between the upstream transport roller 3 and the downstream transport roller 4 is set to be slightly larger than the dimension L in the transport direction of the optical laminate F.
  • the transport device 100 having the configuration described above, when the plurality of optical laminates F arranged in a matrix are viewed in a direction orthogonal to the transport direction, the upstream transport roller 3 and the upstream conveyor 1
  • the optical laminate F (first optical laminate F1) sandwiched and conveyed between them and the optical laminate F (second optical laminate F2) sandwiched and conveyed by the intermediate conveying roller 5 are alternately present. Will be done.
  • the tip of the first optical laminate F1 is sandwiched between the upstream transfer roller 3 and the upstream conveyor 1 and then conveyed, and then the tip is sandwiched between the downstream transfer roller 4 and the downstream conveyor 2. Will be transported.
  • the transport device 100 according to the present embodiment satisfies the above-mentioned formula (2).
  • the transfer speed V1 of the optical laminate F by the upstream transfer roller 3 and the upstream conveyor 1 ⁇ the transfer speed V3 of the optical laminate F by the downstream transfer roller 4 and the downstream conveyor 2. Therefore, the first optical laminate F1 is conveyed at a high speed after the tip is sandwiched between the downstream transfer roller 4 and the downstream conveyor 2, and is conveyed at a high speed with the first optical laminate F1.
  • a tensile force acts on a cut surface (in this embodiment, a cut surface extending in the short side direction) located between the first optical laminate F1 located upstream of this and orthogonal to the transport direction.
  • the transport device 100 satisfies the above-mentioned formula (1). That is, the transfer speed V1 of the optical laminate F by the upstream conveyor 1 ⁇ the transfer speed V2 of the optical laminate F by the intermediate transfer roller 5, and V1 ⁇ V3 as described above.
  • the second optical laminate F2 is transported at a high speed after the tip is sandwiched between the intermediate transport rollers 5, and is located upstream of the second optical laminate F2 that is transported at a high speed.
  • the tensile force acts on the cut surface (the cut surface extending in the short side direction in the present embodiment) located between the two optical laminates F2 and orthogonal to the transport direction. Therefore, even if the cut surface is adhered via the adhesive layer 7, the adhered state is released by the tensile force, and the second optical laminate F2 is separated and transported in the transport direction. ..
  • the first optical laminated body F1 is conveyed at high speed after the tip is sandwiched between the downstream side conveying roller 4 and the downstream side conveyor 2, whereas the second optical laminated body F2 is conveyed at a high speed. Is sandwiched between the downstream transfer roller 4 and the intermediate transfer roller 5 located on the upstream side of the downstream conveyor 2, and then transferred at high speed. That is, since the second optical laminate F2 is conveyed at a higher speed at an earlier timing, the cut surface between the first optical laminate F1 and the second optical laminate F2 adjacent to each other (cutting parallel to the conveying direction). A shear force acts on the surface, the cut surface extending in the long side direction in the present embodiment). Therefore, even if this cut surface is attached via the pressure-sensitive adhesive layer 7, the cut surface parallel to the transport direction is separated and transported between the first optical laminate F1 and the second optical laminate F2. Will be.
  • the transport device 100 satisfies the above-mentioned formula (3). That is, the transfer speed V2 of the second optical laminate F2 by the intermediate transfer roller 5 and the transfer speed V3 of the second optical laminate F2 by the downstream side transfer roller 4 and the downstream side conveyor 2 are equal. Therefore, even if one second optical laminate F2 is sandwiched between the intermediate transport rollers 5 and at the same time sandwiched between the downstream transport roller 4 and the downstream conveyor 2 and transported. In this state, the tensile force in the transport direction does not act on the single second optical laminate F2. Therefore, there is an advantage that the optical characteristics of the second optical laminate F2 are not adversely affected.
  • the optical laminate F can be easily separated in the transport direction, and the cut surface of the optical laminate F parallel to the transport direction can be easily separated. It is possible to separate into. Therefore, the separated optical laminate F can be recovered without any problem.
  • the recovery method is not particularly limited, but as in the conventional case, it is possible to adopt a method in which the optical laminate F is gravitationally dropped from the downstream end in the transport direction of the downstream conveyor 2 to recover.
  • the separation distance LL between the upstream transport roller 3 and the downstream transport roller 4 is larger than the dimension L in the transport direction of the optical laminate F. It is set large. Therefore, one first optical laminate F1 is sandwiched between the upstream transfer roller 3 and the upstream conveyor 1, and at the same time, is sandwiched between the downstream transfer roller 4 and the downstream conveyor 2. It is not in a state of being transported, or even if it is in that state, it is a moment. Therefore, the tensile force in the transport direction does not act on one first optical laminate F1. Therefore, there is an advantage that the optical characteristics of the first optical laminate F1 are not adversely affected.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Delivering By Means Of Belts And Rollers (AREA)
  • Control Of Conveyors (AREA)

Abstract

搬送方向及び搬送方向に直交する方向に光学積層体を容易に分離することが可能な搬送装置等を提供する。 本発明に係る搬送装置100は、光学積層体Fの搬送方向上流側に配置されて光学積層体Fを低速搬送する上流側コンベア1と、搬送方向下流側に配置されて光学積層体Fを高速搬送する下流側コンベア2と、光学積層体Fを上流側コンベア1との間で挟んで搬送する上流側搬送ローラ3と、光学積層体Fを下流側コンベア2との間で挟んで搬送する下流側搬送ローラ4と、上流側コンベア1と下流側コンベア2との間に配置され、光学積層体Fを挟んで高速搬送する中間搬送ローラ5と、を備える。上流側搬送ローラ3と、中間搬送ローラ5とは、光学積層体Fの搬送方向に直交する方向について、光学積層体Fの搬送方向に直交する方向の寸法Wに対応するピッチPで千鳥状に配置される。

