WO2021138803A1 - 一种具有高拉伸强度的热可塑性聚氨酯、其制备配方及制造方法 - Google Patents

一种具有高拉伸强度的热可塑性聚氨酯、其制备配方及制造方法 Download PDF

Info

Publication number
WO2021138803A1
WO2021138803A1 PCT/CN2020/070682 CN2020070682W WO2021138803A1 WO 2021138803 A1 WO2021138803 A1 WO 2021138803A1 CN 2020070682 W CN2020070682 W CN 2020070682W WO 2021138803 A1 WO2021138803 A1 WO 2021138803A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic polyurethane
diisocyanate
tensile strength
high tensile
diol
Prior art date
Application number
PCT/CN2020/070682
Other languages
English (en)
French (fr)
Inventor
吴建欣
黄英治
戴宪弘
郑如忠
Original Assignee
诠达化学股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诠达化学股份有限公司 filed Critical 诠达化学股份有限公司
Priority to EP20911581.5A priority Critical patent/EP4089130A4/en
Priority to JP2022541988A priority patent/JP2023509188A/ja
Priority to PCT/CN2020/070682 priority patent/WO2021138803A1/zh
Priority to CN202080093689.0A priority patent/CN115003723B/zh
Publication of WO2021138803A1 publication Critical patent/WO2021138803A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3215Polyhydroxy compounds containing aromatic groups or benzoquinone groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/46Polycondensates having carboxylic or carbonic ester groups in the main chain having heteroatoms other than oxygen
    • C08G18/4692Polycondensates having carboxylic or carbonic ester groups in the main chain having heteroatoms other than oxygen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • C08G18/5024Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/61Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8003Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
    • C08G18/8006Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32
    • C08G18/8009Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203
    • C08G18/8012Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203 with diols
    • C08G18/8016Masked aliphatic or cycloaliphatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8003Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
    • C08G18/8006Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32
    • C08G18/8009Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203
    • C08G18/8012Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203 with diols
    • C08G18/8019Masked aromatic polyisocyanates

