WO2020019596A1 - 一种磷腈类化合物、包括该磷腈类化合物的组合物、包含其的阻燃剂以及应用 - Google Patents

一种磷腈类化合物、包括该磷腈类化合物的组合物、包含其的阻燃剂以及应用 Download PDF

Info

Publication number
WO2020019596A1
WO2020019596A1 PCT/CN2018/116520 CN2018116520W WO2020019596A1 WO 2020019596 A1 WO2020019596 A1 WO 2020019596A1 CN 2018116520 W CN2018116520 W CN 2018116520W WO 2020019596 A1 WO2020019596 A1 WO 2020019596A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
phosphazene
temperature
formula
flame retardant
Prior art date
Application number
PCT/CN2018/116520
Other languages
English (en)
French (fr)
Inventor
宋伟国
吴豫生
李新建
王西龙
杜军明
王忠卫
Original Assignee
潍坊医学院
东营道一生物医药科技有限公司
上海道箴医药科技有限公司
潍坊鸿诺和泰新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍坊医学院, 东营道一生物医药科技有限公司, 上海道箴医药科技有限公司, 潍坊鸿诺和泰新材料科技有限公司 filed Critical 潍坊医学院
Publication of WO2020019596A1 publication Critical patent/WO2020019596A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6581Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms
    • C07F9/65812Cyclic phosphazenes [P=N-]n, n>=3
    • C07F9/65815Cyclic phosphazenes [P=N-]n, n>=3 n = 3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5399Phosphorus bound to nitrogen

