WO2016006236A1 - 電解コンデンサおよびその製造方法 - Google Patents

電解コンデンサおよびその製造方法 Download PDF

Info

Publication number
WO2016006236A1
WO2016006236A1 PCT/JP2015/003433 JP2015003433W WO2016006236A1 WO 2016006236 A1 WO2016006236 A1 WO 2016006236A1 JP 2015003433 W JP2015003433 W JP 2015003433W WO 2016006236 A1 WO2016006236 A1 WO 2016006236A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
anionic
conductive polymer
anionic group
layer
Prior art date
Application number
PCT/JP2015/003433
Other languages
English (en)
French (fr)
Inventor
洋一郎 宇賀
新太郎 谷本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2016532438A priority Critical patent/JP6603884B2/ja
Priority to CN201580033465.XA priority patent/CN106463265B/zh
Publication of WO2016006236A1 publication Critical patent/WO2016006236A1/ja
Priority to US15/381,479 priority patent/US10236130B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present invention relates to an electrolytic capacitor having a conductive polymer layer and a method for manufacturing the same.
  • the electrolytic capacitor includes an anode body including a valve metal such as tantalum, niobium, titanium, and aluminum, a dielectric layer formed on the anode body, and a cathode body.
  • an electrolytic capacitor in which a conductive polymer layer (solid electrolyte layer) including a conductive polymer as a cathode member is formed on a dielectric layer is also called a solid electrolytic capacitor.
  • Patent Document 1 From the viewpoint of increasing the strength of the conductive polymer layer, it has been studied to use a crosslinking agent when forming the conductive polymer layer.
  • a solid electrolyte layer containing a conductive polymer is formed, dipped in a solution containing a cross-linking agent and dried, and dipped in a dispersion containing a conductive polymer and dried.
  • a functional polymer layer (polymer outer layer) is formed.
  • a cross-linking agent is added before forming the polymer outer layer as described above. Used.
  • an object of the present invention is to reduce ESR and suppress increase in leakage current in an electrolytic capacitor having a conductive polymer layer.
  • One aspect of the present invention is an anode body, a dielectric layer formed on the anode body, a first conductive polymer layer covering at least a part of the derivative layer, and at least one of the first conductive polymer layer.
  • a second conductive polymer layer covering the portion, and an intermediate layer formed between the first conductive polymer layer and the second conductive polymer layer,
  • the intermediate layer includes a cationic agent including a cationic group, and an anionic agent including a first anionic group and a second anionic group,
  • the anionic agent is A polymer comprising the first anionic group and the second anionic group;
  • the first anionic group relates to an electrolytic capacitor having higher electron withdrawing property than the second anionic group.
  • Another aspect of the present invention is a first step of preparing an anode body, A second step of forming a dielectric layer on the anode body; A third step of treating the anode body on which the dielectric layer is formed with a first treatment liquid containing a first conductive polymer; 4th which processes the said anode body processed with the said 1st process liquid with the 2nd process liquid containing the cation agent containing a cationic group, and the anion agent containing a 1st anionic group and a 2nd anionic group.
  • the anionic agent is Comprising a polymer comprising the first anionic group and the second anionic group;
  • the first anionic group relates to a method for producing an electrolytic capacitor, which has higher electron withdrawing property than the second anionic group.
  • an electrolytic capacitor in which ESR is reduced and an increase in leakage current is suppressed, and a manufacturing method thereof.
  • FIG. 2 is an enlarged view of a region surrounded by a solid line ⁇ in FIG. 1.
  • An electrolytic capacitor according to an embodiment of the present invention includes an anode body, a dielectric layer formed on the anode body, a first conductive polymer layer covering at least a part of the derivative layer, and a first conductive polymer layer.
  • a second conductive polymer layer covering at least a portion, and an intermediate layer formed between the first conductive polymer layer and the second conductive polymer layer.
  • the intermediate layer includes a cationic agent including a cationic group and an anionic agent including a first anionic group and a second anionic group.
  • the first anionic group containing a polymer containing a first anionic group and a second anionic group has higher electron withdrawing property than the second anionic group.
  • the polymer may be referred to as a first anionic agent.
  • Each of the first conductive polymer layer and the second conductive polymer layer usually contains an anionic dopant together with the conductive polymer, and the dopant includes the first conductive polymer layer and the second conductive polymer layer. It tends to exist on the surface of the conductive polymer layer. That is, since both the first conductive polymer layer and the second conductive polymer layer are easily charged negatively, the second conductive polymer layer is formed on the surface of the first conductive polymer layer. It is hard to do.
  • the film-forming property and / or the covering property of the second conductive polymer layer can be improved by forming the intermediate layer containing the cationic agent.
  • the film repair property of a dielectric material layer can be improved by using an anionic agent.
  • the cation agent In order to sufficiently obtain the effect of the cation agent, it is necessary that the cation agent is sufficiently dissociated in the treatment liquid for forming the intermediate layer.
  • the cationic agent since the cationic agent has low solubility and high volatility, it is difficult to increase the content of the cationic agent in the intermediate layer.
  • the coexistence of an anionic agent makes it easy to stably promote the dissociation of the cationic agent.
  • the electron withdrawing property of the anionic group of the anionic agent is excessively high, the valve metal constituting the anode body is easily corroded.
  • the anionic agent includes the first anionic group having a high electron withdrawing property, thereby increasing the dissociation property and solubility of the cationic agent in the treatment liquid for forming the intermediate layer. Can do. As a result, the film formability and / or coverage of the second conductive polymer layer can be improved, and ESR can be reduced.
  • the anionic agent as described above contains the second anionic group, the effect of repairing the coating on the dielectric layer is enhanced, and an increase in leakage current can be suppressed.
  • the anionic agent includes the second anionic group having a lower electron withdrawing property than the first anionic group, corrosion of the valve metal constituting the anode body can be suppressed. Since the anionic agent of this embodiment is a polymer containing a first anionic group and a second anionic group, an increase in leakage current can be suppressed.
  • FIG. 1 is a schematic cross-sectional view of an electrolytic capacitor according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of a region surrounded by a solid line ⁇ in FIG.
  • the electrolytic capacitor 1 includes a capacitor element 11, a resin outer body 12 that seals the capacitor element 11, and an anode terminal 13 and a cathode terminal 14 that are exposed to the outside of the resin outer body 12, respectively.
  • the capacitor element 11 includes a foil-like or plate-like anode body 2 (or anode portion), a dielectric layer 3 that covers one end of the anode body 2, and a cathode portion (or cathode member) 15 that covers the dielectric layer 3.
  • the anode terminal 13 is electrically connected to the anode body 2
  • the cathode terminal 14 is electrically connected to the cathode portion 15.
  • the resin outer package 12 has a substantially rectangular parallelepiped outer shape, and thus the electrolytic capacitor 1 also has a substantially rectangular parallelepiped outer shape.
  • the anode body 2 and the cathode portion 15 are opposed to each other with the dielectric layer 3 interposed therebetween.
  • the cathode portion 15 includes a conductive polymer layer 4 that covers the dielectric layer 3 and a cathode layer 5 that covers the conductive polymer layer 4.
  • the cathode layer 5 in the illustrated example has a two-layer structure, and includes a carbon layer 5a that is in contact with the conductive polymer layer 4 and a silver paste layer 5b that covers the surface of the carbon layer 5a.
  • an insulating separation portion 16 is formed in a region on the cathode portion 15 side so as to cover the surface of the anode body 2 in a strip shape. Contact with the anode body 2 is regulated.
  • the other end portion of the anode body 2 protruding from the cathode portion 15 is electrically connected to the first end portion 13a of the anode terminal 13 by welding or the like.
  • the cathode layer 5 formed in the outermost layer of the cathode portion 15 is connected to the first end portion 14a of the cathode terminal 14 and the conductive adhesive 17 (for example, a mixture of thermosetting resin and metal particles). Electrically connected.
  • the second end portion 13b of the anode terminal 13 and the second end portion 14b of the cathode terminal 14 are drawn from different side surfaces of the resin sheathing body 12, respectively, and are exposed to one main flat surface (the lower surface in FIG. 1). is doing.
  • the exposed portions of the terminals on the flat surface are used for solder connection with a substrate (not shown) on which the electrolytic capacitor 1 is to be mounted.
  • the dielectric layer 3 is formed on a part of the surface of the conductive material constituting the anode body 2. Specifically, the dielectric layer 3 can be formed by anodizing the surface of the conductive material constituting the anode body 2. Therefore, as shown in FIG. 2, the dielectric layer 3 is formed along the surface of the anode body 2 (including the hole on the inner surface and the inner wall surface of the recess).
  • the first conductive polymer layer 4a is formed so as to cover the dielectric layer 3, and the second conductive polymer layer 4b is formed so as to cover the first conductive polymer layer 4a.
  • the intermediate layer 4c is formed between the first conductive polymer layer 4a and the second conductive polymer layer 4b. In the illustrated example, the intermediate layer 4c is formed so as to cover the first conductive polymer layer 4a, and the second conductive polymer layer 4b is formed so as to cover the intermediate layer 4c.
  • the first conductive polymer layer 4a does not necessarily need to cover the entire dielectric layer 3 (the entire surface), and may be formed so as to cover at least a part of the dielectric layer 3. It is desirable to form so as to cover the region.
  • each of the second conductive polymer layer 4b and the intermediate layer 4c does not necessarily need to cover the entire first conductive polymer layer 4a (the entire surface), and at least the first conductive polymer layer 4a. It is only necessary to cover a part, but it is desirable to cover as many regions as possible.
  • the first conductive polymer layer 4a, the second conductive polymer layer 4b, and the intermediate layer 4c are shown as the conductive polymer layer 4, but in general, the first conductive polymer layer 4a, A layer containing a conductive polymer such as the conductive polymer layer 4b and the conductive polymer layer 4 may be referred to as a solid electrolyte layer.
  • the first conductive polymer layer 4a is preferably formed so as to bury the unevenness of the dielectric layer 3.
  • the anode body 2 is an anode member of the capacitor element 11, and the first conductive polymer layer 4 a, the second conductive polymer layer 4 b, and the cathode layer 5 are cathode members of the capacitor element 11. is there.
  • the dielectric layer 3 is a dielectric member of the capacitor element 11.
  • anode body As the anode body, a conductive material having a large surface area can be used.
  • the conductive material include a valve action metal, an alloy containing the valve action metal, and a compound containing the valve action metal. These materials can be used alone or in combination of two or more.
  • the valve metal for example, titanium, tantalum, aluminum, and / or niobium are preferably used. Since these metals, including their oxides, have a high dielectric constant, they are suitable as constituent materials for the anode body.
  • the anode body is, for example, a roughened surface of a base material (such as a foil-like or plate-like base material) formed of a conductive material, and a compact of a conductive material particle or a sintered body thereof. Is mentioned.
  • the dielectric layer Since the dielectric layer is formed by anodizing the conductive material on the surface of the anode body by chemical conversion treatment or the like, the dielectric layer includes an oxide of a conductive material (particularly a valve action metal).
  • the dielectric layer when tantalum is used as the valve action metal contains Ta 2 O 5
  • the dielectric layer when aluminum is used as the valve action metal contains Al 2 O 3 .
  • the dielectric layer is not limited to this, and any layer that functions as a dielectric may be used.
  • the dielectric layer is formed on the inner wall surface of the hole or depression (pit) on the surface of the anode body 2 as shown in FIG. Formed along.
  • the first conductive polymer layer only needs to be formed so as to cover at least a part of the dielectric layer, and may be formed so as to cover the entire surface of the dielectric layer.
  • the first conductive polymer layer includes a first conductive polymer.
  • the first conductive polymer layer further includes a dopant.
  • the dopant may be contained in the first conductive polymer layer in a state of being doped in the first conductive polymer.
  • the dopant may be contained in the first conductive polymer layer in a state of being bonded to the first conductive polymer.
  • First conductive polymer As the first conductive polymer, a known one used for an electrolytic capacitor, for example, a ⁇ -conjugated conductive polymer can be used. Examples of such a conductive polymer include a polymer having a basic skeleton of polypyrrole, polythiophene, polyfuran, polyaniline, polyacetylene, polyphenylene, polyphenylene vinylene, polyacene, and / or polythiophene vinylene.
  • Such a polymer includes a homopolymer, a copolymer of two or more monomers, and derivatives thereof (substituents having a substituent, etc.).
  • polythiophene includes poly (3,4-ethylenedioxythiophene) and the like.
  • Such a conductive polymer has high conductivity and excellent ESR characteristics.
  • the conductive polymer one kind may be used alone, or two or more kinds may be used in combination.
  • the weight average molecular weight of the conductive polymer is not particularly limited, but is, for example, 1000 to 1,000,000.
  • Dopant for example, a low molecular compound having an acidic group (or anionic group) (also referred to as a low molecular dopant) or a high molecular compound (also referred to as a high molecular dopant) is used.
  • a polymer dopant is used, a more uniform first conductive polymer layer can be formed.
  • a dopant can be used individually by 1 type or in combination of 2 or more types.
  • Low molecular dopants include sulfonic acid groups, carboxyl groups, phosphoric acid groups (—O—P ( ⁇ O) (— OH) 2 ), and / or phosphonic acid groups (—P ( ⁇ O) (— OH). 2 ) and the like (low molecular compound (monomer compound)) having an anionic group can be used.
  • examples of such compounds include aromatic rings such as benzene, naphthalene, and anthracene (C 6-14 aromatic rings), or condensed rings of aromatic rings (C 6-14 aromatic rings) and aliphatic rings.
  • a cyclic compound having an anionic group bonded thereto can be used.
  • a sulfonic acid group is preferable, and a combination of a sulfonic acid group and an anionic group other than the sulfonic acid group may be used.
  • the aromatic ring and / or the aliphatic ring constituting the cyclic compound may have a substituent other than an anionic group (for example, an alkyl group such as a methyl group, an oxo group ( ⁇ O), etc.).
  • alkylbenzene sulfonic acids such as benzene sulfonic acid and p-toluene sulfonic acid, naphthalene sulfonic acid, and anthraquinone sulfonic acid.
  • polymer dopant examples include a sulfonic acid group, a phosphoric acid group (—O—P ( ⁇ O) (— OH) 2 ), and / or a phosphonic acid group (—P ( ⁇ O) (— OH) 2. ) And the like can be used.
  • anionic groups sulfonic acid groups are preferred.
  • a high molecular dopant having a sulfonic acid group a homopolymer or copolymer of a monomer having a sulfonic acid group (for example, a vinyl monomer having a sulfonic acid group, a diene monomer having a sulfonic acid group such as isoprenesulfonic acid) Can be illustrated.
