WO2021138921A1 - 新型阻燃电解质的锂盐提升有机溶剂中溶解性能的方法 - Google Patents

新型阻燃电解质的锂盐提升有机溶剂中溶解性能的方法 Download PDF

Info

Publication number
WO2021138921A1
WO2021138921A1 PCT/CN2020/071572 CN2020071572W WO2021138921A1 WO 2021138921 A1 WO2021138921 A1 WO 2021138921A1 CN 2020071572 W CN2020071572 W CN 2020071572W WO 2021138921 A1 WO2021138921 A1 WO 2021138921A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
electrolyte
flame
retardant
lithium salt
Prior art date
Application number
PCT/CN2020/071572
Other languages
English (en)
French (fr)
Inventor
李忠芳
孙鹏
崔伟慧
王传刚
郭辉
王燕
Original Assignee
山东理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东理工大学 filed Critical 山东理工大学
Priority to PCT/CN2020/071572 priority Critical patent/WO2021138921A1/zh
Priority to CN202080002865.5A priority patent/CN112204795B/zh
Publication of WO2021138921A1 publication Critical patent/WO2021138921A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6581Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms
    • C07F9/65812Cyclic phosphazenes [P=N-]n, n>=3
    • C07F9/65815Cyclic phosphazenes [P=N-]n, n>=3 n = 3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the preparation of a flame-retardant electrolyte for lithium batteries.
  • the lithium salt in the electrolyte has good solubility in organic solvents, high conductivity, and has a flame retardant function, which plays an important role in improving the safety performance of lithium ion batteries. It can be used for lithium-ion batteries, lithium-oxygen batteries, and lithium-sulfur batteries.
  • Electrolyte is an important part of electrochemical energy devices such as lithium-ion batteries, lithium-oxygen batteries, and lithium-sulfur batteries. It serves to transfer ions to ensure the electron transmission of the cathode and anode reactions of the electrochemical device. Especially in the context of large-scale applications of lithium-ion batteries, the safety of large-capacity lithium-ion batteries has become an important research topic.
  • the electrolyte is an important part of lithium-ion batteries, and is an important carrier for the movement of lithium ions between the positive and negative electrodes, and its performance directly determines the performance of the lithium-ion battery.
  • the liquid electrolyte electrolyte
  • lithium salt is an important factor affecting the performance of the electrolyte.
  • lithium salts such as lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), the most commonly used is lithium hexafluorophosphate, which has high conductivity and wide electrochemistry The window is stable and the SEI film can be formed on the carbon anode.
  • the synthesis process of lithium hexafluorophosphate is complex, involving high and low temperature processing, anhydrous and oxygen-free operation, strong corrosion protection and other production links. It is difficult and it is easy to hydrolyze, which will not only decrease the electrical conductivity, but also produce flatulence.
  • the solvation effect of the lithium salt in the electrolyte in the solution will have an important impact on the film-forming performance of the electrode/electrolyte interface and the migration behavior of lithium ions, and then significantly affect the electrochemical performance of the electrolyte.
  • CN201711433412.4 discloses the provided lithium ion battery and its electrolyte.
  • a cyano group-containing anti-overcharge additive to the electrolyte, the anti-overcharge ability of the lithium ion battery is improved, and the safety of the lithium ion battery is ensured.
  • the lithium salt used usually has problems such as high price, poor thermal stability, and easy decomposition when exposed to water. For this reason, it is necessary to develop a lithium salt with better performance.
  • the flame retardants commonly used in lithium ion batteries can be roughly divided into phosphorus-containing flame retardants, fluorine-containing flame retardants, nitrogen-containing flame retardants and composite flame retardants.
  • Trimethyl phosphate (TMP) and triethyl phosphate (TEP) are the first flame retardant additives to be used in lithium-ion batteries. They have good flame retardant effects, but due to their high phosphorus content, they tend to cause carbon anode peeling. Affect the cycle performance of the battery. At present, there is no report of flame retardant lithium salt.
  • Cyclophosphazene compounds are six-membered cyclic compounds formed by alternately connecting nitrogen-phosphorus single and double bonds. The special molecular structure and stable chemical structure make it have excellent thermal stability.
  • Cyclophosphazene compounds can undergo ring-opening polymerization to synthesize organic-inorganic polymer materials with a wider range of functions. They have good flame retardant effects. They can also be used for catalytic materials, high temperature resistant rubber, flame retardant materials and polymers Electrolytes, photoconductive polymer materials, nonlinear optical materials, biomedical polymer materials, polymer liquid crystals, separation membranes, medicine, military industry, etc. CN201810377913.3 Feng Jinkui et al.
  • CN201410007691.8 Zeng Heping announced a production method of water-based organic polyphosphazene resin, not only the production method is relatively simple, the cost is low, but also no additional flame retardant is required, high temperature resistance, flame retardant performance Better;
  • CN201610870501.4 Miao Wei et al. discloses a preparation method of polyphosphazene modified phenolic resin, the system can form an interpenetrating network, and improve thermal stability and flame retardancy.
  • the phosphazene molecule contains two flame-retardant phosphorus and nitrogen components.
  • the two elements can work together to play a flame-retardant effect, and the phosphazene can endothermic and degrade to generate phosphate compounds and incombustible gases, which form non-flammable gases on the surface of the flame-retardant material.
  • the volatile and dense protective film insulates the air, thereby inhibiting combustion. Therefore, lithium phosphate containing cyclotriphosphazene modified with organic groups not only has improved solvent performance in organic solvents, but also has high electrical conductivity, stability to water, and good flame retardancy.
  • the solubility of lithium salts in organic solvents is not large enough.
  • a method of modifying the lithium salt molecules with aromatic hydrocarbon organic groups was invented.
  • the aromatic hydrocarbon organic groups were modified. The advantages are: (1) Improve the solubility of the lithium salt in organic solvents; (2) The aromatic hydrocarbon group can increase the interaction between the electrolyte and the electrode.
  • the lithium salt has an aromatic hydrocarbon group [(R-Ar-O) x (-CP-) 3 (PO 3 Li 2 ) 6-x ] intermediate esters may be better therewith [(R-Ar-O) x (-CP-) 3 (PO 3 R '2) 6-x] complex, better compatibility, better play Flame retardant performance.
  • a new type of lithium salt that is easily soluble in organic solvents [(R-Ar-O) x (-CP-) 3 (PO 3 Li 2 ) 6-x ], the lithium salt is easily soluble in organic solvents, and A lithium salt with flame-retardant function.
  • the lithium salt has the following characteristics: (1) Cyclotriphosphazene phosphate lithium partially substituted by alkyl aromatic oxy groups in the molecule, because the lithium salt has a large number of aromatic hydrocarbon groups in the molecule , So that its solubility in organic solvents has been improved; (2) By controlling the substitution amount of aromatic oxy groups in the molecule, the solubility of this type of lithium salt in organic solvents can be adjusted; (3) because of the aromatic ring, the Its compatibility with the electrode material is improved; (4) Because the molecule contains a lot of lithium ions that can be ionized, the lithium salt has good lithium ion conductivity; (5) Because the molecule contains a good flame-retardant property Cyclotriphosphazene group and phosphoric acid group, so the salt has good flame retardant properties.
  • the lithium salt intermediate its phosphate [(R-Ar-O) x (-CP-) 3 (PO 3 R '2) 6-x] obtained compounded with novel flame retardant electrolyte;
  • the new flame-retardant electrolyte obtained by adding the compound to the lithium-ion battery electrolyte has the following advantages: (1)
  • the lithium salt has good solubility in organic solvents, the mass percentage concentration can be as high as 46%, and its solubility can be improved in the molecule.