Definitions

  • the invention relates to a thermoplastic polyurethane with high tensile strength, its preparation formula and a manufacturing method.
  • the thermoplastic polyurethane with high tensile strength is derived from a polycarbonate derivative, and the tensile strength of the thermoplastic polyurethane with high tensile strength is greater than 2.5 MPa.
  • Thermoplastic polymers have the characteristics of reshaping, so they are more environmentally friendly than thermosetting polymers, and they also endow materials with diverse applicability and processability, so they are widely used in various industries.
  • thermoplastic polymers such as polyurethane
  • material properties are often sacrificed.
  • the polyurethane that has been modified by chemical or physical blending has poor purity and structural regularity, which exacerbates the shortcomings of poor linear polyurethane properties.
  • the maximum tensile strength of the chemically modified polyurethane is only about 1.5MPa, which is a soft and weak polymer material, so it cannot meet the mechanical requirements. Material application fields with high strength requirements.
  • thermoplastic polymer with high tensile strength and its preparation formula to meet the needs of related industries has always been a problem in this technical field that needs to be solved urgently.
  • the first object of the present invention is to provide a formula for preparing thermoplastic polyurethane with high tensile strength, by means of a unique formula composition and use weight ratio design, To achieve the purpose of making thermoplastic polyurethane with high tensile strength.
  • the aforementioned formulation for preparing thermoplastic polyurethane with high tensile strength includes a first agent and a second agent, the first agent includes a polyurethane oligomer, and the second agent includes a chain extender; the Polyurethane oligomers are made by reacting polycarbonate derivatives or bisphenol compounds with diisocyanates.
  • the R 1 is derived from the following amine compounds: aliphatic diamine, aromatic diamine or polyether diamine, and the diisocyanate is independently selected from one of the following groups: aromatic diisocyanate And aliphatic diisocyanates; then the chain extender is selected from one of the following groups: aliphatic diols, polyether diols, polyester diols and bisphenol compounds; the chain extenders and the polyurethane oligomer
  • the use weight ratio of the substance is 1-3, and m is an integer of 1-5.
  • polycarbonate derivatives made of amine compounds and diisocyanates described in the above embodiments are polycarbonate derivatives that do not have siloxane functional groups or polysiloxane segments. Things.
  • the R 1 is derived from an amine compound containing a siloxane group; and the diisocyanate is an aliphatic diisocyanate, the chain extender is selected from one of the following groups: aliphatic dibasic Alcohol and bisphenol compounds; the weight ratio of the chain extender and the polyurethane oligomer is 0.2-0.8, and m is an integer of 1-5.
  • the polycarbonate derivative made of the siloxane-containing amine compound and the diisocyanate described in another embodiment above has a siloxane functional group or a polysiloxane. Segmented polycarbonate derivatives.
  • the above-mentioned polyurethane oligomer can also use an inert solvent or reaction aid in the preparation process, thereby improving the compatibility and reaction rate of the polycarbonate derivative and the diisocyanate.
  • the inert solvent includes an aprotic solvent or a mixed solvent of an aprotic solvent and a protic solvent.
  • the aprotic solvent includes tetrahydrofuran, anisole, dimethylformamide, dimethylacetamide, N-methylpyrrolidone (NMP), dimethylsulphate, or a combination thereof.
  • the reaction aid includes stannous octoate or dibutyltin dilaurate.
  • the second object of the present invention is to provide a thermoplastic polyurethane, which is a thermoplastic polyurethane with high tensile strength, which is made by reacting a polyurethane oligomer and a glycol;
  • the chemical formula of the polyurethane oligomer is as follows As shown in formula (2), it is made of the polycarbonate derivative or bisphenol compound described in the first object and diisocyanate.
  • the polyurethane oligomer is made of a bisphenol compound and a diisocyanate; preferably, the bisphenol compound contains bisphenol A.
  • the R 1 is derived from the following amine compound: aliphatic diamine, aromatic diamine or polyether diamine
  • the R 2 is derived from the following isocyanate: aromatic diisocyanate Or aliphatic diisocyanate
  • the aforementioned diol is selected from one of the following groups: aliphatic diol, polyether diol, polyester diol and bisphenol compound; and the diol and the polyurethane oligomer
  • the weight ratio of the polymer used is 1-3; and m is an integer of 1-5, and x is between 5-100.
  • the diol is selected from one of the following groups:
  • the weight ratio of the aliphatic diol and bisphenol compound to the diol and the polyurethane oligomer is 0.2-0.8; and m is an integer of 1 to 5; x is between 5 and 100.
  • the polycarbonate derivatives synthesized from the above-mentioned amine compounds or siloxane-containing amine compounds react with specific types of diisocyanates to obtain silicon-free or siloxane-containing polyurethane oligomers, and then
  • the silicon-free or siloxane-containing polyurethane oligomers respectively undergo chain extension reactions with specific types of diols, and the diol and the silicon-free or siloxane-containing polyurethane oligomers
  • the weight ratios are 1-3 and 0.2-0.8, respectively, so as to obtain the thermoplastic polyurethane with high tensile strength.
  • the tensile strength of the high tensile strength thermoplastic polyurethane is greater than about 2.5 MPa.
  • the tensile strength of the high tensile strength thermoplastic polyurethane is greater than about 5.0 MPa.
  • the weight average molecular weight of the high tensile strength thermoplastic polyurethane is 10,000 to 400,000 Da.
  • thermoplastic polyurethane with high tensile strength has a characteristic peak in the chemical shift of about 1.35 ppm-1.65 ppm in the hydrogen nuclear magnetic resonance spectrum, or a characteristic peak in the range of about 3.65-4.15 ppm in the chemical shift.
  • the third object of the present invention is to provide a method for producing a thermoplastic polyurethane with high tensile strength, which includes using the formula as described in the first object of the present invention to carry out a chain extension reaction, thereby making high tensile strength Thermoplastic polyurethane, the tensile strength of the high tensile strength thermoplastic polyurethane is greater than about 2.5 MPa.
  • the above-mentioned manufacturing method can use waste polycarbonate as the raw material of the polycarbonate derivative. Therefore, the method for manufacturing thermoplastic polyurethane with high tensile strength provided by the third object of the present invention also solves the problem of disposal of waste polycarbonate.
  • the above-mentioned method fixes carbon dioxide again in the novel high tensile strength thermoplastic polyurethane structure.
  • the manufacturing process does not release carbon dioxide and extends the carbon cycle of carbon dioxide. Therefore, the method for manufacturing thermoplastic polyurethane with high tensile strength as described in the third object of the present invention is a method for manufacturing thermoplastic polyurethane with both environmental friendliness and high atomic efficiency.
  • the temperature of the aforementioned chain extension reaction is 60-100°C.
  • thermoplastic polyurethane with high tensile strength
  • its preparation formula and manufacturing method have at least the following innovative features and advantages: (1)
  • the present invention provides for preparing high tensile strength
  • the formula of thermoplastic polyurethane is a two-component formula, which contains the use of a new type of polyurethane oligomer derived from polycarbonate derivatives (first agent) and chain extender (second agent).
  • first agent polycarbonate derivatives
  • second agent chain extender
  • the types of polyurethane oligomers and chain extenders and their weight ratio ranges are used to make thermoplastic polyurethanes with high tensile strength, which are difficult to make with conventional formulations
  • the present invention provides high tensile strength thermoplastic polyurethanes.
  • Thermoplastic polyurethane with tensile strength is greater than 2.5MPa, and under a specific composition, it has a tensile strength of more than 15.0MPa and a tensile length of more than 300%, so it can exhibit excellent performance before processing.
  • the method for producing the thermoplastic polyurethane with high tensile strength provided by the present invention can use waste polycarbonate as a starting material.
  • the manufacturing method of the thermoplastic polyurethane with high tensile strength also solves the problem of disposal of polycarbonate waste.
  • the above method further fixes carbon dioxide in a novel high tensile strength thermoplastic polyurethane structure.
  • the manufacturing process does not release carbon dioxide, which prolongs the carbon cycle of carbon dioxide. It is environmentally friendly and has high atomic benefits.
  • Fig. 1 is a hydrogen nuclear magnetic resonance spectrum chart of the polyurethane oligomer described in the first embodiment.
  • Fig. 2 is a hydrogen nuclear magnetic resonance spectrum chart of the thermoplastic polyurethane according to the second embodiment.
  • Fig. 3 is a thermal differential scanning (DSC) chart of the thermoplastic polyurethane EM-G30.
  • Figure 4 is a thermal differential scanning (DSC) chart of the thermoplastic polyurethane SI-O70.
  • Figure 5 is a thermal differential scanning (DSC) chart of the thermoplastic polyurethane EM-E45.
  • Fig. 6 is a thermal differential scanning (DSC) chart of the thermoplastic polyurethane EM-P45.
  • Fig. 7 is a graph of the tensile strength and elongation rate of the thermoplastic polyurethane EM-G30.
  • Fig. 8 is a graph of the tensile strength and elongation rate of the thermoplastic polyurethane SI-O70.
  • the present invention provides a formulation for preparing thermoplastic polyurethane with high tensile strength, the formulation comprising a first agent and a second agent, the first agent comprising a polyurethane oligomer , And the second agent contains a chain extender; the polyurethane oligomer is made by the reaction of a polycarbonate derivative or a bisphenol compound and a diisocyanate, and the structure of the polycarbonate derivative is as shown in formula (1) Shown.
  • R 1 is derived from the following amine compounds: aliphatic diamine, aromatic diamine or polyether diamine, and the diisocyanate is independently selected from one of the following groups: aromatic diamine Isocyanates and aliphatic diisocyanates; then the chain extender is selected from one of the following groups: aliphatic diols, polyether diols, polyester diols and bisphenol compounds; the chain extenders and the polyurethane oligomers The weight ratio of the polymer used is 1-3, and m is an integer of 1-5.
  • the chain extender is selected from one of the following groups: aliphatic diisocyanate Alcohol and bisphenol compound; the weight ratio of the chain extender and the polyurethane oligomer is 0.2-0.8, and m is an integer of 1-5.
  • the aliphatic diamine includes a linear diamine with 2-40 carbons or a branched diamine with 2-40 carbons.
  • the relative positions of the diamine groups of the aforementioned aliphatic diamines may be symmetrical or asymmetrical.
  • the linear diamine with 2-40 carbon atoms is 1,4-butanediamine, 1,5-pentanediamine or 1,6-hexamethylenediamine.
  • the weight average molecular weight of the polyether diamine is 100 to 5,000 Da.
  • the polyether diamine refers to a polyether diamine of the Jeffamine series.
  • the aromatic diisocyanate comprises diphenylmethane diisocyanate (MDI), diphenyldifluoromethane diisocyanate, p-phenylene diisocyanate, o-phenylene diisocyanate, isophenylene diisocyanate, 2,2' -Biphenyl diisocyanate, 3,3'-biphenyl diisocyanate, 4,4'-biphenyl diisocyanate, naphthalene diisocyanate or a combination thereof.
  • MDI diphenylmethane diisocyanate
  • diphenyldifluoromethane diisocyanate p-phenylene diisocyanate
  • o-phenylene diisocyanate o-phenylene diisocyanate
  • isophenylene diisocyanate 2,2' -Biphenyl diisocyanate
  • 3,3'-biphenyl diisocyanate 3,3'
  • the aliphatic diisocyanate includes hexamethylene diisocyanate, isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, or a combination thereof.
  • the aliphatic diol includes a linear diol with 2-40 carbons or a branched diol with 2-40 carbons.
  • the relative positions of the diol groups of the aforementioned aliphatic diols may be symmetrical or asymmetrical.
  • the linear alcohol with a carbon number of 2-40 is 1,4-butanediol, 1,5-pentanediol or 1,6-hexanediol.
  • the polyether glycol is selected from one of the following groups: polytetramethylene ether glycol (PTMEG), polytetramethylene ether glycol-ethylene glycol copolymer, polytetrahydrofuran- Propylene oxide (polytetramethylene ether glycol-propylene glycol copolymer) and its combinations.
  • PTMEG polytetramethylene ether glycol
  • polytetramethylene ether glycol-ethylene glycol copolymer polytetrahydrofuran- Propylene oxide (polytetramethylene ether glycol-propylene glycol copolymer) and its combinations.
  • the polyester diol includes polyester diol, polycarbonate diol, polycaprolactone diol, or a combination thereof.