Definitions

  • the present invention relates to the field of chemical engineering, and more specifically, to a compound applicable to a flame retardant, a composition containing the compound, and a production method thereof.
  • the invention also provides the application of the compounds and the composition containing the compounds in various industrial production flame retarding aspects.
  • phosphazene compounds are a new type of inorganic organic hybrid polymer with alternating single and double bond arrangements with nitrogen and phosphorus atoms as the main chain structure.
  • the main chain and organic branched chain of the phosphazene compound make it have the characteristics of inorganic and organic, have the unmatched performance of traditional polymers, and have applications in the manufacture of fire-resistant materials, engineering plastics, and medicine.
  • Chlorophosphazene is a raw material for the synthesis of phosphazene compounds, and can also be used as a flame retardant in a specific technical field.
  • the prior art is still lacking in the application efficiency (such as addition ratio, compounding effect, etc.) of the flame retardants of the compounds of the chlorophosphazene series or the composition of the chlorophosphazene compounds, and the specific crystal form and The research between flame retardant effect and efficiency has not achieved a better industrialization process in this regard.
  • other series of compounds derived from chlorophosphazene and their flame retardants still have similar deficiencies, and because conventional flame retardants may still partially pollute the environment, it is still difficult to achieve The added amount reaches the excellent flame retardant effect in industrial applications or national standards.
  • the flame retardants used in our country mainly include halogen-based and phosphorus-based.
  • phosphorus-based flame retardants have the functions of flame retardant, heat insulation and oxygen barrier, and generate less smoke, and are not easy to form toxic and harmful gases.
  • Phosphazene flame retardant is a phosphorus-containing flame retardant with excellent flame retardancy. It has excellent flame retardancy due to high content of phosphorus nitrogen.
  • Phosphazene series flame retardants generally do not require the addition of other auxiliary flame retardants. At the same time, they have good thermal stability, non-toxicity, small amount of smoke, and self-extinguishing properties.
  • phosphazene flame retardants Due to their low price, good material affinity and flexible use methods, their application fields are quite wide. Its varieties are water-soluble and oil-soluble, suitable for a variety of occasions, can be used for cotton, hemp, silk and other natural fibers, can also be used for synthetic materials such as polyester, can also be used in aviation materials. However, it has not been reported as a safety flame retardant for organic synthetic materials and bio-affinity materials, and has the characteristics of non-toxic heating and difficult decomposition.
  • Chinese patent CN107383104A discloses a method for preparing chlorophosphazene.
  • the patent has made beneficial attempts, broadened and explored the synthesis process of chlorophosphazene, but it lacks the exploration of the effect of chlorophosphazene and the corresponding flame retardant products in practical applications, and there is no Study on the relationship between crystal morphology, crystal morphology, preparation process, and implementation effect.
  • the present invention provides one or more technical solutions to overcome the deficiencies and defects of the related art. Specifically, the present invention provides a phosphazene-based compound and a phosphazene-based compound having excellent and reliable flame retardancy performance, low formulation and addition ratio, and suitable for large-scale production and industrial application. The invention also provides a flame retardant containing the above components and its application in the field of flame retardant.
  • a phosphazene compound (phosphazene compound) is provided, wherein the phosphazene compound is a compound represented by the following general formula:
  • each of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 is selected from Cl, CH 3 O-, (CH 3 ) 2 N-, CH 3 CH 2 CH 2 O-, H 2 N-, -O- (CH 2 ) nCH 3 , -O- (CH 2 ) nCH ((CH 2 ) mCH 3 ) 2 , -O- (CH 2 ) nC ((CH 2 ) mCH 3 ) 3 , -O- (CH 2 ) nSi ((CH 2 ) mCH 3 ) 3 , -Ph, -PhMe group, Wherein each of R 1 to R 8 is the same as or different from each other;
  • n and n each have an integer ranging from 0 to 20, and a has an integer from 4 to 20.
  • phosphazene-based compound characterized in that one or more compounds of formula 1 and / or formula 2 contained in the compound or composition are in a crystalline state.
  • the compound in the crystalline state exhibits at least 3 diffraction characteristic peaks at a 2 ⁇ value in a range of about 5 degrees to about 45 degrees; It preferably has at least 4 diffraction characteristic peaks, or 5 diffraction characteristic peaks.
  • the compound of Formula 1 is further represented as a compound of the following chemical formula:
  • R 1 ′, R 2 ′, R 3 ′, R 4 ′, R 5 ′, and R 6 ′ are each selected from one or more of the group consisting of the following groups:
  • the phosphazene compound is composed of the compound of Formula 1, which is further represented as a compound of the following chemical formula:
  • R 2 ′, R 3 ′, R 4 ′, R 5 ′, and R 6 ′ are each selected from one or more of the group consisting of the following groups:
  • b is selected from an integer between 0 and 7
  • m is independently selected from an integer between 0 and 7.
  • the value of b is 0.
  • the phosphazene compound is composed of the compound of Formula 2, and is further represented by the following chemical formula:
  • the compound of Formula 2 or Formula 3 is in a crystalline state, and the a value of the compound of Formula 3 in Formula 3 is 4 or 5; or a may be any integer from 4 to 10. .
  • the compound of formula 1 of the phosphazene compound is further represented by the following chemical formula:
  • the compound of Formula 4 exhibits a crystalline state.
  • the compound of Formula 4 is in a crystalline state and has a specific crystal form represented by the following description:
  • XRD X-ray diffraction
  • the X-ray diffraction (XRD) pattern of the compound of the specific crystal form includes the main characteristic diffraction peaks at the following 2 ⁇ values:
  • the compound of Formula 4 is in a crystalline state, and when tested in an X-ray diffraction (XRD) pattern performed on the compound of Formula 4 in a crystalline state, it has a 2 ⁇ value of 41.9 ° ⁇
  • the strongest diffraction peak intensity is shown at 0.2 °
  • the second strongest diffraction peak intensity and the third strongest diffraction seal intensity are shown at 13.9 ° ⁇ 0.2 °, and 15.9 ° ⁇ 0.2 °;
  • the ratio of the intensity of the second strongest diffraction peak to the intensity of the strongest diffraction peak is between 0.90 and 0.98: 1, and the ratio of the intensity of the third strongest diffraction seal to the intensity of the strongest diffraction peak is 0.60 to 0.70: 1 between.
  • the crystal form of the compound of Formula 4 further includes a diffraction peak at a 2 ⁇ value of the X-ray diffraction (XRD) pattern at 24.4 ⁇ 0.2 °, 27.7 ⁇ 0.2 °, and 28.4 ⁇ 0.2 °.
  • the ratios of the intensity of the diffraction peaks at 24.4 ⁇ 0.2 °, 27.7 ⁇ 0.2 °, and 28.4 ⁇ 0.2 ° to the intensity of the strongest diffraction peak are 0.15 to 0.5: 1.
  • the phosphazene compound is represented by the compound of the compound of Formula 1, and further represented by the following chemical formula:
  • the compound of Formula 5 is in a crystalline state.
  • the compound of Formula 5 is in a crystalline state and has a specific crystal form represented by the following description:
  • XRD X-ray diffraction
  • the X-ray diffraction (XRD) pattern of the compound of the specific crystal form includes the main characteristic diffraction peaks at the following 2 ⁇ values:
  • the compound of Formula 5 is in a crystalline state, and when tested in an X-ray diffraction (XRD) pattern performed on the compound of Formula 5 in a crystalline state, it has a 2 ⁇ value of 20.2 ⁇ 0.2
  • the strongest diffraction peak intensity is shown at °
  • the second strongest diffraction peak intensity and the third strongest diffraction seal intensity are shown at 12.0 ⁇ 0.2 °, and 10.8 ⁇ 0.2 °
  • the second strongest diffraction peak intensity and the strongest The ratio of diffraction peak intensity is between 0.75 and 0.80: 1
  • the ratio of the third strongest diffraction seal intensity to the strongest diffraction peak intensity is between 0.60 and 0.70: 1.
  • the crystal form further includes a diffraction peak at a 2 ⁇ value of the X-ray diffraction (XRD) spectrum of 7.2 ⁇ 0.2 ° and 29.8 ⁇ 0.2 °, the 7.2 ⁇ 0.2 ° and 29.8 ⁇ 0.2 °
  • the ratio of the intensity of the diffraction peak to the intensity of the strongest diffraction peak is between 0.2 and 0.5: 1.
  • the phosphazene compound is represented by the formula 1, and further the compound is represented by the following chemical formula:
  • the compound of Formula 6 exhibits a crystalline state.
  • the compound of Formula 6 is in a crystalline state and has a specific crystal form represented by the following description:
  • XRD X-ray diffraction
  • the X-ray diffraction (XRD) pattern of the compound of the specific crystal form includes the main characteristic diffraction peaks at the following 2 ⁇ values:
  • the compound of Formula 6 is in a crystalline state, and when tested in an X-ray diffraction (XRD) pattern on the compound of Formula 6 in a crystalline state, it has a 2 ⁇ value of 10.4 ⁇ 0.2
  • the strongest diffraction peak intensity is shown at °
  • the second strongest diffraction peak intensity, the third strongest diffraction seal intensity, and the fourth diffraction peak intensity are shown at 19.0 ⁇ 0.2 °, 20.0 ⁇ 0.2 °, and 17.3 ⁇ 0.2 °.
  • the ratio of the intensity of the second strongest diffraction peak, the intensity of the third strongest diffraction seal to the intensity of the strongest diffraction peak is between 0.55 and 0.65, and the ratio of the intensity of the fourth strongest diffraction seal to the intensity of the strongest diffraction peak is 0.50 to 0.55: Between 1 .
  • the crystal form further includes a diffraction peak at a 2 ⁇ value of the X-ray diffraction (XRD) spectrum at 26.8 ⁇ 0.2 °, and a diffraction peak and a strongest diffraction peak at the 26.8 ⁇ 0.2 °.
  • the intensity ratio is between 0.45 and 0.50: 1.
  • the phosphazene compound is represented by the compound of Formula 1, and it is further represented by the following chemical formula:
  • the compound of Formula 7 exhibits a crystalline state.
  • the compound of 7 above is in a crystalline state and has a specific crystal form represented by the following description:
  • the compound of Formula 7 is in a crystalline state and has a specific crystal form represented by the following description:
  • the X-ray diffraction (XRD) pattern of the compound of the specific crystal form includes the main characteristic diffraction at a position where the 2 ⁇ value is below Peak: 11.0 ⁇ 0.2 °.
  • the crystal form further includes a 2 ⁇ value of an X-ray diffraction (XRD) spectrum at 11.4 ⁇ 0.2 °, 13.6 ⁇ 0.2 °, 14.6 ⁇ 0.2 °, 20.3 ⁇ 0.2 °, and For the diffraction peak at 22.5 ⁇ 0.2 °, the ratio of the intensity of the diffraction peak to the intensity of the strongest diffraction peak at the above four places is 0.15 to 0.35: 1.
  • XRD X-ray diffraction
  • the phosphazene compound is further represented by the following compound of Formula 8:
  • the compound of Formula 8 includes the compound in a crystalline state.
  • the compound of the above 8 is in a crystalline state and includes a specific crystal form represented by the following description: the compound of the formula 8 is in a crystalline state and has a specific crystal represented by the following description Form:
  • the X-ray diffraction (XRD) pattern of the compound of the specific crystal form includes the main 2 ⁇ values below Characteristic diffraction peaks: 13.1 ⁇ 0.2 °, and 16.1 ⁇ 0.2 °.
  • the compound of Formula 8 is in a crystalline state, and when tested in an X-ray diffraction (XRD) pattern performed on the compound of Formula 8 in a crystalline state, it has a 2 ⁇ value of 13.1 ⁇ 0.2
  • the strongest diffraction peak intensity is shown here, and the second strongest diffraction peak intensity is shown at 16.1 ⁇ 0.2 °, and the ratio of the second strongest peak intensity to the strongest diffraction peak intensity is between 0.70 and 0.80.
  • the crystalline form further includes diffraction peaks at 2 ⁇ values of the X-ray diffraction (XRD) spectrum at 6.3 ⁇ 0.2 °, 16.7 ⁇ 0.2 °, and 26.9 ⁇ 0.2 °.
  • the ratio of the intensity of the appearance of the diffraction peak to the intensity of the strongest diffraction peak is between 0.40 and 0.50: 1.
  • the phosphazene compound is further represented by the general formula of the compound of Formula 9:
  • the phosphazene compound is represented by a compound of the following formula 10:
  • the value of a is 4, 5, 6, 7, 8, 9, or 10.
  • the values of n and a are preferably integers between 3 and 15; or, the values of n or a are preferably integers between 0 and 7; m The value of is preferably an integer from 0 to 7.
  • composition containing one or more of the phosphazene compounds in the above scheme is also provided.
  • the composition is a composition used in a flame retardant.
  • the present invention also provides a method for preparing the above-mentioned compound or composition.
  • the method includes the steps of taking raw materials, mixing them, and activating the reaction to synthesize the compounds.
  • the method for synthesizing a composition containing a phosphazene compound includes the following: Or said The method includes the following steps:
  • Hexachlorocyclotriphosphazene one or more compounds of the general formula MOR 1 ′, and / or a metal element selected from sodium, potassium, and calcium are used as starting materials through a synthetic reaction in an organic solvent to obtain Alkylsilyloxy- and / or alkoxy-substituted cyclotriphosphazene compounds; wherein
  • M is H, Na, K or Ca; O represents oxygen; R 1 ′ is selected from (CH 2 ) nSi ((CH 2 ) mCH 3 ) 3 , (CH 2 ) nCH 3 , (CH 2 ) nCH ((CH 2 ) mCH 3 ) 2 , (CH 2 ) nC ((CH 2 ) mCH 3 ) 3 ; b is an integer from 0 to 7; m is preferably from 0 to 7 Integers (such "MOR 1 '" compounds may be referred to as trialkylsilyl alcohols, alkanols (e.g., methanol, ethanol, propanol), sodium trialkylsilyl alcohol, potassium trialkylsilyl alcohol, Alkylsilyl calcium alkoxide, and sodium alkoxide (sodium methoxide, sodium ethoxide), potassium alkoxide, and calcium alkoxide).
  • R 1 ′ is selected from (CH 2
  • the method further comprises the following specific steps:
  • trialkylsilyl (alk) alcohol To a container containing tetrahydrofuran or chlorobenzene or 1,4-dioxane, add trialkylsilyl (alk) alcohol, and metallic sodium or metallic calcium;
  • the suspension is concentrated, and the solvent is distilled off to obtain a white solid; further washing with water, washing with an organic solvent, concentration, and purification are performed to obtain the formula 4 Cyclotriphosphazene compounds.
  • the method is used to synthesize the A compound, the method comprising:
  • Step (1) a step of synthesizing crude hexachlorocyclotriphosphazene using phosphorus pentachloride and ammonium chloride as raw materials;
  • Step (2) A step of recrystallizing the product of the crude hexachlorocyclotriphosphazene using an organic solvent.
  • the step of synthesizing crude hexachlorocyclotriphosphazene further comprises:
  • Solvent I The ratio of 2400 to 2600 grams is taken as organic solvent I; phosphorus pentachloride and organic solvent I are added to the first reactor under the protection of nitrogen, and the temperature is raised to 80 ° C and stirred at this temperature for 1 to 2 hours to 5 hours.
  • Phosphorus chloride is completely dissolved; under the protection of nitrogen, add ammonium chloride, double catalyst and organic solvent I to the second reactor, start stirring, and raise the temperature to reflux. Slowly drop the solution in the first reactor under reflux. Add to the second reactor, continue stirring under reflux for 1 to 2 hours after the dropwise addition is completed; cool to room temperature, filter, and concentrate the mother liquor to remove the solvent to obtain the crude hexachlorocyclotriphosphazene Product; where
  • the double catalyst is a mixture of pyridine and magnesium chloride
  • the organic solvent I is selected from benzene, chlorobenzene, o-chlorobenzene, carbon tetrachloride, 1,1,2,2-tetrachloroethane and 1,1,2. -Any one of trichloroethane.
  • the recrystallization step includes:
  • the prepared crude hexachlorocyclotriphosphazene product is dissolved at an elevated temperature using an organic solvent II, and then the organic solvent II in which the product is dissolved is extracted with concentrated sulfuric acid; thereafter, the product obtained by extraction is reused
  • the organic solvent II is dissolved at an elevated temperature, and then slowly cooled down and gradually crystallized to obtain the hexachlorocyclotriphosphazene compound in the crystalline form; wherein the organic solvent II is selected from petroleum ether, n-heptane and methyl Tert-butyl ether.
  • the recrystallization step includes:
  • the product obtained by the above extraction is added to petroleum ether again, and is warmed to 80 ° C. at a rate of 1 to 3 ° C./minute, and stirred at 80 ° C. for 1 to 2 hours until the product is completely dissolved, and then 1 to 3 ° C. / The temperature is reduced to 0 ⁇ 5 ° C in minutes, so that the product gradually crystallizes in the process;
  • the crystalline product is filtered to obtain the hexachlorocyclotriphosphazene compound in the crystal form.
  • the method is used to synthesize the A compound, the method comprising:
  • Step (1) Using chlorophosphazene And phenol as raw material under liquid conditions below 40 ° C Crude product
  • Step (2) Dissolve the crude product by using tetrahydrofuran as an organic solvent, then raise the temperature to a reflux temperature of 65 to 70 ° C., and slowly lower the temperature so that the product crystallizes in this process, thereby obtaining the compound of.
  • each of the steps (1) and (2) specifically includes the following steps:
  • the agent is selected from the group consisting of sodium hydroxide, potassium carbonate, and sodium carbonate;
  • Step (2) According to the ratio of 6 to 10 grams of tetrahydrofuran per 1 gram of the product of step (1), take tetrahydrofuran, raise the temperature to 65-70 ° C and stir at this temperature for 2 to 3 hours, and then 0.5 to 5 ° C / minute The temperature is slowly reduced to 10-15 ° C, and the mixture is stirred at 10-15 ° C for 2-5 hours, filtered, and the filter cake is dried under vacuum to obtain the crystal form.
  • Step (1) Hexachlorocyclotriphosphazene and phenol are used as raw materials to synthesize a crude product of hexaphenoxycyclotriphosphazene;
  • Step (2) The above crude product is added to a sufficient amount of a solvent selected from ethanol, isopropanol or methanol, and the temperature is raised to a reflux temperature, the temperature is maintained and stirred for 2 to 3 hours, and then 0.5 to 3 ° C / The rate of minutes is slowly reduced to 10-15 ° C and stirred at this temperature for 2 to 5 hours.
  • a solvent selected from ethanol, isopropanol or methanol
  • the solvent used in the step (2) is anhydrous ethanol.
  • step (2) ethanol or even anhydrous ethanol is preferably used as a recrystallization solvent, and the reflux temperature is 75 to 80 ° C, and the temperature is maintained and stirred for 3 hours at this temperature. Thereafter, the temperature was slowly lowered to 12 to 15 ° C at a rate of 0.5 to 1 ° C / minute.
  • the step (1) more specifically includes the following steps:
  • Step (1) Add phenol and chlorobenzene to the container under the protection of nitrogen, stir at room temperature for 20-30 minutes, and wait until use; under the protection of nitrogen, the hexachlorocyclotriphosphazene, Potassium carbonate and chlorobenzene as acid binding agents were added to a four-necked flask, and the phenol-chlorobenzene solution prepared above was slowly added dropwise while controlling the temperature below 40 ° C;
  • the step (2) more specifically includes the following steps:
  • Step (2) Add the crude product obtained in step (1) and anhydrous ethanol as the recrystallization solvent to the container, raise the temperature to reflux to 78 ° C, and stir at this temperature for 2 to 3 hours, and then 0.5 to The rate of 1 ° C / min is slowly reduced to 12-15 ° C, and the mixture is stirred at 12-15 ° C for 2 to 3 hours, so that the product is formed into the hexaphenoxycyclotriphosphazene compound in the crystal form in the process.
  • Step (1) Using hexachlorocyclotriphosphazene, dimethylamine hydrochloride and triethylamine as raw materials to prepare a crude product of hexa- (dimethylamino) cyclotriphosphazene;
  • Step (2) The crude product is added to a petroleum ether solvent, and the temperature is controlled at 40 ° C for 2-3 hours and continuously stirred; thereafter, the temperature is lowered to 0 to 5 ° C and maintained under stirring conditions for 2 To 5 hours, allowing the crude product to crystallize Compound.
  • the step (1) specifically includes the following steps:
  • Step (1) Using hexachlorocyclotriphosphazene and sodium methoxide as raw materials, obtain a crude product of hexamethoxycyclotriphosphazene through a reaction in a liquid state in the presence of a solvent;
  • step (2) the crude product of the hexamethoxycyclotriphosphazene is dissolved into a solvent selected from the group consisting of petroleum ether, n-heptane and methyl tert-butyl ether, and then the temperature is raised to the reflux temperature. Incubate for a period of time, and then slowly lower the temperature to 0 to 5 ° C; in the process, a crystalline product of hexamethoxycyclotriphosphazene is obtained.
  • a solvent selected from the group consisting of petroleum ether, n-heptane and methyl tert-butyl ether
  • the solvent in which the crude product of hexamethoxycyclotriphosphazene is dissolved is n-heptane.
  • the step (2) further includes the following specific steps: using n-heptane to dissolve the crude product of hexamethoxycyclotriphosphazene, and then heating up to 40 ° C and stirring at this temperature for 2 to 3 Hours, then cooled down to 0-5 ° C at a temperature of 0.5 to 3 ° C / min and maintained for 2 to 5 hours, during which hexamethoxycyclotriphosphazene crystallized; thereafter, the steps of filtration and vacuum drying of the filter cake were performed To obtain a crystalline product of hexamethoxycyclotriphosphazene.
  • Step (1) Hexachlorocyclotriphosphazene and sodium cyanide are used as raw materials to prepare a crude product of hexapropoxycyclotriphosphazene at a reaction temperature of 5 to 20 ° C;
  • Step (2) The crude product of the hexapropoxycyclotriphosphazene is dissolved in dichloromethane, and the solvent is finally removed to obtain a hexapropoxycyclotriphosphazene compound.
  • the step (1) further specifically includes the following steps:
  • Hexachlorocyclotriphosphazene and an organic solvent selected from the group consisting of methanol, n-propanol, and tetrahydrofuran were added to the first reactor under nitrogen protection, and stirred at room temperature for 1 to 2 hours to hexachlorocyclotrisphosphine. The nitrile is completely dissolved;
  • An organic solvent selected from the group consisting of n-propanol and tetrahydrofuran was added to the second reactor under the protection of nitrogen, and the temperature in the second reactor was reduced to 5-10 ° C under the protection of nitrogen, and the temperature was controlled at Slowly add sodium hydride and n-propanol as raw materials to the second reactor below 10 ° C. After the addition, stir at 10-15 ° C for 1 to 2 hours.
  • the solution in the first reactor was slowly added dropwise to the second reactor. After the dropwise addition was completed, the solution was heated to reflux and stirred under reflux for 10-12 hours. After cooling to room temperature and filtering, the filtrate was concentrated to remove the solvent. That is, a crude product of hexapropoxycyclotriphosphazene is obtained.
  • Hexachlorotriphosphazene and NH 3 methanol solution are used as raw materials, and any organic solvent selected from methanol, n-propanol and tetrahydrofuran is used; hexachlorocyclotriphosphazene and organic solvent are added under the protection of nitrogen.
  • the reaction container is stirred at room temperature for 1 to 2 hours until the hexachlorocyclotriphosphazene is completely dissolved; then the reaction container is cooled to less than 10 ° C; while maintaining the temperature, the NH 3 methanol solution is added dropwise, and the stirring is continued after the addition is complete The reaction is performed for 10 to 20 hours to obtain the compound.
  • the reaction vessel is cooled to 0 to 5 ° C. and a NH 3 methanol solution is added dropwise, and a reaction occurs between the raw materials at this temperature;
  • the method further comprises the following specific steps:
  • the method includes the following specific steps:
  • the suspension is subjected to steps including washing with water, washing with organic solvents, and concentration to obtain cyclotriphosphazene compounds containing alkylsilyloxy (or alkoxy) substitution.
  • the method includes the following specific steps:
  • the suspension was decanted and concentrated to obtain a yellow viscous solid or liquid, washed with water, washed with water and organic solvents, and dissolved and purified with toluene, dichloromethane, chloroform or dichloroethane to obtain an alkylsilyl group.
  • Oxy (or alkoxy) substituted cyclotriphosphazene derivatives were prepared by decanted and concentrated to obtain a yellow viscous solid or liquid, washed with water, washed with water and organic solvents, and dissolved and purified with toluene, dichloromethane, chloroform or dichloroethane to obtain an alkylsilyl group.
  • the method includes the following specific steps:
  • the white suspension is subjected to a further purification process to obtain an alkylsilyloxy (and or alkoxy) -containing cyclotriphosphazene derivative.
  • the method includes the following specific steps:
  • the suspension was decanted and concentrated to obtain a yellow viscous solid or liquid, washed with water, washed with water, organic solvents, and dissolved and purified with toluene, dichloromethane, chloroform, or dichloroethane to obtain an alkyl-containing silicon. Cyclotriphosphazene derivatives substituted with alkoxy (and or alkoxy).
  • the synthesized compound is Where b is equal to zero.
  • the invention also relates to the use of the above-mentioned composition or compound in terms of flame retardants.
  • the compound or composition is applied to a resin, a plastic, or an electrolyte of a battery structure.
  • the compound or composition is applied to PMMA (polymethyl methacrylate), PS (polystyrene), PBT (polybutylene terephthalate), PC (poly (Carbonate), ABS (acrylonitrile-butadiene-styrene copolymer), PA (nylon), PU (polyurethane), PPO (polyphenylene ether), epoxy resin and other resins
  • PMMA polymethyl methacrylate
  • PS polystyrene
  • PBT polybutylene terephthalate
  • PC poly (Carbonate)
  • ABS acrylonitrile-butadiene-styrene copolymer
  • PA nylon
  • PU polyurethane
  • PPO polyphenylene ether
  • epoxy resin epoxy resin and other resins
  • the mixture is preferably PMMA, PC, PC / ABS alloy and epoxy resin.
  • composition contains a formula such as The compound shown; wherein the value of a ranges from 3 to 10; preferably, a is 3, 4, or 5.
  • the composition contains hexaphenoxycyclotriphosphazene.
  • the flame retardant comprises a phosphazene compound according to any one of 1 to 32 or a plurality of components in the composition according to claim 33 or 34.
  • the resin or plastic is one or more of PE, PP, PVC, PS, ABS, PA, PC, POM, PBT, PET, PPO, PMMA, PU and epoxy resin. mixture.
  • the resin or plastic is a resin material using PMMA, PC, PC / ABS alloy resin, and PU, PET, PA6 or epoxy resin as a matrix.
  • a flame retardant which includes the phosphazene-based compound or the composition according to the above.
  • the flame retardant includes a formula such as Compounds shown; where a ranges from 3-10.
  • the flame retardant includes a chemical formula as The components of a compound.
  • One aspect of the present invention is to provide different phosphazene compounds. More importantly, on this basis, the crystalline forms of partially crystalline solid phosphazene compounds and their derivatives have been studied, and the present invention has been unexpectedly discovered. Effect of Synthetic Specific Crystal Forms on Improving Flame Retardant Performance. In the technical solution of the present invention,
  • the raw materials used for the cyclic triphosphazene derivative flame retardant are simple and easy to obtain, and are suitable for industrial production;
  • the cyclotriphosphazene derivative flame retardant provided by the present invention has the advantages of simple operation, advanced technology, solvent recyclability and low cost;
  • the crystal form of the cyclotriphosphazene derivative flame retardant synthesized by the present invention is the most stable crystal form, which has good thermal stability and high flame retardant efficiency;
  • cyclotriphosphazene compounds and derivatives thereof having a specific crystal state synthesized in the present invention are added to the material, whether in engineering plastics or general-purpose plastics, and lithium ion battery electrolytes, Flame retardant cloth and flame retardant paper have excellent flame retardant properties, stable crystal form, and drip resistance. Only a small amount of addition is needed, and the material's flame retardant performance reaches V-1 or even V-0 standards. The other properties of the material have little effect.
  • Example 1 is an X-ray test chart of hexachlorocyclotriphosphazene in Example 1/2;
  • Example 3 is a selective electron diffraction pattern of a phenoxyphosphazene compound prepared in Example 3;
  • thermogravimetric analysis curve (TGA) of a phenoxyphosphazene compound prepared in Example 3;
  • FIG. 5 is an X-ray diffraction pattern (XRD, or XPRD, at the top of the vertical axis of the vertical axis of the vertical axis in order to save space, there are some non-proportionally displayed parts) of the hexaphenoxy phosphazene compound prepared in Example 4;
  • XRD X-ray diffraction pattern
  • Example 6 is a SAED selective electron diffraction photograph of the product prepared in Example 4.
  • Example 7 is a thermogravimetric analysis spectrum of the product prepared in Example 4.
  • Example 8 is an X-ray diffraction pattern of hexa- (dimethylamino) cyclotriphosphazene prepared in Example 5;
  • Example 10 is a thermogravimetric analysis chart of the product prepared in Example 5.
  • Example 11 is an XRD ray diffraction spectrum of the compound synthesized in Example 6 with respect to hexamethoxycyclotriphosphazene;
  • FIG. 12 is a SEAD electron diffraction pattern of hexamethoxycyclotriphosphazene synthesized in Example 6; FIG.
  • FIG. 15 is an infrared spectrum test of an alkylsiloxy-containing cyclotriphosphazene compound prepared in Example 83;
  • FIG. 16 is a nuclear magnetic phosphorus spectrum of an alkylsiloxy group-containing cyclotriphosphazene prepared in Example 83 (sample “1a”).
  • FIG. 17 is an infrared spectrum test of an alkylsiloxy-containing cyclotriphosphazene compound prepared in Example 85 (sample “3a”).
  • the raw materials for the synthesis of some compounds are derived from the primary products (such as hexachlorocyclotriphosphazene, polychlorophosphazene, etc.) synthesized in the previous steps of the present invention, which can also be understood according to the disclosure of the specification of the present invention.
  • Ammonium chloride purity ⁇ 99.8%, Tianjin Kemiou Chemical Reagent Co., Ltd .;
  • N-propanol purity ⁇ 99.8%, Tianjin Kemiou Chemical Reagent Co., Ltd .;
  • Phenol purity ⁇ 99.5%, Shanghai McLean Biochemical Technology Co., Ltd .;
  • Nuclear magnetic resonance spectrum testing equipment BRUKERAV 400 nuclear magnetic resonance spectrometer, Switzerland BRUKER company;
  • X-Ray Diffraction The crystal structure was tested using a D / Max2550VB / PC diffractometer from Japan's Rigaku Company.
  • the scanning range is 10 ° -80 °, and the scanning step is 0.02 °.
  • the scanning speed is 8 ° / min when the spectrum is scanned;
  • SAED Select electron diffraction
  • GS-MS Agilent 7890B-5977A GC / MS;
  • solvent I solvent I
  • solvent II solvent II
  • solvent III solvent IV
  • solvent V solvent VI
  • symbols such as “solvent I, solvent II, solvent III, solvent IV, solvent V, and solvent VI”
  • the choice of the solvent is in some aspects of the present invention. It is important in the scheme, which may be related to the crystalline state, category and morphology of the compound, phosphazene compound or cyclotriphosphazene compound according to the present invention, so that it may even be unexpectedly related to the crystal type, resistance The effect of fuel is related.
  • solvent descriptions when specific solvent descriptions appear, the types of solvents described in the specific examples shall prevail.
  • the technical solution of the present invention may refer to the following solvent selection:
  • the organic solvent I may be benzene, chlorobenzene, o-chlorobenzene, carbon tetrachloride, 1,1,2,2-tetrachloroethyl Any one of alkane and 1,1,2-trichloroethane;
  • the solvent II may be any one of petroleum ether, n-heptane and methyl tert-butyl ether;
  • the organic solvent III may be toluene Any of chlorobenzene, tetrahydrofuran;
  • the solvent IV may be any one of ethanol, isopropanol, methanol, and tetrahydrofuran;
  • the solvent IV may be any of ethanol, isopropanol, methanol, and tetrahydrofuran;
  • Any of the solvents V may be any one of petroleum ether, n-heptane and methyl tert-butyl ether;
  • This example involves compounds Preparation and characterization of crystalline morphology and properties.
  • Organic solvent I in proportion; add phosphorus pentachloride and organic solvent I to reactor A under the protection of nitrogen, warm to 80 ° C and stir at this temperature for 1 to 2 hours until the phosphorus pentachlor is completely dissolved; under nitrogen Under protection, add ammonium chloride, catalyst and organic solvent I to reactor B. Turn on the stirring and raise the temperature to reflux. Slowly add the solution in reactor A to reactor B under reflux. After the dropwise addition is complete Continue stirring under reflux for 1 to 2 hours to complete; cool to room temperature, filter, and concentrate the mother liquor to remove the solvent to obtain the product polychlorophosphazene.
  • the organic solvent I may be benzene, chlorobenzene, o-chlorobenzene, carbon tetrachloride, 1,1,2,2-tetrachloroethane, and 1,1,2-trichloroethyl.
  • the solvent II may be any one of petroleum ether, n-heptane, and methyl tert-butyl ether; and the catalyst may be any one of ferric chloride, magnesium chloride, and zinc chloride.
  • n in the synthesized product may take a value of 1 to 20, and preferably, a value of 3-15.
  • the temperature was slowly raised to a reflux state of 130 to 132 ° C.
  • the prepared phosphorus pentachlorochlorobenzene solution was slowly added dropwise to a 2000 ml four-necked flask, the dropping time was controlled to be not less than 4 hours, and the stirring was continued under reflux for 1 to 2 hours after the dropwise addition was completed; It was cooled to room temperature, filtered, and the mother liquor was concentrated to remove the solvent to obtain 100.2 g of a compound.
  • the obtained compound was subjected to the above-mentioned test results and showed that it was a chlorophosphazene compound.
  • This embodiment also relates to the preparation and synthesis of chlorophosphazene, and mainly relates to the synthesis, crystal form and properties of hexachlorocyclotriphosphazene.
  • Organic solvent I was taken in a proportion of ⁇ 2600 grams; phosphorus pentachloride and organic solvent I were added to reactor A under the protection of nitrogen, heated to 80 ° C.
  • the double catalyst includes magnesium chloride in addition to pyridine.
  • FIG. 1 is an X-ray diffraction spectrum of the prepared hexachlorocyclotriphosphazene after recrystallization.
  • the characteristic analysis of diffraction peaks and crystal forms important for the synthetic product of the present invention is shown in the following table:
  • the hexachlorocyclotriphosphazene product produced by the present invention has the above-mentioned specific crystallinity and crystal morphology (such as the position of the diffraction peak, the relative intensity of the main diffraction peak, etc.).
  • the inventors unexpectedly found that hexachlorocyclotriphosphazene with the above crystal form has a better effect on the application of the crystal itself and the subsequent production of other phosphazene compounds used as flame retardants, even in some cases It will affect the crystal morphology and flame retardant effect of the subsequent synthesis of phosphazene compounds.
  • the crystallization process is important for the crystal form and morphology of the product, among which the solvent used in the crystallization process (petroleum ether is particularly preferred in this embodiment), the heating process, Insulation process and the curve of the entire crystallization process (heating temperature, number of times, time, etc.).
  • the solvent used in the crystallization process petroleum ether is particularly preferred in this embodiment
  • the heating process Insulation process
  • the curve of the entire crystallization process heating temperature, number of times, time, etc.
  • This embodiment relates to the preparation of phenoxyphosphazene compounds, the characterization and study of crystal forms, and the testing of flame retardancy.
  • the chlorophosphazene synthesized in the above example can be used as one of the starting materials.
  • the acid-binding agent can be selected from sodium hydroxide, potassium carbonate, and sodium carbonate.
  • Crystallization Take organic solvent IV at a ratio of 6 to 10 grams of organic solvent IV per 1 gram of crude product, heat up to reflux and stir at this temperature for 2 to 3 hours, and then slowly lower the temperature to 10 to 15 ° C and 10 to 15 ° C. Stir for 2 to 5 hours, filter, and dry the filter cake under vacuum to obtain phenoxyphosphazene as white crystals.
  • the following specific process is followed: 58.3 g of phenol and 174 ml of chlorobenzene are added to a 250 ml four-necked flask under nitrogen protection, and the mixture is stirred at room temperature for 20 to 30 minutes before use. Under nitrogen protection, 34.8 g of compound 1, 85.7 g of acid-binding agent potassium carbonate and 174 ml of chlorobenzene were added to a 500 ml four-necked flask, and the chlorobenzene solution of phenol was slowly added dropwise at a controlled temperature below 40 ° C, and then the temperature was raised to 130 to 135 ° C reflux temperature and stirring at reflux temperature for 3 to 5 hours. Cool to room temperature, filter, discard the filter cake, retain the filtrate, wash the filtrate twice with 120 ml of deionized water, and then concentrate the layers to remove the solvent. To obtain the crude product compound.
  • the above samples were first subjected to XRD diffraction pattern testing, and the results are shown in FIG. 2. It can be seen from FIG. 2 that the obtained phenoxyphosphazene compound has obvious crystalline characteristics.
  • the compound of Formula 5 is in a crystalline state and has a specific crystalline form represented by the following description.
  • the X-ray diffraction (XRD) pattern of the compound of the specific crystal form includes the main characteristic diffraction peaks at the following 2 ⁇ values: 10.8 ⁇ 0.2 degrees , 12.0 ⁇ 0.2 degrees, 20.2 ⁇ 0.2 degrees.
  • the compound of Formula 5 is in a crystalline state, which exhibits the strongest diffraction peak intensity at a 2 ⁇ value of 20.2 ⁇ 0.2 °, and exhibits a secondary intensity at 12.0 ⁇ 0.2 ° and 10.8 ⁇ 0.2 °.
  • Diffraction peak intensity and the third strongest diffraction peak intensity, the ratio of the second strongest diffraction peak intensity to the strongest diffraction peak intensity is between 0.75 and 0.80: 1, and the third strongest diffraction peak intensity and the strongest diffraction peak intensity The ratio is between 0.60 and 0.70: 1.
  • not only the 2 ⁇ value of the X-ray diffraction (XRD) spectrum shows a diffraction peak of 7.2 ⁇ 0.2 ° and 29.8 ⁇ 0.2 °, but also the diffraction at 7.2 ⁇ 0.2 ° and 29.8 ⁇ 0.2 °
  • the ratio of the intensity of the peak to the strongest diffraction peak is between 0.2 and 0.5: 1.
  • a phenoxyphosphazene compound having the above-mentioned degree of crystallinity, especially a specific crystal form has better stability and it is even surprisingly possible to add only a lower proportion (down to 1%) of the amount Good flame retardant effect in resin and other products.
  • the sample was further subjected to a selective electron diffraction experiment (SAED), and the results are shown in FIG. According to the electron diffraction of FIG. 3, it can be determined that the selected phenoxyphosphazene compound synthesized by the process of the present invention has a distinct diffraction ring, indicating that the substance in the selected region is a crystal, which is consistent with the XRD result. That is, the synthesized
  • the product is a compound having a phenoxyphosphazene as described above.
  • thermogravimetric analysis experiment was further performed on the phenoxyphosphazene compound prepared in this example.
  • the experimental results obtained are shown in FIG. 4.
  • the phenoxyphosphazene compound began to lose weight only after 330 degrees, and the final residual rate was 4.15%, further explaining that the product of the specific crystal form obtained by the specific process of the present invention has excellent thermal stability.
  • Example 3 'conducted a preliminary study on the flame retardancy of the phenoxyphosphazene compound prepared in Example 3.
  • the crystalline phenoxyphosphazene compound or mixture synthesized above was added to a resin plastic to test the flame retardancy of the plastic.
  • the results showed that it has excellent heat resistance and flame retardancy.
  • the common phenoxyphosphazene flame retardant sold is low, no additional anti-dripping agent is needed, and the resin can make the resin in a low addition ratio (such as 1 to 2% wt).
  • the flame retardant grade of plastic reaches UL94 V-0 standard. At the same time, because of the low addition amount and stable crystal form, it has little effect on other mechanical properties and processing molding of resin plastic.
  • the resin plastics mentioned above are PMMA (polymethyl methacrylate), PS (polystyrene), PBT (polybutylene terephthalate), PC (polycarbonate), and ABS (acrylonitrile-butyl Diene-styrene copolymer), PA (nylon), PU (polyurethane), PPO (polyphenylene ether), epoxy resin and other resins, preferably PMMA, PC, PC / ABS alloy and epoxy resin.
  • PMMA polymethyl methacrylate
  • PS polystyrene
  • PBT polybutylene terephthalate
  • PC polycarbonate
  • ABS acrylonitrile-butyl Diene-styrene copolymer
  • PA nylon
  • PU polyurethane
  • PPO polyphenylene ether
  • epoxy resin and other resins preferably PMMA, PC, PC / ABS alloy and epoxy resin.
  • the crystalline phenoxyphosphazene mixture (1) is added in an amount of 0.5% to 15% by weight, preferably 2% to 10%. Based on the total mass of the resin, in a general industrial resin, A preferred ratio is 0.5% to 3%.
  • the flame retardant performance test described above is a limit oxygen index and flame retardant drip resistance test.
  • the above-mentioned limit oxygen index test is in accordance with the GB / T 2046.2-2009 standard.
  • the test instrument is a JF-3 oxygen index meter, and the sample size is 100 ⁇ 10 ⁇ 4mm.
  • the flame retardant and drip resistance evaluation test is in accordance with the UL94 standard.
  • the sample size is 125 ⁇ 13mm. There are 10 samples in each thickness and 2 sets of samples. The samples are tested at 23 ° C and 50% RH for 48 hours. Five samples of one thickness were tested at 70 ° C for 7 days.
  • the flame retardant of phenoxyphosphazene with a specific crystal form synthesized according to this process can be used alone or in a compound (which will be explained in more detail later) in an extremely low proportion ( As low as 1%, or even 0.5%) can play an effective flame retardant effect.
  • the blending ratio is only 0.5%, it can effectively improve the limiting oxygen index and the flame retardancy effect of V-1 level, which is significantly better than the effect of the flame retardant additives on the market. .
  • This embodiment relates to a hexaphenoxyphosphazene compound or a derivative of a hexaphenoxyphosphazene compound.
  • the hexachlorocyclotriphosphazene prepared in the foregoing technical scheme can be used as one of the raw materials (for example, from Example 2).
  • the raw materials of each component are taken, and the organic solvent is used at a ratio of 3,300 to 3500 grams of organic solvent per mole of hexachlorocyclotriphosphazene III; add hexachlorocyclotriphosphazene, acid binding agent and organic solvent III to the reactor under the protection of nitrogen, slowly add phenol to the reactor at a temperature lower than 40 ° C, then raise the temperature to reflux and Stirring at reflux temperature for 3 to 5 hours ends; cooling to room temperature, filtering, washing the mother liquor with water, and then concentrating several layers to remove the solvent, to obtain a crude product.
  • Crystallization step Take organic solvent IV at a ratio of 6 to 10 grams of organic solvent IV per 1 gram of crude product, raise the temperature to reflux and stir at this temperature for 2 to 3 hours, and then slowly lower the temperature to 10 to 15 ° C and 10 to 15 Stir for 2 to 5 hours at °C, filter, and dry the filter cake under vacuum to obtain hexaphenoxycyclotriphosphazene as white crystals.
  • XRD X-ray spectrometry
  • the operation can be further carried out in the following specific manner: 330.3 g of phenol and 1,650 ml of chlorobenzene are added to a 2000 ml four-necked flask under nitrogen protection, and the mixture is stirred at room temperature for 20 to 30 minutes before use. Under nitrogen protection, 200 g of a hexachlorocyclotriphosphazene compound (which can be selected from the products synthesized in the previous examples as raw materials), 485 g of acid binding agent potassium carbonate, and 1,650 ml of chlorobenzene were added to a 5000 ml four-necked flask, and the temperature was controlled.
  • Crystallization step Add the above crude product compound and 400 ml of absolute ethanol to a 1000 ml pressure-resistant four-necked flask, raise the temperature to reflux to 78 ° C and stir at this temperature for 2 to 3 hours, and then at 0.5 to 1 ° C / minute The temperature was slowly lowered to 12-15 ° C, and stirred at 12-15 ° C for 3 hours, filtered, and the filter cake was dried under vacuum to obtain 327.2 g of white crystalline compound 4 in a yield of 82%.
  • FIG. 5 is an XRD test chart of a hexaphenoxyphosphazene compound prepared according to Example 4.
  • FIG. It can be seen from the figure that the crystals of the hexaphenoxyphosphazene compound synthesized according to the process of the present invention have clear characteristics and features. It can be seen from the figure that in the test of the X-ray diffraction (XRD) pattern performed on the compound of Formula 6 in the crystalline state, the X-ray diffraction (XRD) pattern of the compound of the specific crystal form includes the following 2 ⁇ value The main characteristic diffraction peaks are: 10.4 ⁇ 0.2 degrees, 17.3 ⁇ 0.2 degrees, 19.0 ⁇ 0.2 degrees, and 20.0 ⁇ 0.2 degrees.
  • the 2 ⁇ value showed the strongest diffraction peak intensity at 10.4 ⁇ 0.2 °, and the second strong diffraction peak intensity, the third strongest diffraction seal at 19.0 ⁇ 0.2 °, 20.0 ⁇ 0.2 °, and 17.3 ⁇ 0.2 °.
  • Intensity and the intensity of the fourth diffraction peak, the ratio of the intensity of the second strongest diffraction peak, the intensity of the third strongest diffraction seal to the intensity of the strongest diffraction peak is between 0.55 and 0.65, and the intensity of the fourth strongest diffraction seal is the strongest
  • the ratio of diffraction peak intensities is between 0.50 and 0.55: 1.
  • the crystal form further includes a diffraction peak at a 2 ⁇ value of the X-ray diffraction (XRD) spectrum at 26.8 ⁇ 0.2 °, and a diffraction peak and a strongest diffraction peak at the 26.8 ⁇ 0.2 °.
  • the intensity ratio is between 0.45 and 0.50: 1.
  • the crystal form further includes a diffraction peak at a 2 ⁇ value of the X-ray diffraction (XRD) spectrum at 26.8 ⁇ 0.2 °, and a ratio of the intensity of the diffraction peak to the intensity of the strongest diffraction peak at the 26.8 ⁇ 0.2 °. It is between 0.45 and 0.50: 1; and the ratio of the intensity of the diffraction peak occurring at 26.8 ⁇ 0.2 ° to the intensity of the strongest diffraction peak is between 0.45 and 0.50: 1.
  • XRD X-ray diffraction
  • the crystallization step is important. In order to obtain the optimal form (the form most conducive to the subsequent application and effect of the flame retardant), it is preferable to use the crystallization step and the heating, holding, and cooling curves in the process of the present invention.
  • FIG. 6 shows the test results of the selected area electron diffraction experiments of the corresponding samples. It can be seen from the figure that the solid material obtained by crystallization is not only determined by X-rays as a crystalline form, has obvious lattice phases, and has some diffraction spots.
  • the XRD pattern of the solid material obtained by crystallization shows a strong The diffraction spot shows that the substance is crystal.
  • the selected area electron diffraction shows that there is a complete set of diffraction spots, indicating that the substance in the selected area is a grain.
  • FIG. 7 is a chart of a thermal weight loss analysis experiment of the sample. As shown in the figure, the sample begins to lose weight from 320 degrees, and the final residual rate is 7.76%. The product of this crystal form obtained by the crystalline product obtained by the process of the present invention has good thermal stability.
  • Example 4 'involves testing the hexaphenoxyphosphazene compound prepared in Example 4 for a corresponding flame retardant product.
  • a hexaphenoxyphosphazene compound synthesized in Example 4 was used.
  • the synthetic crystalline hexaphenoxycyclotriphosphazene was added to the resin plastic, and the flame retardancy of the plastic was tested. The results showed that it has excellent heat resistance and flame retardancy.
  • the resin plastics mentioned above are PMMA (polymethyl methacrylate), PS (polystyrene), PBT (polybutylene terephthalate), PC (polycarbonate), and ABS (acrylonitrile-butyl Diene-styrene copolymer), PA (nylon), PU (polyurethane), PPO (polyphenylene ether), epoxy resin and other resins, preferably PMMA, PC, PC / ABS alloy and epoxy resin.
  • PMMA polymethyl methacrylate
  • PS polystyrene
  • PBT polybutylene terephthalate
  • PC polycarbonate
  • ABS acrylonitrile-butyl Diene-styrene copolymer
  • PA nylon
  • PU polyurethane
  • PPO polyphenylene ether
  • epoxy resin and other resins preferably PMMA, PC, PC / ABS alloy and epoxy resin.
  • the crystalline phenoxycyclotriphosphazene is added in an amount of 0.5% to 15%, preferably 1% to 10%, based on the total mass of the flame retardant-containing resin or other materials used. .
  • the flame retardant performance test described above is a limit oxygen index and flame retardant drip resistance test.
  • the above-mentioned limit oxygen index test is in accordance with the GB / T 2046.2-2009 standard.
  • the test instrument is a JF-3 oxygen index meter, and the sample size is 100 ⁇ 10 ⁇ 4mm.
  • the flame retardant and drip resistance evaluation test is in accordance with the UL94 standard.
  • the sample size is 125 ⁇ 13mm. There are 10 samples in each thickness and 2 sets of samples. The samples are tested at 23 ° C and 50% RH for 48 hours. Five samples of one thickness were tested at 70 ° C for 7 days.
  • antioxidant 1076 (3- (3,5-di-tert-butyl-4-hydroxyphenyl) n-octadecanol propionate)
  • antioxidant 168 tris (2,4 phosphite) -Any two combinations of di-tert-butylphenyl) ester and antioxidant 1010 (tetrakis (methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate) methane)
  • the amount of addition is 0.1% to 0.5% of the amount of PC, preferably 0.3%, and the two component antioxidants each account for 0.15%.
  • the hexaphenoxyphosphazene compound according to the present invention can be obtained at an extremely low addition amount (for example, 0.5% wt or 1% addition amount with respect to the total mass). Excellent and stable flame retardant effect.
  • an extremely low addition amount for example, 0.5% wt or 1% addition amount with respect to the total mass.
  • Excellent and stable flame retardant effect For example, in the polycarbonate PC experiment, when 0.5% added amount of hexaphenoxycyclotriphosphazene is used, an effective flame retardant effect can be obtained.
  • the mass ratio of the above PC and ABS is 70:30, and the composite antioxidant is the antioxidant 1076 (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propanoic acid n-octadecanol ester).
  • Oxygen agent 168 tris (2,4-di-tert-butylphenyl) phosphite
  • antioxidant 1010 tetrakis (methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propyl) Ester) methane
  • the addition amount is 0.1% to 0.5% of the amount of PC / ABS, preferably 0.3%, preferably the two component antioxidants each account for 0.15%.
  • the use amount of the curing agent DDS is 30% to 50% of the amount of the substance of the epoxy resin, and preferably 35% to 40%.
  • This embodiment relates to compounds Preparation, research on the crystalline form corresponding to a specific process, and related performance tests.
  • Crystallization step Take organic solvent V at a ratio of 6 to 10 grams per 1 gram of crude product, raise the temperature to 40 ° C and stir at this temperature for 2 to 3 hours, and then slowly lower the temperature to 0 to 5 ° C. Stir at 0 to 5 ° C for 2 to 5 hours, filter, and dry the filter cake under vacuum to obtain hexa- (dimethylamino) cyclotriphosphazene as white crystals.
  • Crystallization process Add the crude product compound and 10 ml of petroleum ether to a 25 ml four-necked flask, raise the temperature to 40 ° C and stir at this temperature for 2 to 3 hours, and then slowly lower the temperature to 0 to 5 ° C, and set the temperature at 0 to 5 ° C. Stir for 2 to 5 hours at °C, filter, and dry the filter cake under vacuum to obtain 5.5 g of compound 5 as white crystals with a yield of 85.8%.
  • FIG. 8 is the test result of the XRD diffraction pattern (in accordance with the description method of the drawings, and clarity, there are some non-proportionate scales on the upper part of the vertical axis, but those skilled in the art can know the description method of such scales, And there is only a strong single diffraction peak in the upper part of the vertical axis, which does not affect the description of the chart).
  • the compound of Formula 7 is in a crystalline state and has a specific crystal form represented by the following description: and has a specific crystal form of the following description: X-ray diffraction is performed on the compound of Formula 7 for the crystalline state (In the test in the XRD) pattern, the X-ray diffraction (XRD) pattern of the compound of the specific crystal form includes a main characteristic diffraction peak at a position of 2 ⁇ : 11.0 ⁇ 0.2 °.
  • the crystal form further includes a 2 ⁇ value of an X-ray diffraction (XRD) spectrum at 11.4 ⁇ 0.2 °, 13.6 ⁇ 0.2 °, 14.6 ⁇ 0.2 °, 20.3 ⁇ 0.2 °, and 22.5 ⁇ 0.2
  • XRD X-ray diffraction
  • the spectrum includes the main characteristic diffraction peaks at the following 2 ⁇ values: 11.0 ⁇ 0.2 °.
  • the crystal form further includes a 2 ⁇ value of an X-ray diffraction (XRD) spectrum at 11.4 ⁇ 0.2 °, 13.6 ⁇ 0.2 °, 14.6 ⁇ 0.2 °, 20.3 ⁇ 0.2 °, and 22.5 ⁇ 0.2
  • XRD X-ray diffraction
  • the hexa- (dimethylamino) cyclotriphosphazene prepared under the conditions of controlling the crystal form and the degree of crystallinity can obtain more stable thermal stability performance, and can achieve excellent performance with less addition amount. Flame retardant effect.
  • FIG. 9 is a SAED electron microscope photograph obtained by testing the sample. As shown in the figure, the solid material obtained by over-crystallization is crystalline and has a few diffraction spots. It can be concluded that the diffraction ring is a diffracted 010 crystal plane, a 010 crystal plane, and a 110 crystal plane, which are crystalline powders.
  • the selected area electron diffraction shows that the substance is a crystal.
  • Selected area electron diffraction shows obvious diffraction rings, indicating that the material in the selected area is a crystal, has excellent thermal stability, and has a small amount of addition (preferably 0.5% to 5% wt relative to the added resin, preferably 0.5%- 3% wt, even 0.5wt to 1% wt) can achieve excellent flame retardant effect.
  • Example 6 is a study on the synthesis, preparation and performance of hexamethoxycyclotriphosphazene or its derivative.
  • Crystallization process Take organic solvent V at a ratio of 6 to 10 grams per 1 gram of crude product, raise the temperature to 40 ° C and stir at this temperature for 2 to 3 hours, and then slowly lower the temperature to 0 to 5 ° C. Stir at 0 to 5 ° C for 2 to 5 hours, filter, and dry the filter cake under vacuum to obtain white crystalline hexamethoxycyclotriphosphazene.
  • Crystallization step Add the above crude compound 6 and 100 ml of n-heptane to a 250 ml four-necked flask, raise the temperature to reflux and stir under reflux at 98 ° C for 2 hours, and then slowly lower the temperature to 10-15 ° C, It was stirred at -15 ° C for 2 hours, filtered, and the filter cake was dried under vacuum to obtain 16.5 g of compound 6 as a white powder with a yield of 89.3%.
  • FIGS. 11 to 13 For the detection and analysis of the sample synthesized in this embodiment, please refer to FIGS. 11 to 13.
  • FIG. 11 is a graph of XRD test results of this embodiment. It can be seen from the figure that the compound tested is in a crystalline state and has a specific crystal form represented by the following description: The compound of the example is in a crystalline state and has a specific crystal form represented by the following description:
  • the X-ray diffraction (XRD) pattern of the compound of the specific crystal form includes a main characteristic diffraction peak at a position below 2 ⁇ : 13.1 ⁇ 0.2 °, and 16.1 ⁇ 0.2 °.
  • the specific X-ray diffraction analysis results are shown in the following table:
  • the crystal form also includes diffraction peaks at 2 ⁇ values of the X-ray diffraction (XRD) spectrum at 6.3 ⁇ 0.2 °, 16.7 ⁇ 0.2 °, and 26.9 ⁇ 0.2 °.
  • the ratio of the intensity of the strongest diffraction peak is between 0.40 and 0.50: 1.
  • n-heptane as a solvent in the crystallization step, and optionally, advantageously, implement the crystallization process and temperature change curve according to the present invention to facilitate the product to obtain a specific crystalline state of the embodiment.
  • the XRD pattern shows a distinct diffraction peak, indicating that the substance is a crystal.
  • the baseline of the diffraction peak appeared between 20 and 30 °, indicating that a small amount of amorphous material was mixed in the substance.
  • the selected area electron diffraction showed no obvious diffraction ring, indicating that the sample in the selected area contained amorphous substances or uncrystallized parts.
  • FIG. 13 is a thermal weight loss analysis TGA curve of the product prepared in this embodiment, and it can be seen that the initial weight loss temperature of hexamethoxycyclotriphosphazene is low, only 50 degrees, and the weight loss rate is 4.22%, 150 degrees. Weightlessness, weightlessness rate was 5.38%, three times weightlessness at 300 degrees, weightlessness rate was 32.11%, and total residual rate was 58.29%. Its periodic weightlessness is suitable for flame retardant applications in specific fields.
  • This embodiment relates to the flame retardancy test of the product of Example 6.
  • the crystalline hexa- (dimethylamino) cyclotriphosphazene and hexamethoxycyclotriphosphazene composite flame retardant I synthesized above are crystalline.
  • Adding hexa- (dimethylamino) cyclotriphosphazene and hexapropoxycyclotriphosphazene composite flame retardant II to the electrolyte of lithium ion batteries can effectively improve the thermal stability and electrochemical performance of lithium ion batteries. Stability, hardly affect the charge and discharge of the battery.
  • Adding the above-mentioned composite flame retardant to the electrolyte of a lithium ion battery can increase the decomposition temperature of the battery passivation layer SEI film, reduce the self-exothermic speed of the battery, increase the oxygen evolution temperature of the positive electrode material, and significantly improve the battery Thermal stability and flammability, compared with the battery electrolyte without added flame retardant, the battery's specific capacity for charge and discharge is improved.
  • the composite flame retardant is flame retardant to the lithium battery electrolyte. Better performance.
  • the above composite flame retardant I is a crystalline cyclotriphosphazene crystalline hexa- (dimethylamino) cyclotriphosphazene and a hexamethoxycyclotriphosphazene, which is a composite flame retardant, of which hexa- (dimethylamino)
  • the mass ratio of cyclotriphosphazene and hexamethoxycyclotriphosphazene is 1 to 4: 9 to 6, and preferably 3 to 4: 7 to 6.
  • the above composite flame retardant II is a crystalline cyclotriphosphazene crystalline hexa- (dimethylamino) cyclotriphosphazene and a hexapropoxycyclotriphosphazene composite flame retardant, in which the hexa- (dimethylamine group )
  • the mass ratio of cyclotriphosphazene and hexapropoxycyclotriphosphazene is 2 to 5: 8 to 5, preferably 4 to 5: 6 to 5.
  • the above-mentioned composite flame retardants I and II are added in an amount of 0.5% to 5% (mass fraction), and preferably 1.0% to 3%.
  • the inventors have surprisingly found that when a flame retardant product having a specific crystal form synthesized by the process of the present invention can unexpectedly further reduce the amount of flame retardant added.
  • a composite flame retardant containing the crystalline hexa- (dimethylamino) cyclotriphosphazene and hexamethoxycyclotriphosphazene according to the present invention is used, the total amount of the flame retardant can be reduced to Less than 3% wt of the total composition (for example, the total mass of the resin or electrolyte containing the flame retardant), or even less than 1%, can also achieve excellent flame retardant effects.
  • the lithium ion battery electrolyte described above is a carbonate-based electrolyte, 1 mol / L LiPF6, wherein the ring-mounted carbonate is one of ethylene carbonate (EC) and propylene carbonate (PC), and the chain carbonate is dicarbonate.
  • EC ethylene carbonate
  • PC propylene carbonate
  • chain carbonate is dicarbonate.
  • DMC methyl ester
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • the volume ratio of the ring-filled carbonate and the chain carbonate is 1 to 4: 9 to 6, and is preferably 3 to 5: 7 to 5.
  • the solvent is mixed with the electrolyte salt to form a non-aqueous electrolyte. After stirring for 5 minutes, it is left at 25 ° C for 4 to 5 hours. Then observe the properties of the electrolyte.
  • the composite flame retardants I and II are added to the electrolyte. Can form a uniform flame-retardant electrolyte.
  • the self-extinguishing method was used to test the flame retardancy of the electrolyte.
  • a glass wool ball with a mass of m1 and a diameter of 0.3 cm was immersed in the electrolyte. After being fully wetted, it was taken out and weighed, and the glass ball was measured as m2. It is placed in an O-shaped wire ring and ignited by an ignition device, and the time t from when the ignition device is removed to when the flame is automatically extinguished is recorded.
  • the self-extinguishing time of the flame-retardant electrolyte obtained by adding the composite flame retardants I and II to the electrolyte is 1.5 to 5.0 S / g.
  • Cond 7310 laboratory benchtop conductivity tester detects the conductivity of the electrolyte, and conducts a conductivity test on the flame retardant electrolyte containing the above-mentioned composite flame retardants I and II at 25 ° C. The results show that the conductivity is 5.0 ⁇ 20.0mS / cm.
  • This embodiment relates to hexapropoxycyclotriphosphazene, and the general formula of the compound is expressed as Synthesis, characterization, and performance testing and description of flame retardants.
  • Organic solvent VI for triphosphazene VI Take the organic solvent at a ratio of 3100 to 3200 grams; add hexachlorocyclotriphosphazene and the organic solvent to reactor A under the protection of nitrogen, and stir at room temperature for 1 to 2 hours to hexachlorocyclotris.
  • the phosphazene was completely dissolved; the organic solvent VI was added to the reactor B under the protection of nitrogen, and the temperature in the reactor B was reduced to 5-10 ° C under the protection of nitrogen, and the temperature was controlled below 10 ° C to dissolve sodium hydride and n-propanol Slowly add to reactor B. After the addition, stir at 10-15 ° C for 1 to 2 hours. Slowly add the solution in reactor A to reactor B. After the dropwise addition, warm reactor A to reflux temperature. After stirring for 10 to 12 hours under reflux, the mixture was cooled to room temperature, filtered, and then the filtrate was concentrated to remove the solvent to obtain a crude product.
  • the crude product was dissolved in 500 ml of dichloromethane, washed sequentially with 100 ml of a 1% hydrochloric acid aqueous solution and 100 ml of deionized water, and finally washed until the pH value was close to neutral. Several layers were concentrated to remove the solvent, and 59.1 g of an oily compound was obtained. 7. The yield is 84.1%.
  • This embodiment relates to the above-mentioned synthesized compounds, and has performed performance characterization and application research on flame retardancy.
  • the synthetic hexamethoxycyclotriphosphazene (available from the above examples) and hexapropoxycyclotriphosphazene as the composite flame retardant III were dissolved in ethanol as the flame retardant solution, and the medical cotton gauze and chemical fiber cloth were soaked. Obtained flame retardant cloth, etc., to test the thermal properties of flame retardant cloth, the carbon residue rate is as high as 60% or more, it has excellent flame retardant properties to the cloth, the addition amount is low, no need to add any anti-dripping agent, the limit oxygen index can be Reaching above 30%, the vertical combustion level can reach the V-0 standard.
  • the mass ratio of the aforementioned composite flame retardant III hexamethoxycyclotriphosphazene and hexapropoxycyclotriphosphazene is 1 to 5: 9 to 5, preferably 4 to 5: 6 to 5.
  • the addition amount of the composite flame retardant III is 0.5% to 5%, and preferably 1% to 3%.
  • the ethanol is any one of 95% ethanol and anhydrous ethanol, and is preferably anhydrous ethanol.
  • the test of the limit oxygen index LOI of the above flame-retardant cloth is performed according to GBT 2406-1993 standard.
  • the sample size is 140mm ⁇ 52mm, and the size of the flame-retardant cloth for testing the residual carbon burning rate is 30mm ⁇ 30mm. Soak it with purified water for 30min ⁇ 60 minutes, then repeatedly washed with purified water 3 to 4 times to remove surface oils and other attachments, etc., dry and set aside.
  • the flame retardant cloth is prepared by dipping and drying method.
  • the cloth is first immersed in a flame retardant solution, and then taken out to dry, and then post-processed.
  • the gauze without flame retardant was burned out quickly after being ignited, leaving no residue.
  • the gauze basically does not burn, and the chemical fiber cloth basically no longer drips, and can be self-extinguished in a short period of time, accompanied by a large amount of residual carbon.
  • the excellent and stable effect of the flame retardant of this example was demonstrated.
  • This example involves hexaaminocyclotriphosphazene or the structural formula is available or The described preparation of phosphazene compounds and their flame retardancy testing and applications.
  • polyaminocyclotriphosphazene Put the hexaaminocyclotriphosphazene in an oven at a certain temperature and bake for a certain time. After reaching a constant weight, take it out and wash it with water to remove water-soluble substances. Polyaminocyclotriphosphazene was obtained.
  • the compound 8 obtained in the above was baked in an oven at 180 ° C for 5 hours, and then added to a 250 ml four-necked flask. 144 ml of deionized water was added, stirred for 30-50 minutes, and repeatedly treated with deionized water 3- It was dried 5 times at 100 ° C. for 10 hours in a blast oven to obtain 32 g of polyaminocyclotriphosphazene.
  • the above-mentioned synthetic hexaaminocyclotriphosphazene is added as a flame retardant to paper products to prepare flame-retardant paper, which has excellent flame retardancy and good washing resistance. Due to the amount of hexaaminocyclotriphosphazene added in this crystal form Low, has little effect on the strength of the paper.
  • the crystalline hexaaminocyclotriphosphazene is added in an amount of 0.1% to 5%, and preferably 0.5% to 2%.
  • the terminal amino groups in the hexaaminocyclotriphosphazene and the hydroxyl groups in the fiber molecules in the paper can form hydrogen bonds well, they are better resistant to washing and significantly improve the flame retardancy of the flame retardant paper.
  • the above-mentioned crystalline hexaaminocyclotriphosphazene flame retardant was prepared by a spray method, and the flame retardant was formulated into an aqueous solution with a certain concentration, and it was evenly sprayed on the paper with a sprayer, and then it was placed in a natural environment. Place it for 1 hour to 2 hours, then put it in a drying box, dry it at 100 ° C for 1 hour to 2 hours, then raise the temperature to 150 ° C to 180 ° C, cure it for 10min to 30min, and finally take it out and cut it into a certain size for resistance according to standard requirements Flammability test.
  • the above-mentioned flame retardance test is mainly evaluated by the limit oxygen index LOI and vertical combustion test.
  • the limit oxygen index is tested according to GB / T 2406-80 standard, and the vertical combustion is tested according to GB / T 14656-2009 standard.
  • the limit oxygen index test requires a sample size of 100mm ⁇ 6.5mm ⁇ 1.3mm
  • the vertical combustion test requires a test sample size of 210mm ⁇ 70mm ⁇ 1.3mm.
  • the above composite flame retardants IV and V are dissolved in ethanol, and the cloths such as medical cotton gauze and chemical fiber cloth are soaked to obtain a flame retardant cloth.
  • the thermal properties of the flame retardant cloth are tested, the addition amount is low, the carbon formation rate is high, and the flame retardant performance is excellent.
  • the mass ratio of hexaaminocyclotriphosphazene and hexamethoxycyclotriphosphazene in the composite flame retardant IV is 1 to 4: 9 to 6, and preferably 2 to 3: 8 to 7.
  • the mass ratio of hexaaminocyclotriphosphazene and hexapropoxycyclotriphosphazene in the composite flame retardant V is 1 to 4: 9 to 6, and preferably 2 to 3: 8 to 7.
  • the compounded flame retardants IV and V are added in an amount of 0.5% to 5%, and preferably 1% to 3%.
  • the ethanol is any one of 95% ethanol and anhydrous ethanol, and is preferably anhydrous ethanol.
  • the test of the limit oxygen index LOI of the above flame-retardant cloth is performed according to GBT 2406-1993 standard.
  • the sample size is 140mm ⁇ 52mm, and the size of the flame-retardant cloth for testing the residual carbon burning rate is 30mm ⁇ 30mm. Soak it with purified water for 30min ⁇ 60 minutes, then repeatedly washed with purified water 3 to 4 times to remove surface oils and other attachments, etc., dry and set aside.
  • the flame retardant cloth is prepared by dipping and drying method.
  • the cloth is first immersed in a flame retardant solution, and then taken out to dry, and then post-processed.
  • the gauze without flame retardant was burned out quickly after being ignited, leaving no residue.
  • the gauze After adding the above-mentioned composite flame retardant III, the gauze basically does not burn, and the chemical fiber cloth basically no longer drips, and can be self-extinguished in a short period of time, accompanied by a large amount of residual carbon.
  • the experiment shows that the hexaaminocyclotriphosphazene flame retardant synthesized according to the process of the present invention achieves a stable and excellent flame retardant effect.
  • a 97 g sample of PMMA resin was taken in a circulating air drying box and dried at 90 ° C. for 4 hours, and then placed in an internal mixer SU-70C, and the crystalline hexaphenoxy ring three prepared in Example 4 was added at the corresponding mass ratio.
  • the phosphazene compound is then heated to 200 ° C. During the heating process, it is continuously stirred to make it uniformly dispersed, and then the resin is transferred to a mold at a reduced temperature.
  • the mold temperature is 50 ° C.
  • the mold is placed in a 50T flat plate vulcanizing machine to form a tablet and cool. After releasing the mold to room temperature, a flame-retardant evaluation test specimen was produced.
  • the limit oxygen index test is in accordance with the GB / T 2046.2-2009 standard.
  • the test instrument is a JF-3 oxygen index meter.
  • the sample size is 100 ⁇ 10 ⁇ 4mm.
  • the flame retardant and drip resistance evaluation test is in accordance with the UL94 standard.
  • the sample size is 125 ⁇ 13mm.
  • the limit oxygen index of PMMA resin without added flame retardant is only 18%, which is easy to burn and drip.
  • the limit oxygen index of PMMA is 28%, and the flame retardant level has reached the V-1 standard.
  • the addition amount is increased to 2%, the flame retardant level reaches the V-0 standard, and the commercially available ordinary phenoxyphosphazene mixture has
  • the added amount reaches 15%, the limiting oxygen index is 30%, and the flame retardancy level reaches the V-0 standard.
  • the limiting oxygen index of the PMMA resin reaches 28%
  • the flame retardancy level reaches the V-1 standard
  • the addition amount increases to 3%.
  • the resin's limiting oxygen index reached 32%
  • the flame retardant level reached the V-0 standard, which continued to increase to 8%
  • the limiting oxygen index was 35%
  • the flame retardant level was V-0.
  • the oxygen ring triphosphazene flame retardant is 10%
  • the limiting oxygen index is only 29%
  • the flame retardant grade is V-1.
  • the flame retardant grade can reach the V-0 standard.
  • the crystalline phenoxy cyclophosphazene mixture and hexaphenoxy cyclotriphosphazene flame retardant have more excellent flame retardancy, and the addition amount is small, and only 3% of the crystalline phenoxy ring is required.
  • phosphazene mixture and 3% crystalline hexaphenoxycyclotriphosphazene can make the flame retardant grade of PMMA resin reach V-0 standard; based on the lower addition amount that cannot be achieved by existing products (For example, 1% or lower), effective flame retardant effect can also be achieved; for example, although not shown in the table, the inventors found through experiments that 0.5% wt or more of the crystals synthesized by the present invention were added to the above experiment State phenoxyphosphazene or hexaphenoxycyclotriphosphazene compound can achieve V-1 level flame retardant effect.
  • the limit oxygen index test is in accordance with the GB / T 2046.2-2009 standard.
  • the test instrument is a JF-3 oxygen index meter.
  • the sample size is 100 ⁇ 10 ⁇ 4mm.
  • the flame retardant and drip resistance evaluation test is in accordance with the UL94 standard.
  • the sample size is 125 ⁇ 13mm.
  • the limit oxygen index of the PC resin without added flame retardant is 25%, and the flame retardant grade is V-2.
  • the flame retardant level reaches the V-1 standard, and when the amount is increased to 5%, the limit oxygen index reaches 33%, no dripping, and the flame retardant level reaches the V-0 standard, while ordinary commercially available phenoxy rings
  • the amount of the flame retardant of the phosphazene mixture reaches 12%, the flame retardancy of PC reaches the V-0 standard.
  • the limiting oxygen index of PC resin is 29%, and the flame retardant grade is V-1 standard.
  • the addition amount is continued to 5%
  • the limit oxygen index of PC resin is 34%, and the flame retardant level is V-0.
  • the limit oxygen index is 36%, and the flame retardant level is V-0.
  • the limit oxygen index is only 29%, there is no dripping, and the flame retardant level is V-1.
  • the limit oxygen index test is in accordance with the GB / T 2046.2-2009 standard.
  • the test instrument is a JF-3 oxygen index meter.
  • the sample size is 100 ⁇ 10 ⁇ 4mm.
  • the flame retardant and drip resistance evaluation test is in accordance with the UL94 standard.
  • the sample size is 125 ⁇ 13mm.
  • the limiting oxygen index of PC / ABS alloy resin reaches 29%, and the flame retardant level is V-1.
  • the amount of flame retardant is increased to 8%, the limiting oxygen index is 31%, and the flame retardant level is V-0 standard.
  • the limiting oxygen index is only 25%, and the flame retardant level is V-2.
  • the flame retardant is The grade is V-1 standard.
  • the added amount is 15%, the limiting oxygen index is 32%, and the flame retardant grade can reach the V-0 standard.
  • the limit oxygen index test is in accordance with the GB / T 2046.2-2009 standard.
  • the test instrument is a JF-3 oxygen index meter.
  • the sample size is 100 ⁇ 10 ⁇ 4mm.
  • the flame retardant and drip resistance evaluation test is in accordance with the UL94 standard.
  • the sample size is 125 ⁇ 13mm.
  • the limiting oxygen index of the epoxy resin without added flame retardant is only 23%, which is flammable.
  • the crystalline phenoxy cyclophosphazene mixture flame retardant is added as in Example 3 When it is 5%, there is dripping, and the flame retardant level is V-2. When the amount is increased to 8%, the flame retardant level is V-0. When it reaches 10%, the limiting oxygen index is 33%. Burning class is V-0 standard. When the common phenoxycyclophosphazene mixture is added at 8%, the limiting oxygen index is 29%, and the flame retardant level is V-1. When it is increased to 10%, the flame retardant level reaches V-0. standard.
  • the flame retardancy level reaches the V-2 standard.
  • the limit is The oxygen index is 30%, and the flame retardant level reaches the V-0 standard.
  • the addition amount is continued to 8%, the limiting oxygen index of the epoxy resin is 32%, there is no dripping, and the flame retardant level is V-0 standard.
  • the amount of hexaphenoxycyclotriphosphazene flame retardant added in the general market is 5%, the limiting oxygen index is 28%, and the flame retardant level is only V-1.
  • the amount is 10%, the resistance The combustion level reaches the V-0 standard.
  • the crystalline phenoxycyclophosphazene mixture and hexaphenoxycyclotriphosphazene have excellent flame retardancy to epoxy resins, and the addition amount is relatively small.
  • the addition amounts in the application of this series are 8% and 5%, can make the flame retardant standard of epoxy resin reach V-0 standard, and the amount of common commercially available phenoxy cyclophosphazene mixture and hexaphenoxy cyclotriphosphazene flame retardant need to be added. Only 10% can make the flame retardant grade of epoxy resin reach V-0.
  • Hexaaminocyclotriphosphazene was formulated into a 0.5% concentration aqueous solution, and then sprayed uniformly on the paper with a sprayer, and was placed in a natural environment to dry for 2 hours, and then placed in a drying box at 100 ° C. Dry for 1 hour, continue to raise the temperature to 150 ° C, and cure for 20 minutes. Take out the flame-retardant paper samples according to the requirements of the limiting oxygen index and vertical combustion test standards.
  • Hexaaminocyclotriphosphazene was prepared into an aqueous solution with a concentration of 1.0%, and then sprayed uniformly on the paper with a sprayer, and it was placed in a natural environment to dry for 2 hours, and then placed in a drying box at 100 ° C. Dry for 1 hour, continue to raise the temperature to 150 ° C, and cure for 20 minutes. Take out the flame-retardant paper samples according to the requirements of the limiting oxygen index and vertical combustion test standards.
  • Hexaaminocyclotriphosphazene was formulated into a 2.0% concentration aqueous solution, and then sprayed uniformly on the paper with a sprayer, and it was placed in a natural environment to dry for 2 hours, and then placed in a drying box at 100 ° C. Dry for 1 hour, continue to raise the temperature to 150 ° C, and cure for 20 minutes. Take out the flame-retardant paper samples according to the requirements of the limiting oxygen index and vertical combustion test standards.
  • Hexaaminocyclotriphosphazene was formulated into a 3.0% aqueous solution, and then sprayed uniformly on the paper with a sprayer, and it was left to dry in the natural environment for 2 hours, and then placed in a drying box at 100 ° C. Dry for 1 hour, continue to raise the temperature to 150 ° C, and cure for 20 minutes. Take out the flame-retardant paper samples according to the requirements of the limiting oxygen index and vertical combustion test standards.
  • Hexaaminocyclotriphosphazene was formulated into a 5.0% concentration aqueous solution, and then sprayed uniformly on the paper with a sprayer, and it was placed in a natural environment for 2 hours to dry, and then placed in a drying box at 100 ° C Dry for 1 hour, continue to raise the temperature to 150 ° C, and cure for 20 minutes. Take out the flame-retardant paper samples according to the requirements of the limiting oxygen index and vertical combustion test standards.
  • the limit oxygen index LOI of flame retardant paper increases gradually with the increase of the amount of flame retardant added.
  • the limit oxygen index of paper without flame retardant is 21.5%, which is very easy to burn.
  • the amount of flame retardant is increased to 1%, the limiting oxygen index reaches 36.2%, which has reached the V-0 standard, and the vertical combustion performance decreases with the increase of the amount of flame retardant.
  • the amount of flame retardant is added At 2.0%, the afterflame time of vertical combustion is only 1.4s, and the limiting oxygen index is 39.8%, which meets the non-combustibility standard. It can be seen that the crystalline hexaaminocyclotriphosphazene has excellent flame retardancy on paper.
  • Embodiment 82 relates to a cyclotriphosphazene compound containing a silyl group, particularly a silyl group / siloxy group, according to the present invention.
  • a silyl group particularly a silyl group / siloxy group
  • it can be represented by the following chemical formula:
  • R 1 ′, R 2 ′, R 3 ′, R 4 ′, R 5 ′, and R 6 ′ are each selected from one or more of the group consisting of the following groups:
  • Hexachlorocyclotriphosphazene (HCCP) and trialkylsilyl (alk) alcohol or sodium trialkylsilyl (alk) alcohol are used as starting materials.
  • Tetrahydrofuran, chlorobenzene, 1,4-dioxane, etc. are used as solvents, etc. through synthetic reaction, water washing, organic solvent washing, and concentration to obtain cyclotriphosphazene derivatives containing alkylsilyloxy (and or alkoxy) substitution.
  • the preparation of the compound may be selected from one or more of the following series of steps:
  • the suspension was decanted and concentrated to obtain a yellow viscous solid or liquid, washed with water, washed with water and organic solvents, and dissolved and purified with toluene, dichloromethane, chloroform or dichloroethane to obtain an alkylsilyl group.
  • Oxygen (and or alkoxy) substituted cyclotriphosphazene derivatives were decanted and concentrated to obtain a yellow viscous solid or liquid, washed with water, washed with water and organic solvents, and dissolved and purified with toluene, dichloromethane, chloroform or dichloroethane to obtain an alkylsilyl group.
  • Oxygen (and or alkoxy) substituted cyclotriphosphazene derivatives were prepared by reacting of water to obtain an alkylsilyl group.
  • the suspension was decanted and concentrated to obtain a yellow viscous solid or liquid, washed with water, washed with water and organic solvents, and dissolved and purified with toluene, dichloromethane, chloroform or dichloroethane to obtain an alkylsilyl group.
  • Oxygen (and or alkoxy) substituted cyclotriphosphazene derivatives were decanted and concentrated to obtain a yellow viscous solid or liquid, washed with water, washed with water and organic solvents, and dissolved and purified with toluene, dichloromethane, chloroform or dichloroethane to obtain an alkylsilyl group.
  • Oxygen (and or alkoxy) substituted cyclotriphosphazene derivatives were prepared by reacting of water to obtain an alkylsilyl group.
  • Figure 16 is a test of nuclear magnetic phosphorus spectrum. From the NMR phosphorus spectrum of the product synthesized in Example 83, it can be seen that chemical shifts at -2.255 ppm, -2.570 ppm, and-2.885 ppm indicate that O-Si groups are connected (O is connected to P and Si). Close to the ring), a silicone oxophosphazene is formed.
  • Embodiment 84
  • Embodiment 85 is a diagrammatic representation of Embodiment 85.
  • the test results of product 3a are shown in FIG. 17.
  • the absorption peaks at 1174 cm-1 and 947 cm-1 are P in the cyclotriphosphite skeleton, respectively.
  • N the stretching vibration peak of the PN bond, indicating the existence of a six-membered ring of phosphazene
  • the absorption peak at 2923 cm-1 is the stretching vibration peak of Si-CH 3
  • the absorption peak at 1156 cm-1 is the stretching vibration of Si-O peak.
  • the absorption peak at 1020cm-1 is the stretching vibration peak of PO, which indicates the existence of silane groups.
  • the deformation vibration absorption peaks of benzene ring skeleton at 1591, 1504, 1488, and 1455cm-1 indicate the benzene ring, and the benzene ring and O The presence of associated groups.
  • the tetrahydrofuran was removed by concentration, washed with water, washed with n-hexane, dissolved and purified with dichloromethane, concentrated and dried to obtain 7.36 g of a light yellow viscous substance or liquid, which was the product 4a.
  • the structure was determined by NMR and infrared structure.
  • the detected P N
  • stretching vibration peak of the PN bond indicates the existence of a six-membered ring of phosphazene
  • the absorption peak at 2923 cm-1 is the stretching vibration peak of Si-CH 3
  • the absorption peak at 1156 cm-1 is The stretching vibration peak of Si-O.
  • the absorption peak at 1020cm-1 is the stretching vibration peak of PO, which indicates the existence of silane groups.
  • 1591, 1504, 1488, and 1455cm-1, etc. are the deformation vibration absorption peaks of the benzene ring skeleton, indicating that the benzene ring and the benzene ring and The presence of O-linked groups.
  • Embodiment 87
  • Example 85 The obtained test results are similar to those of Example 85 and Example 86. According to the types of raw materials selected in this example, it can be determined that the structure of the compound prepared in this example can be as follows:
  • Embodiment 90 is a diagrammatic representation of Embodiment 90.
  • the tetrahydrofuran was removed by concentration, washed with water, washed with n-hexane, dissolved and purified by dichloromethane, concentrated and dried to obtain a light yellow viscous liquid, 5.44 g, and the compound of the aforementioned product 4a was obtained.
  • the structure of the product was detected by NMR, infrared structure determine.
  • Embodiment 92
  • Embodiment 94
  • a dry 1 L three-necked flask was replaced with nitrogen three times, and 500 mL of anhydrous tetrahydrofuran, 5.00 g of hexachlorocyclotriphosphazene, and 15.00 g of trimethylsilanol were added sequentially, and stirred until completely dissolved. 15.15 g of triethylamine was slowly added dropwise to a 1 L three-necked flask. After the dropwise addition, the temperature was raised to 65-70 ° C. and the reaction was performed for 24 hours to obtain a brown-yellow suspension.
  • the addition amount of the alkylsilyl-containing triphosphazene flame retardant is preferably 0.5% to 15%, and more preferably 1% to 8%.
  • the resin plastic is preferably one or more mixtures of PE, PP, PVC, PS, ABS, PA, PC, POM, PBT, PET, PPO, PMMA, PU and epoxy resin, more preferably PMMA, PC, PC / ABS alloy resin, PU, PET, PA6 and epoxy resin as matrix.
  • the alkyl silyl group-containing triphosphazene flame retardant synthesized by the present invention is an additive type flame retardant, and is simultaneously added to a resin plastic to provide a resin plastic having flame retardancy.
  • the silane flame retardant of the present invention has a synergistic effect among N, Si, P, and O, and does not need to add other auxiliary flame retardants or anti-dripping agents. It is added to the resin plastic matrix with a small amount of addition and does not affect Advantages of resin performance, flame retardance meets UL94 V-0 standard.
  • the flame-retardant resin plastic of the present invention preferably epoxy resin and PC, is mainly added with the above-mentioned alkyl silicon group-containing cyclotriphosphazene flame retardant, which has excellent flame retardancy and does not substantially affect the physical properties of the resin matrix. Performance and processing.
  • the flame retardant performance test described above is a limit oxygen index and flame retardant drip resistance test.
  • the above-mentioned limit oxygen index test is in accordance with the GB / T 2046.2-2009 standard.
  • the test instrument is a JF-3 oxygen index meter, and the sample size is 100 ⁇ 10 ⁇ 4mm.
  • the flame retardant and drip resistance evaluation test is in accordance with the UL94 standard.
  • the sample size is 125 ⁇ 13mm. There are 10 samples in each thickness and 2 sets of samples. The samples are tested at 23 ° C and 50% RH for 48 hours. Five samples of one thickness were tested at 70 ° C for 7 days.
  • antioxidant 1076 (3- (3,5-di-tert-butyl-4-hydroxyphenyl) n-octadecanol propionate)
  • antioxidant 168 tris (2,4 phosphite) -Any two combinations of di-tert-butylphenyl) ester and antioxidant 1010 (tetrakis (methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate) methane)
  • the amount of addition is 0.1% to 0.5% of the amount of PC, preferably 0.3%, and the two component antioxidants each account for 0.15%.
  • a tablet of PC was made at 60 to 120 ° C, and then set at room temperature, and cut to produce a flame-retardant test evaluation sample.
  • the mass ratio of the above PC and ABS is 70:30, and the composite antioxidant is the antioxidant 1076 (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propanoic acid n-octadecanol ester).
  • Oxygen agent 168 tris (2,4-di-tert-butylphenyl) phosphite
  • antioxidant 1010 tetrakis (methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propyl) Ester) methane
  • the addition amount is 0.1% to 0.5% of the amount of PC / ABS, preferably 0.3%, preferably the two component antioxidants each account for 0.15%.
  • the use amount of the curing agent DDS is 30% to 50% of the amount of the substance of the epoxy resin, and preferably 35% to 40%.
  • the above-mentioned antioxidant is preferably Irgafos 168, and the amount thereof is preferably 0.05% to 1% based on the mass of the PU.
  • Example 83 to 85 the mixture of batch samples prepared in Examples 83 to 85 is used, and the proportion of the samples used is the same as in Example 83 to Example 85.
  • the batch products in this embodiment are obtained by mixing 1: 1 mass ratio, which helps to understand the average performance and level of this series of products.
  • the limit oxygen index test is in accordance with the GB / T 2046.2-2009 standard.
  • the test instrument is a JF-3 oxygen index meter.
  • the sample size is 100 ⁇ 10 ⁇ 4mm.
  • the flame resistance and drip resistance evaluation test is in accordance with the UL-94 standard.
  • the sample size is 125 ⁇ 13mm.
  • the limit oxygen index of PMMA resin without added flame retardant is only 18%, there is dripping, and it is easy to burn.
  • the limit oxygen index reaches 29%, no dripping, and the flame retardant level is V-1.
  • the limit oxygen index is 32%, and the flame retardant level reaches V-0.
  • the newly synthesized alkylsilyl group-containing cyclotriphosphazene flame retardant has excellent flame retardancy to PMMA resin, and the addition amount is small, and only 5% can make the flame retardance level of PMMA resin reach V- 0 standard.
  • the limit oxygen index test is in accordance with the GB / T 2046.2-2009 standard.
  • the test instrument is a JF-3 oxygen index meter.
  • the sample size is 100 ⁇ 10 ⁇ 4mm.
  • the flame resistance and drip resistance evaluation test is in accordance with the UL-94 standard.
  • the sample size is 125 ⁇ 13mm.
  • the limit oxygen index of the PC resin without added flame retardant is 25%, there is dripping, and the flame retardancy is V-2.
  • the limit oxygen index is 29%, there is no dripping, and the flame retardant level reaches the V-1 standard.
  • the limit oxygen index is 32%, and the flame retardant level reaches V-0 standard.
  • the above-mentioned synthesized alkylsilyl-containing cyclotriphosphazene flame retardant has excellent flame retardancy to PC resin, and the addition amount is small, and only 3% can be used to make the flame retardance of PC resin reach V- 0 standard.
  • the limit oxygen index test is in accordance with the GB / T 2046.2-2009 standard.
  • the test instrument is a JF-3 oxygen index meter.
  • the sample size is 100 ⁇ 10 ⁇ 4mm.
  • the flame resistance and drip resistance evaluation test is in accordance with the UL-94 standard.
  • the sample size is 125 ⁇ 13mm.
  • the limiting oxygen index of the PC / ABS alloy resin without adding flame retardant is only 22%, there is dripping, and it is flammable.
  • the limiting oxygen index reached 26%, there was dripping, and the flame retardant level was V-2.
  • the amount was 5%, there was no dripping, and the flame retardant level reached V-1.
  • the limiting oxygen index reaches 34%, no dripping, and the flame retardant level reaches the V-0 standard.
  • the alkyl silicon-based triphosphazene flame retardant has excellent flame retardancy to PC / ABS alloy resin. Adding 8% of the amount can make the flame retardancy of PC / ABS alloy resin reach V-0. standard.
  • the limit oxygen index test is in accordance with the GB / T 2046.2-2009 standard.
  • the test instrument is a JF-3 oxygen index meter.
  • the sample size is 100 ⁇ 10 ⁇ 4mm.
  • the flame retardant and drip resistance evaluation test is in accordance with the UL94 standard.
  • the sample size is 125 ⁇ 13mm.
  • the limit oxygen index of epoxy resins without added flame retardants is only 23%, dripping and flammable, and 2% of alkylsilyl-containing cyclotriphosphazene flame retardants are added.
  • the limit The oxygen index is 25%
  • the flame retardant level is V-2 standard
  • the limit oxygen index is 29% when the addition amount reaches 5%
  • the flame retardant level is V-1 standard.
  • the limit oxygen index It reaches 35%
  • the flame retardant level reaches the V-0 standard.
  • Embodiment 110 is a diagrammatic representation of Embodiment 110:
  • polyurethane PU 89.5g was mixed with 10g of the alkyl silyl ring-containing triphosphazene flame retardant and 0.5g of antioxidant Irgafos168 synthesized above and added to the RM-200C kneading torque rheometer with stirring started.
  • the limit oxygen index test is in accordance with the GB / T 2046.2-2009 standard.
  • the test instrument is a JF-3 oxygen index meter.
  • the sample size is 100 ⁇ 10 ⁇ 4mm.
  • the flame retardant and drip resistance evaluation test is in accordance with the UL94 standard.
  • the sample size is 125 ⁇ 13mm.
  • the limit oxygen index of PU without flame retardant is only 17%, which is flammable and accompanied by a large amount of toxic smoke, and cannot be self-extinguished.
  • a synthetic alkylsilyl group-containing cyclotriphosphate When the nitrile flame retardant is 2%, the limiting oxygen index is 22%, and the flame retardant level reaches the V-2 standard.
  • the addition amount is continued to 5%, the flame retardant level reaches the V-1 standard.
  • the addition amount reaches 8%, The limiting oxygen index is 31%, no dripping, and the flame retardant level reaches V-0 standard.
  • the newly synthesized alkylsilyl group-containing cyclotriphosphazene flame retardant has excellent flame retardancy to PU. Adding 8% of the amount can make the flame retardancy of PU reach V-0 standard.
  • Embodiment 115
  • the limit oxygen index test is in accordance with the GB / T 2046.2-2009 standard.
  • the test instrument is a JF-3 oxygen index meter.
  • the sample size is 100 ⁇ 10 ⁇ 4mm.
  • the flame retardant and drip resistance evaluation test is in accordance with the UL94 standard.
  • the sample size is 125 ⁇ 13mm.
  • the limit oxygen index of PA6 without flame retardant is 24%, and it drips in case of fire and cannot be self-extinguished.
  • 2% of synthetic alkylsilyl-containing cyclotriphosphazene is added
  • the limiting oxygen index is 26%, no dripping, and the flame retardant level is V-1.
  • the amount is continued to increase to 5%, there is no melting dripping, the limiting oxygen index is 29%, and the flame retardant level reaches V-0 standard.
  • the above-mentioned synthesized alkylsilyl-containing cyclotriphosphazene flame retardant has excellent flame retardancy to PA6, and the addition amount is small. Only 5% of the addition amount can be used to achieve the flame retardancy level of PA6. V-0 standard.
  • the limit oxygen index test is in accordance with the GB / T 2046.2-2009 standard.
  • the test instrument is a JF-3 oxygen index meter.
  • the sample size is 100 ⁇ 10 ⁇ 4mm.
  • the flame retardant and drip resistance evaluation test is in accordance with the UL94 standard.
  • the sample size is 125 ⁇ 13mm.
  • the limit oxygen index of PET resin without added flame retardant is 24%, and there is melt dripping during combustion, and 1% of alkyl silicon-based cyclotriphosphazene flame retardant is added, and the limit oxygen index It is 26%, with almost no dripping.
  • the flame retardant standard is V-1.
  • the added amount reaches 3%, the limiting oxygen index is 29% and the flame retardant level reaches the V-0 standard.
  • the above-mentioned synthesized alkylsilyl-containing cyclotriphosphazene flame retardant has excellent flame retardancy to PET resin, and the addition amount is small. Only 3% of the addition amount can make the PET resin flame retardant. The level reaches the V-0 standard.
  • the present invention provides at least the following technical schemes, and the following number of schemes can be referred to each other without limitation:
  • each of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 is selected from Cl, CH 3 O-, (CH 3 ) 2 N-, CH 3 CH 2 CH 2 O-, H 2 N-, -O- (CH 2 ) nCH 3 , -O- (CH 2 ) nCH ((CH 2 ) mCH 3 ) 2 , -O- (CH 2 ) nC ((CH 2 ) mCH 3 ) 3 , -O- (CH 2 ) nSi ((CH 2 ) mCH 3 ) 3 , -Ph, -PhMe group, Wherein each of R 1 to R 8 is the same as or different from each other;
  • n and n each have an integer ranging from 0 to 20, and a has an integer from 3 to 20.
  • Embodiment 2 The phosphazene compound according to embodiment 1, wherein
  • One or more compounds of Formula 1 and / or Formula 2 contained in the compound or composition are in a crystalline state, and in an X-ray diffraction (XRD) spectrum measured for the compound in the crystalline state
  • XRD X-ray diffraction
  • R 1 ′, R 2 ′, R 3 ′, R 4 ′, R 5 ′, and R 6 ′ are each selected from one or more of the group consisting of the following groups:
  • R 2 ′, R 3 ′, R 4 ′, R 5 ′, and R 6 ′ are each selected from one or more of the group consisting of the following groups:
  • b is selected from an integer between 0 and 7
  • m is independently selected from an integer between 0 and 7.
  • Embodiment 5 The phosphazene-based compound according to embodiment 4, wherein the value of b is 0.
  • Embodiment 6 The phosphazene compound according to any one of embodiments 4 or 5, wherein b is an integer selected from any one of 1, 2, 3, 4, 5, 6, and 7.
  • Embodiment 8 The phosphazene compound according to embodiment 1 or 7, wherein the compound of Formula 2 or Formula 3 is in a powdered crystalline state, and the a value of the compound of Formula 3 in Formula 3 is 6 , 8 or 10.
  • the compound of Formula 4 exhibits a powdery crystalline state.
  • Embodiment 10 The phosphazene-based compound according to Embodiment 9, wherein the compound of Formula 4 is in a powdery crystalline state and has a specific crystal form represented by the following description:
  • XRD X-ray diffraction
  • the X-ray diffraction (XRD) pattern of the compound of the specific crystal form includes the main characteristic diffraction peaks at the following 2 ⁇ values:
  • Embodiment 11 The phosphazene-based compound according to Embodiment 9 or 10, wherein the compound of Formula 4 is in a powdered crystalline state, and X-ray diffraction is performed on the compound of Formula 4 for the crystalline state ( (XRD) In the test, it shows the strongest diffraction peak intensity at a 2 ⁇ value of 41.9 ° ⁇ 0.2 °, and the intensity of the second-strongest diffraction peak at 13.9 ° ⁇ 0.2 ° and 15.9 ° ⁇ 0.2 °.
  • XRD X-ray diffraction
  • the third strong diffraction seal intensity the ratio of the intensity of the second strongest diffraction peak to the intensity of the strongest diffraction peak is between 0.90 and 0.98: 1, and the ratio of the third strong diffraction seal intensity to the strongest diffraction peak intensity is 0.60 to 0.70: 1.
  • Embodiment 12 The phosphazene compound according to embodiment 10 or 11, wherein the crystal form of the compound of Formula 4 further includes a 2 ⁇ value of 24.4 ⁇ 0.2 °, 27.7 ⁇ 0.2 in an X-ray diffraction (XRD) spectrum. Diffraction peaks appear at ° and 28.4 ⁇ 0.2 °, and the ratios of the intensity of the diffraction peaks at 24.4 ⁇ 0.2 °, 27.7 ⁇ 0.2 °, and 28.4 ⁇ 0.2 ° to the strongest diffraction peaks are 0.15 to 0.5: 1.
  • XRD X-ray diffraction
  • the compound of Formula 5 is in a powdery crystalline state.
  • Embodiment 14 The phosphazene-based compound according to Embodiment 13, wherein the compound of Formula 5 is in a powdery crystalline state and has a specific crystal form represented by the following description:
  • XRD X-ray diffraction
  • the X-ray diffraction (XRD) pattern of the compound of the specific crystal form includes the main characteristic diffraction peaks at the following 2 ⁇ values:
  • Embodiment 15 The phosphazene-based compound according to Embodiment 13 or 14, wherein the compound of Formula 5 is in a powdery crystalline state, and X-ray diffraction is performed on the compound of Formula 5 for the crystalline state ( (XRD) In the test, it shows the strongest diffraction peak intensity at a 2 ⁇ value of 20.2 ⁇ 0.2 °, and shows the second-strongest diffraction peak intensity and the third strongest at 12.0 ⁇ 0.2 ° and 10.8 ⁇ 0.2 °.
  • XRD X-ray diffraction
  • the ratio of the intensity of the second strongest diffraction peak to the intensity of the strongest diffraction peak is between 0.75 and 0.80: 1, and the ratio of the intensity of the third strongest diffraction seal to the intensity of the strongest diffraction peak is 0.60 to 0.70: 1 Between .
  • Embodiment 16 The phosphazene compound according to embodiment 14 or 15, wherein the crystal form further includes a diffraction peak at a 2 ⁇ value of an X-ray diffraction (XRD) spectrum of 7.2 ⁇ 0.2 ° and a peak of 29.8 ⁇ 0.2 °
  • XRD X-ray diffraction
  • the compound of Formula 6 exhibits a powdery crystalline state.
  • Embodiment 18 The phosphazene-based compound according to embodiment 17, wherein the compound of Formula 6 is in a crystalline state and has a specific crystal form represented by the following description:
  • the X-ray diffraction (XRD) pattern of the compound in the specific crystal form includes the main characteristic diffraction peaks with the following 2 ⁇ values:
  • Embodiment 19 The phosphazene-based compound according to Embodiment 17 or 18, wherein the compound of Formula 6 is in a powdered crystalline state, and X-ray diffraction is performed on the compound of Formula 6 for the crystalline state ( (XRD) In the test, it shows the strongest diffraction peak intensity at a 2 ⁇ value of 10.4 ⁇ 0.2 °, and the second-strongest diffraction peak intensity at 19.0 ⁇ 0.2 °, 20.0 ⁇ 0.2 °, and 17.3 ⁇ 0.2 °.
  • XRD X-ray diffraction
  • the third strong diffraction seal intensity and the fourth diffraction peak intensity, the ratio of each of the second strong diffraction peak intensity, the third strong diffraction seal intensity and the strongest diffraction peak intensity is between 0.55 and 0.65, and the fourth strong diffraction intensity
  • the ratio of the seal intensity to the intensity of the strongest diffraction peak is between 0.50 and 0.55: 1 .
  • Embodiment 20 The phosphazene compound according to embodiment 19, wherein the crystal form further includes a diffraction peak at a 2 ⁇ value of 26.8 ⁇ 0.2 ° of an X-ray diffraction (XRD) spectrum, and the 26.8 ⁇ 0.2
  • XRD X-ray diffraction
  • the compound of Formula 7 exhibits a powdery crystalline state.
  • Embodiment 22 The phosphazene-based compound according to embodiment 21, wherein the compound of the above 7 is in a crystalline state and has a specific crystal form represented by the following description: the compound of the formula 7 is in a crystalline state and has The specific crystal form represented by the following description:
  • the X-ray diffraction (XRD) pattern of the compound of the specific crystal form includes The main characteristic diffraction peaks with 2 ⁇ values at the following positions were: 11.0 ⁇ 0.2 °.
  • Embodiment 23 The phosphazene compound according to embodiment 22, wherein the crystal form further includes a 2 ⁇ value of an X-ray diffraction (XRD) spectrum at 11.4 ⁇ 0.2 °, 13.6 ⁇ 0.2 °, 14.6 ⁇
  • XRD X-ray diffraction
  • the compound of Formula 8 includes the compound in a powdered crystalline state.
  • Embodiment 25 The phosphazene compound according to embodiment 24, wherein the compound of the above 8 is in a crystalline state and includes a specific crystal form represented by the following description: the compound of the formula 8 is in a crystalline state, And has a specific crystal form represented by the following description: in a test performed in an X-ray diffraction (XRD) pattern on the compound of Formula 8 in the crystalline state, the X-ray diffraction (XRD) of the compound in the specific crystal form
  • XRD X-ray diffraction
  • the spectrum includes the main characteristic diffraction peaks at the following 2 ⁇ values: 13.1 ⁇ 0.2 °, and 16.1 ⁇ 0.2 °.
  • Embodiment 26 The phosphazene-based compound or the composition comprising a phosphazene-based compound according to embodiment 25, wherein the compound of Formula 8 is in a powdery crystalline state, and is in Formula 8 for the crystalline state.
  • XRD X-ray diffraction
  • Embodiment 27 The phosphazene-based compound or the composition comprising a phosphazene-based compound according to embodiment 25 or 26, wherein the crystal form further includes a 2 ⁇ value of 6.3 ⁇ 0.2 in an X-ray diffraction (XRD) spectrum
  • XRD X-ray diffraction
  • Embodiment 29 The phosphazene compound according to embodiment 28, wherein in the NMR test and mass spectrometry test of the compound of Formula 9, the following characteristic map is presented:
  • Embodiment 30 The phosphazene compound according to embodiment 1 or 2, wherein the phosphazene compound is represented by the following compound of formula 10:
  • Embodiment 31 The phosphazene compound according to embodiment 25, wherein in the compound of Formula 10, the value of a is 3, 6, 8, or 10.
  • Embodiment 33 A composition comprising one or more of the phosphazene compounds described in Embodiments 1 to 32.
  • Embodiment 34 The composition according to embodiment 33, which is a composition for use in a flame retardant.
  • Scheme 35 A method for preparing a phosphazene compound according to any one of Schemes 1 to 31, wherein the method comprises the steps of taking raw materials, mixing them, and activating a reaction to synthesize the compounds .
  • Embodiment 36 The method according to embodiment 35, wherein the method for synthesizing a composition containing a phosphazene compound comprises the method described in embodiment 3 Or as described in scheme 4
  • the method includes the following steps:
  • Embodiment 37 The method according to embodiment 36, further comprising the following specific steps:
  • trialkylsilyl (alk) alcohol To a container containing tetrahydrofuran or chlorobenzene or 1,4-dioxane, add trialkylsilyl (alk) alcohol, and metallic sodium or metallic calcium;
  • the suspension is concentrated, and the solvent is distilled off to obtain a white solid; further washing with water, washing with an organic solvent, concentration, and purification are performed to obtain the formula 4 Cyclotriphosphazene compounds.
  • Scheme 38 The method for preparing a phosphazene compound according to Scheme 35, wherein the method is used to synthesize the compound described in Formula 4 A compound, the method comprising:
  • Step (1) a step of synthesizing crude hexachlorocyclotriphosphazene using phosphorus pentachloride and ammonium chloride as raw materials;
  • Step (2) A step of recrystallizing the product of the crude hexachlorocyclotriphosphazene using an organic solvent.
  • Embodiment 39 The method according to embodiment 38, wherein the step of synthesizing crude hexachlorocyclotriphosphazene further comprises:
  • double catalyst 1: 1.1: 0.06
  • double catalyst 1: 1.1: 0.06
  • take the raw materials of each component and take organic solvent I at a ratio of 2400 to 2600 grams per mole of phosphorus pentachloride
  • Add phosphorus pentachloride and organic solvent I to the first reactor under nitrogen protection raise the temperature to 80 ° C. and stir at this temperature for 1 to 2 hours until the phosphorus pentachloride is completely dissolved; under nitrogen protection, ammonium chloride 2.
  • the double catalyst and organic solvent I were added to the second reactor, and the stirring was started, and the temperature was raised to reflux. Under the reflux condition, the solution in the first reactor was slowly added dropwise to the second reactor. Stirring under reflux for 1 to 2 hours ends; cooling to room temperature, filtering, and concentrating the mother liquor to remove the solvent, to obtain the crude hexachlorocyclotriphosphazene product; wherein
  • the double catalyst is a mixture of pyridine and magnesium chloride
  • the organic solvent I is selected from benzene, chlorobenzene, o-chlorobenzene, carbon tetrachloride, 1,1,2,2-tetrachloroethane and 1,1,2. -Any one of trichloroethane.
  • Embodiment 40 The method according to embodiment 38 or 39, wherein the recrystallization step comprises:
  • the prepared crude hexachlorocyclotriphosphazene product is dissolved at an elevated temperature using an organic solvent II, and then the organic solvent II in which the product is dissolved is extracted with concentrated sulfuric acid; thereafter, the product obtained by extraction is reused
  • the organic solvent II is dissolved at an elevated temperature, and then slowly cooled down and gradually crystallized to obtain the hexachlorocyclotriphosphazene compound in the crystalline form; wherein the organic solvent II is selected from petroleum ether, n-heptane and methyl Tert-butyl ether.
  • Embodiment 41 The method according to any one of embodiments 38 to 40, wherein the recrystallization step comprises:
  • the product obtained by the above extraction is added to petroleum ether again, and is warmed to 80 ° C. at a rate of 1 to 3 ° C./minute, and stirred at 80 ° C. for 1 to 2 hours until the product is completely dissolved, and then 1 to 3 ° C. / The temperature is reduced to 0 ⁇ 5 ° C in minutes, so that the product gradually crystallizes in the process;
  • the crystalline product is filtered to obtain the hexachlorocyclotriphosphazene compound in the crystal form.
  • Embodiment 42 The method of a phosphazene compound according to embodiment 35, wherein the method is used to synthesize the A compound, the method comprising:
  • Step (1) Using chlorophosphazene And phenol as raw material under liquid conditions below 40 ° C Crude product
  • Step (2) Dissolve the crude product by using tetrahydrofuran as an organic solvent, then raise the temperature and reflux, and slowly reduce the temperature to allow the product to crystallize in the process, so as to obtain the compound of.
  • Embodiment 43 The method according to embodiment 42, wherein each of the steps (1) and (2) specifically includes the following steps:
  • the acid-binding agent is selected from sodium hydroxide, potassium carbonate, and sodium carbonate;
  • Step (2) According to the ratio of 6 to 10 g of tetrahydrofuran per 1 gram of the product of step (1), take tetrahydrofuran, heat and reflux at 125 to 135 ° C, and stir at this temperature for 2 to 3 hours, and then 0.5 to 5 ° The temperature is slowly reduced to 10-15 ° C per minute, and stirred at 10-15 ° C for 2-5 hours, filtered, and the filter cake is dried under vacuum to obtain the crystal form.
  • Embodiment 44 The method for preparing a phosphazene compound according to embodiment 35, wherein the method is used to synthesize the Compound, the method comprising the following steps:
  • Step (1) Hexachlorocyclotriphosphazene and phenol are used as raw materials to synthesize a crude product of hexaphenoxycyclotriphosphazene;
  • Step (2) The above crude product is added to a sufficient amount of a solvent selected from ethanol, isopropanol or methanol, and the temperature is raised to reflux to 120 to 130 ° C, and the temperature is maintained and stirred at this temperature for 2 to 3 hours, and then 0.5 to Slowly reduce the temperature to 3-15 ° C to 10-15 ° C, and stir at this temperature for 2 to 5 hours.
  • a solvent selected from ethanol, isopropanol or methanol
  • Embodiment 45 The method according to embodiment 44, wherein the solvent used in step (2) is anhydrous ethanol.
  • Item 46 The method according to item 44 or 45, characterized in that the reflux temperature in step (2) is 125 ° C, and after holding and stirring at this temperature for 3 hours, the temperature is 0.5 to 1 ° C / min. The rate is slowly reduced to 12-15 ° C.
  • Embodiment 47 The method according to embodiment 44 or 45, wherein step (1) more specifically includes the following steps:
  • Step (1) Add phenol and chlorobenzene to the container under the protection of nitrogen, stir at room temperature for 20-30 minutes, and wait until use; under the protection of nitrogen, the hexachlorocyclotriphosphazene, Potassium carbonate and chlorobenzene as acid binding agents were added to a four-necked flask, and the phenol-chlorobenzene solution prepared above was slowly added dropwise while controlling the temperature below 40 ° C;
  • Embodiment 48 The method according to any one of Embodiments 44 to 47, wherein the step (2) more specifically includes the following steps:
  • Step (2) Add the crude product obtained in step (1) and anhydrous ethanol as the recrystallization solvent into a container, raise the temperature to reflux to 125 ° C, and stir at this temperature for 2 to 3 hours, and then 0.5 to The rate of 1 ° C / min is slowly reduced to 12-15 ° C, and the mixture is stirred at 12-15 ° C for 2 to 3 hours, so that the product is formed into the hexaphenoxycyclotriphosphazene compound in the crystal form in the process.
  • Embodiment 49 The method for preparing a phosphazene compound according to embodiment 35, wherein the method is used to synthesize the Compound, the method comprising the following steps:
  • Step (1) Using hexachlorocyclotriphosphazene, dimethylamine hydrochloride and triethylamine as raw materials to prepare a crude product of hexa- (dimethylamino) cyclotriphosphazene;
  • Step (2) The crude product is added to a petroleum ether solvent, and the temperature is controlled at 40 ° C for 2-3 hours and continuously stirred; thereafter, the temperature is lowered to 0 to 5 ° C and maintained under stirring conditions for 2 To 5 hours, allowing the crude product to crystallize Compound.
  • Embodiment 50 The method according to embodiment 49, wherein the step (1) specifically includes the following steps:
  • Embodiment 51 The method for preparing a phosphazene compound according to embodiment 35, wherein the method is used to synthesize the compound described in Formula 8. Compound, the method comprising the following steps:
  • Step (1) Using hexachlorocyclotriphosphazene and sodium methoxide as raw materials, obtain a crude product of hexamethoxycyclotriphosphazene through a reaction in a liquid state in the presence of a solvent;
  • step (2) the crude product of the hexamethoxycyclotriphosphazene is dissolved in a solvent selected from the group consisting of petroleum ether, n-heptane, and methyl tert-butyl ether, and then the temperature is raised to 35- Incubate at 60 ° C for a period of time, and then slowly lower the temperature to 0 to 5 ° C; in the process, a crystalline product of hexamethoxycyclotriphosphazene is obtained.
  • a solvent selected from the group consisting of petroleum ether, n-heptane, and methyl tert-butyl ether
  • Embodiment 52 The method according to embodiment 52, wherein in step (2), the solvent in which the crude product of hexamethoxycyclotriphosphazene is dissolved is n-heptane.
  • Embodiment 53 The method according to embodiment 51 or 52, wherein the step (2) further comprises the following specific steps: using n-heptane to dissolve the crude product of hexamethoxycyclotriphosphazene, and then raising the temperature to 40 ° C And stirred at this temperature for 2 to 3 hours, and then cooled to 0 to 5 ° C at a temperature of 0.5 to 3 ° C / min and maintained for 2 to 5 hours, during which the hexamethoxycyclotriphosphazene crystallized; thereafter, The steps of filtering and drying the filter cake are performed to obtain a crystalline product of hexamethoxycyclotriphosphazene.
  • Scheme 54 The method for preparing a phosphazene compound according to Scheme 35, wherein the method is used to synthesize the Compound, the method comprising the following steps:
  • Step (1) Hexachlorocyclotriphosphazene and sodium cyanide are used as raw materials to prepare a crude product of hexapropoxycyclotriphosphazene at a reaction temperature of 5 to 20 ° C;
  • Step (2) The crude product of the hexapropoxycyclotriphosphazene is dissolved in dichloromethane, and the solvent is finally removed to obtain a hexapropoxycyclotriphosphazene compound.
  • Embodiment 55 The method according to embodiment 54, wherein the step (1) further specifically includes the following steps:
  • Hexachlorocyclotriphosphazene and an organic solvent selected from the group consisting of methanol, n-propanol, and tetrahydrofuran were added to the first reactor under nitrogen protection, and stirred at room temperature for 1 to 2 hours to hexachlorocyclotrisphosphine. The nitrile is completely dissolved;
  • the solution in the first reactor was slowly added dropwise to the second reactor. After the dropwise addition was completed, the solution was heated to reflux and stirred under reflux for 10-12 hours. After cooling to room temperature and filtering, the filtrate was concentrated to remove the solvent. That is, a crude product of hexapropoxycyclotriphosphazene is obtained.
  • Embodiment 56 The method for preparing a phosphazene compound according to embodiment 35, wherein the method is used to synthesize the A compound, the method comprising:
  • Hexachlorotriphosphazene and NH 3 methanol solution are used as raw materials, and any organic solvent selected from methanol, n-propanol and tetrahydrofuran is used; hexachlorocyclotriphosphazene and organic solvent are added under the protection of nitrogen.
  • the reaction container is stirred at room temperature for 1 to 2 hours until the hexachlorocyclotriphosphazene is completely dissolved; then the reaction container is cooled to less than 10 ° C; while maintaining the temperature, the NH 3 methanol solution is added dropwise, and the stirring is continued after the addition is complete The reaction is performed for 10 to 20 hours to obtain the compound.
  • Embodiment 57 The method according to embodiment 56, wherein the reaction vessel is cooled to 0 to 5 ° C and a NH 3 methanol solution is added dropwise, and a reaction occurs between the raw materials at the temperature; and
  • Embodiment 58 The method according to embodiment 37, further comprising the following specific steps:
  • Embodiment 59 The method according to embodiment 36, the method comprising the following specific steps:
  • the suspension is subjected to steps including washing with water, washing with organic solvents, and concentration to obtain cyclotriphosphazene compounds containing alkylsilyloxy (and or alkoxy) substitutions.
  • Embodiment 60 The method according to embodiment 59, the method comprising the following specific steps:
  • the suspension was decanted and concentrated to obtain a yellow viscous solid or liquid, washed with water, washed with water and organic solvents, and dissolved and purified with toluene, dichloromethane, chloroform or dichloroethane to obtain an alkylsilyl group.
  • Oxygen (and or alkoxy) substituted cyclotriphosphazene derivatives were decanted and concentrated to obtain a yellow viscous solid or liquid, washed with water, washed with water and organic solvents, and dissolved and purified with toluene, dichloromethane, chloroform or dichloroethane to obtain an alkylsilyl group.
  • Oxygen (and or alkoxy) substituted cyclotriphosphazene derivatives were prepared by reacting of water to obtain an alkylsilyl group.
  • Embodiment 61 The method according to embodiment 36, the method comprising the following specific steps:
  • the white suspension is subjected to a further purification process to obtain an alkylsilyloxy (and or alkoxy) -containing cyclotriphosphazene derivative.
  • Embodiment 62 The method according to embodiment 61, the method comprising the following specific steps:
  • the suspension was decanted and concentrated to obtain a yellow viscous solid or liquid, washed with water, washed with water, organic solvents, and dissolved and purified with toluene, dichloromethane, chloroform, or dichloroethane to obtain an alkyl-containing silicon. Cyclotriphosphazene derivatives substituted with alkoxy (and or alkoxy).
  • Embodiment 64 The use of a phosphazene compound according to any one of Embodiments 1 to 32 or the composition according to Embodiment 33 or 34 for a flame retardant.
  • Embodiment 65 The use according to embodiment 64, wherein the compound or composition is applied to a resin, a plastic, or an electrolyte for a battery structure.
  • Embodiment 66 The use according to embodiment 64 or 65, wherein the compound or composition is applied to PMMA (polymethyl methacrylate), PS (polystyrene), PBT (polybutylene terephthalate) ), PC (polycarbonate), ABS (acrylonitrile-butadiene-styrene copolymer), PA (nylon), PU (polyurethane), PPO (polyphenylene ether), epoxy resin and other resins A mixture of one or more kinds, preferably PMMA, PC, PC / ABS alloy and epoxy resin.
  • PMMA polymethyl methacrylate
  • PS polystyrene
  • PBT polybutylene terephthalate
  • PC polycarbonate
  • ABS acrylonitrile-butadiene-styrene copolymer
  • PA nylon
  • PU polyurethane
  • PPO polyphenylene ether
  • epoxy resin epoxy resin and other resins
  • Embodiment 67 The use according to any one of Embodiments 64 to 66, wherein the composition contains Compounds shown; where a ranges from 3-10.
  • Embodiment 68 The use according to embodiment 67, wherein the composition contains hexaphenoxycyclotriphosphazene.
  • Embodiment 69 The use according to any one of embodiments 64 to 68, wherein the flame retardant comprises the phosphazene compound according to any one of 1 to 32 or the composition according to embodiment 33 or 34 Multiple components.
  • Item 70 The use according to item 64 or 65, wherein the resin or plastic is PE, PP, PVC, PS, ABS, PA, PC, POM, PBT, PET, PPO, PMMA, PU and epoxy resin One or more mixtures.
  • the resin or plastic is PE, PP, PVC, PS, ABS, PA, PC, POM, PBT, PET, PPO, PMMA, PU and epoxy resin One or more mixtures.
  • Item 71 The use according to item 64 or 65, wherein the resin or plastic is a resin material using PMMA, PC, PC / ABS alloy resin, and PU, PET, PA6, or epoxy resin as a matrix.
  • the resin or plastic is a resin material using PMMA, PC, PC / ABS alloy resin, and PU, PET, PA6, or epoxy resin as a matrix.
  • Item 72 A flame retardant comprising the phosphazene compound according to any one of items 1 to 32 or the composition according to item 33 or 34.
  • Embodiment 73 The flame retardant according to embodiment 72, wherein the flame retardant comprises the general formula Compounds shown; where a ranges from 3-10.
  • Embodiment 74 The flame retardant according to embodiment 72, wherein the flame retardant includes a chemical formula represented as The components of a compound.
  • Embodiment 75 The flame retardant according to embodiment 74, wherein versus The mass ratio is between 1: 9 and 4: 6.
  • Embodiment 76 A compound for use in a flame retardant, wherein the compound is represented by the following general formula:
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 is selected from Cl or and
  • the value of a is 3, 4, or 5.
  • Scheme 77 A compound according to Scheme 76, wherein the compound is or Where Ph represents a phenyl group.
  • Scheme 78 A compound according to Scheme 77, wherein with It is in the form of a powder crystal, and has the following specific crystalline form: in the X-ray diffraction (XRD) pattern of the compound in the crystalline state, the compound in the crystalline state has a In the range of 5 degrees to about 45 degrees, at least 3 diffraction characteristic peaks are present; preferably, at least 4 diffraction characteristic peaks are present; at least 5 characteristic diffraction peaks are present.
  • XRD X-ray diffraction
  • trialkylsilyl (alk) alcohol To a container containing tetrahydrofuran or chlorobenzene or 1,4-dioxane, add trialkylsilyl (alk) alcohol, and metallic sodium or metallic calcium;
  • the suspension was concentrated, and the solvent was distilled off to obtain a white solid; further washing with water, washing with an organic solvent, concentration, and purification were performed to obtain the Cyclotriphosphazene compounds.
  • the suspension is subjected to steps including washing with water, washing with organic solvents, and concentration to obtain cyclotriphosphazene compounds containing alkylsilyloxy-substituted and / or alkoxy-substituted cyclotriphosphazene compounds.
  • the suspension was decanted and concentrated to obtain a yellow viscous solid or liquid, washed with water, washed with water and organic solvents, and dissolved and purified with toluene, dichloromethane, chloroform or dichloroethane to obtain an alkylsilyl group. Oxy- and / or alkoxy-substituted cyclotriphosphazene compounds.
  • the white suspension is subjected to a further purification process to obtain a cyclotriphosphazene compound containing an alkylsilyl group-containing oxygen substitution and / or an alkoxy group substitution.
  • the suspension was decanted and concentrated to obtain a yellow viscous solid or liquid, washed with water, washed with water, and washed with organic solvents, and dissolved and purified with toluene, dichloromethane, chloroform or dichloroethane to obtain Silyloxy- and / or alkoxy-substituted cyclotriphosphazene compounds.
  • Scheme 85 The method according to any one of Schemes 80 to 84, for the synthesized compound, wherein in the compound structure, b is equal to zero.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)