  • Examples of the vinyl monomer having a sulfonic acid group include an aliphatic vinyl monomer having a sulfonic acid group such as vinyl sulfonic acid, allyl sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, and a sulfonic acid group such as styrene sulfonic acid. Examples thereof include aromatic vinyl monomers. These vinyl monomers can be used singly or in combination of two or more.
  • the copolymer may be a copolymer using a monomer having two or more kinds of sulfonic acid groups, or may be a copolymer of a monomer having a sulfonic acid group and another monomer.
  • Examples of the polymer dopant include polyester sulfonic acid and / or phenol sulfonic acid novolak resin.
  • the anionic group is not particularly limited as long as it can generate an anion in a dissociated state, and may be a salt or ester of the above anionic group. Good.
  • the weight average molecular weight of the high molecular dopant is, for example, 1,000 to 1,000,000, and preferably 10,000 to 500,000. If a polymer dopant having such a molecular weight is used, the first conductive polymer layer can be easily homogenized. In the homopolymer and copolymer of the monomer having a sulfonic acid group, the weight average molecular weight is more preferably 10,000 to 500,000. In the polyester sulfonic acid and phenol sulfonic acid novolak resins, the weight average molecular weight is more preferably 5,000 to 80,000.
  • the amount of the dopant contained in the first conductive polymer layer is preferably 10 to 1000 parts by mass, more preferably 50 to 200 parts by mass with respect to 100 parts by mass of the first conductive polymer. .
  • the anode body has a large surface area, and a dielectric layer is formed not only on the outer surface but also on the inner wall surfaces of holes and depressions on the inner surface. It is preferable to form the first conductive polymer layer also on the dielectric layer formed on the inner wall surface to increase the coverage with the first conductive polymer layer.
  • the intermediate layer only needs to be formed so as to cover at least a part of the first conductive polymer layer, and may be formed so as to cover the entire surface of the first conductive polymer layer. In the region where the first conductive polymer layer is not formed, the intermediate layer may be in contact with the dielectric layer (that is, the intermediate layer covers the dielectric layer in a partial region of the dielectric layer). May be formed). Further, a part of the intermediate layer may be in the first conductive polymer layer.
  • the intermediate layer includes a cationic agent including a cationic group.
  • the cation agent is not particularly limited as long as it can generate cations in a dissociated state, and may be, for example, a metal compound (such as an inorganic base such as a metal hydroxide) or an organic compound (such as an organic base). Is preferred.
  • a metal compound such as an inorganic base such as a metal hydroxide
  • an organic compound such as an organic base.
  • the cationic group of the cationic agent which is an organic compound, an amino group (such as a primary amino group, a secondary amino group and a tertiary amino group) and a quaternary ammonium group are preferable.
  • Such cationic groups include amino group salts, quaternary ammonium group salts, and the like.
  • cationic agents having an amino group as a cationic group are preferable.
  • the amine compound include amines (primary to tertiary amines) having 1 to 3 substituents (eg, alkyl group, cycloalkyl group, and / or aryl group) on the nitrogen atom, and 1 atom on the nitrogen atom.
  • substituents eg, alkyl group, cycloalkyl group, and / or aryl group
  • the diamine etc. which may have two alkyl groups can be illustrated.
  • alkyl group possessed by the amine or diamine examples include C 1-16 alkyl such as methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, tert-butyl, hexyl, 2-ethylhexyl, octyl, decyl, dodecyl, etc. Groups.
  • the alkyl group may be linear or branched.
  • At least one of the alkyl groups of the ammonium cation preferably has a C 4-16 alkyl group (or a C 6-12 alkyl group or a C 6-10 alkyl group).
  • the remaining alkyl group may be a C 1-10 alkyl group (or a C 1-6 alkyl group or a C 1-4 alkyl group).
  • Examples of the cycloalkyl group include C 4-10 cycloalkyl groups (or C 5-8 cycloalkyl groups) such as cyclopentyl, cyclohexyl, and cyclooctyl.
  • Examples of the aryl group include C 6-14 aryl groups such as phenyl and naphthyl.
  • Each of the alkyl group, cycloalkyl group and aryl group may have a substituent such as a hydroxyl group and / or an alkoxy group (C 1-6 alkoxy group such as methoxy and ethoxy or C 1-4 alkoxy group). Good.
  • diamine examples include diaminoalkane, diaminocycloalkane (diamino C 5-8 cycloalkane such as diaminocyclohexane), diaminoarene (diamino C 6-14 arene such as diaminobenzene and diaminonaphthalene), and the like.
  • diamines have a substituent such as a hydroxyl group and / or an alkoxy group (such as a C 1-6 alkoxy group such as methoxy or ethoxy or a C 1-4 alkoxy group) at the alkane, cycloalkane, or arene site. May be.
  • diaminoalkane examples include 1,4-diaminobutane, 1,6-diaminohexane, 1,8-diaminooctane, diamino C 2-14 alkane such as 1,10-diaminodecane, and diamino C 4-12 alkane). It can be illustrated.
  • the individual nitrogen atoms of these diamines may have 1 or 2 alkyl groups. Examples of the alkyl group include the alkyl groups exemplified above.
  • the alkyl group may be linear or branched, and is a substituent such as a hydroxyl group and / or an alkoxy group (such as a C 1-6 alkoxy group such as methoxy or ethoxy or a C 1-4 alkoxy group). You may have.
  • Tertiary amines include N, N-diC 1-10 alkyl- NC 4-16 alkylamine, N, N-diC 4-16 alkyl- NC 1-10 alkylamine, tri-C 4 -16 alkylamine and the like.
  • the intermediate layer may contain a kind of cation agent or may contain a combination of two or more cation agents.
  • the intermediate layer may contain the cation agent in any form of an amine compound, a cation corresponding to the amine compound, a quaternary ammonium compound, and / or a cation salt.
  • the cationic agent may form a salt with the anionic agent.
  • the anionic agent includes a polymer (first anionic agent) containing a first anionic group and a second anionic group.
  • the anionic group contained in the anionic agent include a sulfonic acid group, a phosphoric acid group, a phosphonic acid group, a boric acid group, a carboxyl group, and a hydroxyl group.
  • the anionic group is not particularly limited as long as it can generate an anion in a dissociated state, and may be a salt of these groups. It is important that the anionic agent contains a first anionic group and a second anionic group having a lower electron withdrawing property than the first anionic group. You may select suitably the 1st anionic group and 2nd anionic group from which the electron withdrawing property differs from the above anionic groups.
  • the anionic group of the anionic agent is in any form such as the above anionic group, an anion corresponding to the above anionic group, and / or a salt of an anion. It may be included.
  • the sulfonic acid group includes a free sulfonic acid group (—SO 3 H), a sulfonic acid anion (—SO 3 ⁇ ), and a sulfonic acid salt.
  • the phosphate group includes phosphate anions (—OPO 3 H ⁇ , —OPO 3 2 ⁇ ), phosphates, and the like. It is.
  • the phosphonic acid group includes a free phosphonic acid group (—P ( ⁇ O) (OH) 2 ), a phosphonic acid anion (—PO 3 H ⁇ , —PO 3 2 ⁇ ), and a phosphonate.
  • the carboxyl group includes a free carboxyl group (—COOH), a carboxylate anion (—COO ⁇ ), a carboxylate, and the like.
  • the first anionic group is preferably, for example, a sulfonic acid group, a phosphoric acid group, or a phosphonic acid group (particularly a sulfonic acid group).
  • the anionic groups contained in the intermediate layer or the treatment liquid for forming the intermediate layer one kind of anionic group having the highest electron withdrawing property is defined as the first anionic group.
  • the second anionic group is preferably at least one selected from the group consisting of a phosphate group, a phosphonic acid group, a carboxyl group, and a hydroxyl group.
  • the second anionic group has lower electron withdrawing property than the first anionic group.
  • the intermediate layer or the treatment liquid for forming the intermediate layer may contain one kind of second anionic group or may contain two or more kinds of second anionic groups.
  • the hydroxyl group may be an alcoholic hydroxyl group, but is preferably a phenolic hydroxyl group from the viewpoint of higher electron withdrawing properties.
  • the second anionic group may contain at least a carboxyl group from the viewpoint of easily enhancing the effect of suppressing the corrosion of the anode body while ensuring dissociation and solubility of the cationic agent. From the viewpoint of enhancing the withstand voltage characteristics, it is also preferable that the second anionic group contains a phosphate group and / or a phosphonate group.
  • A1 Polymer (first anionic agent) As the first anionic agent which is a polymer (polymer compound), for example, a copolymer (p1) of a monomer unit having a first anionic group and a monomer unit having a second anionic group, and the first Examples thereof include a polymer (p2) containing a monomer unit having an anionic group and a second anionic group.
  • the first anionic agent may contain one or more monomer units having a first anionic group.
  • the first anionic agent may contain one or more monomer units having a second anionic group.
  • the first anionic agent may contain one or more monomer units having a first anionic group and a second anionic group.
  • the number of each of the first anionic group and the second anionic group may be one, or two or more.
  • a 1st anionic agent may be used individually by 1 type or in combination of 2 or more types.
  • Examples of the monomer unit serving as the skeleton of the monomer unit having the first anionic group and / or the second anionic group include, for example, aliphatic vinyl monomer units such as ethylene and propylene, aromatic vinyl monomer units such as styrene, butadiene, And diene monomer units such as isoprene.
  • Examples of the polymer (p2) include a homopolymer and a copolymer.
  • the copolymer of the polymer (p2) includes, in addition to the monomer unit having a first anionic group and a second anionic group, a monomer unit having a first anionic group, a monomer unit having a second anionic group, and It may also contain other copolymerizable monomer units. Further, the copolymer (p1) may further contain other copolymerizable monomer units.
  • other copolymerizable monomers include, for example, monomers having a first anionic group, monomers having a second anionic group, aliphatic vinyl monomers such as ethylene and propylene, and aromatics such as styrene. And diene monomers such as group vinyl monomers, butadiene and isoprene.
  • Other copolymerizable monomers can be used singly or in combination of two or more.
  • examples of the monomer having a sulfonic acid group as the first anionic group include diene monomers having a sulfonic acid group such as a vinyl monomer having a sulfonic acid group and isoprenesulfonic acid.
  • examples of the vinyl monomer having a sulfonic acid group include aliphatic vinyl monomers having a sulfonic acid group such as vinyl sulfonic acid and allyl sulfonic acid, and aromatic vinyl monomers having a sulfonic acid group such as styrene sulfonic acid.
  • the monomer which has a sulfonic acid group can be used individually by 1 type or in combination of 2 or more types.
  • Examples of the monomer having a phosphate group as the first anionic group or the second anionic group include acid phosphooxypolyoxyalkylene glycol monoacrylates of polymerizable unsaturated carboxylic acids such as acid phosphooxyethyl acrylate and acid phosphooxyethyl methacrylate.
  • An acid phosphooxyalkyl group such as acid phosphooxyethyl is an alkyl group having a phosphate group.
  • acrylate and methacrylate are collectively referred to as (meth) acrylate.
  • Monomers having a phosphoric acid group can be used singly or in combination of two or more.
  • Examples of the monomer having phosphonic acid as the first anionic group or the second anionic group include aliphatic vinyl monomers having a phosphonic acid group such as vinylphosphonic acid and allylphosphonic acid, and aromatic having a phosphonic acid group such as styrenephosphonic acid.
  • Group vinyl monomers can be exemplified.
  • the monomer which has a phosphonic acid group can be used individually by 1 type or in combination of 2 or more types.
  • Examples of the monomer having a carboxyl group as the second anionic group include acrylic acid, methacrylic acid, maleic acid, fumaric acid, and carboxystyrene.
  • the monomer which has a carboxyl group can be used individually by 1 type or in combination of 2 or more types.
  • Examples of the monomer having a hydroxyl group as the second anionic group include an aromatic vinyl monomer having a hydroxyl group such as vinylphenol and hydroxyvinyltoluene, hydroxy of the monomer having the carboxyl group such as hydroxyethyl acrylate and hydroxyethyl methacrylate. Examples thereof include alkyl esters (for example, hydroxy C 1-4 alkyl esters).
  • the monomer which has a hydroxyl group can be used individually by 1 type or in combination of 2 or more types.
  • Examples of the monomer having a sulfonic acid group as the first anionic group and a carboxyl group as the second anionic group include aromatic vinyl monomers having a sulfonic acid group and a carboxyl group such as vinylsulfobenzoic acid. . These monomers can be used alone or in combination of two or more.
  • Examples of the monomer having a phosphate group as the first anionic group and a carboxyl group as the second anionic group include 2- (dihydroxyphosphinyloxy) acrylic acid.
  • Examples of the monomer having a phosphonic acid group as the second anionic group and a carboxyl group as the second anionic group include phosphonoacrylic acid and / or 2-methyl-3-phosphonoacrylic acid. Can be mentioned.
  • the first anionic agent can be used alone or in combination of two or more.
  • the first anionic group is preferably a sulfonic acid group or a phosphoric acid group.
  • the second anionic group may include a carboxyl group and / or a hydroxyl group.
  • the effect of suppressing corrosion of the anode body can be further enhanced while ensuring dissociation and solubility of the cationic agent. Therefore, the leakage current can be more effectively suppressed.
  • the second anionic group contains at least a carboxyl group.
  • the first anionic group is a sulfonic acid group and the second anionic group contains a phosphoric acid group and / or a phosphonic acid group. In this case, the withstand voltage characteristic can be improved.
  • the first anionic agent is a polymer, an increase in leakage current can be suppressed as compared with the case where the anionic agent is a monomolecular material or a low molecular material.
  • the first anionic agent is a copolymer (p1)
  • the first anionic group and the second anionic group can be uniformly added at a desired ratio in the intermediate layer, thereby reducing the ESR and increasing the leakage current. Can be suppressed.
  • the weight average molecular weight of the polymer is, for example, 5,000 to 500,000, preferably 10,000 to 200,000.
  • the first anionic agent may be used in combination with a second anionic agent, which is a low molecular compound (monomer compound) having an anionic group, if necessary.
  • the second anionic agent may be any of an aliphatic compound, an alicyclic compound, and an aromatic compound.
  • the aliphatic compound has an anionic group and an aliphatic moiety (an alkane moiety such as methane or ethane (C 1-6 alkane moiety) or the like) to which the anionic group is bonded.
  • the alicyclic compound has an anionic group and an alicyclic moiety (cycloalkane moiety such as cyclopentane or cyclohexane (C 5-8 cycloalkane moiety) to which the anionic group is bonded).
  • the aromatic compound has an anionic group and an aromatic moiety (an arene moiety such as benzene or naphthalene (C 6-14 arene moiety) or the like) to which the anionic group is bonded.
