WO2021132223A1 - 電解コンデンサおよびその製造方法 - Google Patents

電解コンデンサおよびその製造方法 Download PDF

Info

Publication number
WO2021132223A1
WO2021132223A1 PCT/JP2020/047889 JP2020047889W WO2021132223A1 WO 2021132223 A1 WO2021132223 A1 WO 2021132223A1 JP 2020047889 W JP2020047889 W JP 2020047889W WO 2021132223 A1 WO2021132223 A1 WO 2021132223A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
treatment liquid
solid electrolyte
anode
electrolytic capacitor
Prior art date
Application number
PCT/JP2020/047889
Other languages
English (en)
French (fr)
Inventor
直貴 馬橋
昌利 竹下
斉 福井
慎人 長嶋
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202080087838.2A priority Critical patent/CN114846571A/zh
Priority to US17/756,542 priority patent/US20220415581A1/en
Priority to JP2021567482A priority patent/JPWO2021132223A1/ja
Publication of WO2021132223A1 publication Critical patent/WO2021132223A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/0425Electrodes or formation of dielectric layers thereon characterised by the material specially adapted for cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present disclosure relates to an electrolytic capacitor including a solid electrolyte layer containing a conductive polymer and a method for manufacturing the same.
  • the electrolytic capacitor includes a capacitor element, an exterior body that seals the capacitor element, and an external electrode that is electrically connected to the capacitor element.
  • the capacitor element includes an anode having an anode extraction portion including a first end portion and a cathode forming portion including a second end portion, a dielectric layer formed on the surface of at least the cathode forming portion of the anode body, and a dielectric layer. It is provided with a cathode portion that covers at least a part of the above.
  • the cathode portion includes a solid electrolyte layer containing a conductive polymer that covers at least a part of the dielectric layer, and a cathode extraction layer that covers at least a part of the solid electrolyte layer.
  • An electrolytic capacitor having a solid electrolyte layer containing a conductive polymer is also called a solid electrolytic capacitor.
  • Patent Document 1 describes a cationic agent containing a cationic group and an anionic agent containing a first anionic group and a second anionic group between the first conductive polymer layer and the second conductive polymer layer. It is proposed to provide an intermediate layer containing.
  • Patent Document 2 describes a first solid electrolyte layer, a second solid electrolyte layer, and at least one continuous or discontinuous layer composed of an amine compound existing between them and in the second solid electrolyte layer.
  • a solid electrolytic capacitor including.
  • Patent Document 3 is a method for manufacturing a solid electrolytic capacitor in which an oxide film is formed on an anode valve acting metal, and a conductive polymer layer, a graphite layer, and a silver layer are sequentially formed on the oxide film to serve as a cathode.
  • the method for forming a conductive polymer layer containing a sulfonic acid ester compound is to dissolve a nonionic surfactant having a hydroxyl group in a conductive polymer solution or dispersion containing a sulfonated polymer compound as a dopant and oxidize the mixture.
  • Patent Document 4 the end portion of an anode substrate made of a flat plate-shaped valve acting metal having a dielectric oxide film layer on its surface is used as an anode portion, and the portion excluding the anode portion is solid on the dielectric oxide film layer.
  • a plurality of single-plate capacitor elements in which an electrolyte layer and a conductor layer are sequentially formed therein to serve as a cathode portion are laminated and fixed on an anode-side lead frame with their anode portions aligned in the same direction, and a single-plate capacitor is used.
  • a conductive adhesive layer is formed on the lead frame on the cathode side in a divergent shape from the anode side toward the tip of the cathode part of the element, and the members are laminated and fixed to form a laminated capacitor element.
  • the film thickness of the solid electrolyte layer formed at the corners tends to be smaller than that near the center of the main surface of the anode.
  • a portion not covered with the solid electrolyte layer may be formed at the corner of the anode.
  • One aspect of the present disclosure is a sheet-like anode body having an anode extraction portion including a first end portion and a cathode forming portion including a second end portion.
  • the cathode portion includes a solid electrolyte layer containing a conductive polymer that covers at least a part of the dielectric layer.
  • T1 / T2 is 0.8 or more and 1.7 or less.
  • aspects of the disclosure include the first step of preparing the anode and The second step of forming a dielectric layer on the surface of the anode body and A third step of treating the anode body on which the dielectric layer is formed with a first treatment liquid containing the first conductive polymer or a precursor thereof, and A fourth step of treating the anode body treated with the first treatment liquid with a second treatment liquid containing a surface conditioner, and
  • the present invention relates to a method for manufacturing an electrolytic capacitor, which comprises a fifth step of treating the anode body treated with the second treatment liquid with a third treatment liquid containing a second conductive polymer.
  • FIG. 1 is a schematic cross-sectional view of an electrolytic capacitor according to an embodiment of the present disclosure.
  • FIG. 2 is an enlarged view of the region surrounded by the solid line ⁇ in FIG.
  • FIG. 3 is a schematic front view of the capacitor element when viewed from one main surface side.
  • FIG. 4 is a schematic cross-sectional view of the capacitor element of FIG. 3 taken along the line IV-IV when viewed in the direction of the arrow.
  • the surface tension of the treatment liquid containing the conductive polymer is relatively high. Therefore, it is difficult to uniformly wet the entire surface of the cathode forming portion of the anode body with the treatment liquid. As a result, it is difficult to form a solid electrolyte layer having a uniform thickness on the surface of the cathode forming portion.
  • a sheet-shaped anode body such as a metal foil or a sintered body is generally used.
  • a solid electrolyte layer having a relatively uniform thickness is formed near the center of the main surface of the sheet.
  • a step of treating an anode having a dielectric layer formed with a first treatment liquid containing a first conductive polymer or a precursor thereof, and an anode treated with the first treatment liquid are used.
  • a manufacturing method including a step of treating with a second treatment liquid containing a surface conditioner and a step of treating the anode body treated with the second treatment liquid with a third treatment liquid containing a second conductive polymer.
  • the anode is treated with the second treatment liquid containing the surface conditioner and then with the third treatment liquid containing the second conductive polymer, so that only near the center of the main surface of the anode body.
  • the second conductive polymer can be attached to the corners as well. As a result, it is possible to prevent the thickness of the solid electrolyte layer formed at the corners of the anode from becoming small.
  • the reason why the thickness of the solid electrolyte layer formed at the corners of the anode is suppressed is as follows.
  • the second treatment liquid containing the surface conditioner the second treatment liquid can be spread over the entire surface of the anode body at the cathode forming portion.
  • the components of the second treatment liquid such as the surface conditioner are attached to the entire surface of the cathode forming portion.
  • the third treatment liquid can be spread over the entire surface of the cathode forming portion.
  • the relative ratio of the thickness of the solid electrolyte layer formed at the corners of the anode body to the thickness of the solid electrolyte layer formed near the center of the main surface is increased as compared with the conventional case. be able to.
  • the ratio of the thickness T1 of the solid electrolyte layer formed at the corners of the anode body to the thickness T2 of the solid electrolyte layer formed at the center of the main surface of the anode body. : T1 / T2 is 0.8 or more and 1.7 or less.
  • T1 / T2 is 0.8 or more and 1.7 or less.
  • the third treatment liquid containing the second conductive polymer In order to suppress the variation in the thickness of the solid electrolyte layer, it is considered important to spread the third treatment liquid containing the second conductive polymer over the entire surface of the cathode forming portion of the anode. Therefore, in order to reduce the surface tension of the third treatment liquid, it is conceivable to add a surface conditioner to the third treatment liquid. However, even if the surface conditioner is actually added to the third treatment liquid, the effect of suppressing the thickness of the solid electrolyte layer from being reduced at the corners is small. Further, since the third treatment liquid usually contains various additives in addition to the second conductive polymer, the pot life of the third treatment liquid may be shortened by adding the surface conditioner. is there.
  • the second treatment liquid containing the surface conditioner since the second treatment liquid containing the surface conditioner is used, a good pot life of the treatment liquid is ensured, unlike the case where the surface conditioner is added to the treatment liquid containing the conductive polymer. Can be done. From such a viewpoint, it is preferable that the second treatment liquid does not contain a conductive polymer.
  • the electrolytic capacitor has at least one capacitor element.
  • the capacitor element includes an anode having an anode extraction portion including a first end portion and a cathode forming portion including a second end portion, a dielectric layer formed on the surface of at least the cathode forming portion of the anode body, and a dielectric layer.
  • a cathode portion that covers at least a part of the above is provided.
  • the anode is usually in the form of a sheet.
  • the cathode portion includes a solid electrolyte layer containing a conductive polymer that covers at least a part of the dielectric layer.
  • the thicknesses T1 and T2 are obtained in a cross section perpendicular to the direction from the first end side to the second end side of the capacitor element at an arbitrary position of the portion on the first end side of the cathode portion.
  • this cross section may be simply referred to as a cross section G.
  • the thickness T1 is obtained by measuring and averaging the thicknesses of the solid electrolyte layers formed at the four corners of the anode in the cross section G. First, in the cross section G, a straight line passing through the apex of the corner of the anode is drawn at an angle of 45 ° with respect to the line extending outward from the line segment corresponding to the main surface of the anode.
  • the distance between the point where this straight line intersects the outer edge of the solid electrolyte layer and the apex of the corresponding corner portion is defined as the thickness of the solid electrolyte layer formed at each corner portion.
  • the thickness T2 is obtained by measuring and averaging the thicknesses of the solid electrolyte layers formed in the central portions of the pair of main surfaces of the anode body in the cross section G. First, in the cross section G, a center line passing through each of the midpoints of the line segment corresponding to the main surface of the anode body is drawn. Then, the distance between the intersection of the center line and the outer edge of the solid electrolyte layer and the corresponding midpoint is defined as the thickness of the solid electrolyte layer formed in the central portion of each main surface.
  • the direction from the first end side to the second end side is a direction parallel to the linear direction connecting the center of the end face of the first end and the center of the end face of the second end.
  • This direction may be referred to as the length direction of the anode or the capacitor element.
  • the cross section G shows the position of half the length of the cathode portion in the direction parallel to the length direction of the condenser element and the end portion on the first end side of the cathode portion in the portion where the cathode portion of the condenser element is formed. It is a cross section perpendicular to the length direction of the capacitor element at an arbitrary position between.
  • the cross section of the capacitor element can be observed with, for example, an optical microscope.
  • the solid electrolyte layer includes a first layer containing a first conductive polymer covering at least a part of the dielectric layer, a second layer containing a second conductive polymer covering at least a part of the first layer, and a second layer. It may include at least one continuous or discontinuous layer intervening between the first layer and the second layer.
  • the continuous or discontinuous layer contains a surface conditioner.
  • the surface conditioner is unevenly distributed between the first layer and the second layer.
  • the surface conditioner may be interposed between at least the first layer and the second layer.
  • a surface modifier may be interposed between the dielectric layer and the second layer.
  • the surface conditioner may be distributed so as to cover the entire surface of the cathode forming portion of the anode. Therefore, the layer containing the surface conditioner does not necessarily have to be continuous, and may be a discontinuous layer. A part of the layer containing the surface conditioner may be in a state of being penetrated into the first layer. Between the first layer and the second layer, at least one layer containing the surface conditioner may be interposed, and two or more layers may be interposed.
  • the anode body can include a valve acting metal, an alloy containing a valve acting metal, a compound containing a valve acting metal, and the like. These materials may be used alone or in combination of two or more.
  • the valve acting metal for example, aluminum, tantalum, niobium, and titanium are preferably used.
  • the shape of the anode is usually sheet-like.
  • the sheet shape also includes a foil shape and a plate shape.
  • the sheet-shaped anode has a pair of main surfaces. There are corners between each main surface and each end surface of the anode.
  • the anode body has an anode extraction portion including the first end portion and a cathode forming portion including the second end portion on the opposite side of the first end portion.
  • a cathode portion including a solid electrolyte layer is formed on the surface of the cathode forming portion of the anode body.
  • the anode usually has a porous portion on the surface layer, at least in the cathode forming portion.
  • a porous portion is formed on the surface layer by roughening the surface of at least a portion corresponding to the cathode forming portion of the base material containing the valve action metal (for example, a sheet-shaped base material).
  • the porous portion may be formed on the surface layer of the anode extraction portion.
  • the anode body may be a molded body of particles containing a valve acting metal or a sintered body thereof. Since the sintered body has a porous structure, the entire anode body can be a porous portion.
  • the dielectric layer is an insulating layer that functions as a dielectric formed so as to cover the surface of at least a part of the anode.
  • the dielectric layer may be formed so as to cover at least a part of the anode body.
  • the dielectric layer may be formed, for example, on the surface of at least the cathode forming portion of the anode body.
  • the dielectric layer may be formed on the surface of the anode extraction portion.
  • the dielectric layer is usually formed on the surface of the anode body.
  • a porous portion is usually formed on the surface layer of the anode body. Therefore, the dielectric layer is formed along the inner wall surface of the pores and pits on the surface of the anode body, including the inner wall surface of the pores of the porous portion.
  • the dielectric layer contains oxides of the valvening metal.
  • the dielectric layer when tantalum is used as the valve acting metal contains Ta 2 O 5
  • the dielectric layer when aluminum is used as the valve acting metal contains Al 2 O 3 .
  • the dielectric layer is not limited to this, and may be any one that functions as a dielectric.
  • the cathode portion includes at least a solid electrolyte layer that covers at least a part of the dielectric layer.
  • the cathode portion is usually formed on the surface of the cathode forming portion of the anode body via a dielectric layer.
  • the cathode portion usually includes a solid electrolyte layer and a cathode extraction layer that covers at least a part of the solid electrolyte layer.
  • the solid electrolyte layer and the cathode extraction layer will be described.
  • the solid electrolyte layer is formed so as to cover the dielectric layer.
  • the solid electrolyte layer does not necessarily have to cover the entire dielectric layer (entire surface), and may be formed so as to cover at least a part of the dielectric layer.
  • the solid electrolyte layer includes, for example, a first layer containing a first conductive polymer, a second layer containing a second conductive polymer formed on the first layer, and a first layer and a second layer. Includes continuous or discontinuous layers containing surface modifiers intervening between them.
  • a second layer may be formed on the dielectric layer in this region, and a surface conditioner may be formed on the dielectric layer.
  • the second layer may be formed through the layer containing the above.
  • the first conductive polymer known ones used for electrolytic capacitors, for example, a ⁇ -conjugated conductive polymer and the like can be used.
  • the first conductive polymer include polymers having polypyrrole, polythiophene, polyaniline, polyfuran, polyacetylene, polyphenylene, polyphenylene vinylene, polyacene, and polythiophene vinylene as basic skeletons. Of these, polymers having polypyrrole, polythiophene, or polyaniline as the basic skeleton are preferable.
  • polymers also include homopolymers, copolymers of two or more types of monomers, and derivatives thereof (substituents having substituents, etc.).
  • polythiophene includes poly (3,4-ethylenedioxythiophene) and the like.
  • the first conductive polymer may be used alone or in combination of two or more.
  • the weight average molecular weight (Mw) of the first conductive polymer is not particularly limited, but is, for example, 1,000 or more and 1,000,000 or less.
  • the weight average molecular weight (Mw) is a polystyrene-equivalent value measured by gel permeation chromatography (GPC). GPC is usually measured using a polystyrene gel column and water / methanol (volume ratio 8/2) as a mobile phase.
  • the first layer may be a single layer or may be composed of a plurality of layers.
  • the first conductive polymer contained in each layer may be the same or different.
  • the first layer can further contain a dopant.
  • a dopant for example, at least one selected from the group consisting of anions and polyanions is used.
  • anion examples include sulfate ion, nitrate ion, phosphate ion, borate ion, organic sulfonic acid ion, carboxylic acid ion, etc., but are not particularly limited.
  • dopants that generate sulfonic acid ions include paratoluenesulfonic acid and naphthalenesulfonic acid.
  • Examples of the polyanion include a polymer type polysulfonic acid and a polymer type polycarboxylic acid.
  • Examples of the polymer type polysulfonic acid include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic sulfonic acid, and polymethacryl sulfonic acid.
  • Examples of the polymer type polycarboxylic acid include polyacrylic acid and polymethacrylic acid.
  • Polyanions also include polyester sulfonic acid, phenol sulfonic acid novolac resin and the like. However, polyanions are not limited to these.
  • a dopant having a relatively high electron-attracting property for example, sulfonic acid ion or polymer-type polysulfonic acid
  • sulfonic acid ion or polymer type polysulfonic acid it is preferable to use as the dopant.
  • the anion and the polyanion may each be contained in the first layer in the form of a salt.
  • each of the anion and the polyanion may form a conductive polymer complex together with the first conductive polymer.
  • sulfonic acid group in the first layer, the free form (-SO 3 H), the anionic form - bond, or may be included in the form of a salt, the conductive polymer (-SO 3) Alternatively, it may be contained in an interacting form.
  • the sulfonic acid group in all these forms may be referred to simply as "sulfonic acid group".
  • the carboxy group in free form (-COOH), an anion of the form (-COO -), or may be included in the form of salts, bind to or interact with the conductive polymer It may be included in the above-mentioned form.
  • the carboxy group in all these forms may be referred to simply as "carboxy group”.
  • the amount of the dopant contained in the first layer is, for example, 10 to 1000 parts by mass and may be 50 to 200 parts by mass with respect to 100 parts by mass of the first conductive polymer.
  • the first layer may further contain a water-soluble polymer.
  • the polymer-type dopant is also included in the water-soluble polymer.
  • As the water-soluble polymer it is preferable to use a component having a lower electron attracting property than the dopant.
  • the thickness of the solid electrolyte layer in the central portion of the main surface of the anode can be increased, and the variation in the thickness of the solid electrolyte layer can be further reduced. Therefore, the quality of the electrolytic capacitor is further stabilized. Further, by increasing the thickness of the solid electrolyte layer on the main surface of the anode body, it is possible to reduce the leakage current and increase the withstand voltage while suppressing the increase of the ESR and tan ⁇ of the electrolytic capacitor.
  • water-soluble polymer examples include water-soluble polymer compounds having a hydrophilic group in the main chain or side chain.
  • hydrophilic group include a polyoxyalkylene chain, a hydroxy group, an acid group (carboxy group, sulfonic acid group, etc.) and the like.
  • water-soluble polymer examples include polyalkylene glycol compounds, water-soluble polyurethanes, water-soluble polyamides, water-soluble polyimides, water-soluble acrylic resins, and polyvinyl alcohols.
  • polyalkylene glycol compound examples include compounds having a polyoxyalkylene chain. As the polyoxyalkylene chain, a polyoxy C 2-4 alkylene chain is preferable. The polyalkylene glycol compound more preferably contains at least a polyoxyethylene chain. Examples of the polyalkylene glycol compound include polyalkylene glycol (diethylene glycol, triethylene glycol, oligoethylene glycol, polyethylene glycol, oxyethylene-oxypropylene block copolymer, etc.) and substituents (halogen atom, hydroxy group, etc.).
  • Polyalkylene glycol eg, polyalkylene glycol chlorohydrin or bromohydrin (diethylene glycol monochlorohydrin, triethylene glycol monochlorohydrin, oligoethylene glycol monochlorohydrin, polyethylene glycol monochlorohydrin, diethylene glycol monobromohydrin, triethylene glycol monobromohydrin
  • Hydroxy compounds such as drin, oligoethylene glycol monobromohydrin, etc.
  • water-soluble polyurethane, the water-soluble polyamide, and the water-soluble polyimide include polymers having an acid group (at least one selected from the group consisting of a carboxy group and a sulfonic acid group) in the side chain.
  • high water solubility can be obtained by introducing a plurality of acid groups into the skeleton (main chain) of each polymer.
  • the water-soluble acrylic resin preferably has a carboxy group in the side chain.
  • a water-soluble acrylic resin at least one selected from the group consisting of polyacrylic acid, polymethacrylic acid, acrylic acid-methacrylic acid copolymer, acrylic acid and methacrylic acid and another copolymerizable monomer are used. Examples include copolymers. Other copolymerizable monomers include, for example, acrylic acid esters (alkyl esters, hydroxyalkyl esters, etc.), methacrylic acid esters (alkyl esters, hydroxyalkyl esters, etc.), vinyl compounds (vinyl cyanide, olefins, aromatic vinyl compounds, etc.).
  • the copolymer may contain one kind of monomer unit derived from another copolymerizable monomer, or may contain two or more kinds.
  • the first layer may contain one type of water-soluble polymer, or may contain two or more types.
  • the water-soluble polymer also includes a water-soluble polymer having a function as a dopant.
  • a dopant having a relatively high electron attracting property such as a dopant containing a sulfonic acid group (for example, a sulfonic acid ion or a polymer type polysulfonic acid) is used as the dopant, the electron attracting property such as a carboxy group is relatively low. Even if a water-soluble polymer coexists, the function of such a water-soluble polymer as a dopant is often not exhibited.
  • the insulating property of the polymer is appropriately exhibited, and the thickness of the solid electrolyte layer can be increased, so that the leakage current of the electrolytic capacitor can be reduced. At the same time, the pressure resistance can be increased. Therefore, as the water-soluble polymer, it is preferable to use a water-soluble polymer having lower electron attraction than the dopant. Examples of such a water-soluble polymer include a water-soluble polymer having (at least one selected from the group consisting of a carboxy group, a hydroxy group, and a polyoxyalkylene chain).
  • each of the carboxy group and sulfonic acid group possessed by the water-soluble polymer as in the case of the dopant, free form (-COOH), an anion of the form (-COO -), or the first layer in the form of a salt It may be included. Further, each part of the carboxy group and the sulfonic acid group may be contained in the first layer in the form of being bonded or interacting with the conductive polymer.
  • the carboxy group in all these forms may be referred to simply as "carboxy group”
  • the sulfonic acid group in all these forms may be referred to simply as "sulfonic acid group”.
  • the Mw of the water-soluble polymer is, for example, 100 or more, preferably 400 or more.