Abstract

本发明涉及一种磷腈类化合物、包括该磷腈类化合物的组合物、包含其的阻燃剂以及应用。根据本发明合成的环三磷腈衍生物阻燃剂的晶型是最稳定的晶型,它热稳定性好,阻燃效率高;并且,本发明合成的结晶型环三磷腈衍生物阻燃剂添加到材料中,无论工程塑料还是通用塑料中,以及锂离子电池电解液、阻燃布和阻燃纸中,具有优良的阻燃性能,晶型稳定,抗滴落,只需要极少的添加量,材料的阻燃性能即达到V-0标准,而且对材料的其他性能影响较小。

Description

一种磷腈类化合物、包括该磷腈类化合物的组合物、包含其的阻燃剂以及应用 技术领域
本发明涉及化工领域,较具体而言,涉及一种可应用于阻燃剂的化合物和包含该类化合物的组合物和其生产方法。本发明还提供了该类化合物以及含该类化合物的组合物在各种工业生产阻燃方面的应用。
背景技术
我国是有机材料生产大国和使用大国,每年因有机材料燃烧引发的火灾导致的人身财产损失严重,且大部分有机材料受热或燃烧时易释放大量有毒气体,并不适合作为多次加热的食品包装和生物亲和材料使用,更不利于因有机材料燃烧引发的火灾事故现场人员逃生。一直以来,国内外都非常重视对环保安全的阻燃型生物亲和材料的研究和产品开发。
例如,在工业生产的阻燃剂领域,磷腈化合物是一类以氮磷原子为主链结构的交替单双键排列的新型无机有机杂化聚合物。磷腈化合物的主链和有机支链使其具有无机和有机的特点,具有传统聚合物不可比拟的性能,在制造防火材料、工程塑料、以及医药等各方面都有应用。氯磷腈是合成磷腈化合物的原料,也能够作为特定技术领域的阻燃剂来使用。但对此,一方面已有技术还缺少对于氯磷腈系列的化合物或氯磷腈化合物的组合物的阻燃剂在应用效率(例如添加比例,复配效果等),以及其特定结晶形态与阻燃效果和效率之间的研究,也没有在这方面取得更好的工业化进程。类似地,由氯磷腈衍生出来的其他系列的化合物及其阻燃剂也仍存在类似的不足之处,并且由于常规阻燃剂仍可能存在部分污染环境的部分,还难以达到以更少的添加量达到工业应用或者国家标准中的优异的阻燃效果。
另一方面,目前仅有少量的价格昂贵的高端阻燃剂可以应用到高级生物亲和型材料中去,鉴于其高昂的价格和功能限制并未广泛应用。因此对具有环保,安全,无毒,高效的生物亲和型功能阻燃剂的研究和开发,仍然是目前阻燃剂的重要研究方向之一。
目前,我国所用的阻燃剂主要包括卤系和磷系,其中磷系阻燃剂具有 阻燃、隔热、隔氧的功能,且产生烟量少,也不易形成有毒有害气体,能适应各种环境要求。磷腈类阻燃剂是一种阻燃效果优良的含磷阻燃剂,由于高含量的磷氮而具有优异的阻燃性能,通过对其磷腈单体上的磷的活性位点的修饰,可以改造成多种含羟基、氨基、卤素以及炭羰基等官能团的磷腈系列阻燃剂,并广泛适用于各种不同性能的材料。磷腈系列阻燃剂一般不需要添加其他辅助阻燃剂,同时,热稳定性好,无毒,发烟量小,具有自熄性,被公认为是今后阻燃剂的发展方向之一。
此外,磷腈系列阻燃剂种类很多,由于其低廉的价格、良好的材料亲和性能和其灵活的使用方法,其应用领域也相当广泛。其品种有水溶性和油溶性,适用于多种场合使用,既可以用于棉、麻、丝等多种天然纤维,又可以应用于聚酯等合成材料,还可以应用于航空材料。然而将其应用于有机合成材料,生物亲和材料,同时具有加热无毒,不易分解等特性的安全阻燃剂尚未见报道。
例如,中国专利CN107383104A公开了一种氯磷腈的制备方法。该专利对于氯磷腈的合成工艺做出了有益的尝试、拓宽和探索,但是缺乏对于氯磷腈和相应的阻燃剂产品在实际应用中的效果的探索,也没有对于氯磷腈化合物的结晶形态,结晶形态与制备工艺,以及实施效果之间的关系做出研究。
因此,本领域仍然对于使用稳定性佳、配入主体材料比例低、应用范围广的磷腈系列阻燃剂有较大的需求。
发明内容
为了克服上述现有技术的缺点,本发明提供了克服相关技术的不足和缺陷的一种或多种的技术方案。具体而言,本发明提供了阻燃性能优异可靠、配制添加比例低、适于规模化生产和产业应用的磷腈类化合物、磷腈类化合物的组合物。本发明还提供了包含上述组分的阻燃剂以及在各中阻燃领域中的应用。
本发明的第一方面,提供了一种磷腈类化合物(磷腈化合物),其特征在于,所述磷腈类化合物为由下述式1或式2的通式所表示的化合物:
Figure PCTCN2018116520-appb-000001
Figure PCTCN2018116520-appb-000002
其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8中的每个选自Cl,
Figure PCTCN2018116520-appb-000003
CH 3O-,(CH 3) 2N-,CH 3CH 2CH 2O-,H 2N-,-O-(CH 2)nCH 3,-O-(CH 2)nCH((CH 2)mCH 3) 2,-O-(CH 2)nC((CH 2)mCH 3) 3,-O-(CH 2)nSi((CH 2)mCH 3) 3、-Ph、-PhMe的基团,其中R 1至R 8中的每一个彼此相同或者不同;
上述式中以及所述基团中的m、n各自取值范围为0至20的整数,a的取值为4至20的整数。
根据进一步可以优选的技术方案,根据上述的磷腈类化合物,其特征在于,所述化合物或组合物中所包含的式1和/或式2中的一种或多种化合物呈结晶态,在对所述呈结晶态的化合物所测得的X射线衍射(XRD)图谱中,呈结晶态的所述化合物在2θ值在约5度至约45度的范围内呈现至少3个衍射特征峰;优选地具有至少4个衍射特征峰,或5个衍射特征峰。
根据进一步可以优选的技术方案,所述式1的化合物进一步地表示为 以下化学通式的化合物:
Figure PCTCN2018116520-appb-000004
其中,R 1’、R 2’、R 3’、R 4’、R 5’、R 6’各自选自由以下基团构成的组中的一种或者多种:
(CH 2)nCH 3,(CH 2)nCH((CH 2)mCH 3) 2,(CH 2)nC((CH 2)mCH 3) 3(CH 2)nSi((CH 2)mCH 3) 3,-Ph,-PhMe  ,Ph表示苯基基团,Me表示甲基基团。
根据进一步可以优选的技术方案,所述磷腈类化合物由所述式1的化合物构成,其进一步地表示为以下化学通式的化合物:
Figure PCTCN2018116520-appb-000005
其中R 2’、R 3’、R 4’、R 5’、R 6’各自选自由以下基团构成的组中的一种或者多种:
(CH 2)nCH 3,(CH 2)nCH((CH 2)mCH 3) 2,(CH 2)nC((CH 2)mCH 3) 3(CH 2)nSi((CH 2)mCH 3) 3,-Ph,-PhMe ,Ph表示 苯基基团,Me表示甲基基团。
其中,b选自0至7之间的整数,而m也独立地选自0至7之间的整数。
根据进一步可以优选的技术方案,所述b的值取0。
根据进一步可以优选的技术方案,其中b选自1、2、3、4、5、6、7中的任一个整数;m也独立地选自1、2、3、4、5、6、7中的任一个整数。
根据进一步可以优选的技术方案,所述磷腈类化合物由所述式2化合物构成,并且,其进一步地由以下化学通式来表示:
Figure PCTCN2018116520-appb-000006
根据进一步可以优选的技术方案,所述式2或者式3的化合物呈结晶态,所述式3中的通式化合物的a值为4或者5;或者a可以选择4至10中的任一个整数。
根据进一步可以优选的技术方案,所述磷腈类化合物的所述式1化合物进一步地由以下化学通式来表示:
Figure PCTCN2018116520-appb-000007
并且,
所述式4的化合物呈现的结晶态。
根据进一步可以优选的技术方案,所述式4的化合物呈结晶态,并具有以下描述所表示的特定的晶型:在针对所述结晶态的式4的化合物实施X射线衍射(XRD)图谱中测试中,所述特定的晶型的化合物的X射线衍射(XRD)图谱包括了2θ值为以下位置的主要特征衍射峰:
13.9°±0.2°;15.9°±0.2°;24.4°±0.2°;以及41.9°±0.2°。
根据进一步可以优选的技术方案,所述式4的化合物呈结晶态,并且在针对所述结晶态的式4的化合物实施X射线衍射(XRD)图谱中测试中,其在2θ值为41.9°±0.2°处显示出最强的衍射峰强度,并且在13.9°±0.2°,以及15.9°±0.2°处显示出次强衍射峰强度和第三强衍射封强度;
进一步优选地,所述次强衍射峰强度和最强的衍射峰强度的比在0.90至0.98∶1之间,而第三强衍射封强度与最强的衍射峰强度的比值0.60至0.70∶1之间。
根据进一步可以优选的技术方案,所述式4化合物的晶型还包括在X射线衍射(XRD)图谱的2θ值为24.4±0.2°,27.7±0.2°以及28.4±0.2°处出现衍射峰,所述24.4±0.2°,27.7±0.2°以及28.4±0.2°处的衍射峰与最强衍射峰的强度的比值为0.15至0.5∶1。
根据进一步可以优选的技术方案,所述磷腈类化合物由所述式1化合物的化合物来表示,并且进一步地由以下化学通式来表示:
Figure PCTCN2018116520-appb-000008
并且
所述式5的化合物呈结晶态。
根据进一步可以优选的技术方案,所述式5的化合物呈结晶态,并具有以下描述所表示的特定的晶型:在针对所述结晶态的式5的化合物实施X射线衍射(XRD)图谱中测试中,所述特定的晶型的化合物的X射线衍射(XRD)图谱包括了2θ值为以下位置的主要特征衍射峰:
10.8±0.2度、12.0±0.2度、20.2±0.2度。
根据进一步可以优选的技术方案,所述式5的化合物呈结晶态,并且在针对所述结晶态的式5的化合物实施X射线衍射(XRD)图谱中测试 中,其在2θ值为20.2±0.2°处显示出最强的衍射峰强度,并且在12.0±0.2°,以及10.8±0.2°处显示出次强衍射峰强度和第三强衍射封强度,所述次强衍射峰强度和最强的衍射峰强度的比在0.75至0.80∶1之间,而第三强衍射封强度与最强的衍射峰强度的比值0.60至0.70∶1之间。
根据进一步可以优选的技术方案,所述晶型还包括在X射线衍射(XRD)图谱的2θ值为7.2±0.2°以及29.8±0.2°出现衍射峰,所述7.2±0.2°以及29.8±0.2°处的衍射峰与最强衍射峰的强度的比值为0.2至0.5∶1之间。
根据进一步可以优选的技术方案,所述磷腈类化合物由所述式1表示,并且进一步地所述化合物由以下化学通式来表示:
Figure PCTCN2018116520-appb-000009
并且
所述式6的化合物呈现的结晶态。
根据进一步可以优选的技术方案,所述式6的化合物呈结晶态,并具有以下描述所表示的特定的晶型:在针对所述结晶态的式6的化合物实施X射线衍射(XRD)图谱中测试中,所述特定的晶型的化合物的X射线衍射(XRD)图谱包括了2θ值为以下位置的主要特征衍射峰:
10.4±0.2度、17.3±0.2度、19.0±0.2度以及20.0±0.2度。
根据进一步可以优选的技术方案,所述式6的化合物呈结晶态,并且在针对所述结晶态的式6的化合物实施X射线衍射(XRD)图谱中测试中,其在2θ值为10.4±0.2°处显示出最强的衍射峰强度,并且在19.0±0.2°,20.0±0.2°以及17.3±0.2°处显示出次强衍射峰强度、第三强衍射封强度以及第四衍射峰强度,所述次强衍射峰强度、第三强衍射封强度各自和最强的衍射峰强度的比在0.55至0.65之间,而第四强衍射封强 度与最强的衍射峰强度的比值0.50至0.55∶1之间
根据进一步可以优选的技术方案,所述晶型还包括在X射线衍射(XRD)图谱的2θ值为26.8±0.2°处出现衍射峰,所述26.8±0.2°处出现衍射峰与最强衍射峰的强度的比值为0.45至0.50∶1之间。
根据进一步可以优选的技术方案,所述磷腈类化合物由所述式1化合物表示,并且其进一步地由以下化学通式来表示:
Figure PCTCN2018116520-appb-000010
并且
所述式7的化合物呈现的结晶态。
根据进一步可以优选的技术方案,上述7的化合物呈结晶态,并具有以下描述所表示的特定的晶型:所述式7的化合物呈结晶态,并具有以下描述所表示的特定的晶型:在针对所述结晶态的式7的化合物实施X射线衍射(XRD)图谱中测试中,所述特定的晶型的化合物的X射线衍射(XRD)图谱包括了2θ值为以下位置的主要特征衍射峰:11.0±0.2°。
根据进一步可以优选的技术方案,所述晶型还包括在X射线衍射(XRD)图谱的2θ值为11.4±0.2°处、13.6±0.2°处、14.6±0.2°处、20.3±0.2°处以及22.5±0.2°处的衍射峰,上述四处出现衍射峰的强度与最强衍射峰的强度的比值为0.15至0.35∶1。
根据进一步可以优选的技术方案,所述磷腈类化合物进一步地由以下式8的化合物来表示:
Figure PCTCN2018116520-appb-000011
并且其中
所述式8的化合物包括的结晶态的所述化合物。
根据进一步可以优选的技术方案,上述8的化合物呈结晶态,并包括了具有以下描述所表示的特定的晶型:所述式8的化合物呈结晶态,并具有以下描述所表示的特定的晶型:在针对所述结晶态的式8的化合物实施X射线衍射(XRD)图谱中测试中,所述特定的晶型的化合物的X射线衍射(XRD)图谱包括了2θ值为以下位置的主要特征衍射峰:13.1±0.2°,以及16.1±0.2°。
根据进一步可以优选的技术方案,所述式8的化合物呈结晶态,并且在针对所述结晶态的式8的化合物实施X射线衍射(XRD)图谱中测试中,其在2θ值为13.1±0.2处显示出最强的衍射峰强度,并且在16.1±0.2°处显示出次强衍射峰强度,所述次强衍射峰强度和最强的衍射峰强度的比在0.70至0.80之间。
根据进一步可以优选的技术方案,所述晶型还包括在X射线衍射(XRD)图谱的2θ值为6.3±0.2°处、16.7±0.2°处、26.9±0.2°处的衍射峰,上述三处出现衍射峰的强度与最强衍射峰的强度的比值为0.40至0.50∶1之间。
根据进一步可以优选的技术方案,所述磷腈类化合物进一步地由所述式9的化合物通式来表示:
Figure PCTCN2018116520-appb-000012
根据进一步可以优选的技术方案,所述式9的化合物的NMR测试以及质谱测试中,呈现以下特征图谱:
1H-NMR(400MHz,CDCl 3,δ):3.729~3.521,12H;1.520~1.388,12H;0.907~0.794,18H;
ESI-MS:m/s(M+H):490。
根据进一步可以优选的技术方案,所述磷腈类化合物由下述式10化合物来表示:
Figure PCTCN2018116520-appb-000013
根据进一步可以优选的技术方案,在所述式10的化合物中,a的取值为4、5、6、7、8、9或者10。
根据进一步可以优选的技术方案,在上述各个化合物中,n与a的取值分别优选为3至15之间的整数;或者,n或a的取值优选为0至7之间的整数;m的取值优选为0至7中的整数。
本发明的第二个方面,还提供一种组合物,所述组合物包含上述方案中的磷腈类化合物中的一种或者多种。
根据进一步可以优选的技术方案,所述组合物为用于阻燃剂中的组合物。
本发明还提供一种制备上述化合物或组合物的方法,所述的方法包括 原料的取用、混合,以及激活反应从而合成所述化合物的步骤。
根据进一步可以优选的技术方案,所合成的包含磷腈类化合物的组合物的方法包括所述的
Figure PCTCN2018116520-appb-000014
或者所述的
Figure PCTCN2018116520-appb-000015
所述方法包括以下步骤:
以六氯环三磷腈,一种或更多中通式为M-O-R 1’的化合物,和/或选自钠、钾、钙的金属单质作为起始原料在有机溶剂中经过合成反应,从而得到含烷基硅基氧取代和/或烷氧取代的环三磷腈类化合物;其中
在M-O-R 1’中,M为H、Na、K或者Ca;O表示氧;R 1’选自(CH 2)nSi((CH 2)mCH 3) 3,(CH 2)nCH 3,(CH 2)nCH((CH 2)mCH 3) 2,(CH 2)nC((CH 2)mCH 3) 3;b的取值为0至7之间的整数;m的取值优选为0至7中的整数(该类“M-O-R 1’”化合物可称为三烷基硅基醇、烷醇(例如甲醇、乙醇、丙醇)、三烷基硅基醇钠、三烷基硅基醇钾、三烷基硅基醇钙,以及烷醇钠(甲醇钠、乙醇钠)、烷醇钾以及烷醇钙)。
根据进一步可以优选的技术方案,所述方法进一步包括以下具体步骤:
向放入有四氢呋喃或氯苯或1,4-二氧六环的容器中加入三烷基硅(烷)醇,以及金属钠或金属钙;
将上述混合物滴入到六氯环三磷腈中,在加热的条件下搅拌,从而反 应得到白色悬浊液;
将悬浊液浓缩,蒸去溶剂,得到白色固体;并进一步实施水洗、有机溶剂洗涤、浓缩、纯化,得到式4所述
Figure PCTCN2018116520-appb-000016
的环三磷腈类化合物。
根据进一步可以优选的技术方案,其中所述方法用来合成式4所述的
Figure PCTCN2018116520-appb-000017
化合物,所述方法包括:
步骤(1).以五氯化磷和氯化铵为原料合成粗六氯环三磷腈的步骤;
步骤(2).将上述粗六氯环三磷腈的产物使用有机溶剂溶解从而再结晶的步骤。
根据进一步可以优选的技术方案,其中所述合成粗六氯环三磷腈的步骤进一步包括:
按五氯化磷∶氯化铵∶复式催化剂=1∶1.1~1.5∶0.05~.0.1(更优选1∶1.1∶0.06)的摩尔比取各组分原料,按每摩尔五氯化磷用有机溶剂I 2400~2600克的比例取有机溶剂I;在氮气保护下将五氯化磷和有机溶剂I加到第一反应器中,升温至80℃并在此温度下搅拌1~2小时至五氯化磷完全溶解;在氮气保护下将氯化铵、复式催化剂和有机溶剂I加到第二反应器中,开启搅拌,升温至回流,在回流状态下缓慢将第一反应器中的溶液滴加至第二反应器中,滴加结束后继续在回流状态下搅拌1~2小时结束;冷却至室温,过滤,将母液进行浓缩除去溶剂,即制得所述粗六氯环三磷腈的产物;其中
所述复式催化剂为吡啶与氯化镁的混合物,所述有机溶剂I选自苯、氯苯、邻氯苯、四氯化碳、1,1,2,2-四氯乙烷及1,1,2-三氯乙烷中的任一种。
根据进一步可以优选的技术方案,其中所述再结晶步骤包括:
将制备得到的粗六氯环三磷腈的产物,使用有机溶剂II在升高的温度下溶解,然后使用浓硫酸萃取所述溶解有产物的有机溶剂II;此后,将萃取所得的产物再次使用有机溶剂II在升高的温度下溶解,然后缓慢降温并逐渐结晶,从而得到所述结晶形态的六氯环三磷腈化合物;其中所述有机溶剂II选自石油醚、正庚烷及甲基叔丁基醚。
根据进一步可以优选的技术方案,其中所述再结晶步骤包括:
将所述步骤(1)合成的粗六氯环三磷腈中加入石油醚,并且缓慢升温至80℃保持,在80℃下搅拌1~2小时至粗六氯环三磷腈完全溶解;
静置分离除去油状物,用98%的浓硫酸萃取石油醚溶液两次;以及
将上述萃取得到的产品再次加入石油醚,并以1至3℃/分钟的速率温至80℃,并在80℃下搅拌1~2小时至所述产品完全溶解,然后以1至3℃/分钟的速率降温至0~5℃,使得产物在该过程中逐渐结晶;
对结晶产物进行过滤,从而得到所述结晶形态的六氯环三磷腈化合物。
根据进一步可以优选的技术方案,其中所述方法用来合成式5所述的
Figure PCTCN2018116520-appb-000018
化合物,所述方法包括:
步骤(1).采用氯磷腈
Figure PCTCN2018116520-appb-000019
以及苯酚为原料在低于40℃的液相 条件下制备
Figure PCTCN2018116520-appb-000020
的粗产品;
步骤(2).使用四氢呋喃为有机溶剂对所述粗产品进行溶解,然后升温至65至70℃的回流温度,并缓慢降温使得产品在此过程中进行结晶,从而得到所述
Figure PCTCN2018116520-appb-000021
的化合物。
根据进一步可以优选的技术方案,其中所述步骤(1)和步骤(2)各自具体包括以下步骤:
步骤(1)采用氯磷腈
Figure PCTCN2018116520-appb-000022
以及苯酚为原料,按照氯磷腈∶苯酚∶缚酸剂=1∶6.1~7.0∶12.2~13(更优选1∶6.1∶12.2)的摩尔比取各组分原料,按每1克式氯磷腈用有机溶剂5~6克的比例取有机溶剂;在氮气保护下将氯磷腈、缚酸剂和有机溶剂加到反应器A中,在温度低于40℃下将苯酚缓慢滴加至反应器A中,然后升温至回流温度并在回流温度下搅拌3~5小时结束;冷却至室温,过滤,用水洗母液,之后将有几层进行浓缩除去溶剂,即制得粗产品;其中缚酸剂选自氢氧化钠、碳酸钾、碳酸钠;
步骤(2)按每1克步骤(1)的产物用四氢呋喃6~10克的比例取四氢呋喃,升温回流65-70℃并在此温度下搅拌2~3小时,然后以0.5至5℃/分钟的速率缓慢降温至10~15℃,并在10~15℃下搅拌2~5小时,过滤,真空干燥滤饼,得到所述结晶形态的
Figure PCTCN2018116520-appb-000023
根据进一步可以优选的技术方案,其中所述方法用来合成式6所述的
Figure PCTCN2018116520-appb-000024
化合物,所述方法包括以下步骤:
步骤(1):选用六氯环三磷腈和苯酚为原料合成六苯氧基环三磷腈的粗产品;
步骤(2):将上述粗产品加入足量的选自乙醇、异丙醇或甲醇的溶剂中,升温至回流温度,在此温度下保温并搅拌2至3小时,然后以0.5至3℃/分钟的速率缓慢降温至10~15℃,在此温度下搅拌2至5小时,在上述过程中使得六苯氧基环三磷腈形成为所述结晶状态的六苯氧基环三磷腈化合物产品。
根据进一步可以优选的技术方案,所述步骤(2)中采用的溶剂为无水乙醇。
根据进一步可以优选的技术方案,其特征在于,所述步骤(2)中优选采用乙醇,甚至无水乙醇作为再结晶溶剂,回流的温度为75至80℃,在此温度下保温并搅拌3小时后,以0.5至1℃/分钟的速率缓慢降温至12~15℃。
根据进一步可以优选的技术方案,其特征在于,所述步骤(1)更具体地包括如下步骤:
步骤(1):在氮气保护下将苯酚以及氯苯加到容器中,室温下搅拌20~30分钟,待用;在氮气保护下将按反应需要的化学计量比的六氯环三磷腈、作为缚酸剂的碳酸钾以及氯苯加入四口烧瓶中,并且控制温度在40℃以下缓慢滴加前述制备的苯酚-氯苯溶液;然后
升温至125至135℃的回流温度,并在回流温度下搅拌3~5小时;
冷却至室温,过滤,弃去滤饼、保留滤液,用去离子水洗滤液,将有几层进行浓缩除去溶剂,得到粗产品化合物。
根据进一步可以优选的技术方案,所述步骤(2)更具体地包括如下步骤:
步骤(2):将步骤(1)所获的粗产品和作为再结晶溶剂的无水乙醇加入到容器中,升温回流至78℃,并在此温度下搅拌2~3小时,然后以0.5至1℃/分钟的速率缓慢降温至12~15℃,在12~15℃下搅拌2至3小时,使得产物在此过程中形成为所述结晶形态的六苯氧基环三磷腈化合物。
根据进一步可以优选的技术方案,其中所述方法用来合成式7所述的
Figure PCTCN2018116520-appb-000025
化合物,所述方法包括以下步骤:
步骤(1).以六氯环三磷腈、二甲胺盐酸盐和三乙胺为原料制备六-(二甲胺基)环三磷腈的粗产品;
步骤(2).将所述粗产品加入石油醚溶剂中,并将温度控制在40℃下保持2-3小时并不断搅拌;此后,将温度降温至0至5℃,在搅拌条件下保持2至5小时,使得所述粗产品结晶为结晶形态的
Figure PCTCN2018116520-appb-000026
化合物。
根据进一步可以优选的技术方案,其中所述步骤(1)具体包括以下步骤:
在氮气保护下将六氯环三磷腈和无水四氢呋喃加到四口烧瓶中,室温下搅拌20~30分钟至六氯环三磷腈全部溶解,待用;
在氮气保护下将二甲胺盐酸盐、三乙胺按照与六氯环三磷腈的化学计量比称量,并和无水四氢呋喃一并加到烧瓶中,在室温下搅拌20~30分钟,之后降温至0~5℃,控制温度在0~5℃下缓慢加入此前制备的六氯环三磷 腈的四氢呋喃溶液,加入结束后在0~5℃下继续搅拌1小时,之后升温至室温搅拌96小时;
过滤,将滤液进行浓缩除去溶剂,得到
Figure PCTCN2018116520-appb-000027
的粗产品。
根据进一步可以优选的技术方案,其中所述方法用来合成式8所述的
Figure PCTCN2018116520-appb-000028
化合物,所述方法包括以下步骤:
步骤(1).使用六氯环三磷腈以及甲醇钠为原料,通过在溶剂存在的液相状态下,反应获得六甲氧基环三磷腈的粗产品;
步骤(2),针对上述六甲氧基环三磷腈的粗产品,将其溶解进入选自石油醚、正庚烷及甲基叔丁基醚中的一种的溶剂中,随后升温至回流温度,保温一段时间,再缓慢降温至0至5℃;在此过程中获得六甲氧基环三磷腈的结晶产物。
根据进一步可以优选的技术方案,所述步骤(2)中,溶解六甲氧基环三磷腈的粗产品的溶剂为正庚烷。
根据进一步可以优选的技术方案,所述步骤(2)进一步包括以下具体步骤:使用正庚烷溶解六甲氧基环三磷腈的粗产品,随后升温至40℃并在此温度下搅拌2~3小时,然后以0.5至3℃/分钟的温度降温至0~5℃并保持2至5小时,在此过程中使得六甲氧基环三磷腈结晶;此后,实施过滤,真空干燥滤饼的步骤,得到六甲氧基环三磷腈的结晶产物。
根据进一步可以优选的技术方案,其中所述方法用来合成式9所述的
Figure PCTCN2018116520-appb-000029
化合物,所述方法包括以下步骤:
步骤(1).使用六氯环三磷腈和氰化钠作为原料,在5至20℃的反应温度下反应制备六丙氧基环三磷腈的粗产品;
步骤(2).将上述六丙氧基环三磷腈的粗产品溶解到二氯甲烷中,并最终除去溶剂,以获得六丙氧基环三磷腈化合物。
根据进一步可以优选的技术方案,所述步骤(1)还具体包括以下步骤:
根据化学反应的化学计量比称取六氯环三磷腈,氢化钠;
在氮气保护下将六氯环三磷腈和选自甲醇、正丙醇及四氢呋喃中的任一种的有机溶剂加到第一反应器中,室温下搅拌1~2小时至六氯环三磷腈完全溶解;
在氮气保护下将选自正丙醇及四氢呋喃中的任一种的有机溶加到第二反应器中,在氮气保护下将第二反应器中温度降至5~10℃,并控制温度在10℃以下将氢化钠和作为原料的正丙醇缓慢加入到第二反应器中,加入结束后在10~15℃下搅拌1~2小时,
将第一反应器中溶液缓慢滴加至第二反应器中,滴加结束后升温至回流,并在回流状态下搅拌10~12小时结束;冷却至室温,过滤,之后将滤液进行浓缩除去溶剂,即制得六丙氧基环三磷腈的粗产品。
根据进一步可以优选的技术方案,其中所述方法用来合成式10所述的
Figure PCTCN2018116520-appb-000030
化合物,所述方法包括:
使用六氯环三磷腈以及NH 3甲醇溶液作为原料,使用选自甲醇、正丙醇及四氢呋喃中的任一种作为的有机溶剂;在氮气保护下将六氯环三磷腈和有机溶剂加入反应容器,室温下搅拌1~2小时至六氯环三磷腈完全溶解;随后将反应容器冷却至低于10℃;在保持该温度下,滴加NH 3甲醇溶液,滴加结束后搅拌持续反应10至20小时,以获得所述化合物。
根据进一步可以优选的技术方案,反应容器冷却至至0~5℃并滴加NH 3甲醇溶液,并在该温度下使得原料之间发生反应;并且,
在反应结束后,进一步实施过滤和烘干步骤,以得到六氨基环三磷腈或聚氨基环三磷腈。
根据进一步可以优选的技术方案,所述方法进一步包括以下具体步骤:
按重量比,将6~10份M-O-R 1’(三烷基硅(烷)醇)和6~10份金属钠或3~5份金属钙加入到四氢呋喃或氯苯或1,4-二氧六环中;
将上述混合物滴入到1份六氯环三磷腈中,65-70℃搅拌,反应12-48h,得到白色悬浊液;
将悬浊液浓缩,蒸去溶剂,得到白色固体,分别实施水洗,有机溶剂洗涤,用甲苯、二氯甲烷、氯仿或二氯乙烷溶解纯化,得到含烷基硅基氧(或烷氧)取代的环三磷腈化合物。
根据进一步可以优选的技术方案,所述方法包括以下具体步骤:
向反应容器中加入六氯环三磷腈、M-O-R 1’(三烷基硅(烷)醇);此后,
向其中加入四氢呋喃、氯苯或1,4-二氧六环作为溶剂,充分搅拌;
缓慢滴加三乙胺到反应器中并加热使体系发生反应,得到白色悬浊液;
将悬浊液经过包括水洗、有机溶剂洗涤、浓缩的步骤,从而获得含烷基硅基氧(或烷氧)取代的环三磷腈类化合物。
根据进一步可以优选的技术方案,所述方法包括以下具体步骤:
按照摩尔比1∶11∶10的比例依次投入六氯环三磷腈、三烷基硅(烷)醇,加入四氢呋喃、氯苯或1,4-二氧六环作为溶剂,充分搅拌;
缓慢滴加三乙胺到反应器中,70-100℃,反应12-48h,得到白色悬浊液;
将悬浊液倒出进行浓缩,得黄色粘稠状固体或液体,用水洗涤,分别水洗,有机溶剂洗涤,用甲苯、二氯甲烷、氯仿或二氯乙烷溶解纯化,得到含烷基硅基氧(或烷氧)取代的环三磷腈衍生物。
根据进一步可以优选的技术方案,所述方法包括以下具体步骤:
将三烷基硅(烷)醇钠加入到四氢呋喃或氯苯或1,4-二氧六环的溶剂中;
将上述混合物缓慢滴入到六氯环三磷腈的四氢呋喃或氯苯或1,4-二氧六环溶液,通过加热使得体系发生反应,得到白色悬浊液;
将所述白色悬浊液经过进一步纯化工艺,得到含烷基硅基氧(和或烷氧)取代的环三磷腈衍生物。
根据进一步可以优选的技术方案,所述方法包括以下具体步骤:
按质量比,将6~10份三烷基硅(烷)醇钠加入到四氢呋喃或氯苯或1,4-二氧六环中;
将上述混合物缓慢滴入到1份六氯环三磷腈的四氢呋喃或氯苯或1,4-二氧六环溶液,加热保持体系70-100℃,反应12-48h,得到白色悬浊液;
将上述悬浊液倒出进行浓缩,得黄色粘稠状固体或液体,用水洗涤,分别水洗,有机溶剂洗涤,用甲苯、二氯甲烷、氯仿或二氯乙烷溶解纯化,得到含烷基硅基氧(和或烷氧)取代的环三磷腈衍生物。
根据进一步可以优选的技术方案,所合成的化合物为
Figure PCTCN2018116520-appb-000031
其中b等于0。
本发明还涉及上述组合物或者化合物在阻燃剂方面的用途。
根据进一步可以优选的技术方案,其中所述化合物或者组合物应用于树脂、塑料、或者电池结构的电解液中。
根据进一步可以优选的技术方案,其中所述化合物或者组合物应用于PMMA(聚甲基丙烯酸甲酯)、PS(聚苯乙烯)、PBT(聚对苯二甲酸丁二醇酯)、PC(聚碳酸酯)、ABS(丙烯腈-丁二烯-苯乙烯共聚物)、PA(尼龙)、PU(聚氨酯)、PPO(聚苯醚)、环氧树脂等其他树脂中的一种或多种的混合物,优选为PMMA、PC、PC/ABS合金和环氧树脂。
根据进一步可以优选的技术方案,其中所述组合物中含有如通式
Figure PCTCN2018116520-appb-000032
所示的化合物;其中a的取值范围为3-10之间的整数;优选地,a为3、4或者5。
根据进一步可以优选的技术方案,其中所述组合物中含有六苯氧基环三磷腈。
根据进一步可以优选的技术方案,其中,所述阻燃剂包括1至32中任一项所述的磷腈类化合物或者权利要求33或34的所述组合物中的多个组分。
根据进一步可以优选的技术方案,其中所述树脂或者塑料为PE,PP, PVC,PS,ABS,PA,PC,POM,PBT,PET,PPO,PMMA,PU及环氧树脂中一种或多种混合物。
根据进一步可以优选的技术方案,其中所述树脂或者塑料为PMMA,PC,PC/ABS合金树脂,以及PU,PET,PA6或环氧树脂作为基质的树脂材料。
在本发明的另一个方面,还提供一种阻燃剂,所述阻燃剂包括根据上述的磷腈类化合物或者所述组合物。
根据进一步可以优选的技术方案,其中所述阻燃剂中包括如通式
Figure PCTCN2018116520-appb-000033
所示的化合物;其中a的取值范围为3-10之间的整数。
根据进一步可以优选的技术方案,其中所述阻燃剂中包括化学式表示为
Figure PCTCN2018116520-appb-000034
化合物的组分。
根据进一步可以优选的技术方案,其中
Figure PCTCN2018116520-appb-000035
Figure PCTCN2018116520-appb-000036
的质量比在1∶9至4∶6之间。
如本发明以下将更加详细描述的,从本发明各个实施方案和实验效果可以看出,根据本发明所提出的技术方案,至少能够获得以下效果的一种或更多种,并对已有的阻燃剂领域做出了进一步的贡献。具体而言:
本发明一方面内容是提供了不同的磷腈化合物,更重要的是,在此基础上研究了部分结晶态的固体磷腈化合物及其衍生物的晶型,并出人预料的发现了本发明合成的特定晶型对改善阻燃剂性能的影响。在本发明的技术方案中,
(1).环三磷腈衍生物阻燃剂所用原料简单易得,适合于工业化生产;
(2).本发明提供的环三磷腈衍生物阻燃剂合成,操作简单,工艺先进,溶剂可回收利用,成本低廉;
(3).本发明合成的环三磷腈衍生物阻燃剂的晶型是最稳定的晶型,它热稳定性好,阻燃效率高;
(4).重要的是,本发明合成的具有特定结晶态的环三磷腈类化合物及其衍生物阻燃剂添加到材料中,无论工程塑料还是通用塑料中,以及锂离子电池电解液、阻燃布和阻燃纸中,具有优良的阻燃性能,晶型稳定,抗滴落,只需要极少的添加量,材料的阻燃性能即达到V-1甚至V-0标准,而且对材料的其他性能影响较小。
以下,将结合说明书附图及具体实施方式,对本发明的技术方案及优点做出更加详细的解释和说明。应当理解的是,说明书、具体实施方式及说明书附图中所呈现的内容,仅仅为了更加清楚地说明本发明的技术方案及其优点,并不对本发明的保护范围构成限制。本领域技术人员能够在说明书公开内容的基础上,针对各种合理的变换得到变化后的技术方案,只要不脱离本发明的精神,各种变化后的技术方案均包括在本发明的保护范围之内。
附图说明
图1为实施例1/2的六氯环三磷腈的X射线测试图谱;
图2为实施例3的苯氧基磷腈化合物的XRD衍射图谱;
图3为实施例3制备的苯氧基磷腈化合物的选区电子衍射图谱;
图4为实施例3制备的苯氧基磷腈化合物的热重分析曲线(TGA);
图5是实施例4所制备得到的关于六苯氧基的磷腈化合物的X射线衍射图谱(XRD,或XPRD,纵轴顶部为了节省空间,存在部分非比例显示的部分);
图6是实施例4所制备得到的产物的SAED选区电子衍射照片;
图7是实施例4所制备得到的产物的热重分析图谱;
图8是实施例5所制备得到的关于六-(二甲胺基)环三磷腈的X射线衍射图谱;
图9是实施例5所制备得到的产物的SAED选区电子衍射照片;
图10是实施例5所制备得到的产物的热重分析图谱;
图11是实施例6关于六甲氧基环三磷腈所合成的化合物的XRD射线衍射图谱;
图12是实施例6关于六甲氧基环三磷腈所合成的SEAD电子衍射图谱;
图13是实施例6所合成化合物的TGA曲线;
图14是实施例7合成的六丙氧基环三磷腈的TGA曲线;
图15实施例83所制备得到的含有烷基硅氧基的环三磷腈的化合物的红外谱图测试;
图16实施例83(样品“1a”)所制备得到的含有烷基硅氧基的环三磷腈的核磁磷谱。
图17是实施例85(样品“3a”)所制备得到的含有烷基硅氧基的环三磷腈的化合物的红外谱图测试。
具体实施方式
在具体实施方案的叙述之前,在本说明书中说明所采用的部分主要原料的来源已基本情况。需要说明的是,此处具体实施方式所述的原料来源是非限制性的,本领域技术人员能够根据本发明的启示和教导来选择适当的原材料以及测试设备进行相关的测试并能够获得相应的结果,对于没有 说明具体生产厂商或者途径的原料,本领域技术人员更够根据本说明书的公开内容和需求选择满足相应需求的原材料作为反应起始物质。合成部分化合物的反应原料来自本发明前序步骤中合成的初次产品(例如六氯环三磷腈,聚氯磷腈等),这根据本发明的说明书的公开也是可以理解的。
五氯化磷(AR):纯度98%,上海凛恩科技发展有限公司;
氯化铵:纯度≥99.8%,天津市科密欧化学试剂有限公司;
2M二甲胺四氢呋喃溶液:Chemart(凯曼化工);
甲醇钠甲醇溶液:总碱29-31%,西亚试剂(山东西亚化学股份有限公司);
7M氨(NH 3)甲醇溶液:Chemart(凯曼化工);
正丙醇:纯度≥99.8%,天津市科密欧化学试剂有限公司;
氢化钠(保存在煤油中):质量分数60%,西亚试剂(山东西亚化学股份有限公司);
苯酚:纯度≥99.5%,上海麦克林生化科技有限公司;
吡啶:纯度≥99%,上海麦克林生化科技有限公司。
部分测试的设备和仪器:
核磁共振谱测试设备:采用BRUKERAV 400核磁共振谱仪,瑞士BRUKER公司;
X射线衍射(XRD):晶体结构采用日本Rigaku公司的D/Max2550VB/PC型衍射仪进行测试。采用铜靶Kα光源(λ=0.15432nm),石墨单色器,管电压为40kV,管电流为100mA。扫描范围为10°-80°,扫描步长0.02°。谱图扫描时扫描速度为8°/min;
选取电子衍射(SAED):日本电子株式会社的JEOL 2100型电子显微镜上测试,加速电压为200kV;
元素分析:采用Vairo ELIII元素分析仪(德国Elementar公司);
GS-MS:安捷伦7890B-5977A气质联用仪;
ESI-MS测试:安捷伦1200 Series-6320 Trap LC/MS。
此外,在此需要作出示例性说明的是,本发明实施例中出现了“溶剂I,溶剂II,溶剂III、溶剂IV、溶剂V,溶剂VI”等符号,溶剂的选择 在本发明的某些方案中是重要的,其可能关系到本发明所述化合物、磷腈类化合物、或者环三磷腈类化合物的结晶状态、类别和形态,以此甚至会出人预料地与晶型类型、阻燃剂的效果等相关。在本发明的实例中,当出现了具体的溶剂描述时,以具体实施例所描述的溶剂种类为准。当没有做出具体说明时,本发明的技术方案可以参考以下的溶剂选择:有机溶剂I可以是苯、氯苯、邻氯苯、四氯化碳、1,1,2,2-四氯乙烷及1,1,2-三氯乙烷中的任一种;所述溶剂II可以是石油醚、正庚烷及甲基叔丁基醚中的任一种;;有机溶剂III可以是甲苯、氯苯、四氢呋喃中的任一种;所述溶剂IV可以是乙醇、异丙醇、甲醇及四氢呋喃中的任一种所述所述溶剂IV可以是乙醇、异丙醇、甲醇及四氢呋喃中的任一种;所述溶剂V可以是石油醚、正庚烷及甲基叔丁基醚中的任一种;所述溶剂VI可以是正丙醇及四氢呋喃中的任一种。所涉及的具体结晶工艺和效果将在说明书的下述具体实施例中进一步予以说明。
实施例1.(关于聚氯磷腈,式3)
本实施例涉及了化合物
Figure PCTCN2018116520-appb-000037
的制备和表征及其结晶形态和性能相关的研究。
在本发明实施的方案中,按五氯化磷∶氯化铵∶催化剂=1∶1.1∶0.1的摩尔比取各组分原料,按每摩尔五氯化磷用有机溶剂I 2400~2600克的比例取有机溶剂I;在氮气保护下将五氯化磷和有机溶剂I加到反应器A中,升温至80℃并在此温度下搅拌1~2小时至五氯化磷完全溶解;在氮气保护下将氯化铵、催化剂和有机溶剂I加到反应器B中,开启搅拌,升温至回流,在回流状态下缓慢将反应器A中的溶液滴加至反应器B中,滴加结束后继续在回流状态下搅拌1~2小时结束;冷却至室温,过滤,将母液进行浓缩除去溶剂,即制得产品聚氯磷腈。
在本实施例中,上述所述有机溶剂I可以是苯、氯苯、邻氯苯、四氯化碳、1,1,2,2-四氯乙烷及1,1,2-三氯乙烷中的任一种;所述溶剂II可以是石油醚、正庚烷及甲基叔丁基醚中的任一种;催化剂可以是氯化铁、氯化 镁、氯化锌中的任一种。对于合成的产品进行了元素分析测试,其结果与上述化学式相符。具体如下:
元素分析:N%:12.08%,P%:26.66%,Cl%:61.26%(注:元素分析结果与式结构相符,其中氮含量分析:采用Vairo EL元素分析仪分析;磷含量分析:参考GB/T 23843-2009,采用喹钼柠酮法分析;氯含量分析:依次将1.0克氯磷腈和5克40%氢氧化钠溶液加到100毫升三口烧瓶中,加热至回流1-2小时,降至室温、缓慢加入40毫升50%硝酸溶液,升温至回流1-2小时至溶液液澄清透明,所得澄清溶液采用汞量法分析氯元素含量)。通过上述分析结果,能够确定合成了氯磷腈类化合物,所涉及的化合物主要反应如下:
Figure PCTCN2018116520-appb-000038
在上述式中,合成产物中的n可以取值1至20,优选地可以取值3-15。
在本实施例具体的实验操作中,按照以下工作流程和制备工艺来制备:在氮气保护下将200g(0.96mol)五氯化磷和600毫升无水氯苯加到1000毫升四口烧瓶中,缓慢升温至80℃,并在80℃下搅拌1~2小时至五氯化磷完全溶解,待用。在氮气保护下将56.5g氯化铵、2.0g氯化镁(催化剂)和600毫升无水氯苯加到2000毫升四口烧瓶中,氮气保护下缓慢升温至130至132℃的回流状态,在回流状态下将配好的五氯化磷氯苯溶液缓慢滴加至2000毫升四口烧瓶中,滴加时间控制在不低于4小时,滴加结束后继续在回流状态下搅拌1~2小时结束;冷却至室温,过滤,将母液进行浓缩除去溶剂,得到100.2克化合物。所获得的化合物经过上述测试结果显示,为氯磷腈类化合物。
实施例2.(关于六氯环三磷腈,式4)
本实施方案同样涉及了氯磷腈的制备合成,主要涉及六氯环三磷腈的合成、晶型以及性能。在本实施例中,按五氯化磷∶氯化铵∶复式催化剂(吡啶与催化剂)=1∶1.1∶0.06的摩尔比取各组分原料,按每摩尔五氯化磷 用有机溶剂I 2400~2600克的比例取有机溶剂I;在氮气保护下将五氯化磷和有机溶剂I加到反应器A中,升温至80℃并在此温度下搅拌1~2小时至五氯化磷完全溶解;在氮气保护下将氯化铵、复式催化剂(吡啶与二价金属氯化物)和有机溶剂I加到反应器B中,开启搅拌,升温至回流,在回流状态下缓慢将反应器A中的溶液滴加至反应器B中,滴加结束后继续在回流状态下搅拌1~2小时结束;冷却至室温,过滤,将母液进行浓缩除去溶剂,即制得粗产品;在上述工艺中,复式催化剂除了吡啶之外,还包括氯化镁。
按每摩尔粗品产物用有机溶剂II 230~250克的比例取有机溶剂II,升温80℃并在此温度下搅拌1~2小时至粗品产物完全溶解,分离除去少量油状物,然后用98%的浓硫酸反复萃取石油醚溶液分出六氯环三磷腈,用水把浓硫酸稀释至60%左右,析出灰色六氯环三磷腈粗产品。用有机溶剂II进行数次重结晶后得到白色结晶状六氯环三磷腈。经过XRD射线衍射测试,以及选区电子衍射实验以及NMR核磁共振图谱的测试,以及所使用实验原料和反应的条件,能够确定合成了六氯环三磷腈化合物,所涉及的化合物主要反应如下:
Figure PCTCN2018116520-appb-000039
在具体的实验中,可按照以下制备流程来操作:
在氮气保护下将20.8g(0.1mol)五氯化磷和62.4毫升无水氯苯加到250毫升四口烧瓶中,缓慢升温至80℃,并在80℃下搅拌1~2小时至五氯化磷完全溶解,待用。在氮气保护下将5.88g氯化铵、571mg氯化镁、474mg吡啶和62.4毫升无水氯苯加到250毫升四口烧瓶中,氮气保护下缓慢升温至130至132℃的回流状态,在回流状态下将配好的五氯化磷氯苯溶液缓慢滴加至250毫升四口烧瓶中,滴加时间控制在不低于4小时,滴加结束后继续在回流状态下搅拌1~2小时结束;冷却至室温,过滤,将母液进行浓缩除去溶剂,得到粗品化合物六氯环三磷腈(暂称为“化合物 2”)。
将上述得到的粗品化合物2和10.5毫升石油醚(沸程为60~90)加到50毫升夹套瓶中,缓慢升温至80℃,并在80℃下搅拌1~2小时至粗品产物2完全溶解,静置分离除去少量油状物,然后用40毫升98%的浓硫酸萃取石油醚溶液两次,用22.7毫升去离子水把浓硫酸萃取液稀释至60%浓硫酸溶液,析出灰色六氯环三磷腈粗产品。将粗品化合物2和10.5毫升石油醚(沸程为60~90)加到50毫升夹套瓶中,缓慢升温至80℃,并在80℃下搅拌1~2小时至所述产品完全溶解,然后缓慢降温至0~5℃结晶,过滤后得到8.22g白色结晶状化合物2,收率71%。所获得的化合物经过测试结果显示,为具有特定结晶形态的环状六氯磷腈化合物。
具体而言,对六氯环三磷腈进行磷谱的NMR测试,结果如下:
31P-NMR(400MHz,CDCl3,δ):20.01(这说明只有一种化学位移,为磷腈环上的P质子峰,说明3个磷原子所处的化学位移相同);
GC-MS质谱测试:m/s(M+H):348.7,所测得的真实分子量与六氯环三磷腈相符。
进一步对样品的晶型测试和分析,请参见图1。图1是制备得到的六氯环三磷腈重结晶之后的X射线衍射图谱,其中对本发明合成产品而言重要的衍射峰和晶型的特征分析见下表:
Figure PCTCN2018116520-appb-000040
结合图1和上表,可以清楚地描述本发明所合成的六氯环三磷腈的晶型。需要在此说明的是,上表中出现了符号“VS”“S”以及“M”,其中,VS表示为本发明所合成的产品的晶型中的最强峰,S表示峰的强度与VS 的衍射峰的强度比值在0.5~1∶1,但是小于VS的峰强;M则表示与最强峰的强度比值小于0.5∶1,但在晶格衍射中也是需要注意的,并且大于0.05∶1(以下的叙述对此表述均相同,将不再赘述)。在X射线衍射图中还可以看到其他衍射峰,然而他们不一定是本发明关注的重点,因此在部分的文字叙述中省略了对他们的详细描述。但本领域技术人员根据本发明说明书的教导,能够根据工艺来合成本发明所述晶型的六氯环三磷腈以及其他产品。
本发明生产的六氯环三磷腈产品,具有上述特定的结晶度和结晶形态(例如衍射峰的位置,主要衍射峰的相对强度等)。发明人出人预料的发现,具有上述结晶形态的六氯环三磷腈对于晶体本身的应用,以及后续生产其他用作阻燃剂的磷腈类化合物有着更优的影响,甚至在一些情况下会影响其后续合成磷腈类化合物的结晶形态和阻燃效果。
在本发明实施方案的一些合成工艺中,结晶工艺对于产品的晶型和形态是重要的,这其中特别涉及到结晶工艺中所用的溶剂(在本实施方案中特别优选石油醚)、升温工艺、保温工艺以及整个结晶工艺的曲线(加热温度、次数、时间等等)。
实施例3(苯氧基磷腈化合物,式5)
本实施方案涉及了苯氧基磷腈化合物的制备,晶型的表征和研究,以及阻燃性能的测试。
在本实施方案中,可以利用上述实施例所合成的氯磷腈作为起始原料之一。按氯磷腈(来自实施例1的制备产品)∶苯酚∶缚酸剂=1∶6.1∶12.2的摩尔比取各组分原料,按每1克式氯磷腈用有机溶剂III5~6克的比例取有机溶剂;在氮气保护下将氯磷腈、缚酸剂和有机溶剂III加到反应器A中,在温度低于40℃下将苯酚缓慢滴加至反应器A中,然后升温至回流并在回流温度下搅拌3~5小时结束;冷却至室温,过滤,用水洗母液,之后将有几层进行浓缩除去溶剂,即制得粗产品。其中缚酸剂可以选自氢氧化钠、碳酸钾、碳酸钠。
结晶:按每1克粗品产物用有机溶剂IV6~10克的比例取有机溶剂IV,升温回流并在此温度下搅拌2~3小时,然后缓慢降温至10~15℃,并在10~15℃下搅拌2~5小时,过滤,真空干燥滤饼,得到白色结晶状苯氧基磷腈。
在上述实施例中发生的主要化学反应描述如下:
Figure PCTCN2018116520-appb-000041
在更具体的实施方案中,按照下面的具体工艺来操作:在氮气保护下将58.3g苯酚和174毫升氯苯加到250毫升四口烧瓶中,室温下搅拌20~30分钟,待用。在氮气保护下将34.8g化合物1、85.7g缚酸剂碳酸钾和174毫升氯苯加入500毫升四口烧瓶中,控制温度在40℃以下缓慢滴加苯酚的氯苯溶液,然后升温至130至135℃的回流温度并在回流温度下搅拌3~5小时结束;冷却至室温,过滤,弃去滤饼、保留滤液,用120毫升去离子水洗滤液两次,之后将有几层进行浓缩除去溶剂,得到粗产品化合物。
结晶:将上述粗产品化合物3和180毫升四氢呋喃加到250毫升耐压力的四口烧瓶中,升温至65至70℃的回流温度并在此温度下搅拌2~3小时,然后以0.5至5℃/分钟的速率缓慢降温至10~15℃,并在10~15℃下搅拌2~5小时,过滤,真空干燥滤饼,得到64.6g白色结晶状化合物3,收率93%。
针对上述的产品进行了测试和表征。
对上述样品首先进行了XRD衍射图谱测试,其结果参见图2。从图2可以看出,所获的苯氧基磷腈化合物具有明显结晶的特征,所述式5的化合物呈结晶态,并具有以下描述所表示的特定的晶型:在针对所述结晶态的式5的化合物实施X射线衍射(XRD)图谱中测试中,所述特定的晶型的化合物的X射线衍射(XRD)图谱包括了2θ值为以下位置的主要特征衍射峰:10.8±0.2度、12.0±0.2度、20.2±0.2度。
更进一步地,所述式5的化合物呈结晶态,其在2θ值为20.2±0.2° 处显示出最强的衍射峰强度,并且在12.0±0.2°,以及10.8±0.2°处显示出次强衍射峰强度和第三强衍射封强度,所述次强衍射峰强度和最强的衍射峰强度的比在0.75至0.80∶1之间,而第三强衍射封强度与最强的衍射峰强度的比值0.60至0.70∶1之间。具体的数据显示如下表:
Figure PCTCN2018116520-appb-000042
在本发明更进一步优选的方案中,不仅X射线衍射(XRD)图谱的2θ值为7.2±0.2°以及29.8±0.2°出现衍射峰,而且所述7.2±0.2°以及29.8±0.2°处的衍射峰与最强衍射峰的强度的比值为0.2至0.5∶1之间。
根据本发明的测试,具有上述结晶程度特别是特定晶型的的苯氧基磷腈化合物具有更佳的稳定性甚至令人惊奇地可以仅仅加入更低比例(低至1%)的量就能够在树脂等产品中取得良好的阻燃效果。
进一步对样品进行了选区电子衍射实验SAED实验,其结果参见图3。根据图3的电子衍射可以分析得出,本发明工艺所合成的苯氧基磷腈化合物,选区电子衍射显示有明显的衍射环,说明所选区域的物质为晶体,这与XRD结果相一致,也就是说,所合成的
Figure PCTCN2018116520-appb-000043
产物为具有如上所描述的苯氧基磷腈化合物。
进一步对本实施例制备的苯氧基磷腈化合物进行了TGA热重分析实验。所获得的实验结果参见图4。苯氧基磷腈化合物从330度才开始失重,最终残留率为4.15%,进一步说明了,通过本发明特定工艺得到的特定晶型的产品热稳定性优异。