Description

光学積層体の搬送装置及び搬送方法
 本発明は、矩形に切断され、マトリクス状に配列された、粘着剤層を備える複数の光学積層体をその対向する一対の切断面が搬送方向と平行になるように搬送する搬送装置及び搬送方法に関する。特に、本発明は、搬送方向に光学積層体を容易に分離することが可能であると共に、搬送方向と平行な光学積層体の切断面を容易に分離することが可能な搬送装置及び搬送方法に関する。
 従来、液晶表示装置や有機EL表示装置等の画像表示装置等には、偏光フィルムや位相差フィルム等の複数の光学フィルムと粘着剤層とを備える光学積層体が用いられている。
 光学積層体は、通常、長尺帯状の原反フィルムを長手方向に搬送しながら、順次各種の処理を施すことで製造される。そして、例えば、ロール状に巻回された長尺帯状の光学積層体を巻き出して搬送しながら、用途に応じた寸法を有する複数の光学積層体に切断する。或いは、長尺帯状の光学積層体から大型の光学積層体を切り出した後、この大型の光学積層体を用途に応じた寸法を有する複数の光学積層体に切断する場合もある。
 切断された複数の光学積層体は、通常、コンベアを備えた搬送装置によって搬送され、コンベアの搬送方向下流端から重力落下させて回収される。
 上記のような搬送装置として、例えば、特許文献1に記載の搬送装置が提案されている。特許文献1に記載の搬送装置は、切断された複数の偏光フィルムの搬送方向上流側に配置され、載置された複数の偏光フィルムを搬送する上流側コンベアと、複数の偏光フィルムの搬送方向下流側に配置され、載置された複数の偏光フィルムを搬送する下流側コンベアと、を備える。そして、上流側コンベアによる偏光フィルムの搬送速度よりも、下流側コンベアによる偏光フィルムの搬送速度を大きくすることで、複数の偏光フィルムを互いに分離する構成である。
 特許文献1に記載のように、偏光フィルムの切断方向と搬送方向とが一致しない(偏光フィルムの切断面が搬送方向と平行ではない)場合には、特許文献1に記載の搬送装置によって、比較的容易に偏光フィルムを分離することができ、分離された偏光フィルムを問題なく回収できると考えられる。
 なお、上記のように、上流側の搬送速度よりも下流側の搬送速度を大きくすることで、複数の物品を分離する技術は、特許文献2、3に記載のように、光学フィルムの分野に限らず、様々な分野で用いられている。
 しかしながら、矩形に切断され、マトリクス状に配列された、粘着剤層を備える複数の光学積層体をその対向する一対の切断面が搬送方向と平行になるように搬送する搬送装置の場合には、上記のように、上流側の搬送速度よりも下流側の搬送速度を大きくすることで、光学積層体を搬送方向に分離できても(搬送方向に直交する光学積層体の切断面を分離できても)、搬送方向と平行な光学積層体の切断面を分離できない場合がある。
 図3は、従来の搬送装置の概略構成例を模式的に示す図である。図3(a)は平面図であり、図3(b)は図3(a)のCC端面図である。なお、図3では、上流側コンベア1の上流側部分と、下流側コンベア2の下流側部分との図示を省略している。
 図3に示すように、従来の搬送装置200は、矩形(図3に示す例では長辺及び短辺を有する長方形)に切断され、マトリクス状に配列された、粘着剤層を備える複数の光学積層体Fをその対向する一対の切断面が搬送方向と平行になるように搬送する搬送装置である。図3に示す例では、光学積層体Fを長辺方向に(図3の左側から右側に向けて)搬送している。
 搬送装置200は、光学積層体Fの搬送方向上流側(図3の左側)に配置され、載置された光学積層体Fを搬送する上流側コンベア1と、光学積層体Fの搬送方向下流側(図3の右側)に配置され、載置された光学積層体Fを搬送する下流側コンベア2と、を備える。図3に示す例では、上流側コンベア1は、上流側回転体(図示せず)と、下流側回転体11と、上流側回転体と下流側回転体11とに掛け渡された無端ベルト12と、を備えるベルトコンベアである。下流側コンベア2も同様に、上流側回転体21と、下流側回転体(図示せず)と、上流側回転体21と下流側回転体とに掛け渡された無端ベルト22と、を備えるベルトコンベアである。そして、上流側コンベア1による光学積層体Fの搬送速度(下流側回転体11の周速に相当)をV1、下流側コンベア2による光学積層体の搬送速度(上流側回転体21の周速に相当)をV3とすると、V1<V3を満足するように設定されている。
 この搬送装置200によれば、上流側の搬送速度V1よりも下流側の搬送速度V3を大きくすることで、下流側コンベア2に到達した光学積層体Fと、上流側コンベア1に載置されたままの光学積層体Fとの間に位置する切断面、すなわち、搬送方向に直交する切断面(図3に示す例では光学積層体Fの短辺方向に延びる切断面)に引張力が作用することになる。したがい、仮にこの切断面が粘着剤層を介して付着していたとしても、引張力によって付着状態が解除され、図3に示すように、下流側コンベア2に到達した光学積層体Fと、上流側コンベア1に載置されたままの光学積層体Fとは、搬送方向に分離して搬送されることになる。
 しかしながら、搬送方向について同一の位置に配列された複数(図3に示す例では4枚)の光学積層体Fには、上流側の搬送速度V1よりも下流側の搬送速度V3を大きくしても、搬送速度の差が生じない。したがい、搬送方向と平行な切断面(図3に示す例では光学積層体Fの長辺方向に延びる切断面)には力が作用せず、この切断面が粘着剤層を介して付着している場合には、図3に示すように、搬送方向と平行な切断面を分離して搬送できない。
 光学積層体Fの搬送方向と平行な切断面を分離できなければ、下流側コンベア2の搬送方向下流端から光学積層体Fを重力落下させて回収する際に、搬送方向に直交する方向について同一の位置に配列された複数の光学積層体Fが纏まって落下する。これにより、光学積層体Fの回収に不都合が生じる場合がある。
韓国特許公開第10-2009-0067615号公報 特開2019-116382号公報 特開2019-93524号公報
 本発明は、上記のような従来技術の問題点を解決するためになされたものであり、矩形に切断され、マトリクス状に配列された、粘着剤層を備える複数の光学積層体をその対向する一対の切断面が搬送方向と平行になるように搬送する搬送装置及び搬送方法であって、搬送方向に光学積層体を容易に分離することが可能であると共に、搬送方向と平行な光学積層体の切断面を容易に分離することが可能な搬送装置及び搬送方法を提供することを課題とする。