  • the weight average molecular weight of the polyether diamine is about 100 to 5,000 Da.
  • the molecular weight of the siloxane-containing amine compound is 150-10,000 Da.
  • the structure of the siloxane group is as shown in formula (3).
  • the polyurethane oligomer has a characteristic peak at a chemical shift of about 1.35 ppm-1.65 ppm in a hydrogen nuclear magnetic resonance spectrum, or a characteristic peak at a chemical shift of about 3.65-4.15 ppm.
  • the hydrogen nuclear magnetic resonance spectrum of the polyurethane oligomer is shown in FIG. 1, wherein the characteristic peaks of DMSO and DMF solvents are at about 2.5-3.0 ppm and 8.0 ppm, respectively.
  • the bisphenol compound includes bisphenol A.
  • the weight average molecular weight of the polyurethane oligomer is 4,000-40,000 Da.
  • the formulation for preparing thermoplastic polyurethane with high tensile strength is applied to prepare thermoplastic polyurethane with a tensile strength greater than about 2.5 MPa.
  • a thermoplastic polyurethane having a tensile strength greater than about 5.0 MPa is prepared.
  • the second embodiment of the present invention provides a thermoplastic polyurethane, which is a thermoplastic polyurethane with high tensile strength, which is made by reacting a polyurethane oligomer and a glycol.
  • the chemical formula of the polyurethane oligomer is as follows: (2) Shown.
  • the polyurethane oligomer is made of bisphenol compound and diisocyanate; preferably, the bisphenol compound contains bisphenol A .
  • the R 1 is derived from the following amine compounds: aliphatic diamine, aromatic diamine or polyether diamine
  • the R 2 is derived from the following isocyanate: aromatic diisocyanate or Aliphatic diisocyanate
  • the aforementioned diol is selected from one of the following groups: aliphatic diol, polyether diol, polyester diol and bisphenol compound; and the diol and the polyurethane oligomer
  • the weight ratio of the material used is 1 to 3; and m is an integer of 1 to 5; and x is between 5 to 100.
  • the diol is selected from one of the following groups:
  • the weight ratio of the aliphatic diol and bisphenol compound to the diol and the polyurethane oligomer is 0.2-0.8; and m is an integer of 1 to 5; x is between 5 and 100.
  • the tensile strength of the high tensile strength thermoplastic polyurethane is greater than about 2.5 MPa.
  • the tensile strength of the high tensile strength thermoplastic polyurethane is greater than about 5.0 MPa, and the tensile length ratio is greater than 300%.
  • the weight average molecular weight of the high tensile strength thermoplastic polyurethane is 10,000 to 400,000 Da.
  • the thermoplastic polyurethane with high tensile strength has a characteristic peak in the chemical shift of about 1.35 ppm-1.65 ppm in the hydrogen nuclear magnetic resonance spectrum, or a characteristic peak in the range of about 3.65-4.15 ppm in the chemical shift.
  • the hydrogen nuclear magnetic resonance spectrum of the high tensile strength thermoplastic polyurethane is shown in FIG. 2, wherein the characteristic peaks of DMSO and DMF solvents are at about 2.5-3.0 ppm and 8.0 ppm, respectively.
  • the weight average molecular weight of the polyurethane oligomer is 4,000-40,000 Da.
  • the aliphatic diamine includes a linear diamine with 2-40 carbons or a branched diamine with 2-40 carbons.
  • the relative positions of the diamine groups of the aforementioned aliphatic diamines may be symmetrical or asymmetrical.
  • the linear diamine with 2-40 carbon atoms is 1,4-butanediamine, 1,5-pentanediamine or 1,6-hexamethylenediamine.
  • the weight average molecular weight of the polyether diamine is 100 to 5,000 Da.
  • the polyether diamine refers to a polyether diamine of the Jeffamine series.
  • the aromatic diisocyanate comprises diphenylmethane diisocyanate (MDI), diphenyldifluoromethane diisocyanate, p-phenylene diisocyanate, o-phenylene diisocyanate, isophenylene diisocyanate, 2,2' -Biphenyl diisocyanate, 3,3'-biphenyl diisocyanate, 4,4'-biphenyl diisocyanate, naphthalene diisocyanate or a combination thereof.
  • MDI diphenylmethane diisocyanate
  • diphenyldifluoromethane diisocyanate p-phenylene diisocyanate
  • o-phenylene diisocyanate o-phenylene diisocyanate
  • isophenylene diisocyanate 2,2' -Biphenyl diisocyanate
  • 3,3'-biphenyl diisocyanate 3,3'
  • the aliphatic diisocyanate includes hexamethylene diisocyanate, isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, or a combination thereof.
  • the aliphatic diol includes a linear diol with 2-40 carbons or a branched diol with 2-40 carbons.
  • the relative positions of the diol groups of the aforementioned aliphatic diols may be symmetrical or asymmetrical.
  • the linear alcohol with a carbon number of 2-40 is 1,4-butanediol, 1,5-pentanediol or 1,6-hexanediol.
  • the polyether glycol is selected from one of the following groups: polytetramethylene ether glycol (PTMEG), polytetramethylene ether glycol-ethylene glycol copolymer, polytetrahydrofuran- Propylene oxide (polytetramethylene ether glycol-propylene glycol copolymer) and its combinations.
  • PTMEG polytetramethylene ether glycol
  • polytetramethylene ether glycol-ethylene glycol copolymer polytetrahydrofuran- Propylene oxide (polytetramethylene ether glycol-propylene glycol copolymer) and its combinations.
  • the polyester diol includes polyester diol, polycarbonate diol, polycaprolactone diol, or a combination thereof.
  • the weight average molecular weight of the polyether diamine is about 100 to 5,000 Da.
  • the molecular weight of the siloxane-containing amine compound is 150-10,000 Da.
  • the siloxane group-containing structure is shown in formula (3).
  • the third embodiment of the present invention provides a method for manufacturing a thermoplastic polyurethane with high tensile strength.
  • the steps include using the formula described in the first embodiment to perform a chain extension reaction, thereby making a high tensile strength Thermoplastic polyurethane, the tensile strength of the high tensile strength thermoplastic polyurethane is greater than about 2.5 MPa.
  • the temperature of the chain extension reaction is between 60-100°C.
  • the thermoplastic polyurethane with high tensile strength has a characteristic peak in the range of about 1.35 ppm to 1.65 ppm in the chemical shift of the hydrogen nuclear magnetic resonance spectrum, or a characteristic peak in the range of about 3.65 to 4.15 ppm.
  • the weight average molecular weight of the high tensile strength thermoplastic polyurethane is 10,000 to 400,000 Da.
  • thermoplastic polyurethane with high tensile strength of the present invention has a structure as shown in formula (4), wherein R 1 is derived from 1,6-hexamethylene diamine, and R 2 is derived from diphenylmethane diisocyanate (MDI), and R 3 are derived from polyether glycol (PTMEG2000) or polycaprolactone glycol (PCL2000).
  • Example 1 General preparation steps of the polycarbonate derivatives of the present invention
  • a mixture containing polycarbonate, diamine compound or silicon-containing diamine compound and a solvent is provided; the mixture may also contain diphenyl carbonate or a combination thereof.
  • Suitable solvents include isopropyl ether, anisole, phenylethyl ether, phenylpropyl ether, phenylbutyl ether, o-methyl anisole, m-methyl anisole, p-methyl anisole, benzyl ethyl ether , Diphenyl ether, dibenzyl ether, tetrahydrofuran, dihydropyran, tetrahydropyran, 2-methyltetrahydropyran, benzene, toluene, xylene, ethylbenzene, diethylbenzene or cyclohexylbenzene.
  • Example 2 General preparation steps of the polyurethane oligomer of the present invention
  • the polyurethane oligomer is prepared by polymer polymerization.
  • various diisocyanates such as diphenylmethane diisocyanate (MDI), isophorone diisocyanate (IPDI) or 1,6-hexamethylene diisocyanate (HDI); and the aforementioned polycarbonate derivatives
  • MDI diphenylmethane diisocyanate
  • IPDI isophorone diisocyanate
  • HDI 1,6-hexamethylene diisocyanate
  • polycarbonate derivatives A, E, or S undergo condensation polymerization at 60-100°C, and solvents such as dimethylformamide, N-methylpyrrolidone, tetrahydrofuran, dimethylsulfoxide or benzene can be added during the reaction.
  • Methyl ether helps the reaction proceed.
  • the characteristic peak of the urethane functional group can be seen at the position of 1750 ⁇ 50cm -1 in the FT-IR spectrum.
  • Example 3 General preparation steps of the thermoplastic polyurethane of the present invention
  • thermoplastic polyurethane oligomers and various glycol chain extenders are heated to carry out the chain extension reaction, and various thermoplastic polyurethanes are obtained.
  • the formula used in the specific experimental examples, the weight ratio and the obtained thermoplastic polyurethane The property data are shown in Table 3 and Table 4 respectively.
  • the above table 3 is a formula table for the synthesis of thermoplastic polyurethane, in which the control group EM-100 is a sample synthesized by 100% of the aforementioned polycarbonate derivative E and diphenylmethane diisocyanate (MDI); the polyurethane oligomer used
  • the formula of the compound is shown in Table 2; this experiment uses different types and weight ratios of diols and polyurethane oligomers to synthesize and measure the properties of thermoplastic polyurethanes, so as to screen suitable reaction formulas to achieve the preparation.
  • the purpose of thermoplastic polyurethane with excellent properties such as high tensile strength.
  • the comparison of properties of the made thermoplastic polyurethane is shown in Table 4.
  • Tensile strength (stress) is measured by a universal tensile machine
  • Stretching rate (strain): It is measured by a universal tensile machine
  • Membrane characteristics are based on the macroscopic state after film formation
  • PC (wt.%) represents the theoretical polycarbonate content (carbonate (g)/thermoplastic polyurethane (g)) contained in the thermoplastic polyurethane;
  • Tg is the glass transition temperature
  • n.a. means that the value is lower than the lower limit of the measurement, and the value cannot be obtained.
  • thermoplastic polyurethanes have both a tensile strength greater than 2.5MPa and good film elasticity: AM-G30, AM-G45, EM-G30 , EM-G45, EM-L30, EM-L45 and SI-O70.
  • thermoplastic polyurethane according to the formula table of synthetic thermoplastic polyurethane in Table 3 and comparing the experimental data in Table 4, it shows that the polyurethane oligomer derived from polycarbonate derivatives of the present invention cannot be synthesized with polyethylene glycol or polypropylene glycol.
  • Thermoplastic polyurethane with tensile strength based on this, it is known that the chain extender (diol) in the formulation for preparing thermoplastic polyurethane with high tensile strength provided by the present invention has its compatibility specificity.
  • the polyurethane oligomers (SM) synthesized from the polycarbonate derivatives S and aromatic diisocyanates (MDI) described in Table 2 containing siloxane diamines cannot be combined with aliphatic diols ( 1,6-hexanediol) was synthesized to obtain thermoplastic polyurethane.
  • the polyurethane oligomer (SI) synthesized by the polycarbonate derivative S and aliphatic diisocyanate (IPDI) can be synthesized within the range of the weight ratio of the diol/polyurethane oligomer designed in the present invention to obtain a stretchable Thermoplastic polyurethane (SI-O70) with a strength of 54MPa.
  • a polyurethane oligomer containing a siloxane group must have no aromatic ring structure before it can react with a chain extender (diol) to produce the thermoplastic polyurethane with high tensile strength of the present invention.
  • a siloxane-containing thermoplastic polyurethane with high tensile strength is derived from aliphatic diisocyanates, especially isophorone diisocyanate (IPDI).
  • thermoplastic polyurethane EM-G30 and SI-O70 were thermally analyzed using a thermal differential scanner, and their thermal differential scanning spectra (DSC) are shown in Figure 3 and Figure 4, respectively.
  • thermal differential scanning spectra (DSC) of the thermoplastic polyurethane EM-E45 and EM-P45 are shown in Figure 5 and Figure 6, respectively.
  • the DSC spectrum shows that the endothermic phenomenon is observed at -33°C or -20°C, which indicates that the thermoplastic polyurethane EM -E45 and EM-P45 have a soft internal polymer segment structure at room temperature due to the endothermic effect and cannot have tensile strength.
  • the thermal analysis data specifically confirms that polyethylene glycol or polypropylene glycol is not suitable for use as the chain extender in the formulation of the present invention.
  • thermoplastic polyurethane EM-G30, SI-O70, EM-E45, and EM-P45 use a universal tensile machine (brand and model: MTS Landmark 370.02 Test System) to test the tensile strength and elongation rate.
  • the test condition is to prepare the sample size according to the ASTM D638 standard, and the tensile speed used for the test sample is 100mm/min.
  • the above-mentioned thermoplastic polyurethane EM-G30 and SI-O70 test results are shown in Figure 7 and Figure 8, respectively.
  • the tensile strength of EM-G30 exceeds 5.0 MPa, reaching about 13.0 MPa, and its elongation rate is as high as about 1200%; the tensile strength of SI-O70 is as high as about 54 MPa.
  • the test sample broke during the experiment, resulting in the unmeasurable tensile strength.
  • polyethylene glycol or polypropylene glycol series diols are not suitable as chain extenders in the formulation of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明是关于一种具有高拉伸强度的热可塑性聚氨酯、其制备配方及制造方法。特别地,该具有高拉伸强度的热可塑性聚氨酯是源自一聚碳酸酯衍生物,且该具有高拉伸强度的热可塑性聚氨酯的拉伸强度大于2.5MPa。