  • an aromatic moiety such as benzene or naphthalene (C 6-14 arene moiety) or the like
  • Each of the aliphatic moiety, alicyclic moiety and aromatic moiety is optionally substituted with a halogen atom (fluorine element, chlorine atom, etc.), an alkyl group (C 1-4 alkyl group such as methyl, ethyl, etc.), alkenyl. It may have a substituent such as a group (C 2-6 alkenyl group such as vinyl group).
  • the second anionic agent having an alicyclic moiety and an aromatic moiety increases the affinity with the first conductive polymer layer and / or the second conductive polymer layer.
  • the film forming property and / or the covering property can be further improved.
  • the second anionic agent may have one anionic group or two or more (for example, two, three, or four).
  • the anionic group possessed by the second anionic agent can be appropriately selected from the anionic groups exemplified above, and may be a first anionic group and / or a second anionic group.
  • Specific examples of the second anionic agent include an anionic agent having a first anionic group, an anionic agent having a second anionic group, and an anionic agent having a first anionic group and a second anionic group. Can be illustrated. One of these second anionic agents may be used, or two or more thereof may be used in combination.
  • the first anionic agent may be combined with the anionic agent having the first anionic group and / or the anionic agent having the second anionic group, and in addition to these, the first anionic group and the second anion may be further combined.
  • You may combine with the anionic agent which has a sex group.
  • the second anionic agent may contain a kind of second anionic group or may contain two or more kinds of second anionic groups.
  • Examples of the second anionic agent having a sulfonic acid group as an anionic group include aliphatic sulfonic acid (C 1-6 alkanesulfonic acid such as methanesulfonic acid), alicyclic sulfonic acid (C such as cyclohexanesulfonic acid). 5-8 cycloalkane sulfonic acid, etc.), and aromatic sulfonic acid (C 6-14 arene sulfonic acid such as benzene sulfonic acid, styrene sulfonic acid, etc.).
  • anionic agent having a phosphate group as an anionic group examples include acid phosphooxypolyoxyalkylene glycol monoacrylate of a carboxylic acid such as acid phosphooxyethyl acrylate and acid phosphooxyethyl methacrylate (acid phosphooxypolyoxyethylene glycol monoacrylate).
  • anionic agent having a phosphonic acid group as an anionic group examples include aliphatic phosphonic acids such as vinylphosphonic acid and aromatic phosphonic acids such as phenylphosphonic acid.
  • Examples of the second anionic agent having a carboxyl group as an anionic group include aliphatic carboxylic acids (C 2-10 alkane carboxylic acids such as propanoic acid, butanoic acid and hexanoic acid, and C 4-12 alkanes such as hexanedioic acid. etc.
  • carboxy C 5-8 cycloalkane such as alicyclic carboxylic acids (carboxymethyl cyclohexane, dicarboxy C 5-8 cycloalkane such as cyclohexane dicarboxylic acid), carboxy C such as an aromatic carboxylic acid (benzoic acid
  • Carboxyhydroxy C 6-14 arenes such as 6-14 arene and salicylic acid
  • dicarboxy C 6-14 arenes such as phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, and the like.
  • Examples of the second anionic agent having a hydroxyl group as an anionic group include phenols such as phenol, hydroxytoluene, vinylphenol and hydroxyvinyltoluene, and second anions having the carboxyl group such as hydroxyethyl acrylate and hydroxyethyl methacrylate.
  • examples thereof include hydroxyalkyl esters (for example, hydroxy C 1-4 alkyl esters).
  • the second anionic agent having a sulfonic acid group as the first anionic group and a carboxyl group as the second anionic group for example, an aliphatic compound such as sulfosuccinic acid, sulfobenzoic acid, sulfosalicylic acid, Aromatic compounds such as disulfosalicylic acid, sulfophthalic acid, sulfoisophthalic acid, sulfoterephthalic acid, and naphtholsulfonic acid can be mentioned.
  • the second anionic agent having a phosphate group as the first anionic group and a carboxyl group as the second anionic group include 2- (dihydroxyphosphinyloxy) acrylic acid.
  • the second anionic agent having a phosphonic acid group as the first anionic group and a carboxyl group as the second anionic group include phosphonoacrylic acid and / or 2-methyl-3-phosphonoacrylic. An acid etc. are mentioned.
  • anionic agents having a sulfonic acid group are preferred.
  • the anionic group preferably contains a phosphate group and / or a phosphonic acid group.
  • the ratio between the first anionic group and the second anionic group can be easily adjusted as appropriate.
  • the total number of first anionic groups and second anionic groups is, for example, 0.8 times or more the number of cationic groups, It is preferably 1 or more times or greater than 1 time, more preferably 1.1 or more times or 1.2 or more times.
  • the total number of the first anionic group and the second anionic group may be, for example, 10 times or less, preferably 5 times or less, more preferably 3 times or less, or 2 times or less the number of cationic groups. Good.
  • the total number of the first anionic group and the second anionic group is 0.8 to 10 times, 0.8 to 5 times, more than 1 time and less than or equal to 3 times the number of cationic groups. It may be 3 times or less.
  • the relationship between the total number of the first anionic group and the second anionic group and the number of the cationic groups is within such a range, the film-forming property and / or the covering property of the second conductive polymer layer, In addition, it is effective in improving the withstand voltage characteristics.
  • the ratio of the number of first anionic groups and / or second anionic groups to the number of cationic groups is the number of first anionic groups and / or second anionic groups per molecule of anionic agent used, It can be calculated from the number of cationic groups per molecule of the cationic agent, the molar ratio of the anionic agent and the cationic agent, and the like.
  • the ratio of the number of the first anionic group and / or the second anionic group to the number of the cationic group in the intermediate layer forms the intermediate layer. Is almost the same as the ratio in the processing solution.
  • the ratio of the number of second anionic groups to the number of first anionic groups is, for example, 0.3 times or more, and 0.5 times or more. Or it may be 1 or more times.
  • the number of second anionic groups is preferably larger than the number of first anionic groups. In this case, the effect of suppressing corrosion of the anode body can be further enhanced while ensuring the dissociation and solubility of the cationic agent.
  • the ratio of the number of second anionic groups to the number of first anionic groups is greater than 1, preferably 2 times or more or 3 times or more.
  • the number of the second anionic group is, for example, 6 times or less and preferably 5 times or less the number of the first anionic group. These lower limit values and upper limit values can be arbitrarily combined.
  • the number of second anionic groups is, for example, 0.3 to 6 times, 0.3 to 5 times, 0.8 to 6 times, the number of first anionic groups, It may be 1 time or more, 6 times or less, 1 time or more, 5 times or less, 1 time larger than 5 times or less, 2 times or more, 6 times or less, or 2 times or more, 5 times or less.
  • the number of cationic groups in the intermediate layer is not limited to that derived from the cation agent, but the intermediate layer (or the treatment liquid for forming the intermediate layer). It means the number of cationic groups contained.
  • the number of first anionic groups and the number of second anionic groups in the intermediate layer (or treatment liquid for forming the intermediate layer) are not limited to those derived from the first anionic agent and the second anionic agent, It means the number of all first anionic groups and the number of all second anionic groups contained in the intermediate layer (or the treatment liquid for forming the intermediate layer), respectively.
  • the ratio of the number of the second anionic group to the number of the first anionic group is the number of the first anionic group and / or the second anionic group per molecule of the anionic agent used, and a plurality of anionic agents are used. In some cases, it can be calculated from these molar ratios.
  • the ratio of the number of second anionic groups to the number of first anionic groups in the intermediate layer is substantially the same as the ratio in the treatment liquid for forming the intermediate layer.
  • the second conductive polymer layer only needs to be formed so as to cover at least part of the first conductive polymer layer, and may be formed so as to cover the entire surface of the first conductive polymer layer. Good.
  • the second conductive polymer layer is formed so as to cover the first conductive polymer layer through the intermediate layer in at least a part of the surface of the first conductive polymer layer. There may be a region formed directly on the surface of the first conductive polymer layer without using a layer. Further, in the region where the first conductive polymer layer and the intermediate layer are not formed, the second conductive polymer layer may be in contact with the dielectric layer (that is, the second conductive polymer layer is dielectric). It may be formed so as to cover the body layer).
  • the second conductive polymer layer includes a second conductive polymer.
  • the second conductive polymer layer may further contain a dopant.
  • the dopant may be contained in the second conductive polymer layer in a state of being doped in the second conductive polymer.
  • the dopant may be contained in the second conductive polymer layer in a state of being bonded to the second conductive polymer.
  • a 2nd conductive polymer As a 2nd conductive polymer, the well-known thing used for an electrolytic capacitor can be used, Specifically, it can select suitably from the conductive polymer illustrated about the 1st conductive polymer.
  • the weight average molecular weight of the second conductive polymer can also be appropriately selected from the range exemplified for the first conductive polymer.
  • the first conductive polymer and the second conductive polymer may be the same or different.
  • the second conductive polymer layer further contains a dopant.
  • a dopant the well-known thing used with an electrolytic capacitor can be used, Specifically, it can select suitably from what was illustrated about the 1st electroconductive polymer layer. The same dopant may be used for a 1st conductive polymer layer and a 2nd conductive polymer layer, and a different thing may be used for a dopant.
  • the amount of the dopant contained in the second conductive polymer layer is preferably 10 to 1000 parts by mass, and more preferably 50 to 200 parts by mass with respect to 100 parts by mass of the second conductive polymer. .
  • the average thickness of the second conductive polymer layer is, for example, 5 to 100 ⁇ m, preferably 10 to 50 ⁇ m. When the average thickness is in such a range, the strength of the second conductive polymer layer can be further increased.
  • the ratio of the average thickness of the second conductive polymer layer to the average thickness of the first conductive polymer layer is, for example, 5 times or more, preferably 10 times or more. When the ratio of the average thickness is within such a range, the strength can be increased.
  • the capacitor element has two conductive polymer layers of the first conductive polymer layer and the second conductive polymer layer has been described.
  • the capacitor element has three or more conductive layers. It may have a functional polymer layer.
  • one or more conductive polymer layers can be formed between the first conductive polymer layer and the second conductive polymer layer.
  • Each of the first conductive polymer layer and the second conductive polymer layer may further include a known additive and / or a known conductive material other than the conductive polymer (for example, manganese dioxide) as necessary. And / or TCNQ complex salts, etc.).
  • a known additive and / or a known conductive material other than the conductive polymer for example, manganese dioxide
  • a known additive and / or a known conductive material other than the conductive polymer for example, manganese dioxide
  • An electrolytic capacitor manufacturing method includes a first step of preparing an anode body, a second step of forming a dielectric layer on the anode body, and an anode body on which the dielectric layer is formed.
  • the anionic agent includes a polymer (first anionic agent) including a first anionic group and a second anionic group, and the first anionic group has an electron withdrawing property than the second anionic group. high.
  • the anode body is formed by a known method according to the type of the anode body.
  • the anode body can be prepared, for example, by roughening the surface of a foil-like or plate-like substrate formed of a conductive material.
  • the surface roughening may be performed by forming irregularities on the surface of the base material.
  • the surface of the base material may be etched by etching the base material surface (for example, electrolytic etching).
  • it may be performed by depositing particles of a conductive material.
  • a dielectric layer is formed on the anode body.
  • the dielectric layer is formed by anodizing the surface of the anode body.
  • Anodization can be performed by a known method such as chemical conversion treatment.
  • the chemical conversion treatment for example, by immersing the anode body in the chemical conversion liquid, the chemical conversion liquid is impregnated up to the surface of the anode body (holes on the inner surface and inner wall surfaces of the recesses), and the anode liquid is used as the anode. This can be performed by applying a voltage between the cathode immersed in the cathode.
  • the chemical conversion solution for example, an aqueous phosphoric acid solution, an aqueous ammonium phosphate solution, or an aqueous ammonium adipate solution is preferably used.
  • the third step for example, the anode body on which the dielectric layer is formed is immersed in the first processing liquid, or the first processing liquid is injected into the anode body on which the dielectric layer is formed.
  • the first treatment liquid is impregnated up to the surface of the anode body on which the dielectric layer is formed by dipping or pouring (the inner wall surface of the hole or the depression on the inner surface where the dielectric layer is formed).
  • the anode body may be dried as necessary. When drying, the anode body may be heated as necessary.
  • the first conductive polymer (and dopant) can be attached to the surface of the anode body on which the dielectric layer is formed.
  • the first conductive polymer (and the dopant) may be attached to the surface of the anode body on which the dielectric layer is formed in the form of a film to form the first conductive polymer layer.
  • the first conductive polymer layer may be a film (or coating film) formed by bringing the anode body on which the dielectric layer is formed into contact with the first treatment liquid and drying it.
  • the first treatment liquid is not particularly limited.
  • the first treatment liquid is not limited to various coating methods (for example, dipping method (dip coating method), spray coating method, etc.), and a dielectric method using a printing method or a combination thereof. You may make it contact the surface of the anode body in which the body layer was formed.
  • the first treatment liquid containing the first conductive polymer for example, a solution containing a solvent and a first conductive polymer dissolved in the solvent, or a dispersion medium, and a first dispersed in the dispersion medium.
  • a dispersion containing a dispersoid (or a dispersed phase) of a conductive polymer When such a solution or dispersion is used as the first treatment liquid, the first conductive polymer layer can be easily formed, and the first conductive polymer layer with stable quality can be easily obtained.
  • the form of the dispersoid in the dispersion is not particularly limited and may be a fiber, but is preferably a particle (or powder).
  • the average particle size of the dispersoid particles in the dispersion is preferably 5 to 100 nm. The average particle size can be determined from, for example, a particle size distribution by a dynamic light scattering method.
  • Examples of the solvent or dispersion medium contained in the first treatment liquid include water, an organic medium, and a mixture thereof.
  • the organic medium include aliphatic alcohols having 1 to 5 carbon atoms (eg, aliphatic monools such as methanol, ethanol, propanol and 1-butanol; aliphatic polyols such as ethylene glycol and glycerin); acetone and the like
  • the first treatment liquid may contain components other than the first conductive polymer (for example, a dopant) among the constituent components of the first conductive polymer layer as necessary.
  • the anode body on which the dielectric layer is formed is impregnated with the first treatment liquid containing the raw material of the first conductive polymer and polymerized (chemical polymerization, electrolytic polymerization, etc.),
  • the first conductive polymer may be attached by forming a polymerized film.
  • the raw material of the first conductive polymer include a precursor of the first conductive polymer, for example, a monomer constituting the first conductive polymer and / or an oligomer in which several monomers are connected.
  • an oxidizing agent is used to polymerize the raw material of the first conductive polymer.