 前記課題を解決するため、本発明は、矩形に切断され、マトリクス状に配列された、粘着剤層を備える複数の光学積層体をその対向する一対の切断面が搬送方向と平行になるように搬送する搬送装置であって、前記光学積層体の搬送方向上流側に配置され、載置された前記光学積層体を搬送する上流側コンベアと、前記光学積層体の搬送方向下流側に配置され、載置された前記光学積層体を搬送する下流側コンベアと、前記上流側コンベアに対向して配置され、前記光学積層体を前記上流側コンベアとの間で挟んで搬送する上流側搬送ローラと、前記下流側コンベアに対向して配置され、前記光学積層体を前記下流側コンベアとの間で挟んで搬送する下流側搬送ローラと、前記光学積層体の搬送方向における前記上流側コンベアと前記下流側コンベアとの間に配置され、前記光学積層体を挟んで搬送する中間搬送ローラと、を備え、前記上流側搬送ローラと、前記中間搬送ローラとは、前記光学積層体の搬送方向に直交する方向について、前記光学積層体の搬送方向に直交する方向の寸法に対応するピッチで千鳥状に配置され、前記上流側搬送ローラ及び前記上流側コンベアによる前記光学積層体の搬送速度をV1、前記中間搬送ローラによる前記光学積層体の搬送速度をV2、前記下流側搬送ローラ及び前記下流側コンベアによる前記光学積層体の搬送速度をV3とすると、以下の式(1)、式(2)及び式(3)を満足する、光学積層体の搬送装置を提供する。
 V1<V2 ・・・(1)
 V1<V3 ・・・(2)
 V2=V3 ・・・(3)
 本発明に係る光学積層体の搬送装置は、光学積層体を上流側コンベアとの間で挟んで搬送する上流側搬送ローラと、光学積層体を下流側コンベアとの間で挟んで搬送する下流側搬送ローラと、上流側コンベアと下流側コンベアとの間に配置され、光学積層体を挟んで搬送する中間搬送ローラと、を備える。そして、上流側搬送ローラと、中間搬送ローラとは、光学積層体の搬送方向に直交する方向について、光学積層体の搬送方向に直交する方向の寸法に対応するピッチで千鳥状に配置されている。したがい、マトリクス状に配列された複数の光学積層体を搬送方向に直交する方向に見た場合、上流側搬送ローラと上流側コンベアとの間に挟まれて搬送される光学積層体(以下、これを適宜「第1光学積層体」という)と、中間搬送ローラに挟まれて搬送される光学積層体(以下、これを適宜「第2光学積層体」という)とが交互に存在することになる。
 第1光学積層体は、その先端(搬送方向下流側の端)が上流側搬送ローラと上流側コンベアとの間に挟まれて搬送された後、先端が下流側搬送ローラと下流側コンベアとの間に挟まれて搬送されることになる。本発明に係る搬送装置において、上流側搬送ローラ及び上流側コンベアによる光学積層体の搬送速度V1<下流側搬送ローラ及び下流側コンベアによる光学積層体の搬送速度V3であるため、第1光学積層体は、先端が下流側搬送ローラと下流側コンベアとの間に挟まれた以降に高速に搬送され、この高速に搬送される第1光学積層体とこれよりも上流側に位置する第1光学積層体との間に位置し搬送方向に直交する切断面に引張力が作用することになる。したがい、仮にこの切断面が粘着剤層を介して付着していたとしても、引張力によって付着状態が解除され、第1光学積層体は、搬送方向に分離して搬送されることになる。
 一方、第2光学積層体は、その先端が中間搬送ローラに挟まれて搬送された後、先端が下流側搬送ローラと下流側コンベアとの間に挟まれて搬送されることになる。本発明に係る搬送装置において、上流側コンベアによる光学積層体の搬送速度V1<中間搬送ローラによる光学積層体の搬送速度V2であると共に、前述のように、V1<V3である。このため、第2光学積層体は、先端が中間搬送ローラに挟まれた以降に高速に搬送され、この高速に搬送される第2光学積層体とこれよりも上流側に位置する第2光学積層体との間に位置し搬送方向に直交する切断面に引張力が作用することになる。したがい、仮にこの切断面が粘着剤層を介して付着していたとしても、引張力によって付着状態が解除され、第2光学積層体は、搬送方向に分離して搬送されることになる。
 また、第1光学積層体は、先端が下流側搬送ローラと下流側コンベアとの間に挟まれた以降に高速に搬送されるのに対して、第2光学積層体は、先端が下流側搬送ローラ及び下流側コンベアよりも上流側に位置する中間搬送ローラに挟まれた以降に高速に搬送されることになる。すなわち、第2光学積層体の方が早いタイミングで高速に搬送されるため、互いに隣接する第1光学積層体と第2光学積層体との間の切断面(搬送方向と平行な切断面)にせん断力が作用することになる。したがい、仮にこの切断面が粘着剤層を介して付着していたとしても、せん断力によって付着状態が解除され、第1光学積層体と第2光学積層体とは、搬送方向と平行な切断面が分離して搬送されることになる。
 さらに、本発明に係る光学積層体の搬送装置によれば、1枚の第2光学積層体が、中間搬送ローラに挟まれると同時に、下流側搬送ローラと下流側コンベアとの間に挟まれて搬送される状態になったとしても、中間搬送ローラによる第2光学積層体の搬送速度V2と、下流側搬送ローラ及び下流側コンベアによる第2光学積層体の搬送速度V3とが等しいため、上記の状態で1枚の第2光学積層体に搬送方向の引張力が作用しない。このため、第2光学積層体の光学特性等に悪影響を与えないという利点が得られる。
 なお、本発明において、「矩形」とは、必ずしも完全な矩形(長方形、正方形)である場合に限らず、矩形に近似される形状も含む概念である。例えば、光学積層体の用途に応じて、何れかの角部を面取りしたり、何れかの辺に凹部を設けた形状も、本発明における「矩形」の概念に含まれる。
 また、本発明において、「マトリクス状に配列された」とは、複数の矩形の光学積層体に切断した直後においてマトリクス状に配列されている(隣接する光学積層体が搬送方向及び搬送方向に直交する方向に一直線状に配列されている)状態であることを意味する。
 また、本発明において、「対向する一対の切断面が搬送方向と平行になる」とは、光学積層体の対向する一対の切断面と搬送方向との成す角度が厳密に0°である場合に限らず、0±5°の範囲を包含する概念である。
 さらに、本発明において、「光学積層体の搬送方向に直交する方向の寸法に対応するピッチ」とは、光学積層体の搬送方向に直交する方向の寸法(例えば、短辺の長さ)に厳密に合致する場合に限らない概念である。光学積層体の搬送方向に直交する方向に隣接する光学積層体のうち、一方の光学積層体(第1光学積層体)は、先端が上流側搬送ローラと上流側コンベアとの間に挟まれて搬送された後、先端が下流側搬送ローラと下流側コンベアとの間に挟まれて搬送され、他方の光学積層体(第2光学積層体)は、その先端が中間搬送ローラに挟まれて搬送された後、先端が下流側搬送ローラと下流側コンベアとの間に挟まれて搬送されるという条件を満たす限り、光学積層体の搬送方向に直交する方向の寸法から外れたピッチも含む概念である。
 好ましくは、前記上流側搬送ローラと前記下流側搬送ローラとは、前記光学積層体の搬送方向について、前記光学積層体の搬送方向の寸法以上に離間して配置されている。
 上記の好ましい構成によれば、1枚の第1光学積層体が、上流側搬送ローラと上流側コンベアとの間に挟まれると同時に、下流側搬送ローラと下流側コンベアとの間に挟まれて搬送される状態にならない、又はその状態になったとしても一瞬である。したがい、1枚の第1光学積層体に搬送方向の引張力が作用しない。このため、第1光学積層体の光学特性等に悪影響を与えないという利点が得られる。