  • the amount of aromatic hydrocarbon groups is adjusted; (2) The lithium salt can be dissolved in water, is stable to water, and will not decompose in water like lithium hexafluorophosphate, which will cause the battery to produce flatulence; (3) The compound new flame-retardant electrolyte contains A variety of flame-retardant elements and groups can have a variety of flame-retardant mechanisms, so it can have a flame-retardant effect in a variety of situations; (4) The compound electrolyte contains lithium salt, so the new flame-retardant electrolyte Adding, not only has a good flame retardant performance, but also its electrical conductivity can be improved. Unlike commonly added flame retardants, the conductivity of the electrolyte will decrease. (5) complex was [(R-Ar-O) x (-CP-) 3 (PO 3 R '2) 6-x] component, its good solubility in an organic solvent itself having good The flame retardant performance of this component is added to improve the flame retardant performance.
  • the preparation process route of the new electrolyte is as follows:
  • step 2) The novel flame-retardant electrolyte additive obtained in step 2) is added to the commercially available electrolyte without lithium salt and flame retardant to obtain a novel flame-retardant electrolyte; the electrolyte is not only very useful Good flame-retardant performance, and its lithium ion conductivity will increase, and the compatibility of the electrolyte with the electrode will be better; the assembled battery not only has better battery performance, but also its flame-retardant performance and safety performance are improved; the electrolysis The liquid is used in the electrolyte of lithium-ion batteries, lithium-oxygen batteries, and lithium-sulfur batteries.
  • the specific preparation method is as follows:
  • This method requires an excess of lithium hydroxide, weighed quantity of [(R-Ar-O) x (-CP-) 3 (PO 3 R '2) 6-x] dispersed in an excess of 2mol / L lithium hydroxide
  • heat, stir, and reflux for 24h distill the ethanol produced by the hydrolysis reaction, continue to concentrate, cool, and stand overnight to obtain a crude product.
  • the crude product is recrystallized twice with a mixture of ethanol and water to obtain colorless crystals [ (R-Ar-O) x (-CP-) 3 (PO 3 Li 2 ) 6-x ].
  • the mother liquor is exchanged with a cation exchange resin to collect and recover lithium ions.
  • the mass ratio of x ] is 10:1 ⁇ 1:1 for mixing and compounding; dissolving in a suitable organic solvent.
  • the solvents used are: methyl carbonate, ethyl carbonate, propyl carbonate, ethylene carbonate, fluoroethylene carbonate, dimethyl sulfoxide, dimethyl formamide, dimethyl acetamide, N-methyl pyrrolidone, etc.
  • One or a mixture of several solvents is used as a solvent for the electrolyte.
  • the solution that dissolves the novel flame-retardant electrolyte is used as the additive of the novel flame-retardant lithium ion battery electrolyte.
  • the new flame-retardant electrolyte additive obtained in step (4) is added with a series of additives for lithium-ion batteries, such as additives to prevent overcharging, such as diacetylferrocene, dimer, terpyridine or o-phenanthroline
  • additives to prevent overcharging such as diacetylferrocene, dimer, terpyridine or o-phenanthroline
  • additives to promote the formation of SEI film such as , Fluoroethylene carbonate, fluoropropylene carbonate, nonafluorobutyl ethyl ether, butane sultone, 1,3-propyl sultone, vinyl trimethoxysilane, 2-phenylimidazole,
  • 4-fluorophenyl isocyanate is an additive, and the added mass ratio is 4%-20%.
  • the lithium-sulfur battery and lithium-oxygen battery were assembled with a new flame-retardant electrolyte to test the battery performance. Investigate all aspects of the performance of the new flame-retardant electrolyte.
  • Example 1 Preparation of a phosphate-substituted portion cyclotriphosphazene [Cl x (-CP-) 3 ( PO 3 R '2) 6-x] of
  • This method requires an excess of lithium hydroxide, weighed quantity of [(R-Ar-O) x (-CP-) 3 (PO 3 R '2) 6-x] dispersed 2mol / L lithium hydroxide solution , Heating, stirring, refluxing for 24h, steaming out the ethanol produced by the hydrolysis reaction, continuing to concentrate, cooling, and standing overnight to obtain a crude product.
  • the crude product is recrystallized twice with a mixture of ethanol and water to obtain colorless crystals [(R -Ar-O) x (-CP-) 3 (PO 3 Li 2 ) 6-x ].
  • the mother liquor is exchanged with a cation exchange resin to collect and recover lithium ions.
  • the mass ratio of x ] is 10:1 ⁇ 1:1 for mixing and compounding; dissolving in a suitable organic solvent.
  • the solvents used are: methyl carbonate, ethyl carbonate, propyl carbonate, ethylene carbonate, fluoroethylene carbonate, dimethyl sulfoxide, dimethyl formamide, dimethyl acetamide, N-methyl pyrrolidone, etc.
  • One or a mixture of several solvents is used as a solvent for the electrolyte.
  • the solution that dissolves the novel flame-retardant electrolyte is used as the additive of the novel flame-retardant lithium ion battery electrolyte.
  • a series of lithium-ion battery additives such as additives to prevent overcharging, such as diacetylferrocene, dimer, terpyridine or o-phenanthroline, are added.
  • the lithium-sulfur battery and lithium-oxygen battery were assembled with a new flame-retardant electrolyte to test the battery performance. Investigate all aspects of the performance of the new flame-retardant electrolyte.
  • Lithium salt [(n-Bu-ph-O) 2 (-CP-) 3 (Li 2 O 3 P) 4 ], the ester intermediate is (n-Bu-ph-O) 2 (-CP-) 3 N-) 3 (R' 2 O 3 P) 4 ], the mass ratio of the two is 6:1, and the organic solvent is ethyl carbonate, propyl carbonate, ethylene carbonate, fluoroethylene carbonate, dimethyl carbonate
  • the mixed solvents of sulfoxide, dimethylacetamide, and N-methylpyrrolidone have a mass percentage concentration of 35%; the varieties and mass percentage concentrations of other additives are: diacetylferrocene 2%, large Anisole 4%, butane sultone 4%, 1,3-propyl sultone 5%, 2-phenylimidazole 6%.
  • Lithium salt [(CH 3 (CH 2 ) 6 CH 2 -ph-O) 3 (-CP-) 3 (Li 2 O 3 P) 3 ]
  • the ester intermediate is (CH 3 (CH 2 ) 6 CH 2 -ph-O) 3 (-CP-) 3 (R' 2 O 3 P) 3 ]
  • the mass ratio of the two is 8:1
  • the organic solvent is ethyl carbonate, propyl carbonate, ethylene carbonate
  • the mixed solvent of fluoroethylene carbonate, dimethyl sulfoxide, dimethylacetamide and N-methylpyrrolidone has a mass percentage concentration of 37%; the varieties and mass percentage concentrations of other additives are: diacetyl Ferrocene 5%, anisole 2%, butane sultone 4%, 1,3-propyl sultone 3%, 2-phenylimidazole 3%.
  • Lithium salt [(i-Bu-C 4 H 2 SO) 4 (-CP-) 3 (Li 2 O 3 P) 2 ]
  • the ester intermediate is (i-Bu-C 4 H 2 SO) 4 ( -CP-) 3 (R' 2 O 3 P) 2 ]
  • the mass ratio of the two is 7:1
  • the organic solvent used is ethyl carbonate, propyl carbonate, ethylene carbonate, fluoroethylene carbonate, dimethyl carbonate
  • the mixed solvents of sulfoxide, dimethylacetamide, and N-methylpyrrolidone have a concentration of 20% by mass; the varieties and concentration of other additives are: diacetylferrocene 4%, large Anisole 2%, butane sultone 1%, 1,3-propyl sultone 5%, 2-phenylimidazole 3%.
  • Lithium salt [(n-Pr-C 4 H 2 N 2 -O)(-CP-) 3 (Li 2 O 3 P) 5 ]
  • the ester intermediate is (n-Pr-C 4 H 2 N 2 -O)(-CP-) 3 (R' 2 O 3 P) 5 ]
  • the mass ratio of the two is 10:1
  • the organic solvent is ethyl carbonate, propyl carbonate, ethylene carbonate, fluoroethylene carbonate
  • a mixed solvent of esters, dimethyl sulfoxide, dimethylacetamide, and N-methylpyrrolidone has a mass percentage concentration of 39%; the varieties and mass percentage concentrations of other additives are: diacetyl ferrocene 4%, anisole 2%, butane sultone 1%, 1,3-propyl sultone 4%, 2-phenylimidazole 3%.
  • the mass ratio of the two is 10:1
  • the organic solvent is ethyl carbonate, propyl carbonate, ethylene carbonate
  • the mixed solvent of fluoroethylene carbonate, dimethyl sulfoxide, dimethyl acetamide, and N-methylpyrrolidone has a mass percentage concentration of 40%; the variety and mass percentage concentration of other additives are: diacetyl Ferrocene 4%, anisole 1%, butane sultone 1%, 1,3-propyl sultone 4%, 2-phenylimidazole 4%.
  • the mass ratio of the two is 3:1
  • the organic solvent is ethyl carbonate, propyl carbonate, ethylene carbonate
  • the mixed solvent of esters, fluoroethylene carbonate, dimethyl sulfoxide, dimethylacetamide, N-methylpyrrolidone, etc. has a mass percentage concentration of 46%; the types and mass percentage concentrations of other additives are as follows: Diacetyl ferrocene 3%, anisole 1%, butanesultone 1%, 1,3-propyl sultone 5%, 2-phenylimidazole 4%.
  • the electrolyte is replaced by the invention.
  • the battery performance is tested using GB/T18287.
  • Lithium-sulfur battery Lithium-sulfur battery
  • Lithium-sulfur battery capacity retention test cycle for 10 weeks at 1C.
  • the safety performance of all batteries is better than that of commercial electrolytes under various test conditions: for example, no air is produced when exposed to water; temperature resistance can be increased to 80 ⁇ 100°C; puncture resistance, pressure resistance, and The bending performance is greatly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