实施例3’-阻燃性能实验
实施例3’针对实施例3所制备得到的苯氧基磷腈化合物的阻燃性能进行了初步研究。在本实验中,将上述合成的结晶状态的苯氧基磷腈的化合物或者混合物添加到树脂塑料中,测试塑料的阻燃性能,结果显示具有优异的耐热性和阻燃性,相比较市售的普通的苯氧基磷腈的阻燃剂,添加量低,不需要添加其他的抗滴落剂,并且在添加比例很低的情况下(例如1至2%wt),就能使树脂塑料的阻燃级别达到UL94 V-0标准,同时因为添加量低,晶型稳定,对树脂塑料的其他的机械性能和加工成型等几乎没有影响。
上述所述的树脂塑料为PMMA(聚甲基丙烯酸甲酯)、PS(聚苯乙烯)、PBT(聚对苯二甲酸丁二醇酯)、PC(聚碳酸酯)、ABS(丙烯腈-丁二烯-苯乙烯共聚物)、PA(尼龙)、PU(聚氨酯)、PPO(聚苯醚)、环氧树脂等其他树脂中的一种或多种的混合物,优选为PMMA、PC、PC/ABS合金和环氧树脂。
上述所述结晶型苯氧基磷腈混合物(1)的添加量为0.5%~15%wt,优选为2%~10%,以所述树脂的总质量计,在通常的工业用树脂中,优选的比例为0.5%至3%。
上述所述阻燃性能测试为极限氧指数和阻燃抗滴落性能测试。
上述所述极限氧指数测试按GB/T 2046.2-2009标准,测试仪器用JF-3型氧指数仪,试样尺寸为100×10×4mm。阻燃抗滴落评价试验按UL94标准,试样尺寸为125×13mm,每一厚度共10件样品,共2套样品,样品于23℃,50%RH的条件下放置48h后进行测试,每一厚度的5件样品在70℃的条件下放置7天后进行测试。
令人惊奇的是,根据本工艺合成的具有特定结晶形态的苯氧基磷腈的阻燃剂,可以在单独使用或者复配(后面还将更详细的阐述)中,以极低的比例(低至1%,甚至0.5%)即可以起到有效的阻燃作用。在上述的实验中,当掺入比例仅为0.5%时,可以获得有效的提升的极限氧指数,以及V-1级别的抗阻燃效果,这显著优于目前市场上的阻燃添加剂的效果。
实施例4(六苯氧基磷腈化合物,式6)
本实施方案涉及六苯氧基磷腈化合物或者六苯氧基磷腈化合物的衍生物,涉及了用
Figure PCTCN2018116520-appb-000044
表示的化合物或者化合物构成的组合物。
在本实施方案中,可以采用前述技术方案中制备的六氯环三磷腈作为原料之一(例如来自实施例2)。按上述六氯环三磷腈∶苯酚∶缚酸剂=1∶6.1∶12.2的摩尔比取各组分原料,按每摩尔六氯环三磷腈用有机溶剂III3300~3500克的比例取有机溶剂III;在氮气保护下将六氯环三磷腈、缚酸剂和有机溶剂III加到反应器中,在温度低于40℃下将苯酚缓慢滴加至反应器中,然后升温至回流并在回流温度下搅拌3~5小时结束;冷却至室温,过滤,用水洗母液,之后将有几层进行浓缩除去溶剂,即制得粗产品。
结晶步骤:按每1克粗品产物用有机溶剂IV6~10克的比例取有机溶剂IV,升温回流并在此温度下搅拌2~3小时,然后缓慢降温至10~15℃,并在10~15℃下搅拌2~5小时,过滤,真空干燥滤饼,得到白色结晶状六苯氧基环三磷腈。经过XRD,NMR,热重分析,SAED测试等手段分析和鉴定了上述方案所合成的可作为阻燃剂组分的产品。
在本实施方案中,涉及的主要化学反应可以表示如下:
Figure PCTCN2018116520-appb-000045
可以进一步按照以下具体的方式来进行操作:在氮气保护下将330.3g苯酚,以及1650毫升氯苯加到2000毫升四口烧瓶中,室温下搅拌20~30分钟,待用。在氮气保护下将200g六氯环三磷腈化合物(可选自前述实施例合成的产品在此作为原料)、485g缚酸剂碳酸钾和1650毫升氯苯加 入5000毫升四口烧瓶中,控制温度在40℃以下缓慢滴加苯酚的氯苯溶液,然后升温至130至135℃的回流温度并在回流温度下搅拌3~5小时结束;冷却至室温,过滤,弃去滤饼、保留滤液,用1000毫升去离子水洗滤液两次,之后将有几层进行浓缩除去溶剂,得到粗产品化合物。
结晶步骤:将上述粗产品化合物和400毫升无水乙醇加到1000毫升耐压力的四口烧瓶中,升温回流至78℃并在此温度下搅拌2~3小时,然后以0.5至1℃/分钟的速率缓慢降温至12~15℃,并在12~15℃下搅拌3小时,过滤,真空干燥滤饼,得到327.2g白色结晶状化合物4,收率82%。
对所制备得到的产品进行了具体的分析和实验。
实施例的NMR检测结果如下: 1H-NMR(400MHz,CDCl3,δ):7.180~7.142,2H;7.117~7.081,1H;6.923~6.903,2H;
ESI-MS:m/s(M+1):694;
上述测试与六苯氧基环三磷腈化合物成分的标准数据相对应。
图5是根据实施例4制备得到的六苯氧基磷腈化合物的XRD测试图谱。从图中可以看出,按照本发明工艺合成的六苯氧基磷腈化合物的结晶有明确的特征和特点。由图可见,在针对所述结晶态的式6的化合物实施X射线衍射(XRD)图谱中测试中,所述特定的晶型的化合物的X射线衍射(XRD)图谱包括了2θ值为以下位置的主要特征衍射峰:10.4±0.2度、17.3±0.2度、19.0±0.2度以及20.0±0.2度。
进一步具体分析的结果如下表:
Figure PCTCN2018116520-appb-000046
其中,在2θ值为10.4±0.2°处显示出最强的衍射峰强度,并且在 19.0±0.2°,20.0±0.2°以及17.3±0.2°处显示出次强衍射峰强度、第三强衍射封强度以及第四衍射峰强度,所述次强衍射峰强度、第三强衍射封强度各自和最强的衍射峰强度的比在0.55至0.65之间,而第四强衍射封强度与最强的衍射峰强度的比值0.50至0.55∶1之间。并且,进一步优选的方案显示,所述晶型还包括在X射线衍射(XRD)图谱的2θ值为26.8±0.2°处出现衍射峰,所述26.8±0.2°处出现衍射峰与最强衍射峰的强度的比值为0.45至0.50∶1之间。
重要的是,本发明实施方案的各个衍射峰之间的峰强度具有特定范围的比值,这种结晶特性和特性使得本发明的产品作为阻燃剂时可以取得令人惊奇的更优异的技术效果,其可以保证自身化合物的稳定性的基础上,以更少的配入比例实现有效和优异的阻燃效果。具体而言,所述晶型还包括在X射线衍射(XRD)图谱的2θ值为26.8±0.2°处出现衍射峰,所述26.8±0.2°处出现衍射峰与最强衍射峰的强度的比值为0.45至0.50∶1之间;并且所述26.8±0.2°处出现衍射峰与最强衍射峰的强度的比值为0.45至0.50∶1之间。
对于本实施例的结晶形态和状态而言,结晶的步骤是重要的。为了得到最优形态(最有利于后续阻燃剂应用和效果的形态),优选地使用本发明所述工艺中的结晶步骤和升温、保温、降温曲线。发明人经过试验发现,使用无水乙醇在本实施方案的产品中更有利于获得所述产品的特定结晶形态;此外,配合升温回流至75℃至80℃(优选大约78℃),保温搅拌2~3小时,0.5至1℃/分钟的速率缓慢降温至12~15℃,并搅拌3小时的结晶工艺曲线,也是有利于形成本发明特定结晶状态以及后续有利阻燃效果的六苯氧基环三磷腈化合物及其组合物的工艺。
图6为相应样品的选区电子衍射实验的测试结果。从图中可以看出,通过结晶得到的固体物料是不仅仅由X射线确定为结晶型的,有明显晶格相,并且有部分衍射斑,通过结晶得到的固体物料的XRD图谱显示了较强的衍射斑,显示该物质为晶体。选区电子衍射显示存在一套完整的衍射斑,说明所选区域内物质是一个晶粒。
图7为所述样品的热失重分析实验的图表。由图所示,样品从320度开始失重,最终残留率为7.76%,通过本发明工艺获得的结晶产品得到的该晶型的产品热稳定性好。
实施例4’-作为阻燃组分的性能测试
实施例4’涉及了将实施例4所制备得到的六苯氧基磷腈化合物进行相应的阻燃剂产品的测试。在该实验中,采用了由实施例4所合成的六苯氧基磷腈化合物。将上述合成的结晶型六苯氧基环三磷腈添加到树脂塑料中,测试塑料的阻燃性能,结果显示具有优异的耐热性和阻燃性,相比较市售的普通的六苯氧基环三磷腈阻燃剂,添加量更低,且不需要添加其他的抗滴落剂,就能使树脂塑料的阻燃级别达到UL94 V-0标准,同时因为添加量低,晶型稳定,对树脂塑料的其他的机械性能和加工成型等几乎没有影响。
上述所述的树脂塑料为PMMA(聚甲基丙烯酸甲酯)、PS(聚苯乙烯)、PBT(聚对苯二甲酸丁二醇酯)、PC(聚碳酸酯)、ABS(丙烯腈-丁二烯-苯乙烯共聚物)、PA(尼龙)、PU(聚氨酯)、PPO(聚苯醚)、环氧树脂等其他树脂中的一种或多种的混合物,优选为PMMA、PC、PC/ABS合金和环氧树脂。
上述所述结晶型六苯氧基环三磷腈的添加量为0.5%~15%,优选为1%~10%,以所述包含阻燃剂的树脂或所应用的其他材料的总质量计。
上述所述阻燃性能测试为极限氧指数和阻燃抗滴落性能测试。
上述所述极限氧指数测试按GB/T 2046.2-2009标准,测试仪器用JF-3型氧指数仪,试样尺寸为100×10×4mm。阻燃抗滴落评价试验按UL94标准,试样尺寸为125×13mm,每一厚度共10件样品,共2套样品,样品于23℃,50%RH的条件下放置48h后进行测试,每一厚度的5件样品在70℃的条件下放置7天后进行测试。
阻燃型PMMA树脂样品的制备:
取上述一定量的PMMA树脂样品于循环鼓风干燥箱内,80~90℃干燥2~4h,然后将其置于密炼机SU-70C中,添加一定量的上述结晶状的 六苯氧基环三磷腈,启动搅拌,然后加热升温至180~250℃,加热过程中不断搅拌使其分散均匀,然后降温将树脂转移至模具中,模具温度为35~70℃,将模具置于50T平板硫化机中压片定型,冷却至室温后脱模,然后制作阻燃评价试验样条。
阻燃型聚碳酸酯(PC)的制备:
取一定量的聚碳酸酯PC,复合抗氧化剂及上述结晶型的六苯氧基环三磷腈一起加入密炼机SU-70C中,启动搅拌,然后加热升温至260~300℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于200~240℃下制作PC的压片,然后于室温下定型,切割制作阻燃试验评价样条。
上述复合抗氧化剂为抗氧剂1076(3-(3,5-二叔丁基-4-羟基苯基)丙酸正十八烷醇酯),抗氧剂168(亚磷酸三(2,4-二叔丁基苯)酯)与抗氧化剂1010(四(亚甲基-3-(3,5-二叔丁基-4-羟基苯基)丙酸酯)甲烷)的任意两种组合,添加量为PC量的0.1%~0.5%,优选0.3%,优选两种组分抗氧化剂各占0.15%。
在上述测试中,出人预料的是,根据本发明的六苯氧基磷腈化合物在极低的添加量(例如相对于总质量0.5%wt或1%的添加量)的情况下即可以获得优异稳定的阻燃效果。例如在聚碳酸酯PC实验中,当采用0.5%的添加量的六苯氧基环三磷腈,即可获得有效的阻燃效果。
阻燃型PC/ABS合金树脂的制备:
取一定量的聚碳酸酯PC/丙烯腈-苯乙烯-丁二烯塑料ABS于鼓风干燥箱内,90~100℃下干燥2~4h,然后取出与复合抗氧化剂及上述结晶型的六苯氧基环三磷腈一起加入密炼机SU-70C中,启动搅拌,然后加热升温至200~240℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于60~120℃下制作PC的压片,然后于室温下定型,切割制作阻燃试验评价样条。
上述PC和ABS的质量比为70∶30,复合抗氧化剂为抗氧剂1076(3-(3,5-二叔丁基-4-羟基苯基)丙酸正十八烷醇酯),抗氧剂168(亚磷酸三(2,4-二叔丁基苯)酯)与抗氧化剂1010(四(亚甲基-3-(3,5-二叔丁基-4- 羟基苯基)丙酸酯)甲烷)的任意两种组合,添加量为PC/ABS量的0.1%~0.5%,优选0.3%,优选两种组分抗氧化剂各占0.15%。
阻燃型环氧树脂的制备:
取一定量的环氧树脂,与DDS(4,4’二氨基二苯砜)及上述结晶型六苯氧基环三磷腈阻燃剂一起置于密炼机SU-70C中,启动搅拌,然后加热升温至160~200℃,继续搅拌使其混合均匀,然后将混合物浇注入模具汇总,150℃下固化2~3h,再在180℃下固化4~5h,取出脱模,然后切割制作阻燃试验评价样条。
上述固化剂DDS的用量为环氧树脂的物质的量的30%~50%,优选为35%~40%。
实施例5(六-(二甲胺基)环三磷腈,式7)
本实施方式涉及关于化合物
Figure PCTCN2018116520-appb-000047
的制备,特定工艺对应的晶型研究,其相关的性能测试等。
在本实施方案中,可以按照以下工艺流程进行制备。可以采用在先合成的六氯环三磷腈作为反应原料之一。按上述六氯环三磷腈∶二甲胺盐酸盐∶三乙胺=1∶6∶12.6的摩尔比取各组分原料,按每摩尔六氯环三磷腈用有机溶剂III3300~3500克的比例取有机溶剂III;在氮气保护下将六氯环三磷腈和有机溶剂III加到反应器A中,室温下搅拌1~2小时至六氯环三磷腈完全溶解;在氮气保护下将二甲胺盐酸盐、三乙胺和有机溶剂I加到反应器B中,在氮气保护下将温度降至0~5℃,并在此温度下将反应器A中溶液缓慢滴加至反应器B中,滴加结束后在0~5℃下搅拌1~2小时,然后升温至20至25℃,并在此温度下搅拌96~100小时结束;冷却至室温,过滤,用水洗母液,之后将有几层进行浓缩除去溶剂,即制得粗产品。
结晶步骤:按每1克粗品产物用有机溶剂V 6~10克的比例取有机溶剂V,升温至40℃并在此温度下搅拌2~3小时,然后缓慢降温至0~5℃, 并在0~5℃下搅拌2~5小时,过滤,真空干燥滤饼,得到白色结晶状六-(二甲胺基)环三磷腈。
本实施方案涉及的主要化学反应式如下:
Figure PCTCN2018116520-appb-000048
更具体地,还可以按照以下工艺流程进行合成:在氮气保护下将5g六氯环三磷腈和25毫升无水四氢呋喃加到50毫升四口烧瓶中,室温下搅拌20~30分钟至六氯环三磷腈全部溶解,待用。在氮气保护下将7.04g二甲胺盐酸盐、18.34g三乙胺和25毫升无水四氢呋喃加到100毫升四口烧瓶中,在室温下搅拌20~30分钟,之后降温至0~5℃,控制温度在0~5℃下缓慢滴加六氯环三磷腈的四氢呋喃溶液,滴加结束后在0~5℃下继续搅拌1小时,之后升温至室温(20~25℃)搅拌96小时结束。过滤,将滤液进行浓缩除去溶剂,得到粗产品化合物。
结晶工艺:将粗产品化合物和10毫升石油醚加到25毫升四口烧瓶中,升温至40℃并在此温度下搅拌2~3小时,然后缓慢降温至0~5℃,并在0~5℃下搅拌2~5小时,过滤,真空干燥滤饼,得到5.5g白色结晶状化合物5,收率85.8%。
对所合成的化合物进行测试和研究。数据与图表参见图8至图10。
图8是所述XRD衍射图谱的测试结果(为符合附图的描述方式,和清晰度,纵轴的上部存在部分非等比例的标尺,但本领域技术人员能够知晓这种标尺的描述方式,并且纵轴上部仅仅存在单衍射强峰,不影响图表的描述)。所述式7的化合物呈结晶态,并具有以下描述所表示的特定的晶型:并具有以下描述所表示的特定的晶型:在针对所述结晶态的式7的化合物实施X射线衍射(XRD)图谱中测试中,所述特定的晶型的化合物的X射线衍射(XRD)图谱包括了2θ值为以下位置的主要特征衍 射峰:11.0±0.2°。并且,进一步地,所述晶型还包括在X射线衍射(XRD)图谱的2θ值为11.4±0.2°处、13.6±0.2°处、14.6±0.2°处、20.3±0.2°处以及22.5±0.2°处的衍射峰,上述四处出现衍射峰的强度与最强衍射峰的强度的比值为0.15至0.35∶1。具体的本实施例合成的X射线表示的晶型的主要结果如下:
Figure PCTCN2018116520-appb-000049
重要的是,在本发明的控制晶型和结晶度的合成工艺中,图谱包括了2θ值为以下位置的主要特征衍射峰:11.0±0.2°。并且,进一步地,所述晶型还包括在X射线衍射(XRD)图谱的2θ值为11.4±0.2°处、13.6±0.2°处、14.6±0.2°处、20.3±0.2°处以及22.5±0.2°处的衍射峰,上述四处出现衍射峰的强度与最强衍射峰的强度的比值为0.15至0.35∶1。
在这样的控制晶型和控制结晶度的条件下制备得到的六-(二甲胺基)环三磷腈中,能够取得更稳定的热稳定性能,以及可以以更少的添加量来实现优异的阻燃效果。
图9是所述样品测试得到的SAED电镜照片。如图所述,过结晶得到的固体物料是结晶型的,并且有少许衍射斑,能够得出衍射环为衍射010晶面,010晶面,110晶面明显,是结晶型粉末。
根据本实施方案的六-(二甲胺基)环三磷腈,除了具有上述的特定的XRD图谱显示了较强的衍射峰之外,选区电子衍射显示该物质为晶体。选区电子衍射显示有明显的衍射环,说明所选区域的物质为晶体,具有优异的热稳定性和以较小的添加量(优选相对于所添加树脂0.5%-5%wt, 优选0.5%-3%wt,甚至0.5wt至1%wt)即能够取得优异的阻燃效果。
此外还对产品进行了NMR核磁共振谱和ESI-MS测试(安捷伦1200Series-6320 Trap LC/MS,本实验下同):其中1H-NMR(400MHz,D 2O,δ):2.54,36H;ESI-MS:m/s(M+H):400,与六-(二甲胺基)环三磷腈完全相符。
从该产品的图10的测试中可以看出,样品从125度开始失重,最终残留率为2.71%,较其他同类产品也获得了优异的热稳定性。
实施例6(关于六甲氧基环三磷腈,式8)
实施例6是关于六甲氧基环三磷腈或其衍生物的合成,制备以及性能的研究。根据该实施方案,按六氯环三磷腈(可来自前述实施方案)∶甲醇钠=1∶6.1的摩尔比取各组分原料,按每摩尔六氯环三磷腈用有机溶剂VI2700~2800克的比例取有机溶剂;在氮气保护下将六氯环三磷腈和有机溶剂VI加到反应器A中,室温下搅拌1~2小时至六氯环三磷腈完全溶解;在氮气保护下将25%甲醇钠甲醇溶液和有机溶剂I加到反应器B中,在氮气保护下控制反应器A中温度在40℃以下,将反应器B中溶液缓慢滴加至反应器A中,滴加结束后将反应器A升温至回流温度,并在回流状态下搅拌5~8小时结束;冷却至室温,过滤,之后将滤液进行浓缩除去溶剂,即制得六甲氧基环三磷腈。
结晶工艺:按每1克粗品产物用有机溶剂V 6~10克的比例取有机溶剂V,升温至40℃并在此温度下搅拌2~3小时,然后缓慢降温至0~5℃,并在0~5℃下搅拌2~5小时,过滤,真空干燥滤饼,得到白色结晶状六甲氧基环三磷腈。
关于本合成工艺和实施方案所涉及的合成反应如下:
Figure PCTCN2018116520-appb-000050
在具体工艺中,在氮气保护下将20g六氯环三磷腈和100毫升无水四氢呋喃加到250毫升四口烧瓶中,控制温度在40℃以下,缓慢滴加77.1g 25%甲醇钠甲醇溶液,滴加结束后缓慢升温至65至70℃的回流温度,并在回流状态下搅拌5~8小时结束;冷却至室温,过滤,之后将滤液进行浓缩除去溶剂,得到粗品化合物。
结晶步骤:将上述粗品化合物6和100毫升正庚烷加到250毫升四口烧瓶中,升温至回流并在98℃的回流状态下搅拌2小时,然后缓慢降温至10~15℃,并在10~15℃下搅拌2小时,过滤,真空干燥滤饼,得到16.5g白色粉末状化合物6,收率89.3%。
针对本实施例所合成的样品的检测和分析,可参见图11至图13。
图11是本实施例XRD测试结果的图谱。从图中可以看出,所测试的化合物呈结晶态,并具有以下描述所表示的特定的晶型:所述实施例的化合物呈结晶态,并具有以下描述所表示的特定的晶型:在针对所述结晶态的式8的化合物实施X射线衍射(XRD)图谱中测试中,所述特定的晶型的化合物的X射线衍射(XRD)图谱包括了2θ值为以下位置的主要特征衍射峰:13.1±0.2°,以及16.1±0.2°。具体的X射线衍射分析结果见下表:
Figure PCTCN2018116520-appb-000051
由上表所述,在进一步晶型的分析中,在针对所述结晶态的式8的化合物实施X射线衍射(XRD)图谱中测试中,其在2θ值为13.1±0.2处显示出最强的衍射峰强度,并且在16.1±0.2°处显示出次强衍射峰强度,所述次强衍射峰强度和最强的衍射峰强度的比在0.70至0.80之间。并且, 所述晶型还包括在X射线衍射(XRD)图谱的2θ值为6.3±0.2°处、16.7±0.2°处、26.9±0.2°处的衍射峰,上述三处出现衍射峰的强度与最强衍射峰的强度的比值为0.40至0.50∶1之间。
对于本发明的结构,优选在结晶步骤中选用正庚烷作为溶剂,并可选有利地,实施如本发明所述的结晶工艺和温度变化曲线来有利于产品获得本实施方案的特定结晶状态的有利于阻燃剂效果的晶型产品。
然而,在图12中的电子显微镜选区电子衍射中,XRD图谱显示了明显的衍射峰,显示该物质为晶体。但衍射峰的基线在20~30°之间出现了明显包峰,显示该物质中混有少量非晶态物质。选区电子衍射显示无明显衍射环,说明所选区域样品包含非晶态物质或者未结晶的部分。
图13为本实施方案制备得到的产品的热失重分析TGA曲线,从中可以看出,六甲氧基环三磷腈的起始失重温度低,仅为50度,失重率为4.22%,150度二次失重,失重率5.38%,300度三次失重,失重率为32.11%,总残留率为58.29%。其阶段性的失重特性适用于特定领域的阻燃剂的应用。
并且本发明人发现,本实验工艺所制备得到的产品,与其他组分的阻燃剂产品复配(共同使用)时,取得了出人预料的良好效果。
实施例6’-阻燃剂性能实验和测试
本实施方案涉及实施例6的产品的阻燃性能测试,将上述合成的结晶型六-(二甲胺基)环三磷腈和六甲氧基环三磷腈复合型阻燃剂I,结晶型六-(二甲胺基)环三磷腈和六丙氧基环三磷腈复合型阻燃剂II添加到锂离子电池电解液中,可以有效的改善锂离子电池的热稳定性和电化学稳定性,几乎不影响电池的充放电量。
将上述复合型阻燃剂添加到锂离子电池电解液中,可以提高电池钝化层SEI膜的分解温度,能够降低电池的自放热速度,可以提高正极材料的析氧温度,显著改善电池的热稳定性和易燃性,与未添加阻燃剂的电池电解液相比,电池的充放电比容量提高,发明人发现,当复配实验时,本发 明的实施例6的六-(二甲胺基)环三磷腈只需要使用很低的配入量(低于1%,可优选为0.5%)既可以实现高效的阻燃效果。当总的复配阻燃剂加入比超过1%时,可以达到UL-94 V0的标准。该电解液符合UL-94 V0阻燃标准,相比较单一的六甲氧基环三磷腈或六丙氧基环三磷腈阻燃剂,复合型的阻燃剂对锂电池电解液的阻燃性能更优。
上述复合阻燃剂I为结晶型环三磷腈结晶型六-(二甲胺基)环三磷腈和六甲氧基环三磷腈的复合阻燃剂,其中六-(二甲胺基)环三磷腈和六甲氧基环三磷腈的质量比为1~4∶9~6,优选为3~4∶7~6。
上述复合阻燃剂II为结晶型环三磷腈结晶型六-(二甲胺基)环三磷腈和六丙氧基环三磷腈的复合阻燃剂,其中六-(二甲胺基)环三磷腈和六丙氧基环三磷腈的质量比为2~5∶8~5,优选为4~5∶6~5。
上述所述复合型阻燃剂I和II的添加量为0.5%~5%(质量分数),优选为1.0%~3%。
此外本发明人惊奇的发现,当采用本发明工艺合成的具有特定结晶形态的阻燃剂产品时,可以出人预料地进一步降低阻燃剂的添加量。例如,当包含本发明所述的结晶型六-(二甲胺基)环三磷腈和六甲氧基环三磷腈的复合阻燃剂时,可以将总的阻燃剂的添加量下降至总的组合物的3%wt以内(例如包含阻燃剂的树脂或电解液总质量),甚至是1%以内,同样能够取得优异的阻燃效果。
上述所述锂离子电池电解液为碳酸酯类电解液,1mol/L LiPF6,其中环装碳酸酯为碳酸乙烯酯(EC)、碳酸丙烯酯(PC)中一种,链状碳酸酯为碳酸二甲酯(DMC)、碳酸二乙酯(DEC)和碳酸甲乙酯(EMC)中任一种,其中环装碳酸酯和链状碳酸酯的体积比为1~4∶9~6,优选为3~5∶7~5。
对阻燃型的电解液进行相容性试验、自熄性试验和电导率的测试:
相容性试验:
将溶剂与电解质盐混合形成非水系的电解液,搅拌5min后置于25℃ 环境下静置4~5h,然后观察电解液的性状,上述复合型的阻燃剂I和II分别添加到电解液中可形成均匀的阻燃型电解液。
电解液自熄性试验:
采用自熄法来检测电解液的阻燃性能,将质量为m1,直径为0.3cm的玻璃棉球浸泡在电解液中,充分浸湿后取出称重,计质量为m2,然后将该玻璃球置于O型铁丝圈中,用点火装置点燃,记录从点火装置移开到火焰自动熄灭的时间t。以单位质量电解液的自熄时间T作为衡量电解液阻燃性能的标准,计算公式为:T=t/(m2-m1)。T取三次实验测量结果的平均值。上述复合型阻燃剂I和II分别添加到电解液中得到的阻燃型电解液的自熄时间为1.5~5.0S/g。
电导率的测试:
Figure PCTCN2018116520-appb-000052
Cond 7310实验室台式电导率测试仪检测电解液的电导率,在25℃环境下对添加上述复合型阻燃剂I和II的阻燃型电解液进行电导率测试,结果显示,电导率为5.0~20.0mS/cm。
实施例7(六丙氧基环三磷腈,式9)
本实施方案涉及关于六丙氧基环三磷腈,化合物通式表示为
Figure PCTCN2018116520-appb-000053
的合成、表征,以及阻燃剂的性能测试和描述。
在本实施方案中,按式六氯环三磷腈(由前述实施方案制得)∶正丙醇∶氢化钠=1∶7.7∶11.7的摩尔比取各组分原料,按每摩尔六氯环三磷腈用有机溶剂VI 3100~3200克的比例取有机溶剂;在氮气保护下将六氯环三磷腈和有机溶剂加到反应器A中,室温下搅拌1~2小时至六氯环三磷腈完全溶解;在氮气保护下将有机溶剂VI加到反应器B中,在氮气保护下将反应器B中温度降至5~10℃,并控制温度在10℃以下将氢化钠和正丙醇缓慢加到反应器B中,加入结束后在10~15℃下搅拌1~2小时,将反应器 A中溶液缓慢滴加至反应器B中,滴加结束后将反应器A升温至回流温度,并在回流状态下搅拌10~12小时结束;冷却至室温,过滤,之后将滤液进行浓缩除去溶剂,即制得粗产品。
将粗产品溶解到二氯甲烷中,依次用1%盐酸水溶液和去离子水洗,最终洗至pH值接近中性,将有几层进行浓缩除去溶剂,即制得油状六丙氧基环三磷腈。
在本实施方案中,涉及的化学反应如下:
Figure PCTCN2018116520-appb-000054
在氮气保护下将50g六氯环三磷腈和150毫升无水正丁醇加到250毫升四口烧瓶中,室温下搅拌20~30分钟至固体全部溶解,待用。在氮气保护下将150毫升无水正丙醇加到500毫升四口烧瓶中,控制温度在10℃以下分批次将60.3g 60%钠氢煤油固体,加完后室温下搅拌2小时,之后控制温度在10~15℃下缓慢滴加六氯环三磷腈的正丙醇溶液,滴加结束后升温至97至100℃的回流温度,并在回流状态下搅拌10~12小时结束;冷却至室温,过滤,之后将滤液进行浓缩除去溶剂,得到粗产品化合物。
将粗产品溶解到500毫升二氯甲烷中,依次用100毫升1%盐酸水溶液和100毫升去离子水洗,最终洗至pH值接近中性,将有几层进行浓缩除去溶剂,得到59.1g油状化合物7,收率84.1%。
对上述实验合成的油状六丙氧基环三磷腈进行了核磁共振谱检测,以确定了其
Figure PCTCN2018116520-appb-000055
的结构:
1H-NMR(400MHz,CDCl3,δ):3.729~3.521,12H;1.520~1.388,12H; 0.907~0.794,18H;
ESI-MS:m/s(M+1):490;证明了与所述式的化合物的结构相吻合。
实施例7’-阻燃成分实验
本实施方案涉及了上述合成的化合物进行了阻燃方面的性能表征和应用研究。
将上述合成的六甲氧基环三磷腈(可来自上述实施例)和六丙氧基环三磷腈作为复合型阻燃剂III用乙醇溶解后作阻燃溶液,浸泡医用棉纱布、化纤布等布料获得阻燃布,测试阻燃布料的热性能,残炭率高达60%以上,对布料具有优异的阻燃性能,添加量低,不需要添加任何的抗滴落剂,极限氧指数可以达到30%以上,垂直燃烧级别可以达到V-0标准。
上述复合型阻燃剂III六甲氧基环三磷腈和六丙氧基环三磷腈的质量比为1~5∶9~5,优选为4~5∶6~5。
上述复合型阻燃剂III的添加量为0.5%~5%,优选为1%~3%。
上述乙醇为95%乙醇和无水乙醇中任一种,优选为无水乙醇。
上述阻燃布的极限氧指数LOI的测试按GBT 2406-1993标准执行,样品规格为140mm×52mm,测试燃烧残炭率的阻燃布的规格为30mm×30mm,使用前用纯化水浸泡30min~60min,然后用纯化水反复洗涤3~4次以除去表面的油脂及其他附着物等,晾干备用。
上述阻燃布的制备采用浸渍烘燥法,先将布料浸渍于阻燃剂溶液中,然后取出晾干后再进行后处理,备用。
未添加阻燃剂的纱布点燃后迅速燃尽,不留残渣,未添加阻燃剂的化纤布点然后迅速释放出大量的烟雾,同时有大量熔滴滴落,当熔滴滴落到新的布料上后,能迅速引起燃烧。添加上述复合型阻燃剂III后的纱布基本不燃烧,而化纤布基本不再有熔滴滴落,短时间内即能自熄,伴随有大量残炭生成。证明了本实施例的阻燃剂的优异稳定的效果。
实施例8-六氨基环三磷腈或者聚氨基环三磷腈的合成
本实施例涉及六氨基环三磷腈或者结构式可用
Figure PCTCN2018116520-appb-000056
或者
Figure PCTCN2018116520-appb-000057
描述的磷腈类化合物的制备以及其阻燃性能测试和应用。
按六氯环三磷腈∶7M NH3甲醇溶液=1∶15的摩尔比取各组分原料,按每摩尔六氯环三磷腈用有机溶剂VI3000~3100克的比例取有机溶剂VI;在氮气保护下将六氯环三磷腈和有机溶剂VI加到反应器A中,室温下搅拌1~2小时至六氯环三磷腈完全溶解;氮气保护下将反应器A温度冷却至0~5℃,控制温度在0~5℃下缓慢滴加7M NH3甲醇溶液,滴加结束后搅拌20小时结束;过滤,烘干滤饼,即制得六氨基环三磷腈。
在具体的实验中,可涉及下面的化学反应:
Figure PCTCN2018116520-appb-000058
在具体的操作中,在氮气保护下将60g六氯环三磷腈原料和300毫升无水四氢呋喃加到500毫升四口烧瓶中,室温下搅拌至固体全部溶解,之后降温至0~5℃,控制温度在0~5℃下缓慢滴加44.1g 7M NH 3甲醇溶液,滴加结束后0~5℃下搅拌20小时,过滤,烘干滤饼,得到48g化合物8 (包含部分氯化铵);可选地,在脱除氯化铵后可以得到六氨基环三磷腈。
进一步可选地,聚氨基环三磷腈的合成:将六氨基环三磷腈置于烘箱中在一定温度下烘焙一定时间,至恒重后,取出、用水洗去水溶性物质,干燥后即得聚氨基环三磷腈。
将上述得到的化合物8置于烘箱中,在180℃下烘焙5小时,之后加到250毫升四口烧瓶中,加入144毫升去离子水,搅拌30-50分钟,反复用去离子水处理3-5次,在鼓风烘箱中100℃下干燥10个小时,得到32g聚氨基环三磷腈。
对聚氨基环三磷腈的合成的样品进行了元素分析:结果为:N%:34.95%,P%:58.68%,H%:2.123,Cl%:,0.229%(注:氮和氢含量分析:采用Vairo EL元素分析仪分析;磷含量分析:参考GB/T 23843-2009,采用喹钼柠酮法分析;氯含量分析:依次将1.0克聚氨基环三磷腈和5克40%氢氧化钠溶液加到100毫升三口烧瓶中,加热至回流1-2小时,降至室温、缓慢加入40毫升50%硝酸溶液,升温至回流1-2小时至溶液液澄清透明,所得澄清溶液采用汞量法分析氯元素含量)。上述元素分析证明了本发明得到了六氨基环三磷腈及聚氨基环三磷腈。
实施例8’-六氨基环三磷腈的阻燃剂应用
将上述合成的六氨基环三磷腈作为阻燃剂添加到纸制品中制备阻燃纸,具有优良的阻燃性能,同时耐水洗性能良好,由于该晶型的六氨基环三磷腈添加量低,对纸张的强度几乎没有影响。
上述结晶型的六氨基环三磷腈的添加量为0.1%~5%,优选为0.5%~2%。
由于六氨基环三磷腈中的端氨基与纸张中纤维分子中的羟基能很好的形成氢键,更好的耐水洗,显著提高阻燃纸的阻燃性能。
将上述结晶型的六氨基环三磷腈阻燃剂用喷雾法制备阻燃纸,将阻燃剂配制成一定浓度的水溶液,用喷雾器将其均匀地喷洒在纸张上,然后将其在自然环境下放置1h~2h,之后置于干燥箱内,在100℃下干燥1h~ 2h,之后升温至150℃~180℃,固化10min~30min,最后取出按标准要求切割成一定的尺寸用于进行阻燃性能的测试试验。
上述阻燃性能的测试主要通过极限氧指数LOI和垂直燃烧试验评价,极限氧指数按GB/T 2406-80标准测试,垂直燃烧按GB/T 14656-2009标准测试。
上述要求中,极限氧指数测试要求试样尺寸为100mm×6.5mm×1.3mm,垂直燃烧试验要求测试试样尺寸为210mm×70mm×1.3mm。
将上述合成的结晶型的(6)六氨基环三磷腈和(4)六甲氧基环三磷腈按一定质量比混合形成复合型阻燃剂IV及(6)六氨基环三磷腈和(5)六丙氧基环三磷腈按一定质量比混合形成复合型阻燃剂V。
将上述复合阻燃剂IV和V溶于乙醇中,浸泡医用棉纱布、化纤布等布料获得阻燃布,测试阻燃布料的热性能,添加量低,成炭率高,阻燃性能优良。
上述复合型阻燃剂IV中六氨基环三磷腈和六甲氧基环三磷腈的质量比为1~4∶9~6,优选为2~3∶8~7。
上述复合型阻燃剂V中六氨基环三磷腈和六丙氧基环三磷腈的质量比为1~4∶9~6,优选为2~3∶8~7。
上述复合型阻燃剂IV和V的添加量为0.5%~5%,优选为1%~3%。
上述乙醇为95%乙醇和无水乙醇中任一种,优选为无水乙醇。
上述阻燃布的极限氧指数LOI的测试按GBT 2406-1993标准执行,样品规格为140mm×52mm,测试燃烧残炭率的阻燃布的规格为30mm×30mm,使用前用纯化水浸泡30min~60min,然后用纯化水反复洗涤3~4次以除去表面的油脂及其他附着物等,晾干备用。
上述阻燃布的制备采用浸渍烘燥法,先将布料浸渍于阻燃剂溶液中,然后取出晾干后再进行后处理,备用。
未添加阻燃剂的纱布点燃后迅速燃尽,不留残渣,未添加阻燃剂的化 纤布点然后迅速释放出大量的烟雾,同时有大量熔滴滴落,当熔滴滴落到新的布料上后,能迅速引起燃烧。添加上述复合型阻燃剂III后的纱布基本不燃烧,而化纤布基本不再有熔滴滴落,短时间内即能自熄,伴随有大量残炭生成。
所述的实验表明了根据本发明工艺合成的六氨基环三磷腈类阻燃剂取得了稳定且性能优异的阻燃效果。
以下,将更加详尽的描述实施例1至7所制备的磷腈类化合物的不同的应用。
以下的实施方案也可以算作本发明的实施例,或者称为“应用实施例”。
实施例9
取99gPMMA树脂样品于循环鼓风干燥箱内,90℃干燥4h,然后将其置于密炼机SU-70C中,添加相应质量的如实施例3所制备的结晶型的苯氧基磷腈混合物或六苯氧基环三磷腈1g(总质量1%质量比例,添加1g,以下类似将不再赘述),启动搅拌,然后加热升温至200℃,加热过程中不断搅拌使其分散均匀,然后降温将树脂转移至模具中,模具温度为50℃,将模具置于50T平板硫化机中压片定型,冷却至室温后脱模,然后制作阻燃评价试验样条。实验结果可参见表1。
实施例10
取98gPMMA树脂样品于循环鼓风干燥箱内,90℃干燥4h,然后将其置于密炼机SU-70C中,添加实施例3所制备的结晶型的六苯氧基环三磷腈,启动搅拌,然后加热升温至200℃,加热过程中不断搅拌使其分散均匀,然后降温将树脂转移至模具中,模具温度为50℃,将模具置于50T平板硫化机中压片定型,冷却至室温后脱模,然后制作阻燃评价试验样条。
实施例11
取90gPMMA树脂样品于循环鼓风干燥箱内,90℃干燥4h,然后将其置于密炼机SU-70C中,添加相应质量比的实施例3所制备的结晶型的 苯氧基磷腈混合物或六苯氧基环三磷腈,启动搅拌,然后加热升温至200℃,加热过程中不断搅拌使其分散均匀,然后降温将树脂转移至模具中,模具温度为50℃,将模具置于50T平板硫化机中压片定型,冷却至室温后脱模,然后制作阻燃评价试验样条。
实施例12
取90gPMMA树脂样品于循环鼓风干燥箱内,90℃干燥4h,然后将其置于密炼机SU-70C中,添加10g市售的苯氧基磷腈混合物,启动搅拌,然后加热升温至200℃,加热过程中不断搅拌使其分散均匀,然后降温将树脂转移至模具中,模具温度为50℃,将模具置于50T平板硫化机中压片定型,冷却至室温后脱模,然后制作阻燃评价试验样条。
实施例13
取85gPMMA树脂样品于循环鼓风干燥箱内,90℃干燥4h,然后将其置于密炼机SU-70C中,添加15g市售的苯氧基磷腈混合物,启动搅拌,然后加热升温至200℃,加热过程中不断搅拌使其分散均匀,然后降温将树脂转移至模具中,模具温度为50℃,将模具置于50T平板硫化机中压片定型,冷却至室温后脱模,然后制作阻燃评价试验样条。
实施例14
取99gPMMA树脂样品于循环鼓风干燥箱内,90℃干燥4h,然后将其置于密炼机SU-70C中,添加相应质量比的实施例4所制备的结晶型的六苯氧基环三磷腈化合物,启动搅拌,然后加热升温至200℃,加热过程中不断搅拌使其分散均匀,然后降温将树脂转移至模具中,模具温度为50℃,将模具置于50T平板硫化机中压片定型,冷却至室温后脱模,然后制作阻燃评价试验样条。
实施例15
取97gPMMA树脂样品于循环鼓风干燥箱内,90℃干燥4h,然后将其置于密炼机SU-70C中,添加相应质量比的实施例4所制备的结晶型的六苯氧基环三磷腈化合物,然后加热升温至200℃,加热过程中不断搅拌 使其分散均匀,然后降温将树脂转移至模具中,模具温度为50℃,将模具置于50T平板硫化机中压片定型,冷却至室温后脱模,然后制作阻燃评价试验样条。
实施例16
取92gPMMA树脂样品于循环鼓风干燥箱内,90℃干燥4h,然后将其置于密炼机SU-70C中,添加相应质量比的实施例4所制备的结晶型的六苯氧基环三磷腈,启动搅拌,然后加热升温至200℃,加热过程中不断搅拌使其分散均匀,然后降温将树脂转移至模具中,模具温度为50℃,将模具置于50T平板硫化机中压片定型,冷却至室温后脱模,然后制作阻燃评价试验样条。
实施例17
取90gPMMA树脂样品于循环鼓风干燥箱内,90℃干燥4h,然后将其置于密炼机SU-70C中,添加10g市售的六苯氧基环三磷腈阻燃剂,启动搅拌,然后加热升温至200℃,加热过程中不断搅拌使其分散均匀,然后降温将树脂转移至模具中,模具温度为50℃,将模具置于50T平板硫化机中压片定型,冷却至室温后脱模,然后制作阻燃评价试验样条。
实施例18
取85gPMMA树脂样品于循环鼓风干燥箱内,90℃干燥4h,然后将其置于密炼机SU-70C中,添加15g市售的六苯氧基环三磷腈阻燃剂,启动搅拌,然后加热升温至200℃,加热过程中不断搅拌使其分散均匀,然后降温将树脂转移至模具中,模具温度为50℃,将模具置于50T平板硫化机中压片定型,冷却至室温后脱模,然后制作阻燃评价试验样条。
极限氧指数测试按GB/T 2046.2-2009标准,测试仪器用JF-3型氧指数仪,试样尺寸为100×10×4mm。阻燃抗滴落评价试验按UL94标准,试样尺寸为125×13mm,每一厚度共10件样品,共2套样品,样品于23℃,50%RH的条件下放置48h后进行测试,每一厚度的5件样品在70℃的条件下放置7天后进行测试,测试结果见表1。
表1 不同添加量阻燃剂的PMMA树脂的阻燃性能评价
Figure PCTCN2018116520-appb-000059
从表1可以看出:不添加阻燃剂的PMMA树脂的极限氧指数只有18%,易燃烧,有滴落,当添加本发明的结晶型的苯氧基磷腈混合物阻燃剂1%时,PMMA的极限氧指数为28%,阻燃级别已达到V-1标准,增加添加量至2%时,阻燃级别达到V-0标准,而市售的普通的苯氧基磷腈混合物的添加量达到15%时,极限氧指数为30%,阻燃级别达到V-0标准。当添加本实施例所述的结晶型的六苯氧基环三磷腈阻燃剂1%后PMMA树脂的极限氧指数达到28%,阻燃级别达到V-1标准,添加量增加到3%后,树脂的极限氧指数达到32%,阻燃级别达到V-0标准,继续增加至8%,极限氧指数为35%,阻燃级别为V-0标准,而添加普通市售的六苯氧基环三磷腈阻燃剂10%时,极限氧指数只有29%,阻燃级别为V-1标准,当添加到15%时,阻燃级别才能达到V-0标准。由此可见,结晶型的苯氧基环磷腈混合物和六苯氧基环三磷腈阻燃剂具有更加优异的阻燃性能,添加量少,仅需3%的结晶型的苯氧基环磷腈混合物和3%的结晶型的六苯氧基环三磷腈的添加量即可使PMMA树脂的阻燃级别达到 V-0标准;在已有产品无法达到的更低的添加量的基础上(例如1%或更低),也能够实现有效的阻燃效果;例如虽在表中未示出,但发明人通过实验发现,上述实验中添加0.5%wt以上的本发明所合成的结晶态的苯氧基磷腈或者六苯氧基环三磷腈化合物,即可达到V-1级别的阻燃效果。
阻燃型聚碳酸酯(PC)的制备:
实施例19
取97.7g聚碳酸酯PC,复合抗氧化剂0.3g(抗氧化剂1076和抗氧剂168各占0.15g)及2g本发明上述实施例3的苯氧基磷腈,一起加入密炼机SU-70C中,启动搅拌,然后加热升温至280℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于220℃下制作PC的压片,然后于室温下定型,切割制作阻燃试验评价样条。所测试的结果参见以下的表2。
实施例20
取94.7g聚碳酸酯PC,复合抗氧化剂0.3g(抗氧化剂1076和抗氧剂168各占0.15g)及5g结晶型的本发明上述实施例3六苯氧基环三磷腈,一起加入密炼机SU-70C中,启动搅拌,然后加热升温至280℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于220℃下制作PC的压片,然后于室温下定型,切割制作阻燃试验评价样条。
实施例21
取89.7g聚碳酸酯PC,复合抗氧化剂0.3g(抗氧化剂1076和抗氧剂168各占0.15g)及10g结晶型的本发明上述实施例3六苯氧基环三磷腈一起加入密炼机SU-70C中,启动搅拌,然后加热升温至280℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于220℃下制作PC的压片,然后于室温下定型,切割制作阻燃试验评价样条。
实施例22
取89.7g聚碳酸酯PC,复合抗氧化剂0.3g(抗氧化剂1076和抗氧剂168各占0.15g)及10g市售的普通苯氧基磷腈混合物阻燃剂一起加入密炼机SU-70C中,启动搅拌,然后加热升温至280℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于220℃下制作PC的压片,然后于室温下定型,切割制作阻燃试验评价样条。
实施例23
取87.7g聚碳酸酯PC,复合抗氧化剂0.3g(抗氧化剂1076和抗氧剂168各占0.15g)及12g市售的普通苯氧基磷腈混合物阻燃剂一起加入密炼机SU-70C中,启动搅拌,然后加热升温至280℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于220℃下制作PC的压片,然后于室温下定型,切割制作阻燃试验评价样条。
实施例24
取97.7g聚碳酸酯PC,复合抗氧化剂0.3g(抗氧化剂1076和抗氧剂168各占0.15g)及2g结晶型的本发明上述实施例4的聚苯氧基磷腈一起加入密炼机SU-70C中,启动搅拌,然后加热升温至280℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于220℃下制作PC的压片,然后于室温下定型,切割制作阻燃试验评价样条。
实施例25
取94.7g聚碳酸酯PC,复合抗氧化剂0.3g(抗氧化剂1076和抗氧剂168各占0.15g)及5g结晶型的上述实施例4的六苯氧基环三磷腈一起加入密炼机SU-70C中,启动搅拌,然后加热升温至280℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于220℃下制作PC的压片,然后于室温下定型,切割制作阻燃试验评价样条。
实施例26
取91.7g聚碳酸酯PC,复合抗氧化剂0.3g(抗氧化剂1076和抗氧剂168各占0.15g)及8g结晶型的上述实施例4的六苯氧基环三磷腈一起加入密炼机SU-70C中,启动搅拌,然后加热升温至280℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于220℃下制作PC的压片,然后于室温下定型,切割制作阻燃试验评价样条。
实施例27
取94.7g聚碳酸酯PC,复合抗氧化剂0.3g(抗氧化剂1076和抗氧剂168各占0.15g)及5g市售的普通六苯氧基环三磷腈阻燃剂一起加入密炼机SU-70C中,启动搅拌,然后加热升温至280℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于220℃下制作PC的压片,然后于室温下定型,切割制作阻燃试验评价样条。
实施例28
取89.7g聚碳酸酯PC,复合抗氧化剂0.3g(抗氧化剂1076和抗氧剂168各占0.15g)及10g市售的普通六苯氧基环三磷腈阻燃剂一起加入密炼机SU-70C中,启动搅拌,然后加热升温至280℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于220℃下制作PC的压片,然后于室温下定型,切割制作阻燃试验评价样条。
极限氧指数测试按GB/T 2046.2-2009标准,测试仪器用JF-3型氧指数仪,试样尺寸为100×10×4mm。阻燃抗滴落评价试验按UL94标准,试样尺寸为125×13mm,每一厚度共10件样品,共2套样品,样品于23℃,50%RH的条件下放置48h后进行测试,每一厚度的5件样品在70℃的条件下放置7天后进行测试,测试结果见表2。
表2 不同添加量的PC树脂的阻燃性能评价
Figure PCTCN2018116520-appb-000060
Figure PCTCN2018116520-appb-000061
由表2可以看出,不添加阻燃剂的PC树脂的极限氧指数为25%,阻燃级别为V-2标准,当结晶型的苯氧基环磷腈混合物阻燃剂的添加量为2%时,阻燃级别达到V-1标准,增加添加量至5%时,极限氧指数达到33%,无滴落,阻燃级别达到V-0标准,而普通市售的苯氧基环磷腈混合物的阻燃剂的添加量达到12%时,PC的阻燃级别达到V-0标准。当结晶型的六苯氧基环三磷腈阻燃剂的添加量为2%时,PC树脂的极限氧指数为29%,阻燃级别为V-1标准,继续增加添加量至5%时,PC树脂的极限氧指数即达到34%,阻燃级别位V-0标准,当阻燃剂添加量增加至8%时,极限氧指数为36%,阻燃级别为V-0标准。而当市售的普通的六苯氧基环三磷腈阻燃剂添加量为5%时,极限氧指数仅有29%,无滴落,阻燃级别为V-1标准,当添加量达到10%时,极限氧指数达到31%,阻燃级别达到V-0标准。由此可见,结晶型的六苯氧基环磷腈混合物的阻燃剂和苯氧基环三磷腈的阻燃性能更优,添加量少而且稳定,分别只需5%的添加量即可使PC树脂达到V-0阻燃标准。
阻燃型PC/ABS合金树脂的制备:
实施例29
取97.7g聚碳酸酯PC/丙烯腈-苯乙烯-丁二烯塑料ABS于鼓风干燥箱内,90℃下干燥4h,然后取出与复合抗氧化剂0.3g(抗氧化剂1076和抗氧剂168各占0.15g)及2g结晶型的本发明上述实施例3的聚苯氧基磷腈化合物(或混合物)一起加入密炼机SU-70C中,启动搅拌,然后加热升温至220℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于120℃下制作PC/ABS的压片,然后于室温下定型,切割制作阻燃试验评价样条。本系列实验的结果参见表3
实施例30
取96.7g聚碳酸酯PC/丙烯腈-苯乙烯-丁二烯塑料ABS于鼓风干燥箱内,90℃下干燥4h,然后取出与复合抗氧化剂0.3g(抗氧化剂1076和抗氧剂168各占0.15g)及3g本发明实施例3的结晶型的苯氧基磷腈混合物一起加入密炼机SU-70C中,启动搅拌,然后加热升温至220℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于120℃下制作PC/ABS的压片,然后于室温下定型,切割制作阻燃试验评价样条。
实施例31
取93.7g聚碳酸酯PC/丙烯腈-苯乙烯-丁二烯塑料ABS于鼓风干燥箱内,90℃下干燥4h,然后取出与复合抗氧化剂0.3g(抗氧化剂1076和抗氧剂168各占0.15g)及6g实施例3的结晶型的苯氧基磷腈混合物一起加入密炼机SU-70C中,启动搅拌,然后加热升温至220℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于120℃下制作PC/ABS的压片,然后于室温下定型,切割制作阻燃试验评价样条。
实施例32
取89.7g聚碳酸酯PC/丙烯腈-苯乙烯-丁二烯塑料ABS于鼓风干燥箱内,90℃下干燥4h,然后取出与复合抗氧化剂0.3g(抗氧化剂1076和抗氧剂168各占0.15g)及10g市售的普通苯氧基环磷腈混合物阻燃剂一起 加入密炼机SU-70C中,启动搅拌,然后加热升温至220℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于120℃下制作PC/ABS的压片,然后于室温下定型,切割制作阻燃试验评价样条。
实施例33
取84.7g聚碳酸酯PC/丙烯腈-苯乙烯-丁二烯塑料ABS于鼓风干燥箱内,90℃下干燥4h,然后取出与复合抗氧化剂0.3g(抗氧化剂1076和抗氧剂168各占0.15g)及15g市售的普通苯氧基环磷腈混合物阻燃剂一起加入密炼机SU-70C中,启动搅拌,然后加热升温至220℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于120℃下制作PC/ABS的压片,然后于室温下定型,切割制作阻燃试验评价样条。
实施例34