 また、前記課題を解決するため、本発明は、矩形に切断され、マトリクス状に配列された、粘着剤層を備える複数の光学積層体をその対向する一対の切断面が搬送方向と平行になるように搬送する搬送方法であって、前記光学積層体の搬送方向上流側に配置された上流側コンベアと、前記上流側コンベアに対向して配置された上流側搬送ローラとの間で前記光学積層体を挟んで搬送する工程と、前記光学積層体の搬送方向下流側に配置された下流側コンベアと、前記下流側コンベアに対向して配置された下流側搬送ローラとの間で前記光学積層体を挟んで搬送する工程と、前記光学積層体の搬送方向における前記上流側コンベアと前記下流側コンベアとの間に配置された中間搬送ローラで前記光学積層体を挟んで搬送する工程と、を含み、前記上流側搬送ローラと、前記中間搬送ローラとを、前記光学積層体の搬送方向に直交する方向について、前記光学積層体の搬送方向に直交する方向の寸法に対応するピッチで千鳥状に配置し、前記上流側搬送ローラ及び前記上流側コンベアによる前記光学積層体の搬送速度をV1、前記中間搬送ローラによる前記光学積層体の搬送速度をV2、前記下流側搬送ローラ及び前記下流側コンベアによる前記光学積層体の搬送速度をV3とすると、以下の式(1)、式(2)及び式(3)を満足する、光学積層体の搬送方法としても提供される。
 V1<V2 ・・・(1)
 V1<V3 ・・・(2)
 V2=V3 ・・・(3)
 本発明に係る光学積層体の搬送方法は、例えば、前記光学積層体に偏光フィルムが含まれる場合に好適に用いられる。
 本発明によれば、搬送方向に光学積層体を容易に分離することが可能であると共に、搬送方向と平行な光学積層体の切断面を容易に分離することが可能である。したがい、分離された光学積層体を問題なく回収可能である。
本発明の一実施形態に係る搬送装置で搬送される光学積層体の概略構成例を示す断面図である。 本発明の一実施形態に係る搬送装置の概略構成例を模式的に示す図である。 従来の搬送装置の概略構成例を模式的に示す図である。
 以下、添付図面を適宜参照しつつ、本発明の一実施形態に係る光学積層体の搬送装置(以下、適宜、単に「搬送装置」という)について説明する。
 <光学積層体の構成例>
 図1は、本実施形態に係る搬送装置で搬送される光学積層体Fの概略構成例を示す断面図である。なお、図1は、参考的に表したものであり、図に表された部材などの寸法、縮尺及び形状は、実際のものとは異なっている場合があることに留意されたい。他の図についても同様である。
 図1に示す光学積層体Fは、偏光フィルム6を含む光学積層体である。具体的には、光学積層体Fは、偏光フィルム6と、粘着剤層7と、剥離ライナー8とがこの順に積層された構成である。偏光フィルム6は、偏光子61と、その両面に接着剤層(図示せず)を介して貼り合わせられた保護フィルム62、63と、を備える構成である。
 偏光子61は、例えば、親水性ポリマーフィルムに、膨潤処理、染色処理、架橋処理、延伸処理、乾燥処理等の公知の各種処理を施すことによって製造される。
 親水性ポリマーフィルムとしては、特に限定されず、従来公知のフィルムを使用できる。具体的には、親水性ポリマーフィルムとしては、例えば、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、ポリエチレンテレフタレート(PET)フィルム、エチレン・酢酸ビニル共重合体系フィルム、これらの部分ケン化フィルムなどが挙げられる。また、これらの他にも、PVAの脱水処理物やポリ塩化ビニルの脱塩酸処理物などのポリエン配向フィルム、延伸配向されたポリビニレン系フィルムなども使用できる。これらの中でも、特に二色性物質による染色性に優れることから、PVA系ポリマーフィルムが好ましい。
 偏光子61の厚みは特に制限されず、目的に応じて適切な厚みを採用できる。偏光子61の厚みは、代表的には、1~80μm程度である。一態様においては、偏光子61の厚みは、好ましくは30μm以下である。
 保護フィルム62、63としては、透明性、機械的強度、熱安定性、水分遮断性、等方性などに優れるものを用いるのが好ましい。例えば、ポリエチレンテレフタレートやポリエチレンナフタレートなどのポリエステル系ポリマー、ジアセチルセルロースやトリアセチルセルロースなどのセルロース系ポリマー、ポリメチルメタクリレートなどのアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)などのスチレン系ポリマー、ポリカーボネート系ポリマーなどが挙げられる。また、ポリエチレン、ポリプロピレン、シクロ系又はノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体の如きポリオレフィン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミドなどのアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、又は上記ポリマーのブレンド物なども保護フィルム62、63を形成するポリマーの例として挙げられる。
 保護フィルム62、63は、例えば、保護フィルム62、63及び/又は偏光子61の貼り合わせ面に活性エネルギー線硬化型接着剤を塗工した後、偏光子61の両面に貼り合わせ、接着剤層に活性エネルギー線を照射して硬化させた後に乾燥させることで、偏光子61に積層される。
 粘着剤層7を形成する粘着剤としては、例えば、アクリル系粘着剤、ウレタン粘着剤、シリコーン粘着剤などが用いられる。
 剥離ライナー8としては、例えば、ポリエチレンテレフタレート離型フィルムが用いられる。
 以上の構成を有する光学積層体Fは、使用の際には、剥離ライナー8が剥がされ、粘着剤層7を介して液晶表示装置の液晶セル等に貼り付けられる。
 なお、図1では、光学積層体Fが偏光フィルム6を含む光学積層体である場合を例に挙げて説明したが、本発明はこれに限るものではなく、位相差フィルムを含む光学積層体など、粘着剤層7を備える限りにおいて、種々の光学積層体に適用可能である。
 <搬送装置の構成>
 図2は、本実施形態に係る搬送装置の概略構成例を模式的に示す図である。図2(a)は平面図であり、図2(b)は図2(a)のAA端面図であり、図2(c)は図2(a)のBB端面図である。なお、図2では、上流側コンベア1の上流側部分と、下流側コンベア2の下流側部分との図示を省略している。また、上流側搬送ローラ3、下流側搬送ローラ4及び中間搬送ローラ5の回転軸の図示を省略している。また、図2(b)において、実際には上部搬送ローラ52は存在しないが、参考のために、上部搬送ローラ52に対応する位置を破線で図示している。さらに、図2(c)において、実際には上流側搬送ローラ3は存在しないが、参考のために、上流側搬送ローラ3に対応する位置を破線で図示している。