  • Mw of the water-soluble polymer having higher withstand voltage characteristics is, for example, 5 million or less, and may be 1 million or less.
  • the content of the water-soluble polymer in the first layer is preferably adjusted within a range in which the content of the water-soluble polymer in the solid electrolyte layer is, for example, 25% by mass or more and 70% by mass or less.
  • the content of the water-soluble polymer in the solid electrolyte may be 30% by mass or more and 70% by mass or less (or 68% by mass or less), and 40% by mass or more and 70% by mass or less (or 68% by mass or less). It may be 43% by mass or more and 70% by mass or less (or 68% by mass or less).
  • the leakage current can be reduced and higher withstand voltage can be ensured while suppressing the increase of ESR and tan ⁇ of the electrolytic capacitor to be low. can do.
  • the content of the water-soluble polymer in the first layer is preferably 30% by mass or less, more preferably 20% by mass or less or 10% by mass or less.
  • the first layer does not have to contain a water-soluble polymer. In this case, higher conductivity of the solid electrolyte layer can be ensured, which is preferable.
  • the content of the water-soluble polymer in the solid electrolyte layer can be determined by using a sample taken from the capacitor element. More specifically, first, the electrolytic capacitor is embedded in the curable resin to cure the curable resin. By polishing or cross-section polishing the cured product, a cross section parallel to the thickness direction of the solid electrolyte layer is exposed. The solid electrolyte layer is scraped off, a predetermined amount of sample is taken, and the mass is measured. The water-soluble polymer is extracted from the sample with water at 20 ° C to 40 ° C. The extract is concentrated and the water soluble polymer is identified by LC-MS or GC-MS. The concentration of the water-soluble polymer in the extract is determined by the calibration curve method.
  • the content (mass) of the water-soluble polymer in the solid electrolyte layer is determined.
  • the content of the water-soluble polymer in the first layer is determined by the same procedure as above except that a sample collected by scraping the solid electrolyte layer formed in the pit of the anode body is used.
  • Surface conditioners include, for example, leveling agents and antifoaming agents. From the viewpoint of spreading the second treatment liquid containing the surface conditioner over the entire surface of the cathode forming portion of the anode, the surface conditioner preferably has a leveling action. As the surface conditioner, a surfactant is preferably used.
  • the surfactant may be either a nonionic surfactant or an ionic surfactant.
  • Surfactants have a hydrophilic group and a hydrophobic group.
  • Ionic surfactants include cationic surfactants, anionic surfactants, and amphoteric surfactants.
  • As the surfactant one type may be used alone, or two or more types may be used in combination.
  • Nonionic surfactants include ether type (polyether type, etc.), ester ether type (fatty acid polyethylene glycol, fatty acid polyoxyethylene sorbitan, etc.), ester type (glycerin fatty acid ester, sorbitan fatty acid ester, sucrose fatty acid ester, etc.) ), Or nonionic surfactants such as alkanolamide type (fatty acid alkanolamide, etc.).
  • the polyether type nonionic surfactant include those having a polyoxyalkylene chain such as a polyoxyethylene chain (polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene polyoxypropylene glycol, etc.). Can be mentioned.
  • the nonionic surfactant may have a halogen atom.
  • Halogen atoms include fluorine atoms, chlorine atoms, bromine atoms, and iodine atoms. Of these, a fluorine atom is preferable.
  • cationic surfactant examples include an alkylamine salt type (monoalkylamine salt, dialkylamine salt, trialkylamine salt, etc.) and a quaternary ammonium salt type (alkyltrimethylammonium halide, dialkyldimethylammonium halide, chloride).
  • alkylamine salt type monoalkylamine salt, dialkylamine salt, trialkylamine salt, etc.
  • quaternary ammonium salt type alkyltrimethylammonium halide, dialkyldimethylammonium halide, chloride.
  • Cationic surfactants such as alkylbenzalconium
  • anionic surfactant examples include a carboxylic acid type, a sulfonic acid type, a sulfate ester type, and a phosphoric acid ester type anionic surfactant.
  • carboxylic acid type anionic surfactant examples include aliphatic monocarboxylic acid salts, polyoxyethylene alkyl ether carboxylates, N-acyl sarcosin salts, and N-acyl glutamates.
  • Examples of the sulfonic acid type anionic surfactant include dialkyl sulfosuccinate, alkane sulfonate, ⁇ -olefin sulfonate, alkyl benzene sulfonate, naphthalene sulfonic acid-formaldehyde condensate, alkyl naphthalene sulfonate, and N-methyl. -N-acyltaurine salt and the like can be mentioned.
  • Examples of the sulfate ester type anionic surfactant include alkyl sulfates, polyoxyethylene alkyl ether sulfates, oil and fat sulfates, and the like.
  • Examples of the phosphoric acid ester type anionic surfactant include alkyl phosphate, polyoxyethylene alkyl ether phosphate, polyoxyethylene alkyl phenyl ether phosphate and the like.
  • Amphoteric tensides include carboxybetaine type (alkyl betaine, fatty acid amide propyl betaine, etc.), 2-alkyl imidazoline derivative type (2-alkyl-N-carboxymethyl-N-hydroxyethyl imidazolium betaine, etc.), and glycine type. Examples thereof include amphoteric tenside agents such as (alkyldiethylenetriaminoacetic acid, dialkyldiethylenetriaminoacetic acid, etc.) and amine oxide type (alkylamineoxide, etc.).
  • a nonionic surfactant When a nonionic surfactant is used, it is possible to suppress shortening of the pot life of the second treatment liquid and suppress dedoping of the conductive polymers in the first layer and the second layer.
  • a cationic surfactant or an amphoteric surfactant may be used from the viewpoint of facilitating the adhesion of the second conductive polymer to the surface of the anode.
  • An anionic surfactant may be used from the viewpoint of easily suppressing the volatilization of the cationic agent described later.
  • the continuous or discontinuous layer containing the surface conditioner can contain components other than the surface conditioner.
  • the amount of the surface conditioner contained in the continuous or discontinuous layer is, for example, 0.01 to 30% by mass, and may be 0.1 to 15% by mass.
  • the surface adjusting agent can be more evenly distributed over the entire surface of the cathode forming portion of the anode body, and it is easy to reduce the variation in the thickness of the solid electrolyte layer.
  • the resistance of the solid electrolyte layer can be suppressed to a low level, an increase in ESR can be suppressed.
  • the components other than the surface conditioner contained in the continuous or discontinuous layer include, for example, at least one selected from the group consisting of a cationic agent and an anionic agent.
  • each of the cation agent and the anion agent is different from the surface conditioner.
  • the cation agent and the anion agent those which are not surfactants are used.
  • Each of the first layer and the second layer usually contains an anionic dopant together with a conductive polymer, and this dopant tends to be present on the surfaces of the first layer and the second layer. That is, since the surfaces of both the first layer and the second layer are easily negatively charged, it is difficult to form the second layer on the surface of the first layer.
  • the continuous or discontinuous layer interposed between the first layer and the second layer contains a cation agent, the film forming property or the covering property of the second layer can be enhanced.
  • the film repairability of the dielectric layer can be enhanced.
  • the cation agent is sufficiently dissociated in the second treatment liquid.
  • the cationic agent has low solubility and high volatility, it is difficult to increase the content of the cationic agent in the continuous or discontinuous layer.
  • the continuous or discontinuous layer obtained by using such a second treatment liquid contains both a cationic agent and an anionic agent.
  • the cationic agent having a cationic group is not particularly limited as long as it can generate a cation in a dissociated state.
  • the cation agent may be, for example, a metal compound (inorganic base such as metal hydroxide), but an organic compound (organic base or the like) is preferable.
  • an organic compound organic base or the like
  • As the cationic group of the cationic agent which is an organic compound an amino group (primary amino group, secondary amino group, tertiary amino group, etc.) and a quaternary ammonium group are preferable.
  • Such cationic groups also include salts of amino groups, salts of quaternary ammonium groups and the like.
  • the continuous or discontinuous layer containing the surface conditioner may contain one type of cation agent or may contain two or more types of cation agent.
  • a cationic agent having an amino group as a cationic group (amine compound, etc.) is preferable.
  • the amine compound include amines having 1 to 3 substituents on the nitrogen atom (primary to tertiary amines), diamines which may have 1 or 2 alkyl groups on the nitrogen atom, and the like. ..
  • the substituent is selected from the group consisting of, for example, an alkyl group, a cycloalkyl group, and an aryl group.
  • Each of the alkyl, cycloalkyl and aryl groups may further have a substituent (eg, at least one selected from the group consisting of hydroxy and alkoxy groups).
  • diamine examples include diaminoalkane, diaminocycloalkane (diaminoC 5-8 cycloalkane such as diaminocyclohexane), diaminoarene (diaminoC 6-14 arene such as diaminobenzene and diaminonaphthalene) and the like.
  • diaminoalkane examples include diamino C 2-14 alkane and diamino C 4-12 alkane.
  • Specific examples of the diaminoalkane include 1,4-diaminobutane, 1,6-diaminohexane, 1,8-diaminooctane, and 1,10-diaminodecane.
  • amine at least one selected from the group consisting of primary amines and tertiary amines may be used.
  • the tertiary amine include N, N-di C 1-10 alkyl- NC 4-16 alkyl amine, N, N-di C 4-16 alkyl- NC 1-10 alkyl amine, and tri C 4 -16 Alkylamine and the like can be exemplified.
  • the continuous or discontinuous layer (or the second treatment liquid) containing the surface conditioner can be used as an amine compound, a cation corresponding to the amine compound, a quaternary ammonium compound, or a salt of the cation. It may be included in the form.
  • the cation agent may form a salt with the anion agent.
  • an anion agent for example, at least one selected from the group consisting of anions and polyanions exemplified as the dopant of the first layer may be used.
  • an anion agent different from the dopant of the first layer and the dopant of the second layer from the viewpoint of suppressing dedoping from the first layer and the second layer.
  • an anion agent having a lower electron attracting property than the dopant of the first layer and the dopant of the second layer may be used.
  • an anion agent containing a first anionic group having a high electron attracting property and a second anion group having a lower electron attracting property than the first anion is used. You may use it.
  • an anionic agent include a polymer containing a first anionic group and a second anionic group (first anionic agent).
  • the first anion agent may be used alone or in combination of two or more.
  • first anionic group and the second anionic group examples include a sulfonic acid group, a phosphoric acid group, a phosphonic acid group, a boric acid group, a carboxy group, and a hydroxy group. From these anionic groups, a first anionic group and a second anionic group having different electron attracting properties may be selected.
  • the anionic group is not particularly limited as long as an anion can be generated in a dissociated state, and may be a salt or the like of these groups.
  • Examples of the first anionic agent which is a polymer (polymer compound), include a copolymer (p1) containing at least a monomer unit having a first anionic group and a monomer unit having a second anionic group, and An example is a polymer (p2) containing at least a monomer unit having a first anionic group and a second anionic group. These polymerizables may further contain other copolymerizable monomer units.
  • the first anion agent may be used alone or in combination of two or more.
  • Examples of the monomer unit that is the base of the above-mentioned monomer unit include an aliphatic vinyl monomer unit such as ethylene and propylene, an aromatic vinyl monomer unit such as styrene, and a diene monomer unit such as butadiene and isoprene.
  • the Mw of the polymer is, for example, 5,000 to 500,000, and may be 10,000 to 200,000.
  • the first anion agent may be used in combination with the second anion agent, which is a low molecular weight compound (monomer compound) having an anionic group, if necessary.
  • the second anion agent for example, among the anions and polyanions described as the dopants in the first layer, a monomer compound may be used.
  • the second anion agent may be any of an aliphatic compound, an alicyclic compound, and an aromatic compound.
  • the second anion agent may be used alone or in combination of two or more.
  • Examples of the second anion agent include aliphatic sulfonic acids (C 1-6 such as methanesulfonic acid). Alkane sulfonic acid, etc.), alicyclic sulfonic acid (cyclohexane sulfonic acid, etc., C 5-8 Acid phosphooxy of carboxylic acids such as cycloalkane sulfonic acid), aromatic sulfonic acid (benzene sulfonic acid, C 6-14 arene sulfonic acid such as styrene sulfonic acid), acid phosphooxyethyl acrylate, acid phosphooxyethyl methacrylate, etc.
  • C aliphatic sulfonic acids C 1-6 such as methanesulfonic acid.
  • Alkane sulfonic acid, etc. alicyclic sulfonic acid (cyclohexane sulfonic acid, etc., C 5-8 Acid phosphooxy of carboxylic acids such as
  • the second anionic agent one having two or more kinds of anionic groups may be used.
  • a second anion agent include a second anion agent having a sulfonic acid group and a carboxy group (for example, an aliphatic compound (sulfosuccinic acid, etc.)) and an aromatic compound (sulfobenzoic acid, sulfosalicylic acid, disulfosalicylic acid).
  • the anionic groups of the anionic agent include the above-mentioned anionic groups, the anions corresponding to the above-mentioned anionic groups, and salts of the anions. It may be contained in any form selected from.
  • the second layer may be formed so as to cover at least a part of the first layer, and may be formed so as to cover the entire surface of the first layer.
  • the second layer is formed to cover the first layer through continuous or discontinuous layers containing a surface conditioner in at least a part of the surface of the first layer, but is continuous or discontinuous. There may be a region formed directly on the surface of the first layer without going through the layer of. Further, in the region where the first layer and the continuous or discontinuous layer are not formed, the second layer may be in contact with the dielectric layer (that is, the second layer is formed so as to cover the dielectric layer. May be).
  • the second conductive polymer contained in the second layer known ones used for electrolytic capacitors can be used, and specifically, the conductive polymer exemplified for the first conductive polymer is appropriately selected. be able to.
  • the Mw of the second conductive polymer can also be appropriately selected from the range exemplified for the first conductive polymer.
  • the first conductive polymer and the second conductive polymer may be the same or different ones.
  • the second layer may be a single layer or may be composed of a plurality of layers.
  • the second conductive polymer contained in each layer may be the same or different.
  • the second layer may further contain a dopant.
  • a dopant a known dopant used in an electrolytic capacitor can be used, and specifically, a dopant can be appropriately selected from those exemplified for the first layer. The same dopant may be used for the first layer and the second layer, or different dopants may be used.
  • the dopant may be contained in the second layer in the form of a salt.
  • the dopant may form a conductive polymer complex together with the second conductive polymer.
  • the anionic group of the dopant may be contained in the second layer in the form of an organic, anionic, or salt, and bond or interact with the conductive polymer. It may be included in the above-mentioned form.
  • the amount of the dopant contained in the second layer is, for example, 10 to 1000 parts by mass and 50 to 200 parts by mass with respect to 100 parts by mass of the second conductive polymer.
  • the second layer may further contain a water-soluble polymer.
  • the description of the water-soluble polymer in the first layer can be referred to.
  • the content (mass%) of the water-soluble polymer in the second layer is preferably adjusted within a range in which the content (mass%) of the water-soluble polymer in the solid electrolyte layer is within the above range. ..
  • the second layer contains a water-soluble polymer, the effect of increasing the thickness of the solid electrolyte layer in the central portion of the anode body can be easily obtained, and the effect of reducing the leakage current and the effect of increasing the pressure resistance can be further improved. it can. Therefore, it is preferable that at least the second layer contains a water-soluble polymer.
  • the content (mass%) of the water-soluble polymer in the second layer may be in the range described as the content (mass%) of the water-soluble polymer in the solid electrolyte layer.
  • the content of the water-soluble polymer in the second layer is determined except that a sample collected by scraping the vicinity of the surface layer of the solid electrolyte layer is used. It is obtained by the same procedure as in the case.
  • the ratio T1 / T2 is, for example, 0.8 or more and 0.9 or more in the cross section G perpendicular to the length direction of the capacitor element at an arbitrary position of the portion on the first end side of the cathode portion. It may be 1 or more or greater than 1.
  • the ratio T1 / T2 is in such a range, the thickness of the solid electrolyte layer at the corners is suppressed from becoming small, so that the occurrence of product defects due to a short circuit can be suppressed.
  • the ratio T1 / T2 is 1 or more or larger than 1, the effect of reducing the leakage current is enhanced, so that the occurrence of product defects due to the leakage current can be suppressed.
  • the ratio T1 / T2 is, for example, 1.7 or less, 1.5 or less, or 1.4 or less.
  • the ratio T1 / T2 is in such a range, the decrease in capacitance, the increase in ESR and the dielectric loss tangent tan ⁇ are suppressed, and the quality of the electrolytic capacitor is further stabilized.
  • the thickness of the solid electrolyte layer formed at the corners of the anode can be made larger than the thickness of the solid electrolyte layer formed near the center of the main surface.
  • the second treatment liquid containing the surface treatment agent can be spread over the entire surface of the cathode forming portion of the anode body.
  • the rate at which the liquid medium volatilizes is faster at the edge than at the center of the droplet, so that components other than the liquid medium tend to remain at the edge.
  • Such a phenomenon is also called a coffee ring effect or a ring stain effect.
  • the liquid medium volatilizes faster from the corner portion than in the vicinity of the center of the main surface of the anode body, and the corner portion A large amount of components other than the liquid medium of the second treatment liquid will remain on the surface of the second treatment liquid.
  • a large amount of the components of the third treatment liquid adhere to the corners of the cathode forming portion of the anode body, so that it is considered that the second conductive polymer is likely to be aggregated at the corners.
  • the ratio T1 / T2 can be made larger than 1 by adjusting the type and concentration of the surface conditioner, the type of the liquid medium used for the second treatment liquid, the drying conditions of the coating film of the second treatment liquid, and the like. it can.
  • the average thickness of the solid electrolyte layer is, for example, 5 ⁇ m or more and 20 ⁇ m or less, and may be 10 ⁇ m or more and 15 ⁇ m or less.
  • the average thickness of the solid electrolyte layer is arbitrary at a plurality of locations (for example, 10 locations) in a cross section perpendicular to the length direction of the capacitor element, passing through the center of the cathode portion in a direction parallel to the length direction of the capacitor element. It is obtained by measuring the thickness with and averaging it.
  • Each of the first and second layers further comprises known additives and known conductive materials other than the conductive polymer (eg, conductive inorganic materials such as manganese dioxide; and / or (TCNQ complex salt, etc.) may be included.
  • known additives and known conductive materials other than the conductive polymer eg, conductive inorganic materials such as manganese dioxide; and / or (TCNQ complex salt, etc.
  • a layer or the like for enhancing adhesion may be interposed between the dielectric layer and the first layer.
  • FIG. 1 is a schematic cross-sectional view of an electrolytic capacitor according to an embodiment of the present disclosure.
  • FIG. 2 is an enlarged view conceptually showing the region surrounded by the solid line ⁇ in FIG.
  • the electrolytic capacitor 1 includes a capacitor element 11, a resin outer body 12 that seals the capacitor element 11, and an anode terminal 13 and a cathode terminal 14 that are exposed to the outside of the resin outer body 12, respectively.
  • the capacitor element 11 includes a sheet-shaped anode body 2, a dielectric layer 3 covering the second end side of the anode body 2, and a cathode portion 15 covering the dielectric layer 3.
  • the portion of the anode body 2 in which the cathode portion 15 is formed is the cathode forming portion, and the portion in which the cathode portion 15 is not formed is the anode extraction portion.
  • the anode terminal 13 is electrically connected to the first end of the anode extraction portion of the anode body 2.
  • the cathode terminal 14 is electrically connected to the cathode portion 15.
  • the resin exterior body 12 has a substantially rectangular parallelepiped outer shape, whereby the electrolytic capacitor 1 also has a substantially rectangular parallelepiped outer shape.
  • the anode body 2 and the cathode portion 15 face each other via the dielectric layer 3.
  • the cathode portion 15 has a solid electrolyte layer 4 that covers the dielectric layer 3 and a cathode layer 5 that covers the solid electrolyte layer 4.
  • the cathode layer 5 of the illustrated example has a two-layer structure, and has a carbon layer 5a in contact with the solid electrolyte layer 4 and a metal paste layer 5b covering the surface of the carbon layer 5a.
  • an insulating separation portion 16 is formed in the region on the cathode portion 15 side so as to cover the surface of the anode body 2 in a band shape, and the cathode portion 15 and the anode portion 15 are formed. Contact with the anode 2 is restricted.
  • the first end portion of the anode body 2 protruding from the cathode portion 15 is electrically connected to one end portion 13a of the anode terminal 13 by welding or the like.
  • the cathode layer 5 formed on the outermost layer of the cathode portion 15 is electrically connected via one end portion 14a of the cathode terminal 14 and a conductive adhesive 17 (for example, a mixture of a thermosetting resin and metal particles). It is connected to the.
  • the other end 13b of the anode terminal 13 and the other end 14b of the cathode terminal 14 are respectively drawn out from different side surfaces of the resin exterior body 12 and extend in an exposed state to one main flat surface (lower surface in FIG. 1). There is.
  • the exposed portions of the terminals on this flat surface are used for solder connection with a substrate (not shown) on which the electrolytic capacitor 1 should be mounted.
  • the dielectric layer 3 is formed on a part of the surface of the conductive material constituting the anode body 2. Specifically, the dielectric layer 3 can be formed by anodizing the surface of the conductive material constituting the anode body 2. Therefore, as shown in FIG. 2, the dielectric layer 3 is formed along the surface of the anode body 2 (including the inner wall surface of the holes and the recesses on the inner surface).
  • the first layer 4a containing the first conductive polymer is formed so as to cover the dielectric layer 3, and the second layer 4b containing the second conductive polymer is formed so as to cover the first layer 4a.
  • a layer 4c containing a surface conditioner is interposed between the first layer 4a and the second layer 4b.
  • the layer 4c containing the surface conditioner is formed so as to cover the first layer 4a
  • the second layer 4b is formed so as to cover the layer 4c containing the surface conditioner.
  • the surface conditioner layer 4c is a continuous layer.
  • the surface conditioner layer 4c may be a discontinuous layer.
  • the thickness of the solid electrolyte layer 4 formed at the corners of the anode 2 is suppressed from becoming small, and the variation in the thickness of the solid electrolyte layer 4 is reduced.
  • the first layer 4a does not necessarily have to cover the entire surface (entire surface) of the dielectric layer 3, and may be formed so as to cover at least a part of the dielectric layer 3, but covers as many regions as possible. It is desirable to form in.
  • each of the second layer 4b and the layer 4c containing the surface conditioner does not necessarily have to cover the entire surface of the first layer 4a, but is formed so as to cover at least a part of the first layer 4a. However, it is desirable to form it so as to cover as much area as possible.
  • the surface of the dielectric layer 3 is formed with irregularities according to the shape of the surface of the anode body 2.
  • the first layer 4a is preferably formed so as to bury such irregularities of the dielectric layer 3.
  • the anode body 2 is an anode member of the capacitor element 11, and the first layer 4a, the second layer 4b, and the cathode layer 5 are the cathode members of the capacitor element 11.
  • the dielectric layer 3 is a dielectric member of the capacitor element 11.
  • the capacitor element 11 has two layers including the first layer 4a and the second layer 4b of the conductive polymer has been described, but the capacitor element 11 has three or more layers of high conductivity. It may have a layer containing a molecule.