一种阻燃电解质的锂盐提升有机溶剂中溶解性能的方法,易溶于有机溶剂的阻燃电解质是用六氯环三磷腈(HCCP)部分氯被烷基芳烃氧基取代,剩余氯被亚磷酸酯取代,在水解得到部分芳烃取代的环三磷腈磷酸锂[(R-Ar-O) x(-CP-) 3(PO 3Li 2) 6-x]((-CP-) 3为环三磷腈环,x为1到5的正整数)。[(R-Ar-O) x(-CP-) 3(PO 3Li 2) 6-x]与[(R-Ar-O) x(-CP-) 3(PO 3R' 2) 6-x]按质量比10:1~1:1进行复配,按6%~48%的量溶于有机溶剂,得到阻燃电解液。该电解液具有好的锂离子电导率和很好的阻燃性能,用于各类锂电池。

Description

新型阻燃电解质的锂盐提升有机溶剂中溶解性能的方法 技术领域
本发明涉及一种用于锂电池阻燃电解质的制备。该电解质中的锂盐在有机溶剂中的溶解性能好、电导率高,具有阻燃功能,对于提高锂离子电池的安全性能具有重要作用。可用于锂离子电池、锂氧电池、锂硫电池。
背景技术
电解质是锂离子电池、锂氧电池、锂硫电池等电化学能源器件的重要组成部分,起到传递离子以保证电化学器件阴阳两极反应的电子传输。特别是在锂离子电池大规模应用的背景下,大容量锂离子电池的安全性问题成为重要的研究课题。
锂离子电池中,电解液作为锂离子电池的重要组成部分,对于锂离子在正负极之间的运动的重要载体,其性能直接决定着锂离子电池的性能。而锂盐作为液体电解质(电解液)的重要组成部分,是影响电解液性能的重要因素。常采用的锂盐,如高氯酸锂(LiClO 4)、六氟磷酸锂(LiPF 6)、四氟硼酸锂(LiBF 4),最常用的是六氟磷酸锂,它具有较高的电导率和较宽的电化学稳定窗口,且能在碳负极上形成SEI膜。但是六氟磷酸锂合成工艺复杂,涉及高、低温处理,无水无氧操作,强腐蚀防护等生产环节,难度高,且其容易水解,不但会使电导率下降,而且还会产生胀气现象,所以,开发研究新型电导率高,对水稳定的锂盐是重要的研究课题。由于电池的工作电压远高于水的分解电压,因此锂离子电池常采用有机溶剂,如乙醚、碳酸乙烯酯、碳酸丙烯酯、碳酸二乙基酯等。有机溶剂常常在充电时破坏石墨的结构,导致其剥脱,并在其表面形成固体电解质膜导致电极钝化。有机溶剂还带来易燃、易爆等安全性问题。电解液中锂盐在溶液中的溶剂化效应会对电极/电解液界面的成膜性能和锂离子的迁移行为等产生重要影响,进而显著影响电解液的电化学性能。
CN201711433412.4公开了提供的锂离子电池及其电解液,通过在电解液添加了一种含氰基的抗过充添加剂,提高了锂离子电池的抗过充能力,保证锂离子电池安全。目前,采用的锂盐通常存在着价格昂贵、热稳定性差、遇水易分解等问题,为此,需要开发性能更优锂盐。
锂离子电池常用的阻燃剂大致可分为含磷阻燃剂、含氟阻燃剂、含氮阻燃剂和复合阻燃剂。磷酸三甲酯(TMP)和磷酸三乙酯(TEP)是最早研究的应用于 锂离子电池的阻燃添加剂,阻燃效果较好,但由于其磷含量较高,易于造成碳素负极剥离,影响电池的循环性能。目前,还没有可阻燃锂盐的报道。环磷腈类化合物是氮-磷单双键交替连接形成的六元环状化合物,分子结构特殊,化学结构稳定使其具有优异的热稳定性。环磷腈类化合物可发生开环聚合反应合成功能更为广泛的有机-无机高分子材料,具有很好的阻燃效果,同时还可以用于催化材料、耐高温橡胶、阻燃材料、高分子电解质、光导高分子材料、非线性光学材料、生物医用高分子材料、高分子液晶、分离膜、医药、军工等。CN201810377913.3冯金奎等报道了一种聚磷腈的制备方法,报道了六氯环三磷腈转变成烃基或烷氧基环三磷腈用于锂离子电池添加剂;CN 201810139149.6王秀芬等报道了一种控制线性聚磷腈中间体分子量的方法,以三氯苯为溶剂在胺基磺酸催化剂催化下六氯环三磷腈开环聚合制备线性聚磷腈中间体的数均分子量Mn为1×10 4~9×10 5等级;CN201410007691.8曾和平公布了一种水性有机聚磷腈树脂的生产方法,不仅生产方法较为简便,成本低廉,而且不必额外添加阻燃剂,耐高温、阻燃性能较好;CN201610870501.4苗蔚等公开了一种聚磷腈改性酚醛树脂的制备方法,体系能够形成互穿网络,提高热稳定性和阻燃性能。磷腈分子中含可阻燃的磷、氮两种成分,两元素可协同起到阻燃作用,且磷腈可吸热降解生成磷酸盐化合物及不可燃性气体,在阻燃材料表面形成非挥发性致密的保护膜以隔绝空气,从而起到抑制燃烧的作用。所以,含有有机基团修饰的环三磷腈的磷酸锂,不但其有机溶剂中的溶剂性能得到提升,而且,其电导率高,对水稳定,阻燃性能好。把该锂盐与其中间体[(R-Ar-O) x(-CP-) 3(PO 3R’ 2) 6-x]进行复配制备的新型阻燃电解质,其阻燃性能可以大大提升。
发明内容
一般的锂盐在有机溶剂中的溶解度不够大,为了提升锂盐在有机溶剂中的溶解性能,发明了一种在锂盐分子中用芳烃类有机基团修饰的方法,芳烃类有机基团修饰的优点为:(1)提升锂盐在有机溶剂中的溶解性能;(2)芳烃基团可以增加电解液与电极之间的相互作用。因为,电极大都属于石墨类材料,其中的大π键可以与芳烃的大π键发生π-π相互作用而产生融合;(3)芳烃类有机基团的修饰可以使锂盐更容易产生溶剂化效应,使得锂盐在有机溶剂中的电导率得到提高;(4)锂盐带有芳烃基团[(R-Ar-O) x(-CP-) 3(PO 3Li 2) 6-x]可以更好地与其中间体酯类[(R-Ar-O) x(-CP-) 3(PO 3R’ 2) 6-x]复配,其相容性更好,可以更好地发挥阻燃性能。
易溶于有机溶剂的新型的锂盐[(R-Ar-O) x(-CP-) 3(PO 3Li 2) 6-x],该锂盐是一种易溶于有机溶剂的,且具有阻燃功能的锂盐,该锂盐有如下特点:(1)分子中有部分被烷基芳烃氧基取代的环三磷腈磷酸锂,由于该锂盐的分子中有大量的芳香烃基团,使其在有机溶剂中的溶解性能得到提升;(2)通过控制分子中芳香烃氧基取代的量来调控该类锂盐在有机溶剂中的溶解性能;(3)由于有芳香环,使其与电极材料的相容性得到改善;(4)由于分子中含有很多锂离子可以电离出来,所以该锂盐具有好的锂离子电导率;(5)由于分子中含有阻燃性能很好的环三磷腈基团和磷酸基团,所以该盐具有很好的阻燃性能。该锂盐与其中间体磷酸酯[(R-Ar-O) x(-CP-) 3(PO 3R’ 2) 6-x]进行复配得到新型阻燃电解质;