  • the oxidizing agent may be added to the first processing liquid.
  • the oxidizing agent may be applied to the anode body before or after immersing the anode body on which the dielectric layer is formed in the first treatment liquid.
  • An example of such an oxidizing agent is a sulfonic acid metal salt.
  • the sulfonic acid metal salt has a function as a dopant in addition to a function as an oxidizing agent.
  • Examples of the portion constituting the sulfonic acid of the sulfonic acid metal salt include alkylsulfonic acid and / or aromatic sulfonic acid (benzenesulfonic acid, toluenesulfonic acid, naphthalenedisulfonic acid, etc.).
  • Examples of the metal part constituting the metal salt include iron (III), copper (II), chromium (IV), and / or zinc (II).
  • the first treatment liquid used for forming the polymer film can contain a solvent.
  • a solvent it can select suitably from the solvent illustrated about the 1st process liquid used for formation of said film (coating film).
  • the first treatment liquid used for the formation of the polymerized film is also a component other than the first conductive polymer (raw material) among the components of the first conductive polymer layer described above (for example, if necessary) Dopants, etc.).
  • the fourth step can be performed, for example, by bringing a second treatment liquid containing a cation agent and an anion agent into contact with the anode body treated with the first treatment liquid. After making it contact with a 2nd process liquid, you may dry an anode body as needed. When drying, the anode body may be heated as necessary.
  • the second treatment liquid may contain a solvent in addition to the cation agent and the anion agent.
  • the solvent include water, organic solvents, and mixtures thereof.
  • the organic solvent include aliphatic alcohols having 1 to 5 carbon atoms (for example, aliphatic monools such as methanol, ethanol, propanol and 1-butanol; aliphatic polyols such as ethylene glycol and glycerin); acetone and the like
  • the solvent preferably contains at least water.
  • the proportion of the organic solvent in the entire solvent is preferably 15% by mass or less, and more preferably 10% by mass or less or 5% by mass or less.
  • the concentration of the organic solvent contained in the second treatment liquid is preferably 5% by mass or less based on the mass of the entire solvent.
  • the ratio of the number of first anionic groups to the number of second anionic groups can be adjusted by adjusting the composition of the anionic agent.
  • the cation agent and the anion agent are preferably attached so as to cover the first conductive polymer (and the dopant) attached to the surface of the dielectric layer. It may be formed.
  • the fifth step uses an anode body treated with the second treatment liquid, and uses a third treatment liquid containing a second conductive polymer (optionally a dopant) instead of the first treatment liquid.
  • a third treatment liquid containing a second conductive polymer (optionally a dopant) instead of the first treatment liquid.
  • the same or similar procedure as in the third step can be performed.
  • As a 3rd process liquid it can replace with a 1st conductive polymer, and can use the thing similar to a 1st process liquid except including a 2nd conductive polymer.
  • the method for manufacturing an electrolytic capacitor can further include a step of forming a cathode layer (sixth step).
  • a cathode layer is formed by sequentially laminating a carbon layer and a silver paste layer on the surface of the anode body obtained in the fifth step (preferably the second conductive polymer layer).
  • the carbon layer is formed by immersing an anode body having a dielectric layer in which a second conductive polymer layer is formed in an aqueous dispersion of carbon (for example, a conductive carbon material such as graphite), or by adding a carbon paste. It can be formed by coating on the surface of two conductive polymer layers.
  • the carbon paste is a composition containing a conductive carbon material such as graphite.
  • the thickness of the carbon layer is, for example, 1 to 20 ⁇ m.
  • Silver paste is a composition containing silver particles and a resin (binder resin).
  • a resin binder resin
  • a thermoplastic resin can be used, but a thermosetting resin is preferably used.
  • the thickness of the silver paste layer is, for example, 50 to 100 ⁇ m.
  • a cathode layer is not restricted to this, What is necessary is just a structure which has a current collection function.
  • Example 1 The electrolytic capacitor 1 shown in FIG. 1 was produced in the following manner, and its characteristics were evaluated.
  • Step of preparing anode body 2 Anode body 2 was produced by roughening both surfaces of an aluminum foil (thickness: 100 ⁇ m) as a base material by etching.
  • Step of forming dielectric layer 3 A portion on one end side of the anode body 2 (portion from the separation portion to one end portion) was immersed in the chemical conversion solution, and a DC voltage of 70 V was applied for 20 minutes to form the dielectric layer 3 containing aluminum oxide. .
  • Step of forming the first conductive polymer layer 4a Under stirring, 3,4-ethylenedioxythiophene monomer was added to an aqueous solution of polystyrene sulfonic acid (weight average molecular weight: 75,000), and then an oxidizing agent (iron (III) sulfate) was added. And sodium persulfate) were added to carry out chemical oxidative polymerization.
  • the obtained polymer solution is filtered with an ion exchange device to remove impurities, so that poly 3,4-ethylenedioxythiophene (PEDOT) as the first conductive polymer and polystyrene sulfonic acid ( Solution containing PSS).
  • PEDOT poly 3,4-ethylenedioxythiophene
  • the obtained solution was added with pure water, homogenized with a high-pressure homogenizer, and further filtered with a filter to prepare a dispersion-treated first treatment liquid.
  • the anode body 2 formed with the dielectric layer 3 obtained in the above (2) was immersed in the first treatment liquid, then taken out from the first treatment liquid, and further dried at 120 ° C. for 10 to 30 minutes. .
  • the first conductive polymer layer 4a was formed so as to cover the surface of the dielectric layer 3 by repeating immersion in the first treatment liquid and drying once more each time. It was about 1 micrometer when the average thickness of the 1st conductive polymer layer 4a was measured with the scanning electron microscope (SEM).
  • Step of forming intermediate layer 4c In pure water, N, N-dimethyloctylamine (cationic agent), styrenesulfonic acid (a monomer having a first anionic group), and acid phosphooxyethyl acrylate (P ( ⁇ O) (OH) 2 —O—CH
  • a copolymer (anionic agent) with 2 CH 2 —O—C ( ⁇ O) —CH ⁇ CH 2 ) (a monomer having a second anionic group) was dissolved to prepare a second treatment liquid.
  • the concentration of the cation agent in the second treatment liquid was 0.05 mol / L, and the concentration of the anion agent was 0.03 mol / L.
  • the ratio of the number of phosphate groups as the second anionic group to the number of sulfonic acid groups as the first anionic group was 3 times.
  • the anode body 2 treated in (3) above is immersed in the second treatment liquid, then taken out and further dried at 100 ° C. for 3 minutes, so that the surface of the first conductive polymer layer 4a is covered. Layer 4c was formed.
  • the ratio of the total number of the first anionic group and the second anionic group to the number of the cationic groups and the ratio of the first anionic group to the second anionic group are as follows. The respective ratios in the processing liquid are almost the same.
  • the said anionic agent used for the 2nd process liquid was manufactured as follows.
  • a monomer solution was prepared by adding and mixing sodium styrenesulfonate and acid phosphooxyethyl acrylate to a predetermined amount of pure water. At this time, sodium styrenesulfonate and acid phosphooxyethyl acrylate were used in such a ratio that the copolymerization ratio (molar ratio) of styrenesulfonic acid and acid phosphooxyethyl acrylate in the copolymer was 75:25. A predetermined amount of ammonium persulfate (oxidant) was added to the monomer solution with stirring, and a polymerization reaction was carried out over 8 hours.
  • sodium styrenesulfonate and acid phosphooxyethyl acrylate were used in such a ratio that the copolymerization ratio (molar ratio) of styrenesulfonic acid and acid phosphooxyethyl acrylate in the copolymer was 75:25.
  • Purified treatment was performed by adding pure water and an ion exchange resin to the obtained polymerization solution, stirring and filtering. This purification treatment was repeated a plurality of times to finally obtain the copolymer.
  • the molecular weight of the copolymer was measured by gel permeation chromatography (GPC), the weight average molecular weight was 83,000.
  • Step of forming the second conductive polymer layer 4b A third treatment liquid having the same composition as the first treatment liquid used in (3) above was used.
  • the anode body 2 treated in the above (4) was immersed in the third treatment liquid, then taken out, and further dried at 120 ° C. for 10 to 30 minutes.
  • the second conductive polymer layer 4b was formed so as to cover the surface of the intermediate layer 4c by alternately repeating immersion and drying in the third treatment liquid twice.
  • the average thickness of the second conductive polymer layer 4b was measured in the same manner as in the case of the first conductive polymer layer 4a, it was about 30 ⁇ m.
  • the first conductive polymer layer 4a, the intermediate layer 4c, and the second conductive polymer layer 4b were formed so as to cover the surface of the dielectric layer 3.
  • cathode layer 5 (sixth step)
  • the anode body 2 obtained in the above (5) is immersed in a dispersion liquid in which graphite particles are dispersed in water, taken out from the dispersion liquid, and then dried, so that at least the surface of the second conductive polymer layer 4b has carbon.
  • Layer 5a was formed. Drying was performed at 130 to 180 ° C. for 10 to 30 minutes.
  • a silver paste containing silver particles and a binder resin (epoxy resin) is applied to the surface of the carbon layer 5a, and the binder resin is cured by heating at 150 to 200 ° C. for 10 to 60 minutes, whereby the silver paste layer 5b Formed.
  • the cathode layer 5 composed of the carbon layer 5a and the silver paste layer 5b was formed.
  • the capacitor element 11 was produced as described above.
  • a resin outer package 12 made of an insulating resin was formed around the capacitor element 11 by a transfer mold method.
  • the other end portion (second end portion) 13 b of the anode terminal 13 and the other end portion (second end portion) 14 b of the cathode terminal 14 were drawn from the resin sheathing body 12.
  • electrolytic capacitor 1 (A1) was completed. In the same manner as described above, a total of 250 electrolytic capacitors 1 were produced.
  • ESR 120 electrolytic capacitors were selected at random, and the ESR value (m ⁇ ) at a frequency of 100 kHz of the electrolytic capacitor was measured using an LCR meter for 4-terminal measurement, and an average value was obtained.
  • Example 1 In the fourth step, Example 1 is used except that polystyrenesulfonic acid (weight average molecular weight: 75,000) is used as the anionic agent, and the concentration of the anionic agent in the second treatment liquid is changed to 0.075 mol / L. Similarly, an electrolytic capacitor (B1) was produced. And evaluation similar to Example 1 was performed.
  • an electrolytic capacitor (B4) was prepared in the same manner as in Example 1 except that paratoluenesulfonic acid was used as the anionic agent and the concentration of the anionic agent in the second treatment liquid was changed to 0.075 mol / L. ) was produced. And evaluation similar to Example 1 was performed.
  • the first anionic group is included so that the ratio of the number of the second anionic group to the number of the first anionic group in the second treatment liquid (or intermediate layer) becomes the value shown in Table 1.
  • Example 6 In the fourth step, a copolymer of acid phosphooxyethyl acrylate (a monomer having a first anionic group) and acrylic acid (a monomer having a second anionic group) is used as the anionic agent at a concentration shown in Table 1.
  • the 2nd process liquid containing was used.
  • the copolymerization ratio (molar ratio) of the monomer having the first anionic group and the monomer having the second anionic group was changed as shown in Table 1. Except these, electrolytic capacitors (A6 to A8) were produced in the same manner as in Example 1. And evaluation similar to Example 1 was performed.
  • Example 9 In the fourth step, as the anionic agent, a copolymer of styrene sulfonic acid (a monomer having a first anionic group) and acrylic acid (a monomer having a second anionic group) at a concentration shown in Table 1 is used. Two treatment solutions were used. The copolymerization ratio (molar ratio) of the monomer having the first anionic group and the monomer having the second anionic group was a value shown in Table 1. Except for these, electrolytic capacitors (A9 and A10) were produced in the same manner as in Example 1. And evaluation similar to Example 1 was performed.
  • the anionic agent a copolymer of styrene sulfonic acid (a monomer having a first anionic group) and acrylic acid (a monomer having a second anionic group) at a concentration shown in Table 1 is used. Two treatment solutions were used. The copolymerization ratio (molar ratio) of the monomer having the first anionic group and the monomer having the second anionic group was a value
  • Examples 11 to 13 In the fourth step, as in Example 1, except that a copolymer of styrene sulfonic acid (a monomer having a first anionic group) and a monomer having a second anionic group shown in Table 1 is used as the anionic agent. Thus, electrolytic capacitors (A11 to A13) were produced. And evaluation similar to Example 1 was performed.
  • Example 14 In the fourth step, a copolymer of vinylphosphonic acid (a monomer having a first anionic group) and acrylic acid (a monomer having a second anionic group) was used as an anionic agent.
  • the copolymerization ratio (molar ratio) of the monomer having the first anionic group and the monomer having the second anionic group was changed to 50:50.
  • An electrolytic capacitor (A14) was produced in the same manner as Example 1 except for the above. And evaluation similar to Example 1 was performed.
  • Table 1 shows the evaluation results of the examples and comparative examples. Table 1 also shows the molecular weight of the anionic agent used. The molecular weight of the anionic agent used in Examples and Comparative Examples 1 to 3 is a weight average molecular weight.
  • the electrolytic capacitor according to the embodiment of the present invention can be used for various applications that require a reduction in ESR and suppression of leakage current.