  • a layer containing one layer or two or more conductive polymers may be formed between the first layer 4a and the second layer 4b.
  • one or more conductive polymers are provided between the first layer 4a and the layer 4c containing the surface conditioner, and at least one of the layer 4c containing the surface conditioner and the second layer 4b.
  • the containing layer may be formed.
  • the ratio T1 / T2 to the thickness T2 of the solid electrolyte layer formed at the center of the main surface of the thickness T1 of the solid electrolyte layer formed at the corners of the anode is conventionally set as described above. It can be made larger than that.
  • FIG. 3 is a schematic front view of the capacitor element when viewed from one main surface side.
  • FIG. 4 is a schematic cross-sectional view of the capacitor element of FIG. 3 taken along line IV-IV when the cross section (cross section G) is viewed in the direction of the arrow.
  • the thicknesses T1 and T2 of the solid electrolyte layer are determined by, for example, the following procedure.
  • the ratio T1 / T2 is a cross section of the cathode portion 15 perpendicular to the direction from the first end portion E1 to the second end portion E2 of the capacitor element 11 (sometimes referred to as the length direction of the anode body 2 or the capacitor element 11).
  • the cross section G is formed at an arbitrary position on the portion of the anode body 2 on the side of the first end portion E1.
  • the portion of the cathode portion 15 on the first end E1 side is the length from the end of the cathode portion 15 on the first end E1 side, where L is the length of the cathode portion 15 in the length direction of the capacitor element 11. It is a part up to the position of L / 2.
  • the portion of the cathode portion 15 on the first end portion E1 side corresponds to the portion of the upper half of the cathode portion 15.
  • FIG. 4 shows a cross section G perpendicular to the length direction of the capacitor element 11 of the capacitor element 11 in the IV-IV line of the portion of the cathode portion 15 on the first end E1 side.
  • the IV-IV line corresponds to an arbitrarily selected position in the portion of the cathode portion 15 on the first end portion E1 side. Note that in FIG. 4, hatching indicating that the cross section is used is omitted.
  • the distances D11, D12, D13 and D14 between the point where this straight line intersects the outer edge of the solid electrolyte layer 4 and the apex of the corner portion are defined as the thickness of the solid electrolyte layer 4 at each corner portion. Then, T1 is obtained by averaging the values of these four distances.
  • the center line CL is drawn from each end surface Es at the position of W / 2.
  • the center line CL passes through the midpoint of the line segment corresponding to each main surface Ms of the anode body 2.
  • the distances D21 and D22 between the intersection of the center line CL and the outer edge of the solid electrolyte layer 4 and the midpoint of the line segment are defined as the thickness of the solid electrolyte layer in the central portion of the main surface Ms, respectively.
  • T2 is obtained by averaging the values of these two distances.
  • the method for manufacturing an electrolytic capacitor according to an embodiment of the present disclosure includes a first step of preparing an anode, a second step of forming a dielectric layer on the surface of the anode, and an anode having a dielectric layer formed therein.
  • an anode body is formed by a known method according to the type of the anode body.
  • the anode body is prepared, for example, by forming a porous portion at least on the surface layer of a portion corresponding to at least a cathode forming portion.
  • a porous portion may be formed on the entire surface layer of the anode body, or a porous portion may be formed on the entire surface layer of the anode body.
  • the porous portion can be formed, for example, by roughening the surface of a sheet-like base material formed of a conductive material containing a valve acting metal. Roughening requires only the surface of the base material to be roughened. Roughening may be performed, for example, by etching the surface of the base material, or by depositing particles of a conductive material containing a valve acting metal on the surface of the base material using a vapor phase method such as thin film deposition. You may go. As the etching, a known method may be used, and examples thereof include electrolytic etching.
  • a porous portion can be formed on the surface layer of the cathode forming portion.
  • the masking member is not particularly limited, and may be an insulator such as a resin, or a conductor containing a conductive material.
  • a sintered body obtained by sintering particles containing a valve acting metal may be used as an anode body.
  • a dielectric layer is formed on the anode body.
  • the dielectric layer is formed by anodizing the surface of the anode. Anodization oxidizes the valvular metal present at least on the surface of the anode to form an oxide.
  • Anodization can be performed by a known method, for example, chemical conversion treatment.
  • the anodizing is not limited to the chemical conversion treatment as long as an oxide of the valve acting metal can be formed.
  • the chemical conversion liquid is impregnated up to the surface of the anode body (the inner wall surface of the holes and depressions on the inner surface), and the anode body is used as the anode for the chemical conversion liquid. This can be done by applying a voltage between the anode and the anode immersed therein.
  • the chemical conversion solution for example, an aqueous solution of phosphoric acid, an aqueous solution of ammonium phosphate, an aqueous solution of ammonium adipate, or the like is preferably used.
  • the first treatment liquid is prepared by immersing the anode body on which the dielectric layer is formed in the first treatment liquid, or by injecting the first treatment liquid into the anode body on which the dielectric layer is formed. At least it can be brought into contact with the dielectric layer.
  • the first treatment liquid may be impregnated up to the surface of the anode body on which the dielectric layer is formed by immersion or injection (the inner wall surface of the inner surface hole or recess in which the dielectric layer is formed).
  • the method is not limited to impregnation or injection, and a known coating method (for example, spray coating method) or printing method may be used. If necessary, these methods may be combined.
  • the anode When the first treatment liquid containing the precursor of the first conductive polymer is used, the anode is immersed and the precursor is polymerized by chemical polymerization or electrolytic polymerization to produce the first conductive polymer. Is preferable.
  • the anode body is usually dried after being removed from the first treatment liquid. When drying, the anode may be heated if necessary. The anode body taken out from the first treatment liquid may be washed if necessary prior to drying. In this way, the first layer containing the first conductive polymer is formed.
  • the first treatment liquid containing the first conductive polymer is used, for example, the first treatment liquid is brought into contact with at least the dielectric layer of the anode and dried. In this way, the first layer containing the first conductive polymer is formed. When drying, the anode may be heated if necessary.
  • the first treatment liquid is prepared by dissolving or dispersing the constituent components of the first treatment liquid in a liquid medium.
  • the constituent components include a first conductive polymer or a precursor thereof, a dopant, a water-soluble polymer, an additive, and the like.
  • the description of the first layer can be referred to.
  • the precursor of the first conductive polymer examples include monomers, oligomers, and prepolymers of the first conductive polymer.
  • the first treatment liquid may contain one kind of precursor, or may contain two or more kinds of precursors.
  • the first treatment liquid may contain one kind of first conductive polymer, or may contain two or more kinds of first conductive polymers.
  • the first treatment liquid may contain one kind of dopant or may contain two or more kinds of dopants.
  • the first treatment liquid may contain one kind of water-soluble polymer, or may contain two or more kinds of water-soluble polymers.
  • Examples of the liquid medium contained in the first treatment liquid include water, an organic medium, and a mixture thereof.
  • Examples of the organic medium include aliphatic alcohols, aliphatic ketones (acetone, etc.), nitriles (acetonitrile, benzonitrile, etc.), amides (N, N-dimethylformamide, etc.), sulfoxides (dimethyl sulfoxide, etc.), and the like. ..
  • As the aliphatic alcohol an aliphatic alcohol having 1 to 5 carbon atoms is preferable.
  • the aliphatic alcohol may be either monool or polyol. Examples of the aliphatic monool include methanol, ethanol, propanol and butanol. Examples of the aliphatic polyol include ethylene glycol and glycerin.
  • the first treatment liquid can contain a known additive used when forming the solid electrolyte layer.
  • a silane compound may be used as the additive.
  • an oxidizing agent is used to polymerize the precursor.
  • the oxidizing agent may be contained in the first treatment liquid as an additive. Further, the oxidizing agent may be applied to the anode body before or after the first treatment liquid is brought into contact with the anode body on which the dielectric layer is formed. Examples of such an oxidizing agent include sulfates, sulfonic acids, and salts thereof.
  • the oxidizing agent may be used alone or in combination of two or more.
  • the sulfate examples include ferric sulfate, sulfuric acid such as sodium persulfate, and a salt of sulfuric acid such as persulfate and a metal.
  • the metal constituting the salt examples include alkali metals such as sodium and potassium; iron, copper, chromium, zinc and the like.
  • the sulfonic acid or a salt thereof has a function as a dopant in addition to a function as an oxidizing agent.
  • the sulfonic acid or a salt thereof the low molecular weight sulfonic acid exemplified for the dopant or a salt thereof or the like is used.
  • the step of forming the first layer by immersion in the first treatment liquid and polymerization (or drying) may be performed once, or may be repeated a plurality of times. Conditions such as the composition and viscosity of the first treatment liquid may be the same each time, or at least one condition may be changed.
  • the fourth step can be performed, for example, by bringing the second treatment liquid containing the surface conditioner into contact with the anode body treated with the first treatment liquid. After contacting with the second treatment liquid, the anode body may be dried, if necessary. When drying, the anode may be heated if necessary.
  • the second treatment liquid may be attached so as to cover the first conductive polymer adhering to the surface of the dielectric layer.
  • the second treatment liquid should be attached so that the surface adjusting agent is distributed on at least the entire surface of the cathode forming portion. Is preferable.
  • the second treatment liquid is applied to the surface of the anode by utilizing at least one selected from, for example, immersion, injection, coating, and printing, as in the case of the first treatment liquid.
  • the second treatment liquid may contain a liquid medium.
  • the liquid medium include the liquid medium exemplified for the first treatment liquid.
  • the second treatment liquid may contain at least one selected from the group consisting of a cationic agent and an anionic agent.
  • the description of the continuous or discontinuous layer containing the surface conditioner can be referred to.
  • the amount of the surface conditioner in the second treatment liquid is, for example, 0.01% by mass or more and 5% by mass or less, and may be 0.05% by mass or more and 2.5% by mass or less.
  • the amount of the surface adjusting agent is in such a range, the surface adjusting agent can be more evenly distributed over the entire surface of the cathode forming portion of the anode body, and it is easy to reduce the variation in the thickness of the solid electrolyte layer.
  • the resistance of the solid electrolyte layer can be suppressed to a low level, an increase in ESR can be suppressed.
  • the amount of the surface conditioner in the second treatment liquid is the concentration of the surface conditioner in the second treatment liquid.
  • the amount of the surface conditioner in the dry solid content in the second treatment liquid is selected from the range described for the amount of the surface conditioner contained in the continuous or discontinuous layer containing the surface conditioner.
  • the amount of the surface conditioner in the dry solid content in the second treatment liquid shall be used in agreement with the amount of the surface conditioner in the components other than the liquid medium in the second treatment liquid. ..
  • the second treatment liquid does not contain a conductive polymer.
  • an anode body treated with the second treatment liquid is used, and a third treatment containing a second conductive polymer (a dopant and a water-soluble polymer, if necessary) instead of the first treatment liquid. Except for using a liquid, it can be carried out according to the case of the third step.
  • the third treatment liquid the liquid described for the first treatment liquid can be used except that the second conductive polymer is contained instead of the first conductive polymer.
  • a second layer containing the second conductive polymer is formed.
  • the components contained in the second treatment liquid such as the surface conditioner are distributed over the entire surface of at least the cathode forming portion of the anode body.
  • the second conductive polymer can be adhered to the entire surface of the cathode forming portion including the corner portion.
  • the third treatment liquid contains a water-soluble polymer, the effect of reducing the variation in the thickness of the solid electrolyte layer is enhanced, the leakage current of the electrolytic capacitor can be suppressed low, and high pressure resistance can be obtained. ..
  • the method for manufacturing an electrolytic capacitor can further include a step of forming a cathode layer (sixth step).
  • a cathode layer is formed by sequentially laminating a carbon layer and a metal paste layer on the surface of the anode body obtained in the fifth step.
  • an anode having a dielectric layer in which a second layer is formed is immersed in a dispersion liquid containing conductive carbon, or a paste containing conductive carbon is applied to the surface of the second layer.
  • a dispersion liquid containing conductive carbon for example, graphites such as artificial graphite and natural graphite are used.
  • the dispersion liquid and the paste for example, those in which conductive carbon is dispersed in an aqueous liquid medium are used.
  • the metal paste layer can be formed, for example, by laminating a composition containing metal particles on the surface of the carbon layer.
  • a silver paste layer formed by using a composition containing silver particles and a resin (binder resin) can be used.
  • a resin binder resin
  • a thermoplastic resin can be used, but it is preferable to use a thermosetting resin such as an imide resin or an epoxy resin.
  • the configuration of the cathode layer is not limited to this, and may be any configuration having a current collecting function.
  • a cathode terminal is connected to the cathode layer.
  • the cathode terminal is, for example, coated with a conductive adhesive on the cathode layer and bonded to the cathode layer via the conductive adhesive.
  • the capacitor element thus formed is sealed using an exterior body.
  • the material resin of the capacitor element and the exterior body for example, uncured thermosetting resin and filler
  • the capacitor element is sealed with the exterior body by a transfer molding method, a compression molding method, or the like. Stop.
  • a part of the anode terminal and the cathode terminal connected to the anode lead drawn out from the capacitor element is exposed from the mold, respectively.
  • the molding conditions are not particularly limited, and the time and temperature conditions may be appropriately set in consideration of the curing temperature of the thermosetting resin used.
  • Electrolytic Capacitor A1 The electrolytic capacitor 1 shown in FIG. 1 was produced and its characteristics were evaluated in the following manner.
  • Step of preparing anode 2 An anode body 2 was produced by roughening both surfaces of an aluminum foil (thickness: 100 ⁇ m) as a base material by etching.
  • Step of forming the dielectric layer 3 The portion of the anode 2 on the second end side was immersed in a chemical conversion solution, and a DC voltage of 70 V was applied for 20 minutes to form a dielectric layer 3 containing aluminum oxide.
  • Step of forming the first layer 4a Under stirring, a 3,4-ethylenedioxythiophene monomer was added to an aqueous solution of polystyrene sulfonic acid (Mw: 75,000), and then an oxidizing agent (iron (III) sulfate and sodium persulfate) was added. , Chemical oxidative polymerization was carried out. By filtering the obtained polymerization solution with an ion exchange device to remove impurities, poly 3,4-ethylenedioxythiophene (PEDOT) as the first conductive polymer and polystyrene sulfonic acid (polystyrene sulfonic acid) as the dopant ( A solution containing PSS) was obtained.
  • PEDOT poly 3,4-ethylenedioxythiophene
  • Pure water was added to the obtained solution, homogenized with a high-pressure homogenizer, and further filtered with a filter to prepare a dispersed liquid first treatment liquid.
  • the anode body 2 on which the dielectric layer 3 obtained in the above (2) was formed was immersed in the first treatment liquid, then taken out from the first treatment liquid, and further dried at 120 ° C. for 10 to 30 minutes. .. By repeating the immersion in the first treatment liquid and the drying once more, the first layer 4a containing the first conductive polymer was formed so as to cover the surface of the dielectric layer 3.
  • the anode body 2 treated in (3) above is immersed in the second treatment liquid, taken out, and further dried at 100 ° C. for 3 minutes to contain a surface conditioner so as to cover the surface of the first layer 4a.
  • Layer 4c was formed.
  • the anionic agent used in the second treatment liquid was produced as follows.
  • a monomer solution was prepared by adding and mixing sodium styrene sulfonate and acid phosphooxyethyl acrylate to a predetermined amount of pure water.
  • sodium styrene sulfonate and acid phosphooxyethyl acrylate were used at a ratio such that the copolymerization ratio (molar ratio) of styrene sulfonic acid and acid phosphooxyethyl acrylate in the copolymer was 75:25.
  • a predetermined amount of ammonium persulfate (oxidizing agent) was added to the monomer solution under stirring, and the polymerization reaction was carried out over 8 hours.
  • Step of forming the second layer 4b A third treatment liquid having the same composition as the first treatment liquid used in (3) above was used.
  • the anode 2 treated in (4) above was immersed in the third treatment liquid, taken out, and further dried at 120 ° C. for 10 to 30 minutes.
  • the second layer 4b containing the second conductive polymer was formed so as to cover the surface of the layer 4c containing the surface conditioner. ..
  • the first layer 4a, the layer 4c containing the surface conditioner, and the solid electrolyte layer 4 containing the second layer 4b were formed so as to cover the surface of the dielectric layer 3.
  • cathode layer 5 Forming step of cathode layer 5 (sixth step)
  • the anode body 2 obtained in (5) above is immersed in a dispersion liquid in which graphite particles are dispersed in water, taken out from the dispersion liquid, and then dried to form a carbon layer 5a on the surface of at least the second layer 4b. did. Drying was carried out at 130 to 180 ° C. for 10 to 30 minutes.
  • a silver paste containing silver particles and a binder resin (epoxy resin) is applied to the surface of the carbon layer 5a, and the binder resin is cured by heating at 150 to 200 ° C. for 10 to 60 minutes to cure the binder resin, and the metal paste layer 5b was formed.
  • the cathode layer 5 composed of the carbon layer 5a and the metal paste layer 5b was formed.
  • the capacitor element 11 was manufactured as described above.
  • Electrolytic Capacitor B1 In the fourth step, no surface conditioner was used when preparing the second treatment liquid. Except for this, an electrolytic capacitor B1 was produced in the same manner as the electrolytic capacitor A1 and evaluated.
  • Electrolytic Capacitor B2 In the fifth step, the same ester-type nonionic surfactant (surface conditioner) used for the second treatment liquid in the electrolytic capacitor A1 was added to the third treatment liquid. The amount of the surface conditioner in the third treatment liquid was 0.5% by mass. Further, in the fourth step, no surface conditioner was used when preparing the second treatment liquid. Except for these, an electrolytic capacitor B2 was produced in the same manner as the electrolytic capacitor A1 and evaluated.
  • surface conditioner ester-type nonionic surfactant
  • Electrolytic capacitors A2 and A3 In the fourth step, as the surface conditioner, a commercially available nonionic surfactant different from that used in the electrolytic capacitor A1 was used. Except for these, electrolytic capacitors A2 and A3 were produced and evaluated in the same manner as the electrolytic capacitors A1. A different nonionic surfactant was used for the electrolytic capacitor A2 and the electrolytic capacitor A3.
  • the nonionic surfactant used in the electrolytic capacitor A2 was an ester type
  • the nonionic surfactant used in the electrolytic capacitor A3 was a linear alkyl polyether type.
  • Table 1 shows the results of the electrolytic capacitors A1 to A3 and B1 to B2. Each evaluation was expressed as a ratio (%) when the measured value of the electrolytic capacitor A1 was 100%.
  • the electrolytic capacitors A1 to A3 are examples, and the electrolytic capacitors B1 to B2 are comparative examples.
  • the ratio T1 / T2 of the electrolytic capacitor B1 without the surface conditioner and the electrolytic capacitor B2 with the third treatment liquid containing the surface conditioner is as low as 0.552 to 0.769. It has become.
  • the ratio T1 / T2 is 0.932 to 1.280, which is significantly improved as compared with the electrolytic capacitors B1 and B2. ..
  • the value of T2 of the electrolytic capacitors A1 to A3 was not so different from the value of T2 of the electrolytic capacitors B1 and B2.
  • the thickness of the solid electrolyte layer formed at the corners of the anode is suppressed to be smaller than that in the electrolytic capacitors B1 to B2, and the thickness of the solid electrolyte layer varies. Can be said to be reduced.
  • the thickness of the solid electrolyte layer at the corners is large, and the leakage current can be remarkably reduced while maintaining good levels of capacitance, tan ⁇ and ESR.
  • the electrolytic capacitors A1 to A3 can reduce the occurrence of product defects due to the occurrence of short circuits as compared with the electrolytic capacitors B1 and B2.
  • Electrolytic capacitors A4 to A8 A treatment liquid prepared by further adding a water-soluble polymer to a dispersion liquid having the same composition as the first treatment liquid was used as the third treatment liquid. Except for this, electrolytic capacitors A4 to A8 were produced and evaluated in the same manner as the electrolytic capacitors A1. Further, in the third treatment liquid, the amount of the water-soluble polymer added was adjusted so that the content (mass%) of the water-soluble polymer in the solid electrolyte layer became the value shown in Table 2. As the water-soluble polymer, a copolymer of acrylic acid and methacrylic acid (Mw: about 100,000) was used.
  • the withstand voltage of the electrolytic capacitors A4 to A8, A1 and B1 was evaluated by the following procedure. (Pressure resistance) A voltage was applied to the electrolytic capacitor while boosting at a rate of 1.0 V / sec, and the breakdown withstand voltage through which an overcurrent of 0.5 A flowed was measured. The breakdown withstand voltage is expressed as an index (withstand voltage index V) with the breakdown withstand voltage of the electrolytic capacitor A1 as 100 (%). The withstand voltage was evaluated based on this withstand voltage index. The larger the withstand voltage index, the higher the withstand voltage. The results are shown in Table 2. The electrolytic capacitors A4 to A8 are examples.
  • high pressure resistance can be obtained by including the water-soluble polymer in the solid electrolyte layer (electrolytic capacitors A4 to A8).
  • LC can be significantly reduced while suppressing the increase in tan ⁇ and ESR.
  • the ratio T1 / T2 is improved as compared with the electrolytic capacitors B1 (and B2 in Table 1). The value of T1 of the electrolytic capacitors A4 to A8 was not so different from the value of T1 of the electrolytic capacitors A1.
  • the thickness T2 of the solid electrolyte layer formed in the central portion of the main surface of the anode is larger than that of the electrolytic capacitors A1, and the variation in the thickness of the solid electrolyte layer is further reduced. It can be said that it has been done. As a result, it is considered that LC was greatly reduced in the electrolytic capacitors A4 to A8, and high withstand voltage was obtained.
  • the electrolytic capacitor can be used for various purposes.
  • Electrolytic capacitor 1: Electrolytic capacitor, 2: Anode, 3: Dielectric layer, 4: Solid electrolyte layer, 4a: First layer, 4b: Second layer, 4c: Layer containing surface conditioner, 5: Cathode layer, 5a: Carbon layer, 5b: Metal paste layer, 11: Condenser element, 12: Resin exterior body, 13: Anode terminal, 13a: Anode One end of the terminal, 13b: The other end of the anode terminal, 14: Cathode terminal, 14a: One end of the cathode terminal, 14b: The other end of the cathode terminal, 15: Cathode, 16: Separation, 17: Conductivity Adhesive, E1: 1st end of anode, E2: 2nd end of anode, Ms: main surface of anode, Es: end face of anode, L1, L2: pair of main surfaces of anode Straight line extending the corresponding line segment, CL: Center line of each main surface of the anode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