 図2に示すように、本実施形態に係る搬送装置100は、図3を参照して説明した従来の搬送装置200と同様に、矩形(図2に示す例では長辺及び短辺を有する長方形)に切断され、マトリクス状に配列された、粘着剤層7(図1参照)を備える複数の光学積層体Fをその対向する一対の切断面が搬送方向と平行になるように搬送する搬送装置である。図2に示す例では、光学積層体Fを長辺方向に(図2の左側から右側に向けて)搬送している。なお、複数の光学積層体Fがマトリクス状に配列されているとは、複数の矩形の光学積層体Fに切断した直後においてマトリクス状に配列されている(隣接する光学積層体Fが搬送方向及び搬送方向に直交する方向に一直線状に配列されている)状態であることを意味する。
 本実施形態に係る搬送装置100は、従来の搬送装置200と同様に、上流側コンベア1と、下流側コンベア2と、を備えている。また、本実施形態に係る搬送装置100は、従来の搬送装置200と異なり、上流側搬送ローラ3と、下流側搬送ローラ4と、中間搬送ローラ5と、を更に備えている。
 上流側コンベア1は、光学積層体Fの搬送方向上流側(図2の左側)に配置され、載置された光学積層体Fを搬送するように動作する。本実施形態の上流側コンベア1は、上流側回転体(図示せず)と、下流側回転体11と、上流側回転体と下流側回転体11とに掛け渡された無端ベルト12と、を備えるベルトコンベアである。無端ベルト12の搬送方向に直交する方向の寸法は、マトリクス状に配列された複数の光学積層体F全体の搬送方向に直交する方向の寸法L0以上になっている。これにより、全ての光学積層体Fが上流側コンベア1で搬送されることになる。ただし、本発明はこれに限るものではなく、上流側コンベア1として、ローラコンベアなど他のコンベアを用いることも可能である。
 下流側コンベア2は、光学積層体Fの搬送方向下流側(図2の右側)に配置され、載置された光学積層体Fを搬送するように動作する。本実施形態の下流側コンベア2は、上流側回転体21と、下流側回転体(図示せず)と、上流側回転体21と下流側回転体とに掛け渡された無端ベルト22と、を備えるベルトコンベアである。無端ベルト22の搬送方向に直交する方向の寸法は、マトリクス状に配列された複数の光学積層体F全体の搬送方向に直交する方向の寸法L0以上になっている。これにより、全ての光学積層体Fが下流側コンベア2で搬送されることになる。ただし、本発明はこれに限るものではなく、下流側コンベア2として、ローラコンベアなど他のコンベアを用いることも可能である。
 上流側搬送ローラ3は、上流側コンベア1に対向して配置されている。具体的には、本実施形態の上流側搬送ローラ3は、上流側コンベア1が備える下流側回転体11の上方に対向して配置されている。そして、上流側搬送ローラ3と上流側コンベア1が備える無端ベルト12との間の隙間の大きさが光学積層体Fの厚みと同等に(同一又は若干小さく)設定されている。これにより、上流側搬送ローラ3は、光学積層体Fを上流側コンベア1との間で挟んで搬送することになる。
 なお、上流側搬送ローラ3は、回転モータ等の駆動源によって駆動される駆動ローラであってもよいし、単に回転するだけの従動ローラであってもよい。
 下流側搬送ローラ4は、下流側コンベア2に対向して配置されている。具体的には、本実施形態の下流側搬送ローラ4は、下流側コンベア2が備える上流側回転体21の上方に対向して配置されている。そして、下流側搬送ローラ4と下流側コンベア2が備える無端ベルト22との間の隙間の大きさが光学積層体Fの厚みと同等に(同一又は若干小さく)設定されている。これにより、下流側搬送ローラ4は、光学積層体Fを下流側コンベア2との間で挟んで搬送することになる。また、下流側搬送ローラ4の回転軸方向(図2(a)の上下方向)の長さは、マトリクス状に配列された複数の光学積層体F全体の搬送方向に直交する方向の寸法L0以上になっている。これにより、全ての光学積層体Fが下流側搬送ローラ4と下流側コンベア2との間で挟まれて搬送されることになる。
 なお、下流側搬送ローラ4は、回転モータ等の駆動源によって駆動される駆動ローラであってもよいし、単に回転するだけの従動ローラであってもよい。
 中間搬送ローラ5は、光学積層体Fの搬送方向における上流側コンベア1と下流側コンベア2との間に配置されている。中間搬送ローラ5は、下部搬送ローラ51と、下部搬送ローラ51の上方に対向して配置された上部搬送ローラ52と、から構成されている。
 下部搬送ローラ51の回転軸方向(図2(a)の上下方向)の長さは、マトリクス状に配列された複数の光学積層体F全体の搬送方向に直交する方向の寸法L0以上になっている。これにより、全ての光学積層体Fが下部搬送ローラ51上を通過して搬送されることになる。このため、上流側コンベア1と下流コンベア2との間で、光学積層体Fが落下したり搬送が不安定になるおそれがない。しかしながら、本発明は必ずしもこれに限るものではなく、上部搬送ローラ52の下方に対向する位置にのみ、上部搬送ローラ52と同等の長さを有する下部搬送ローラ51を上部搬送ローラ52と同数備えた構成を採用することも可能である。
 上部搬送ローラ52と下部搬送ローラ51との間の隙間の大きさは、光学積層体Fの厚みと同等に(同一又は若干小さく)設定されている。換言すれば、上部搬送ローラ52及び下部搬送ローラ51はニップローラを構成している。これにより、上部搬送ローラ52の下方を通過する光学積層体F(第2光学積層体F2)は、中間搬送ローラ5(上部搬送ローラ52及び下部搬送ローラ51)に挟まれて搬送されることになる。
 なお、下部搬送ローラ51及び上部搬送ローラ52のうち、少なくともいずれか一方は回転モータ等の駆動源によって駆動される駆動ローラである。
 上流側搬送ローラ3と、中間搬送ローラ5とは、光学積層体Fの搬送方向に直交する方向について、光学積層体Fの搬送方向に直交する方向の寸法に対応するピッチPで千鳥状に配置されている。具体的には、上流側搬送ローラ3と、中間搬送ローラ5を構成する上部搬送ローラ52とが、光学積層体Fの搬送方向に直交する方向について、光学積層体Fの搬送方向に直交する方向の寸法に対応するピッチPで千鳥状に配置されている。
 本実施形態では、ピッチPは、光学積層体Fの搬送方向に直交する方向の寸法(本実施形態では短辺の長さW)に合致している(すなわち、P=W)。しかしながら、ピッチPは、光学積層体Fの搬送方向に直交する方向の寸法Wに厳密に合致する場合に限らない。光学積層体Fの搬送方向に直交する方向に隣接する光学積層体Fのうち、一方の光学積層体F(第1光学積層体F1)は、先端(搬送方向下流側の端)が上流側搬送ローラ3と上流側コンベア1との間に挟まれて搬送された後、先端が下流側搬送ローラ4と下流側コンベア2との間に挟まれて搬送され、他方の光学積層体F(第2光学積層体F2)は、その先端が中間搬送ローラ5に挟まれて搬送された後、先端が下流側搬送ローラ4と下流側コンベア2との間に挟まれて搬送されるという条件を満たす限り、光学積層体Fの搬送方向に直交する方向の寸法Wから外れたピッチPも含まれる。また、本実施形態では、何れのピッチPも同じ値(図2(a)に示す3つのピッチPが同じ値)であるが、必ずしも同じ値である必要はなく、上記の条件を満たす限り、異なる値に設定することも可能である。