Description

一种具有高拉伸强度的热可塑性聚氨酯、其制备配方及制造方法 技术领域
本发明是涉及一种具有高拉伸强度的热可塑性聚氨酯、其制备配方及制造方法。特别地,该具有高拉伸强度的热可塑性聚氨酯是源自一聚碳酸酯衍生物,且该具有高拉伸强度的热可塑性聚氨酯的拉伸强度大于2.5MPa。
背景技术
热可塑性高分子具有重塑形的特性,因此比起热固性高分子更为环保之外,还赋予材料多样的应用性与加工性,因此广泛应用在各种工业上。
但是,为了维持热塑性高分子如聚氨酯的线性结构,往往牺牲掉材料性质。其次,经化学或物理混掺改质后的聚氨酯因为纯度与结构规整性不佳的缘故,更加剧线性聚氨酯的性质差的缺点。一般而言,化学改质后的聚氨酯尽管拉伸长度可以提升,但是该化学改质后的聚氨酯的拉伸强度最高只有1.5MPa左右,是属于软而弱的高分子材料特性,因此无法满足机械强度要求高的材料应用领域。
综上所述,如何设计一种具有高拉伸强度的热可塑性高分子和其制备配方,借此满足相关产业对于其需求,一直是本技术领域亟需解决克服的问题。
发明内容
鉴于上述的发明背景,为了符合产业上的要求,本发明的第一目的在于提供一种用于制备具有高拉伸强度的热可塑性聚氨酯的配方,借由独特的配方组成和使用重量比值设计,达到制成具有高拉伸强度的热可塑性聚氨酯的目的。
具体地,上述的用于制备具有高拉伸强度的热可塑性聚氨酯的配方包含第一剂和第二剂,该第一剂包含一聚氨酯寡聚物,该第二剂包含一链延长剂;该聚氨酯寡聚物是由聚碳酸酯衍生物或双酚化合物和二异氰酸酯进行反应所制成。
其中上述的聚碳酸酯衍生物的结构如式(1)所示。
式(1)。
Figure PCTCN2020070682-appb-000001
Figure PCTCN2020070682-appb-000002
在一实施例,该R 1是源于下述胺类化合物:脂肪族二胺、芳香族二胺或聚醚二胺,且该二异氰酸酯是独立选自以下群组之一:芳香族二异氰酸酯和脂肪族二异氰酸酯;则该链延长剂是选自下列群组之一:脂肪族二元醇、聚醚二元醇、聚酯二元醇和双酚化合物;该链延长剂和该聚氨酯寡聚物的使用重量比值是1~3,和m是1~5的整数。
具体地,上述实施例所述的胺类化合物和二异氰酸酯所制成的聚碳酸酯衍生物是不具有硅氧烷(siloxane)官能基或聚硅氧烷(polysiloxane)链段的聚碳酸酯衍生物。
在另一实施例,该R 1是源于含硅氧烷基的胺类化合物;且该二异氰酸酯是脂肪族二异氰酸酯,则该链延长剂是选自下列群组之一:脂肪族二元醇和双酚化合物;该链延长剂和该聚氨酯寡聚物的使用重量比值是0.2~0.8,和m是1~5的整数。
具体地,上述另一实施例所述的含硅氧烷基的胺类化合物和二异氰酸酯所制成的聚碳酸酯衍生物是具有硅氧烷(siloxane)官能基或聚硅氧烷(polysiloxane)链段的聚碳酸酯衍生物。
上述的聚氨酯寡聚物在制备过程中还可使用惰性溶媒或反应助剂,借此改善提升该聚碳酸酯衍生物和二异氰酸酯的相容性和反应速率。
该惰性溶媒包含非质子溶剂或非质子溶剂和质子溶剂的混合溶剂。该非质子溶剂包含四氢呋喃、苯甲醚、二甲基甲酰胺、二甲基乙酰胺、N-甲基吡咯烷酮(NMP)、二甲基亚风或其组合。
该反应助剂包含辛酸亚锡(stannous octoate)或二月桂酸二丁基锡(dibutyltin dilaurate)。
本发明的第二目的在于提供一种热可塑性聚氨酯,其是一高拉伸强度的热可塑性聚氨酯,是由聚氨酯寡聚物和二元醇进行反应所制成;该聚氨酯寡聚物的化学式如式(2)所示,其是由第一目的所述的聚碳酸酯衍生物或双酚化合物和二异氰酸酯所制成。
式(2)
Figure PCTCN2020070682-appb-000003
在一实施例,当m是0,x是介于5~100之间时,表示该聚氨酯寡聚物是由双酚化合物和二异氰酸酯所制成;较佳地,该双酚化合物包含双酚A。
在一实施例,其中当该R 1是源于下述胺类化合物:脂肪族二胺、 芳香族二胺或聚醚二胺,且该R 2是源于下述的异氰酸酯:芳香族二异氰酸酯或脂肪族二异氰酸酯;则上述的二元醇是选自下列群组之一:脂肪族二元醇、聚醚二元醇、聚酯二元醇和双酚化合物;和该二元醇和该聚氨酯寡聚物的使用重量比值是1~3;和m是1~5的整数,x介于5~100之间。
在另一实施例,当该R 1是源于含硅氧烷基的胺类化合物;且该R 2是源于脂肪族二异氰酸酯时,则该二元醇是选自下列群组之一:脂肪族二元醇和双酚化合物;和该二元醇和该聚氨酯寡聚物的使用重量比值是0.2~0.8;和m是1~5的整数;x介于5~100之间。
总结,上述的胺类化合物或含硅氧烷基的胺类化合物所合成的聚碳酸酯衍生物分别和特定种类的二异氰酸酯反应得到不含硅或含硅氧烷基的聚氨酯寡聚物,然后该不含硅或含硅氧烷基的聚氨酯寡聚物分别和特定种类二元醇进行链延长反应(chain extension),且该二元醇和该不含硅或含硅氧烷基聚氨酯寡聚物的使用重量比值分别是1~3和0.2~0.8,借此得到所述的高拉伸强度的热可塑性聚氨酯。
具体地,该高拉伸强度的热可塑性聚氨酯的拉伸强度大于约2.5MPa。较佳地,该高拉伸强度的热可塑性聚氨酯的拉伸强度大于约5.0MPa。
具体地,该高拉伸强度的热可塑性聚氨酯的重量平均分子量是10,000~400,000Da。
具体地,该高拉伸强度的热可塑性聚氨酯在氢核磁共振光谱图化学位移约1.35ppm-1.65ppm具有特征峰,或在化学位移约3.65-4.15ppm范围具有特征峰。上述的高拉伸强度的热可塑性聚氨酯还在化学位移7.50-8.00ppm具有氨基甲酸酯(carbamate)的氨基(-C=O)NH-)特征峰。
本发明的第三目的是提供一种具有高拉伸强度的热可塑性聚氨酯的制造方法,其包含使用如本发明第一目的所述的配方进行链延长反应,借此制成高拉伸强度的热可塑性聚氨酯,该高拉伸强度的热可塑性聚氨酯的拉伸强度大于约2.5MPa。特别地,上述的制造方法能够使用废弃聚碳酸酯作为所述的聚碳酸酯衍生物的原料。因此,本发明第三目的所提供的具有高拉伸强度的热可塑性聚氨酯的制造方法还解决了废弃聚碳酸酯的处理问题。相较于传统的废弃高分子焚烧处理法,上述的方法使二氧化碳再次固定在新颖的具有高拉伸强度的热可塑性聚氨酯的结构内,其制造过程不会释放二氧化碳,延长了二氧化碳的碳循环。因此,本发明第三目的所述的具有高拉伸强度的热可塑性聚氨酯的制造方法是一兼具环境友善和具有高度原子效益的热可塑性聚氨酯制造方法。
具体地,上述的链延长反应的温度是60~100℃。
综上所述,本发明提供的一种具有高拉伸强度的热可塑性聚氨酯、其制备配方及制造方法至少具有以下创新特色和优点:(1)本发明提供 的用于制备具有高拉伸强度的热可塑性聚氨酯的配方,是属于二液型配方,其包含使用了源自于聚碳酸酯衍生物的新型聚氨酯寡聚物(第一剂)和链延长剂(第二剂),并且在特定聚氨酯寡聚物和链延长剂的种类及其使用重量配比范围的条件下制成现有习知配方难以制成的具有高拉伸强度的热可塑性聚氨酯;(2)本发明提供的具有高拉伸强度的热可塑性聚氨酯,其拉伸强度大于2.5MPa,且在特定组成下,具有超过15.0MPa拉伸强度与超过300%的拉伸长度,因此在未经加工前就能展现出优异的热可塑性聚氨酯弹性体的性质;和(3)本发明提供的具有高拉伸强度的热可塑性聚氨酯的制造方法能够使用废弃聚碳酸酯作为起始原料。所述的具有高拉伸强度的热可塑性聚氨酯的制造方法还解决了聚碳酸酯废弃物的处理问题。上述的方法更将二氧化碳再次固定在新颖的具有高拉伸强度的热可塑性聚氨酯的结构内,其制造过程不会释放二氧化碳,延长了二氧化碳的碳循环,是一兼具环境友善和具有高度原子效益的热可塑性聚氨酯制造方法。
附图的简要说明
图1是第一实施例所述的聚氨酯寡聚物的氢核磁共振光谱图。
图2是第二实施例所述的热可塑性聚氨酯的氢核磁共振光谱图。
图3是热可塑性聚氨酯EM-G30的热示差扫描(DSC)图。
图4是热可塑性聚氨酯SI-O70的热示差扫描(DSC)图。
图5是热可塑性聚氨酯EM-E45的热示差扫描(DSC)图。
图6是热可塑性聚氨酯EM-P45的热示差扫描(DSC)图。
图7是热可塑性聚氨酯EM-G30的拉伸强度和拉伸率的坐标图。