第1端部を含む陽極引出部および第2端部を含む陰極形成部を有するシート状の陽極体と、前記陽極体の少なくとも前記陰極形成部の表面に形成された誘電体層と、前記誘電体層の少なくとも一部を覆う陰極部と、を備える少なくとも1つのコンデンサ素子を備える。前記陰極部は、前記誘電体層の少なくとも一部を覆う導電性高分子を含む固体電解質層を備える。前記陰極部の前記第1端部側の部分の任意の位置における前記コンデンサ素子の前記第1端部から前記第2端部に向かう方向に垂直な断面において、前記陽極体の角部に形成された前記固体電解質層の厚みT1の、前記陽極体の主面の中央部に形成された前記固体電解質層の厚みT2に対する比:T1/T2は、0.8以上1.7以下であることで、陽極部の角部に形成される固体電解質の厚みが小さくなることを抑制した電解コンデンサ。

Description

電解コンデンサおよびその製造方法
 本開示は、導電性高分子を含む固体電解質層を備える電解コンデンサおよびその製造方法に関する。
 電解コンデンサは、コンデンサ素子と、コンデンサ素子を封止する外装体と、コンデンサ素子に電気的に接続される外部電極とを備える。コンデンサ素子は、第1端部を含む陽極引出部および第2端部を含む陰極形成部を有する陽極体と、陽極体の少なくとも陰極形成部の表面に形成された誘電体層と、誘電体層の少なくとも一部を覆う陰極部とを備える。陰極部は、誘電体層の少なくとも一部を覆う導電性高分子を含む固体電解質層と固体電解質層の少なくとも一部を覆う陰極引出層とを備えている。導電性高分子を含む固体電解質層を備える電解コンデンサは、固体電解コンデンサとも呼ばれている。
 特許文献1は、第1導電性高分子層と第2導電性高分子層との間に、カチオン性基を含むカチオン剤と、第1アニオン性基および第2アニオン性基を含むアニオン剤とを含む中間層を設けることを提案している。
 特許文献2は、第一の固体電解質層と、第二の固体電解質層と、これらの間および第二の固体電解質層内に存在するアミン化合物からなる少なくとも1層の連続または非連続の層とを含む固体電解コンデンサを提案している。
 特許文献3は、陽極体弁作用金属に酸化皮膜を形成し、酸化皮膜上に導電性高分子層、グラファイト層および銀層を順に形成して陰極とする固体電解コンデンサの製造方法であって、スルホン酸エステル化合物を含む導電性高分子層の形成方法が、スルホン酸化高分子化合物をドーパントとして含む導電性高分子溶液または分散液中に、水酸基を持つ非イオン性界面活性剤を溶解させて酸化皮膜上に塗布し、加熱乾燥により脱水縮合させることを特徴とする固体電解コンデンサの製造方法を提案している。
 特許文献4は、表面に誘電体酸化皮膜層を有する平板状の弁作用金属からなる陽極基体の端部が陽極部とされ、この陽極部を除いた部分の前記誘電体酸化皮膜層上に固体電解質層、その上に導電体層が順次形成されて陰極部とされている単板コンデンサ素子の複数が、その陽極部を同一方向に揃えて陽極側リードフレーム上に積層固着され、単板コンデンサ素子の陰極部を陽極部側から陰極部先端に向かって末広がり形状に陰極側リードフレーム上に導電性接着層を形成して積層固着されて積層コンデンサ素子とされ、前記各単板コンデンサ素子の前記固体電解質層を有する部分の平板状弁作用金属が陰極側リードフレームに対してほぼ平行に積層されていることを特徴とする積層型固体電解コンデンサを提案している。
国際公開第2016/006236号 特開2012-43958号公報 特開2010-245313号公報 特開2001-230156号公報
 従来技術では、陽極体の主面の中央付近に比べて、角部に形成される固体電解質層の膜厚が小さくなる傾向がある。また、陽極体の角部に固体電解質層で覆われていない部分が形成されることもある。
 本開示の一側面は、第1端部を含む陽極引出部および第2端部を含む陰極形成部を有するシート状の陽極体と、
 前記陽極体の少なくとも前記陰極形成部の表面に形成された誘電体層と、
 前記誘電体層の少なくとも一部を覆う陰極部と、を備える少なくとも1つのコンデンサ素子を備え、
 前記陰極部は、前記誘電体層の少なくとも一部を覆う導電性高分子を含む固体電解質層を備え、
 前記陰極部の前記第1端部側の部分の任意の位置における前記コンデンサ素子の前記第1端部から前記第2端部に向かう方向に垂直な断面において、前記陽極体の角部に形成された前記固体電解質層の厚みT1の、前記陽極体の主面の中央部に形成された前記固体電解質層の厚みT2に対する比:T1/T2が、0.8以上1.7以下である、電解コンデンサに関する。
 本開示の他の側面は、陽極体を準備する第1工程と、
 前記陽極体の表面に誘電体層を形成する第2工程と、
 前記誘電体層が形成された前記陽極体を、第1導電性高分子またはその前駆体を含む第1処理液で処理する第3工程と、
 前記第1処理液で処理された前記陽極体を、表面調整剤を含む第2処理液で処理する第4工程と、
 前記第2処理液で処理された前記陽極体を、第2導電性高分子を含む第3処理液で処理する第5工程と、を含む、電解コンデンサの製造方法に関する。
 陽極体の角部に形成される固体電解質層の厚みが小さくなることを抑制できる。
図1は、本開示の一実施形態に係る電解コンデンサの断面模式図である。 図2は、図1の実線αで囲まれた領域の拡大図である。 図3は、コンデンサ素子を一方の主面側から見たときの概略正面図である。 図4は、図3のコンデンサ素子のIV-IV線における断面を矢印の方向に見たときの概略断面図である。
 導電性高分子を含む処理液は、表面張力が比較的高い。そのため、陽極体の陰極形成部の表面全体を処理液で均一に濡れた状態とすることが難しい。その結果、陰極形成部の表面に均一な厚みの固体電解質層を形成することは難しい。陽極体としては、一般に、金属箔または焼結体などのシート状の陽極体が用いられる。導電性高分子を含む処理液で、シート状の陽極体を処理すると、シート主面の中心付近では比較的均一な厚みの固体電解質層が形成される。しかし、シート主面の中心付近に比べて、シートの角部に処理液を付着させることは難しい。そのため、シートの角部では、固体電解質層の厚みが小さくなったり、導電性高分子が付着していない部分が形成されたりする。導電性高分子が付着していない部分が形成されると、ショートが起こり易く、製品不良となり、歩留まりが低下する。
 本開示によれば、誘電体層が形成された陽極体を、第1導電性高分子またはその前駆体を含む第1処理液で処理する工程と、第1処理液で処理された陽極体を、表面調整剤を含む第2処理液で処理する工程と、第2処理液で処理された陽極体を、第2導電性高分子を含む第3処理液で処理する工程とを含む製造方法により電解コンデンサを製造する。このように、陽極体を、表面調整剤を含む第2処理液で処理した後に、第2導電性高分子を含む第3処理液で処理することで、陽極体の主面の中央付近だけでなく、角部にも第2導電性高分子を付着させることができる。これにより、陽極体の角部に形成される固体電解質層の厚みが小さくなることを抑制できる。
 陽極体の角部に形成される固体電解質層の厚みが小さくなることが抑制されるのは、次のような理由によるものと考えられる。まず、表面調整剤を含む第2処理液を用いることで、第2処理液を、陰極形成部において、陽極体の表面全体に行き渡らせることができる。これにより、表面調整剤などの第2処理液の成分が陰極形成部の表面全体に付着した状態となる。このような状態で、第2導電性高分子を含む第3処理液で陽極体を処理すると、第3処理液を陰極形成部の表面全体に行き渡らせることができる。これにより、陰極形成部の表面において第2導電性高分子が陽極体の主面の中央付近に凝集することが抑制される。その結果、陽極体の主面の中央付近だけでなく、角部にも、適度な厚みの固体電解質層を形成することができ、厚みのばらつきが低減される。
 このように、本開示によれば、陽極体の角部に形成された固体電解質層の厚みの、主面の中央付近に形成された固体電解質層の厚みに対する相対比を従来に比べて大きくすることができる。
 より具体的には、本開示の電解コンデンサでは、陽極体の角部に形成された固体電解質層の厚みT1の、陽極体の主面の中央部に形成された固体電解質層の厚みT2に対する比:T1/T2が、0.8以上1.7以下である。このように電解コンデンサでは、陽極体の角部に形成された固体電解質層の厚みが小さくなることが抑制されている。また、陽極体の陰極形成部の表面全体において、より均一な厚みを有する固体電解質層が形成される。その結果、ショートによる製品不良が低減される。また、漏れ電流が過度に大きくなることを抑制しながら、静電容量の低下、ESRおよび誘電正接tanδの上昇も抑制され、電解コンデンサの品質がより安定化される。
 固体電解質層の厚みのばらつきを抑制するには、陽極体の陰極形成部における表面全体に、第2導電性高分子を含む第3処理液を行き渡らせることが重要であると考えられる。そのため、第3処理液の表面張力を低下させるべく、第3処理液に表面調整剤を添加することも考えられる。しかし、実際に第3処理液に表面調整剤を添加しても、角部において固体電解質層の厚みが小さくなることを抑制する効果は小さい。また、第3処理液には、通常、第2導電性高分子以外にも、様々な添加剤が含まれているため、表面調整剤を添加すると第3処理液のポットライフが短くなることがある。本開示によれば、表面調整剤を含む第2処理液を用いるため、導電性高分子を含む処理液に表面調整剤を添加する場合とは異なり、処理液の良好なポットライフを確保することができる。このような観点から、第2処理液は、導電性高分子を含まないことが好ましい。
 なお、電解コンデンサは、少なくとも1つのコンデンサ素子を備えている。コンデンサ素子は、第1端部を含む陽極引出部および第2端部を含む陰極形成部を有する陽極体と、陽極体の少なくとも陰極形成部の表面に形成された誘電体層と、誘電体層の少なくとも一部を覆う陰極部と、を備える。陽極体は、通常、シート状である。陰極部は、誘電体層の少なくとも一部を覆う導電性高分子を含む固体電解質層を備える。上記の厚みT1およびT2は、陰極部の第1端部側の部分の任意の位置におけるコンデンサ素子の第1端部側から第2端部側に向かう方向に垂直な断面において求められる。なお、この断面を単に断面Gと称する場合がある。より具体的には、厚みT1は、断面Gにおいて、陽極体の4つの角部に形成された固体電解質層の厚みをそれぞれ計測し、平均化することにより求められる。まず、断面Gにおいて、陽極体の主面に相当する線分を外側に延ばした線に対して45°の角度で陽極体の角部の頂点を通る直線を引く。そして、この直線が固体電解質層の外縁と交わる点と、対応する角部の頂点との間の距離を、各角部に形成された固体電解質層の厚みとする。厚みT2は、断面Gにおいて、陽極体の一対の主面のそれぞれの中央部に形成された固体電解質層の厚みを計測し、平均化することにより求められる。まず、断面Gにおいて、陽極体の主面に相当する線分の中点のそれぞれを通る中心線を引く。そして、この中心線と固体電解質層の外縁との交点と、対応する上記の中点との間の距離を、各主面の中央部に形成された固体電解質層の厚みとする。
 第1端部側から第2端部側に向かう方向とは、第1端部の端面の中心と第2端部の端面の中心とを結ぶ直線方向に平行な方向とする。この方向を、陽極体またはコンデンサ素子の長さ方向と称する場合がある。断面Gは、コンデンサ素子の陰極部が形成されている部分において、コンデンサ素子の長さ方向に平行な方向における陰極部の長さの半分の位置と陰極部の第1端部側の端部との間の任意の位置におけるコンデンサ素子の長さ方向に垂直な断面である。なお、コンデンサ素子の断面は、例えば、光学顕微鏡により観察できる。
 固体電解質層は、誘電体層の少なくとも一部を覆う第1導電性高分子を含む第1層と、第1層の少なくとも一部を覆う第2導電性高分子を含む第2層と、第1層と第2層との間に介在する少なくとも1つの連続または非連続の層とを含んでいてもよい。ここで、連続または非連続の層は、表面調整剤を含む。このような固体電解質層では、表面調整剤が、第1層と第2層との間に偏在していると言える。第1層と第2層との間に表面調整剤が介在することで、陽極体の陰極形成部における表面全体を第2層で覆い易くなる。そのため、角部に形成される固体電解質層の厚みが小さくなることが抑制される。その結果、固体電解質層の厚みのばらつきが低減される。
 なお、表面調整剤は、少なくとも第1層と第2層との間に介在していればよい。誘電体層が第1層で覆われていない部分では、誘電体層と第2層との間に表面調整剤が介在していてもよい。表面調整剤は、陽極体の陰極形成部の表面全体を覆うように分布していればよい。そのため、表面調整剤を含む層は、必ずしも連続している必要はなく、非連続の層であってもよい。表面調整剤を含む層の一部が、第1層中に入り込んだ状態であってもよい。第1層と第2層との間において、表面調整剤を含む層は、少なくとも1層介在していればよく、2層以上介在していてもよい。
 以下、必要に応じて図面を参照しながら、本開示の電解コンデンサおよびその製造方法についてより具体的に説明する。
[電解コンデンサ]
(陽極体)
 陽極体は、弁作用金属、弁作用金属を含む合金、および弁作用金属を含む化合物などを含むことができる。これらの材料は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。弁作用金属としては、例えば、アルミニウム、タンタル、ニオブ、チタンが好ましく使用される。
 陽極体の形状は、通常、シート状である。シート状には、箔状および板状も包含されるものとする。シート状の陽極体は、一対の主面を備えている。陽極体の各主面と各端面との間には、角部が存在する。
 陽極体は、第1端部を含む陽極引出部と、第1端部とは反対側の第2端部を含む陰極形成部とを有する。陽極体の陰極形成部の表面には、固体電解質層を含む陰極部が形成される。
 陽極体は、通常、少なくとも陰極形成部において、表層に多孔質部を備えている。弁作用金属を含む基材(例えば、シート状の基材)の、少なくとも陰極形成部に相当する部分の表面を粗面化することにより、表層に多孔質部が形成される。多孔質部は、陽極引出部の表層に形成されていてもよい。また、陽極体は、弁作用金属を含む粒子の成形体またはその焼結体でもよい。焼結体は、多孔質構造を有するため、陽極体の全体が多孔質部となり得る。
(誘電体層)
 誘電体層は、陽極体の少なくとも一部の表面を覆うように形成された誘電体として機能する絶縁性の層である。
 誘電体層は、陽極体の少なくとも一部を覆うように形成されていればよい。誘電体層は、例えば、陽極体の少なくとも陰極形成部における表面に形成されていてもよい。誘電体層は、陽極引出部の表面に形成されていてもよい。
 誘電体層は、通常、陽極体の表面に形成される。陽極体の表層には、通常、多孔質部が形成されている。そのため、誘電体層は、多孔質部の孔の内壁面を含めて、陽極体の表面の孔および窪み(ピット)の内壁面に沿って形成される。
 誘電体層は弁作用金属の酸化物を含む。例えば、弁作用金属としてタンタルを用いた場合の誘電体層はTa25を含み、弁作用金属としてアルミニウムを用いた場合の誘電体層はAl23を含む。尚、誘電体層はこれに限らず、誘電体として機能するものであればよい。
(陰極部)
 陰極部は、誘電体層の少なくとも一部を覆う固体電解質層を少なくとも備えている。陰極部は、通常、陽極体の陰極形成部における表面に、誘電体層を介して形成されている。陰極部は、通常、固体電解質層と、固体電解質層の少なくとも一部を覆う陰極引出層とを備える。以下、固体電解質層および陰極引出層について説明する。
 (固体電解質層)
 固体電解質層は、誘電体層を覆うように形成される。固体電解質層は、必ずしも誘電体層の全体(表面全体)を覆う必要はなく、誘電体層の少なくとも一部を覆うように形成されていればよい。固体電解質層には、例えば、第1導電性高分子を含む第1層と、第1層上に形成された第2導電性高分子を含む第2層と、第1層と第2層との間に介在する表面調整剤を含む連続または非連続の層とが含まれる。誘電体層上に、第1層が形成されていない領域が存在する場合には、この領域において、誘電体層上に第2層が形成されていてもよく、誘電体層上に表面調整剤を含む層を介して第2層が形成されていてもよい。
 (第1層)
 第1導電性高分子としては、電解コンデンサに使用される公知のもの、例えば、π共役系導電性高分子などが使用できる。第1導電性高分子としては、例えば、ポリピロール、ポリチオフェン、ポリアニリン、ポリフラン、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、およびポリチオフェンビニレンを基本骨格とする高分子が挙げられる。これらのうち、ポリピロール、ポリチオフェン、またはポリアニリンを基本骨格とする高分子が好ましい。
 上記の高分子には、単独重合体、二種以上のモノマーの共重合体、およびこれらの誘導体(置換基を有する置換体など)も含まれる。例えば、ポリチオフェンには、ポリ(3,4-エチレンジオキシチオフェン)などが含まれる。
 第1導電性高分子は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 第1導電性高分子の重量平均分子量(Mw)は、特に限定されないが、例えば1,000以上1,000,000以下である。
 なお、本明細書中、重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリスチレン換算の値である。なお、GPCは、通常は、ポリスチレンゲルカラムと、移動相としての水/メタノール(体積比8/2)とを用いて測定される。
 第1層は、単層であってもよく、複数の層で構成してもよい。第1層が複数層で構成される場合、各層に含まれる第1導電性高分子は同じであってもよく、異なっていてもよい。
 第1層は、さらにドーパントを含むことができる。ドーパントとしては、例えば、アニオンおよびポリアニオンからなる群より選択される少なくとも一種が使用される。
 アニオンとしては、例えば、硫酸イオン、硝酸イオン、燐酸イオン、硼酸イオン、有機スルホン酸イオン、カルボン酸イオンなどが挙げられるが、特に制限されない。スルホン酸イオンを生成するドーパントとしては、例えば、パラトルエンスルホン酸、およびナフタレンスルホン酸などが挙げられる。
 ポリアニオンとしては、例えば、高分子タイプのポリスルホン酸および高分子タイプのポリカルボン酸などが挙げられる。高分子タイプのポリスルホン酸としては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、およびポリメタクリルスルホン酸などが挙げられる。高分子タイプのポリカルボン酸としては、ポリアクリル酸、ポリメタクリル酸などが挙げられる。ポリアニオンには、ポリエステルスルホン酸、およびフェノールスルホン酸ノボラック樹脂なども含まれる。しかし、ポリアニオンは、これらに制限されるものではない。
 後述のアニオン剤を用いる場合、脱ドープを抑制し易い観点からは、ドーパントのうち、電子求引性が比較的高いもの(例えば、スルホン酸イオン、高分子タイプのポリスルホン酸)を用いる方が有利である。固体電解質層の高い導電性を確保し易い観点からも、スルホン酸イオンまたは高分子タイプのポリスルホン酸をドーパントとして用いることが好ましい。