 そして、上流側搬送ローラ3及び上流側コンベア1による光学積層体Fの搬送速度(上流側搬送ローラ3及び下流側回転体11の周速に相当)をV1、中間搬送ローラ5による光学積層体Fの搬送速度(下部搬送ローラ51及び上部搬送ローラ52の周速に相当)をV2、下流側搬送ローラ4及び下流側コンベア2による光学積層体Fの搬送速度(下流側搬送ローラ4及び上流側回転体21の周速に相当)をV3とすると、以下の式(1)、式(2)及び式(3)を満足するように設定されている。
 V1<V2 ・・・(1)
 V1<V3 ・・・(2)
 V2=V3 ・・・(3)
 好ましくは、搬送速度V2は、搬送速度V1の2倍以上6倍以下に設定される。同様に、好ましくは、搬送速度V3は、搬送速度V1の2倍以上6倍以下に設定される。
 また、本実施形態では、好ましい構成として、上流側搬送ローラ3と下流側搬送ローラ4とが、光学積層体Fの搬送方向について、光学積層体Fの搬送方向の寸法(本実施形態では長辺の長さL)よりも離間して配置されている。すなわち、上流側搬送ローラ3と下流側搬送ローラ4との離間距離(各ローラ3、4の中心軸間の距離)LLが光学積層体Fの搬送方向の寸法Lよりも大きく設定されている。具体的には、上流側搬送ローラ3と下流側搬送ローラ4との離間距離LLが光学積層体Fの搬送方向の寸法Lよりも若干大きく設定されている。
 以上に説明した構成を有する搬送装置100によれば、マトリクス状に配列された複数の光学積層体Fを搬送方向に直交する方向に見た場合、上流側搬送ローラ3と上流側コンベア1との間に挟まれて搬送される光学積層体F(第1光学積層体F1)と、中間搬送ローラ5に挟まれて搬送される光学積層体F(第2光学積層体F2)とが交互に存在することになる。
  第1光学積層体F1は、その先端が上流側搬送ローラ3と上流側コンベア1との間に挟まれて搬送された後、先端が下流側搬送ローラ4と下流側コンベア2との間に挟まれて搬送されることになる。本実施形態に係る搬送装置100は、前述の式(2)を満足する。すなわち、上流側搬送ローラ3及び上流側コンベア1による光学積層体Fの搬送速度V1<下流側搬送ローラ4及び下流側コンベア2による光学積層体Fの搬送速度V3である。このため、第1光学積層体F1は、先端が下流側搬送ローラ4と下流側コンベア2との間に挟まれた以降に高速に搬送され、この高速に搬送される第1光学積層体F1とこれよりも上流側に位置する第1光学積層体F1との間に位置し搬送方向に直交する切断面(本実施形態では短辺方向に延びる切断面)に引張力が作用することになる。したがい、仮にこの切断面が粘着剤層7を介して付着していたとしても、引張力によって付着状態が解除され、第1光学積層体F1は、搬送方向に分離して搬送されることになる。
 一方、第2光学積層体F2は、その先端が中間搬送ローラ5に挟まれて搬送された後、先端が下流側搬送ローラ4と下流側コンベア2との間に挟まれて搬送されることになる。本実施形態に係る搬送装置100は、前述の式(1)を満足する。すなわち、上流側コンベア1による光学積層体Fの搬送速度V1<中間搬送ローラ5による光学積層体Fの搬送速度V2であると共に、前述のように、V1<V3である。このため、第2光学積層体F2は、先端が中間搬送ローラ5に挟まれた以降に高速に搬送され、この高速に搬送される第2光学積層体F2とこれよりも上流側に位置する第2光学積層体F2との間に位置し搬送方向に直交する切断面(本実施形態では短辺方向に延びる切断面)に引張力が作用することになる。したがい、仮にこの切断面が粘着剤層7を介して付着していたとしても、引張力によって付着状態が解除され、第2光学積層体F2は、搬送方向に分離して搬送されることになる。
 また、第1光学積層体F1は、先端が下流側搬送ローラ4と下流側コンベア2との間に挟まれた以降に高速に搬送されるのに対して、第2光学積層体F2は、先端が下流側搬送ローラ4及び下流側コンベア2よりも上流側に位置する中間搬送ローラ5に挟まれた以降に高速に搬送されることになる。すなわち、第2光学積層体F2の方が早いタイミングで高速に搬送されるため、互いに隣接する第1光学積層体F1と第2光学積層体F2との間の切断面(搬送方向と平行な切断面、本実施形態では長辺方向に延びる切断面)にせん断力が作用することになる。したがい、仮にこの切断面が粘着剤層7を介して付着していたとしても、第1光学積層体F1と第2光学積層体F2とは、搬送方向と平行な切断面が分離して搬送されることになる。
 さらに、本実施形態に係る搬送装置100は、前述の式(3)を満足する。すなわち、中間搬送ローラ5による第2光学積層体F2の搬送速度V2と、下流側搬送ローラ4及び下流側コンベア2による第2光学積層体F2の搬送速度V3とが等しい。したがい、1枚の第2光学積層体F2が、中間搬送ローラ5に挟まれると同時に、下流側搬送ローラ4と下流側コンベア2との間に挟まれて搬送される状態になったとしても、この状態で1枚の第2光学積層体F2に搬送方向の引張力が作用しない。このため、第2光学積層体F2の光学特性等に悪影響を与えないという利点が得られる。
 以上のように、本実施形態に係る搬送装置100によれば、搬送方向に光学積層体Fを容易に分離することが可能であると共に、搬送方向と平行な光学積層体Fの切断面を容易に分離することが可能である。したがい、分離された光学積層体Fを問題なく回収可能である。回収方法としては、特に限定されるものではないが、従来と同様に、下流側コンベア2の搬送方向下流端から光学積層体Fを重力落下させて回収する方法を採用可能である。
 また、本実施形態に係る搬送装置100は、好ましい構成として、前述のように、上流側搬送ローラ3と下流側搬送ローラ4との離間距離LLが光学積層体Fの搬送方向の寸法Lよりも大きく設定されている。このため、1枚の第1光学積層体F1が、上流側搬送ローラ3と上流側コンベア1との間に挟まれると同時に、下流側搬送ローラ4と下流側コンベア2との間に挟まれて搬送される状態にならない、又はその状態になったとしても一瞬である。したがい、1枚の第1光学積層体F1に搬送方向の引張力が作用しない。このため、第1光学積層体F1の光学特性等に悪影響を与えないという利点が得られる。
 1・・・上流側コンベア
 2・・・下流側コンベア
 3・・・上流側搬送ローラ
 4・・・下流側搬送ローラ
 5・・・中間搬送ローラ
 100、200・・・搬送装置
 F・・・光学積層体
 W・・・光学積層体の搬送方向に直交する方向の寸法
 P・・・ピッチ