  • Electrolytic capacitor 2 Anode body 3 Dielectric layer 4 Conductive polymer layer 4a First conductive polymer layer 4b Second conductive polymer layer 4c Intermediate layer 5 Cathode layer 5a Carbon layer 5b Silver paste layer 11 Capacitor element 12 Resin Exterior Body 13 Anode Terminal 13a Anode Terminal First End 13b Anode Terminal Second End 14 Cathode Terminal 14a Cathode Terminal First End 14b Cathode Terminal Second End 15 Cathode Part 16 Separation Part 17 Conductive Bonding Agent

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Conductive Materials (AREA)

Abstract

 電解コンデンサは、陽極体、陽極体上に形成された誘電体層、誘導体層の少なくとも一部を覆う第1導電性高分子層、第1導電性高分子層の少なくとも一部を覆う第2導電性高分子層、および第1導電性高分子層と第2導電性高分子層との間に形成された中間層を含む。中間層は、カチオン性基を含むカチオン剤と、第1アニオン性基および第2アニオン性基を含むアニオン剤とを含み、第1アニオン性基は、第2アニオン性基よりも電子求引性が高い。アニオン剤は、第1アニオン性基と第2アニオン性基とを含む重合体を含む。

Description

電解コンデンサおよびその製造方法
 本発明は、導電性高分子層を有する電解コンデンサおよびその製造方法に関する。
 近年、電子機器の小型化および軽量化に伴って、小型かつ大容量の高周波用コンデンサが求められている。このようなコンデンサとして、等価直列抵抗(ESR)が小さく、周波数特性に優れている電解コンデンサの開発が進められている。電解コンデンサは、タンタル、ニオブ、チタン、アルミニウムなどの弁作用金属を含む陽極体と、陽極体上に形成された誘電体層と、陰極体とを含む。中でも、誘電体層上に陰極部材として導電性高分子を含む導電性高分子層(固体電解質層)が形成された電解コンデンサは、固体電解コンデンサとも呼ばれている。
 導電性高分子層の強度を高める観点から、導電性高分子層を形成する際に、架橋剤を用いることが検討されている。例えば、特許文献1では、導電性高分子を含む固体電解質層を形成し、架橋剤を含む溶液に浸漬して乾燥し、導電性高分子を含む分散液に浸漬して乾燥することで、導電性高分子層(ポリマー外層)を形成している。特許文献1では、導電性高分子層の剥離を抑制し、導電性高分子層によるコンデンサ素子の端部の被覆性を高めるために、上記のように、ポリマー外層を形成する前に架橋剤を用いている。
特表2012-517113公報
 しかし、特許文献1に記載の架橋剤を用いても、固体電解質層上に導電性高分子層(ポリマー外層)を十分に被覆でないためにESRが低減できず、また、漏れ電流が増大する場合がある。
 そこで、本発明は、導電性高分子層を有する電解コンデンサにおいて、ESRを低減し、かつ、漏れ電流の増大を抑制することを目的とする。
 本発明の一局面は、陽極体、前記陽極体上に形成された誘電体層、前記誘導体層の少なくとも一部を覆う第1導電性高分子層、前記第1導電性高分子層の少なくとも一部を覆う第2導電性高分子層、および前記第1導電性高分子層と前記第2導電性高分子層との間に形成された中間層を含み、
 前記中間層は、カチオン性基を含むカチオン剤と、第1アニオン性基および第2アニオン性基を含むアニオン剤とを含み、
 前記アニオン剤は、
 前記第1アニオン性基と第2アニオン性基とを含む重合体を含み、
 前記第1アニオン性基は、前記第2アニオン性基よりも電子求引性が高い、電解コンデンサに関する。
 本発明の他の一局面は、陽極体を準備する第1工程と、
 前記陽極体上に誘電体層を形成する第2工程と、
 前記誘電体層が形成された前記陽極体を、第1導電性高分子を含む第1処理液で処理する第3工程と、
 前記第1処理液で処理された前記陽極体を、カチオン性基を含むカチオン剤と、第1アニオン性基および第2アニオン性基を含むアニオン剤とを含む第2処理液で処理する第4工程と、
 前記第2処理液で処理された前記陽極体を、第2導電性高分子を含む第3処理液で処理する第5工程と、を含み、
 前記アニオン剤は、
 前記第1アニオン性基と前記第2アニオン性基とを含む重合体を含み、
 前記第1アニオン性基は、前記第2アニオン性基よりも電子求引性が高い、電解コンデンサの製造方法に関する。
 本発明によれば、ESRを低減し、且つ、漏れ電流の増大が抑制された電解コンデンサおよびその製造方法を提供することができる。
本発明の一実施形態に係る電解コンデンサの断面模式図である。 図1の実線αで囲まれた領域の拡大図である。
 以下に、図面を適宜参照しながら、本発明の電解コンデンサおよび電解コンデンサの製造方法の実施形態について説明する。
(電解コンデンサ)
 本発明の一実施形態に係る電解コンデンサは、陽極体、陽極体上に形成された誘電体層、誘導体層の少なくとも一部を覆う第1導電性高分子層、第1導電性高分子層の少なくとも一部を覆う第2導電性高分子層、および第1導電性高分子層と第2導電性高分子層との間に形成された中間層を含む。中間層は、カチオン性基を含むカチオン剤と、第1アニオン性基および第2アニオン性基を含むアニオン剤とを含む。アニオン剤は、第1アニオン性基と第2アニオン性基とを含む重合体を含む第1アニオン性基は、第2アニオン性基よりも電子求引性が高い。上記重合体を第1アニオン剤と称することがある。
 第1導電性高分子層および第2導電性高分子層のそれぞれには、通常、導電性高分子とともに、アニオン性のドーパントが含まれ、このドーパントは第1導電性高分子層および第2導電性高分子層の表面に存在し易い。つまり、第1導電性高分子層および第2導電性高分子層はいずれも、表面がマイナスに帯電し易いため、第1導電性高分子層の表面に、第2導電性高分子層を形成し難い。本発明の実施形態によれば、カチオン剤を含む中間層を形成することで、第2導電性高分子層の成膜性および/または被覆性を高めることができる。また、アニオン剤を用いることで、誘電体層の被膜修復性を高めることができる。
 カチオン剤の効果を十分に得るためには、中間層を形成するための処理液中で、カチオン剤が十分に解離した状態とする必要がある。しかし、カチオン剤は溶解性が低い上、揮発性も高いため、中間層中のカチオン剤の含有量を高めることが難しい。一方、アニオン剤を共存させることで、安定的にカチオン剤の解離を促進し易くなる。ただし、アニオン剤のアニオン性基の電子求引性が過度に高いと、陽極体を構成する弁作用金属が腐食し易くなる。
 本発明の実施形態によれば、アニオン剤が、電子求引性が高い第1アニオン性基を含むことで、中間層を形成するための処理液におけるカチオン剤の解離性および溶解性を高めることができる。その結果、第2導電性高分子層の成膜性および/または被覆性を高めることができ、ESRを低減できる。また、上記のようなアニオン剤が第2アニオン性基を含むことで、誘電体層の被膜修復効果が高まり、漏れ電流の増大を抑制できる。アニオン剤が、第1アニオン性基よりも電子求引性が低い第2アニオン性基を含むことで、陽極体を構成する弁作用金属の腐食を抑制することもできる。本実施形態のアニオン剤は、第1アニオン性基と第2アニオン性基とを含む重合体であるので、漏れ電流の増大を抑制できる。
 図1は、本発明の一実施形態に係る電解コンデンサの断面模式図である。図2は、図1の実線αで囲まれた領域の拡大図である。
 電解コンデンサ1は、コンデンサ素子11と、コンデンサ素子11を封止する樹脂外装体12と、樹脂外装体12の外部にそれぞれ露出する陽極端子13および陰極端子14と、を備えている。コンデンサ素子11は、箔状または板状の陽極体2(または陽極部)と、陽極体2の一端部側を覆う誘電体層3と、誘電体層3を覆う陰極部(または陰極部材)15とを含む。陽極端子13は、陽極体2と電気的に接続し、陰極端子14は、陰極部15と電気的に接続している。樹脂外装体12はほぼ直方体の外形を有しており、これにより、電解コンデンサ1もほぼ直方体の外形を有している。
 陽極体2と陰極部15とは、誘電体層3を介して対向している。陰極部15は、誘電体層3を覆う導電性高分子層4と、導電性高分子層4を覆う陰極層5とを有している。図示例の陰極層5は、2層構造であり、導電性高分子層4と接触するカーボン層5aと、カーボン層5aの表面を覆う銀ペースト層5bと、を有している。
 陰極部15から突出した陽極体2の他端部のうち、陰極部15側の領域には、陽極体2の表面を帯状に覆うように絶縁性の分離部16が形成され、陰極部15と陽極体2との接触が規制されている。陰極部15から突出した陽極体2の他端部は、陽極端子13の第1端部13aと、溶接などにより電気的に接続されている。一方、陰極部15の最外層に形成された陰極層5は、陰極端子14の第1端部14aと、導電性接着材17(例えば熱硬化性樹脂と金属粒子との混合物)を介して、電気的に接続されている。陽極端子13の第2端部13bおよび陰極端子14の第2端部14bは、それぞれ樹脂外装体12の異なる側面から引き出され、一方の主要平坦面(図1では下面)まで露出状態で延在している。この平坦面における各端子の露出箇所は、電解コンデンサ1を搭載すべき基板(図示せず)との半田接続などに用いられる。
 誘電体層3は、陽極体2を構成する導電性材料の表面の一部に形成されている。具体的には、誘電体層3は、陽極体2を構成する導電性材料の表面を陽極酸化することにより形成することができる。従って、誘電体層3は、図2に示すように、陽極体2の表面(より内側の表面の孔や窪みの内壁面を含む)に沿って形成されている。
 第1導電性高分子層4aは、誘電体層3を覆うように形成されており、第2導電性高分子層4bは、第1導電性高分子層4aを覆うように形成されている。そして、中間層4cは、第1導電性高分子層4aと第2導電性高分子層4bとの間に形成されている。図示例では、中間層4cは、第1導電性高分子層4aを覆うように形成されており、第2導電性高分子層4bは、中間層4cを覆うように形成されている。
 第1導電性高分子層4aは、必ずしも誘電体層3の全体(表面全体)を覆う必要はなく、誘電体層3の少なくとも一部を覆うように形成されていればよいが、できるだけ多くの領域を覆うように形成することが望ましい。同様に、第2導電性高分子層4bおよび中間層4cのそれぞれは、必ずしも第1導電性高分子層4aの全体(表面全体)を覆う必要はなく、第1導電性高分子層4aの少なくとも一部を覆うように形成されていればよいが、できるだけ多くの領域を覆うように形成することが望ましい。図示例では、第1導電性高分子層4a、第2導電性高分子層4bおよび中間層4cを導電性高分子層4として示したが、一般に、第1導電性高分子層4a、第2導電性高分子層4b、および導電性高分子層4などの導電性高分子を含む層を、固体電解質層と称する場合がある。
 誘電体層3は、陽極体2の表面に沿って形成されるため、誘電体層3の表面には、陽極体2の表面の形状に応じて、凹凸が形成されている。第1導電性高分子層4aは、このような誘電体層3の凹凸を埋没するように形成することが好ましい。
 以上の構成において、陽極体2は、コンデンサ素子11の陽極部材であり、第1導電性高分子層4a、第2導電性高分子層4b、および陰極層5は、コンデンサ素子11の陰極部材である。誘電体層3は、コンデンサ素子11の誘電体部材である。
 以下に、電解コンデンサの構成について、より詳細に説明する。
 (陽極体)
 陽極体としては、表面積の大きな導電性材料が使用できる。導電性材料としては、弁作用金属、弁作用金属を含む合金、および弁作用金属を含む化合物などが例示できる。これらの材料は一種を単独でまたは二種以上を組み合わせて使用できる。弁作用金属としては、例えば、チタン、タンタル、アルミニウム、および/またはニオブが好ましく使用される。これらの金属は、その酸化物も含め、誘電率が高いため、陽極体の構成材料として適している。陽極体は、例えば、導電性材料で形成された基材(箔状または板状の基材など)の表面を粗面化したもの、および導電性材料の粒子の成形体またはその焼結体などが挙げられる。
 (誘電体層)
 誘電体層は、陽極体表面の導電性材料を、化成処理などにより陽極酸化することで形成されるため、導電性材料(特に、弁作用金属)の酸化物を含む。例えば、弁作用金属としてタンタルを用いた場合の誘電体層はTa25を含み、弁作用金属としてアルミニウムを用いた場合の誘電体層はAl23を含む。尚、誘電体層はこれに限らず、誘電体として機能するものであれば良い。
 陽極体が箔状または板状であり、その表面が粗面化されている場合、誘電体層は、図2に示すように、陽極体2の表面の孔や窪み(ピット)の内壁面に沿って形成される。
 (第1導電性高分子層)
 第1導電性高分子層は、誘電体層の少なくとも一部を覆うように形成されていればよく、誘電体層の表面全体を覆うように形成されていてもよい。
 第1導電性高分子層は、第1導電性高分子を含む。第1導電性高分子層は、さらにドーパントを含む。ドーパントは、第1導電性高分子にドープされた状態で第1導電性高分子層に含まれていてもよい。また、ドーパントは、第1導電性高分子と結合した状態で第1導電性高分子層に含まれていてもよい。
 (第1導電性高分子)
 第1導電性高分子としては、電解コンデンサに使用される公知のもの、例えば、π共役系導電性高分子などが使用できる。このような導電性高分子としては、例えば、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、および/またはポリチオフェンビニレンなどを基本骨格とする高分子が挙げられる。
 このような高分子には、単独重合体、二種以上のモノマーの共重合体、およびこれらの誘導体(置換基を有する置換体など)も含まれる。例えば、ポリチオフェンには、ポリ(3,4-エチレンジオキシチオフェン)などが含まれる。このような導電性高分子は、導電性が高く、ESR特性に優れている。
 導電性高分子は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 導電性高分子の重量平均分子量は、特に限定されないが、例えば1000~1,000,000である。
 (ドーパント)
 ドーパントとしては、例えば、酸性基(またはアニオン性基)を有する低分子化合物(低分子系ドーパントとも言う)または高分子化合物(高分子系ドーパントとも言う)が使用される。高分子系ドーパントを用いると、より均質な第1導電性高分子層を形成することができる。ドーパントは、一種を単独でまたは二種以上を組み合わせて使用できる。