锂离子电池电解液中加入复配得到新型阻燃电解质有如下优点:(1)该锂盐在有机溶剂中的溶解性能好,质量百分比浓度可以高达46%,并且,其溶解性能可以提高分子中芳烃基团的量来调剂;(2)该锂盐可以溶解到水中,对水稳定,不会像六氟磷酸锂那样见水分解,而使电池产生胀气;(3)复配的新型阻燃电解质中含有多种阻燃元素和基团,可以有多种阻燃机理,所以,可以多种情况下起到阻燃效果;(4)该复配电解质的中含有锂盐,所以,新型阻燃电解质的加入,不但起到很好的阻燃性能,而且,其电导率可以提高。不像通常加入的阻燃剂,其电解液的电导率会降低。(5)复配物中[(R-Ar-O) x(-CP-) 3(PO 3R’ 2) 6-x]组份,其在有机溶剂中的溶解性能好,本身具有很好的阻燃性能,该成分的加入是为了提升阻燃性能。
新型电解质的制备工艺路线如下:
1)以六氯环三磷腈(HCCP)为原料,把其溶解二甲苯等特定溶剂中,在80~100℃下与一定量的亚磷酸三酯反应,得到部分磷酸酯化的环三磷腈[Cl x(-CP-) 3(PO 3R’ 2) 6-x],[Cl x(-CP-) 3(PO 3R’ 2) 6-x]与烷基芳烃酚钠盐(R-Ar-ONa)反应得到[(R-Ar-O) x(-CP-) 3(PO 3R’ 2) 6-x],[(R-Ar-O) x(-CP-) 3(PO 3R’ 2) 6-x]在氢氧化锂碱性条件下水解得到[(R-Ar-O) x(-CP-) 3(PO 3Li 2) 6-x];第二条水解工艺路线为:也可以先与氢氧化钠溶液反应水解,先得到磷酸钠盐[(R-Ar-O) x(-CP-) 3-(PO 3Na 2) 6-x],再用阳离子交换树脂进行阳离子交换得到磷酸形式[(R-Ar-O) x(-CP-) 3(PO 3H 2) 6-x],该磷酸结构形式中间体与氢氧化锂反应得到的[(R-Ar-O) x(-CP-) 3(PO 3Li 2) 6-x]。注意,此处的磷酸酯形式结构的[(R-Ar-O) x(-CP-) 3(PO 3R’ 2) 6-x]不能用浓盐酸水解,因为,在分子内含有对酸敏 感的酚醚键。
2)[(R-Ar-O) x(-CP-) 3(PO 3Li 2) 6-x]与[(R-Ar-O) x(-CP-) 3(PO 3R’ 2) 6-x]按照一定的比例复配、混合,溶解到合适的有机溶剂中,作为新型阻燃的锂离子电池电解质的添加剂。
3)在步骤2)中得到的新型阻燃电解质添加剂,该添加剂加入到市售的原来不加锂盐和阻燃剂的电解液中,即得到新型阻燃电解液;该电解液不但有很好的阻燃性能,而且其锂离子电导率还会增加,电解液与电极的相容性会更好;组装的电池不但电池性能更好,而且其阻燃性能、安全性能得到提高;该电解液用于锂离子电池、锂氧电池、锂硫电池的电解质。
具体制备方法如下:
(1)部分磷酸酯基取代的环三磷腈[Cl x(-CP-) 3(PO 3R’ 2) 6-x]的制备以[Cl 3(-CP-) 3-(PO 3Et 2) 3]的制备为例:
分别称取0.1mol六氯环三磷腈(34.8g)和0.3mol的亚磷酸三乙酯(49.8g),分别溶解到100mL和200mL的二甲苯(经过干燥的),搅拌情况下两种溶液混合于带有搅拌器、冷凝管和加热装置的1L的三口烧瓶中,搅拌、在100~120℃下反应5~7h,蒸出溶剂,冷却,用适量石油醚洗涤3~4次,以除去杂质,抽滤,固体在真空干燥箱内60~100℃干燥,得到)固体粉末状产品[Cl 3(-CP-) 3-(PO 3Et 2) 3]。
采用同样的方法,不同摩尔比的原料配比,可以[Cl x(-CP-) 3(PO 3Et 2) 6-x](x为1~5中整数)。反应方程式如下:
Figure PCTCN2020071572-appb-000001
与上述相同的方法,用其它亚磷酸酯类(亚磷酸三甲酯、亚磷酸三丙酯或亚磷酸三异丙酯中的一种或几种的混合物)替代亚磷酸乙酯,可以得到其它磷酸酯的化合物[Cl 3(-CP-) 3(PO 3R’ 2) 3]。如果用不同摩尔配比的反应物进行反应,则得到 [Cl x(-CP-) 3(PO 3R’ 2) 6-x]。
(2)中间体[(R-Ar-O) x(-CP-) 3(PO 3R’ 2) 6-x]合成
以[((CH 3) 2CH-ph-O) 3(-CP-) 3PO 3Et 2) 3]的合成为例:
在装有电动搅拌,冷凝管和氮气保护的三口烧瓶中,按照上述的(1)实验中[Cl 3(-CP-) 3(PO 3Et 2) 3]称取0.1mol(46.95g)溶解到四氢呋喃中,该溶液慢慢滴加到0.11mol(17.38g)对异丙基苯酚的钠盐的四氢呋喃溶液中,在80℃搅拌反应24h待反应完成,冷却,用冰醋酸中和至中性,在冰水浴中进行静置、冷却,有晶体析出,抽滤,得到的粗产品用四氢呋喃进行重结晶,得到纯品白色晶体[((CH 3) 2CH-ph-O) 3(-CP-) 3PO 3Et 2) 3]。
采用相同的方法只是选择用[Cl x(-CP-) 3(PO 3Et 2) 6-x](x为1~5中整数)和不同含有芳烃酚氧钠盐可以得到[(R-Ar-O) x(-CP-) 3(PO 3Et 2) 6-x]其中(x为1~5中整数)。
采用上述相同的方法,只是用[Cl x(-CP-) 3(PO 3R’ 2) 6-x](x为1~5中整数)替代[Cl x(-CP-) 3(PO 3Et 2) 6-x]可以得到[(R-Ar-O) x(-CP-) 3(PO 3R’ 2) 6-x]中间体。
(3)中间体[(R-Ar-O) x(-CP-) 3(PO 3R’ 2) 6-x]的水解反应制备新型阻燃的锂盐[(R-Ar-O) x(-CP-) 3(PO 3Li 2) 6-x]
[方法一]在氢氧化锂溶液中水解
该方法需要氢氧化锂过量,称取一定量的[(R-Ar-O) x(-CP-) 3(PO 3R’ 2) 6-x]分散到过量的2mol/L的氢氧化锂溶液中,加热,搅拌,回流24h,蒸出水解反应产生的乙醇,继续浓缩,冷却,静置过夜,得到粗产品,粗产品用乙醇和水的混合液重结晶两次,得到无色晶体[(R-Ar-O) x(-CP-) 3(PO 3Li 2) 6-x]。母液用阳离子交换树脂交换收集回收锂离子。
[方法二]在氢氧化钠溶液中水解。与方法一相同的方法,只是将氢氧化锂溶液换成氢氧化钠溶液即可,得到的无色晶体[(R-Ar-O) x(-CP-) 3(PO 3Na 2) 6-x],配成溶液用阳离子交换树脂进行交换24h,得到[(R-Ar-O) x(-CP-) 3(PO 3H 2) 6-x],酸型结构用等摩尔的氢氧化锂(可以稍微过量一点,溶液pH值在9~11之间)反应,得到无色晶体[(R-Ar-O) x((-CP-) 3(PO 3Li 2) 6-x]产品。这种工艺可以尽量少地用原料氢氧化锂。