Claims (4)

  1.  矩形に切断され、マトリクス状に配列された、粘着剤層を備える複数の光学積層体をその対向する一対の切断面が搬送方向と平行になるように搬送する搬送装置であって、
     前記光学積層体の搬送方向上流側に配置され、載置された前記光学積層体を搬送する上流側コンベアと、
     前記光学積層体の搬送方向下流側に配置され、載置された前記光学積層体を搬送する下流側コンベアと、
     前記上流側コンベアに対向して配置され、前記光学積層体を前記上流側コンベアとの間で挟んで搬送する上流側搬送ローラと、
     前記下流側コンベアに対向して配置され、前記光学積層体を前記下流側コンベアとの間で挟んで搬送する下流側搬送ローラと、
     前記光学積層体の搬送方向における前記上流側コンベアと前記下流側コンベアとの間に配置され、前記光学積層体を挟んで搬送する中間搬送ローラと、を備え、
     前記上流側搬送ローラと、前記中間搬送ローラとは、前記光学積層体の搬送方向に直交する方向について、前記光学積層体の搬送方向に直交する方向の寸法に対応するピッチで千鳥状に配置され、
     前記上流側搬送ローラ及び前記上流側コンベアによる前記光学積層体の搬送速度をV1、前記中間搬送ローラによる前記光学積層体の搬送速度をV2、前記下流側搬送ローラ及び前記下流側コンベアによる前記光学積層体の搬送速度をV3とすると、以下の式(1)、式(2)及び式(3)を満足する、
    光学積層体の搬送装置。
     V1<V2 ・・・(1)
     V1<V3 ・・・(2)
     V2=V3 ・・・(3)
  2.  前記上流側搬送ローラと前記下流側搬送ローラとは、前記光学積層体の搬送方向について、前記光学積層体の搬送方向の寸法以上に離間して配置されている、
    請求項1に記載の光学積層体の搬送装置。
  3.  矩形に切断され、マトリクス状に配列された、粘着剤層を備える複数の光学積層体をその対向する一対の切断面が搬送方向と平行になるように搬送する搬送方法であって、
     前記光学積層体の搬送方向上流側に配置された上流側コンベアと、前記上流側コンベアに対向して配置された上流側搬送ローラとの間で前記光学積層体を挟んで搬送する工程と、
     前記光学積層体の搬送方向下流側に配置された下流側コンベアと、前記下流側コンベアに対向して配置された下流側搬送ローラとの間で前記光学積層体を挟んで搬送する工程と、
     前記光学積層体の搬送方向における前記上流側コンベアと前記下流側コンベアとの間に配置された中間搬送ローラで前記光学積層体を挟んで搬送する工程と、を含み、
     前記上流側搬送ローラと、前記中間搬送ローラとを、前記光学積層体の搬送方向に直交する方向について、前記光学積層体の搬送方向に直交する方向の寸法に対応するピッチで千鳥状に配置し、
     前記上流側搬送ローラ及び前記上流側コンベアによる前記光学積層体の搬送速度をV1、前記中間搬送ローラによる前記光学積層体の搬送速度をV2、前記下流側搬送ローラ及び前記下流側コンベアによる前記光学積層体の搬送速度をV3とすると、以下の式(1)、式(2)及び式(3)を満足する、
    光学積層体の搬送方法。
     V1<V2 ・・・(1)
     V1<V3 ・・・(2)
     V2=V3 ・・・(3)
  4.  前記光学積層体に偏光フィルムが含まれる、
    請求項3に記載の光学積層体の搬送方法。
PCT/JP2020/044791 2020-03-18 2020-12-02 光学積層体の搬送装置及び搬送方法 WO2021157171A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217004202A KR102336860B1 (ko) 2020-03-18 2020-12-02 광학 적층체의 반송 장치 및 반송 방법
CN202080005372.7A CN113692388B (zh) 2020-03-18 2020-12-02 光学层叠体的输送装置以及输送方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020047557A JP6898488B1 (ja) 2020-03-18 2020-03-18 光学積層体の搬送装置及び搬送方法
JP2020-047557 2020-03-18