 低分子系ドーパントとしては、スルホン酸基、カルボキシル基、リン酸基(-O-P(=O)(-OH)2)、および/またはホスホン酸基(-P(=O)(-OH)2)などのアニオン性基を有する化合物(低分子化合物(モノマー化合物))を用いることができる。このような化合物としては、例えば、ベンゼン、ナフタレン、およびアントラセンなどの芳香環(C6-14芳香環など)、または芳香環(C6-14芳香環など)と脂肪族環との縮合環に、アニオン性基が結合した環状化合物を用いることができる。アニオン性基としては、スルホン酸基が好ましく、スルホン酸基とスルホン酸基以外のアニオン性基との組み合わせでもよい。環状化合物を構成する芳香環および/または脂肪族環は、アニオン性基以外の置換基(例えば、メチル基などのアルキル基、オキソ基(=O)など)を有していてもよい。このような化合物の具体例としては、ベンゼンスルホン酸、p-トルエンスルホン酸などのアルキルベンゼンスルホン酸、ナフタレンスルホン酸、およびアントラキノンスルホン酸などが挙げられる。
 高分子系ドーパントとしては、例えば、スルホン酸基、リン酸基(-O-P(=O)(-OH)2)、および/またはホスホン酸基(-P(=O)(-OH)2)などのアニオン性基を有する高分子化合物を用いることができる。アニオン性基のうち、スルホン酸基が好ましい。スルホン酸基を有する高分子系ドーパントとしては、スルホン酸基を有するモノマー(例えば、スルホン酸基を有するビニルモノマー、イソプレンスルホン酸などのスルホン酸基を有するジエンモノマー)の単独重合体または共重合体が例示できる。スルホン酸基を有するビニルモノマーとしては、ビニルスルホン酸、アリルスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸などのスルホン酸基を有する脂肪族ビニルモノマー、およびスチレンスルホン酸などのスルホン酸基を有する芳香族ビニルモノマーなどが例示できる。これらのビニルモノマーは、一種を単独でまたは二種以上を組み合わせて使用できる。共重合体は、二種類以上のスルホン酸基を有するモノマーを用いた共重合体であってもよく、スルホン酸基を有するモノマーと他のモノマーとの共重合体であってもよい。高分子系ドーパントには、ポリエステルスルホン酸、および/またはフェノールスルホン酸ノボラック樹脂なども含まれる。
 なお、低分子系ドーパントおよび高分子系ドーパントにおいて、アニオン性基は、解離した状態でアニオンを生成することができる限り特に制限されず、上記のアニオン性基の塩、またはエステルなどであってもよい。
 高分子系ドーパントの重量平均分子量は、例えば、1,000~1,000,000であり、好ましくは10,000~500,000である。このような分子量を有する高分子系ドーパントを用いると、第1導電性高分子層をさらに均質化し易い。スルホン酸基を有するモノマーの単独重合体および共重合体では、重量平均分子量は、10,000~500,000であることがより好ましい。ポリエステルスルホン酸およびフェノールスルホン酸ノボラック樹脂では、重量平均分子量は、5,000~80,000であることがより好ましい。
 第1導電性高分子層に含まれるドーパントの量は、第1導電性高分子100質量部に対して、10~1000質量部であることが好ましく、50~200質量部であることがさらに好ましい。
 陽極体は、大きな表面積を有しており、外表面だけでなく、より内側の表面の孔や窪みの内壁面にも誘電体層が形成される。このような内壁面に形成された誘電体層上にも第1導電性高分子層を形成して、第1導電性高分子層による被覆率を高めることが好ましい。
 (中間層)
 中間層は、第1導電性高分子層の少なくとも一部を覆うように形成されていればよく、第1導電性高分子層の表面全体を覆うように形成されていてもよい。第1導電性高分子層が形成されていない領域では、中間層が誘電体層と接触していてもよい(つまり、誘電体層の一部の領域において、中間層が誘電体層を覆うように形成されていてもよい)。また、中間層の一部が第1導電性高分子層中に入り込んだ状態であってもよい。
 (カチオン剤)
 中間層は、カチオン性基を含むカチオン剤を含む。カチオン剤としては、解離した状態でカチオンを生成可能である限り特に限定されず、例えば、金属化合物(金属水酸化物などの無機塩基など)であってもよいが、有機化合物(有機塩基など)が好ましい。有機化合物であるカチオン剤のカチオン性基としては、アミノ基(第1級アミノ基、第2級アミノ基および第3級アミノ基など)、および第4級アンモニウム基が好ましい。このようなカチオン性基には、アミノ基の塩、および第4級アンモニウム基の塩なども含まれる。
 カチオン剤のうち、カチオン性基としてアミノ基を有するカチオン剤(アミン化合物など)が好ましい。アミン化合物としては、窒素原子に1~3個の置換基(例えば、アルキル基、シクロアルキル基、および/またはアリール基など)を有するアミン(第1級~第3級アミン)、窒素原子に1または2個のアルキル基を有してもよいジアミンなどが例示できる。
 アミンやジアミンが有するアルキル基としては、例えば、メチル、エチル、1-プロピル、2-プロピル、1-ブチル、tert-ブチル、ヘキシル、2-エチルヘキシル、オクチル、デシル、ドデシルなどのC1-16アルキル基が挙げられる。アルキル基は、直鎖状および分岐状のいずれであってもよい。アンモニウムカチオンが有するアルキル基のうち、少なくとも1つは、C4-16アルキル基(もしくは、C6-12アルキル基、またはC6-10アルキル基)を有することが好ましい。アミンおよびジアミンにおいて、残りのアルキル基は、C1-10アルキル基(もしくは、C1-6アルキル基、またはC1-4アルキル基)であってもよい。
 シクロアルキル基としては、シクロペンチル、シクロヘキシル、シクロオクチルなどのC4-10シクロアルキル基(またはC5-8シクロアルキル基)が例示できる。アリール基としては、フェニル、ナフチルなどのC6-14アリール基が例示できる。
 アルキル基、シクロアルキル基およびアリール基のそれぞれは、ヒドロキシル基および/またはアルコキシ基(メトキシ、エトキシなどのC1-6アルコキシ基またはC1-4アルコキシ基など)などの置換基を有してもよい。
 上記のジアミンとしては、ジアミノアルカン、ジアミノシクロアルカン(ジアミノシクロヘキサンなどのジアミノC5-8シクロアルカンなど)、ジアミノアレーン(ジアミノベンゼン、ジアミノナフタレンなどのジアミノC6-14アレーンなど)などが例示できる。これらのジアミンは、アルカン、シクロアルカン、またはアレーン部位に、ヒドロキシル基および/またはアルコキシ基(メトキシ、エトキシなどのC1-6アルコキシ基またはC1-4アルコキシ基など)などの置換基を有してもよい。
 ジアミノアルカンとしては、1,4-ジアミノブタン、1,6-ジアミノヘキサン、1,8-ジアミノオクタン、1,10-ジアミノデカンなどのジアミノC2-14アルカンまたはジアミノC4-12アルカン)などが例示できる。これらのジアミンの個々の窒素原子は、1または2個のアルキル基を有してもよい。アルキル基としては、上記で例示したアルキル基が挙げられる。アルキル基は、直鎖状および分岐状のいずれであってもよく、ヒドロキシル基および/またはアルコキシ基(メトキシ、エトキシなどのC1-6アルコキシ基またはC1-4アルコキシ基など)などの置換基を有してもよい。
 アミンとして、第1級アミンおよび/または第3級アミンを用いてもよい。第3級アミンとしては、N,N-ジC1-10アルキル-N-C4-16アルキルアミン、N,N-ジC4-16アルキル-N-C1-10アルキルアミン、トリC4-16アルキルアミンなどが例示できる。
 中間層は、一種のカチオン剤を含んでもよく、二種以上のカチオン剤を組み合わせて含んでもよい。
 中間層は、カチオン剤を、アミン化合物、アミン化合物に対応するカチオン、第4級アンモニウム化合物、および/またはカチオンの塩のいずれの形態で含んでもよい。例えば、中間層において、カチオン剤は、アニオン剤と塩を形成していてもよい。
 (アニオン剤)
 アニオン剤は、第1アニオン性基と第2アニオン性基とを含む重合体(第1アニオン剤)を含む。アニオン剤に含まれるアニオン性基としては、例えば、スルホン酸基、リン酸基、ホスホン酸基、ホウ酸基、カルボキシル基、およびヒドロキシル基などが挙げられる。アニオン性基は、解離した状態でアニオンを生成可能である限り特に制限されず、これらの基の塩などであってもよい。アニオン剤は、第1アニオン性基と、第1アニオン性基よりも電子求引性が低い第2アニオン性基とを含むことが重要である。上記のようなアニオン性基の中から、電子求引性の異なる第1アニオン性基と第2アニオン性基とを適宜選択してもよい。
 中間層または中間層を形成するための処理液において、アニオン剤のアニオン性基は、上記のアニオン性基、上記のアニオン性基に対応するアニオン、および/またはアニオンの塩などのいずれの形態で含まれていてもよい。従って、例えば、スルホン酸基には、遊離のスルホン酸基(-SO3H)の他、スルホン酸アニオン(-SO3 -)、およびスルホン酸塩なども含まれる。リン酸基には、遊離のリン酸基(-OP(=O)(OH)2)の他、リン酸アニオン(-OPO3-、-OPO3 2-)、およびリン酸塩なども含まれる。
ホスホン酸基には、遊離のホスホン酸基(-P(=O)(OH)2)の他、ホスホン酸アニオン(-PO3-、-PO3 2-)、およびホスホン酸塩も含まれる。カルボキシル基には、遊離のカルボキシル基(-COOH)の他、カルボキシラートアニオン(-COO-)、およびカルボン酸塩なども含まれる。
 上記のアニオン性基のうち、第1アニオン性基としては、例えば、スルホン酸基、リン酸基、またはホスホン酸基(特に、スルホン酸基)が好ましい。ただし、中間層または中間層を形成するための処理液に含まれるアニオン性基のうち、電子求引性が最も高い一種のアニオン性基を第1アニオン性基とする。
 第2アニオン性基としては、リン酸基、ホスホン酸基、カルボキシル基およびヒドロキシル基からなる群より選択される少なくとも一種が好ましい。ただし、第2アニオン性基は、第1アニオン性基よりも電子求引性が低い。中間層または中間層を形成するための処理液は、一種の第2アニオン性基を含んでもよく、二種以上の第2アニオン性基を含んでもよい。ヒドロキシル基は、アルコール性ヒドロキシル基であってもよいが、電子求引性がより高い観点からはフェノール性ヒドロキシル基であることが好ましい。カチオン剤の解離および溶解性を確保しながらも、陽極体の腐食を抑制する効果を高め易い観点から、第2アニオン性基は、少なくともカルボキシル基を含んでもよい。耐電圧特性を高める観点から、第2アニオン性基が、リン酸基および/またはホスホン酸基を含む場合も好ましい。
 (a1)重合体(第1アニオン剤)
 重合体(高分子化合物)である第1アニオン剤としては、例えば、第1アニオン性基を有するモノマーユニットと、第2アニオン性基を有するモノマーユニットとの共重合体(p1)、および第1アニオン性基および第2アニオン性基を有するモノマーユニットを含む重合体(p2)などが例示できる。第1アニオン剤は、第1アニオン性基を有するモノマーユニットを一種または二種以上含んでもよい。第1アニオン剤は、第2アニオン性基を有するモノマーユニットを一種または二種以上含んでもよい。第1アニオン剤は、第1アニオン性基および第2アニオン性基を有するモノマーユニットを一種または二種以上含んでもよい。モノマーユニットにおいて、第1アニオン性基および第2アニオン性基のそれぞれの個数は、1つであってもよく、2つ以上であってもよい。第1アニオン剤は、一種を単独でまたは二種以上を組み合わせて使用してもよい。
 第1アニオン性基および/または第2アニオン性基を有するモノマーユニットの骨格となるモノマーユニットとしては、例えば、エチレン、プロピレンなどの脂肪族ビニルモノマーユニット、スチレンなどの芳香族ビニルモノマーユニット、ブタジエン、イソプレンなどのジエンモノマーユニットなどが挙げられる。
 重合体(p2)としては、単独重合体および共重合体が挙げられる。重合体(p2)の共重合体は、第1アニオン性基および第2アニオン性基を有するモノマーユニットに加え、第1アニオン性基を有するモノマーユニット、第2アニオン性基を有するモノマーユニット、および/または他の共重合性モノマーユニットを含んでもよい。また、共重合体(p1)は、さらに他の共重合性モノマーユニットを含んでもよい。
 これらの共重合体において、他の共重合性モノマーとしては、例えば、第1アニオン性基を有するモノマー、第2アニオン性基を有するモノマー、エチレン、プロピレンなどの脂肪族ビニルモノマー、スチレンなどの芳香族ビニルモノマー、ブタジエン、イソプレンなどのジエンモノマーなどが挙げられる。他の共重合性モノマーは一種を単独でまたは二種以上を組み合わせて使用できる。
 例えば、第1アニオン性基としてスルホン酸基を有するモノマーとしては、スルホン酸基を有するビニルモノマー、イソプレンスルホン酸などのスルホン酸基を有するジエンモノマーが例示できる。スルホン酸基を有するビニルモノマーとしては、ビニルスルホン酸、アリルスルホン酸などのスルホン酸基を有する脂肪族ビニルモノマー、およびスチレンスルホン酸などのスルホン酸基を有する芳香族ビニルモノマーなどが例示できる。スルホン酸基を有するモノマーは、一種を単独でまたは二種以上を組み合わせて使用できる。
 第1アニオン性基または第2アニオン性基としてリン酸基を有するモノマーとしては、アシッドホスホオキシエチルアクリレート、アシッドホスホオキシエチルメタクリレートなどの重合性不飽和カルボン酸のアシッドホスホオキシポリオキシアルキレングリコールモノアクリレート(アシッドホスホオキシポリオキシエチレングリコールモノ(メタ)アクリレート(P(=O)(OH)2-(O-CH2CH2n-O-C(=O)-CR=CH2)(nは2~10の整数であり、Rは水素原子またはメチル基である)など)などが例示できる。なお、アシッドホスホオキシエチルなどのアシッドホスホオキシアルキル基は、リン酸基を有するアルキル基である。また、アクリレートおよびメタクリレートを(メタ)アクリレートと総称する。リン酸基を有するモノマーは一種を単独でまたは二種以上を組み合わせて使用できる。
 第1アニオン性基または第2アニオン性基としてホスホン酸を有するモノマーとしては、ビニルホスホン酸、アリルホスホン酸などのホスホン酸基を有する脂肪族ビニルモノマー、スチレンホスホン酸などのホスホン酸基を有する芳香族ビニルモノマーなどが例示できる。ホスホン酸基を有するモノマーは、一種を単独でまたは二種以上を組み合わせて使用できる。
 第2アニオン性基としてカルボキシル基を有するモノマーとしては、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、カルボキシスチレンなどが挙げられる。カルボキシル基を有するモノマーは、一種を単独でまたは二種以上を組み合わせて使用できる。