图8是热可塑性聚氨酯SI-O70的拉伸强度和拉伸率的坐标图。
实现发明的最佳方式
有关本发明的前述及其他技术内容、特点与功效,在以下配合参考图式之一较佳实施例的详细说明中将可清楚的呈现。为了能彻底地了解本发明,将在下列的描述中提出详尽的步骤及其组成。显然地,本发明的施行并未限定于该领域的技艺者所熟习的特殊细节。另一方面,众所周知的组成或步骤并未描述于细节中,以避免造成本发明不必要的限制。本发明的较佳实施例会详细描述如下,然而除了这些详细描述之外,本发明还可以广泛地施行在其他的实施例中,且本发明的范围不受限定,其以之后的专利范围为准。
根据本发明的第一实施例,本发明提供一种用于制备具有高拉伸强度的热可塑性聚氨酯的配方,该配方包含第一剂和第二剂,该第一剂包含一聚氨酯寡聚物,和该第二剂包含一链延长剂;该聚氨酯寡聚物是由聚碳酸酯衍生物或双酚化合物和二异氰酸酯进行反应所制成,该聚碳酸酯衍生物的结构如式(1)所示。
式(1)。
Figure PCTCN2020070682-appb-000004
在一实施例,当该R 1是源于下述胺类化合物:脂肪族二胺、芳香族二胺或聚醚二胺,且该二异氰酸酯是独立选自以下群组之一:芳香族二异氰酸酯和脂肪族二异氰酸酯;则该链延长剂是选自下列群组之一:脂肪族二元醇、聚醚二元醇、聚酯二元醇和双酚化合物;该链延长剂和该聚氨酯寡聚物的使用重量比值是1~3,和m是1~5的整数。
在另一实施例,当该R 1是源于含硅氧烷基的胺类化合物;且该二异氰酸酯是脂肪族二异氰酸酯,则该链延长剂是选自下列群组之一:脂肪族二元醇和双酚化合物;该链延长剂和该聚氨酯寡聚物的使用重量比值是0.2~0.8,和m是1~5的整数。
在一实施例,该脂肪族二胺包含碳数2~40的直链状二胺或碳数2~40的分支状二胺。上述的脂肪族二胺的二胺基的相对位置可为对称或不对称。较佳地,该碳数2~40的直链状二胺是1,4-丁二胺、1,5-戊二胺或1,6-己二胺。
在一实施例,该聚醚二胺的重量平均分子量是100~5,000Da。较佳地,该聚醚二胺是指Jeffamine系列的聚醚二胺。
在一实施例,该芳香族二异氰酸酯包含二苯基甲烷二异氰酸酯(MDI)、二苯基二氟代甲烷二异氰酸酯、对苯二异氰酸酯、邻苯二异氰酸酯、间苯二异氰酸酯、2,2’-联苯二异氰酸酯、3,3’-联苯二异氰酸酯、4,4’-联苯二异氰酸酯、萘二异氰酸酯或其组合。
在一实施例,该脂肪族二异氰酸酯包含六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯、4,4’-二环己基甲烷二异氰酸酯或其组合。
在一实施例,该脂肪族二元醇包含碳数2~40的直链状二元醇或碳数2~40的分支状二元醇。上述的脂肪族二元醇的二醇基的相对位置可为对称或不对称。较佳地,该碳数2~40的直链状元醇是1,4-丁二醇、1,5-戊二醇或1,6-己二醇。
在一实施例,该聚醚二元醇是选自以下群组之一:聚四氢呋喃(polytetramethylene ether glycol,PTMEG)、聚四氢呋喃-环氧乙烷(polytetramethylene ether glycol-ethylene glycol copolymer)、聚四氢呋喃-环氧丙烷(polytetramethylene ether glycol-propylene glycol copolymer)和其组合。
在一实施例,该聚酯二元醇包含聚酯二醇(polyester diol)、聚碳酸酯二元醇、聚己内酯二醇(polycaprolactone diol)或其组合。
具体地,该聚醚二胺的重量平均分子量约是100~5,000Da。
在一实施例,该含硅氧烷基的胺类化合物的分子量是150~10,000Da。较佳地,所述的硅氧烷基的结构如式(3)所示。
式(3)。
Figure PCTCN2020070682-appb-000005
在一实施例,该聚氨酯寡聚物在氢核磁共振光谱图的化学位移约1.35ppm-1.65ppm具有特征峰,或在化学位移约3.65-4.15ppm具有特征峰。具体的,该聚氨酯寡聚物的氢核磁共振光谱图如图1所示,其中在约2.5~3.0ppm和8.0ppm分别是DMSO和DMF溶剂的特征峰。
在一实施例,该双酚化合物包含双酚A。
在一实施例,该聚氨酯寡聚物的重量平均分子量是4,000~40,000Da。
在一实施例,所述的用于制备具有高拉伸强度的热可塑性聚氨酯的配方,其是应用于制备拉伸强度大于约2.5MPa的热可塑性聚氨酯。较佳地,是制备拉伸强度大于约5.0MPa的热可塑性聚氨酯。
本发明第二实施例提供一种热可塑性聚氨酯,其是一高拉伸强度的热可塑性聚氨酯,是由聚氨酯寡聚物和二元醇进行反应所制成,该聚氨酯寡聚物的化学式如式(2)所示。
式(2)。
Figure PCTCN2020070682-appb-000006
在一实施例,当m是0;x介于5~100之间时,表示该聚氨酯寡聚物是由双酚化合物和二异氰酸酯所制成;较佳地,该双酚化合物包含双酚A。
在一实施例,当该R 1是源于下述胺类化合物:脂肪族二胺、芳香族二胺或聚醚二胺,且该R 2是源于下述的异氰酸酯:芳香族二异氰酸酯或脂肪族二异氰酸酯;则上述的二元醇是选自下列群组之一:脂肪族二元醇、聚醚二元醇、聚酯二元醇和双酚化合物;和该二元醇和该聚氨酯寡聚物的使用重量比值是1~3;和m是1~5的整数;x介于5~100之间。
在另一实施例,当该R 1是源于含硅氧烷基的胺类化合物;且该R 2是源于脂肪族二异氰酸酯时,则该二元醇是选自下列群组之一:脂肪族二元醇和双酚化合物;和该二元醇和该聚氨酯寡聚物的使用重量比值是0.2~0.8;和m是1~5的整数;x介于5~100之间。
在一实施例,该高拉伸强度的热可塑性聚氨酯的拉伸强度大于约 2.5MPa。较佳地,该高拉伸强度的热可塑性聚氨酯的拉伸强度大于约5.0MPa,且拉伸长度比例大于300%。
在一实施例,该高拉伸强度的热可塑性聚氨酯的重量平均分子量是10,000~400,000Da。
在一实施例,该高拉伸强度的热可塑性聚氨酯在氢核磁共振光谱图化学位移约1.35ppm-1.65ppm具有特征峰,或在化学位移约3.65-4.15ppm范围具有特征峰。具体的,该高拉伸强度的热可塑性聚氨酯的氢核磁共振光谱图如图2所示,其中在约2.5~3.0ppm和8.0ppm分别是DMSO和DMF溶剂的特征峰。
在一实施例,该聚氨酯寡聚物的重量平均分子量是4,000~40,000Da。
在一实施例,该脂肪族二胺包含碳数2~40的直链状二胺或碳数2~40的分支状二胺。上述的脂肪族二胺的二胺基的相对位置可为对称或不对称。较佳地,该碳数2~40的直链状二胺是1,4-丁二胺、1,5-戊二胺或1,6-己二胺。
在一实施例,该聚醚二胺的重量平均分子量是100~5,000Da。较佳地,该聚醚二胺是指Jeffamine系列的聚醚二胺。
在一实施例,该芳香族二异氰酸酯包含二苯基甲烷二异氰酸酯(MDI)、二苯基二氟代甲烷二异氰酸酯、对苯二异氰酸酯、邻苯二异氰酸酯、间苯二异氰酸酯、2,2’-联苯二异氰酸酯、3,3’-联苯二异氰酸酯、4,4’-联苯二异氰酸酯、萘二异氰酸酯或其组合。
具体地,该脂肪族二异氰酸酯包含六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯、4,4’-二环己基甲烷二异氰酸酯或其组合。
在一实施例,该脂肪族二元醇包含碳数2~40的直链状二元醇或碳数2~40的分支状二元醇。上述的脂肪族二元醇的二醇基的相对位置可为对称或不对称。较佳地,该碳数2~40的直链状元醇是1,4-丁二醇、1,5-戊二醇或1,6-己二醇。
在一实施例,该聚醚二元醇是选自以下群组之一:聚四氢呋喃(polytetramethylene ether glycol,PTMEG)、聚四氢呋喃-环氧乙烷(polytetramethylene ether glycol-ethylene glycol copolymer)、聚四氢呋喃-环氧丙烷(polytetramethylene ether glycol-propylene glycol copolymer)和其组合。