 アニオンおよびポリアニオンは、それぞれ、塩の形態で第1層に含まれていてもよい。第1層において、アニオンおよびポリアニオンのそれぞれは、第1導電性高分子とともに、導電性高分子複合体を形成していてもよい。例えば、スルホン酸基は、第1層において、遊離の形態(-SOH)、アニオンの形態(-SO )、または塩の形態で含まれていてもよく、導電性高分子と結合または相互作用した形態で含まれていてもよい。本明細書中、これらの全ての形態のスルホン酸基を含めて単に「スルホン酸基」と称することがある。同様に、第1層において、カルボキシ基は、遊離の形態(-COOH)、アニオンの形態(-COO)、または塩の形態で含まれていてもよく、導電性高分子と結合または相互作用した形態で含まれていてもよい。本明細書中、これらの全ての形態のカルボキシ基を含めて単に「カルボキシ基」と称することがある。
 第1層に含まれるドーパントの量は、第1導電性高分子100質量部に対して、例えば、10~1000質量部であり、50~200質量部であってもよい。
 第1層は、さらに水溶性高分子を含んでもよい。なお、高分子タイプのドーパントは、水溶性高分子にも包含される。水溶性高分子としては、ドーパントよりも電子求引性が低い成分を用いることが好ましい。固体電解質層が水溶性高分子を含む場合、陽極体の主面の中央部における固体電解質層の厚みを大きくすることができ、固体電解質層の厚みのばらつきをさらに低減することができる。よって、電解コンデンサの品質がさらに安定化される。また、陽極体の主面における固体電解質層の厚みが大きくなることで、電解コンデンサのESRおよびtanδの上昇を抑えながらも、漏れ電流を低減できるとともに、耐圧性を高めることができる。
 水溶性高分子としては、親水性基を主鎖または側鎖に有する水溶性の高分子化合物が挙げられる。親水性基としては、ポリオキシアルキレン鎖、ヒドロキシ基、酸基(カルボキシ基、スルホン酸基など)などが挙げられる。水溶性高分子としては、例えば、ポリアルキレングリコール化合物、水溶性ポリウレタン、水溶性ポリアミド、水溶性ポリイミド、水溶性アクリル樹脂、ポリビニルアルコールが挙げられる。
 ポリアルキレングリコール化合物としては、例えば、ポリオキシアルキレン鎖を有する化合物が挙げられる。ポリオキシアルキレン鎖としては、ポリオキシC2-4アルキレン鎖が好ましい。ポリアルキレングリコール化合物は、少なくともポリオキシエチレン鎖を含むことがより好ましい。ポリアルキレングリコール化合物としては、例えば、ポリアルキレングリコール(ジエチレングリコール、トリエチレングリコール、オリゴエチレングリコール、ポリエチレングリコール、オキシエチレン-オキシプロピレンブロック共重合体など)、置換基(ハロゲン原子、ヒドロキシ基など)を有するポリアルキレングリコール(例えば、ポリアルキレングリコールクロロヒドリンまたはブロモヒドリン(ジエチレングリコールモノクロロヒドリン、トリエチレングリコールモノクロロヒドリン、オリゴエチレングリコールモノクロロヒドリン、ポリエチレングリコールモノクロロヒドリン、ジエチレングリコールモノブロモヒドリン、トリエチレングリコールモノブロモヒドリン、オリゴエチレングリコールモノブロモヒドリンなど))などのヒドロキシ化合物が挙げられる。ポリアルキレングリコール化合物には、これらのヒドロキシ化合物の誘導体(例えば、エーテル化合物、エステル化合物、アミド化合物)も包含される。
 水溶性ポリウレタン、水溶性ポリアミド、および水溶性ポリイミドのそれぞれとしては、例えば、側鎖に酸基(カルボキシ基およびスルホン酸基からなる群より選択される少なくとも一種など)を有する高分子が挙げられる。これらの水溶性高分子では、各高分子の骨格(主鎖)に、複数の酸基が導入されることで、高い水溶性が得られる。
 水溶性アクリル樹脂としては、側鎖にカルボキシ基を有するものが好ましい。このような水溶性アクリル樹脂としては、ポリアクリル酸、ポリメタクリル酸、アクリル酸-メタクリル酸共重合体、アクリル酸およびメタクリル酸からなる群より選択される少なくとも一種と他の共重合性モノマーとの共重合体などが挙げられる。他の共重合性モノマーとしては、例えば、アクリル酸エステル(アルキルエステル、ヒドロキシアルキルエステルなど)、メタクリル酸エステル(アルキルエステル、ヒドロキシアルキルエステルなど)、ビニル化合物(シアン化ビニル、オレフィン、芳香族ビニル化合物など)、重合性不飽和結合を有するポリカルボン酸(マレイン酸、フマル酸など)またはその酸無水物が挙げられる。共重合体は、他の共重合性モノマーに由来するモノマー単位を一種含んでいてもよく、二種以上含んでいてもよい。
 第1層は、水溶性高分子を一種含んでもよく、二種以上含んでもよい。
 水溶性高分子には、ドーパントとしての機能を有する水溶性高分子も含まれる。ドーパントとして、スルホン酸基を含むドーパントなどの電子求引性が比較的高いドーパント(例えば、スルホン酸イオン、高分子タイプのポリスルホン酸)を用いる場合、カルボキシ基などの電子求引性が比較的低い水溶性高分子が共存していても、このような水溶性高分子のドーパントとしての機能が発揮されない場合が多い。固体電解質層がこのような水溶性高分子を含む場合、高分子の絶縁性が適度に発揮されるとともに、固体電解質層の膜厚を大きくすることができることで、電解コンデンサの漏れ電流を低減できるとともに、耐圧性を高めることができる。従って、水溶性高分子としては、ドーパントよりも電子求引性が低い水溶性高分子を用いることが好ましい。このような水溶性高分子としては、例えば、カルボキシ基、ヒドロキシ基、およびポリオキシアルキレン鎖からなる群より選択される少なくとも一種)を有する水溶性高分子が挙げられる。
 水溶性高分子が有するカルボキシ基およびスルホン酸基のそれぞれは、ドーパントの場合と同じように、遊離の形態(-COOH)、アニオンの形態(-COO)、または塩の形態で第1層に含まれていてもよい。また、カルボキシ基およびスルホン酸基のそれぞれの一部は導電性高分子と結合または相互作用した形態で第1層に含まれていてもよい。本明細書中、これらの全ての形態のカルボキシ基を含めて単に「カルボキシ基」と称し、これらの全ての形態のスルホン酸基を含めて単に「スルホン酸基」と称することがある。
 水溶性高分子のMwは、例えば、100以上であり、400以上が好ましい。より高い耐電圧特性を水溶性高分子のMwは、例えば、500万以下であり、100万以下であってもよい。これらの下限値と上限値とは任意に組み合わせることができる。
 第1層中の水溶性高分子の含有量は、固体電解質層中の水溶性高分子の含有量が、例えば、25質量%以上70質量%以下となるような範囲で調節することが好ましい。固体電解質中の水溶性高分子の含有量は、30質量%以上70質量%以下(または68質量%以下)であってもよく、40質量%以上70質量%以下(または68質量%以下)であってもよく、43質量%以上70質量%以下(または68質量%以下)であってもよい。固体電解質中の水溶性高分子の含有量がこのような範囲である場合、電解コンデンサのESRおよびtanδの上昇を低く抑えながらも、漏れ電流を低減することができるとともに、より高い耐圧性を確保することができる。
 第1層中の水溶性高分子の含有量は、30質量%以下であることが好ましく、20質量%以下または10質量%以下であることがより好ましい。第1層は、水溶性高分子を含まなくてもよい。この場合、固体電解質層のより高い導電性を確保することができるため、好ましい。
 なお、固体電解質層中の水溶性高分子の含有量は、コンデンサ素子から採取したサンプルを用いて求めることができる。より具体的には、まず、電解コンデンサを硬化性樹脂に埋め込んで硬化性樹脂を硬化させる。硬化物に研磨処理またはクロスセクションポリッシャー加工を行うことにより、固体電解質層の厚み方向に平行な断面を露出させる。固体電解質層を掻き取り、所定量のサンプルを採取して、質量を測定する。サンプルから20℃~40℃の水で水溶性高分子を抽出する。抽出物を濃縮し、LC-MSまたはGC-MSで水溶性高分子を同定する。検量線法で、抽出物中の水溶性高分子の濃度を求める。この濃度とサンプルの質量とから、固体電解質層中の水溶性高分子の含有量(質量)を求める。第1層中の水溶性高分子の含有量については、陽極体のピット内に形成された固体電解質層を掻き取ることにより採取したサンプルを用いる以外は、上記と同様の手順で求められる。
 (表面調整剤を含む層)
 (表面調整剤)
 表面調整剤には、例えば、レベリング剤および消泡剤が含まれる。表面調整剤を含む第2処理液を、陽極体の陰極形成部における表面全体に行き渡らせる観点から、表面調整剤としては、レベリング作用を有するものが好ましい。表面調整剤としては、界面活性剤が好適に用いられる。
 界面活性剤は、非イオン性界面活性剤、およびイオン性界面活性剤のいずれであってもよい。界面活性剤は、親水性基と疎水性基とを有する。イオン性界面活性剤には、カチオン界面活性剤、アニオン界面活性剤、および両性界面活性剤が含まれる。界面活性剤は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 非イオン性界面活性剤としては、エーテル型(ポリエーテル型など)、エステルエーテル型(脂肪酸ポリエチレングリコール、脂肪酸ポリオキシエチレンソルビタンなど)、エステル型(グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステルなど)、またはアルカノールアミド型(脂肪酸アルカノールアミドなど)などの非イオン性界面活性剤が挙げられる。ポリエーテル型の非イオン性界面活性剤としては、ポリオキシエチレン鎖などのポリオキシアルキレン鎖を有するもの(ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコールなど)などが挙げられる。非イオン性界面活性剤は、ハロゲン原子を有するものであってもよい。ハロゲン原子には、フッ素原子、塩素原子、臭素原子、およびヨウ素原子が含まれる。中でも、フッ素原子が好ましい。
 カチオン界面活性剤としては、例えば、アルキルアミン塩型(モノアルキルアミン塩、ジアルキルアミン塩、トリアルキルアミン塩など)、第4級アンモニウム塩型(ハロゲン化アルキルトリメチルアンモニウム、ハロゲン化ジアルキルジメチルアンモニウム、塩化アルキルベンザルコニウムなど)などのカチオン界面活性剤が挙げられる。
 アニオン界面活性剤としては、例えば、カルボン酸型、スルホン酸型、硫酸エステル型、リン酸エステル型のアニオン界面活性剤が挙げられる。カルボン酸型のアニオン界面活性剤としては、脂肪族モノカルボン酸塩、ポリオキシエチレンアルキルエーテルカルボン酸塩、N-アシルサルコシン塩、N-アシルグルタミン酸塩などが挙げられる。スルホン酸型のアニオン界面活性剤としては、ジアルキルスルホコハク酸塩、アルカンスルホン酸塩、α-オレフィンスルホン酸塩、アルキルベンゼンスルホン酸塩、ナフタレンスルホン酸-ホルムアルデヒド縮合物、アルキルナフタレンスルホン酸塩、N-メチル-N-アシルタウリン塩などが挙げられる。硫酸エステル型のアニオン界面活性剤としては、アルキル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、油脂硫酸エステル塩などが挙げられる。リン酸エステル型のアニオン界面活性剤としては、アルキルリン酸塩、ポリオキシエチレンアルキルエーテルリン酸塩、ポリオキシエチレンアルキルフェニルエーテルリン酸塩などが挙げられる。
 両性界面活性剤としては、カルボキシベタイン型(アルキルベタイン、脂肪酸アミドプロピルベタインなど)、2-アルキルイミダゾリンの誘導体型(2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリウムベタインなど)、グリシン型(アルキルジエチレントリアミノ酢酸、ジアルキルジエチレントリアミノ酢酸など)、アミンオキシド型(アルキルアミンオキシドなど)などの両性界面活性剤が挙げられる。
 非イオン性界面活性剤を用いると、第2処理液のポットライフが短くなることが抑制されるとともに、第1層および第2層の導電性高分子の脱ドープを抑制できる。第2導電性高分子の陽極体表面への付着をより促進し易い観点から、カチオン界面活性剤または両性界面活性剤を用いてもよい。後述のカチオン剤の揮発を抑制し易い観点から、アニオン界面活性剤を用いてもよい。
 表面調整剤を含む連続または非連続の層は、表面調整剤以外の成分を含むことができる。連続または非連続の層に含まれる表面調整剤の量は、例えば、0.01~30質量%であり、0.1~15質量%であってもよい。表面調整剤の量がこのような範囲である場合、陽極体の陰極形成部の表面全体に表面調整剤をより均一に分布させることができ、固体電解質層の厚みのばらつきを軽減し易い。加えて、固体電解質層の抵抗を低く抑えることができるため、ESRの増加を抑制できる。
 (他の成分)
 連続または非連続の層に含まれる表面調整剤以外の成分としては、例えば、カチオン剤およびアニオン剤からなる群より選択される少なくとも一種が挙げられる。ただし、カチオン剤およびアニオン剤のそれぞれは、表面調整剤とは異なるものである。例えば、カチオン剤およびアニオン剤としては、それぞれ、界面活性剤ではないものが用いられる。
 第1層および第2層のそれぞれには、通常、導電性高分子とともに、アニオン性のドーパントが含まれ、このドーパントは第1層および第2層の表面に存在し易い。つまり、第1層および第2層はいずれも、表面がマイナスに帯電し易いため、第1層の表面に、第2層を形成し難い。第1層と第2層との間に介在する連続または非連続の層が、カチオン剤を含む場合には、第2層の成膜性または被覆性を高めることができる。
 連続または非連続の層が、アニオン剤を含む場合、誘電体層の被膜修復性を高めることができる。
 カチオン剤の効果を十分に得るためには、第2処理液中で、カチオン剤を十分に解離した状態とすることが好ましい。しかし、カチオン剤は溶解性が低い上、揮発性も高いため、連続または非連続の層中のカチオン剤の含有量を高めることが難しい。カチオン剤の解離を促進する観点からは、カチオン剤およびアニオン剤の双方を含む第2処理液を用いることが好ましい。このような第2処理液を用いて得られる連続または非連続の層には、カチオン剤およびアニオン剤の双方が含まれる。
 (カチオン剤)
 カチオン性基を有するカチオン剤としては、解離した状態でカチオンを生成可能である限り特に限定されない。カチオン剤としては、例えば、金属化合物(金属水酸化物などの無機塩基など)であってもよいが、有機化合物(有機塩基など)が好ましい。有機化合物であるカチオン剤のカチオン性基としては、アミノ基(第1級アミノ基、第2級アミノ基および第3級アミノ基など)、および第4級アンモニウム基が好ましい。このようなカチオン性基には、アミノ基の塩、および第4級アンモニウム基の塩なども含まれる。表面調整剤を含む連続または非連続の層は、一種のカチオン剤を含んでもよく、二種以上のカチオン剤を含んでもよい。
 カチオン剤のうち、カチオン性基としてアミノ基を有するカチオン剤(アミン化合物など)が好ましい。アミン化合物としては、窒素原子に1~3個の置換基を有するアミン(第1級~第3級アミン)、窒素原子に1または2個のアルキル基を有してもよいジアミンなどが例示できる。置換基は、例えば、アルキル基、シクロアルキル基、およびアリール基からなる群より選択される。アルキル基、シクロアルキル基およびアリール基のそれぞれは、さらに置換基(例えば、ヒドロキシ基およびアルコキシ基からなる群より選択される少なくとも1つ)を有していてもよい。
 上記のジアミンとしては、ジアミノアルカン、ジアミノシクロアルカン(ジアミノシクロヘキサンなどのジアミノC5-8シクロアルカンなど)、ジアミノアレーン(ジアミノベ
ンゼン、ジアミノナフタレンなどのジアミノC6-14アレーンなど)などが例示できる。ジアミノアルカンとしては、ジアミノC2-14アルカンまたはジアミノC4-12アルカンなどが挙げられる。ジアミノアルカンの具体例としては、1,4-ジアミノブタン、1,6-ジアミノヘキサン、1,8-ジアミノオクタン、1,10-ジアミノデカンが挙げられる。
 アミンとして、第1級アミンおよび第3級アミンからなる群より選択される少なくとも一種を用いてもよい。第3級アミンとしては、N,N-ジC1-10アルキル-N-C4-16アルキルアミン、N,N-ジC4-16アルキル-N-C1-10アルキルアミン、トリC4-16アルキルアミンなどが例示できる。
 表面調整剤を含む連続または非連続の層(もしくは、第2処理液)は、カチオン剤を、アミン化合物、アミン化合物に対応するカチオン、第4級アンモニウム化合物、およびカチオンの塩のうち、いずれの形態で含んでもよい。例えば、連続または非連続の層(もしくは、第2処理液)において、カチオン剤は、アニオン剤と塩を形成していてもよい。
 (アニオン剤)
 アニオン剤としては、例えば、第1層のドーパントとして例示したアニオンおよびポリアニオンからなる群より選択される少なくとも一種を用いてもよい。ただし、第1層および第2層からの脱ドープを抑制する観点からは、アニオン剤としては、第1層のドーパントおよび第2層のドーパントとは異なるものを用いることが好ましい。同様の観点から、アニオン剤として、第1層のドーパントおよび第2層のドーパントよりも電子求引性が低いものを用いてもよい。
 陽極体を構成する弁作用金属の腐食を抑制する観点から、電子求引性が高い第1アニオン性基と、第1アニオンよりも電子求引性が低い第2アニオン性基を含むアニオン剤を用いてもよい。このようなアニオン剤としては、例えば、第1アニオン性基と第2アニオン性基とを含む重合体(第1アニオン剤)が挙げられる。第1アニオン剤は、一種を単独でまたは二種以上を組み合わせて使用できる。
 第1アニオン性基および第2アニオン性基としては、例えば、スルホン酸基、リン酸基、ホスホン酸基、ホウ酸基、カルボキシ基、およびヒドロキシ基などが挙げられる。これらのアニオン性基の中から、電子求引性の異なる第1アニオン性基と第2アニオン性基とを選択すればよい。なお、アニオン性基は、解離した状態でアニオンを生成可能である限り特に制限されず、これらの基の塩などであってもよい。
 重合体(高分子化合物)である第1アニオン剤としては、例えば、第1アニオン性基を有するモノマーユニットと、第2アニオン性基を有するモノマーユニットとを少なくとも含む共重合体(p1)、および第1アニオン性基および第2アニオン性基を有するモノマーユニットを少なくとも含む重合体(p2)などが例示できる。これらの重合性は、さらに他の共重合性モノマーユニットを含んでもよい。第1アニオン剤は、一種を単独でまたは二種以上を組み合わせて使用してもよい。
 上記のモノマーユニットのベースとなるモノマーユニットとしては、例えば、エチレン、プロピレンなどの脂肪族ビニルモノマーユニット、スチレンなどの芳香族ビニルモノマーユニット、ブタジエン、イソプレンなどのジエンモノマーユニットなどが挙げられる。
 重合体のMwは、例えば、5,000~500,000であり、10,000~200,000であってもよい。
 第1アニオン剤は、必要に応じて、アニオン性基を有する低分子化合物(モノマー化合物)である第2アニオン剤と組み合わせて用いてもよい。
 第2アニオン剤としては、例えば、第1層のドーパントとして記載したアニオンおよびポリアニオンのうち、モノマー化合物を用いてもよい。第2アニオン剤は、脂肪族化合物、脂環族化合物、および芳香族化合物のいずれであってもよい。第2アニオン剤は、一種を用いてもよく、二種以上を組み合わせて用いてもよい。
 第2アニオン剤としては、例えば、脂肪族スルホン酸(メタンスルホン酸などのC1-6
アルカンスルホン酸など)、脂環族スルホン酸(シクロヘキサンスルホン酸などのC5-8
シクロアルカンスルホン酸など)、芳香族スルホン酸(ベンゼンスルホン酸、スチレンスルホン酸などのC6-14アレーンスルホン酸など)、アシッドホスホオキシエチルアクリレート、アシッドホスホオキシエチルメタクリレートなどのカルボン酸のアシッドホスホオキシポリオキシアルキレングリコールモノアクリレート(アシッドホスホオキシポリオキシエチレングリコールモノ(メタ)アクリレート(P(=O)(OH)2-(O-CH2CH2n-O-C(=O)-CR=CH2)(nは2~10の整数であり、Rは水素原子ま