 第2アニオン性基としてヒドロキシル基を有するモノマーとしては、ビニルフェノール、ヒドロキシビニルトルエンなどのヒドロキシル基を有する芳香族ビニルモノマー、アクリル酸ヒドロキシエチル、メタクリル酸ヒドロキシエチルなどの上記カルボキシル基を有するモノマーのヒドロキシアルキルエステル(例えば、ヒドロキシC1-4アルキルエステル)などが例示できる。ヒドロキシル基を有するモノマーは、一種を単独でまたは二種以上を組み合わせて使用できる。
 第1アニオン性基としてのスルホン酸基と、第2アニオン性基としてのカルボキシル基とを有するモノマーとしては、ビニルスルホ安息香酸などのスルホン酸基とカルボキシル基とを有する芳香族ビニルモノマーなどが例示できる。これらのモノマーは一種を単独でまたは二種以上を組み合わせて使用できる。第1アニオン性基としてのリン酸基と、第2アニオン性基としてのカルボキシル基とを有するモノマーとしては、例えば、2-(ジヒドロキシホスフィニルオキシ)アクリル酸などが挙げられる。第2アニオン性基としてのホスホン酸基と、第2アニオン性基としてのカルボキシル基とを有するモノマーとしては、例えば、ホスホノアクリル酸、および/または2-メチル-3-ホスホノアクリル酸などが挙げられる。
 第1アニオン剤は、一種を単独でまたは二種以上を組み合わせて使用できる。
 第1アニオン剤において、第1アニオン性基は、スルホン酸基またはリン酸基であることが好ましい。第2アニオン性基は、カルボキシル基および/またはヒドロキシル基を含んでもよい。この場合、カチオン剤の解離および溶解性を確保しながらも、陽極体の腐食を抑制する効果をさらに高めることができる。よって、漏れ電流をより効果的に抑制できる。同様の理由で、第2アニオン性基が少なくともカルボキシル基を含む場合も好ましい。第1アニオン性基がスルホン酸基で、第2アニオン性基がリン酸基および/またはホスホン酸基を含む場合も好ましい。この場合、耐電圧特性を高めることができる。
 第1アニオン剤が重合体であるため、アニオン剤が単分子材料または低分子材料である場合と比べて、漏れ電流の増大を抑制できる。第1アニオン剤が共重合体(p1)である場合、中間層において第1アニオン性基および第2アニオン性基を、所望の割合で均一に添加でき、ESRの低減および漏れ電流の増大をより抑制できる。
 重合体の重量平均分子量は、例えば、5,000~500,000、好ましくは10,000~200,000である。
 第1アニオン剤は、必要に応じて、アニオン性基を有する低分子化合物(モノマー化合物)である第2アニオン剤と組み合わせて用いてもよい。
 (a2)第2アニオン剤
 第2アニオン剤は、脂肪族化合物、脂環族化合物、および芳香族化合物のいずれであってもよい。脂肪族化合物は、アニオン性基と、このアニオン性基が結合した脂肪族部位(メタン、エタンなどのアルカン部位(C1-6アルカン部位など)など)とを有する。脂環族化合物は、アニオン性基と、このアニオン性基が結合した脂環族部位(シクロペンタン、シクロヘキサンなどのシクロアルカン部位(C5-8シクロアルカン部位)など)とを有する。芳香族化合物は、アニオン性基と、このアニオン性基が結合した芳香族部位(ベンゼン、ナフタレンなどのアレーン部位(C6-14アレーン部位など)など)とを有する。脂肪族部位、脂環族部位および芳香族部位のそれぞれは、必要に応じて、ハロゲン原子(フッ素元素、塩素原子など)、アルキル基(メチル、エチルなどのC1-4アルキル基など)、アルケニル基(ビニル基などのC2-6アルケニル基など)などの置換基を有してもよい。脂環族部位および芳香族部位(特に、芳香族部位)を有する第2アニオン剤を用いると、第1導電性高分子層および/または第2導電性高分子層との親和性が高くなるため、第2導電性高分子層を形成する際に、成膜性および/または被覆性をさらに高めることができる。
 第2アニオン剤は、アニオン性基を1つ有してもよく、2つ以上(例えば、2つ、3つまたは4つ)有してもよい。第2アニオン剤が有するアニオン性基は、上記で例示したアニオン性基から適宜選択することができ、第1アニオン性基および/または第2アニオン性基であってもよい。第2アニオン剤としては、具体的には、第1アニオン性基を有するアニオン剤、第2アニオン性基を有するアニオン剤、ならびに第1アニオン性基と第2アニオン性基とを有するアニオン剤などが例示できる。これらの第2アニオン剤は、一種を用いてもよく、二種以上を組み合わせて用いてもよい。例えば、第1アニオン剤と、第1アニオン性基を有するアニオン剤および/または第2アニオン性基を有するアニオン剤とを組み合わせてもよく、これらに加え、さらに第1アニオン性基および第2アニオン性基を有するアニオン剤とを組み合わせてもよい。なお、第2アニオン剤は、一種の第2アニオン性基を含んでもよく、二種以上の第2アニオン性基を含んでもよい。
 アニオン性基としてスルホン酸基を有する第2アニオン剤としては、例えば、脂肪族スルホン酸(メタンスルホン酸などのC1-6アルカンスルホン酸など)、脂環族スルホン酸(シクロヘキサンスルホン酸などのC5-8シクロアルカンスルホン酸など)、および芳香族スルホン酸(ベンゼンスルホン酸、スチレンスルホン酸などのC6-14アレーンスルホン酸など)などが挙げられる。
 アニオン性基としてリン酸基を有するアニオン剤としては、例えば、アシッドホスホオキシエチルアクリレート、アシッドホスホオキシエチルメタクリレートなどのカルボン酸のアシッドホスホオキシポリオキシアルキレングリコールモノアクリレート(アシッドホスホオキシポリオキシエチレングリコールモノ(メタ)アクリレート(P(=O)(OH)2-(O-CH2CH2n-O-C(=O)-CR=CH2)(nは2~10の整数であり、Rは水素原子またはメチル基である)など)などが挙げられる。
 アニオン性基としてホスホン酸基を有するアニオン剤としては、例えば、ビニルホスホン酸などの脂肪族ホスホン酸、フェニルホスホン酸などの芳香族ホスホン酸などが挙げられる。
 アニオン性基としてカルボキシル基を有する第2アニオン剤としては、例えば、脂肪族カルボン酸(プロパン酸、ブタン酸、ヘキサン酸などのC2-10アルカンカルボン酸、ヘキサン二酸などのC4-12アルカンジカルボン酸など)、脂環族カルボン酸(カルボキシシクロヘキサンなどのカルボキシC5-8シクロアルカン、シクロヘキサンジカルボン酸などの
ジカルボキシC5-8シクロアルカンなど)、芳香族カルボン酸(安息香酸などのカルボキシC6-14アレーン、サリチル酸などのカルボキシヒドロキシC6-14アレーン、フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸などのジカルボキシC6-14アレーンなど)などが挙げられる。
 アニオン性基としてヒドロキシル基を有する第2アニオン剤としては、フェノール、ヒドロキシトルエン、ビニルフェノール、ヒドロキシビニルトルエンなどのフェノール類、アクリル酸ヒドロキシエチル、メタクリル酸ヒドロキシエチルなどの上記カルボキシル基を有する第2アニオン剤のヒドロキシアルキルエステル(例えば、ヒドロキシC1-4アルキルエステル)などが例示できる。
 例えば、第1アニオン性基としてのスルホン酸基と、第2アニオン性基としてのカルボキシル基とを有する第2アニオン剤としては、例えば、スルホコハク酸などの脂肪族化合物、スルホ安息香酸、スルホサリチル酸、ジスルホサリチル酸、スルホフタル酸、スルホイソフタル酸、スルホテレフタル酸、ナフトールスルホン酸などの芳香族化合物が挙げられる。第1アニオン性基としてのリン酸基と、第2アニオン性基としてのカルボキシル基とを有する第2アニオン剤としては、例えば、2-(ジヒドロキシホスフィニルオキシ)アクリル酸などが挙げられる。第1アニオン性基としてのホスホン酸基と、第2アニオン性基としてのカルボキシル基とを有する第2アニオン剤としては、例えば、ホスホノアクリル酸、および/または2-メチル-3-ホスホノアクリル酸などが挙げられる。
 第2アニオン剤のうち、スルホン酸基を有するアニオン剤が好ましい。耐電圧を高めたり、および/または漏れ電流をさらに抑制したりする観点からは、第2アニオン剤において、アニオン性基は、リン酸基および/またはホスホン酸基を含むことが好ましい。
 第1アニオン剤および第2アニオン剤を用いることにより、第1アニオン性基と第2アニオン性基との比率を適宜調整し易くなる。
 中間層(または中間層を形成するための処理液)において、第1アニオン性基および第2アニオン性基の数の合計は、カチオン性基の数の、例えば、0.8倍以上であり、1倍以上または1倍より大きいことが好ましく、1.1倍以上または1.2倍以上であることがさらに好ましい。第1アニオン性基および第2アニオン性基の数の合計を、カチオン性基の数よりも多くすると、カチオン剤の揮発を抑制する効果を高めることができる。第1アニオン性基および第2アニオン性基の数の合計は、カチオン性基の数の、例えば、10倍以下、好ましくは5倍以下、さらに好ましくは3倍以下または2倍以下であってもよい。これらの下限値と上限値とは任意に組み合わせることができる。第1アニオン性基および第2アニオン性基の数の合計は、カチオン性基の数の、0.8~10倍、0.8~5倍、1倍より大きく3倍以下、1倍より大きく3倍以下であってもよい。第1アニオン性基および第2アニオン性基の数の合計とカチオン性基の数との関係がこのような範囲である場合、第2導電性高分子層の成膜性および/または被覆性、ならびに耐電圧特性を高める上で効果的である。
 第1アニオン性基および/または第2アニオン性基の数のカチオン性基の数に対する比は、使用するアニオン剤の1分子当たりの第1アニオン性基および/または第2アニオン性基の数、カチオン剤の1分子当たりのカチオン性基の数、アニオン剤およびカチオン剤のモル比などから算出できる。本発明の実施形態では、カチオン性基の揮発を抑制できるため、中間層におけるカチオン性基の数に対する第1アニオン性基および/または第2アニオン性基の数の比は、中間層を形成するための処理液における比とほとんど同じである。
 中間層(または中間層を形成するための処理液)において、第1アニオン性基の数に対する第2アニオン性基の数の比は、例えば、0.3倍以上であり、0.5倍以上または1倍以上であってもよい。中間層(または中間層を形成するための処理液)において、第2アニオン性基の数は、第1アニオン性基の数よりも多いことが好ましい。この場合、カチオン剤の解離性および溶解性を確保しながらも、陽極体の腐食を抑制する効果をさらに高めることができる。第1アニオン性基の数に対する第2アニオン性基の数の比は、1より大きく、好ましくは2倍以上または3倍以上であってもよい。第2アニオン性基の数は、第1アニオン性基の数の、例えば、6倍以下であり、5倍以下であることが好ましい。これらの下限値と上限値とは任意に組み合わせることができる。第2アニオン性基の数は、第1アニオン性基の数の、例えば、0.3倍以上、6倍以下、0.3倍以上、5倍以下、0.8倍以上、6倍以下、1倍以上、6倍以下、1倍以上、5倍以下、1倍より大きく5倍以下、2倍以上、6倍以下、または2倍以上、5倍以下であってもよい。第2アニオン性基の数と第1アニオン性基の数との関係がこのような範囲である場合、カチオン剤の解離性および溶解性と、陽極体の腐食を抑制する効果とのバランスを取り易くなる。
 なお、中間層(または中間層を形成するための処理液)におけるカチオン性基の数とは、カチオン剤に由来するものに限らず、中間層(または中間層を形成するための処理液)に含まれるカチオン性基の数を意味する。中間層(または中間層を形成するための処理液)における第1アニオン性基の数および第2アニオン性基の数とは、第1アニオン剤および第2アニオン剤に由来するものに限らず、それぞれ、中間層(または中間層を形成するための処理液)に含まれる全ての第1アニオン性基の数および全ての第2アニオン性基の数を意味する。
 第1アニオン性基の数に対する第2アニオン性基の数の比は、使用するアニオン剤の1分子当たりの第1アニオン性基および/または第2アニオン性基の数、複数のアニオン剤を用いる場合には、これらのモル比などから算出できる。中間層における第1アニオン性基の数に対する第2アニオン性基の数の比は、中間層を形成するための処理液における比とほぼ同じである。
 (第2導電性高分子層)
 第2導電性高分子層は、第1導電性高分子層の少なくとも一部を覆うように形成されていればよく、第1導電性高分子層の表面全体を覆うように形成されていてもよい。第2導電性高分子層は、第1導電性高分子層の表面の少なくとも一部の領域では、中間層を介して、第1導電性高分子層を覆うように形成されているが、中間層を介さずに、第1導電性高分子層の表面に直接形成されている領域があってもよい。また、第1導電性高分子層および中間層が形成されていない領域では、第2導電性高分子層が誘電体層と接触していてもよい(つまり、第2導電性高分子層が誘電体層を覆うように形成されていてもよい)。
 第2導電性高分子層は、第2導電性高分子を含む。第2導電性高分子層は、さらにドーパントを含んでもよい。ドーパントは、第2導電性高分子にドープされた状態で第2導電性高分子層に含まれていてもよい。また、ドーパントは、第2導電性高分子と結合した状態で第2導電性高分子層に含まれていてもよい。
 (第2導電性高分子)
 第2導電性高分子としては、電解コンデンサに使用される公知のものが使用でき、具体的には、第1導電性高分子について例示した導電性高分子から適宜選択することができる。第2導電性高分子の重量平均分子量も、第1導電性高分子について例示した範囲から適宜選択できる。第1導電性高分子と、第2導電性高分子とは、同じものを用いてもよく、異なるものを用いてもよい。
 第2導電性高分子層は、さらにドーパントを含む。ドーパントとしては、電解コンデンサで使用される公知のものが使用でき、具体的には、第1導電性高分子層について例示したものから適宜選択することができる。ドーパントは、第1導電性高分子層と、第2導電性高分子層とで、同じものを用いてもよく、異なるものを用いてもよい。
 第2導電性高分子層に含まれるドーパントの量は、第2導電性高分子100質量部に対して、10~1000質量部であることが好ましく、50~200質量部であることがさらに好ましい。
 第2導電性高分子層の平均厚みは、例えば、5~100μm、好ましくは10~50μmである。平均厚みがこのような範囲である場合、第2導電性高分子層の強度をさらに高めることができる。
 第1導電性高分子層の平均厚みに対する第2導電性高分子層の平均厚みの比は、例えば、5倍以上、好ましくは10倍以上である。平均厚みの比がこのような範囲である場合、強度を高めることができる。
 上記実施形態では、コンデンサ素子が第1導電性高分子層と第2導電性高分子層との2層の導電性高分子層を有する場合について説明したが、コンデンサ素子は、3層以上の導電性高分子層を有するものであってもよい。この場合、第1導電性高分子層と、第2導電性高分子層との間に、1層または2層以上の導電性高分子層を形成することができる。