第(2)和(3)步的反应方程式如下:
Figure PCTCN2020071572-appb-000002
采用上述方法,用其它酚盐替代烷基苯基酚盐(其它酚盐为:其芳烃酚盐(R-Ar-ONa)中的R选用:C 1~C 8的烷基、CH 2=CH-(CH 2) n-(n=1~6)、;Ar=ph-、-ph-、萘基,二取代萘基、呋喃基、吡啶基、吡嗪基;噻吩基、咪唑基、苯并咪唑基中的一种或几种的混合物。)可以得到其它酚盐取代的产品。
(4)电解质的复配工艺研究
[(R-Ar-O) x(-CP-) 3(PO 3Li 2) 6-x]与[(R-Ar-O) x(-CP-) 3(PO 3R’ 2) 6-x]的质量比为10:1~1:1进行混合、复配;溶解到合适的有机溶剂中。所用溶剂为:碳酸甲酯、碳酸乙酯、碳酸丙酯、碳酸乙烯酯、氟代碳酸乙烯酯、二甲基亚砜、二甲基甲酰胺、二甲基乙酰胺、N-甲基吡咯烷酮这些溶剂中的一种或几种的混合液作为电解质的溶剂。溶解新型阻燃电解质的溶液作为新型阻燃的锂离子电池电解质的添加剂。
(5)电解液的制备
(a)电解液的制备
步骤(4)中复配得到的新型阻燃电解质添加剂,添加一系列锂离子电池的添加剂,如:防止过充的添加剂,如,二乙酰基二茂铁、二联、三联吡啶或邻菲 罗啉的过渡金属配合物、大茴香醚、环己基苯、N-苯基马来酰胺中的一种或几种的混合物,添加质量比为6%~25%;促进SEI膜生成的添加剂:如,氟代碳酸乙烯酯、氟代碳酸丙烯酯、九氟代丁基乙基醚、丁磺内酯、1,3-丙基磺内酯、乙烯基三甲氧基硅烷、2-苯基咪唑、4-氟苯基异氰酸酯中的一种或几种的混合物为添加剂,添加质量比为4%~20%。
(b)电解液的性能测试
测试电解液的各种理化性能指标:如,粘度,阻燃性能,锂离子电导率等性能。通过性能的测试改善电解液的配方和复配工艺。以寻找性能更加优异电解液的制备工艺。
(6)电池组装及性能测试
用新型阻燃电解液组装电池测试电池的性能,初发电性能,不同倍率的充放电性能,循环稳定性,电池耐过热、穿刺性能,电池的耐过充性能等。
(7)组装的锂硫电池和锂氧电池性能
用新型阻燃电解液组装锂硫电池和锂氧电池分别测试其电池性能。考察新型阻燃电解液的各方面性能。
具体实施方式
[实施例1]:部分磷酸酯基取代的环三磷腈[Cl x(-CP-) 3(PO 3R’ 2) 6-x]的制备
以[Cl 3(-CP-) 3(PO 3Et 2) 3]的制备为例
分别称取0.1mol六氯环三磷腈(34.8g)和0.3mol的亚磷酸三乙酯(49.8g),分别溶解到100mL和200mL的二甲苯(经过干燥的),搅拌情况下两种溶液混合于带有搅拌器、冷凝管和加热装置的1L的三口烧瓶中,搅拌、在80~100℃下反应5~7h,蒸出溶剂,冷却,用适量石油醚洗涤3~4次,以除去杂质,抽滤,粗产品用乙醇进行重结晶3次,得到无色固体,在真空干燥箱内60~100℃干燥,得到)固体粉末状产品[Cl 3(-CP-) 3(PO 3Et 2) 3]。
采用同样的方法,不同摩尔比的原料配比,可以[Cl x(-CP-) 3(PO 3Et 2) 6-x](x为1~5中整数)。
与上述相同的方法,用其它亚磷酸酯类(亚磷酸三甲酯、亚磷酸三丙酯或亚磷酸三异丙酯中的一种或几种的混合物)替代亚磷酸乙酯,可以得到其它磷酸酯的化合物[Cl 3(-CP-) 3(PO 3R’ 2) 3]。如果用不同摩尔配比的反应物进行反应,则得到[Cl x(-CP-) 3(PO 3R’ 2) 6-x]。
[实施例2]:中间体[(R-Ar-O) x(-CP-) 3(PO 3R’ 2) 6-x]合成
以[((CH 3) 2CH-ph-O) 3(-CP-) 3(PO 3Et 2) 3]的合成为例:
在装有电动搅拌,冷凝管和氮气保护的三口烧瓶中,按照实施例1中得到的产品[Cl 3(-CP-) 3(PO 3Et 2) 3]称取0.1mol(46.95g)溶解到四氢呋喃中,该溶液慢慢滴加到0.11mol(17.38g)对异丙基苯酚的钠盐的四氢呋喃溶液中,在80℃搅拌反应24h待反应完成,冷却,用冰醋酸中和至中性,在冰水浴中进行静置、冷却,有晶体析出,抽滤,得到的粗产品用四氢呋喃进行重结晶,得到纯品白色晶体[((CH 3) 2CH-ph-O) 3(-CP-) 3(PO 3Et 2) 3]。
采用相同的方法只是选择用[Cl x(-CP-) 3(PO 3Et 2) 6-x](x为1~5中整数)用其它酚盐替代异丙基苯基酚盐(其它酚盐为:其芳烃酚盐(R-Ar-ONa)中的R选用:C 1~C 8的烷基、二取代的C 1~C 8的烷基、CH 2=CH-(CH 2) n-(n=1~6)、;Ar=ph-、-ph-、萘基,二取代萘基、呋喃基、吡啶基、吡嗪基;噻吩基、咪唑基、苯并咪唑基中的一种或几种的混合物。)可以得到[(R-Ar-O) x(-CP-) 3(PO 3Et 2) 6-x]。
采用上述相同的方法,只是用[Cl x(-CP-) 3(PO 3R’ 2) 6-x](x为1~5中整数)替代[Cl x(-CP-) 3PO 3Et 2) 6-x]可以得到[(R-Ar-O) x(-CP-) 3(PO 3R’ 2) 6-x]中间体。
[实施例3]:中间体[(R-Ar-O) x((-CP-) 3(PO 3R’ 2) 6-x]的水解反应制备新型阻燃的锂盐[(R-Ar-O) x(-CP-) 3(PO 3Li 2) 6-x]
[方法一]在氢氧化锂溶液中水解
该方法需要氢氧化锂过量,称取一定量的[(R-Ar-O) x(-CP-) 3(PO 3R’ 2) 6-x]分散到2mol/L的氢氧化锂溶液中,加热,搅拌,回流24h,蒸出水解反应产生的乙醇,继续浓缩,冷却,静置过夜,得到粗产品,粗产品用乙醇和水的混合液重结晶两次,得到无色晶体[(R-Ar-O) x(-CP-) 3(PO 3Li 2) 6-x]。母液用阳离子交换树脂交换收集回收锂离子。
[方法二]在氢氧化钠溶液中水解。与方法一相同的方法,只是将氢氧化锂溶液换成氢氧化钠溶液即可,得到的无色晶体[(R-Ar-O) x(-CP-) 3(PO 3Na 2) 6-x],配成溶液用阳离子交换树脂进行交换24h,得到[(R-Ar-O) x(-CP-) 3(PO 3H 2) 6-x],酸型结构用等摩尔的氢氧化锂(可以稍微过量一点,溶液pH值在9~11之间)反应,得到无色晶体[(R-Ar-O) x(-CP-) 3(PO 3Li 2) 6-x]]产品。