取97.7g聚碳酸酯PC/丙烯腈-苯乙烯-丁二烯塑料ABS于鼓风干燥箱内,90℃下干燥4h,然后取出与复合抗氧化剂0.3g(抗氧化剂1076和抗氧剂168各占0.15g)及2g实施例4的结晶型的六苯氧基环三磷腈一起加入密炼机SU-70C中,启动搅拌,然后加热升温至220℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于120℃下制作PC/ABS的压片,然后于室温下定型,切割制作阻燃试验评价样条。
实施例35
取94.7g聚碳酸酯PC/丙烯腈-苯乙烯-丁二烯塑料ABS于鼓风干燥箱内,90℃下干燥4h,然后取出与复合抗氧化剂0.3g(抗氧化剂1076和抗氧剂168各占0.15g)及5g实施例4的六苯氧基环三磷腈一起加入密炼机SU-70C中,启动搅拌,然后加热升温至220℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于120℃下制作PC/ABS的压片,然后于室温下定型,切割制作阻燃试验评价样条。
实施例36
取91.7g聚碳酸酯PC/丙烯腈-苯乙烯-丁二烯塑料ABS于鼓风干燥箱内,90℃下干燥4h,然后取出与复合抗氧化剂0.3g(抗氧化剂1076和抗氧剂168各占0.15g)及8g结晶型的如实施例4制备的六苯氧基环三磷腈一起加入密炼机SU-70C中,启动搅拌,然后加热升温至220℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于120℃下制作PC/ABS的压片,然后于室温下定型,切割制作阻燃试验评价样条。
实施例37
取94.7g聚碳酸酯PC/丙烯腈-苯乙烯-丁二烯塑料ABS于鼓风干燥箱内,90℃下干燥4h,然后取出与复合抗氧化剂0.3g(抗氧化剂1076和抗氧剂168各占0.15g)及5g市售的普通六苯氧基环三磷腈阻燃剂一起加入密炼机SU-70C中,启动搅拌,然后加热升温至220℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于120℃下制作PC/ABS的压片,然后于室温下定型,切割制作阻燃试验评价样条。
实施例38
取89.7g聚碳酸酯PC/丙烯腈-苯乙烯-丁二烯塑料ABS于鼓风干燥箱内,90℃下干燥4h,然后取出与复合抗氧化剂0.3g(抗氧化剂1076和抗氧剂168各占0.15g)及10g市售的普通六苯氧基环三磷腈阻燃剂一起加入密炼机SU-70C中,启动搅拌,然后加热升温至220℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于120℃下制作PC/ABS的压片,然后于室温下定型,切割制作阻燃试验评价样条。
实施例39
取84.7g聚碳酸酯PC/丙烯腈-苯乙烯-丁二烯塑料ABS于鼓风干燥箱内,90℃下干燥4h,然后取出与复合抗氧化剂0.3g(抗氧化剂1076和抗 氧剂168各占0.15g)及15g市售的普通六苯氧基环三磷腈阻燃剂一起加入密炼机SU-70C中,启动搅拌,然后加热升温至220℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于120℃下制作PC/ABS的压片,然后于室温下定型,切割制作阻燃试验评价样条。
极限氧指数测试按GB/T 2046.2-2009标准,测试仪器用JF-3型氧指数仪,试样尺寸为100×10×4mm。阻燃抗滴落评价试验按UL94标准,试样尺寸为125×13mm,每一厚度共10件样品,共2套样品,样品于23℃,50%RH的条件下放置48h后进行测试,每一厚度的5件样品在70℃的条件下放置7天后进行测试,测试结果见表3。
表3 不同添加量的PC/ABS合金树脂的阻燃性能评价
Figure PCTCN2018116520-appb-000062
由表3可以看出,不添加阻燃剂的PC/ABS合金树脂的极限氧指数只有22%,易燃,当结晶型的苯氧基环磷腈混合物阻燃剂的添加量为2%时,PC燃烧有滴落,阻燃级别为V-2标准,添加量为3%时,阻燃级别为V-1标准,继续增加至6%时,极限氧指数达到32%,无滴落,阻燃级别为 V-0标准。当结晶型的六苯氧基环三磷腈阻燃剂的添加量为2%时,PC/ABS合金树脂的极限氧指数为26%,阻燃级别为V-2标准,继续增加添加量至5%时,PC/ABS合金树脂的极限氧指数即达到29%,阻燃级别为V-1标准,当阻燃剂添加量增加至8%时,极限氧指数为31%,阻燃级别为V-0标准。而当添加普通市售的六苯氧基环三磷腈阻燃剂5%时,极限氧指数仅为25%,阻燃级别为V-2标准,继续增加添加量至10%时,阻燃级别为V-1标准,添加量为15%时,极限氧指数为32%,阻燃级别才能够达到V-0标准。由此可见,结晶型的苯氧基环磷腈混合物阻燃剂和六苯氧基环三磷腈对PC/ABS合金具有优异的阻燃性能,添加量少,在本系列的材料实验中,只需分别需添加6%和8%可使PC/ABS合金树脂的阻燃性能达到V-0标准。
阻燃型环氧树脂的制备:
实施例40
取60g环氧树脂,与35gDDS(4,4’二氨基二苯砜)及5g实施例3的结晶型苯氧基环磷腈混合物阻燃剂一起置于密炼机SU-70C中,启动搅拌,然后加热升温至180℃,继续搅拌使其混合均匀,然后将混合物浇注入模具汇总,150℃下固化3h,再在180℃下固化4h,取出脱模,然后切割制作阻燃试验评价样条。
实施例41
取57g环氧树脂,与35gDDS(4,4’二氨基二苯砜)及8g实施例3的结晶型苯氧基环磷腈混合物阻燃剂一起置于密炼机SU-70C中,启动搅拌,然后加热升温至180℃,继续搅拌使其混合均匀,然后将混合物浇注入模具汇总,150℃下固化3h,再在180℃下固化4h,取出脱模,然后切割制作阻燃试验评价样条。
实施例42
取55g环氧树脂,与35gDDS(4,4’二氨基二苯砜)及10g实施例3的的结晶型苯氧基环磷腈混合物阻燃剂一起置于密炼机SU-70C中,启动 搅拌,然后加热升温至180℃,继续搅拌使其混合均匀,然后将混合物浇注入模具汇总,150℃下固化3h,再在180℃下固化4h,取出脱模,然后切割制作阻燃试验评价样条。
实施例43
取57g环氧树脂,与35gDDS(4,4’二氨基二苯砜)及8g普通市售的苯氧基环磷腈混合物阻燃剂一起置于密炼机SU-70C中,启动搅拌,然后加热升温至180℃,继续搅拌使其混合均匀,然后将混合物浇注入模具汇总,150℃下固化3h,再在180℃下固化4h,取出脱模,然后切割制作阻燃试验评价样条。
实施例44
取55g环氧树脂,与35gDDS(4,4’二氨基二苯砜)及10g普通市售的苯氧基环磷腈混合物阻燃剂一起置于密炼机SU-70C中,启动搅拌,然后加热升温至180℃,继续搅拌使其混合均匀,然后将混合物浇注入模具汇总,150℃下固化3h,再在180℃下固化4h,取出脱模,然后切割制作阻燃试验评价样条。
实施例45
取50g环氧树脂,与35gDDS(4,4’二氨基二苯砜)及15g普通市售的苯氧基环磷腈混合物阻燃剂一起置于密炼机SU-70C中,启动搅拌,然后加热升温至180℃,继续搅拌使其混合均匀,然后将混合物浇注入模具汇总,150℃下固化3h,再在180℃下固化4h,取出脱模,然后切割制作阻燃试验评价样条。
实施例46
取63g环氧树脂,与35gDDS(4,4’二氨基二苯砜)及2g实施例4的结晶型六苯氧基环三磷腈阻燃剂一起置于密炼机SU-70C中,启动搅拌,然后加热升温至180℃,继续搅拌使其混合均匀,然后将混合物浇注入模具汇总,150℃下固化3h,再在180℃下固化4h,取出脱模,然后切割制作阻燃试验评价样条。
实施例47
取60g环氧树脂,与35gDDS(4,4’二氨基二苯砜)及5g实施例4的结晶型六苯氧基环三磷腈阻燃剂一起置于密炼机SU-70C中,启动搅拌,然后加热升温至180℃,继续搅拌使其混合均匀,然后将混合物浇注入模具汇总,150℃下固化3h,再在180℃下固化4h,取出脱模,然后切割制作阻燃试验评价样条。
实施例48
取57g环氧树脂,与35gDDS(4,4’二氨基二苯砜)及8g实施例4的结晶型六苯氧基环三磷腈阻燃剂一起置于密炼机SU-70C中,启动搅拌,然后加热升温至180℃,继续搅拌使其混合均匀,然后将混合物浇注入模具汇总,150℃下固化3h,再在180℃下固化4h,取出脱模,然后切割制作阻燃试验评价样条。
实施例49
取60g环氧树脂,与35gDDS(4,4’二氨基二苯砜)及5g普通市售的六苯氧基环三磷腈阻燃剂一起置于密炼机SU-70C中,启动搅拌,然后加热升温至180℃,继续搅拌使其混合均匀,然后将混合物浇注入模具汇总,150℃下固化3h,再在180℃下固化4h,取出脱模,然后切割制作阻燃试验评价样条。
实施例50
取55g环氧树脂,与35gDDS(4,4’二氨基二苯砜)及10g普通市售的六苯氧基环三磷腈阻燃剂一起置于密炼机SU-70C中,启动搅拌,然后加热升温至180℃,继续搅拌使其混合均匀,然后将混合物浇注入模具汇总,150℃下固化3h,再在180℃下固化4h,取出脱模,然后切割制作阻燃试验评价样条。
实施例51
取50g环氧树脂,与35gDDS(4,4’二氨基二苯砜)及15g普通市售的六苯氧基环三磷腈阻燃剂一起置于密炼机SU-70C中,启动搅拌,然后 加热升温至180℃,继续搅拌使其混合均匀,然后将混合物浇注入模具汇总,150℃下固化3h,再在180℃下固化4h,取出脱模,然后切割制作阻燃试验评价样条。
极限氧指数测试按GB/T 2046.2-2009标准,测试仪器用JF-3型氧指数仪,试样尺寸为100×10×4mm。阻燃抗滴落评价试验按UL94标准,试样尺寸为125×13mm,每一厚度共10件样品,共2套样品,样品于23℃,50%RH的条件下放置48h后进行测试,每一厚度的5件样品在70℃的条件下放置7天后进行测试,测试结果见表4。
表4 不同添加量的环氧树脂的阻燃性能评价
Figure PCTCN2018116520-appb-000063
从表4可以看出,没有添加阻燃剂的环氧树脂的极限氧指数仅为23%,易燃,当如实施例3的结晶型的苯氧基环磷腈混合物阻燃剂的添加量为5%时,有滴落,阻燃级别为V-2标准,添加量增加至8%时,阻燃级别为V-0标准,达到10%添加量时,极限氧指数为33%,阻燃级别为V-0标准。而市售的普通的苯氧基环磷腈混合物的添加量为8%时,极限 氧指数为29%,阻燃级别为V-1标准,增加至10%时,阻燃级别达到V-0标准。而如实施例4的六苯氧基环三磷腈,添加2%的结晶型六苯氧基环三磷腈时,阻燃级别达到V-2标准,当添加量增加至5%时,极限氧指数为30%,阻燃级别达到V-0标准,继续增加添加量至8%时,环氧树脂的极限氧指数为32%,无滴落,阻燃级别为V-0标准。而当普通市售的六苯氧基环三磷腈阻燃剂的添加量为5%时,极限氧指数为28%,阻燃级别仅为V-1标准,添加量为10%时,阻燃级别达到V-0标准。由此可见,结晶型的苯氧基环磷腈混合物和六苯氧基环三磷腈对环氧树脂具有优异的阻燃性能,添加量相对较少,在该系列产品应用中添加量分别为8%和5%,即可使环氧树脂的阻燃标准达到V-0标准,而普通市售的苯氧基环磷腈混合物和六苯氧基环三磷腈阻燃剂的添加量需要达到10%才能使环氧树脂的阻燃级别达到V-0。
实施例52
将EC和DMC按4∶6(V/V)的比例混合,然后加入1mol/L的六氟磷酸锂,继续添加电解液总质量的0.2%的上述复合型阻燃剂I,25℃下充分搅拌使其均匀,制备得阻燃型的锂电池电解液。
实施例53
将EC和DMC按4∶6(V/V)的比例混合,然后加入1mol/L的六氟磷酸锂,继续添加电解液总质量的0.5%的上述复合型阻燃剂I,25℃下充分搅拌使其均匀,制备得阻燃型的锂电池电解液。
实施例54
将EC和DMC按4∶6(V/V)的比例混合,然后加入1mol/L的六氟磷酸锂,继续添加电解液总质量的1.0%的上述复合型阻燃剂I,25℃下充分搅拌使其均匀,制备得阻燃型的锂电池电解液。
实施例55
将EC和DMC按4∶6(V/V)的比例混合,然后加入1mol/L的六氟磷酸锂,继续添加电解液总质量的1.5%的上述复合型阻燃剂I,25℃下 充分搅拌使其均匀,制备得阻燃型的锂电池电解液。
实施例56
将EC和DMC按4∶6(V/V)的比例混合,然后加入1mol/L的六氟磷酸锂,继续添加电解液总质量的1.5%的上述六甲氧基环三磷腈阻燃剂,25℃下充分搅拌使其均匀,制备得阻燃型的锂电池电解液。
实施例57
将EC和DMC按4∶6(V/V)的比例混合,然后加入1mol/L的六氟磷酸锂,继续添加电解液总质量的2.0%的上述六甲氧基环三磷腈阻燃剂,25℃下充分搅拌使其均匀,制备得阻燃型的锂电池电解液。
实施例58
将EC和DMC按4∶6(V/V)的比例混合,然后加入1mol/L的六氟磷酸锂,继续添加电解液总质量的0.2%的上述复合型阻燃剂II,25℃下充分搅拌使其均匀,制备得阻燃型的锂电池电解液。
实施例59
将EC和DMC按4∶6(V/V)的比例混合,然后加入1mol/L的六氟磷酸锂,继续添加电解液总质量的0.5%的上述复合型阻燃剂II,25℃下充分搅拌使其均匀,制备得阻燃型的锂电池电解液。
实施例60
将EC和DMC按4∶6(V/V)的比例混合,然后加入1mol/L的六氟磷酸锂,继续添加电解液总质量的1.0%的上述复合型阻燃剂II,25℃下充分搅拌使其均匀,制备得阻燃型的锂电池电解液。
实施例61
将EC和DMC按4∶6(V/V)的比例混合,然后加入1mol/L的六氟磷酸锂,继续添加电解液总质量的1.5%的上述复合型阻燃剂II,25℃下充分搅拌使其均匀,制备得阻燃型的锂电池电解液。
实施例62
将EC和DMC按4∶6(V/V)的比例混合,然后加入1mol/L的六氟磷酸锂,继续添加电解液总质量的1.5%的上述六丙氧基环三磷腈阻燃剂,25℃下充分搅拌使其均匀,制备得阻燃型的锂电池电解液。
实施例63
将EC和DMC按4∶6(V/V)的比例混合,然后加入1mol/L的六氟磷酸锂,继续添加电解液总质量的2.0%的上述六丙氧基环三磷腈阻燃剂,25℃下充分搅拌使其均匀,制备得阻燃型的锂电池电解液。
将实施例所得电解液按上述检测方法分别对其相容性试验、自熄性试验及电导率试验进行检测,结果见表5。
表5 实施例52~63阻燃型电解液与未添加阻燃的锂电池电解液的性能测试结果比较
Figure PCTCN2018116520-appb-000064
Figure PCTCN2018116520-appb-000065
从表5可以看出,上述复合型磷腈阻燃剂I和II均与电解液具有良好的相容性,添加该复合型阻燃剂的的电解液与未添加任何阻燃剂的对照电解液相比,随着阻燃剂添加量的增加,电解液的自熄时间明显缩短,同时添加复合型阻燃剂后,电解液的电导率明显高于对照电解液,而相比添加单一六甲氧基环三磷腈和六丙氧基环三磷腈阻燃剂的电解液相比,复合型的阻燃剂明显添加量少,阻燃效果优异。
实施例64
取一定量的上述复合型阻燃剂III,其中(4)六甲氧基环三磷腈和(5)六丙氧基环三磷腈的质量比为4∶6,将其溶于无水乙醇中,配成浓度为0.5%的阻燃剂溶液,然后用其浸渍棉纱布和化纤布,充分浸渍后取出自然晾干,将其转移至烘箱内于60℃下继续烘干15min,然后升温至80℃后,继续烘干60min。烘干后取出称重直至重量不再减小后,用浓度为0.1g/ml的碳酸钠溶液碱洗,之后用蒸馏水将其洗成中性,然后放入烘箱中将其烘干,得到阻燃布料。
实施例65
取一定量的上述复合型阻燃剂III,其中(4)六甲氧基环三磷腈和(5)六丙氧基环三磷腈的质量比为4∶6,将其溶于无水乙醇中,配成浓度为1%的阻燃剂溶液,然后用其浸渍棉纱布和化纤布,充分浸渍后取出自然晾干,将其转移至烘箱内于60℃下继续烘干15min,然后升温至80℃后,继续烘干60min。烘干后取出称重直至重量不再减小后,用浓度为0.1g/ml的碳酸钠溶液碱洗,之后用蒸馏水将其洗成中性,然后放入烘箱中将其烘干,得到阻燃布料。
实施例66
取一定量的上述复合型阻燃剂III,其中(4)六甲氧基环三磷腈和(5) 六丙氧基环三磷腈的质量比为4∶6,将其溶于无水乙醇中,配成浓度为2%的阻燃剂溶液,然后用其浸渍棉纱布和化纤布,充分浸渍后取出自然晾干,将其转移至烘箱内于60℃下继续烘干15min,然后升温至80℃后,继续烘干60min。烘干后取出称重直至重量不再减小后,用浓度为0.1g/ml的碳酸钠溶液碱洗,之后用蒸馏水将其洗成中性,然后放入烘箱中将其烘干,得到阻燃布料。
实施例67
取一定量的上述复合型阻燃剂III,其中(4)六甲氧基环三磷腈和(5)六丙氧基环三磷腈的质量比为4∶6,将其溶于无水乙醇中,配成浓度为5%的阻燃剂溶液,然后用其浸渍棉纱布和化纤布,充分浸渍后取出自然晾干,将其转移至烘箱内于60℃下继续烘干15min,然后升温至80℃后,继续烘干60min。烘干后取出称重直至重量不再减小后,用浓度为0.1g/ml的碳酸钠溶液碱洗,之后用蒸馏水将其洗成中性,然后放入烘箱中将其烘干,得到阻燃布料。
不同浓度的阻燃剂溶液浸渍后得到的阻燃布分别在浸渍12h和24h后的阻燃性能进行对比,比较结果见表6。
表6 实施例64~67不同浓度阻燃剂溶液浸渍后阻燃布的燃烧性能
Figure PCTCN2018116520-appb-000066
从表6可以看出,随着阻燃剂浓度的增加,布料的续燃时间明显减少,同时残炭率也增大,未添加阻燃剂的布料的氧指数低,仅为16.5%,极易 燃烧,随着阻燃剂浓度的增加,表明复合型III磷腈阻燃剂对布料具有优异的阻燃性能,添加量少,优选2%的添加量,浸渍24h后,续燃时间仅为1s,最终残炭率达到50%以上,极限氧指数可达到30%以上。
实施例68
将六氨基环三磷腈配制成浓度为0.5%的水溶液,然后用喷雾器将其均匀的喷洒到纸张上,将其置于自然环境下晾晒2h,之后将其置于干燥箱内于100℃条件下干燥1h,继续升温至150℃,固化20min,取出分别按极限氧指数和垂直燃烧试验标准要求裁剪阻燃纸试样。
实施例69
将六氨基环三磷腈配制成浓度为1.0%的水溶液,然后用喷雾器将其均匀的喷洒到纸张上,将其置于自然环境下晾晒2h,之后将其置于干燥箱内于100℃条件下干燥1h,继续升温至150℃,固化20min,取出分别按极限氧指数和垂直燃烧试验标准要求裁剪阻燃纸试样。
实施例70
将六氨基环三磷腈配制成浓度为2.0%的水溶液,然后用喷雾器将其均匀的喷洒到纸张上,将其置于自然环境下晾晒2h,之后将其置于干燥箱内于100℃条件下干燥1h,继续升温至150℃,固化20min,取出分别按极限氧指数和垂直燃烧试验标准要求裁剪阻燃纸试样。
实施例71
将六氨基环三磷腈配制成浓度为3.0%的水溶液,然后用喷雾器将其均匀的喷洒到纸张上,将其置于自然环境下晾晒2h,之后将其置于干燥箱内于100℃条件下干燥1h,继续升温至150℃,固化20min,取出分别按极限氧指数和垂直燃烧试验标准要求裁剪阻燃纸试样。
实施例72
将六氨基环三磷腈配制成浓度为5.0%的水溶液,然后用喷雾器将其均匀的喷洒到纸张上,将其置于自然环境下晾晒2h,之后将其置于干燥 箱内于100℃条件下干燥1h,继续升温至150℃,固化20min,取出分别按极限氧指数和垂直燃烧试验标准要求裁剪阻燃纸试样。
不同添加量阻燃剂对纸的阻燃性能的评价结果见表7。
表7 不同添加量阻燃剂对纸的极限氧指数和垂直燃烧性能的影响
Figure PCTCN2018116520-appb-000067
从表7可以看出,阻燃纸的极限氧指数LOI随着阻燃剂添加量的增加而逐渐增大,未添加阻燃剂的纸张的极限氧指数是由21.5%,极易燃烧,当阻燃剂添加量增加至1%时,极限氧指数即达到36.2%,已达到V-0标准,而垂直燃烧性能则随着阻燃剂添加量的增加而降低,当阻燃剂的添加量为2.0%时,垂直燃烧的续焰时间仅为1.4s,极限氧指数为39.8%,达到不燃标准。由此可见,结晶型的六氨基环三磷腈对纸张具有优异的阻燃性能。
实施例73
取一定量的上述复合型阻燃剂IV,其中如本发明实施例所述的六甲氧基环三磷腈和六氨基环三磷腈的质量比为3∶7,将其溶于无水乙醇中,配成浓度为0.5%的阻燃剂溶液,然后用其浸渍棉纱布和化纤布,充分浸渍后取出自然晾干,将其转移至烘箱内于60℃下继续烘干15min,然后升温至80℃后,继续烘干60min。烘干后取出称重直至重量不再减小后,用浓度为0.1g/ml的碳酸钠溶液碱洗,之后用蒸馏水将其洗成中性,然后放入烘箱中将其烘干,得到阻燃布料。
实施例74
取一定量的上述复合型阻燃剂IV,其中六甲氧基环三磷腈和六氨基环三磷腈的质量比为3∶7,将其溶于无水乙醇中,配成浓度为1.0%的阻燃剂溶液,然后用其浸渍棉纱布和化纤布,充分浸渍后取出自然晾干,将其转移至烘箱内于60℃下继续烘干15min,然后升温至80℃后,继续烘干60min。烘干后取出称重直至重量不再减小后,用浓度为0.1g/ml的碳酸钠溶液碱洗,之后用蒸馏水将其洗成中性,然后放入烘箱中将其烘干,得到阻燃布料。
实施例75
取一定量的上述复合型阻燃剂IV,其中六甲氧基环三磷腈和六氨基环三磷腈的质量比为3∶7,将其溶于无水乙醇中,配成浓度为2.0%的阻燃剂溶液,然后用其浸渍棉纱布和化纤布,充分浸渍后取出自然晾干,将其转移至烘箱内于60℃下继续烘干15min,然后升温至80℃后,继续烘干60min。烘干后取出称重直至重量不再减小后,用浓度为0.1g/ml的碳酸钠溶液碱洗,之后用蒸馏水将其洗成中性,然后放入烘箱中将其烘干,得到阻燃布料。
实施例76
取一定量的上述复合型阻燃剂IV,其中六甲氧基环三磷腈和六氨基环三磷腈的质量比为3∶7,将其溶于无水乙醇中,配成浓度为3.0%的阻燃剂溶液,然后用其浸渍棉纱布和化纤布,充分浸渍后取出自然晾干,将其转移至烘箱内于60℃下继续烘干15min,然后升温至80℃后,继续烘干60min。烘干后取出称重直至重量不再减小后,用浓度为0.1g/ml的碳酸钠溶液碱洗,之后用蒸馏水将其洗成中性,然后放入烘箱中将其烘干,得到阻燃布料。
实施例77
取一定量的上述复合型阻燃剂IV,其中六甲氧基环三磷腈和六氨基环三磷腈的质量比为3∶7,将其溶于无水乙醇中,配成浓度为5.0%的阻燃剂 溶液,然后用其浸渍棉纱布和化纤布,充分浸渍后取出自然晾干,将其转移至烘箱内于60℃下继续烘干15min,然后升温至80℃后,继续烘干60min。烘干后取出称重直至重量不再减小后,用浓度为0.1g/ml的碳酸钠溶液碱洗,之后用蒸馏水将其洗成中性,然后放入烘箱中将其烘干,得到阻燃布料。
实施例78
取一定量的上述复合型阻燃剂V,其中六丙氧基环三磷腈和六氨基环三磷腈的质量比为3∶7,将其溶于无水乙醇中,配成浓度为0.5%的阻燃剂溶液,然后用其浸渍棉纱布和化纤布,充分浸渍后取出自然晾干,将其转移至烘箱内于60℃下继续烘干15min,然后升温至80℃后,继续烘干60min。烘干后取出称重直至重量不再减小后,用浓度为0.1g/ml的碳酸钠溶液碱洗,之后用蒸馏水将其洗成中性,然后放入烘箱中将其烘干,得到阻燃布料。
实施例79
取一定量的上述复合型阻燃剂V,其中六丙氧基环三磷腈和六氨基环三磷腈的质量比为3∶7,将其溶于无水乙醇中,配成浓度为1.0%的阻燃剂溶液,然后用其浸渍棉纱布和化纤布,充分浸渍后取出自然晾干,将其转移至烘箱内于60℃下继续烘干15min,然后升温至80℃后,继续烘干60min。烘干后取出称重直至重量不再减小后,用浓度为0.1g/ml的碳酸钠溶液碱洗,之后用蒸馏水将其洗成中性,然后放入烘箱中将其烘干,得到阻燃布料。
实施例80
取一定量的上述复合型阻燃剂V,其中六丙氧基环三磷腈和六氨基环三磷腈的质量比为3∶7,将其溶于无水乙醇中,配成浓度为2.0%的阻燃剂溶液,然后用其浸渍棉纱布和化纤布,充分浸渍后取出自然晾干,将其转移至烘箱内于60℃下继续烘干15min,然后升温至80℃后,继续烘干60min。烘干后取出称重直至重量不再减小后,用浓度为0.1g/ml的碳酸 钠溶液碱洗,之后用蒸馏水将其洗成中性,然后放入烘箱中将其烘干,得到阻燃布料。
实施例81
取一定量的上述复合型阻燃剂V,其中六丙氧基环三磷腈和六氨基环三磷腈的质量比为3∶7,将其溶于无水乙醇中,配成浓度为3.0%的阻燃剂溶液,然后用其浸渍棉纱布和化纤布,充分浸渍后取出自然晾干,将其转移至烘箱内于60℃下继续烘干15min,然后升温至80℃后,继续烘干60min。烘干后取出称重直至重量不再减小后,用浓度为0.1g/ml的碳酸钠溶液碱洗,之后用蒸馏水将其洗成中性,然后放入烘箱中将其烘干,得到阻燃布料。
实施例81
取一定量的上述复合型阻燃剂V,其中六丙氧基环三磷腈和六氨基环三磷腈的质量比为3∶7,将其溶于无水乙醇中,配成浓度为5.0%的阻燃剂溶液,然后用其浸渍棉纱布和化纤布,充分浸渍后取出自然晾干,将其转移至烘箱内于60℃下继续烘干15min,然后升温至80℃后,继续烘干60min。烘干后取出称重直至重量不再减小后,用浓度为0.1g/ml的碳酸钠溶液碱洗,之后用蒸馏水将其洗成中性,然后放入烘箱中将其烘干,得到阻燃布料。
不同浓度的阻燃剂IV和V溶液浸渍后得到的阻燃布分别在浸渍12h和24h后的阻燃性能进行对比,比较结果见表8和表9。
表8 实施例73~77不同浓度阻燃剂溶液浸渍后阻燃布的燃烧性能
Figure PCTCN2018116520-appb-000068
Figure PCTCN2018116520-appb-000069
表9 实施例78~81不同浓度阻燃剂溶液浸渍后阻燃布的燃烧性能
Figure PCTCN2018116520-appb-000070
从表8和表9可以看出,随着阻燃剂浓度的增加,布料的续燃时间明显减少,同时残炭率也明显增大,未添加阻燃剂的布料的氧指数低,仅为16.5%,极易燃烧,随着阻燃剂浓度的增加,布料的极限氧指数明显增大,表明复合型IV和V磷腈阻燃剂对布料具有优异的阻燃性能,添加量少,优选2%的添加量,浸渍24h后,续燃时间仅为1s,最终残炭率达到50%以上,极限氧指数可达到30%以上。
实施例82
实施例82涉及了本发明的含有硅基基团,特别是含有硅烷基/硅氧基的环三磷腈化合物,对于该化合物而言,其可以由如下化学通式来表示:
Figure PCTCN2018116520-appb-000071
其中,R 1’、R 2’、R 3’、R 4’、R 5’、R 6’各自选自由以下基团构成的组中的一种或者多种:
(CH 2)nCH 3,(CH 2)nCH((CH 2)mCH 3) 2,(CH 2)nC((CH 2)mCH 3) 3(CH 2)nSi((CH 2)mCH 3) 3 。
在典型的制备工艺中,可以采用如下技术方案:以六氯环三磷腈(HCCP)和三烷基硅基(烷)醇或三烷基硅基(烷)醇钠为起始原料,以四氢呋喃、氯苯、1,4-二氧六环等为溶剂等经过合成反应,水洗、有机溶剂洗涤、浓缩得到含烷基硅基氧(和或烷氧)取代的环三磷腈衍生物。
优选地,或者说更具体地,所述化合物的制备可选自以下系列步骤中的一个或几个来制备:
(1)按照质量比,将6~10份含三烷基硅(烷)醇和6~10份金属钠或3~5份金属钙加入到四氢呋喃或氯苯或1,4-二氧六环中;
滴入到1份六氯环三磷腈中,65-70℃搅拌,反应12-48h,得到白色悬浊液;
将悬浊液浓缩,蒸去溶剂,得到白色固体,分别水洗,有机溶剂洗涤,用甲苯、二氯甲烷、氯仿或二氯乙烷溶解纯化,得到含烷基硅基氧(和或烷氧)取代的环三磷腈衍生物。
(2)按照摩尔比1∶11∶10的比例依次投入六氯环三磷腈、三烷基硅(烷)醇,加入四氢呋喃、氯苯或1,4-二氧六环作为溶剂,充分搅拌;
缓慢滴加三乙胺到反应器中,70-100℃,反应12-48h,得到白色悬浊液;
将悬浊液倒出进行浓缩,得黄色粘稠状固体或液体,用水洗涤,分别水洗,有机溶剂洗涤,用甲苯、二氯甲烷、氯仿或二氯乙烷溶解纯化,得到含烷基硅基氧(和或烷氧)取代的环三磷腈衍生物。
(3)将6~10份三烷基硅(烷)醇钠加入到四氢呋喃或氯苯或1,4-二 氧六环中;
缓慢滴入到1份六氯环三磷腈的四氢呋喃或氯苯或1,4-二氧六环溶液,70-100℃,反应12-48h,得到白色悬浊液;
将悬浊液倒出进行浓缩,得黄色粘稠状固体或液体,用水洗涤,分别水洗,有机溶剂洗涤,用甲苯、二氯甲烷、氯仿或二氯乙烷溶解纯化,得到含烷基硅基氧(和或烷氧)取代的环三磷腈衍生物。
实施例83
承接实施例82,可以更具体地实施以下技术方案,来获得上述式1.1或者式1.2中所述的含烷基硅基氧取代和/或烷氧取代的环三磷腈类化合物:
将干燥的500mL三颈瓶用氮气置换3次,加入250mL无水四氢呋喃和15.00g三甲基硅醇,搅拌,称取3.45g金属钠,切成小颗粒,分五批加入到三甲基硅醇/四氢呋喃溶液中,每批溶解后再加入下一批。直至金属钠全部溶解,继续搅拌1小时,得三甲基硅醇钠的四氢呋喃溶液。
取另一干燥的250mL三颈瓶用氮气置换3次,加入100mL无水四氢呋喃和8.10g甲醇钠,搅拌,直至溶解,得甲醇钠的四氢呋喃溶液。
取另一干燥的1L三颈瓶用氮气置换3次,加入250mL无水四氢呋喃和5.00g六氯环三磷腈,搅拌至六氯环三磷腈完全溶解。将上述三甲基硅醇钠的四氢呋喃溶液缓慢滴加至1L的三颈瓶中,滴加完毕升温至65-70℃,反应3-6小时,得白色悬浊液。将上述甲醇钠的四氢呋喃溶液缓慢滴加至1L的三颈瓶中,继续反应12小时,得棕黄色悬浊液。
反应结束,浓缩除去四氢呋喃,水洗涤,正己烷洗涤,二氯甲烷溶解纯化,浓缩干燥,得淡黄色粘稠状物质或液体5.21g,即为产物1a,经核磁磷谱检测,红外结构确定。
产物“1a”的红外测试以及核磁磷谱的检测,请参见图15。从产物1a的红外图谱上可以看出,1245cm-1、968cm-1处的吸收峰分别为环三磷睛骨架中的P=N,P-N键的伸缩振动峰,表明磷腈六元环的存在。2949cm-1 处的吸收峰为Si-CH 3的伸缩振动峰,1175cm-1处的吸收峰为Si-O的伸缩振动峰。1037cm-1处的吸收峰为P-O的伸缩振动峰,表明硅烷基的存在。
图16是核磁磷谱的测试。从实施例83合成的产物的核磁磷谱上可以看出,在-2.255ppm,-2.570ppm,-2.885ppm处的化学位移表明有O-Si基团接入(O接入了P和Si之间的靠近环的位置),形成了有机硅氧环磷腈。
非限制性地,所形成的化合物可以用下述通式来表示:
Figure PCTCN2018116520-appb-000072
非限制性地,本领域技术人员根据本发明给出的启示和工艺,能够选取类似的反应原料,制备得到与上述结构相似的含烷基硅基氧取代和/或烷氧取代的环三磷腈类化合物。
通过本发明人的实验发现,在具有Si-O-P基团的含硅的环三磷腈化合物中,由于直接的Si-O存在以及Si-O-P键的存在有利于进一步增强其应用于阻燃剂时的效果,因而在本发明的实施方案中是优选的。发明人不希望受限于任何理论,但是较靠近P的O原子可能与Si结合,进一步辅助和增强了P元素起到的阻燃效果。
实施例84:
将干燥的500mL三颈瓶用氮气置换3次,加入250mL无水四氢呋喃和15.00g三甲基硅醇,搅拌,称取3.45g金属钠,切成小颗粒,分五批加入到三甲基硅醇/四氢呋喃溶液中,每批溶解后再加入下一批。直至金属钠全部溶解,继续搅拌1小时,得三甲基硅醇钠的四氢呋喃溶液。
取另一干燥的250mL三颈瓶用氮气置换3次,加入100mL无水四氢呋喃和10.20g乙醇钠,搅拌,直至溶解,得乙醇钠的四氢呋喃溶液。
取另一干燥的1L三颈瓶用氮气置换3次,加入250mL无水四氢呋喃和5.00g六氯环三磷腈,搅拌至六氯环三磷腈完全溶解。将上述三甲基硅醇钠的四氢呋喃溶液缓慢滴加至1L的三颈瓶中,滴加完毕升温至65-70℃,反应3-6小时,得白色悬浊液。将上述乙醇钠的四氢呋喃溶液缓慢滴加至1L的三颈瓶中,继续反应12小时,得棕黄色悬浊液。
反应结束,浓缩除去四氢呋喃,水洗涤,正己烷洗涤,二氯甲烷溶解纯化,浓缩干燥,得淡黄色粘稠状物质或液体5.60g,即为产物(2a),经核磁磷谱检测,红外结构确定:
与前述实施例类似,在所测试的红外图谱中,能够识别出,1245cm-1、968cm-1处的环三磷睛骨架中的P=N,P-N键的伸缩振动峰,表明磷腈六 元环的存在。类似地,2949cm-1左右的的吸收峰为Si-CH 3的伸缩振动峰,1175cm-1处的吸收峰为Si-O的伸缩振动峰。1037cm-1处的吸收峰为P-O的伸缩振动峰,表明硅烷基的存在。非限制性地,所合成的化合物的结构式可以由以下化学式来表示:
Figure PCTCN2018116520-appb-000073
实施例85:
将干燥的500mL三颈瓶用氮气置换3次,加入250mL无水四氢呋喃和15.00g三甲基硅醇,搅拌,称取3.45g金属钠,切成小颗粒,分五批加入到三甲基硅醇/四氢呋喃溶液中,每批溶解后再加入下一批。直至金属钠全部溶解,继续搅拌1小时,得三甲基硅醇钠的四氢呋喃溶液。
取另一干燥的250mL三颈瓶用氮气置换3次,加入100mL无水四氢呋喃和17.42g苯酚钠搅拌,直至溶解,得苯酚钠的四氢呋喃溶液。
取另一干燥的1L三颈瓶用氮气置换3次,加入250mL无水四氢呋喃和5.00g六氯环三磷腈,搅拌至六氯环三磷腈完全溶解。将上述三甲基硅醇钠的四氢呋喃溶液缓慢滴加至1L的三颈瓶中,滴加完毕升温至65-70℃,反应3-6小时,得白色悬浊液。将上述苯酚钠的四氢呋喃溶液缓慢滴加至1L的三颈瓶中,继续反应12小时,得棕黄色悬浊液。
反应结束,浓缩除去四氢呋喃,水洗涤,正己烷洗涤,二氯甲烷溶解纯化,浓缩干燥,得淡黄色粘稠状物质或液体6.94g,即为产物3a,经核磁磷谱检测,红外结构确定。
产物3a的测试结果参见图17。对此参考附图可以看出,从含三甲基硅氧基环三磷腈的红外图谱上可以看出,1174cm-1、947cm-1处的吸收峰分别为环三磷睛骨架中的P=N,P-N键的伸缩振动峰,表明磷腈六元环的存在;2923cm-1处的吸收峰为Si-CH 3的伸缩振动峰,1156cm-1处的吸收峰为Si-O的伸缩振动峰。1020cm-1处的吸收峰为P-O的伸缩振动峰,表明硅烷基的存在;此外,1591、1504、1488和1455cm-1处为苯环骨架变形振动吸收峰,表明苯环,以及苯环与O相联的基团的存在。
非限制性地,所合成的化合物的结构式可以由以下化学式来表示:
Figure PCTCN2018116520-appb-000074
实施例86:
将干燥的500mL三颈瓶用氮气置换3次,加入250mL无水四氢呋喃和15.00g三甲基硅醇,搅拌,称取3.45g金属钠,切成小颗粒,分五批加入到三甲基硅醇/四氢呋喃溶液中,每批溶解后再加入下一批。直至金属钠全部溶解,继续搅拌1小时,得三甲基硅醇钠的四氢呋喃溶液。
取另一干燥的250mL三颈瓶用氮气置换3次,加入100mL无水四氢呋喃和19.67g对甲基苯酚钠(4-甲基苯酚钠),搅拌,直至溶解,得对甲基苯酚钠的四氢呋喃溶液。
取另一干燥的1L三颈瓶用氮气置换3次,加入250mL无水四氢呋喃和5.00g六氯环三磷腈(采用本发明实施例制备的六氯环三磷腈),搅拌至六氯环三磷腈完全溶解。将上述三甲基硅醇钠的四氢呋喃溶液缓慢滴加至1L的三颈瓶中,滴加完毕升温至65-70℃,反应3-6小时,得白色悬浊液。将上述对甲基苯酚钠的四氢呋喃溶液缓慢滴加至1L的三颈瓶中,继续反应12小时,得棕黄色悬浊液。
反应结束,浓缩除去四氢呋喃,水洗涤,正己烷洗涤,二氯甲烷溶解纯化,浓缩干燥,得淡黄色粘稠状物质或液体7.36g,即为产物4a,经核磁磷谱检测,红外结构确定。
所获得的测试结果与上述实施例85类似。其中,检测到的P=N,P-N键的伸缩振动峰,表明磷腈六元环的存在;2923cm-1处的吸收峰为Si-CH 3的伸缩振动峰,1156cm-1处的吸收峰为Si-O的伸缩振动峰。1020cm-1处的吸收峰为P-O的伸缩振动峰,表明硅烷基的存在;此外,1591、1504、1488和1455cm-1等处为苯环骨架变形振动吸收峰,表明苯环、以及苯环与O相联的基团的存在。
非限制性地,所合成的化合物的结构式可以由以下化学式来表示:
Figure PCTCN2018116520-appb-000075
实施例87:
将干燥的500mL三颈瓶用氮气置换3次,加入250mL无水四氢呋喃 和15.00g三甲基硅醇,搅拌,称取3.45g金属钠,切成小颗粒,分五批加入到三甲基硅醇/四氢呋喃溶液中,每批溶解后再加入下一批。直至金属钠全部溶解,继续搅拌1小时,得三甲基硅醇钠的四氢呋喃溶液。
取另一干燥的250mL三颈瓶用氮气置换3次,加入100mL无水四氢呋喃和19.67g间甲基苯酚钠,搅拌,直至溶解,得间甲基苯酚钠的四氢呋喃溶液。
取另一干燥的1L三颈瓶用氮气置换3次,加入250mL无水四氢呋喃和5.00g六氯环三磷腈,搅拌至六氯环三磷腈完全溶解。将上述三甲基硅醇钠的四氢呋喃溶液缓慢滴加至1L的三颈瓶中,滴加完毕升温至65-70℃,反应3-6小时,得白色悬浊液。将上述间甲基苯酚钠的四氢呋喃溶液缓慢滴加至1L的三颈瓶中,继续反应12小时,得棕黄色悬浊液。
反应结束,浓缩除去四氢呋喃,水洗涤,正己烷洗涤,二氯甲烷溶解纯化,浓缩干燥,得淡黄色粘稠状物质或液体7.42g,即为产物(5a),经核磁磷谱检测,红外结构确定;
所获得检测结果与实施例85和实施例86类似;根据本实施例所选取的原料的种类,可以确定,本实施例所制备的化合物的结构可为如下:
Figure PCTCN2018116520-appb-000076
实施例88:
取一干燥的250mL三颈瓶用氮气置换3次,加入100mL无水四氢呋喃和8.10g甲醇钠,搅拌,直至溶解,得甲醇钠的四氢呋喃溶液。
取另一干燥的1L三颈瓶用氮气置换3次,依次加入500mL无水四氢呋喃和5.00g六氯环三磷腈,15.00g三甲基硅醇,搅拌至完全溶解。将15.15g三乙胺缓慢滴加至1L的三颈瓶中,滴加完毕升温至65-70℃,反应3-6小时,得白色悬浊液。将上述配置好的甲醇钠的四氢呋喃溶液缓慢滴加至1L的三颈瓶中,继续反应12小时,得棕黄色悬浊液。
反应结束,浓缩除去四氢呋喃,水洗涤,正己烷洗涤,二氯甲烷溶解纯化,浓缩干燥,得淡黄色粘稠状液体4.29g,即为产物1a,经核磁磷谱检测,红外结构确定;测试的结果与图15和图16的结果相似。
实施例89:
取一干燥的250mL三颈瓶用氮气置换3次,加入100mL无水四氢呋喃和10.20g乙醇钠,搅拌,直至溶解,得乙醇钠的四氢呋喃溶液。
取另一干燥的1L三颈瓶用氮气置换3次,依次加入500mL无水四氢呋喃和5.00g六氯环三磷腈,15.00g三甲基硅醇,搅拌至完全溶解。将15.15g三乙胺缓慢滴加至1L的三颈瓶中,滴加完毕升温至65-70℃,反应3-6小时,得白色悬浊液。将上述配置好的乙醇钠的四氢呋喃溶液缓慢滴加至1L的三颈瓶中,继续反应12小时,得棕黄色悬浊液。
反应结束,浓缩除去四氢呋喃,水洗涤,正己烷洗涤,二氯甲烷溶解纯化,浓缩干燥,得淡黄色粘稠状液体4.50g,即为产物2a,经核磁磷谱检测,红外结构确定,所获的的产物和测试结果与实施例84的测试结果相似。
实施例90:
取一干燥的250mL三颈瓶用氮气置换3次,加入100mL无水四氢呋喃和17.42g苯酚钠,搅拌,直至溶解,得苯酚钠的四氢呋喃溶液。
取另一干燥的1L三颈瓶用氮气置换3次,依次加入500mL无水四氢呋喃和5.00g六氯环三磷腈,15.00g三甲基硅醇,搅拌至完全溶解。将15.15g三乙胺缓慢滴加至1L的三颈瓶中,滴加完毕升温至65-70℃,反应3-6小时,得白色悬浊液。将上述配置好的苯酚钠的四氢呋喃溶液缓慢滴加至1L的三颈瓶中,继续反应12小时,得棕黄色悬浊液。
反应结束,浓缩除去四氢呋喃,水洗涤,正己烷洗涤,二氯甲烷溶解纯化,浓缩干燥,得淡黄色粘稠状液体5.21g,可获与3a相似的产物,经核磁磷谱检测,红外结构确定;所获得的测试结果与实施例85相似,在此不再赘述。
实施例91:
取一干燥的250mL三颈瓶用氮气置换3次,加入100mL无水四氢呋喃和19.67g对甲基苯酚钠,搅拌,直至溶解,得对甲基苯酚钠的四氢呋喃溶液。
取另一干燥的1L三颈瓶用氮气置换3次,依次加入500mL无水四氢呋喃和5.00g六氯环三磷腈,15.00g三甲基硅醇,搅拌至完全溶解。将15.15g三乙胺缓慢滴加至1L的三颈瓶中,滴加完毕升温至65-70℃,反应3-6小时,得白色悬浊液。将上述配置好的对甲基苯酚钠的四氢呋喃溶液缓慢滴加至1L的三颈瓶中,继续反应12小时,得棕黄色悬浊液。
反应结束,浓缩除去四氢呋喃,水洗涤,正己烷洗涤,二氯甲烷溶解纯化,浓缩干燥,得淡黄色粘稠状液体5.44g,可获得如前述产物4a的化合物,经核磁磷谱检测,红外结构确定。
实施例92:
取一干燥的250mL三颈瓶用氮气置换3次,加入100mL无水四氢呋喃和19.67g间甲基苯酚钠,搅拌,直至溶解,得间甲基苯酚钠的四氢呋喃溶液。
取另一干燥的1L三颈瓶用氮气置换3次,依次加入500mL无水四氢呋喃和5.00g六氯环三磷腈,15.00g三甲基硅醇,搅拌至完全溶解。将15.15g三乙胺缓慢滴加至1L的三颈瓶中,滴加完毕升温至65-70℃,反应3-6小时,得白色悬浊液。将上述配置好的间甲基苯酚钠的四氢呋喃溶液缓慢滴加至1L的三颈瓶中,继续反应12小时,得棕黄色悬浊液。
反应结束,浓缩除去四氢呋喃,水洗涤,正己烷洗涤,二氯甲烷溶解纯化,浓缩干燥,得淡黄色粘稠状液体5.60g,即为产物(5a),经核磁磷谱检测,红外结构确定。
实施例93:
将干燥的500mL三颈瓶用氮气置换3次,加入250mL无水四氢呋喃和18.30g三甲基硅醇钠,搅拌1小时,得三甲基硅醇钠的四氢呋喃溶液。
取另一干燥的1L三颈瓶用氮气置换3次,加入250mL无水四氢呋喃和5.00g六氯环三磷腈,搅拌至六氯环三磷腈完全溶解。将上述三甲基硅醇钠的四氢呋喃溶液缓慢滴加至1L的三颈瓶中,滴加完毕升温至65-70℃,反应24小时,得棕黄色悬浊液。
反应结束,浓缩除去四氢呋喃,水洗涤,正己烷洗涤,二氯甲烷溶解纯化,浓缩干燥,得淡黄色粘稠状物质或液体5.38g,即为产物6a,经核磁磷谱检测,红外结构确定;所作的红外和核磁谱表明,非限制性地,可用以下化学式来表示本实施例的化合物:
Figure PCTCN2018116520-appb-000077
实施例94:
取一干燥的1L三颈瓶用氮气置换3次,依次加入500mL无水四氢呋喃和5.00g六氯环三磷腈,15.00g三甲基硅醇,搅拌至完全溶解。将15.15g三乙胺缓慢滴加至1L的三颈瓶中,滴加完毕升温至65-70℃,反应24小时,得棕黄色悬浊液。
反应结束,浓缩除去四氢呋喃,水洗涤,正己烷洗涤,二氯甲烷溶解纯化,浓缩干燥,得淡黄色粘稠状液体7.32g,即为产物1a,经核磁磷谱检测,红外结构确定。
实施例94’
对于上述实施例82至85所制备的化合物(例如式1.1和式1.2),同样进行了阻燃剂的有效实验;总体而言,所涉及的应用例的实验过程如下所述:
基于树脂塑料的总量,上述含烷基硅基环三磷腈阻燃剂的添加量优选0.5%~15%,更优选为1%~8%。
所述树脂塑料优选PE,PP,PVC,PS,ABS,PA,PC,POM,PBT,PET,PPO,PMMA,PU及环氧树脂中一种或多种混合物,更优选PMMA,PC,PC/ABS合金树脂,PU,PET,PA6及环氧树脂作基质。
本发明合成的含烷基硅基环三磷腈阻燃剂为添加型的阻燃剂,同时将其添加到树脂塑料中,提供具有阻燃性能的树脂塑料。
本发明硅烷阻燃剂本身N,Si,P以及O之间具有协同效应,不需要添加其他辅助阻燃剂或抗滴落剂,将其添加到树脂塑料基质中,具有添加量少,不影响树脂性能的优势,阻燃性符合UL94 V-0标准。
本发明的阻燃树脂塑料,优选环氧树脂和PC,主要是通过添加上述a结构的含烷基硅基的环三磷腈阻燃剂,阻燃性能优异,且基本不影响树脂基质的物理性能及加工使用。
上述所述阻燃性能测试为极限氧指数和阻燃抗滴落性能测试。
上述所述极限氧指数测试按GB/T 2046.2-2009标准,测试仪器用JF-3型氧指数仪,试样尺寸为100×10×4mm。阻燃抗滴落评价试验按UL94标准,试样尺寸为125×13mm,每一厚度共10件样品,共2套样品,样品于23℃,50%RH的条件下放置48h后进行测试,每一厚度的5件样品在70℃的条件下放置7天后进行测试。
(1)阻燃型PMMA树脂样品的制备:
取上述一定量的PMMA树脂样品于循环鼓风干燥箱内,80~90℃干燥2~4h,然后将其置于密炼机SU-70C中,添加一定量的上述合成的含烷基硅基环三磷腈阻燃剂,启动搅拌,然后加热升温至180~250℃,加热过程中不断搅拌使其分散均匀,然后降温将树脂转移至模具中,模具温度为35~70℃,将模具置于50T平板硫化机中压片定型,冷却至室温后脱模,然后制作阻燃评价试验样条。
(2)阻燃型聚碳酸酯(PC)的制备:
取一定量的聚碳酸酯PC,复合抗氧化剂及上述合成的含烷基硅基环三磷腈阻燃剂一起加入密炼机SU-70C中,启动搅拌,然后加热升温至260~300℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于200~240℃下制作PC的压片,然后于室温下定型,切割制作阻燃试验评价样条。
上述复合抗氧化剂为抗氧剂1076(3-(3,5-二叔丁基-4-羟基苯基)丙酸正 十八烷醇酯),抗氧剂168(亚磷酸三(2,4-二叔丁基苯)酯)与抗氧化剂1010(四(亚甲基-3-(3,5-二叔丁基-4-羟基苯基)丙酸酯)甲烷)的任意两种组合,添加量为PC量的0.1%~0.5%,优选0.3%,优选两种组分抗氧化剂各占0.15%。
(3)阻燃型PC/ABS合金树脂的制备:
取一定量的聚碳酸酯PC/丙烯腈-苯乙烯-丁二烯塑料ABS于鼓风干燥箱内,90~100℃下干燥2~4h,然后取出与复合抗氧化剂及上述合成的含烷基硅基环三磷腈阻燃剂一起加入密炼机SU-70C中,启动搅拌,然后加热升温至200~240℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于60~120℃下制作PC的压片,然后于室温下定型,切割制作阻燃试验评价样条。
上述PC和ABS的质量比为70∶30,复合抗氧化剂为抗氧剂1076(3-(3,5-二叔丁基-4-羟基苯基)丙酸正十八烷醇酯),抗氧剂168(亚磷酸三(2,4-二叔丁基苯)酯)与抗氧化剂1010(四(亚甲基-3-(3,5-二叔丁基-4-羟基苯基)丙酸酯)甲烷)的任意两种组合,添加量为PC/ABS量的0.1%~0.5%,优选0.3%,优选两种组分抗氧化剂各占0.15%。
(4)阻燃型环氧树脂的制备:
取一定量的环氧树脂,与DDS(4,4’二氨基二苯砜)及上述合成的含烷基硅基环三磷腈阻燃剂一起置于密炼机SU-70C中,启动搅拌,然后加热升温至160~200℃,继续搅拌使其混合均匀,然后将混合物浇注入模具汇总,150℃下固化2~3h,再在180℃下固化4~5h,取出脱模,然后切割制作阻燃试验评价样条。
上述固化剂DDS的用量为环氧树脂的物质的量的30%~50%,优选为35%~40%。
(5)阻燃型聚氨酯PU的制备:
取一定量的聚氨酯PU与上述合成的含烷基硅基环三磷腈阻燃剂及一定量的抗氧化剂混合均匀后加入到已启动搅拌的RM-200C混炼式转矩流变仪,在150~200℃下预塑化30~60min,然后升温至170~220℃,并控制物料混合熔化,直到呈透明状并使混合体系熔融均匀,然后通过双螺杆挤出机(挤压速度270~300rpm),挤出成颗粒。然后将上述颗粒在150~200℃下熔融,模具定型温度80~100℃下成型制作阻燃评价试验样条。
上述抗氧化剂优选为Irgafos168,用量以PU质量计优选为0.05%~1%。
(6)阻燃型PA6的制备:
取一定量的PA6与上述合成的含烷基硅基环三磷腈阻燃剂混合均匀后加入到已启动搅拌的RM-200C混炼式转矩流变仪,然后启动加热升温至240~300℃,使物料完全熔融并混合均匀,冷却后取出熔融物料,然后 将上述物料用50T的平板硫化机在240~300℃下压片,然后于80~100℃的模具下成型制作阻燃评价试验样条。
(7)阻燃型PET树脂的制备:
取一定量的PET母粒与上述合成的含烷基硅基环三磷腈阻燃剂混合均匀后加入到已启动搅拌的RM-200C混炼式转矩流变仪,,升温至250~300℃进行熔融混合,将物料取出,于50T平板硫化机在270~300℃下压片,模具温度为70~100℃下成型制作阻燃评价试验样条。
需要在此说明的是,以下实施例系列实验中所采用的是实施例83至实施例85所制备得到的批次样品的混合物,所取用的样品的比例是实施例83至实施例85三个实施例中的批次产品以质量比1∶1∶1混合而得的,这有助于了解本系列产品的平均性能和水平。
实施例95:
取99gPMMA树脂样品于循环鼓风干燥箱内,90℃干燥4h,然后将其置于密炼机SU-70C中,添加1g合成的含烷基硅基环三磷腈阻燃剂,启动搅拌,然后加热升温至200℃,加热过程中不断搅拌使其分散均匀,然后降温将树脂转移至模具中,模具温度为50℃,将模具置于50T平板硫化机中压片定型,冷却至室温后脱模,然后制作阻燃评价试验样条。
实施例96:
取97gPMMA树脂样品于循环鼓风干燥箱内,90℃干燥4h,然后将其置于密炼机SU-70C中,添加3g合成的含烷基硅基环三磷腈阻燃剂,启动搅拌,然后加热升温至200℃,加热过程中不断搅拌使其分散均匀,然后降温将树脂转移至模具中,模具温度为50℃,将模具置于50T平板硫化机中压片定型,冷却至室温后脱模,然后制作阻燃评价试验样条。
实施例97:
取92gPMMA树脂样品于循环鼓风干燥箱内,90℃干燥4h,然后将其置于密炼机SU-70C中,添加8g合成的含烷基硅基环三磷腈阻燃剂,启动搅拌,然后加热升温至200℃,加热过程中不断搅拌使其分散均匀,然后降温将树脂转移至模具中,模具温度为50℃,将模具置于50T平板硫化机中压片定型,冷却至室温后脱模,然后制作阻燃评价试验样条。