たはメチル基である)など)、脂肪族ホスホン酸(ビニルホスホン酸など)、芳香族ホスホン酸(フェニルホスホン酸など)、カルボン酸[脂肪族カルボン酸(プロパン酸、ブタン酸、ヘキサン酸などのC2-10アルカンカルボン酸、ヘキサン二酸などのC4-12アルカンジカルボン酸など)、脂環族カルボン酸(カルボキシシクロヘキサンなどのカルボキシC5-8シクロアルカン、シクロヘキサンジカルボン酸などのジカルボキシC5-8シクロアルカンなど)、芳香族カルボン酸(安息香酸などのカルボキシC6-14アレーン、サリチル酸などのカルボキシヒドロキシC6-14アレーン、フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸などのジカルボキシC6-14アレーンなど)など]、フェノール化合物(フェノール、ヒドロキシトルエン、ビニルフェノール、ヒドロキシビニルトルエンなど)、上記カルボン酸のヒドロキシアルキルエステル(例えば、アクリル酸ヒドロキシエチル、メタクリル酸ヒドロキシエチルなどなどのヒドロキシC1-4アルキルエステル)な
どが例示できる。
 第2アニオン剤としては、二種以上のアニオン性基を有するものを用いてもよい。このような第2アニオン剤としては、例えば、スルホン酸基およびカルボキシ基を有する第2アニオン剤(例えば、脂肪族化合物(スルホコハク酸など)、芳香族化合物(スルホ安息香酸、スルホサリチル酸、ジスルホサリチル酸、スルホフタル酸、スルホイソフタル酸、スルホテレフタル酸、ナフトールスルホン酸など)、リン酸基およびカルボキシ基を有する第2アニオン剤(例えば、2-(ジヒドロキシホスフィニルオキシ)アクリル酸)、ホスホン酸基およびカルボキシ基を有する第2アニオン剤(例えば、ホスホノアクリル酸、2-メチル-3-ホスホノアクリル酸)などが挙げられる。
 表面調整剤を含む連続または非連続の層(もしくは、第2処理液)において、アニオン剤のアニオン性基は、上記のアニオン性基、上記のアニオン性基に対応するアニオン、およびアニオンの塩などから選択されるいずれの形態で含まれていてもよい。
 (第2層)
 第2層は、第1層の少なくとも一部を覆うように形成されていればよく、第1層の表面全体を覆うように形成されていてもよい。第2層は、第1層の表面の少なくとも一部の領域では、表面調整剤を含む連続または非連続の層を介して、第1層を覆うように形成されているが、連続または非連続の層を介さずに、第1層の表面に直接形成されている領域があってもよい。また、第1層および連続または非連続の層が形成されていない領域では、第2層が誘電体層と接触していてもよい(つまり、第2層が誘電体層を覆うように形成されていてもよい)。
 (第2導電性高分子)
 第2層に含まれる第2導電性高分子としては、電解コンデンサに使用される公知のものが使用でき、具体的には、第1導電性高分子について例示した導電性高分子から適宜選択することができる。第2導電性高分子のMwも、第1導電性高分子について例示した範囲から適宜選択できる。第1導電性高分子と、第2導電性高分子とは、同じものを用いてもよく、異なるものを用いてもよい。
 第2層は、単層であってもよく、複数の層で構成してもよい。第2層が複数層で構成される場合、各層に含まれる第2導電性高分子は同じであってもよく、異なっていてもよい。
 第2層は、さらにドーパントを含んでもよい。ドーパントとしては、電解コンデンサで使用される公知のものが使用でき、具体的には、第1層について例示したものから適宜選択することができる。ドーパントは、第1層と、第2層とで、同じものを用いてもよく、異なるものを用いてもよい。
 ドーパントは、塩の形態で第2層に含まれていてもよい。第2層において、ドーパントは、第2導電性高分子とともに、導電性高分子複合体を形成していてもよい。第1層の場合と同様に、ドーパントのアニオン性基は、第2層において、有機の形態、アニオンの形態、または塩の形態で含まれていてもよく、導電性高分子と結合または相互作用した形態で含まれていてもよい。
 第2層に含まれるドーパントの量は、第2導電性高分子100質量部に対して、例えば、10~1000質量部であり、50~200質量部であってもよい。
 第2層は、さらに水溶性高分子を含んでもよい。水溶性高分子に関しては、第1層における水溶性高分子についての説明を参照できる。第2層中の水溶性高分子の含有量(質量%)は、固体電解質層中の水溶性高分子の含有量(質量%)が、上記の範囲となるような範囲で調節することが好ましい。第2層が水溶性高分子を含む場合、陽極体の中央部における固体電解質層の厚みを大きくする効果が得られ易く、漏れ電流を低減する効果および耐圧性を高める効果をさらに向上することができる。そのため、少なくとも第2層が水溶性高分子を含むことが好ましい。第2層中の水溶性高分子の含有量(質量%)を、固体電解質層中の水溶性高分子の含有量(質量%)として記載した範囲としてもよい。なお、第2層中の水溶性高分子の含有量については、固体電解質層の表層付近を掻き取ることにより採取したサンプルを用いる以外は、固体電解質層中の水溶性高分子の含有量を求める場合と同様の手順で求められる。
 (その他)
 陰極部の第1端部側の部分の任意の位置におけるコンデンサ素子の長さ方向に垂直な断面Gにおいて、比T1/T2は、例えば、0.8以上であり、0.9以上であってもよく、1以上または1より大きくてもよい。比T1/T2がこのような範囲である場合、角部の固体電解質層の厚みが小さくなることが抑制されるため、ショートによる製品不良の発生を抑制できる。特に、比T1/T2が、1以上または1より大きい場合には、漏れ電流を低減する効果が高まるため、漏れ電流による製品不良の発生を抑制できる。比T1/T2は、例えば、1.7以下であり、1.5以下であってもよく、1.4以下であってもよい。比T1/T2がこのような範囲である場合、静電容量の低下、ESRおよび誘電正接tanδの上昇が抑制され、電解コンデンサの品質がより安定化される。これらの上限値と下限値とは任意に組み合わせることができる。
 本開示によれば、陽極体の角部に形成された固体電解質層の厚みを、主面の中央付近に形成された固体電解質層の厚みに比べて大きくすることもできる。その詳細については定かではないが、次のようなメカニズムによるものと推測される。まず、表面処理剤を含む第2処理液を用いることで、第2処理液を、陽極体の陰極形成部における表面全体に行き渡らせることができる。一般に、液滴において、液状媒体が揮発する速度は、液滴の中央部よりも縁部の方が早いため、液状媒体以外の成分は縁部に残り易い。このような現象は、コーヒーリング効果またはリングステイン効果などとも呼ばれる。このような現象により、陰極形成部の表面全体に形成された第2処理液の塗膜では、陽極体の主面の中央付近に比べて角部から液状媒体の揮発が早く進行し、角部の表面に第2処理液の液状媒体以外の成分が多く残ることになる。その結果、第3処理液の成分が、陽極体の陰極形成部の角部に多く付着することになるため、第2導電性高分子を角部に凝集させ易くなるものと考えられる。例えば、表面調整剤の種類および濃度、第2処理液に用いられる液状媒体の種類、第2処理液の塗膜の乾燥条件などを調節することで、比T1/T2を1より大きくすることができる。
 固体電解質層の平均厚みは、例えば、5μm以上20μm以下であり、10μm以上15μm以下であってもよい。
 なお、固体電解質層の平均厚みは、コンデンサ素子の長さ方向に平行な方向における陰極部の中心を通る、コンデンサ素子の長さ方向に垂直な断面において、任意の複数箇所(例えば、10箇所)で厚みを測定し、平均化することにより求められる。
 第1層および第2層のそれぞれは、必要に応じて、さらに、公知の添加剤、および導電性高分子以外の公知の導電性材料(例えば、二酸化マンガンなどの導電性無機材料;および/またはTCNQ錯塩など)を含んでもよい。
 なお、誘電体層と第1層との間には、密着性を高める層などを介在させてもよい。
 図1は、本開示の一実施形態の電解コンデンサの断面模式図である。図2は、図1の実線αで囲まれた領域を概念的に示す拡大図である。
 電解コンデンサ1は、コンデンサ素子11と、コンデンサ素子11を封止する樹脂外装体12と、樹脂外装体12の外部にそれぞれ露出する陽極端子13および陰極端子14と、を備えている。コンデンサ素子11は、シート状の陽極体2と、陽極体2の第2端部側を覆う誘電体層3と、誘電体層3を覆う陰極部15とを含む。陽極体2の陰極部15が形成されている部分が陰極形成部であり、陰極部15が形成されていない部分が陽極引出部である。陽極端子13は、陽極体2の陽極引出部の第1端部と電気的に接続している。陰極端子14は、陰極部15と電気的に接続している。樹脂外装体12はほぼ直方体の外形を有しており、これにより、電解コンデンサ1もほぼ直方体の外形を有している。
 陽極体2と陰極部15とは、誘電体層3を介して対向している。陰極部15は、誘電体層3を覆う固体電解質層4と、固体電解質層4を覆う陰極層5とを有している。図示例の陰極層5は、2層構造であり、固体電解質層4と接触するカーボン層5aと、カーボン層5aの表面を覆う金属ペースト層5bと、を有している。
 陰極部15から突出した陽極体2の陽極引出部のうち、陰極部15側の領域には、陽極体2の表面を帯状に覆うように絶縁性の分離部16が形成され、陰極部15と陽極体2との接触が規制されている。陰極部15から突出した陽極体2の第1端部は、陽極端子13の一端部13aと、溶接などにより電気的に接続されている。一方、陰極部15の最外層に形成された陰極層5は、陰極端子14の一端部14aと、導電性接着剤17(例えば熱硬化性樹脂と金属粒子との混合物)を介して、電気的に接続されている。陽極端子13の他端部13bおよび陰極端子14の他端部14bは、それぞれ樹脂外装体12の異なる側面から引き出され、一方の主要平坦面(図1では下面)まで露出状態で延在している。この平坦面における各端子の露出箇所は、電解コンデンサ1を搭載すべき基板(図示せず)との半田接続などに用いられる。
 誘電体層3は、陽極体2を構成する導電性材料の表面の一部に形成されている。具体的には、誘電体層3は、陽極体2を構成する導電性材料の表面を陽極酸化することにより形成することができる。従って、誘電体層3は、図2に示すように、陽極体2の表面(より内側の表面の孔や窪みの内壁面を含む)に沿って形成されている。
 第1導電性高分子を含む第1層4aは、誘電体層3を覆うように形成されており、第2導電性高分子を含む第2層4bは、第1層4aを覆うように形成されている。そして、第1層4aと第2層4bとの間には、表面調整剤を含む層4cが介在する。図示例では、表面調整剤を含む層4cは、第1層4aを覆うように形成されており、第2層4bは、表面調整剤を含む層4cを覆うように形成されている。図2では、表面調整剤の層4cは、連続の層である。しかし、このような場合に限らず、表面調整剤の層4cは、非連続の層であってもよい。このようなコンデンサ素子11では、陽極体2の角部に形成された固体電解質層4の厚みが小さくなることが抑制され、固体電解質層4の厚みのばらつきが低減される。
 第1層4aは、必ずしも誘電体層3の全体(表面全体)を覆う必要はなく、誘電体層3の少なくとも一部を覆うように形成されていればよいが、できるだけ多くの領域を覆うように形成することが望ましい。同様に、第2層4bおよび表面調整剤を含む層4cのそれぞれは、必ずしも第1層4aの全体(表面全体)を覆う必要はなく、第1層4aの少なくとも一部を覆うように形成されていればよいが、できるだけ多くの領域を覆うように形成することが望ましい。
 誘電体層3は、陽極体2の表面に沿って形成されるため、誘電体層3の表面には、陽極体2の表面の形状に応じて、凹凸が形成されている。第1層4aは、このような誘電体層3の凹凸を埋没するように形成することが好ましい。
 以上の構成において、陽極体2は、コンデンサ素子11の陽極部材であり、第1層4a、第2層4b、および陰極層5は、コンデンサ素子11の陰極部材である。誘電体層3は、コンデンサ素子11の誘電体部材である。
 上記実施形態では、コンデンサ素子11が第1層4aと第2層4bとの2層の導電性高分子を含む層を有する場合について説明したが、コンデンサ素子11は、3層以上の導電性高分子を含む層を有するものであってもよい。この場合、第1層4aと、第2層4bとの間に、1層または2層以上の導電性高分子を含む層を形成してもよい。例えば、第1層4aと表面調整剤を含む層4cとの間、および表面調整剤を含む層4cと第2層4bとの間の少なくとも一方に1層または2層以上の導電性高分子を含む層を形成してもよい。
 本開示の電解コンデンサでは、陽極体の角部に形成された固体電解質層の厚みT1の主面中央部に形成された固体電解質層の厚みT2に対する比T1/T2を上述のように、従来に比べて大きくすることができる。
 図3は、コンデンサ素子を一方の主面側から見たときの概略正面図である。図4は、図3のコンデンサ素子のIV-IV線における断面(断面G)を矢印の方向に見たときの概略断面図である。固体電解質層の厚みT1およびT2は、例えば、下記の手順で求められる。
 比T1/T2は、コンデンサ素子11の第1端部E1から第2端部E2に向かう方向(陽極体2またはコンデンサ素子11の長さ方向と称する場合がある)に垂直な陰極部15の断面Gにおいて求められる。ここで、断面Gは、陽極体2の第1端部E1側の部分の任意の位置において形成する。陰極部15の第1端部E1側の部分とは、コンデンサ素子11の長さ方向における陰極部15の長さをLとするとき、陰極部15の第1端部E1側の端部から長さL/2の位置までの部分である。図3においては、陰極部15の第1端部E1側の部分は、陰極部15の上半分の部分に相当する。
 図4には、陰極部15の第1端部E1側の部分のIV-IV線におけるコンデンサ素子11のコンデンサ素子11の長さ方向に垂直な断面Gが示されている。IV-IV線は、陰極部15の第1端部E1側の部分において任意に選択された位置に相当する。なお、図4では、断面であることを示すハッチングは省略している。
 上記断面Gでは、シート状の陽極体2の一対の主面Msと、一対の主面Msの端部に位置する一対の端面Esとが見られる。各主面Msと各端面Esとの間に角部が存在するため、陽極体2の上記断面Gでは、4つの角部が確認できる。各主面Msに相当する線を外側に伸ばして仮想の直線L1およびL2を引き、直線L1またはL2と45°の角度で角部の頂点を通る直線を引く。この直線が固体電解質層4の外縁と交わる点と、この点と角部の頂点との間の距離D11、D12、D13およびD14を、各角部における固体電解質層4の厚みとする。そして、これらの4つの距離の値を平均化することにより、T1が求められる。
 上記断面Gにおいて、主面Msに相当する線分の長さに相当する陽極体2の幅をWとするとき、各端面EsからW/2の位置に中心線CLを引く。中心線CLは、陽極体2の各主面Msに相当する線分の中点を通る。中心線CLと固体電解質層4の外縁との交点と、上記線分の中点との間の距離D21およびD22を、それぞれ、主面Msの中央部の固体電解質層の厚みとする。これらの2つの距離の値を平均化することにより、T2が求められる。
[電解コンデンサの製造方法]
 本開示の一実施形態の電解コンデンサの製造方法は、陽極体を準備する第1工程と、陽極体の表面に誘電体層を形成する第2工程と、誘電体層が形成された陽極体を、第1導電性高分子またはその前駆体を含む第1処理液で処理する第3工程と、第1処理液で処理された陽極体を、表面調整剤を含む第2処理液で処理する第4工程と、第2処理液で処理された陽極体を、第2導電性高分子を含む第3処理液で処理する第5工程と、を含む。
 以下に、各工程についてより詳細に説明する。
(第1工程)
 第1工程では、陽極体の種類に応じて、公知の方法により陽極体を形成する。
 陽極体は、例えば、少なくとも陰極形成部に相当する部分の少なくとも表層に多孔質部を形成することにより準備される。陽極体の表層全体に多孔質部を形成してもよく、陽極体全体に多孔質部を形成してもよい。
 多孔質部は、例えば、弁作用金属を含む導電性材料で形成されたシート状の基材の表面を粗面化することにより形成することができる。粗面化は、基材表面に凹凸を形成できればよい。粗面化は、例えば、基材表面をエッチングすることにより行ってもよく、蒸着などの気相法を利用して、基材表面に弁作用金属を含む導電性材料の粒子を堆積させることにより行ってもよい。エッチングとしては、公知の手法を用いればよく、例えば、電解エッチングが挙げられる。例えば、陽極引出部の表面に所定のマスキング部材を配置した後に粗面化を行うと、陰極形成部の表層に多孔質部を形成できる。マスキング部材は、特に限定されず、樹脂などの絶縁体であってもよく、導電性材料を含む導電体であってもよい。
 また、弁作用金属を含む粒子を焼結することにより得られる焼結体を陽極体として用いてもよい。
(第2工程)
 第2工程では、陽極体上に誘電体層を形成する。誘電体層は、陽極体の表面を陽極酸化することにより形成される。陽極酸化により、陽極体の少なくとも表面に存在する弁作用金属が酸化され、酸化物が生成する。
 陽極酸化は、公知の方法、例えば、化成処理などにより行うことができる。しかし、陽極酸化では、弁作用金属の酸化物を形成できればよく、化成処理に限定されるものではない。
 化成処理は、例えば、陽極体を化成液中に浸漬することにより、陽極体の表面(より内側の表面の孔や窪みの内壁面)まで化成液を含浸させ、陽極体をアノードとして、化成液中に浸漬したカソードとの間に電圧を印加することにより行うことができる。化成液としては、例えば、リン酸水溶液、リン酸アンモニウム水溶液、またはアジピン酸アンモニウム水溶液などを用いることが好ましい。
(第3工程)
 第3工程では、少なくとも誘電体層に第1処理液を接触させることができればよい。例えば、誘電体層が形成された陽極体を第1処理液に浸漬させたり、または誘電体層が形成された陽極体に第1処理液を注液したりすることにより、第1処理液を少なくとも誘電体層に接触させることができる。浸漬または注液により誘電体層が形成された陽極体の表面(誘電体層が形成された、より内側の表面の孔や窪みの内壁面)まで第1処理液を含浸させてもよい。また、含浸または注液に限らず、公知の塗布方法(例えば、スプレーコート法)、または印刷法を利用してもよい。必要に応じて、これらの方法を組み合わせてもよい。
 第1導電性高分子の前駆体を含む第1処理液を用いる場合には、陽極体を浸漬させて、化学重合または電解重合により前駆体を重合させることで第1導電性高分子を生成させることが好ましい。陽極体は、第1処理液から取り出した後、通常、乾燥される。乾燥の際、必要に応じて、陽極体を加熱してもよい。第1処理液から取り出した陽極体は、乾燥に先立って、必要に応じて洗浄してもよい。このようにして、第1導電性高分子を含む第1層が形成される。
 第1導電性高分子を含む第1処理液を用いる場合には、例えば、陽極体の少なくとも誘電体層に第1処理液を接触させ、乾燥させる。このようにして、第1導電性高分子を含む第1層が形成される。乾燥の際、必要に応じて、陽極体を加熱してもよい。
 第1処理液は、第1処理液の構成成分を、液状媒体に溶解または分散させることにより調製される。構成成分としては、例えば、第1導電性高分子またはその前駆体、ドーパント、水溶性高分子および添加剤などが挙げられる。第1導電性高分子、ドーパント、および水溶性高分子については第1層についての説明を参照できる。