[实施例4]:采用上述方法,用其它酚盐提到烷基苯基酚盐(其它酚盐为:其芳烃酚盐(R-Ar-ONa)中的R选用:C 1~C 8的烷基、CH 2=CH-(CH 2) n-(n=1~6)、; Ar=ph-、-ph-、萘基,二取代萘基、呋喃基、吡啶基、吡嗪基;噻吩基、咪唑基、苯并咪唑基中的一种或几种的混合物。)可以得到其它酚盐取代的产品。
各种锂盐的制备工艺条件、产率、溶解性、阻燃性能、电导率等数据见表1所示。
[实施例5]:电解质的复配工艺研究
[(R-Ar-O) x(-CP-) 3(PO 3Li 2) 6-x]与[(R-Ar-O) x(-CP-) 3(PO 3R’ 2) 6-x]的质量比为10:1~1:1进行混合、复配;溶解到合适的有机溶剂中。所用溶剂为:碳酸甲酯、碳酸乙酯、碳酸丙酯、碳酸乙烯酯、氟代碳酸乙烯酯、二甲基亚砜、二甲基甲酰胺、二甲基乙酰胺、N-甲基吡咯烷酮这些溶剂中的一种或几种的混合液作为电解质的溶剂。溶解新型阻燃电解质的溶液作为新型阻燃的锂离子电池电解质的添加剂。
[实施例6]:电解液的制备
按照实施例5中复配得到的新型阻燃电解质添加剂,添加一系列锂离子电池的添加剂,如:防止过充的添加剂,如,二乙酰基二茂铁、二联、三联吡啶或邻菲罗啉的过渡金属配合物、大茴香醚、环己基苯、N-苯基马来酰胺中的一种或几种的混合物,添加质量比为6%~25%;促进SEI膜生成的添加剂:如,氟代碳酸乙烯酯、氟代碳酸丙烯酯、九氟代丁基乙基醚、丁磺内酯、1,3-丙基磺内酯、乙烯基三甲氧基硅烷、2-苯基咪唑、4-氟苯基异氰酸酯中的一种或几种的混合物为添加剂,添加质量比为4%~20%。
[实施例7]:电解液的性能测试
测试电解液的各种理化性能指标:如,粘度,阻燃性能,锂离子电导率等性能。通过性能的测试改善电解液的配方和复配工艺。以寻找性能更加优异电解液的制备工艺。
各种电解液配方、复配工艺、阻燃性能、电导率等测试结果如表2所示。
[实施例8]:锂离子电池组装及性能测试
用新型阻燃电解液组装电池测试电池的性能,初发电性能,不同倍率的充放电性能,循环稳定性,电池耐过热、穿刺性能,电池的耐过充性能等。
[实施例9]:锂硫电池组装及性能测试
[实施例10]:锂氧电池组装及性能测试
用新型阻燃电解液组装锂硫电池和锂氧电池分别测试其电池性能。考察新型 阻燃电解液的各方面性能。
使用不同电解液组装的各种电池的性能如表2所示。
表1锂盐[(R-Ar-O) x(-CP-) 3(PO 3Li 2) 6-x]的组成、产率、溶解性、电导率及阻燃性能
Figure PCTCN2020071572-appb-000003
表2电解液配方,电导率,阻燃性能,电池性能
Figure PCTCN2020071572-appb-000004
*电解液配方:
1:锂盐[(n-Bu-ph-O) 2(‐CP‐) 3(Li 2O 3P) 4],酯中间体为(n-Bu-ph-O) 2(‐CP‐) 3N-) 3(R’ 2O 3P) 4],二者的质量比为6:1,用有机溶剂为碳酸乙酯、碳酸丙酯、碳酸乙烯酯、氟代碳酸乙烯酯、二甲基亚砜、二甲基乙酰胺、N-甲基吡咯烷酮这些溶剂的混合溶剂,其质量百分比浓度为35%;其它添加剂的品种及质量百分比浓度分别为:二乙酰基二茂铁2%,大茴香醚4%,丁磺内酯4%、1,3-丙基磺内酯5%,2-苯基咪唑6%。
2:锂盐[(CH 3(CH 2) 6CH 2-ph-O) 3(‐CP‐) 3(Li 2O 3P) 3],酯中间体为(CH 3(CH 2) 6CH 2-ph-O) 3(‐CP‐) 3(R’ 2O 3P) 3],二者的质量比为8:1,用有机溶剂为碳酸乙酯、碳酸丙酯、碳酸乙烯酯、氟代碳酸乙烯酯、二甲基亚砜、二甲基乙酰胺、N-甲基吡咯烷酮这些溶剂的混合溶剂,其质量百分比浓度为37%;其它添加剂的品种及质量百分比浓度分别为:二乙酰基二茂铁5%,大茴香醚2%,丁磺内酯4%、1,3-丙基磺内酯3%,2-苯基咪唑3%。
3:锂盐[(i-Bu-C 4H 2S-O) 4(‐CP‐) 3(Li 2O 3P) 2],酯中间体为(i-Bu-C 4H 2S-O) 4(‐CP‐) 3(R’ 2O 3P) 2],二者的质量比为7:1,用有机溶剂为碳酸乙酯、碳酸丙酯、碳酸乙烯酯、氟代碳酸乙烯酯、二甲基亚砜、二甲基乙酰胺、N-甲基吡咯烷酮这些溶剂的混合溶剂,其质量百分比浓度为20%;其它添加剂的品种及质量百分比浓度分别为:二乙酰基二茂铁4%,大茴香醚2%,丁磺内酯1%、1,3-丙基磺内酯5%,2-苯基咪唑3%。
4:锂盐[(n-Pr-C 4H 2N 2-O)(‐CP‐) 3(Li 2O 3P) 5],酯中间体为(n-Pr-C 4H 2N 2-O)(‐CP‐) 3(R’ 2O 3P) 5],二者的质量比为10:1,用有机溶剂为碳酸乙酯、碳酸丙酯、碳酸乙烯酯、氟代碳酸乙烯酯、二甲基亚砜、二甲基乙酰胺、N-甲基吡咯烷酮这些溶剂的混合溶剂,其质量百分比浓度为39%;其它添加剂的品种及质量百分比浓度分别为:二乙酰基二茂铁4%,大茴香醚2%,丁磺内酯1%、1,3-丙基磺内酯4%,2-苯基咪唑3%。
5:锂盐[(CH 2=CH(CH 2) 4-ph-O) 2(‐CP‐) 3(Li 2O 3P) 4],酯中间体为(CH 2=CH(CH 2) 4-ph-O) 2(‐CP‐) 3(R’ 2O 3P) 4],二者的质量比为10:1,用有机溶剂为碳酸乙酯、碳酸丙酯、碳酸乙烯酯、氟代碳酸乙烯酯、二甲基亚砜、二甲基乙酰胺、N-甲基吡咯烷酮这些溶剂的混合溶剂,其质量百分比浓度为40%;其它添加剂的品种及质量百分比浓度分别为:二乙酰基二茂铁4%,大茴香醚1%,丁磺内 酯1%、1,3-丙基磺内酯4%,2-苯基咪唑4%。
6:锂盐[(CH 2=CH(CH 2) 4-C 4H 3N-O) 5(‐CP‐) 3(Li 2O 3P)],酯中间体为(CH 2=CH(CH 2) 4-C 4H 3N-O) 5(‐CP‐) 3(R’ 2O 3P)],二者的质量比为3:1,用有机溶剂为碳酸乙酯、碳酸丙酯、碳酸乙烯酯、氟代碳酸乙烯酯、二甲基亚砜、二甲基乙酰胺、N-甲基吡咯烷酮这些溶剂的混合溶剂,其质量百分比浓度为46%;其它添加剂的品种及质量百分比浓度分别为:二乙酰基二茂铁3%,大茴香醚1%,丁磺内酯1%、1,3-丙基磺内酯5%,2-苯基咪唑4%。
#锂离子电池
采用商用三元锂离子电池,电解液换成本发明的。电池性能采用GB/T18287进行测试。
锂硫电池:
锂硫电池容量保持率测试:1C下循环10周。
电池的安全性能
所有电池的安全性能与使用商用电解液相比各种测试条件下的性能均优:如,遇水不产生鼓气;耐温性能可以提高到80~100℃;抗穿刺性能、抗压、抗弯折性能均大幅度提高。