极限氧指数测试按GB/T 2046.2-2009标准,测试仪器用JF-3型氧指数仪,试样尺寸为100×10×4mm。阻燃抗滴落评价试验按UL-94标准,试样尺寸为125×13mm,每一厚度共10件样品,共2套样品,样品于23℃,50%RH的条件下放置48h后进行测试,每一厚度的5件样品在70℃的条件下放置7天后进行测试,测试结果见表10。
表10 不同添加量阻燃剂的PMMA树脂的阻燃性能评价
Figure PCTCN2018116520-appb-000078
Figure PCTCN2018116520-appb-000079
从表10可以看出,不添加阻燃剂的PMMA树脂的极限氧指数仅为18%,有滴落,易燃烧,当烷基硅基环三磷腈阻燃剂的添加量为1%,极限氧指数达到29%,无滴落,阻燃级别为V-1标准,继续增加添加量至3%时,极限氧指数为32%,阻燃级别达到V-0标准。由此可见,新合成的含烷基硅基的环三磷腈阻燃剂对PMMA树脂具有优异的阻燃性能,添加量少,仅需5%即可使PMMA树脂的阻燃级别达到V-0标准。
实施例98:
取98.7g聚碳酸酯PC,复合抗氧化剂0.3g(抗氧化剂1076和抗氧剂168各占0.15g)及1g成的含烷基硅基的环三磷腈阻燃剂一起加入密炼机SU-70C中,启动搅拌,然后加热升温至280℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于220℃下制作PC的压片,然后于室温下定型,切割制作阻燃试验评价样条。
实施例99:
取96.7g聚碳酸酯PC,复合抗氧化剂0.3g(抗氧化剂1076和抗氧剂168各占0.15g)及3g成的含烷基硅基的环三磷腈阻燃剂一起加入密炼机SU-70C中,启动搅拌,然后加热升温至280℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于220℃下制作PC的压片,然后于室温下定型,切割制作阻燃试验评价样条。
实施例100:
取94.7g聚碳酸酯PC,复合抗氧化剂0.3g(抗氧化剂1076和抗氧剂168各占0.15g)及5g成的含烷基硅基的环三磷腈阻燃剂一起加入密炼机SU-70C中,启动搅拌,然后加热升温至280℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于220℃下制作PC的压片,然后于室温下定型,切割制作阻燃试验评价样条。
实施例101:
取91.7g聚碳酸酯PC,复合抗氧化剂0.3g(抗氧化剂1076和抗氧剂168各占0.15g)及8g成的含烷基硅基的环三磷腈阻燃剂一起加入密炼机SU-70C中,启动搅拌,然后加热升温至280℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于220℃下制作PC的压片,然后于室温下定型,切割制作阻燃试验评价样条。
极限氧指数测试按GB/T 2046.2-2009标准,测试仪器用JF-3型氧指数仪,试样尺寸为100×10×4mm。阻燃抗滴落评价试验按UL-94标准,试样尺寸为125×13mm,每一厚度共10件样品,共2套样品,样品于23℃,50%RH的条件下放置48h后进行测试,每一厚度的5件样品在70℃的条件下放置7天后进行测试,测试结果见表11。
表11 不同添加量的PC树脂的阻燃性能评价
Figure PCTCN2018116520-appb-000080
从表11可以看出,未添加阻燃剂的PC树脂的极限氧指数为25%,有滴落,阻燃级别为V-2标准,当新合成的含烷基硅基的环三磷腈阻燃剂的添加量为1%时,极限氧指数为29%,无滴落,阻燃级别达到V-1标准,增加添加量至3%时,极限氧指数达到32%,阻燃级别达到V-0标准。由此可见,上述合成的含烷基硅基的环三磷腈阻燃剂对PC树脂具有优异的阻燃性能,添加量少,仅需3%即可使PC树脂的阻燃级别达到V-0标准。
实施例102:
取97.7g聚碳酸酯PC/丙烯腈-苯乙烯-丁二烯塑料ABS于鼓风干燥箱内,90℃下干燥4h,然后取出与复合抗氧化剂0.3g(抗氧化剂1076和抗氧剂168各占0.15g)及2g合成的含烷基硅基的环三磷腈阻燃剂一起加入密炼机SU-70C中,启动搅拌,然后加热升温至220℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于120℃下制作PC/ABS的压片,然后于室温下定型,切割制作阻燃试验评价样条。
实施例103:
取94.7g聚碳酸酯PC/丙烯腈-苯乙烯-丁二烯塑料ABS于鼓风干燥箱内,90℃下干燥4h,然后取出与复合抗氧化剂0.3g(抗氧化剂1076和抗氧剂168各占0.15g)及5g合成的含烷基硅基的环三磷腈阻燃剂一起加入密炼机SU-70C中,启动搅拌,然后加热升温至220℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于 120℃下制作PC/ABS的压片,然后于室温下定型,切割制作阻燃试验评价样条。
实施例104:
取91.7g聚碳酸酯PC/丙烯腈-苯乙烯-丁二烯塑料ABS于鼓风干燥箱内,90℃下干燥4h,然后取出与复合抗氧化剂0.3g(抗氧化剂1076和抗氧剂168各占0.15g)及8g合成的含烷基硅基的环三磷腈阻燃剂一起加入密炼机SU-70C中,启动搅拌,然后加热升温至220℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于120℃下制作PC/ABS的压片,然后于室温下定型,切割制作阻燃试验评价样条。
实施例105:
取89.7g聚碳酸酯PC/丙烯腈-苯乙烯-丁二烯塑料ABS于鼓风干燥箱内,90℃下干燥4h,然后取出与复合抗氧化剂0.3g(抗氧化剂1076和抗氧剂168各占0.15g)及10g合成的含烷基硅基的环三磷腈阻燃剂一起加入密炼机SU-70C中,启动搅拌,然后加热升温至220℃,使物料完全熔融并混合均匀,冷却后取出混合物料,然后置于50T平板硫化机模具中,于120℃下制作PC/ABS的压片,然后于室温下定型,切割制作阻燃试验评价样条。
极限氧指数测试按GB/T 2046.2-2009标准,测试仪器用JF-3型氧指数仪,试样尺寸为100×10×4mm。阻燃抗滴落评价试验按UL-94标准,试样尺寸为125×13mm,每一厚度共10件样品,共2套样品,样品于23℃,50%RH的条件下放置48h后进行测试,每一厚度的5件样品在70℃的条件下放置7天后进行测试,测试结果见表12。
表12 不同添加量的PC/ABS合金树脂的阻燃性能评价
Figure PCTCN2018116520-appb-000081
从表12可以看出,不添加阻燃剂的PC/ABS合金树脂的极限氧指数只有22%,有滴落,易燃,当添加2%的含烷基硅基环三磷腈阻燃剂后,极限氧指数达到26%,有滴落,阻燃级别为V-2标准,添加量为5%时, 无滴落,阻燃级别达到V-1标准,继续增加添加量至8%时,极限氧指数达到34%,无滴落,阻燃级别达到V-0标准。由此可见,含烷基硅基环三磷腈阻燃剂对PC/ABS合金树脂具有优异的阻燃性能,添加8%的量即可使PC/ABS合金树脂的阻燃级别达到V-0标准。
实施例106:
取63g环氧树脂,与35gDDS(4,4’二氨基二苯砜)及2g合成的含烷基硅基的环三磷腈阻燃剂一起置于密炼机SU-70C中,启动搅拌,然后加热升温至180℃,继续搅拌使其混合均匀,然后将混合物浇注入模具汇总,150℃下固化3h,再在180℃下固化4h,取出脱模,然后切割制作阻燃试验评价样条。
实施例107:
取60g环氧树脂,与35gDDS(4,4’二氨基二苯砜)及5g合成的含烷基硅基的环三磷腈阻燃剂一起置于密炼机SU-70C中,启动搅拌,然后加热升温至180℃,继续搅拌使其混合均匀,然后将混合物浇注入模具汇总,150℃下固化3h,再在180℃下固化4h,取出脱模,然后切割制作阻燃试验评价样条。
实施例108:
取57g环氧树脂,与35gDDS(4,4’二氨基二苯砜)及8g合成的含烷基硅基的环三磷腈阻燃剂一起置于密炼机SU-70C中,启动搅拌,然后加热升温至180℃,继续搅拌使其混合均匀,然后将混合物浇注入模具汇总,150℃下固化3h,再在180℃下固化4h,取出脱模,然后切割制作阻燃试验评价样条。
实施例109:
取55g环氧树脂,与35gDDS(4,4’二氨基二苯砜)及10g合成的含烷基硅基的环三磷腈阻燃剂一起置于密炼机SU-70C中,启动搅拌,然后加热升温至180℃,继续搅拌使其混合均匀,然后将混合物浇注入模具汇总,150℃下固化3h,再在180℃下固化4h,取出脱模,然后切割制作阻燃试验评价样条。
极限氧指数测试按GB/T 2046.2-2009标准,测试仪器用JF-3型氧指数仪,试样尺寸为100×10×4mm。阻燃抗滴落评价试验按UL94标准,试样尺寸为125×13mm,每一厚度共10件样品,共2套样品,样品于23℃,50%RH的条件下放置48h后进行测试,每一厚度的5件样品在70℃的条件下放置7天后进行测试,测试结果见表13。
表13 不同添加量的环氧树脂的阻燃性能评价
Figure PCTCN2018116520-appb-000082
Figure PCTCN2018116520-appb-000083
从表13可以看出,不添加阻燃剂的环氧树脂的极限氧指数只有23%,有滴落,易燃,添加2%的含烷基硅基的环三磷腈阻燃剂,极限氧指数为25%,阻燃级别为V-2标准,添加量达到5%时,极限氧指数为29%,阻燃级别为V-1标准,继续增加添加量至8%时,极限氧指数达到35%,阻燃级别达到V-0标准。由此可见,上述合成的含烷基硅基的环三磷腈阻燃剂对环氧树脂具有优异的阻燃性能,仅需8%的添加量即可使环氧树脂的阻燃级别达到V-0标准。
实施例110:
取97.5g聚氨酯PU与2g上述合成的含烷基硅基环三磷腈阻燃剂及0.5g抗氧化剂Irgafos168混合均匀后加入到已启动搅拌的RM-200C混炼式转矩流变仪,在150~200℃下预塑化40min,然后升温至170℃,并控制物料混合熔化,直到呈透明状并使混合体系熔融均匀,然后通过双螺杆挤出机(挤压速度270~300rpm),挤出成颗粒。然后将上述颗粒在150℃下熔融,模具定型温度80℃下成型制作阻燃评价试验样条。
实施例111:
取94.5g聚氨酯PU与5g上述合成的含烷基硅基环三磷腈阻燃剂及0.5g抗氧化剂Irgafos168混合均匀后加入到已启动搅拌的RM-200C混炼式转矩流变仪,在150~200℃下预塑化40min,然后升温至170℃,并控制物料混合熔化,直到呈透明状并使混合体系熔融均匀,然后通过双螺杆挤出机(挤压速度270~300rpm),挤出成颗粒。然后将上述颗粒在150℃下熔融,模具定型温度80℃下成型制作阻燃评价试验样条。
实施例112:
取91.5g聚氨酯PU与8g上述合成的含烷基硅基环三磷腈阻燃剂及0.5g抗氧化剂Irgafos168混合均匀后加入到已启动搅拌的RM-200C混炼式转矩流变仪,在150~200℃下预塑化40min,然后升温至170℃,并控制物料混合熔化,直到呈透明状并使混合体系熔融均匀,然后通过双螺杆挤出机(挤压速度270~300rpm),挤出成颗粒。然后将上述颗粒在150℃下熔融,模具定型温度80℃下成型制作阻燃评价试验样条。
实施例113:
取89.5g聚氨酯PU与10g上述合成的含烷基硅基环三磷腈阻燃剂及0.5g抗氧化剂Irgafos168混合均匀后加入到已启动搅拌的RM-200C混炼式转矩流变仪,在150~200℃下预塑化40min,然后升温至170℃,并控制物料混合熔化,直到呈透明状并使混合体系熔融均匀,然后通过双螺杆挤出机(挤压速度270~300rpm),挤出成颗粒。然后将上述颗粒在150℃下熔融,模具定型温度80℃下成型制作阻燃评价试验样条。
极限氧指数测试按GB/T 2046.2-2009标准,测试仪器用JF-3型氧指数仪,试样尺寸为100×10×4mm。阻燃抗滴落评价试验按UL94标准,试样尺寸为125×13mm,每一厚度共10件样品,共2套样品,样品于23℃,50%RH的条件下放置48h后进行测试,每一厚度的5件样品在70℃的条件下放置7天后进行测试,测试结果见表14。
表14 不同添加量的聚氨酯PU的阻燃性能评价
Figure PCTCN2018116520-appb-000084
从表14可以看出,不添加阻燃剂的PU的极限氧指数仅为17%,易燃同时伴有大量的有毒烟雾,不能自熄,当添加合成的含烷基硅基的环三磷腈阻燃剂2%时,极限氧指数为22%,阻燃级别达到V-2标准,继续增加添加量至5%时,阻燃级别达到V-1标准,当添加量达到8%时,极限氧指数为31%,无滴落,阻燃级别达到V-0标准。由此可见,新合成的含烷基硅基的环三磷腈阻燃剂对PU具有优异的阻燃性能,添加8%的量即可使PU的阻燃级别达到V-0标准。
实施例114:
取98g PA6与2g上述合成的含烷基硅基环三磷腈阻燃剂混合均匀后加入到已启动搅拌的RM-200C混炼式转矩流变仪,然后启动加热升温至260℃,使物料完全熔融并混合均匀,冷却后取出熔融物料,然后将上述物料用50T的平板硫化机在260℃下压片,然后于80℃的模具下成型制作阻燃评价试验样条。
实施例115:
取95g PA6与5g上述合成的含烷基硅基环三磷腈阻燃剂混合均匀后加 入到已启动搅拌的RM-200C混炼式转矩流变仪,然后启动加热升温至260℃,使物料完全熔融并混合均匀,冷却后取出熔融物料,然后将上述物料用50T的平板硫化机在260℃下压片,然后于80℃的模具下成型制作阻燃评价试验样条。
实施例116:
取92g PA6与8g上述合成的含烷基硅基环三磷腈阻燃剂混合均匀后加入到已启动搅拌的RM-200C混炼式转矩流变仪,然后启动加热升温至260℃,使物料完全熔融并混合均匀,冷却后取出熔融物料,然后将上述物料用50T的平板硫化机在260℃下压片,然后于80℃的模具下成型制作阻燃评价试验样条。
极限氧指数测试按GB/T 2046.2-2009标准,测试仪器用JF-3型氧指数仪,试样尺寸为100×10×4mm。阻燃抗滴落评价试验按UL94标准,试样尺寸为125×13mm,每一厚度共10件样品,共2套样品,样品于23℃,50%RH的条件下放置48h后进行测试,每一厚度的5件样品在70℃的条件下放置7天后进行测试,测试结果见表15。
表15 不同添加量的聚氨酯PA6的阻燃性能评价
Figure PCTCN2018116520-appb-000085
从表15可以看出,不添加阻燃剂的PA6的极限氧指数为24%,遇火燃烧有滴落,不能自熄,当添加2%的合成的含烷基硅基的环三磷腈阻燃剂时,极限氧指数为26%,无滴落,阻燃级别为V-1标准,继续增加添加量至5%时,无熔融滴落,极限氧指数为29%,阻燃级别达到V-0标准。由此可见,上述合成的含烷基硅基的环三磷腈的阻燃剂对PA6具有优异的阻燃性能,添加量少,仅需5%的添加量即可使PA6的阻燃级别达到V-0标准。
实施例117:
取99g PET母粒与1g上述合成的含烷基硅基环三磷腈阻燃剂混合均匀后加入到已启动搅拌的RM-200C混炼式转矩流变仪,升温至250℃进行熔融混合,将物料取出,于50T平板硫化机在270℃下压片,模具温度为70℃下成型制作阻燃评价试验样条。
实施例118:
取97g PET母粒与3g上述合成的含烷基硅基环三磷腈阻燃剂混合均匀后加入到已启动搅拌的RM-200C混炼式转矩流变仪,,升温至250℃进行熔融混合,将物料取出,于50T平板硫化机在270℃下压片,模具温度为70℃下成型制作阻燃评价试验样条。
实施例119:
取95g PET母粒与5g上述合成的含烷基硅基环三磷腈阻燃剂混合均匀后加入到已启动搅拌的RM-200C混炼式转矩流变仪,,升温至250℃进行熔融混合,将物料取出,于50T平板硫化机在270℃下压片,模具温度为70℃下成型制作阻燃评价试验样条。
极限氧指数测试按GB/T 2046.2-2009标准,测试仪器用JF-3型氧指数仪,试样尺寸为100×10×4mm。阻燃抗滴落评价试验按UL94标准,试样尺寸为125×13mm,每一厚度共10件样品,共2套样品,样品于23℃,50%RH的条件下放置48h后进行测试,每一厚度的5件样品在70℃的条件下放置7天后进行测试,测试结果见表16。
表16 不同添加量的PET树脂的阻燃性能评价
Figure PCTCN2018116520-appb-000086
从表16可以看出,不添加阻燃剂的PET树脂的极限氧指数为24%,燃烧有熔融滴落,添加1%的含烷基硅基的环三磷腈阻燃剂,极限氧指数为26%,几乎没有滴落,阻燃标准为V-1,当添加量达到3%时,极限氧指数为29%,阻燃级别达到V-0标准。由此可见,上述合成的含烷基硅基的环三磷腈的阻燃剂对PET树脂具有优异的阻燃性能,添加量少,仅需3%的添加量即可使PET树脂的阻燃级别达到V-0标准。
根据本发明的说明书的描述,本发明至少提供以下技术方案,以下数量的方案可以互相彼此引用而不受限制:
方案1.一种磷腈类化合物,其特征在于,所述磷腈类化合物为由下述式1或式2的通式所表示的化合物:
Figure PCTCN2018116520-appb-000087
Figure PCTCN2018116520-appb-000088
其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8中的每个选自Cl,
Figure PCTCN2018116520-appb-000089
CH 3O-,(CH 3) 2N-,CH 3CH 2CH 2O-,H 2N-,-O-(CH 2)nCH 3,-O-(CH 2)nCH((CH 2)mCH 3) 2,-O-(CH 2)nC((CH 2)mCH 3) 3,-O-(CH 2)nSi((CH 2)mCH 3) 3、-Ph、-PhMe的基团,其中R 1至R 8中的每一个彼此相同或者不同;
上述式中以及所述基团中的m、n各自取值范围为0至20的整数,a的取值为3至20的整数。
方案2.根据方案1所述的磷腈类化合物,其特征在于,
所述化合物或组合物中所包含的式1和/或式2中的一种或多种化合物呈结晶态,在对所述呈结晶态的化合物所测得的X射线衍射(XRD)图谱中,呈结晶态的所述化合物在2θ值在约5度至约45度的范围内呈现至少3个衍射特征峰。
方案3.根据方案1至2中任一项所述的磷腈类化合物,其特征在于,所述式1的化合物进一步地表示为以下化学通式的化合物:
Figure PCTCN2018116520-appb-000090
其中,R 1’、R 2’、R 3’、R 4’、R 5’、R 6’各自选自由以下基团构成的组中的一种或者多种:
(CH 2)nCH 3,(CH 2)nCH((CH 2)mCH 3) 2,(CH 2)nC((CH 2)mCH 3) 3(CH 2)nSi((CH 2)mCH 3) 3,-Ph,-PhMe 。
方案4.根据方案1至3中任一项所述的磷腈类化合物,其特征在于,所述磷腈类化合物由所述式1的化合物构成,其进一步地表示为以下化学通式的化合物:
Figure PCTCN2018116520-appb-000091
其中R 2’、R 3’、R 4’、R 5’、R 6’各自选自由以下基团构成的组中的一种或者多种:
(CH 2)nCH 3,(CH 2)nCH((CH 2)mCH 3) 2,(CH 2)nC((CH 2)mCH 3) 3(CH 2)nSi((CH 2)mCH 3) 3,-Ph,-PhMe 。
其中,b选自0至7之间的整数,而m也独立地选自0至7之间的整数。
方案5.根据方案4所述的磷腈类化合物,其特征在于,所述b的值取0。
方案6.根据方案4或5中任一项所述的磷腈类化合物,其中b选自1、2、3、4、5、6、7中的任一个整数。
7.根据方案1或2所述的磷腈类化合物,其特征在于,所述磷腈类化合物由所述式2化合物构成,并且,其进一步地由以下化学通式来表示:
Figure PCTCN2018116520-appb-000092
方案8.根据方案1或7所述的磷腈类化合物,其特征在于,所述式2或者式3的化合物呈粉末状的结晶态,所述式3中的通式化合物的a值为6,8或者10。
方案9.根据方案1或2所述的磷腈类化合物,其特征在于,所述磷腈类化合物的所述式1化合物进一步地由以下化学通式来表示:
Figure PCTCN2018116520-appb-000093
并且,
所述式4的化合物呈现粉末状的结晶态。
方案10.根据方案9所述的磷腈类化合物,其特征在于,所述式4 的化合物呈粉末状的结晶态,并具有以下描述所表示的特定的晶型:在针对所述结晶态的式4的化合物实施X射线衍射(XRD)图谱中测试中,所述特定的晶型的化合物的X射线衍射(XRD)图谱包括了2θ值为以下位置的主要特征衍射峰:
13.9°±0.2°;15.9°±0.2°;24.4°±0.2°;以及41.9°±0.2°。
方案11.根据方案9或10所述的磷腈类化合物,其特征在于,所述式4的化合物呈粉末状的结晶态,并且在针对所述结晶态的式4的化合物实施X射线衍射(XRD)图谱中测试中,其在2θ值为41.9°±0.2°处显示出最强的衍射峰强度,并且在13.9°±0.2°,以及15.9°±0.2°处显示出次强衍射峰强度和第三强衍射封强度,所述次强衍射峰强度和最强的衍射峰强度的比在0.90至0.98∶1之间,而第三强衍射封强度与最强的衍射峰强度的比值0.60至0.70∶1之间。
方案12.根据方案10或11所述的磷腈类化合物,其特征在于,所述式4化合物的晶型还包括在X射线衍射(XRD)图谱的2θ值为24.4±0.2°,27.7±0.2°以及28.4±0.2°处出现衍射峰,所述24.4±0.2°,27.7±0.2°以及28.4±0.2°处的衍射峰与最强衍射峰的强度的比值为0.15至0.5∶1。
方案13.根据方案1或2所述的磷腈类化合物,其特征在于,所述磷腈类化合物由所述式1化合物的化合物来表示,并且进一步地由以下化学通式来表示:
Figure PCTCN2018116520-appb-000094
并且
所述式5的化合物呈粉末状的结晶态。
方案14.根据方案13所述的磷腈类化合物,其特征在于,所述式5的化合物呈粉末状的结晶态,并具有以下描述所表示的特定的晶型:在针 对所述结晶态的式5的化合物实施X射线衍射(XRD)图谱中测试中,所述特定的晶型的化合物的X射线衍射(XRD)图谱包括了2θ值为以下位置的主要特征衍射峰:
10.8±0.2度、12.0±0.2度、20.2±0.2度。
方案15.根据方案13或14所述的磷腈类化合物,其特征在于,所述式5的化合物呈粉末状的结晶态,并且在针对所述结晶态的式5的化合物实施X射线衍射(XRD)图谱中测试中,其在2θ值为20.2±0.2°处显示出最强的衍射峰强度,并且在12.0±0.2°,以及10.8±0.2°处显示出次强衍射峰强度和第三强衍射封强度,所述次强衍射峰强度和最强的衍射峰强度的比在0.75至0.80∶1之间,而第三强衍射封强度与最强的衍射峰强度的比值0.60至0.70∶1之间
方案16.根据方案14或15所述的磷腈类化合物,其特征在于,所述晶型还包括在X射线衍射(XRD)图谱的2θ值为7.2±0.2°以及29.8±0.2°出现衍射峰,所述7.2±0.2°以及29.8±0.2°处的衍射峰与最强衍射峰的强度的比值为0.2至0.5∶1之间。
方案17.根据方案1或2所述的磷腈类化合物,其特征在于,所述磷腈类化合物由所述式1表示,并且进一步地所述化合物由以下化学通式来表示:
Figure PCTCN2018116520-appb-000095
并且
所述式6的化合物呈现粉末状的结晶态。
方案18.根据方案17所述的磷腈类化合物,其特征在于,所述式6的化合物呈结晶态,并具有以下描述所表示的特定的晶型:在针对所述结晶态的式6的化合物实施X射线衍射(XRD)图谱中测试中,所述特定 的晶型的化合物的X射线衍射(XRD)图谱包括了2θ值为以下位置的主要特征衍射峰:
10.4±0.2度、17.3±0.2度、19.0±0.2度以及20.0±0.2度。
方案19.根据方案17或18所述的磷腈类化合物,其特征在于,所述式6的化合物呈粉末状的结晶态,并且在针对所述结晶态的式6的化合物实施X射线衍射(XRD)图谱中测试中,其在2θ值为10.4±0.2°处显示出最强的衍射峰强度,并且在19.0±0.2°,20.0±0.2°以及17.3±0.2°处显示出次强衍射峰强度、第三强衍射封强度以及第四衍射峰强度,所述次强衍射峰强度、第三强衍射封强度各自和最强的衍射峰强度的比在0.55至0.65之间,而第四强衍射封强度与最强的衍射峰强度的比值0.50至0.55∶1之间
方案20.根据方案19所述的磷腈类化合物,其特征在于,所述晶型还包括在X射线衍射(XRD)图谱的2θ值为26.8±0.2°处出现衍射峰,所述26.8±0.2°处出现衍射峰与最强衍射峰的强度的比值为0.45至0.50∶1之间。
方案21.根据方案1或2所述的磷腈类化合物,其特征在于,所述磷腈类化合物由所述式1化合物表示,并且其进一步地由以下化学通式来表示:
Figure PCTCN2018116520-appb-000096
并且
所述式7的化合物呈现粉末状的结晶态。
方案22.根据方案21所述的磷腈类化合物,其特征在于,上述7的化合物呈结晶态,并具有以下描述所表示的特定的晶型:所述式7的化合物呈结晶态,并具有以下描述所表示的特定的晶型:在针对所述结晶态的 式7的化合物实施X射线衍射(XRD)图谱中测试中,所述特定的晶型的化合物的X射线衍射(XRD)图谱包括了2θ值为以下位置的主要特征衍射峰:11.0±0.2°。
方案23.根据方案22所述的磷腈类化合物,其特征在于,所述晶型还包括在X射线衍射(XRD)图谱的2θ值为11.4±0.2°处、13.6±0.2°处、14.6±0.2°处、20.3±0.2°处以及22.5±0.2°处的衍射峰,上述四处出现衍射峰的强度与最强衍射峰的强度的比值为0.15至0.35∶1。
方案24.根据方案1或2所述的磷腈类化合物,其特征在于,所述磷腈类化合物进一步地由以下式8的化合物来表示:
Figure PCTCN2018116520-appb-000097
并且其中
所述式8的化合物包括粉末状的结晶态的所述化合物。
方案25.根据方案24所述的磷腈类化合物,其特征在于,上述8的化合物呈结晶态,并包括了具有以下描述所表示的特定的晶型:所述式8的化合物呈结晶态,并具有以下描述所表示的特定的晶型:在针对所述结晶态的式8的化合物实施X射线衍射(XRD)图谱中测试中,所述特定的晶型的化合物的X射线衍射(XRD)图谱包括了2θ值为以下位置的主要特征衍射峰:13.1±0.2°,以及16.1±0.2°。
方案26.根据方案25所述的磷腈类化合物或包含磷腈类化合物的组合物,其特征在于,所述式8的化合物呈粉末状的结晶态,并且在针对所述结晶态的式8的化合物实施X射线衍射(XRD)图谱中测试中,其在2θ值为13.1±0.2处显示出最强的衍射峰强度,并且在16.1±0.2°处显示出次强衍射峰强度,所述次强衍射峰强度和最强的衍射峰强度的比在0.70至0.80之间。
方案27.根据方案25或26所述的磷腈类化合物或包含磷腈类化合物的组合物,其特征在于,所述晶型还包括在X射线衍射(XRD)图谱的2θ值为6.3±0.2°处、16.7±0.2°处、26.9±0.2°处的衍射峰,上述三处出现衍射峰的强度与最强衍射峰的强度的比值为0.40至0.50∶1之间。
方案28.根据方案1所述的磷腈类化合物,其特征在于,所述磷腈类化合物进一步地由所述式9的化合物通式来表示:
Figure PCTCN2018116520-appb-000098
方案29.根据方案28所述的磷腈类化合物,其特征在于,所述式9的化合物的NMR测试以及质谱测试中,呈现以下特征图谱:
1H-NMR(400MHz,CDCl 3,δ):3.729~3.521,12H;1.520~1.388,12H;0.907~0.794,18H;
ESI-MS:m/s(M+H):490。
方案30.根据方案1或2所述的磷腈类化合物,其特征在于,所述磷腈类化合物由下述式10化合物来表示:
Figure PCTCN2018116520-appb-000099
方案31.根据方案25所述的磷腈类化合物,其特征在于,在所述式10的化合物中,a的取值为3,6,8,或者10。
方案32.根据方案1至31中任一项所述的磷腈类化合物,其中,n与a的取值分别优选为3至15之间的整数;或者,n或a的取值优选为0 至7之间的整数;m的取值优选为0至7中的整数。
方案33.一种组合物,所述组合物包含方案1至32所述的磷腈类化合物中的一种或者多种。
方案34.根据方案33所述的组合物,所述组合物为用于阻燃剂中的组合物。
方案35.一种制备方案1-31中任一项所述的磷腈类化合物的方法,其特征在于,所述的方法包括原料的取用、混合,以及激活反应从而合成所述化合物的步骤。
方案36.根据方案35所述的方法,其中,所合成的包含磷腈类化合物的组合物的方法包括方案3所述的
Figure PCTCN2018116520-appb-000100
或者方案4所述的
Figure PCTCN2018116520-appb-000101
所述方法包括以下步骤:
以六氯环三磷腈和三烷基硅基(烷)醇或三烷基硅基(烷)醇钠为起始原料,以四氢呋喃、氯苯或1,4-二氧六环为溶剂等经过合成反应,从而得到含烷基硅基氧(或烷氧)取代的环三磷腈化合物。
方案37.根据方案36所述的方法,所述方法进一步包括以下具体步骤:
向放入有四氢呋喃或氯苯或1,4-二氧六环的容器中加入三烷基硅(烷)醇,以及金属钠或金属钙;
将上述混合物滴入到六氯环三磷腈中,在加热的条件下搅拌,从而反应得到白色悬浊液;
将悬浊液浓缩,蒸去溶剂,得到白色固体;并进一步实施水洗、有机溶剂洗涤、浓缩、纯化,得到式4所述
Figure PCTCN2018116520-appb-000102
的环三磷腈类化合物。
方案38.根据方案35所述的磷腈类化合物的制备方法,其中所述方法用来合成式4所述的
Figure PCTCN2018116520-appb-000103
化合物,所述方法包括:
步骤(1).以五氯化磷和氯化铵为原料合成粗六氯环三磷腈的步骤;
步骤(2).将上述粗六氯环三磷腈的产物使用有机溶剂溶解从而再结晶的步骤。
方案39.根据方案38所述的方法,其中所述合成粗六氯环三磷腈的步骤进一步包括:
按五氯化磷∶氯化铵∶复式催化剂=1∶1.1∶0.06的摩尔比取各组分原料,按每摩尔五氯化磷用有机溶剂I 2400~2600克的比例取有机溶剂I;在氮气保护下将五氯化磷和有机溶剂I加到第一反应器中,升温至80℃并在此温度下搅拌1~2小时至五氯化磷完全溶解;在氮气保护下将氯化铵、复式催化剂和有机溶剂I加到第二反应器中,开启搅拌,升温至回流,在回流状态下缓慢将第一反应器中的溶液滴加至第二反应器中,滴加结束后继续在回流状态下搅拌1~2小时结束;冷却至室温,过滤,将母液进行浓缩除去溶剂,即制得所述粗六氯环三磷腈的产物;其中
所述复式催化剂为吡啶与氯化镁的混合物,所述有机溶剂I选自苯、氯苯、邻氯苯、四氯化碳、1,1,2,2-四氯乙烷及1,1,2-三氯乙烷中的任一种。
方案40.根据方案38或39所述的方法,其中所述再结晶步骤包括:
将制备得到的粗六氯环三磷腈的产物,使用有机溶剂II在升高的温度下溶解,然后使用浓硫酸萃取所述溶解有产物的有机溶剂II;此后,将萃取所得的产物再次使用有机溶剂II在升高的温度下溶解,然后缓慢降温并逐渐结晶,从而得到所述结晶形态的六氯环三磷腈化合物;其中所述有机溶剂II选自石油醚、正庚烷及甲基叔丁基醚。
方案41.根据方案38至40中任一项所述的方法,其中所述再结晶步骤包括:
将所述步骤(1)合成的粗六氯环三磷腈中加入石油醚,并且缓慢升温至80℃保持,在80℃下搅拌1~2小时至粗六氯环三磷腈完全溶解;
静置分离除去油状物,用98%的浓硫酸萃取石油醚溶液两次;以及
将上述萃取得到的产品再次加入石油醚,并以1至3℃/分钟的速率温至80℃,并在80℃下搅拌1~2小时至所述产品完全溶解,然后以1至3℃/分钟的速率降温至0~5℃,使得产物在该过程中逐渐结晶;
对结晶产物进行过滤,从而得到所述结晶形态的六氯环三磷腈化合物。
方案42.根据方案35所述的磷腈类化合物的方法,其中所述方法用来合成式5所述的
Figure PCTCN2018116520-appb-000104
化合物,所述方法包括:
步骤(1).采用氯磷腈
Figure PCTCN2018116520-appb-000105
以及苯酚为原料在低于40℃的液相 条件下制备
Figure PCTCN2018116520-appb-000106
的粗产品;
步骤(2).使用四氢呋喃为有机溶剂对所述粗产品进行溶解,然后升温回流,并缓慢降温使得产品在此过程中进行结晶,从而得到所述
Figure PCTCN2018116520-appb-000107
的化合物。
方案43.根据方案42所述的方法,其中所述步骤(1)和步骤(2)各自具体包括以下步骤:
步骤(1)采用氯磷腈
Figure PCTCN2018116520-appb-000108
以及苯酚为原料,按照氯磷腈∶苯酚∶缚酸剂=1∶6.1∶12.2的摩尔比取各组分原料,按每1克式氯磷腈用有机溶剂5~6克的比例取有机溶剂;在氮气保护下将氯磷腈、缚酸剂和有机溶剂加到反应器A中,在温度低于40℃下将苯酚缓慢滴加至反应器A中,然后升温至回流并在回流温度下搅拌3~5小时结束;冷却至室温,过滤,用水洗母液,之后将有几层进行浓缩除去溶剂,即制得粗产品;其中缚酸剂选自氢氧化钠、碳酸钾、碳酸钠;
步骤(2)按每1克步骤(1)的产物用四氢呋喃6~10克的比例取四氢呋喃,升温回流125至135℃下,并在此温度下搅拌2~3小时,然后以0.5至5℃/分钟的速率缓慢降温至10~15℃,并在10~15℃下搅拌2~5小时,过滤,真空干燥滤饼,得到所述结晶形态的
Figure PCTCN2018116520-appb-000109
方案44.根据方案35所述的磷腈类化合物的制备方法,其中所述方 法用来合成式6所述的
Figure PCTCN2018116520-appb-000110
化合物,所述方法包括以下步骤:
步骤(1):选用六氯环三磷腈和苯酚为原料合成六苯氧基环三磷腈的粗产品;
步骤(2):将上述粗产品加入足量的选自乙醇、异丙醇或甲醇的溶剂中,升温回流至120至130℃,在此温度下保温并搅拌2至3小时,然后以0.5至3℃/分钟的速率缓慢降温至10~15℃,在此温度下搅拌2至5小时,在上述过程中使得六苯氧基环三磷腈形成为所述结晶状态的六苯氧基环三磷腈化合物产品。
方案45.根据方案44所述的方法,其特征在于,所述步骤(2)中采用的溶剂为无水乙醇。
方案46.根据方案44或45所述的方法,其特征在于,所述步骤(2)中回流的温度为125℃,在此温度下保温并搅拌3小时后,以0.5至1℃/分钟的速率缓慢降温至12~15℃。
方案47.根据方案44或45所述的方法,其特征在于,所述步骤(1)更具体地包括如下步骤:
步骤(1):在氮气保护下将苯酚以及氯苯加到容器中,室温下搅拌20~30分钟,待用;在氮气保护下将按反应需要的化学计量比的六氯环三磷腈、作为缚酸剂的碳酸钾以及氯苯加入四口烧瓶中,并且控制温度在40℃以下缓慢滴加前述制备的苯酚-氯苯溶液;然后
升温至回流并在回流温度下搅拌3~5小时;
冷却至室温,过滤,弃去滤饼、保留滤液,用去离子水洗滤液,将有几层进行浓缩除去溶剂,得到粗产品化合物。
方案48.根据方案44至47中任一项所述的方法,其特征在于,所述 步骤(2)更具体地包括如下步骤:
步骤(2):将步骤(1)所获的粗产品和作为再结晶溶剂的无水乙醇加入到容器中,升温回流至125℃,并在此温度下搅拌2~3小时,然后以0.5至1℃/分钟的速率缓慢降温至12~15℃,在12~15℃下搅拌2至3小时,使得产物在此过程中形成为所述结晶形态的六苯氧基环三磷腈化合物。
方案49.根据方案35所述的磷腈类化合物的制备方法,其中所述方法用来合成式7所述的
Figure PCTCN2018116520-appb-000111
化合物,所述方法包括以下步骤:
步骤(1).以六氯环三磷腈、二甲胺盐酸盐和三乙胺为原料制备六-(二甲胺基)环三磷腈的粗产品;
步骤(2).将所述粗产品加入石油醚溶剂中,并将温度控制在40℃下保持2-3小时并不断搅拌;此后,将温度降温至0至5℃,在搅拌条件下保持2至5小时,使得所述粗产品结晶为结晶形态的
Figure PCTCN2018116520-appb-000112
化合物。
方案50.根据方案49所述的方法,其中所述步骤(1)具体包括以下步骤:
在氮气保护下将六氯环三磷腈和无水四氢呋喃加到四口烧瓶中,室温下搅拌20~30分钟至六氯环三磷腈全部溶解,待用;
在氮气保护下将二甲胺盐酸盐、三乙胺按照与六氯环三磷腈的化学计量比称量,并和无水四氢呋喃一并加到烧瓶中,在室温下搅拌20~30分钟,之后降温至0~5℃,控制温度在0~5℃下缓慢滴加此前制备的六氯环三磷腈的四氢呋喃溶液,滴加结束后在0~5℃下继续搅拌1小时,之后升温至 室温搅拌96小时;
过滤,将滤液进行浓缩除去溶剂,得到
Figure PCTCN2018116520-appb-000113
的粗产品。
方案51.根据方案35所述的磷腈类化合物的制备方法,其中所述方法用来合成式8所述的
Figure PCTCN2018116520-appb-000114
化合物,所述方法包括以下步骤:
步骤(1).使用六氯环三磷腈以及甲醇钠为原料,通过在溶剂存在的液相状态下,反应获得六甲氧基环三磷腈的粗产品;
步骤(2),针对上述六甲氧基环三磷腈的粗产品,将其溶解进入选自石油醚、正庚烷及甲基叔丁基醚中的一种的溶剂中,随后升温至35-60℃保温一段时间,再缓慢降温至0至5℃;在此过程中获得六甲氧基环三磷腈的结晶产物。
方案52.根据方案52所述的方法,其特征在于,所述步骤(2)中,溶解六甲氧基环三磷腈的粗产品的溶剂为正庚烷。
方案53.根据方案51或52所述的方法,其特征在于,所述步骤(2)进一步包括以下具体步骤:使用正庚烷溶解六甲氧基环三磷腈的粗产品,随后升温至40℃并在此温度下搅拌2~3小时,然后以0.5至3℃/分钟的温度降温至0~5℃并保持2至5小时,在此过程中使得六甲氧基环三磷腈结晶;此后,实施过滤,真空干燥滤饼的步骤,得到六甲氧基环三磷腈的结晶产物。
方案54.根据方案35所述的磷腈类化合物的制备方法,其中所述方 法用来合成式9所述的
Figure PCTCN2018116520-appb-000115
化合物,所述方法包括以下步骤:
步骤(1).使用六氯环三磷腈和氰化钠作为原料,在5至20℃的反应温度下反应制备六丙氧基环三磷腈的粗产品;
步骤(2).将上述六丙氧基环三磷腈的粗产品溶解到二氯甲烷中,并最终除去溶剂,以获得六丙氧基环三磷腈化合物。
方案55.根据方案54所述的方法,其特征在于,所述步骤(1)还具体包括以下步骤:
根据化学反应的化学计量比称取六氯环三磷腈,氢化钠;
在氮气保护下将六氯环三磷腈和选自甲醇、正丙醇及四氢呋喃中的任一种的有机溶剂加到第一反应器中,室温下搅拌1~2小时至六氯环三磷腈完全溶解;
在氮气保护下将氢化钠和选自甲醇、正丙醇及四氢呋喃中的任一种的有机溶加到第二反应器中,在氮气保护下将第二反应器中温度降至5~10℃,并控制温度在10℃以下将正丙醇缓慢滴加到第二反应器中,滴加结束后在10~15℃下搅拌1~2小时,
将第一反应器中溶液缓慢滴加至第二反应器中,滴加结束后升温至回流,并在回流状态下搅拌10~12小时结束;冷却至室温,过滤,之后将滤液进行浓缩除去溶剂,即制得六丙氧基环三磷腈的粗产品。
方案56.根据方案35所述的磷腈类化合物的制备方法,其中所述方 法用来合成式10所述的
Figure PCTCN2018116520-appb-000116
化合物,所述方法包括:
使用六氯环三磷腈以及NH 3甲醇溶液作为原料,使用选自甲醇、正丙醇及四氢呋喃中的任一种作为的有机溶剂;在氮气保护下将六氯环三磷腈和有机溶剂加入反应容器,室温下搅拌1~2小时至六氯环三磷腈完全溶解;随后将反应容器冷却至低于10℃;在保持该温度下,滴加NH 3甲醇溶液,滴加结束后搅拌持续反应10至20小时,以获得所述化合物。
方案57.根据方案56所述的方法,其特征在于,反应容器冷却至至0~5℃并滴加NH 3甲醇溶液,并在该温度下使得原料之间发生反应;并且,
在反应结束后,进一步实施过滤和烘干步骤,以得到六氨基环三磷腈或聚氨基环三磷腈。
方案58.根据方案37所述的方法,所述方法进一步包括以下具体步骤:
按重量比,将6~10份三烷基硅(烷)醇和6~10份金属钠或3~5份金属钙加入到四氢呋喃或氯苯或1,4-二氧六环中;
将上述混合物滴入到1份六氯环三磷腈中,65-70℃搅拌,反应12-48h,得到白色悬浊液;
将悬浊液浓缩,蒸去溶剂,得到白色固体,分别实施水洗,有机溶剂洗涤,用甲苯、二氯甲烷、氯仿或二氯乙烷溶解纯化,得到含烷基硅基氧(和或烷氧)取代的环三磷腈化合物。
方案59.根据方案36所述的方法,所述方法包括以下具体步骤:
向反应容器中加入六氯环三磷腈、三烷基硅(烷)醇;此后,
向其中加入四氢呋喃、氯苯或1,4-二氧六环作为溶剂,充分搅拌;
缓慢滴加三乙胺到反应器中并加热使体系发生反应,得到白色悬浊液;
将悬浊液经过包括水洗、有机溶剂洗涤、浓缩的步骤,从而获得含烷基硅基氧(和或烷氧)取代的环三磷腈类化合物。
方案60.根据方案59所述的方法,所述方法包括以下具体步骤:
按照摩尔比1∶11∶10的比例依次投入六氯环三磷腈、三烷基硅(烷)醇,加入四氢呋喃、氯苯或1,4-二氧六环作为溶剂,充分搅拌;
缓慢滴加三乙胺到反应器中,70-100℃,反应12-48h,得到白色悬浊液;
将悬浊液倒出进行浓缩,得黄色粘稠状固体或液体,用水洗涤,分别水洗,有机溶剂洗涤,用甲苯、二氯甲烷、氯仿或二氯乙烷溶解纯化,得到含烷基硅基氧(和或烷氧)取代的环三磷腈衍生物。
方案61.根据方案36所述的方法,所述方法包括以下具体步骤:
将三烷基硅(烷)醇钠加入到四氢呋喃或氯苯或1,4-二氧六环的溶剂中;
将上述混合物缓慢滴入到六氯环三磷腈的四氢呋喃或氯苯或1,4-二氧六环溶液,通过加热使得体系发生反应,得到白色悬浊液;
将所述白色悬浊液经过进一步纯化工艺,得到含烷基硅基氧(和或烷氧)取代的环三磷腈衍生物。
方案62.根据方案61所述的方法,所述方法包括以下具体步骤:
按质量比,将6~10份三烷基硅(烷)醇钠加入到四氢呋喃或氯苯或1,4-二氧六环中;
将上述混合物缓慢滴入到1份六氯环三磷腈的四氢呋喃或氯苯或1,4-二氧六环溶液,加热保持体系70-100℃,反应12-48h,得到白色悬浊液;
将上述悬浊液倒出进行浓缩,得黄色粘稠状固体或液体,用水洗涤,分别水洗,有机溶剂洗涤,用甲苯、二氯甲烷、氯仿或二氯乙烷溶解纯化,得到含烷基硅基氧(和或烷氧)取代的环三磷腈衍生物。
方案63.根据方案36所述的方法,所合成的化合物为
Figure PCTCN2018116520-appb-000117
其中b等于0。
方案64.方案1至32中任一项所述的磷腈类化合物或者方案33或34的所述组合物在阻燃剂方面的用途。
方案65.根据方案64所述的用途,其中所述化合物或者组合物应用于树脂、塑料、或者电池结构的电解液中。
方案66.根据方案64或者65所述的用途,其中所述化合物或者组合物应用于PMMA(聚甲基丙烯酸甲酯)、PS(聚苯乙烯)、PBT(聚对苯二甲酸丁二醇酯)、PC(聚碳酸酯)、ABS(丙烯腈-丁二烯-苯乙烯共聚物)、PA(尼龙)、PU(聚氨酯)、PPO(聚苯醚)、环氧树脂等其他树脂中的一种或多种的混合物,优选为PMMA、PC、PC/ABS合金和环氧树脂。
方案67.根据方案64至66中任一项所述的用途,其中所述组合物中含有如通式
Figure PCTCN2018116520-appb-000118
所示的化合物;其中a的取值范围为3-10之间的整数。
方案68.根据方案67所述的用途,其中所述组合物中含有六苯氧基 环三磷腈。
方案69.根据方案64至68中任一项所述的用途,其中,所述阻燃剂包括1至32中任一项所述的磷腈类化合物或者方案33或34的所述组合物中的多个组分。
方案70.根据方案64或者65所述的用途,其中所述树脂或者塑料为PE,PP,PVC,PS,ABS,PA,PC,POM,PBT,PET,PPO,PMMA,PU及环氧树脂中一种或多种混合物。
方案71.根据方案64或者65所述的用途,其中所述树脂或者塑料为PMMA,PC,PC/ABS合金树脂,以及PU,PET,PA6或环氧树脂作为基质的树脂材料。
方案72.一种阻燃剂,其特征在于,所述阻燃剂包括根据方案1至32中任一项所述的磷腈类化合物或者方案33或34的所述组合物。
方案73.根据方案72所述的阻燃剂,其中所述阻燃剂中包括如通式
Figure PCTCN2018116520-appb-000119
所示的化合物;其中a的取值范围为3-10之间的整数。
方案74.根据方案72所述的阻燃剂,其中所述阻燃剂中包括化学式表示为
Figure PCTCN2018116520-appb-000120
化合物的组分。
方案75.根据方案74所述的阻燃剂,其中
Figure PCTCN2018116520-appb-000121
Figure PCTCN2018116520-appb-000122
的质量比在1∶9至4∶6之间。
方案76.一种用于阻燃剂中的化合物,其特征在于,所述化合物由以下通式来表示:
Figure PCTCN2018116520-appb-000123
其中R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8中的每个选自Cl或者
Figure PCTCN2018116520-appb-000124
并且
所述a的取值为3、4、或者5。
方案77.根据方案76的化合物,其中所述化合物为
Figure PCTCN2018116520-appb-000125
或者
Figure PCTCN2018116520-appb-000126
其中Ph表示苯基基团。
方案78.根据方案77的化合物,其中所述
Figure PCTCN2018116520-appb-000127
Figure PCTCN2018116520-appb-000128
成粉末结晶状,并且具有以下特定的晶型:所述化合物在对所述呈结晶态的化合物所测得的X射线衍射(XRD)图谱中,呈结晶态的所述化合物在2θ值在约5度至约45度的范围内呈现至少3个衍射特征峰;优选地,至少呈现4个衍射特征峰;呈现至少5个特征衍射峰。
方案79.根据方案75至77中任一项所述的化合物,其中所述
Figure PCTCN2018116520-appb-000129
通过方案35至方案63中所述的方法中可行的对应制备方法进行制备。
方案80.一种制备如
Figure PCTCN2018116520-appb-000130
所述的化合物的方法,其特征在于,所述方法包括以下步骤:
向放入有四氢呋喃或氯苯或1,4-二氧六环的容器中加入三烷基硅(烷)醇,以及金属钠或金属钙;
将上述混合物滴入到六氯环三磷腈中,在加热的条件下搅拌,从而反应得到白色悬浊液;
将悬浊液浓缩,蒸去溶剂,得到白色固体;并进一步实施水洗、有机溶剂洗涤、浓缩、纯化,得到所述
Figure PCTCN2018116520-appb-000131
的环三磷腈类化合物。
方案81.一种制备如
Figure PCTCN2018116520-appb-000132
所述的化合物的方法,其特征在于,所述方法包括以下步骤:
向反应容器中加入六氯环三磷腈、三烷基硅(烷)醇;此后,
向其中加入四氢呋喃、氯苯或1,4-二氧六环作为溶剂,充分搅拌;
缓慢滴加三乙胺到反应器中并加热使体系发生反应,得到白色悬浊液;
将悬浊液经过包括水洗、有机溶剂洗涤、浓缩的步骤,从而获得含含烷基硅基氧取代和/或烷氧取代的环三磷腈类化合物。
方案82.一种制备如
Figure PCTCN2018116520-appb-000133
所述的化合物的方法,其特征在于,所述方法包括以下步骤:
按照摩尔比1∶11∶10的比例依次投入六氯环三磷腈、三烷基硅(烷)醇,加入四氢呋喃、氯苯或1,4-二氧六环作为溶剂,充分搅拌;
缓慢滴加三乙胺到反应器中,70-100℃,反应12-48h,得到白色悬浊液;
将悬浊液倒出进行浓缩,得黄色粘稠状固体或液体,用水洗涤,分别水洗,有机溶剂洗涤,用甲苯、二氯甲烷、氯仿或二氯乙烷溶解纯化,得到含烷基硅基氧取代和/或烷氧取代的环三磷腈类化合物。
方案83.一种制备如
Figure PCTCN2018116520-appb-000134
所述的化合物的方法,其特征在于,所述方法包括以下步骤:
将三烷基硅(烷)醇钠加入到四氢呋喃或氯苯或1,4-二氧六环的溶剂中;
将上述混合物缓慢滴入到六氯环三磷腈的四氢呋喃或氯苯或1,4-二氧六环溶液,通过加热使得体系发生反应,得到白色悬浊液;
将所述白色悬浊液经过进一步纯化工艺,得到含含烷基硅基氧取代和/或烷氧取代的环三磷腈类化合物。
方案84.一种制备如
Figure PCTCN2018116520-appb-000135
所述的化合物的方法,其特征在于,所述方法包括以下步骤:
按质量比,将6~10份三烷基硅(烷)醇钠加入到四氢呋喃或氯苯或1,4-二氧六环中;
将上述混合物缓慢滴入到1份六氯环三磷腈的四氢呋喃或氯苯或1,4-二氧六环溶液,加热保持体系70-100℃,反应12-48h,得到白色悬浊液;
将上述悬浊液倒出进行浓缩,得黄色粘稠状固体或液体,用水洗涤,分别水洗,有机溶剂洗涤,用甲苯、二氯甲烷、氯仿或二氯乙烷溶解纯化,得到含含烷基硅基氧取代和/或烷氧取代的环三磷腈类化合物。
方案85.根据方案80至方案84之一所述的方法,对所合成的化合物,其中在所述化合物结构中,b等于0。