 第1導電性高分子の前駆体としては、第1導電性高分子のモノマー、オリゴマー、およびプレポリマーなどが挙げられる。第1処理液は、前駆体を一種含んでもよく、二種以上含んでいてもよい。
 第1処理液は、一種の第1導電性高分子を含んでもよく、二種以上の第1導電性高分子を含んでもよい。第1処理液は、一種のドーパントを含んでもよく、二種以上のドーパントを含んでもよい。第1処理液は、一種の水溶性高分子を含んでもよく、二種以上の水溶性高分子を含んでもよい。
 第1処理液に含まれる液状媒体としては、水、有機媒体、およびこれらの混合物が例示できる。有機媒体としては、例えば、脂肪族アルコール、脂肪族ケトン(アセトンなど)、ニトリル(アセトニトリル、ベンゾニトリルなど)、アミド(N,N-ジメチルホルムアミドなど)、およびスルホキシド(ジメチルスルホキシドなど)などが挙げられる。脂肪族アルコールとしては、炭素数1~5の脂肪族アルコールが好ましい。脂肪族アルコールは、モノオールおよびポリオールのいずれであってもよい。脂肪族モノオールとしては、例えば、メタノール、エタノール、プロパノール、ブタノールが挙げられる。脂肪族ポリオールとしては、エチレングリコール、グリセリンなどが挙げられる。
 第1処理液は、固体電解質層を形成する際に使用される公知の添加剤を含むことができる。添加剤としては、シラン化合物を用いてもよい。
 第1導電性高分子の前駆体を含む第1処理液を用いる場合、前駆体を重合させるために酸化剤が使用される。酸化剤は、添加剤として第1処理液に含まれていてもよい。また、酸化剤は、誘電体層が形成された陽極体に第1処理液を接触させる前または後に、陽極体に塗布してもよい。このような酸化剤としては、硫酸塩、スルホン酸またはその塩が例示できる。酸化剤は、一種を単独でまたは二種以上を組み合わせて用いることができる。
 硫酸塩としては、例えば、硫酸第二鉄、過硫酸ナトリウムなどの硫酸や過硫酸などの硫酸類と金属との塩が挙げられる。塩を構成する金属としては、例えば、ナトリウム、カリウムなどのアルカリ金属;鉄、銅、クロム、亜鉛などが挙げられる。スルホン酸またはその塩は、酸化剤としての機能に加え、ドーパントとしての機能も有する。スルホン酸またはその塩としては、ドーパントについて例示した低分子のスルホン酸またはその塩などが使用される。
 第1処理液への浸漬と重合(または乾燥)とにより第1層を形成する工程は、1回行なってもよいが、複数回繰り返してもよい。各回において、第1処理液の組成および粘度などの条件を同じにしてもよく、少なくとも1つの条件を変化させてもよい。
(第4工程)
 第4工程は、例えば、表面調整剤を含む第2処理液を、第1処理液で処理された陽極体に接触させることにより行うことができる。第2処理液と接触させた後、陽極体は、必要に応じて、乾燥してもよい。乾燥の際、必要に応じて、陽極体を加熱してもよい。
 第4工程において、第2処理液は、誘電体層の表面に付着した第1導電性高分子を覆うように付着させればよい。陽極体の少なくとも陰極形成部における表面全体に、第2層をより均一に形成する観点からは、少なくとも、陰極形成部の表面全体に表面調整剤が分布するように第2処理液を付着させることが好ましい。
 第2処理液は、第1処理液の場合に準じて、例えば、浸漬、注液、塗布、および印刷から選択される少なくとも1つを利用して陽極体の表面に適用される。
 第2処理液は、液状媒体を含んでいてもよい。液状媒体としては、例えば、第1処理液について例示した液状媒体が挙げられる。
 第2処理液は、カチオン剤およびアニオン剤からなる群より選択される少なくとも一種を含んでいてもよい。
 第2処理液に含まれる成分としては、表面調整剤を含む連続または非連続の層についての説明を参照できる。
 第2処理液中に占める表面調整剤の量は、例えば、0.01質量%以上5質量%以下であり、0.05質量%以上2.5質量%以下であってもよい。表面調整剤の量がこのような範囲である場合、陽極体の陰極形成部の表面全体に表面調整剤をより均一に分布させることができ、固体電解質層の厚みのばらつきを軽減し易い。加えて、固体電解質層の抵抗を低く抑えることができるため、ESRの増加を抑制できる。第2処理液中に占める表面調整剤の量とは、第2処理液中の表面調整剤の濃度である。
 第2処理液中の乾燥固形分に占める表面調整剤の量は、表面調整剤を含む連続または非連続の層に含まれる表面調整剤の量について記載した範囲から選択される。
 本明細書中、第2処理液中の乾燥固形分に占める表面調整剤の量とは、第2処理液中の液状媒体以外の成分に占める表面調整剤の量と同意で使用するものとする。
 上述のように、第2処理液は、導電性高分子を含まないことが好ましい。
(第5工程)
 第5工程は、第2処理液で処理された陽極体を用い、第1処理液に代えて、第2導電性高分子(必要に応じて、ドーパント、水溶性高分子)を含む第3処理液を用いる以外は、第3工程の場合に準じて行うことができる。第3処理液としては、第1導電性高分子に代えて、第2導電性高分子を含む以外は、第1処理液について記載したものを使用することができる。第5工程により、第2導電性高分子を含む第2層が形成される。第3工程により、表面調整剤などの第2処理液に含まれる成分が、陽極体の少なくとも陰極形成部の表面全体に分布した状態になる。このような状態で、第3処理液で、陰極形成部の表面を処理することにより、第2導電性高分子を、角部を含めて陰極形成部の表面全体に付着させることができる。また、第3処理液が水溶性高分子を含む場合、固体電解質層の厚みのばらつきを低減する効果が高まり、電解コンデンサの漏れ電流を低く抑えることができるとともに、高い耐圧性を得ることができる。
(陰極層を形成する工程)
 電解コンデンサの製造方法は、さらに陰極層を形成する工程(第6工程)を含むことができる。
 第6工程では、例えば、第5工程で得られた陽極体の表面に、カーボン層と金属ペースト層とを順次積層することにより陰極層が形成される。
 カーボン層は、導電性カーボンを含む分散液中に第2層が形成された誘電体層を有する陽極体を浸漬したり、または導電性カーボンを含むペーストを第2層の表面に塗布したりすることにより形成することができる。導電性カーボンとしては、例えば、人造黒鉛、天然黒鉛などの黒鉛類が使用される。分散液およびペーストとしては、例えば、導電性カーボンを水系の液体媒体に分散させたものが用いられる。
 金属ペースト層は、例えば、金属粒子を含む組成物をカーボン層の表面に積層することにより形成できる。金属ペースト層としては、例えば、銀粒子と樹脂(バインダ樹脂)とを含む組成物を用いて形成される銀ペースト層などが利用できる。樹脂としては、熱可塑性樹脂を用いることもできるが、イミド系樹脂、エポキシ樹脂などの熱硬化性樹脂を用いることが好ましい。
 なお、陰極層の構成は、これに限られず、集電機能を有する構成であればよい。
 陰極層には、陰極端子が接続される。陰極端子は、例えば、陰極層に導電性接着剤を塗布し、この導電性接着剤を介して陰極層に接合される。
(コンデンサ素子を封止する工程)
 このようにして形成されるコンデンサ素子は、外装体を用いて封止される。具体的には、コンデンサ素子および外装体の材料樹脂(例えば、未硬化の熱硬化性樹脂およびフィラー)を金型に収容し、トランスファー成型法、圧縮成型法等により、コンデンサ素子を外装体で封止する。このとき、コンデンサ素子から引き出された陽極リードに接続された陽極端子および陰極端子の一部を、それぞれ金型から露出させる。成型の条件は特に限定されず、使用される熱硬化性樹脂の硬化温度等を考慮して、適宜、時間および温度条件を設定すればよい。
[実施例]
 以下、本開示を実施例および比較例に基づいて具体的に説明するが、本開示は以下の実施例に限定されるものではない。
《電解コンデンサA1》
 下記の要領で、図1に示す電解コンデンサ1を作製し、その特性を評価した。
 (1)陽極体2を準備する工程(第1工程)
 基材としてのアルミニウム箔(厚み:100μm)の両方の表面をエッチングにより粗面化することで、陽極体2を作製した。
 (2)誘電体層3を形成する工程(第2工程)
 陽極体2の第2端部側の部分を、化成液に浸漬し、70Vの直流電圧を、20分間印加して、酸化アルミニウムを含む誘電体層3を形成した。
 (3)第1層4aを形成する工程(第3工程)
 攪拌下で、ポリスチレンスルホン酸(Mw:75,000)の水溶液に、3,4-エチレンジオキシチオフェンモノマーを添加し、次いで、酸化剤(硫酸鉄(III)および過硫
酸ナトリウム)を添加して、化学酸化重合を行った。得られた重合液を、イオン交換装置によりろ過して不純物を除去することにより、第1導電性高分子としてのポリ3,4-エチレンジオキシチオフェン(PEDOT)と、ドーパントとしてのポリスチレンスルホン酸(PSS)とを含む溶液を得た。
 得られた溶液に、純水を加えて、高圧ホモジナイザーでホモジナイズし、さらにフィルターでろ過することにより分散液状の第1処理液を調製した。
 上記(2)で得られた誘電体層3が形成された陽極体2を、第1処理液に浸漬した後、第1処理液から取り出し、さらに120℃で10~30分の乾燥を行った。第1処理液への浸漬と、乾燥とをさらに1回ずつ繰り返すことで、誘電体層3の表面を覆うように第1導電性高分子を含む第1層4aを形成した。
 (4)表面調整剤を含む層4cを形成する工程(第4工程)
 純水に、エステル型の非イオン性界面活性剤(表面調整剤)と、N,N-ジメチルオクチルアミン(カチオン剤)と、スチレンスルホン酸とアシッドホスホオキシエチルアクリレート(P(=O)(OH)2-O-CH2CH2-O-C(=O)-CH=CH2)との共重合体(アニオン剤)とを溶解させて、第2処理液を調製した。第2処理液中の表面調整剤の量は、0.5質量%とした。第2処理液中のカチオン剤の濃度は、0.05mol/L、アニオン剤の濃度は、0.03mol/Lとした。なお、第2処理液に含まれる液状媒体である水を除く成分全体に占める表面調整剤の量は、12.5質量%であった。
 上記(3)で処理された陽極体2を第2処理液に浸漬した後、取り出し、さらに100℃で3分乾燥させることにより、第1層4aの表面を覆うように、表面調整剤を含む層4cを形成した。
 なお、第2処理液に使用した上記アニオン剤は、次のようにして製造した。
 所定量の純水に、スチレンスルホン酸ナトリウムおよびアシッドホスホオキシエチルアクリレートを添加、混合することにより、モノマー溶液を調製した。このとき、スチレンスルホン酸ナトリウムおよびアシッドホスホオキシエチルアクリレートは、共重合体におけるスチレンスルホン酸とアシッドホスホオキシエチルアクリレートとの共重合比(モル比)が75:25となるような割合で使用した。モノマー溶液に、攪拌下、所定量の過硫酸アンモニウム(酸化剤)を添加し、8時間かけて重合反応を行った。得られた重合液に純水およびイオン交換樹脂を添加して攪拌し、濾過することにより精製処理を行った。この精製処理を複数回繰り返し、最終的に上記共重合体を得た。共重合体の分子量を、GPCにより測定したところ、Mwは83,000であった。
 (5)第2層4bを形成する工程(第5工程)
 上記(3)で用いた第1処理液と同様の組成の第3処理液を用いた。上記(4)で処理された陽極体2を、第3処理液に浸漬した後、取り出し、さらに120℃で10~30分の乾燥を行った。第3処理液への浸漬と乾燥とを交互にさらに2回ずつ繰り返すことで、表面調整剤を含む層4cの表面を覆うように、第2導電性高分子を含む第2層4bを形成した。
 このようにして、第1層4a、表面調整剤を含む層4c、および第2層4bを含む固体電解質層4を、誘電体層3の表面を覆うように形成した。
 (6)陰極層5の形成工程(第6工程)
 上記(5)で得られた陽極体2を、黒鉛粒子を水に分散した分散液に浸漬し、分散液から取り出し後、乾燥することにより、少なくとも第2層4bの表面にカーボン層5aを形成した。乾燥は、130~180℃で10~30分間行った。
 次いで、カーボン層5aの表面に、銀粒子とバインダ樹脂(エポキシ樹脂)とを含む銀ペーストを塗布し、150~200℃で10~60分間加熱することでバインダ樹脂を硬化させ、金属ペースト層5bを形成した。こうして、カーボン層5aと金属ペースト層5bとで構成される陰極層5を形成した。
 上記のようにして、コンデンサ素子11を作製した。
 (7)電解コンデンサの組み立て
 上記(6)で得られたコンデンサ素子11の陰極層5と、陰極端子14の一端部14aとを導電性接着剤17で接合した。コンデンサ素子11から突出した陽極体2の第1端部と、陽極端子13の一端部13aとをレーザ溶接により接合した。
 次いで、トランスファモールド法により、コンデンサ素子11の周囲に、絶縁性樹脂で形成された樹脂外装体12を形成した。このとき、陽極端子13の他端部13bと、陰極端子14の他端部14bとは、樹脂外装体12から引き出した状態とした。
 このようにして、電解コンデンサ1(A1)を完成させた。上記と同様にして、電解コンデンサ1を合計20個作製した。
 (8)評価
 電解コンデンサを用いて、下記の評価を行った。
 (a)固体電解質層4の厚み比T1/T2
 既述の手順で、各電解コンデンサにおける固体電解質層4の厚み比T1/T2を求めた。そして、20個の電解コンデンサの比T1/T2を平均化した平均値を求めた。
 (b)初期の静電容量、tanδ、およびESR
 20℃の環境下で、4端子測定用のLCRメータを用いて、各電解コンデンサの周波数120kHzにおける初期の静電容量(μF)および初期のtanδを測定するとともに、周波数100kHzにおける初期のESR(mΩ)をそれぞれ測定した。そして、20個の電解コンデンサにおける平均値を求めた。
 (c)漏れ電流(LC)
 電解コンデンサに1kΩの抵抗を直列につなぎ、直流電源にて25Vの定格電圧を1分間印加した後の漏れ電流(μA)を測定し、20個の電解コンデンサの平均値を求めた。
《電解コンデンサB1》
 第4工程において、第2処理液を調製する際に、表面調整剤を用いなかった。これ以外は、電解コンデンサA1と同様にして電解コンデンサB1を作製し、評価を行った。
《電解コンデンサB2》
 第5工程において、第3処理液に、電解コンデンサA1で第2処理液に用いたものと同じエステル型の非イオン性界面活性剤(表面調整剤)を添加した。第3処理液中の表面調整剤の量は、0.5質量%とした。また、第4工程においては、第2処理液を調製する際に、表面調整剤を用いなかった。これら以外は、電解コンデンサA1と同様にして電解コンデンサB2を作製し、評価を行った。
《電解コンデンサA2およびA3》
 第4工程において、表面調整剤として、電解コンデンサA1で用いたものとは異なる、いずれも市販の非イオン性界面活性剤を用いた。これら以外は、電解コンデンサA1と同様にして電解コンデンサA2およびA3を作製し、評価を行った。なお、電解コンデンサA2と電解コンデンサA3とでは、異なる非イオン性界面活性剤を用いた。電解コンデンサA2で用いた非イオン性界面活性剤は、エステル型であり、電解コンデンサA3で用いた非イオン性界面活性剤は、直鎖アルキルポリエーテル型であった。
 電解コンデンサA1~A3およびB1~B2の結果を表1に示す。なお、各評価は、電解コンデンサA1における測定値を100%としたときの比率(%)で表した。電解コンデンサA1~A3は、実施例であり、電解コンデンサB1~B2は、比較例である。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、表面調整剤を用いない電解コンデンサB1および表面調整剤を含む第3処理液を用いた電解コンデンサB2では、比T1/T2は、0.552~0.769と低くなっている。それに対し、表面調整剤を含む第2処理液を用いた電解コンデンサA1~A3では、比T1/T2が0.932~1.280と、電解コンデンサB1およびB2に比べて格段に向上している。電解コンデンサA1~A3のT2の値は、電解コンデンサB1およびB2におけるT2の値とそれほど大きくは変わらなかった。そのため、電解コンデンサA1~A3では、電解コンデンサB1~B2に比較して、陽極体の角部に形成された固体電解質層の厚みが小さくなることが抑制されており、固体電解質層の厚みのばらつきが低減されていると言える。
 特に、電解コンデンサA1では、角部における固体電解質層の厚みが大きくなっており、静電容量、tanδおよびESRについて良好なレベルを保ちながら、漏れ電流を顕著に低減できている。
 電解コンデンサA2およびA3では、漏れ電流が過度に大きくなることを抑制しながら、静電容量、tanδおよびESRについて優れた結果が得られている。
 なお、T1/T2が大きい方が、ショート発生による製品不良のリスクが低くなる。そのため、電解コンデンサA1~A3では、電解コンデンサB1およびB2に比べてショート発生による製品不良の発生を低減することができる。
《電解コンデンサA4~A8》
 第1処理液と同じ組成の分散液に、さらに水溶性高分子を添加することにより調製される処理液を、第3処理液として用いた。これ以外は、電解コンデンサA1と同様にして電解コンデンサA4~A8を作製し、評価を行った。また、第3処理液では、固体電解質層中の水溶性高分子の含有量(質量%)が表2に示す値となるように、水溶性高分子の添加量を調整した。水溶性高分子としては、アクリル酸とメタクリル酸との共重合体(Mw:約10万)を用いた。
 電解コンデンサA4~A8、A1およびB1については、下記の手順で耐圧性を評価した。
 (耐圧性)
 電解コンデンサに、1.0V/秒のレートで昇圧しながら電圧を印加し、0.5Aの過電流が流れる破壊耐電圧を測定した。破壊耐電圧は、電解コンデンサA1の破壊耐電圧を100(%)とした指数(耐電圧指数V)として表した。この耐電圧指数に基づいて耐圧性を評価した。耐電圧指数が大きいほど、耐圧性が高いことを示している。
 結果を表2に示す。電解コンデンサA4~A8は、実施例である。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、固体電解質層が水溶性高分子を含むことで、高い耐圧性が得られる(電解コンデンサA4~A8)。電解コンデンサA4~A8では、tanδおよびESRの増加を抑えながら、LCを大きく低減することもできる。電解コンデンサA4~A8では、電解コンデンサB1(および表1のB2)に比べて比T1/T2が向上している。電解コンデンサA4~A8のT1の値は、電解コンデンサA1におけるT1の値とそれほど大きくは変わらなかった。そのため、電解コンデンサA4~A8では、電解コンデンサA1に比較して、陽極体の主面中央部に形成された固体電解質層の厚みT2は大きくなっており、固体電解質層の厚みのばらつきがさらに低減されていると言える。これにより、電解コンデンサA4~A8では、LCが大きく低減され、高い耐圧性が得られたと考えられる。
 本開示によれば、固体電解質層の厚みのばらつきを低減できるため、ショート不良が低減され、高品質の電解コンデンサを提供できる。よって、電解コンデンサを、様々な用途に利用することができる。
 1:電解コンデンサ、2:陽極体、3:誘電体層、4:固体電解質層、4a:第1層、
4b:第2層、4c:表面調整剤を含む層、5:陰極層、5a:カーボン層、5b:金属ペースト層、11:コンデンサ素子、12:樹脂外装体、13:陽極端子、13a:陽極端子の一端部、13b:陽極端子の他端部、14:陰極端子、14a:陰極端子の一端部、14b:陰極端子の他端部、15:陰極部、16:分離部、17:導電性接着剤、E1:陽極体の第1端部、E2:陽極体の第2端部、Ms:陽極体の主面、Es:陽極体の端面、L1,L2:陽極体の一対の主面に対応する線分を延長した直線、CL:陽極体の各主面の中心線