Claims (6)

  1. 一种新型阻燃电解质的锂盐提升有机溶剂中溶解性能的方法,其特征在于:部分芳烃取代的环三磷腈磷酸锂[(R-Ar-O) x(-CP-) 3(PO 3Li 2) 6-x]((-CP-) 3为环三磷腈环,x为1到5的正整数),该锂盐的分子中有大量的芳香烃基团,使其在有机溶剂中的溶解性能得到提升;通过控制分子中芳烃基取代的种类和量来调控该类锂盐在有机溶剂中的溶解性能;由于有芳香环,使其与电极材料的相容性得到改善;由于分子中含有很多锂离子能电离出来,所以,该锂盐具有好的锂离子电导率;由于分子中含有阻燃性能很好的环三磷腈基团和磷酸基团,所以该盐具有很好的阻燃性能;该锂盐与其中间体磷酸酯[(R-Ar-O) x(-CP-) 3-(PO 3R’ 2) 6-x]进行复配得到新型阻燃电解质;该新型电解质的制备工艺路线如下:
    (1)以六氯环三磷腈(HCCP)为原料,到特定溶剂中,在80~100℃下与一定量的亚磷酸三酯反应,得到部分磷酸酯化的多氯环三磷腈磷酸酯[Cl x(-CP-) 3(PO 3R’ 2) 6-x],[Cl x(-CP-) 3(PO 3R’ 2) 6-x]与烷基芳烃酚钠盐(R-Ar-ONa)反应得到[(R-Ar-O) x(-CP-) 3(PO 3R’ 2) 6-x],[(R-Ar-O) x(-CP-) 3-(PO 3R’ 2) 6-x]在氢氧化锂碱性条件下水解得到[(R-Ar-O) x(-CP-) 3(PO 3Li 2) 6-x];
    (2)[(R-Ar-O) x(-CP-) 3(PO 3Li 2) 6-x]与[(R-Ar-O) x(-CP-) 3(PO 3R’ 2) 6-x]按照一定的比例复配、混合,溶解到合适的有机溶剂中,作为新型阻燃的锂离子电池电解质的添加剂;
    (3)在步骤2)中得到的新型阻燃电解质添加剂,该添加剂加入到市售的原来不加阻燃剂和锂盐的电解液中,即得到新型阻燃电解液;该电解液不但有很好的阻燃性能,而且其锂离子电导率还会增加,电解液与电极的相容性会更好;组装的电池不但电池性能更好,而且其阻燃性能、安全性能得到提高;该电解液用于锂离子电池、锂氧电池、锂硫电池的电解质。
  2. 根据权利要求1所述新型阻燃电解质的锂盐提升有机溶剂中溶解性能的方法,其亚磷酸酯选用:亚磷酸三甲酯、亚磷酸三乙酯、亚磷酸三丙酯或亚磷酸三异丙酯中的一种或几种的混合物,其特征在于:水解反应生成的醇沸点低,容易被蒸发去除;HCCP与亚磷酸酯的摩尔比为1:1~1:5。
  3. 根据权利要求1所述新型阻燃电解质的锂盐提升有机溶剂中溶解性能的方法,HCCP与亚磷酸酯反应所用的溶剂为:甲苯、二甲苯、四氯乙烯、二噁烷; 其特征在于:对HCCP和亚磷酸酯的溶解性能好,且对两种反应物是惰性的,不发生反应。
  4. 根据权利要求1所述新型阻燃电解质的锂盐提升有机溶剂中溶解性能的方法,其特征在于:其芳烃酚盐(R-Ar-ONa)中的R选用:C 1~C 8的烷基、CH 2=CH-(CH 2) n-(n=1~6)、;Ar=ph-(苯基)、-ph-(二取代苯基)、萘基,二取代萘基、呋喃基、吡啶基、吡嗪基;噻吩基、咪唑基、苯并咪唑基中的一种或几种的混合物。
  5. 根据权利要求1所述新型阻燃电解质的锂盐提升有机溶剂中溶解性能的方法,其特征在于:电解质复配时[(R-Ar-O) x(-CP-) 3(PO 3Li 2) 6-x]与[(R-Ar-O) x(-CP-) 3(PO 3R’ 2) 6-x]的质量比为10:1~1:1;所用溶剂为:碳酸甲酯、碳酸乙酯、碳酸丙酯、碳酸乙烯酯、氟代碳酸乙烯酯、二甲基亚砜、二甲基甲酰胺、二甲基乙酰胺、N-甲基吡咯烷酮这些溶剂中的一种或几种的混合液作为电解质的溶剂。
  6. 根据权利要求1所述新型阻燃电解质的锂盐提升有机溶剂中溶解性能的方法,其特征在于[(R-Ar-O) x(-CP-) 3(PO 3Li 2) 6-x]与[(R-Ar-O) x(-CP-) 3(PO 3R’ 2) 6-x]复配的新型阻燃电解质添加剂加入到电解液中的质量百分比浓度为8%~46%。
PCT/CN2020/071572 2020-01-11 2020-01-11 新型阻燃电解质的锂盐提升有机溶剂中溶解性能的方法 WO2021138921A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/071572 WO2021138921A1 (zh) 2020-01-11 2020-01-11 新型阻燃电解质的锂盐提升有机溶剂中溶解性能的方法
CN202080002865.5A CN112204795B (zh) 2020-01-11 2020-01-11 一种阻燃电解液的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/071572 WO2021138921A1 (zh) 2020-01-11 2020-01-11 新型阻燃电解质的锂盐提升有机溶剂中溶解性能的方法