Claims (75)

  1. 一种磷腈类化合物,其特征在于,所述磷腈类化合物为由下述式1或式2的通式所表示的化合物:
    Figure PCTCN2018116520-appb-100001
    其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8中的每个选自Cl,
    Figure PCTCN2018116520-appb-100002
    CH 3O-,(CH 3) 2N-,CH 3CH 2CH 2O-,H 2N-,-O-(CH 2)nCH 3,-O-(CH 2)nCH((CH 2)mCH 3) 2,-O-(CH 2)nC((CH 2)mCH 3) 3,-O-(CH 2)nSi((CH 2)mCH 3) 3、-Ph、-PhMe的基团,其中R 1至R 8中的每一个彼此相同或者不同,其中Ph表示苯基基团,而Me表示甲基基团;
    上述式中以及所述基团中的m、n各自取值范围为0至20的整数,a的取值为4至20的整数。
  2. 根据权利要求1所述的磷腈类化合物,其特征在于,
    所述化合物中所包含的式1或式2中的化合物呈结晶态,在对所述呈结晶态的化合物所测得的X射线衍射(XRD)图谱中,呈结晶态的所述 化合物在2θ值在约5度至约45度的范围内呈现至少3个衍射特征峰。
  3. 根据权利要求1至2中任一项所述的磷腈类化合物,其特征在于,所述式1的化合物进一步地表示为以下化学通式的化合物:
    Figure PCTCN2018116520-appb-100003
    其中,R 1’、R 2’、R 3’、R 4’、R 5’、R 6’各自选自由以下基团构成的组中的一种或者多种:
    (CH 2)nCH 3,(CH 2)nCH((CH 2)mCH 3) 2,(CH 2)nC((CH 2)mCH 3) 3
    (CH 2)nSi((CH 2)mCH 3) 3,-Ph,-PhMe,其中-Ph表示苯基基团,而Me表示甲基基团。
  4. 根据权利要求1至3中任一项所述的磷腈类化合物,其特征在于,所述化合物进一步地表示为以下化学通式的化合物:
    Figure PCTCN2018116520-appb-100004
    其中R 2’、R 3’、R 4’、R 5’、R 6’各自选自由以下基团构成的组中的一种或者多种:
    (CH 2)nCH 3,(CH 2)nCH((CH 2)mCH 3) 2,(CH 2)nC((CH 2)mCH 3) 3
    (CH 2)nSi((CH 2)mCH 3) 3,-Ph,-PhMe;其中-Ph表示苯基基团,而Me表示甲基基团。
    其中,b选自0至7之间的整数,而m也独立地选自0至7之间的整数。
  5. 根据权利要求4所述的磷腈类化合物,其特征在于,所述b的值取0。
  6. 根据权利要求4中任一项所述的磷腈类化合物,其中b选自1、2、3、4、5、6、7中的任一个整数。
  7. 根据权利要求1或2所述的磷腈类化合物,其特征在于,所述磷腈类化合物由所述式2化合物构成,并且,其进一步地由以下化学式来表示:
    Figure PCTCN2018116520-appb-100005
  8. 根据权利要求1或7所述的磷腈类化合物,其特征在于,所述式2或者式3的化合物呈结晶态,所述式3中的通式化合物的a值为4或者5。
  9. 根据权利要求1或2所述的磷腈类化合物,其特征在于,所述磷腈类化合物的所述式1化合物进一步地由以下化学通式来表达:
    Figure PCTCN2018116520-appb-100006
    并且,
    所述式4的化合物呈现结晶态。
  10. 根据权利要求9所述的磷腈类化合物,其特征在于,所述式4的化合物呈结晶态,并具有以下描述所表示的特定的晶型:在针对所述结晶态的式4的化合物实施X射线衍射(XRD)图谱中测试中,所述特定的晶型的化合物的X射线衍射(XRD)图谱包括了2θ值为以下位置的主要特征衍射峰:
    13.9°±0.2°;15.9°±0.2°;24.4°±0.2°;以及41.9°±0.2°。
  11. 根据权利要求9或10所述的磷腈类化合物,其特征在于,所述式4的化合物呈结晶态,并且在针对所述结晶态的式4的化合物实施X射线衍射(XRD)图谱中测试中,其在2θ值为41.9°±0.2°处显示出最强的衍射峰强度,并且在13.9°±0.2°,以及15.9°±0.2°处显示出次强衍射峰强度和第三强衍射封强度。
  12. 根据权利要求10或11所述的磷腈类化合物,其特征在于,所述式4化合物的晶型还包括在X射线衍射(XRD)图谱的2θ值为24.4±0.2°,27.7±0.2°以及28.4±0.2°处出现衍射峰,并且:
    所述次强衍射峰强度和最强的衍射峰强度的比在0.90至0.98∶1之间,而第三强衍射封强度与最强的衍射峰强度的比值0.60至0.70∶1之间;
    所述24.4±0.2°,27.7±0.2°以及28.4±0.2°处的衍射峰与最强衍射峰的强度的比值为0.15至0.5∶1。
  13. 根据权利要求1或2所述的磷腈类化合物,其特征在于,所述磷腈类化合物由所述式1化合物的化合物来表示,并且进一步地由以下化学通式来表达:
    Figure PCTCN2018116520-appb-100007
    并且
    所述式5的化合物呈结晶态。
  14. 根据权利要求13所述的磷腈类化合物,其特征在于,所述式5 的化合物呈结晶态,并具有以下描述所表示的特定的晶型:在针对所述结晶态的式5的化合物实施X射线衍射(XRD)图谱中测试中,所述特定的晶型的化合物的X射线衍射(XRD)图谱包括了2θ值为以下位置的主要特征衍射峰:
    10.8±0.2度、12.0±0.2度、20.2±0.2度。
  15. 根据权利要求13或14所述的磷腈类化合物,其特征在于,所述式5的化合物呈结晶态,并且在针对所述结晶态的式5的化合物实施X射线衍射(XRD)图谱中测试中,其在2θ值为20.2±0.2°处显示出最强的衍射峰强度,并且在12.0±0.2°,以及10.8±0.2°处显示出次强衍射峰强度和第三强衍射峰强度。
  16. 根据权利要求14或15所述的磷腈类化合物,其特征在于,所述晶型还包括在X射线衍射(XRD)图谱的2θ值为7.2±0.2°以及29.8±0.2°出现特征衍射峰,并且:
    所述次强衍射峰强度和最强的衍射峰强度的比在0.75至0.80∶1之间,而第三强衍射封强度与最强的衍射峰强度的比值0.60至0.70∶1之间;
    所述7.2±0.2°以及29.8±0.2°处的衍射峰与最强衍射峰的强度的比值为0.2至0.5∶1之间。
  17. 根据权利要求1或2所述的磷腈类化合物,其特征在于,所述磷腈类化合物由所述式1表示,并且进一步地所述化合物由以下化学通式来表达:
    Figure PCTCN2018116520-appb-100008
    并且
    所述式6的化合物呈现的结晶态。
  18. 根据权利要求17所述的磷腈类化合物,其特征在于,所述式6 的化合物呈结晶态,并具有以下描述所表示的特定的晶型:在针对所述结晶态的式6的化合物实施X射线衍射(XRD)图谱中测试中,所述特定的晶型的化合物的X射线衍射(XRD)图谱包括了2θ值为以下位置的主要特征衍射峰:
    10.4±0.2度、17.3±0.2度、19.0±0.2度以及20.0±0.2度。
  19. 根据权利要求17或18所述的磷腈类化合物,其特征在于,所述式6的化合物呈结晶态,并且在针对所述结晶态的式6的化合物实施X射线衍射(XRD)图谱中测试中,其在2θ值为10.4±0.2°处显示出最强的衍射峰强度,并且在19.0±0.2°,20.0±0.2°以及17.3±0.2°处显示出次强衍射峰强度、第三强衍射封强度以及第四衍射峰强度。
  20. 根据权利要求19所述的磷腈类化合物,其特征在于,所述晶型还包括在X射线衍射(XRD)图谱的2θ值为26.8±0.2°处出现衍射峰,并且:
    所述次强衍射峰强度、第三强衍射封强度各自和最强的衍射峰强度的比在0.55至0.65之间,而第四强衍射封强度与最强的衍射峰强度的比值0.50至0.55∶1之间;
    所述26.8±0.2°处出现衍射峰与最强衍射峰的强度的比值为0.45至0.50∶1之间。
  21. 根据权利要求1或2所述的磷腈类化合物,其特征在于,所述磷腈类化合物其进一步地由以下化学通式来表达:
    Figure PCTCN2018116520-appb-100009
    并且
    所述式7的化合物呈现的结晶态。
  22. 根据权利要求21所述的磷腈类化合物,其特征在于,上述式7 的化合物呈结晶态,并具有以下描述所表示的特定的晶型:所述式7的化合物呈结晶态,并具有以下描述所表示的特定的晶型:在针对所述结晶态的式7的化合物实施X射线衍射(XRD)图谱中测试中,所述特定的晶型的化合物的X射线衍射(XRD)图谱包括了2θ值为以下位置的主要特征衍射峰:11.0±0.2°。
  23. 根据权利要求22所述的磷腈类化合物,其特征在于,所述晶型还包括在X射线衍射(XRD)图谱的2θ值为11.4±0.2°处、13.6±0.2°处、14.6±0.2°处、20.3±0.2°处以及22.5±0.2°处的衍射峰,并且:
    上述四处出现衍射峰的强度与最强衍射峰的强度的比值为0.15至0.35∶1。
  24. 根据权利要求1或2所述的磷腈类化合物,其特征在于,所述磷腈类化合物进一步地由以下式8的化合物来表达:
    Figure PCTCN2018116520-appb-100010
    并且其中
    所述式8的化合物包括的结晶状态的所述化合物。
  25. 根据权利要求24所述的磷腈类化合物,其特征在于,上述8的化合物呈结晶态,并包括了具有以下描述所表示的特定的晶型:在针对所述结晶态的式8的化合物实施X射线衍射(XRD)图谱中测试中,所述特定的晶型的化合物的X射线衍射(XRD)图谱包括了2θ值在以下位置的主要特征衍射峰:13.1±0.2°,以及16.1±0.2°。
  26. 根据权利要求25所述的磷腈类化合物,其特征在于,所述式8的化合物呈结晶态,并且在针对所述结晶态的式8的化合物实施X射线衍射(XRD)图谱中测试中,其在2θ值为13.1±0.2处显示出最强的衍射峰强度,并且在16.1±0.2°处显示出次强衍射峰强度。
  27. 根据权利要求25或26所述的磷腈类化合物或包含磷腈类化合物的组合物,其特征在于,所述晶型还包括在X射线衍射(XRD)图谱的2θ值为6.3±0.2°处、16.7±0.2°处、26.9±0.2°处的衍射峰,上述三处出现衍射峰的强度与最强衍射峰的强度的比值为0.40至0.50∶1之间;并且
    所述次强衍射峰强度和最强的衍射峰强度的比在0.70至0.80之间。
  28. 根据权利要求1所述的磷腈类化合物,其特征在于,所述磷腈类化合物进一步地由所述式9的化合物通式来表达:
    Figure PCTCN2018116520-appb-100011
  29. 根据权利要求28所述的磷腈类化合物,其特征在于,所述式9的化合物的NMR测试以及质谱测试中,呈现以下特征图谱:
    1H-NMR(400MHz,CDCl 3,δ):3.729~3.521,12H;1.520~1.388,12H;0.907~0.794,18H;
    ESI-MS:m/s(M+H):490。
  30. 根据权利要求1或2所述的磷腈类化合物,其特征在于,所述磷腈类化合物由下述式10化合物来表达:
    Figure PCTCN2018116520-appb-100012
  31. 根据权利要求30所述的磷腈类化合物,其特征在于,所述a的取值为4至10中任意一个整数。
  32. 根据权利要求1至31中任一项所述的磷腈类化合物,其中,n 与a的取值分别优选为3至15之间的整数;或者,n或a的取值优选为0至7之间的整数;m的取值优选为0至7中的整数。
  33. 一种组合物,所述组合物包含权利要求1至32所述的磷腈类化合物中的一种或者更多种。
  34. 根据权利要求33所述的组合物,所述组合物为用于阻燃剂中的组合物。
  35. 一种制备权利要求1-31中任一项所述的磷腈类化合物的方法,其特征在于,所述的方法包括:使用含有P的原料,与含有R 1基团的反应物混合,通过原料与反应物的混合、加热、回流中的至少一个过程,获得所述磷腈类化合物,其中,R 1选自以下基团中的一种或者更多种:
    Cl,
    Figure PCTCN2018116520-appb-100013
    CH 3O-,(CH 3) 2N-,CH 3CH 2CH 2O-,H 2N-,-O-(CH 2)nCH 3,-O-(CH 2)nCH((CH 2)mCH 3) 2,-O-(CH 2)nC((CH 2)mCH 3) 3,-O-(CH 2)nSi((CH 2)mCH 3) 3、-Ph、-PhMe;其中Ph表示苯基基团,而Me表示甲基基团。
  36. 根据权利要求35所述的方法,其中,所合成的磷腈类化合物的方法包括权利要求3所述的
    Figure PCTCN2018116520-appb-100014
    或者权利要求4所述的
    Figure PCTCN2018116520-appb-100015
    所述方法包括以下步骤:
    以六氯环三磷腈,一种或更多种通式为M-O-R 1’的化合物,以及任选地选自钠、钾、钙的金属单质作为起始原料在有机溶剂中经过合成反应,从而得到含烷基硅基氧取代和/或烷氧取代的环三磷腈类化合物;其中
    在M-O-R 1’中,M为H、Na、K或者Ca;O表示氧;R 1’选自(CH 2)nSi((CH 2)mCH 3) 3,(CH 2)nCH 3,(CH 2)nCH((CH 2)mCH 3) 2,(CH 2)nC((CH 2)mCH 3) 3;b的取值为0至7之间的整数;m的取值优选为0至7中的整数。
  37. 根据权利要求36所述的方法,所述方法进一步包括以下具体步骤:
    向放入有四氢呋喃或氯苯或1,4-二氧六环的容器中加入H-O-R 1’,以及金属钠或金属钙;
    将上述混合物加入到六氯环三磷腈中,在加热的条件下搅拌,从而反应得到白色悬浊液;
    将悬浊液浓缩,蒸去溶剂,得到白色固体;进一步实施纯化,得到所述
    Figure PCTCN2018116520-appb-100016
    的环三磷腈类化合物。
  38. 根据权利要求35所述的磷腈类化合物的制备方法,其中所述方 法用来合成式4所述的
    Figure PCTCN2018116520-appb-100017
    化合物,所述方法包括:
    步骤(1).以五氯化磷和氯化铵为原料合成粗六氯环三磷腈的步骤;
    步骤(2).将上述粗六氯环三磷腈的产物使用有机溶剂在一定温度下溶解、冷却,从而再结晶的步骤。
  39. 根据权利要求38所述的方法,其中所述合成粗六氯环三磷腈的步骤进一步包括:
    按五氯化磷∶氯化铵∶复式催化剂=1∶1.1~1.5∶0.05~.0.1的摩尔比取各组分原料,按每摩尔五氯化磷用有机溶剂I 2400~2600克的比例取有机溶剂I;在氮气保护下将五氯化磷和有机溶剂I加到第一反应器中,升温至80℃并在此温度下搅拌1~2小时至五氯化磷完全溶解;在氮气保护下将氯化铵、复式催化剂和有机溶剂I加到第二反应器中,开启搅拌,升温至回流温度,在回流状态下缓慢将第一反应器中的溶液滴加至第二反应器中,滴加结束后继续在回流状态下搅拌1~2小时结束;冷却至室温,过滤,将母液进行浓缩除去溶剂,即制得所述粗六氯环三磷腈的产物;其中
    所述复式催化剂为吡啶与氯化镁的混合物,所述有机溶剂I选自苯、氯苯、邻氯苯、四氯化碳、1,1,2,2-四氯乙烷及1,1,2-三氯乙烷中的任一种。
  40. 根据权利要求38或39所述的方法,其中所述再结晶步骤包括:
    将制备得到的粗六氯环三磷腈的产物,使用有机溶剂II在升高的温度下溶解,然后使用酸萃取所述溶解有产物的有机溶剂II;此后,将萃取所得的产物再次使用有机溶剂II在升高的温度下溶解,然后缓慢降温并逐渐结晶,从而得到所述结晶形态的六氯环三磷腈化合物;其中所述有机溶剂II选自石油醚、正庚烷及甲基叔丁基醚中的任一种。
  41. 根据权利要求38至40中任一项所述的方法,其中所述再结晶步骤包括:
    将所述步骤(1)合成的粗六氯环三磷腈中加入石油醚,并且缓慢升温至80℃保持,在80℃下搅拌1~2小时至粗六氯环三磷腈完全溶解;
    静置分离除去油状物,用98%的浓硫酸萃取石油醚溶液;以及
    将上述萃取得到的产品再次加入石油醚,并以1至3℃/分钟的速率温至80℃,并在80℃下搅拌1~2小时至所述产品完全溶解,然后以1至3℃/分钟的速率降温至0~5℃,使得产物在该过程中逐渐结晶;
    对结晶产物进行过滤,从而得到所述结晶形态的六氯环三磷腈化合物。
  42. 根据权利要求35所述的磷腈类化合物的方法,其中所述方法用来合成式5所述的
    Figure PCTCN2018116520-appb-100018
    化合物,所述方法包括:
    步骤(1).采用氯磷腈
    Figure PCTCN2018116520-appb-100019
    以及苯酚为原料在低于40℃的液相条件下制备
    Figure PCTCN2018116520-appb-100020
    的粗产品;
    步骤(2).使用四氢呋喃为有机溶剂对所述粗产品进行溶解,然后升温至65至70℃回流,并缓慢降温使得产品在此过程中进行结晶,从而得到所述
    Figure PCTCN2018116520-appb-100021
    的化合物。
  43. 根据权利要求42所述的方法,其中所述步骤(1)和步骤(2)各自具体包括以下步骤:
    步骤(1)采用氯磷腈
    Figure PCTCN2018116520-appb-100022
    以及苯酚为原料,按照氯磷腈∶苯酚∶缚酸剂=1∶6.1~7.0∶12.2~13的摩尔比取各组分原料,按每1克式氯磷腈用有机溶剂5~6克的比例取有机溶剂;在氮气保护下将氯磷腈、缚酸剂和有机溶剂加到反应器中,在温度低于40℃下将苯酚缓慢滴加至反应器中,然后升温至回流温度并在回流温度下搅拌3~5小时结束;冷却至室温,通过包括过滤和洗涤的步骤,制得粗产品;其中缚酸剂选自氢氧化钠、碳酸钾、碳酸钠;
    步骤(2)按每1克步骤(1)的产物用四氢呋喃6~10克的比例取四氢呋喃,升温回流65至70℃并在此温度下搅拌2~3小时,然后以0.5至5℃/分钟的速率降温至10~15℃,并在10~15℃下搅拌2~5小时,通过包括过滤和干燥的后处理步骤,得到所述结晶形态的
    Figure PCTCN2018116520-appb-100023
  44. 根据权利要求35所述的磷腈类化合物的制备方法,其中所述方法用来合成式6所述的
    Figure PCTCN2018116520-appb-100024
    化合物,所述方法包括以下步骤:
    步骤(1):选用六氯环三磷腈和苯酚为原料合成六苯氧基环三磷腈的粗产品;
    步骤(2):将上述粗产品加入足量的选自乙醇、异丙醇或甲醇的溶剂中,升温回流,在回流温度下保温并搅拌2至3小时,然后以0.5至3℃/分钟的速率缓慢降温至10~15℃,在此温度下搅拌2至5小时,在上述过 程中使得六苯氧基环三磷腈形成为所述结晶状态的六苯氧基环三磷腈化合物产品。
  45. 根据权利要求44所述的方法,其特征在于,所述步骤(2)中采用的溶剂为无水乙醇。
  46. 根据权利要求44或45所述的方法,其特征在于,所述步骤(2)中选用无水乙醇作为溶剂,所述回流温度为75至80℃,在此温度下保温并搅拌3小时后,以0.5至1℃/分钟的速率缓慢降温至12~15℃。
  47. 根据权利要求44或45所述的方法,其特征在于,所述步骤(1)更具体地包括如下步骤:
    步骤(1):在氮气保护下将苯酚以及氯苯加到容器中,室温下搅拌20~30分钟,待用;在氮气保护下将按反应需要的化学计量比的六氯环三磷腈、作为缚酸剂的碳酸钾以及氯苯加入四口烧瓶中,并且控制温度在40℃以下缓慢滴加前述制备的苯酚-氯苯溶液;然后
    升温至125至135℃的回流温度并在回流温度下搅拌3~5小时;
    冷却至室温,过滤,弃去滤饼、保留滤液,用去离子水洗滤液,将有几层进行浓缩除去溶剂,得到粗产品化合物。
  48. 根据权利要求44至47中任一项所述的方法,其特征在于,所述步骤(2)更具体地包括如下步骤:
    步骤(2):将步骤(1)所获的粗产品和作为再结晶溶剂的无水乙醇加入到容器中,升温回流至78℃,并在此温度下搅拌2~3小时,然后以0.5至1℃/分钟的速率缓慢降温至12~15℃,在12~15℃下搅拌2至3小时,使得产物在此过程中形成为所述结晶形态的六苯氧基环三磷腈化合物。
  49. 根据权利要求35所述的磷腈类化合物的制备方法,其中所述方 法用来合成式7所述的
    Figure PCTCN2018116520-appb-100025
    化合物,所述方法包括以下步骤:
    步骤(1).以六氯环三磷腈、二甲胺盐酸盐和三乙胺为原料制备六-(二甲胺基)环三磷腈的粗产品;
    步骤(2).将所述粗产品加入石油醚溶剂中,并将温度控制在40℃下保持2-3小时并不断搅拌;此后,将温度降温至0至5℃,在搅拌条件下保持2至5小时,使得所述粗产品结晶为结晶形态的
    Figure PCTCN2018116520-appb-100026
    化合物。
  50. 根据权利要求49所述的方法,其中所述步骤(1)具体包括以下步骤:
    在氮气保护下将六氯环三磷腈和无水四氢呋喃加到四口烧瓶中,室温下搅拌20~30分钟至六氯环三磷腈全部溶解,待用;
    在氮气保护下将二甲胺盐酸盐、三乙胺按照与六氯环三磷腈的化学计量比称量,和无水四氢呋喃一并加到烧瓶中,在室温下搅拌20~30分钟,之后降温至0~5℃,控制温度在0~5℃下缓慢滴加此前制备的六氯环三磷腈的四氢呋喃溶液,滴加结束后在0~5℃下继续搅拌1小时,之后升温至室温搅拌96小时;得到
    Figure PCTCN2018116520-appb-100027
    的粗产品。
  51. 根据权利要求35所述的磷腈类化合物的制备方法,其中所述方 法用来合成式8所述的
    Figure PCTCN2018116520-appb-100028
    化合物,所述方法包括以下步骤:
    步骤(1).使用六氯环三磷腈以及甲醇钠为原料,通过在溶剂存在的液相状态下,反应获得六甲氧基环三磷腈的粗产品;
    步骤(2),针对上述六甲氧基环三磷腈的粗产品,将其溶解进入选自石油醚、正庚烷及甲基叔丁基醚中的一种的溶剂中,随后升温至回流温度并在此温度下保温一段时间,再缓慢降温至0至5℃;在此过程中获得六甲氧基环三磷腈的结晶产物。
  52. 根据权利要求52所述的方法,其特征在于,所述步骤(2)中,溶解六甲氧基环三磷腈的粗产品的溶剂为正庚烷。
  53. 根据权利要求51或52所述的方法,其特征在于,所述步骤(2)进一步包括以下具体步骤:使用正庚烷溶解六甲氧基环三磷腈的粗产品,随后升温至40℃并在此温度下搅拌2~3小时,然后以0.5至3℃/分钟的温度降温至0~5℃并保持2至5小时,在此过程中使得六甲氧基环三磷腈结晶;此后,通过包括过滤的步骤,得到六甲氧基环三磷腈的结晶产物。
  54. 根据权利要求35所述的磷腈类化合物的制备方法,其中所述方法用来合成式9所述的
    Figure PCTCN2018116520-appb-100029
    化合物,所述方法包括以下步骤:
    步骤(1).使用六氯环三磷腈、氢化钠、正丙醇作为原料,在5至20℃的反应温度下反应制备六丙氧基环三磷腈的粗产品;
    步骤(2).将上述六丙氧基环三磷腈的粗产品溶解到二氯甲烷中,并最终除去溶剂,以获得六丙氧基环三磷腈化合物。
  55. 根据权利要求54所述的方法,其特征在于,所述步骤(1)还具体包括以下步骤:
    根据化学反应的化学计量比称取六氯环三磷腈,氢化钠;
    在氮气保护下将六氯环三磷腈和选自正丙醇及四氢呋喃中的任一种的有机溶剂加到第一反应器中,室温下搅拌1~2小时至六氯环三磷腈完全溶解;
    在氮气保护下将选自正丙醇及四氢呋喃中的任一种的有机溶加到第二反应器中,在氮气保护下将第二反应器中温度降至5~10℃,并控制温度在10℃以下将氢化钠和正丙醇依次缓慢加到第二反应器中,加入结束后在10~15℃下搅拌1~2小时,
    将第一反应器中溶液缓慢加入至第二反应器中,加入结束后升温至回流温度,并在回流状态下搅拌10~12小时结束;冷却至室温,过滤,之后将滤液进行浓缩除去溶剂,即制得六丙氧基环三磷腈的粗产品。
  56. 根据权利要求35所述的磷腈类化合物的制备方法,其中所述方法用来合成所述的
    Figure PCTCN2018116520-appb-100030
    化合物,所述方法包括:
    使用六氯环三磷腈以及NH 3甲醇溶液作为原料,使用选自甲醇、正丙醇及四氢呋喃中的任一种作为的有机溶剂;在氮气保护下将六氯环三磷腈和有机溶剂加入反应容器,室温下搅拌1~2小时至六氯环三磷腈完全溶解;随后将反应容器冷却至低于10℃;在保持该温度下,滴加NH 3的甲醇溶液,滴加结束后搅拌持续反应10至20小时,以获得所述化合物。
  57. 根据权利要求56所述的方法,其特征在于,反应容器冷却至至0~5℃并滴加NH 3甲醇溶液,并在该温度下使得原料之间发生反应;并且,
    在反应结束后,进一步实施过滤和烘干步骤,以得到六氨基环三磷腈或聚氨基环三磷腈。
  58. 根据权利要求36所述的方法,所述方法进一步包括以下具体步骤:
    按重量比,将6~10份H-O-R 1’和6~10份金属钠或3~5份金属钙加入到四氢呋喃或氯苯或1,4-二氧六环中;
    将上述混合物滴入到1份六氯环三磷腈中,65-70℃搅拌,反应12-48h,得到白色悬浊液;
    将悬浊液浓缩,蒸去溶剂,得到白色固体,分别实施水洗,有机溶剂洗涤,用甲苯、二氯甲烷、氯仿或二氯乙烷溶解纯化,得到含烷基硅基氧取代和/或烷氧取代的环三磷腈类化合物;其中R1’为Si((CH 2)mCH 3) 3
  59. 根据权利要求36所述的方法,所述方法包括以下具体步骤:
    向反应容器中加入六氯环三磷腈、H-O-R1’;此后,
    向其中加入四氢呋喃、氯苯或1,4-二氧六环作为溶剂,充分搅拌;
    缓慢滴加三乙胺到反应器中并加热使体系发生反应,得到白色悬浊液;
    将悬浊液经过包括水洗、有机溶剂洗涤、浓缩的步骤,从而获得含含烷基硅基氧取代和/或烷氧取代的环三磷腈类化合物;其中
    其中R1’为Si((CH 2)mCH 3) 3
  60. 根据权利要求59所述的方法,所述方法包括以下具体步骤:
    按照摩尔比1∶11∶10的比例依次投入六氯环三磷腈、H-O-R 1’,加入四氢呋喃、氯苯或1,4-二氧六环作为溶剂,充分搅拌;
    缓慢滴加三乙胺到反应器中,70-100℃,反应12-48h,得到白色悬浊液;
    将悬浊液倒出进行浓缩,得黄色粘稠状固体或液体,经洗涤,用甲苯、二氯甲烷、氯仿或二氯乙烷溶解纯化,得到含烷基硅基氧取代和/或烷氧取代的环三磷腈类化合物;其中
    其中R1’为Si((CH 2)mCH 3) 3
  61. 根据权利要求36所述的方法,所述方法包括以下具体步骤:
    将Na-O-R 1’加入到四氢呋喃或氯苯或1,4-二氧六环的溶剂中;
    将上述混合物缓慢滴入到六氯环三磷腈的四氢呋喃或氯苯或1,4-二氧六环溶液,通过加热使得体系发生反应,得到白色悬浊液;
    将所述白色悬浊液经过进一步纯化工艺,得到含烷基硅基氧取代和/或烷氧取代的环三磷腈类化合物;其中R1’为Si((CH 2)mCH 3) 3
  62. 根据权利要求61所述的方法,所述方法包括以下具体步骤:
    按质量比,将6~10份Na-O-R 1’加入到四氢呋喃或氯苯或1,4-二氧六环中;
    将上述混合物缓慢加入到含1份六氯环三磷腈的四氢呋喃或氯苯或1,4-二氧六环溶液,加热保持体系70-100℃,反应12-48h,得到白色悬浊液;
    将上述悬浊液倒出进行浓缩,得黄色粘稠状固体或液体,经洗涤,用甲苯、二氯甲烷、氯仿或二氯乙烷溶解纯化,得到含含烷基硅基氧取代和/或烷氧取代的环三磷腈类化合物;其中R1’为Si((CH 2)mCH 3) 3
  63. 根据权利要求36所述的方法,所合成的化合物为
    Figure PCTCN2018116520-appb-100031
    其中b等于0。
  64. 权利要求1至32中任一项所述的磷腈类化合物或者权利要求33或34的所述组合物用在阻燃剂中的用途。
  65. 根据权利要求64所述的用途,其中所述化合物或者组合物应用于树脂、塑料、或者电池结构的电解液中以起到阻燃的作用。
  66. 根据权利要求64或者65所述的用途,其中所述化合物或者组合物应用于PMMA(聚甲基丙烯酸甲酯)、PS(聚苯乙烯)、PBT(聚对苯二甲酸丁二醇酯)、PC(聚碳酸酯)、ABS(丙烯腈-丁二烯-苯乙烯共聚物)、PA(尼龙)、PU(聚氨酯)、PPO(聚苯醚)、环氧树脂等其他树脂中的一种或多种的混合物,优选为PMMA、PC、PC/ABS合金和环氧树脂。
  67. 根据权利要求64至66中任一项所述的用途,其中所述组合物中含有如通式
    Figure PCTCN2018116520-appb-100032
    所示的化合物;其中a的取值范围为3-10之间的整数。
  68. 根据权利要求67所述的用途,其中所述组合物中含有六苯氧基环三磷腈。
  69. 根据权利要求64至68中任一项所述的用途,其中,所述阻燃剂包括1至32中任一项所述的磷腈类化合物或者权利要求33或34的所述组合物中的多个化合物或者组合物。
  70. 根据权利要求64或65所述的用途,其中所述树脂或者塑料为PE,PP,PVC,PS,ABS,PA,PC,POM,PBT,PET,PPO,PMMA,PU及环氧树脂中一种或多种混合物。
  71. 根据权利要求64或者65所述的用途,其中所述树脂或者塑料为PMMA,PC,PC/ABS合金树脂,以及PU,PET,PA6或环氧树脂作为基质的树脂材料。
  72. 一种阻燃剂,其特征在于,所述阻燃剂包括根据权利要求1至32中任一项所述的磷腈类化合物或者权利要求33或34的所述组合物。
  73. 根据权利要求72所述的阻燃剂,其中所述阻燃剂中包括如通式
    Figure PCTCN2018116520-appb-100033
    所示的化合物;其中a的取值范围为3-10之间的整数。
  74. 根据权利要求72所述的阻燃剂,其中所述阻燃剂中包括化学式表示为
    Figure PCTCN2018116520-appb-100034
    化合物的组分。
  75. 根据权利要求74所述的阻燃剂,其中
    Figure PCTCN2018116520-appb-100035
    Figure PCTCN2018116520-appb-100036
    的质量比在1∶9至4∶6之间。
PCT/CN2018/116520 2018-07-24 2018-11-20 一种磷腈类化合物、包括该磷腈类化合物的组合物、包含其的阻燃剂以及应用 WO2020019596A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810822500.1A CN109134544B (zh) 2018-07-24 2018-07-24 一种磷腈类化合物、包括该磷腈类化合物的组合物、包含其的阻燃剂以及应用
CN201810822500.1 2018-07-24