在一实施例,该聚酯二元醇包含聚酯二醇(polyester diol)、聚碳酸酯二元醇、聚己内酯二醇(polycaprolactone diol)或其组合。
具体地,该聚醚二胺的重量平均分子量约是100~5,000Da。
在一实施例,该含硅氧烷基的胺类化合物的分子量是150~10,000Da。较佳地,该含硅氧烷基的结构如式(3)所示。
式(3)。
Figure PCTCN2020070682-appb-000007
本发明第三实施例提供一种具有高拉伸强度的热可塑性聚氨酯的制造方法,其步骤包含使用如第一实施例所述的配方进行链延长反应,借此制成一高拉伸强度的热可塑性聚氨酯,该高拉伸强度的热可塑性聚氨酯的拉伸强度大于约2.5MPa。
在一实施例,该链延长反应的温度介于60~100℃之间。
在一实施例,该高拉伸强度的热可塑性聚氨酯在氢核磁共振光谱图化学位移约1.35ppm-1.65ppm范围具有特征峰,或在约3.65-4.15ppm范围具有特征峰。
在一实施例,该高拉伸强度的热可塑性聚氨酯的重量平均分子量是10,000~400,000Da。
在一代表实施例,使用以二苯基甲烷二异氰酸酯(MDI)和聚碳酸酯衍生物制成的聚氨酯寡聚物和聚醚二元醇(PTMEG2000)或聚己内酯二醇(PCL2000)合成本发明所述的具有高拉伸强度的热可塑性聚氨酯,其结构如式(4)所示,其中R 1是源自1,6-己二胺,R 2是源自二苯基甲烷二异氰酸酯(MDI),和R 3是源自聚醚二元醇(PTMEG2000)或聚己内酯二醇(PCL2000)。
式(4),其中m是1~5的整数,x介于5~100之间和;y介于1至40之间。
Figure PCTCN2020070682-appb-000008
以下范例和实验例是依据上述的发明内容和实施例所述的内容所进行的实验,并据此做为本发明的详细说明。
范例一:本发明所述的聚碳酸酯衍生物的通用制备步骤
提供一包含聚碳酸酯、二胺化合物或含硅基二胺化合物和一溶剂的混合物;该混合物还可包含碳酸二苯酯或其组合物。适当的容剂包括异丙醚、苯甲醚、苯乙醚、苯丙醚、苯丁醚、邻甲基苯甲醚、间甲基苯甲醚、对甲基苯甲醚、苄基乙基醚、二苯醚、二苄醚、四氢呋喃、二氢吡喃、四氢吡喃、2-甲基四氢吡喃、苯、甲苯、二甲苯、乙苯、二乙苯或环己苯。然后在50~200℃混和反应上述的聚碳酸酯类和该二胺或含硅基二胺化合物,经过移除蒸馏移除溶剂和副产物或再以管柱层析法纯化移除副产物后,得到所述的聚碳酸酯衍生物。具体的实验例配方、聚碳酸酯和二胺的使用重量如表一所示。
表一
Figure PCTCN2020070682-appb-000009
Figure PCTCN2020070682-appb-000010
范例二:本发明所述的聚氨酯寡聚物的通用制备步骤
所述的聚氨酯寡聚物的是利用高分子聚合反应制备而成。具体地,将各种的二异氰酸酯,如二苯基甲烷二异氰酸酯(MDI)、异佛尔酮二异氰酸酯(IPDI)或1,6-己二异氰酸酯(HDI);和上述的聚碳酸酯衍生物如聚碳酸酯衍生物A、E或S在60-100℃之间进行缩合聚合反应,反应过程可加入溶剂如二甲基甲酰胺、N-甲基吡咯烷酮、四氢呋喃、二甲基亚砜或苯甲醚帮助反应进行,完成反应时可在FT-IR光谱图1750±50cm -1位置看到胺基甲酸酯官能基的特征峰。具体的实验例配方和使用重量如表二所示。
表二
Figure PCTCN2020070682-appb-000011
上述表二所列的聚氨酯寡聚物都在氢核磁共振光谱图的化学位移约1.35ppm-1.65ppm具有特征峰,或在化学位移约3.65-4.15ppm具有特征峰。且在化学位移约7.50-8.00ppm具有氨基甲酸酯(carbamate)的氨基(-C=O)NH-)特征峰。
范例三:本发明所述的热可塑性聚氨酯的通用制备步骤
上述的聚氨酯寡聚物和各种二元醇链延长剂加热进行链延长反 应,得到各种不同的热可塑性聚氨酯,具体的实验范例所使用的配方、使用重量比值和所得到的热可塑性聚氨酯的性质数据分别如表三和表四所示。
表三
Figure PCTCN2020070682-appb-000012
上述表三是合成热可塑性聚氨酯的配方表,其中控制组EM-100是百分之百的前述的聚碳酸酯衍生物E和二苯基甲烷二异氰酸酯(MDI)所合成的样品;所使用的聚氨酯寡聚物的配方则如表二所示;本实验分别使用不同种类和重量比值的二元醇和聚氨酯寡聚物进行热可塑性聚氨酯的合成和其性质测量,借此筛选合适的反应配方,以达到制成具有高拉伸强度等优异性质的热可塑性聚氨酯的目的。制成的热可塑性聚氨酯的各项性质比较如表四所示。
表四
Figure PCTCN2020070682-appb-000013
Figure PCTCN2020070682-appb-000014
a:拉伸强度(stress)是借由万能拉力机测量;
b:拉伸率(strain):是借由万能拉力机测量;
c:膜特性是借由成膜后的巨观状态;
d:PC(wt.%)表示该热可塑性聚氨酯所包含的理论聚碳酸酯含量(碳酸酯(g)/热可塑性聚氨酯(g));
e:Tg是玻璃转移温度;和
n.a.表示该数值低于量测的量测下限值,无法取得数值。
根据表四的热可塑性聚氨酯性质的实验数值进行分析,明确得知下述的热可塑性聚氨酯同时具有大于2.5MPa的拉伸强度和良好的膜伸缩弹性:AM-G30、AM-G45、EM-G30、EM-G45、EM-L30、EM-L45和SI-O70。
依据表三的合成热可塑性聚氨酯的配方表,并比对表四的实验数据,显示本发明所述的源于聚碳酸酯衍生物的聚氨酯寡聚物无法和聚乙二醇或聚丙二醇合成得到具有拉伸强度的热可塑性聚氨酯,据此得知本发明所提供的用于制备具有高拉伸强度的热可塑性聚氨酯的配方中的链延长剂(二元醇)是有其配伍专一性。
明显地,表二所述的源于含硅氧烷基二胺的聚碳酸酯衍生物S和芳香族二异氰酸酯(MDI)所合成的聚氨酯寡聚物(SM)无法和脂肪族二元醇(1,6-己二醇)合成得到热可塑性聚氨酯。但是该聚碳酸酯衍生物S和脂肪族二异氰酸酯(IPDI)所合成的聚氨酯寡聚物(SI)在本发明设计的二元醇/聚氨酯寡聚物的重量比值范围内能合成得到具有拉伸强度高达54MPa的热可塑性聚氨酯(SI-O70)。据此,一含有硅氧烷基的聚氨酯寡聚物必须是不存在芳香环结构,方能和链延长剂(二元醇)反应制造得到本发明所述的具有高拉伸强度的热可塑性聚氨酯。换言之,一具有高拉伸强度的含硅氧烷基的热可塑性聚氨酯是源于脂肪族二异氰酸酯,特别是异佛尔酮二异氰酸酯(IPDI)。
上述的热可塑性聚氨酯EM-G30和SI-O70,分别使用热示差扫描仪进行热分析,其热示差扫描图谱(DSC)分别如图3和图4所示。另外,热可塑性聚氨酯EM-E45和EM-P45的热示差扫描图谱(DSC)分别如图5和图6所示。明显地,当使用聚乙二醇(E)或聚丙二醇(P)作为链延长 剂时,DSC图谱显示其在-33℃或-20℃就观察到吸热现象,此表示该热可塑性聚氨酯EM-E45和EM-P45在室温下因为吸热效应导致其内部高分子链段结构松软无法具有拉伸强度。据此,热分析数据具体证实聚乙二醇或聚丙二醇不适用做本发明所述的配方中的链延长剂。
热可塑聚氨酯的拉伸强度测试
上述的热可塑性聚氨酯EM-G30、SI-O70、EM-E45和EM-P45使用万能拉力机(厂牌及型号:MTS Landmark 370.02 Test System)进行拉伸强度和拉伸率的测试。测试条件是依据ASTM D638标准制备样品大小,测试样品使用的拉伸速度是100mm/min,所得到的上述的热可塑性聚氨酯EM-G30和SI-O70测试结果分别如图7和图8所示,其中EM-G30的拉伸强度超过5.0MPa,达到约13.0MPa,且其拉伸率更高达约1200%;SI-O70的拉伸强度更高达约54MPa。但是EM-E45和EM-P45在进行测量时,其测试样品于实验过程中断裂,造成其拉伸强度无法量测。据此证明聚乙二醇或聚丙二醇系列的二元醇不适用作为本发明配方的链延长剂。
以上虽以特定实验例说明本发明,但并不因此限定本发明的范围,只要不脱离本发明的要旨,熟悉本技艺者了解在不脱离本发明的意图及范围下可进行各种变形或变更。此外,摘要部分和标题仅是用来辅助专利文件搜寻之用,并非用来限制本发明的权利范围。