Publications (1)

Publication Number Publication Date
WO2021138921A1 true WO2021138921A1 (zh) 2021-07-15

Family

ID=74033921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071572 WO2021138921A1 (zh) 2020-01-11 2020-01-11 新型阻燃电解质的锂盐提升有机溶剂中溶解性能的方法

Country Status (2)

Country Link
CN (1) CN112204795B (zh)
WO (1) WO2021138921A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114335717A (zh) * 2021-11-15 2022-04-12 上海大学 一种高电压锂电池电解液添加剂及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751534A (zh) * 2012-07-18 2012-10-24 中国科学院福建物质结构研究所 一种动力锂电池用阻燃电解液
CN105119013A (zh) * 2015-07-28 2015-12-02 珠海市赛纬电子材料有限公司 阻燃型锂离子电池电解液及锂离子电池
WO2019088097A1 (ja) * 2017-10-31 2019-05-09 関東電化工業株式会社 非水電解液及び非水電解液電池
CN110265702A (zh) * 2019-05-28 2019-09-20 合肥国轩高科动力能源有限公司 一种阻燃与防过充的电解液添加剂及含该添加剂的电解液
CN110380118A (zh) * 2019-07-18 2019-10-25 华中科技大学 一种具有阻燃功能的聚合物电解质及其制备与应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105161764B (zh) * 2015-09-25 2018-07-27 江苏华东锂电技术研究院有限公司 锂硫电池电解液及其制备方法,以及锂硫电池
CN106532117A (zh) * 2016-11-17 2017-03-22 张家港市国泰华荣化工新材料有限公司 一种锂离子电池电解液及锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751534A (zh) * 2012-07-18 2012-10-24 中国科学院福建物质结构研究所 一种动力锂电池用阻燃电解液
CN105119013A (zh) * 2015-07-28 2015-12-02 珠海市赛纬电子材料有限公司 阻燃型锂离子电池电解液及锂离子电池
WO2019088097A1 (ja) * 2017-10-31 2019-05-09 関東電化工業株式会社 非水電解液及び非水電解液電池
CN110265702A (zh) * 2019-05-28 2019-09-20 合肥国轩高科动力能源有限公司 一种阻燃与防过充的电解液添加剂及含该添加剂的电解液
CN110380118A (zh) * 2019-07-18 2019-10-25 华中科技大学 一种具有阻燃功能的聚合物电解质及其制备与应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114335717A (zh) * 2021-11-15 2022-04-12 上海大学 一种高电压锂电池电解液添加剂及其应用

Also Published As

Publication number Publication date
CN112204795B (zh) 2022-05-17
CN112204795A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
US7875204B2 (en) Flame retarding polymer electrolyte composition containing maleimides
US11271248B2 (en) All-inorganic solvents for electrolytes
WO2018090594A1 (zh) 一种锂离子电池电解液及锂离子电池
CN111193067B (zh) 一种锂离子电池用阻燃电解质的制备方法
WO2017152624A1 (zh) 一种电解液以及锂离子电池
Liu et al. A novel polyphosphonate flame-retardant additive towards safety-reinforced all-solid-state polymer electrolyte
CN111205322B (zh) 2,4,6-三氧代-1,3,5-三嗪-三磷酸锂及其复配物用于阻燃电解质的制备方法
KR20010067251A (ko) 전기화학 전지에 사용하기 위한 낮은 인화성 용매로서의불화 설폰아미드
CN109585924A (zh) 三(烷胺基)膦化合物的应用、锂离子电池及其电解液和电解液添加剂
CN109411812A (zh) 一种阻燃电解液及其锂二次电池
WO2020019596A1 (zh) 一种磷腈类化合物、包括该磷腈类化合物的组合物、包含其的阻燃剂以及应用
WO2021138922A1 (zh) 易溶于有机溶剂的阻燃锂离子电池电解质的制备方法
US10707531B1 (en) All-inorganic solvents for electrolytes
WO2021138921A1 (zh) 新型阻燃电解质的锂盐提升有机溶剂中溶解性能的方法
CN103403949A (zh) 非水电解液用添加剂、非水电解液和非水电解液二次电池
CN111193070B (zh) 一种含有聚磷腈主链的锂离子电池阻燃电解质的制备方法
CN111224165B (zh) 高有机相容性的阻燃型锂盐及其复合阻燃电解质的制备方法
CN111211350B (zh) 含三聚氰环的易溶于有机溶剂的阻燃电解质的制备方法
CN113121602B (zh) 一种磷腈基磷酸酯添加剂和制备方法及锂电池电解液
CN111276742B (zh) 一种含有环三磷腈环的锂离子电池阻燃电解质的制备方法
CN111690002A (zh) 锂盐化合物及其制备方法和包含其的锂离子电池电解液
CN117913361A (zh) 芳基磷腈类化合物的应用、电解液用组合物、电解液及其制备方法、电池
CN112072170B (zh) 一种聚铝/硼酸盐固态电解质和一种电池
KR102068759B1 (ko) 리튬이차전지용 전해질 첨가제 조성물 및 리튬이차전지용 전해질 첨가제 조성물의 제조 방법
CN116072968A (zh) 高氟化阻燃电解液添加剂、制备方法以及高氟化阻燃电解液及其在锂电池中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912929

Country of ref document: EP

Kind code of ref document: A1