Publications (1)

Publication Number Publication Date
WO2020019596A1 true WO2020019596A1 (zh) 2020-01-30

Family

ID=64797757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116520 WO2020019596A1 (zh) 2018-07-24 2018-11-20 一种磷腈类化合物、包括该磷腈类化合物的组合物、包含其的阻燃剂以及应用

Country Status (2)

Country Link
CN (2) CN110204577A (zh)
WO (1) WO2020019596A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109762023A (zh) * 2019-01-31 2019-05-17 北京卫蓝新能源科技有限公司 一种阻燃剂及其制备方法和应用
CN113024605A (zh) * 2019-12-24 2021-06-25 中蓝晨光化工研究设计院有限公司 一种六苯氧基环三磷腈阻燃剂的合成方法
CN111040224B (zh) * 2019-12-30 2022-06-07 河北宝晟新型材料有限公司 间同立构聚苯乙烯及其制备方法
CN112695525B (zh) * 2020-12-28 2023-06-16 京准化工技术(上海)有限公司 一种阻燃防水防油整理剂及其制备方法
CN113651854B (zh) * 2021-08-13 2022-12-23 青岛科技大学 一种磷腈化合物及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102766166A (zh) * 2012-07-13 2012-11-07 北京理工大学 一种阻燃剂六苯氧基环三磷腈化合物的制备方法
CN103554186A (zh) * 2013-10-30 2014-02-05 威海金威化学工业有限责任公司 六氯环三磷腈的制备方法
CN103865449A (zh) * 2014-03-24 2014-06-18 苏州斯迪克新材料科技股份有限公司 一种无卤阻燃压敏胶黏剂及其制备方法
CN106432843A (zh) * 2015-08-08 2017-02-22 于桂菊 一种阻燃耐高温电缆的制备方法
CN107337694A (zh) * 2016-05-03 2017-11-10 广东广山新材料股份有限公司 一种带硅醇的磷腈化合物、阻燃剂、环氧树脂组合物以及复合金属基板
CN107735448A (zh) * 2015-06-18 2018-02-23 科思创德国股份有限公司 阻燃的聚碳酸酯‑聚酯组合物
CN107957446A (zh) * 2016-10-14 2018-04-24 中国科学院上海有机化学研究所 一种取代环四磷腈类化合物的用途
CN108239117A (zh) * 2016-12-26 2018-07-03 青岛科技大学 环状寡聚磷腈化合物及其制备方法和用途

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102766166A (zh) * 2012-07-13 2012-11-07 北京理工大学 一种阻燃剂六苯氧基环三磷腈化合物的制备方法
CN103554186A (zh) * 2013-10-30 2014-02-05 威海金威化学工业有限责任公司 六氯环三磷腈的制备方法
CN103865449A (zh) * 2014-03-24 2014-06-18 苏州斯迪克新材料科技股份有限公司 一种无卤阻燃压敏胶黏剂及其制备方法
CN107735448A (zh) * 2015-06-18 2018-02-23 科思创德国股份有限公司 阻燃的聚碳酸酯‑聚酯组合物
CN106432843A (zh) * 2015-08-08 2017-02-22 于桂菊 一种阻燃耐高温电缆的制备方法
CN107337694A (zh) * 2016-05-03 2017-11-10 广东广山新材料股份有限公司 一种带硅醇的磷腈化合物、阻燃剂、环氧树脂组合物以及复合金属基板
CN107957446A (zh) * 2016-10-14 2018-04-24 中国科学院上海有机化学研究所 一种取代环四磷腈类化合物的用途
CN108239117A (zh) * 2016-12-26 2018-07-03 青岛科技大学 环状寡聚磷腈化合物及其制备方法和用途

Also Published As

Publication number Publication date
CN109134544B (zh) 2019-08-06
CN109134544A (zh) 2019-01-04
CN110204577A (zh) 2019-09-06

Similar Documents

Publication Publication Date Title
WO2020019596A1 (zh) 一种磷腈类化合物、包括该磷腈类化合物的组合物、包含其的阻燃剂以及应用
Zhao et al. Synthesis of a novel bridged-cyclotriphosphazene flame retardant and its application in epoxy resin
El Gouri et al. Thermal degradation of a reactive flame retardant based on cyclotriphosphazene and its blend with DGEBA epoxy resin
CN107501329B (zh) 一种磷氮硅三元协效阻燃剂及其制法和用途
CN109438754B (zh) 一种含磷三氮唑化合物制备方法及其在阻燃聚乳酸上应用
CN108299633B (zh) 二茂铁-dopo双基聚酯型阻燃抑烟剂及其制备方法及在阻燃聚合物中的应用
CN102757579A (zh) 含环三磷腈结构的氧杂膦菲阻燃剂及其制备方法和应用
CN109135189B (zh) 一种环氧树脂用含P/N/Si多元素聚磷硅氮烷阻燃剂及其制备方法
CN112979708B (zh) 一种低卤环磷腈阻燃剂的制备方法及应用
CN102838778A (zh) 一种氮磷阻燃剂及其制备方法与应用
CN113214319B (zh) 一种季鏻盐阻燃剂及其合成方法与应用
CN110746646B (zh) 生物质基阻燃剂及其制备方法
CN111073037B (zh) 一种高热稳定性膨胀型阻燃剂及其制备方法
CN113845725B (zh) 一种具有良好耐水性的阻燃聚丙烯材料及其制备方法
CN110643066B (zh) 一种磷氮阻燃剂及其制备方法
CN104693770A (zh) 一种无卤膨胀型阻燃聚碳酸酯复合材料及其制备方法
CN111763351B (zh) 一种反应型的磷杂菲/亚磷酸酯双基阻燃剂、其制备方法和应用
CN110922637B (zh) 一种dopo衍生物阻燃光热稳定剂及其制备方法和应用
WO2020047900A1 (zh) 阻燃剂、复合阻燃剂以及含有该复合阻燃剂的阻燃高分子材料
Yuan et al. Synthesis of a silicon-containing flame retardant and its synergistic effect with potassium-4-(phenylsulfonyl) benzenesulfonate (KSS) in polycarbonate (PC)
CN1709952A (zh) 具有双螺环结构的含磷阻燃剂及其制备方法
CN105949509A (zh) 一种有机-无机杂化六甲叉膦酸镁阻燃剂及其制备方法
CN106496273A (zh) 阻燃剂烷基硅酸三硫基磷杂三氧杂双环[2.2.2]辛基甲酯化合物及其制备方法
CN111606948A (zh) 一种高效膦-氮阻燃剂及其制备方法和应用
CN108929341A (zh) 有色阻燃成炭剂四硅笼氧基对苯醌化合物及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927264

Country of ref document: EP

Kind code of ref document: A1