Claims (29)

  1. 一种用于制备具有高拉伸强度的热可塑性聚氨酯的配方,该配方包含第一剂和第二剂,该第一剂包含一聚氨酯寡聚物,和该第二剂包含一链延长剂;该聚氨酯寡聚物是由聚碳酸酯衍生物或双酚化合物和二异氰酸酯进行反应所制成,该聚碳酸酯衍生物的结构如式(1)所示:
    Figure PCTCN2020070682-appb-100001
    其中,当R 1是源于下述胺类化合物:脂肪族二胺、芳香族二胺或聚醚二胺,且该二异氰酸酯是独立选自以下群组之一:芳香族二异氰酸酯和脂肪族二异氰酸酯;则该链延长剂是选自下列群组之一:脂肪族二元醇、聚醚二元醇、聚酯二元醇和双酚化合物;该链延长剂和该聚氨酯寡聚物的使用重量比值是1~3,和m是1~5的整数;或
    当R 1是源于含硅氧烷基的胺类化合物;且该二异氰酸酯是脂肪族二异氰酸酯,则该链延长剂是选自下列群组之一:脂肪族二元醇和双酚化合物;该链延长剂和该聚氨酯寡聚物的使用重量比值是0.2~0.8,和m是1~5的整数。
  2. 根据权利要求1所述的用于制备具有高拉伸强度的热可塑性聚氨酯的配方,该脂肪族二胺包含碳数2~40的直链状二胺或碳数2~40的分支状二胺。
  3. 根据权利要求1所述的用于制备具有高拉伸强度的热可塑性聚氨酯的配方,该芳香族二异氰酸酯包含二苯基甲烷二异氰酸酯(MDI)、二苯基二氟代甲烷二异氰酸酯、对苯二异氰酸酯、邻苯二异氰酸酯、间苯二异氰酸酯、2,2’-联苯二异氰酸酯、3,3’-联苯二异氰酸酯、4,4’-联苯二异氰酸酯、萘二异氰酸酯或其组合。
  4. 根据权利要求1所述的用于制备具有高拉伸强度的热可塑性聚氨酯的配方,该脂肪族二异氰酸酯包含六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯(IPDI)、4,4’-二环己基甲烷二异氰酸酯或其组合。
  5. 根据权利要求1所述的用于制备具有高拉伸强度的热可塑性聚氨酯的配方,该脂肪族二元醇包含碳数2~40的直链状二元醇或碳数2~40的分支状二元醇。
  6. 根据权利要求1所述的用于制备具有高拉伸强度的热可塑性聚氨酯的配方,该聚醚二元醇是选自以下群组之一:聚四氢呋喃、聚四氢呋喃-环氧乙烷、聚四氢呋喃-环氧丙烷和其组合。
  7. 根据权利要求1所述的用于制备具有高拉伸强度的热可塑性聚氨酯的配方,该聚酯二元醇包含聚酯二醇、聚碳酸酯二元醇、聚己内酯二醇或其组合。
  8. 根据权利要求1所述的用于制备具有高拉伸强度的热可塑性聚氨酯的配方,该聚醚二胺的重量平均分子量约是100~5,000Da。
  9. 根据权利要求1所述的用于制备具有高拉伸强度的热可塑性聚氨酯的配方,该含硅氧烷基的胺类化合物的分子量约是150~10,000Da。
  10. 根据权利要求1所述的用于制备具有高拉伸强度的热可塑性聚氨酯的配方,该聚氨酯寡聚物在氢核磁共振光谱图的化学位移约1.35ppm-1.65ppm具有特征峰,或在化学位移约3.65-4.15ppm具有特征峰。
  11. 根据权利要求1所述的用于制备具有高拉伸强度的热可塑性聚氨酯的配方,该聚氨酯寡聚物的重量平均分子量是4,000~40,000Da。
  12. 根据权利要求1所述的用于制备具有高拉伸强度的热可塑性聚氨酯的配方,其是应用于制备拉伸强度大于约2.5MPa的热可塑性聚氨酯。
  13. 一种热可塑性聚氨酯,其是一高拉伸强度的热可塑性聚氨酯,和是由一聚氨酯寡聚物和一二元醇进行反应所制成;该聚氨酯寡聚物的化学式如式(2)所示:
    Figure PCTCN2020070682-appb-100002
    其中,当m是0;x介于5~100之间时,表示该聚氨酯寡聚物是由双酚化合物和二异氰酸酯所制成;或
    当R 1是源于下述胺类化合物:脂肪族二胺、芳香族二胺或聚醚二胺,且R 2是源于下述的异氰酸酯:芳香族二异氰酸酯或脂肪族二异氰酸酯;则上述的二元醇是选自下列群组之一:脂肪族二元醇、聚醚二元醇、聚酯二元醇和双酚化合物;和该二元醇和该聚氨酯寡聚物的使用重量比值是1~3;和m是1~5的整数;x介于5~100之间;或
    当R 1是源于含硅氧烷基的胺类化合物;且R 2是源于脂肪族二异氰酸酯时,则该二元醇是选自下列群组之一:脂肪族二元醇和双酚化合物;和该二元醇和该聚氨酯寡聚物的使用重量比值是0.2~0.8;和m是1~5的整数;x介于5~100之间。
  14. 根据权利要求13所述的热可塑性聚氨酯,该高拉伸强度的热可塑性聚氨酯的拉伸强度大于约2.5MPa。
  15. 根据权利要求13所述的热可塑性聚氨酯,该高拉伸强度的热可塑性聚氨酯的重量平均分子量是10,000~400,000Da。
  16. 根据权利要求13所述的热可塑性聚氨酯,该高拉伸强度的热可塑性聚氨酯在氢核磁共振光谱图化学位移约1.35ppm-1.65ppm具有特征峰,或在化学位移约3.65-4.15ppm范围具有特征峰。
  17. 根据权利要求13所述的热可塑性聚氨酯,该聚氨酯寡聚物的重量平均分子量是4,000~40,000Da。
  18. 根据权利要求13所述的热可塑性聚氨酯,该脂肪族二胺包含碳数2~40的直链状二胺或碳数2~40的分支状二胺。
  19. 根据权利要求13所述的热可塑性聚氨酯,该芳香族二异氰酸酯包含二苯基甲烷二异氰酸酯(MDI)、二苯基二氟代甲烷二异氰酸酯、对苯二异氰酸酯、邻苯二异氰酸酯、间苯二异氰酸酯、2,2’-联苯二异氰酸酯、3,3’-联苯二异氰酸酯、4,4’-联苯二异氰酸酯、萘二异氰酸酯或其组合。
  20. 根据权利要求13所述的热可塑性聚氨酯,该脂肪族二异氰酸酯包含六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯(IPDI)、4,4’-二环己基甲烷二异氰酸酯或其组合。
  21. 根据权利要求13所述的热可塑性聚氨酯,该脂肪族二元醇包含碳数2~40的直链状二元醇或碳数2~40的分支状二元醇。
  22. 根据权利要求13所述的热可塑性聚氨酯,该聚醚二元醇是选自以下群组之一:聚四氢呋喃、聚四氢呋喃-环氧乙烷、聚四氢呋喃-环氧丙烷和其组合。
  23. 根据权利要求13所述的热可塑性聚氨酯,该聚酯二元醇包含聚酯二醇、聚碳酸酯二元醇、聚己内酯二醇或其组合。
  24. 根据权利要求13所述的热可塑性聚氨酯,该聚醚二胺的重量平均分子量是100~5,000Da。
  25. 根据权利要求13所述的热可塑性聚氨酯,该含硅氧烷基的胺类化合物的分子量是150~10,000Da。
  26. 一种具有高拉伸强度的热可塑性聚氨酯的制备方法,其步骤包含使用如权利要求1所述的配方进行链延长反应,借此制成一高拉伸强度的热可塑性聚氨酯,该高拉伸强度的热可塑性聚氨酯的拉伸强度大于约2.5MPa。
  27. 根据权利要求26所述的制备方法,该链延长反应的温度是介于60~100℃。
  28. 根据权利要求26所述的制备方法,该高拉伸强度的热可塑性聚氨酯在氢核磁共振光谱图化学位移约1.35ppm-1.65ppm范围具有特征峰,或在约3.65-4.15ppm范围具有特征峰。
  29. 根据权利要求26所述的制备方法,该高拉伸强度的热可塑性聚氨酯的重量平均分子量是10,000~400,000Da。
PCT/CN2020/070682 2020-01-07 2020-01-07 一种具有高拉伸强度的热可塑性聚氨酯、其制备配方及制造方法 WO2021138803A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20911581.5A EP4089130A4 (en) 2020-01-07 2020-01-07 THERMOPLASTIC POLYURETHANE WITH HIGH TENSILE STRENGTH, PREPARATION FORMULATION AND METHOD FOR MANUFACTURING THEREOF
JP2022541988A JP2023509188A (ja) 2020-01-07 2020-01-07 高引張強度の熱可塑性ポリウレタン、配合成分及び製造方法
PCT/CN2020/070682 WO2021138803A1 (zh) 2020-01-07 2020-01-07 一种具有高拉伸强度的热可塑性聚氨酯、其制备配方及制造方法
CN202080093689.0A CN115003723B (zh) 2020-01-07 2020-01-07 一种具有高拉伸强度的热可塑性聚氨酯、其制备配方及制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/070682 WO2021138803A1 (zh) 2020-01-07 2020-01-07 一种具有高拉伸强度的热可塑性聚氨酯、其制备配方及制造方法