Claims (15)

  1.  第1端部を含む陽極引出部および第2端部を含む陰極形成部を有するシート状の陽極体と、
     前記陽極体の少なくとも前記陰極形成部の表面に形成された誘電体層と、
     前記誘電体層の少なくとも一部を覆う陰極部と、を備える少なくとも1つのコンデンサ素子を備え、
     前記陰極部は、前記誘電体層の少なくとも一部を覆う導電性高分子を含む固体電解質層を備え、
     前記陰極部の前記第1端部側の部分の任意の位置における前記コンデンサ素子の前記第1端部から前記第2端部に向かう方向に垂直な断面において、前記陽極体の角部に形成された前記固体電解質層の厚みT1の、前記陽極体の主面の中央部に形成された前記固体電解質層の厚みT2に対する比:T1/T2が、0.8以上1.7以下である、電解コンデンサ。
  2.  前記比T1/T2が、0.9以上1.5以下である、請求項1に記載の電解コンデンサ。
  3.  前記比T1/T2が、1より大きい、請求項1または2に記載の電解コンデンサ。
  4.  前記固体電解質層は、さらに水溶性高分子を含む、請求項1~3のいずれか1項に記載の電解コンデンサ。
  5.  前記固体電解質層は、
     前記誘電体層の少なくとも一部を覆う第1導電性高分子を含む第1層と、
     前記第1層の少なくとも一部を覆う第2導電性高分子を含む第2層と、
     前記第1層と前記第2層との間に介在する少なくとも1つの連続または非連続の層とを含み、
     前記連続または非連続の層は、表面調整剤を含む、請求項1~4のいずれか1項に記載の電解コンデンサ。
  6.  前記固体電解質層は、
     前記誘電体層の少なくとも一部を覆う第1導電性高分子を含む第1層と、
     前記第1層の少なくとも一部を覆う第2導電性高分子を含む第2層と、
     前記第1層と前記第2層との間に介在する少なくとも1つの連続または非連続の層とを含み、
     前記連続または非連続の層は、表面調整剤を含み、
     少なくとも前記第2層は、前記水溶性高分子を含む、請求項4に記載の電解コンデンサ。
  7.  前記固体電解質層中の前記水溶性高分子の含有量は、25質量%以上70質量%以下である、請求項4または6に記載の電解コンデンサ。
  8.  前記表面調整剤は、非イオン性界面活性剤、カチオン界面活性剤、アニオン界面活性剤、および両性界面活性剤からなる群より選択される少なくとも一種の界面活性剤を含む、請求項5または6に記載の電解コンデンサ。
  9.  前記連続または非連続の層は、さらに、カチオン性基を含むカチオン剤およびアニオン性基を含むアニオン剤からなる群より選択される少なくとも一種を含み、
     前記カチオン剤および前記アニオン剤は、前記表面調整剤とは異なる、請求項5、6および8のいずれか1項に記載の電解コンデンサ。
  10.  前記連続または非連続の層に含まれる前記表面調整剤の量は、0.01質量%以上30質量%以下である、請求項5、6、8および9のいずれか1項に記載の電解コンデンサ。
  11.  陽極体を準備する第1工程と、
     前記陽極体の表面に誘電体層を形成する第2工程と、
     前記誘電体層が形成された前記陽極体を、第1導電性高分子またはその前駆体を含む第1処理液で処理する第3工程と、
     前記第1処理液で処理された前記陽極体を、表面調整剤を含む第2処理液で処理する第4工程と、
     前記第2処理液で処理された前記陽極体を、第2導電性高分子を含む第3処理液で処理する第5工程と、を含む、電解コンデンサの製造方法。
  12.  前記表面調整剤は、非イオン性界面活性剤、カチオン界面活性剤、アニオン界面活性剤、および両性界面活性剤からなる群より選択される少なくとも一種の界面活性剤を含む、請求項11に記載の電解コンデンサの製造方法。
  13.  前記第2処理液は、さらに、カチオン性基を含むカチオン剤およびアニオン性基を含むアニオン剤からなる群より選択される少なくとも一種を含み、
     前記カチオン剤および前記アニオン剤は、前記表面調整剤とは異なる、請求項11または12に記載の電解コンデンサの製造方法。
  14.  前記第2処理液中に占める前記表面調整剤の量は、0.01質量%以上5質量%以下である、請求項11~13のいずれか1項に記載の電解コンデンサの製造方法。
  15.  前記第3処理液は、さらに水溶性高分子を含む、請求項11~14のいずれか1項に記載の電解コンデンサの製造方法。
PCT/JP2020/047889 2019-12-24 2020-12-22 電解コンデンサおよびその製造方法 WO2021132223A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080087838.2A CN114846571A (zh) 2019-12-24 2020-12-22 电解电容器及其制造方法
US17/756,542 US20220415581A1 (en) 2019-12-24 2020-12-22 Electrolytic capacitor and method for producing same
JP2021567482A JPWO2021132223A1 (ja) 2019-12-24 2020-12-22

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019233574 2019-12-24
JP2019-233574 2019-12-24
JP2020-195906 2020-11-26
JP2020195906 2020-11-26

Publications (1)

Publication Number Publication Date
WO2021132223A1 true WO2021132223A1 (ja) 2021-07-01

Family

ID=76574693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047889 WO2021132223A1 (ja) 2019-12-24 2020-12-22 電解コンデンサおよびその製造方法

Country Status (4)

Country Link
US (1) US20220415581A1 (ja)
JP (1) JPWO2021132223A1 (ja)
CN (1) CN114846571A (ja)
WO (1) WO2021132223A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074172A1 (ja) * 2021-10-26 2023-05-04 パナソニックIpマネジメント株式会社 固体電解コンデンサ素子および固体電解コンデンサ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228331A (ja) * 1999-02-04 2000-08-15 Sanyo Electric Co Ltd 電解コンデンサの製造方法
JP2006173593A (ja) * 2004-11-19 2006-06-29 Showa Denko Kk 固体電解コンデンサ及びその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3231689B2 (ja) * 1997-12-04 2001-11-26 富山日本電気株式会社 導電性高分子を用いた固体電解コンデンサ及びその製造方法
US6421227B2 (en) * 1999-12-10 2002-07-16 Showa Denko K.K. Solid electrolytic multilayer capacitor
US6430032B2 (en) * 2000-07-06 2002-08-06 Showa Denko K. K. Solid electrolytic capacitor and method for producing the same
TWI279080B (en) * 2001-09-20 2007-04-11 Nec Corp Shielded strip line device and method of manufacture thereof
JP3980434B2 (ja) * 2002-07-24 2007-09-26 ローム株式会社 固体電解コンデンサにおけるコンデンサ素子及びこのコンデンサ素子の製造方法並びにこのコンデンサ素子を用いた固体電解コンデンサ
JP2004186684A (ja) * 2002-11-21 2004-07-02 Showa Denko Kk 固体電解コンデンサ及びその製造方法
KR101144526B1 (ko) * 2005-02-08 2012-05-11 엔이씨 도낀 가부시끼가이샤 도전성 고분자용 도판트 용액, 도전성 고분자용 산화제겸도판트 용액, 도전성 조성물 및 고체 전해 컨덴서
TWI404090B (zh) * 2006-02-21 2013-08-01 Shinetsu Polymer Co 電容器及電容器之製造方法
JP2010087401A (ja) * 2008-10-02 2010-04-15 Shin Etsu Polymer Co Ltd コンデンサの製造方法
JP5273726B2 (ja) * 2009-04-07 2013-08-28 Necトーキン株式会社 固体電解コンデンサおよびその製造方法
JP2012043958A (ja) * 2010-08-19 2012-03-01 Nec Tokin Corp 固体電解コンデンサおよびその製造方法
JP2012129293A (ja) * 2010-12-14 2012-07-05 Sanyo Electric Co Ltd 固体電解コンデンサおよびその製造方法
JP5689567B2 (ja) * 2012-07-25 2015-03-25 昭和電工株式会社 導電性高分子の製造方法および固体電解コンデンサの製造方法
WO2016006236A1 (ja) * 2014-07-10 2016-01-14 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法
CN111052280B (zh) * 2017-08-31 2022-08-23 昭和电工株式会社 固体电解电容器的制造方法
JP7238793B2 (ja) * 2017-12-25 2023-03-14 株式会社レゾナック 固体電解コンデンサ製造用分散液組成物及び固体電解コンデンサの製造方法
KR20210061616A (ko) * 2019-11-20 2021-05-28 삼성전기주식회사 고체 전해 커패시터 및 이의 제조방법
KR20210066237A (ko) * 2019-11-28 2021-06-07 삼성전기주식회사 고체 전해 커패시터 및 이의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228331A (ja) * 1999-02-04 2000-08-15 Sanyo Electric Co Ltd 電解コンデンサの製造方法
JP2006173593A (ja) * 2004-11-19 2006-06-29 Showa Denko Kk 固体電解コンデンサ及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074172A1 (ja) * 2021-10-26 2023-05-04 パナソニックIpマネジメント株式会社 固体電解コンデンサ素子および固体電解コンデンサ

Also Published As

Publication number Publication date
CN114846571A (zh) 2022-08-02
JPWO2021132223A1 (ja) 2021-07-01
US20220415581A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
US6602741B1 (en) Conductive composition precursor, conductive composition, solid electrolytic capacitor, and their manufacturing method
JP5274268B2 (ja) 固体電解コンデンサとその製造方法
JP6603882B2 (ja) 電解コンデンサおよびその製造方法
JP7065307B2 (ja) 電解コンデンサおよびその製造方法
JP6603884B2 (ja) 電解コンデンサおよびその製造方法
WO2021132223A1 (ja) 電解コンデンサおよびその製造方法
JP6970873B2 (ja) 電解コンデンサおよびその製造方法
US10453619B2 (en) Electrolytic capacitor with conductive polymer layer
JP6767630B2 (ja) 電解コンデンサ
JPWO2017163728A1 (ja) 電解コンデンサの製造方法
JP6760272B2 (ja) 電解コンデンサ
WO2017002351A1 (ja) 電解コンデンサおよびその製造方法
JP6678301B2 (ja) 電解コンデンサおよび導電性高分子分散体
JP6702186B2 (ja) 電解コンデンサおよびその製造方法
WO2022024771A1 (ja) 固体電解コンデンサ素子および固体電解コンデンサ
JP2023123115A (ja) 固体電解コンデンサ素子およびその製造方法、ならびに固体電解コンデンサおよびその製造方法
WO2023189924A1 (ja) 固体電解コンデンサ素子および固体電解コンデンサ、ならびに固体電解コンデンサ素子の製造方法
WO2017022204A1 (ja) 電解コンデンサおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905990

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567482

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20905990

Country of ref document: EP

Kind code of ref document: A1