Publications (1)

Publication Number Publication Date
WO2021157171A1 true WO2021157171A1 (ja) 2021-08-12

Family

ID=76650030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044791 WO2021157171A1 (ja) 2020-03-18 2020-12-02 光学積層体の搬送装置及び搬送方法

Country Status (5)

Country Link
JP (1) JP6898488B1 (ja)
KR (1) KR102336860B1 (ja)
CN (1) CN113692388B (ja)
TW (1) TWI758010B (ja)
WO (1) WO2021157171A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287643A (ja) * 1985-06-13 1986-12-18 Minami Kikai Kk 定尺単板の間隔付与コンベア装置
JP2013010635A (ja) * 2011-06-02 2013-01-17 Sumitomo Chemical Co Ltd 光学フィルムの搬送方法および搬送装置
JP2017088376A (ja) * 2015-11-16 2017-05-25 株式会社東芝 搬送装置
JP2017145102A (ja) * 2016-02-17 2017-08-24 日東電工株式会社 光学フィルム搬送回収装置、光学フィルム製造システム及び光学フィルム搬送回収方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100948862B1 (ko) 2007-12-21 2010-03-22 주식회사 에스에프에이 편광필름 제조장치
JP5915521B2 (ja) * 2010-02-17 2016-05-11 株式会社ニコン 搬送装置、搬送方法、露光装置、及びデバイス製造方法
JP6045408B2 (ja) * 2013-03-12 2016-12-14 株式会社技研製作所 二輪車駐輪装置
JP7023088B2 (ja) 2017-11-27 2022-02-21 花王株式会社 発熱体の製造方法
JP2019116382A (ja) 2017-12-26 2019-07-18 日本協同企画株式会社 物品離間搬送方法と物品離間搬送装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287643A (ja) * 1985-06-13 1986-12-18 Minami Kikai Kk 定尺単板の間隔付与コンベア装置
JP2013010635A (ja) * 2011-06-02 2013-01-17 Sumitomo Chemical Co Ltd 光学フィルムの搬送方法および搬送装置
JP2017088376A (ja) * 2015-11-16 2017-05-25 株式会社東芝 搬送装置
JP2017145102A (ja) * 2016-02-17 2017-08-24 日東電工株式会社 光学フィルム搬送回収装置、光学フィルム製造システム及び光学フィルム搬送回収方法

Also Published As

Publication number Publication date
TWI758010B (zh) 2022-03-11
JP6898488B1 (ja) 2021-07-07
CN113692388A (zh) 2021-11-23
TW202138267A (zh) 2021-10-16
KR20210118050A (ko) 2021-09-29
CN113692388B (zh) 2023-08-04
KR102336860B1 (ko) 2021-12-08
JP2021147147A (ja) 2021-09-27

Similar Documents

Publication Publication Date Title
KR101782665B1 (ko) 박리 방법 및 박리 장치
KR101774621B1 (ko) 광학 기능 필름 연속 롤 및 그것을 사용한 액정 표시 소자의 제조 방법, 및 광학 기능 필름 접합 장치
WO2013137391A1 (ja) 液晶表示パネルの製造方法
CN107924020B (zh) 光学薄膜组件及其制造方法
WO2013137390A1 (ja) 液晶表示パネルの製造方法
CN108700696B (zh) 层叠光学膜的制造方法
TWI526298B (zh) A manufacturing method of an optical display panel, and a manufacturing system of an optical display panel
CN115723382A (zh) 带粘合剂光学薄膜的制造方法
JP5763468B2 (ja) 液晶表示素子の製造方法および液晶表示素子の製造システム
CN107635764B (zh) 贴合光学膜的制造方法及制造装置以及剥离膜的剥离方法
WO2021157171A1 (ja) 光学積層体の搬送装置及び搬送方法
JP6163377B2 (ja) フィルム積層体からの異物除去方法、フィルム積層体の製造方法及び製造装置。
KR20160099474A (ko) 적층 필름의 박리 방법, 및 기능성 필름의 제조 방법
JP6812296B2 (ja) 単層体または積層体の製造方法
JP6095711B2 (ja) 積層光学フィルムの製造方法
KR101889144B1 (ko) 디스플레이 유닛 제조방법 및 광학 필름 라미네이팅 시스템
JP5562760B2 (ja) ガスバリアフィルムの製造方法
CN110609349B (zh) 液晶膜的制造方法及光学层叠体的制造方法
JP6669925B1 (ja) 穴あき積層体の製造方法及び製造装置
JP6695373B2 (ja) 延伸フィルムの製造方法
JPWO2019188857A1 (ja) 長尺の延伸フィルム及び長尺の偏光フィルムの製造方法
KR20140040465A (ko) 쉬트 라미네이터
KR20160125396A (ko) 연신 필름의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917702

Country of ref document: EP

Kind code of ref document: A1