Publications (1)

Publication Number Publication Date
WO2021138803A1 true WO2021138803A1 (zh) 2021-07-15

Family

ID=76788548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070682 WO2021138803A1 (zh) 2020-01-07 2020-01-07 一种具有高拉伸强度的热可塑性聚氨酯、其制备配方及制造方法

Country Status (4)

Country Link
EP (1) EP4089130A4 (zh)
JP (1) JP2023509188A (zh)
CN (1) CN115003723B (zh)
WO (1) WO2021138803A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194101A (ja) * 2000-10-19 2002-07-10 Sanyo Chem Ind Ltd 水膨張性ポリウレタン成形品及びその製法
CN107141471A (zh) * 2016-03-01 2017-09-08 北京化工大学 非异氰酸酯法制备脂肪族可生物降解热塑性聚氨酯及弹性体的方法
WO2018013886A1 (en) * 2016-07-14 2018-01-18 Lanxess Solutions Us Inc. Cast urethanes made from low free monomer prepolymer with polycarbonate backbone
CN109467664A (zh) * 2017-09-08 2019-03-15 汪上晓 聚氨酯树脂的制备方法
CN109517131A (zh) * 2018-11-12 2019-03-26 万华化学集团股份有限公司 热塑性有机硅聚氨酯及其合成方法
CN110358044A (zh) * 2019-05-17 2019-10-22 中国科学院化学研究所 一种聚氨酯及其制备方法和应用

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB906790A (zh) * 1957-11-22
US4837292A (en) * 1987-12-17 1989-06-06 E. I. Dupont De Nemours And Company Article of spandex having polycarbonate soft segment
AT394729B (de) * 1990-09-17 1992-06-10 Vianova Kunstharz Ag Verfahren zur herstellung von vernetzungskomponenten fuer kathodisch abscheidbarelackbindemittel
JPH06228268A (ja) * 1993-02-05 1994-08-16 Idemitsu Kosan Co Ltd ポリアシルウレタンとその製造法
DE4315662A1 (de) * 1993-05-11 1994-11-17 Bayer Ag Verfahren zur Umsetzung von Ester- oder Carbonatgruppen zu Amid- oder Urethangruppen
DE19619237A1 (de) * 1996-05-13 1997-11-20 Bayer Ag Hydroxyfunktionelle Polyurethancarbonate, ein Verfahren zu deren Herstellung und deren Verwendung
US7645831B2 (en) * 2004-03-26 2010-01-12 Henkel Ag & Co. Kgaa Reactive hot melt adhesives
US20070048526A1 (en) * 2005-08-31 2007-03-01 Hoffman William F Iii Recycling compatible hard coating
DE102012218846A1 (de) * 2012-10-16 2014-04-17 Bayer Materialscience Ag Herstellung und Verwendung neuer thermoplastischer Polyurethan-Elastomere auf Basis von Polyethercarbonatpolyolen
JP6045908B2 (ja) * 2012-12-21 2016-12-14 ヘンケルジャパン株式会社 湿気硬化型ホットメルト接着剤
CN104231221A (zh) * 2014-09-18 2014-12-24 东莞市吉鑫高分子科技有限公司 一种耐高温热塑性聚氨酯弹性体及其制备方法
GB201508727D0 (en) * 2015-05-21 2015-07-01 Croda Int Plc Polyurethane
CN104910348B (zh) * 2015-06-16 2017-12-26 中国科学院化学研究所 一种聚碳酸酯型聚氨酯及其绿色制备方法
CN105542121B (zh) * 2015-12-30 2018-05-29 贾学明 紫外光固化聚氨酯丙烯酸酯及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194101A (ja) * 2000-10-19 2002-07-10 Sanyo Chem Ind Ltd 水膨張性ポリウレタン成形品及びその製法
CN107141471A (zh) * 2016-03-01 2017-09-08 北京化工大学 非异氰酸酯法制备脂肪族可生物降解热塑性聚氨酯及弹性体的方法
WO2018013886A1 (en) * 2016-07-14 2018-01-18 Lanxess Solutions Us Inc. Cast urethanes made from low free monomer prepolymer with polycarbonate backbone
CN109467664A (zh) * 2017-09-08 2019-03-15 汪上晓 聚氨酯树脂的制备方法
CN109517131A (zh) * 2018-11-12 2019-03-26 万华化学集团股份有限公司 热塑性有机硅聚氨酯及其合成方法
CN110358044A (zh) * 2019-05-17 2019-10-22 中国科学院化学研究所 一种聚氨酯及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4089130A4 *

Also Published As

Publication number Publication date
JP2023509188A (ja) 2023-03-07
EP4089130A4 (en) 2023-10-25
EP4089130A1 (en) 2022-11-16
CN115003723A (zh) 2022-09-02
CN115003723B (zh) 2023-12-05

Similar Documents

Publication Publication Date Title
US5811506A (en) Extrudable thermoplastic elastomeric urea-extended polyurethane
US6258917B1 (en) Extrudable thermoplastic elastomeric urea-extended polyurethane
Shen et al. Synthesis and characterization of vegetable oil based polyurethanes with tunable thermomechanical performance
CN102604038B (zh) 透明聚氨酯弹性体及制备方法和应用
CN101440154A (zh) 一种水性聚氨酯及其制备方法
CN107531872A (zh) 聚氨酯
JP3672572B2 (ja) 押出可能で熱可塑性で弾性のあるウレア伸長ポリウレタン
JPS5982352A (ja) アルコ−ル置換アミド、その製造方法およびこれを含むポリウレタン用鎖長伸長剤、ゴム状組成物および硬化方法
CN112225872A (zh) 水性聚氨酯及其制备方法
TWI274060B (en) Thermoplastic polyurethanes and method of fabricating the same
JP3009087B2 (ja) 熱可塑性ポリウレタンエラストマー及びその製造方法
KR101934747B1 (ko) 글리시돌을 이용한 변성 우레탄 에폭시 제조방법
WO2021138803A1 (zh) 一种具有高拉伸强度的热可塑性聚氨酯、其制备配方及制造方法
TWI757148B (zh) 一種具有高拉伸強度的熱可塑性聚氨酯、其製備配方及製造方法
TWI807144B (zh) 一種具有高拉伸強度的熱可塑性聚氨酯、其製備配方及製造方法
TWI766384B (zh) 源自回收寶特瓶之熱可塑性聚氨酯、其製備配方和製造方法
TWI694988B (zh) 製備含五碳環氧氮苯并環己烷聚胺酯阻尼材料
KR101915797B1 (ko) 중공유리구체를 포함한 폴리우레탄 엘라스토머 및 이의 제조방법
Liu et al. Synthesis and properties of high performance thermoplastic polycarbonate polyurethane elastomers through a non-isocyanate route
KR100415729B1 (ko) 열가소성 폴리우레탄 탄성체의 제조방법
JP2607709B2 (ja) 低温保温性及び高温通気性を備えた被膜の形成方法
CN116217442A (zh) 一种改性胺类扩链剂,以及聚氨酯涂料及其制备方法
JP2004099643A (ja) ウレタンエラストマー形成用組成物、ウレタンエラストマーの製造方法、およびウレタンエラストマー
JPH0231117B2 (zh)
CN117715998A (zh) 2液固化型粘接剂组合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911581

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541988

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020911581

Country of ref document: EP

Effective date: 20220808