 第1導電性高分子層および第2導電性高分子層のそれぞれは、必要に応じて、さらに、公知の添加剤、および/または導電性高分子以外の公知の導電性材料(例えば、二酸化マンガンなどの導電性無機材料;および/またはTCNQ錯塩など)を含んでもよい。
 なお、誘電体層と第1導電性高分子層との間には、密着性を高める層などを介在させてもよい。
(電解コンデンサの製造方法)
 本発明の一実施形態に係る電解コンデンサの製造方法は、陽極体を準備する第1工程と、陽極体上に誘電体層を形成する第2工程と、誘電体層が形成された陽極体を、第1導電性高分子を含む第1処理液で処理する第3工程と、第1処理液で処理された陽極体を、カチオン性基を含むカチオン剤と、第1アニオン性基および第2アニオン性基を含むアニオン剤とを含む第2処理液で処理する第4工程と、第2処理液で処理された陽極体を、第2導電性高分子を含む第3処理液で処理する第5工程と、を含む。そして、アニオン剤は、第1アニオン性基と第2アニオン性基とを含む重合体(第1アニオン剤)を含み、第1アニオン性基は、第2アニオン性基よりも電子求引性が高い。
 以下に、各工程についてより詳細に説明する。
 (第1工程)
 第1工程では、陽極体の種類に応じて、公知の方法により陽極体を形成する。
 陽極体は、例えば、導電性材料で形成された箔状または板状の基材の表面を粗面化することにより準備することができる。粗面化は、基材表面に凹凸を形成できればよく、例えば、基材表面をエッチング(例えば、電解エッチング)することにより行ってもよく、蒸着などの気相法を利用して、基材表面に導電性材料の粒子を堆積させることにより行ってもよい。
 (第2工程)
 第2工程では、陽極体上に誘電体層を形成する。誘電体層は、陽極体の表面を陽極酸化することにより形成される。陽極酸化は、公知の方法、例えば、化成処理などにより行うことができる。化成処理は、例えば、陽極体を化成液中に浸漬することにより、陽極体の表面(より内側の表面の孔や窪みの内壁面)まで化成液を含浸させ、陽極体をアノードとして、化成液中に浸漬したカソードとの間に電圧を印加することにより行うことができる。化成液としては、例えば、リン酸水溶液、リン酸アンモニウム水溶液、またはアジピン酸アンモニウム水溶液などを用いることが好ましい。
 (第3工程)
 第3工程では、例えば、誘電体層が形成された陽極体を第1処理液に浸漬させたり、または誘電体層が形成された陽極体に第1処理液を注液したりする。浸漬や注液により誘電体層が形成された陽極体の表面(誘電体層が形成された、より内側の表面の孔や窪みの内壁面)まで第1処理液を含浸させる。第1処理液を含浸させた後、陽極体は、必要に応じて、乾燥してもよい。乾燥の際、必要に応じて、陽極体を加熱してもよい。第3工程により、誘電体層が形成された陽極体の表面に第1導電性高分子(およびドーパント)を付着させることができる。
 第1導電性高分子(およびドーパント)は、誘電体層が形成された陽極体の表面に、被膜状に付着して、第1導電性高分子層を形成してもよい。第1導電性高分子層は、誘電体層が形成された陽極体を、第1処理液と接触させ、乾燥させることで形成される被膜(またはコーティング膜)であってもよい。第1処理液は、特に制限されず、例えば、各種塗布法(例えば、浸漬法(ディップコート法)、スプレーコート法など)に限らず、印刷法、もしくはこれらの組み合わせなどを利用して、誘電体層が形成された陽極体の表面に接触させてもよい。
 第1導電性高分子を含む第1処理液としては、例えば、溶媒と、この溶媒に溶解した第1導電性高分子とを含む溶液、または、分散媒と、この分散媒に分散した第1導電性高分子の分散質(または分散相)とを含む分散液が挙げられる。第1処理液として、このような溶液または分散液を用いる場合、第1導電性高分子層を容易に形成することができ、品質が安定した第1導電性高分子層が得られ易い。中でも、分散液を用いることが好ましい。分散液中の分散質の形態は、特に制限されず、繊維であってもよいが、粒子(または粉末)であることが好ましい。分散液中の分散質粒子の平均粒径は、5~100nmであることが好ましい。平均粒径は、例えば、動的光散乱法による粒径分布から求めることができる。
 第1処理液に含まれる溶媒または分散媒としては、水、有機媒体、およびこれらの混合物が例示できる。有機媒体としては、例えば、炭素数1~5の脂肪族アルコール(例えば、メタノール、エタノール、プロパノール、1-ブタノールなどの脂肪族モノオール;エチレングリコール、グリセリンなどの脂肪族ポリオールなど);アセトンなどの脂肪族ケトン;アセトニトリル、ベンゾニトリルなどのニトリル;N,N-ジメチルホルムアミドなどのアミド;および/またはジメチルスルホキシドなどのスルホキシドなどが挙げられる。
 また、第1処理液は、必要に応じて、前述の第1導電性高分子層の構成成分のうち、第1導電性高分子以外の成分(例えば、ドーパントなど)を含むことができる。
 また、第3工程では、誘電体層が形成された陽極体に、第1導電性高分子の原料を含む第1処理液を含浸させ、重合(化学重合、または電解重合など)させることにより、重合膜を形成することで、第1導電性高分子を付着させてもよい。第1導電性高分子の原料としては、第1導電性高分子の前駆体、例えば、第1導電性高分子を構成するモノマー、および/またはモノマーがいくつか連なったオリゴマーなどが例示できる。
 重合膜の形成には、第1導電性高分子の原料を重合させるために酸化剤が使用される。酸化剤は、第1処理液に添加してもよい。また、酸化剤は、誘電体層が形成された陽極体を第1処理液に浸漬する前又は後に、陽極体に塗布してもよい。このような酸化剤としては、スルホン酸金属塩が例示できる。スルホン酸金属塩は、酸化剤としての機能に加え、ドーパントとしての機能も有する。スルホン酸金属塩のスルホン酸を構成する部分としては、例えば、アルキルスルホン酸、および/または芳香族スルホン酸(ベンゼンスルホン酸、トルエンスルホン酸、ナフタレンジスルホン酸など)などが挙げられる。金属塩を構成する金属部分としては、鉄(III)、銅(II)、クロム(IV)、および/または亜鉛(II)などが例示できる。
 重合膜の形成に使用される第1処理液は、溶媒を含むことができる。溶媒としては、上記の被膜(コーティング膜)の形成に使用される第1処理液について例示した溶媒から適宜選択できる。
 重合膜の形成に使用される第1処理液も、必要に応じて、上述の第1導電性高分子層の構成成分のうち、第1導電性高分子(の原料)以外の成分(例えば、ドーパントなど)を含むことができる。
 (第4工程)
 第4工程は、例えば、カチオン剤とアニオン剤とを含む第2処理液を、第1処理液で処理された陽極体に接触させることにより行うことができる。第2処理液と接触させた後、陽極体は、必要に応じて、乾燥してもよい。乾燥の際、必要に応じて、陽極体を加熱してもよい。
 第2処理液は、カチオン剤およびアニオン剤に加え、溶媒を含んでいてもよい。溶媒としては、水、有機溶媒、およびこれらの混合物が例示できる。有機溶媒としては、例えば、炭素数1~5の脂肪族アルコール(例えば、メタノール、エタノール、プロパノール、1-ブタノールなどの脂肪族モノオール;エチレングリコール、グリセリンなどの脂肪族ポリオールなど);アセトンなどの脂肪族ケトン;アセトニトリル、ベンゾニトリルなどのニトリル;N,N-ジメチルホルムアミドなどのアミド;および/またはジメチルスルホキシドなどのスルホキシドなどが挙げられる。
 溶媒は、少なくとも水を含むことが好ましい。溶媒全体に占める有機溶媒の割合は、15質量%以下であることが好ましく、10質量%以下または5質量%以下であることがさらに好ましい。第2処理液に含まれる有機溶媒濃度は、溶媒全体の質量に対して5質量%以下とする事が好ましい。有機溶媒の割合がこのような範囲である場合、有機溶媒の揮発による製造過程での経時的な濃度変化を抑制できる。有機溶媒の除去に伴うカチオン剤の揮発、および有機溶媒の残存に伴うESRの増大を抑制し易くなる。
 第2アニオン性基の数に対する第1アニオン性基の数の比は、アニオン剤の組成を調節することにより調節できる。
 第4工程において、カチオン剤およびアニオン剤は、誘電体層の表面に付着した第1導電性高分子(およびドーパント)を覆うように付着することが好ましく、被膜状に付着して、中間層を形成してもよい。
 (第5工程)
 第5工程は、第2処理液で処理された陽極体を用い、第1処理液に代えて、第2導電性高分子(必要に応じて、ドーパント)を含む第3処理液を用いる以外は、第3工程と同様のまたは類似の手順で行うことができる。第3処理液としては、第1導電性高分子に代えて、第2導電性高分子を含む以外は、第1処理液と同様のものを使用することができる。
 (陰極層を形成する工程)
 電解コンデンサの製造方法は、さらに陰極層を形成する工程(第6工程)を含むことができる。
 第6工程では、第5工程で得られた陽極体の(好ましくは第2導電性高分子層の)表面に、カーボン層と銀ペースト層とを順次積層することにより陰極層が形成される。
 カーボン層は、カーボン(例えば、黒鉛などの導電性炭素材料)の水分散液中に第2導電性高分子層が形成された誘電体層を有する陽極体を浸漬したり、またはカーボンペーストを第2導電性高分子層の表面に塗布したりすることにより形成することができる。カーボンペーストは、黒鉛などの導電性炭素材料を含む組成物である。カーボン層の厚さは、例えば、1~20μmである。
 銀ペーストは、銀粒子と樹脂(バインダ樹脂)とを含む組成物である。樹脂としては、熱可塑性樹脂を用いることもできるが、熱硬化性樹脂を用いることが好ましい。銀ペースト層の厚さは、例えば、50~100μmである。
 なお、陰極層の構成は、これに限られず、集電機能を有する構成であればよい。
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 (実施例1)
 下記の要領で、図1に示す電解コンデンサ1を作製し、その特性を評価した。
 (1)陽極体2を準備する工程(第1工程)
 基材としてのアルミニウム箔(厚み:100μm)の両方の表面をエッチングにより粗面化することで、陽極体2を作製した。
 (2)誘電体層3を形成する工程(第2工程)
 陽極体2の一端部側の部分(分離部から一端部までの部分)を、化成液に浸漬し、70Vの直流電圧を、20分間印加して、酸化アルミニウムを含む誘電体層3を形成した。
 (3)第1導電性高分子層4aを形成する工程(第3工程)
 攪拌下で、ポリスチレンスルホン酸(重量平均分子量:75,000)の水溶液に、3,4-エチレンジオキシチオフェンモノマーを添加し、次いで、酸化剤(硫酸鉄(III)
および過硫酸ナトリウム)を添加して、化学酸化重合を行った。得られた重合液を、イオン交換装置によりろ過して不純物を除去することにより、第1導電性高分子としてのポリ3,4-エチレンジオキシチオフェン(PEDOT)と、ドーパントとしてのポリスチレンスルホン酸(PSS)とを含む溶液を得た。
 得られた溶液に、純水を加えて、高圧ホモジナイザーでホモジナイズし、さらにフィルターでろ過することにより分散液状の第1処理液を調製した。
 上記(2)で得られた誘電体層3が形成された陽極体2を、第1処理液に浸漬した後、第1処理液から取り出し、さらに120℃で10~30分の乾燥を行った。第1処理液への浸漬と、乾燥とをさらに1回ずつ繰り返すことで、誘電体層3の表面を覆うように第1導電性高分子層4aを形成した。第1導電性高分子層4aの平均厚みを走査型電子顕微鏡(SEM)により測定したところ、約1μmであった。
 (4)中間層4cを形成する工程(第4工程)
 純水に、N,N-ジメチルオクチルアミン(カチオン剤)と、スチレンスルホン酸(第1アニオン性基を有するモノマー)とアシッドホスホオキシエチルアクリレート(P(=O)(OH)2-O-CH2CH2-O-C(=O)-CH=CH2)(第2アニオン性基を有するモノマー)との共重合体(アニオン剤)とを溶解させて、第2処理液を調製した。第2処理液中のカチオン剤の濃度は、0.05mol/L、アニオン剤の濃度は、0.03mol/Lとした。第1アニオン性基であるスルホン酸基の数に対する、第2アニオン性基であるリン酸基の数の比は、3倍であった。
 上記(3)で処理された陽極体2を第2処理液に浸漬した後、取り出し、さらに100℃で3分乾燥させることにより、第1導電性高分子層4aの表面を覆うように、中間層4cを形成した。なお、中間層において、カチオン性基の数に対する、第1アニオン性基および第2アニオン性基の数の合計の比、ならびに第1アニオン性基と第2アニオン性基との比は、第2処理液中におけるそれぞれの比とほぼ同じである。
 なお、第2処理液に使用した上記アニオン剤は、次のようにして製造した。
 所定量の純水に、スチレンスルホン酸ナトリウムおよびアシッドホスホオキシエチルアクリレートを添加、混合することにより、モノマー溶液を調製した。このとき、スチレンスルホン酸ナトリウムおよびアシッドホスホオキシエチルアクリレートは、共重合体におけるスチレンスルホン酸とアシッドホスホオキシエチルアクリレートとの共重合比(モル比)が75:25となるような割合で使用した。モノマー溶液に、攪拌下、所定量の過硫酸アンモニウム(酸化剤)を添加し、8時間かけて重合反応を行った。得られた重合液に純水およびイオン交換樹脂を添加して攪拌し、濾過することにより精製処理を行った。この精製処理を複数回繰り返し、最終的に上記共重合体を得た。共重合体の分子量を、ゲル透過クロマトグラフィー(GPC)により測定したところ、重量平均分子量は83,000であった。
 (5)第2導電性高分子層4bを形成する工程(第5工程)
 上記(3)で用いた第1処理液と同様の組成の第3処理液を用いた。上記(4)で処理された陽極体2を、第3処理液に浸漬した後、取り出し、さらに120℃で10~30分の乾燥を行った。第3処理液への浸漬と乾燥とを交互にさらに2回ずつ繰り返すことで、中間層4cの表面を覆うように第2導電性高分子層4bを形成した。第2導電性高分子層4bの平均厚みを、第1導電性高分子層4aの場合と同様にして測定したところ、約30μmであった。
 このようにして、第1導電性高分子層4a、中間層4c、および第2導電性高分子層4bを、誘電体層3の表面を覆うように形成した。
 (6)陰極層5の形成工程(第6工程)
 上記(5)で得られた陽極体2を、黒鉛粒子を水に分散した分散液に浸漬し、分散液から取り出し後、乾燥することにより、少なくとも第2導電性高分子層4bの表面にカーボン層5aを形成した。乾燥は、130~180℃で10~30分間行った。
 次いで、カーボン層5aの表面に、銀粒子とバインダ樹脂(エポキシ樹脂)とを含む銀ペーストを塗布し、150~200℃で10~60分間加熱することでバインダ樹脂を硬化させ、銀ペースト層5bを形成した。こうして、カーボン層5aと銀ペースト層5bとで構成される陰極層5を形成した。
 上記のようにして、コンデンサ素子11を作製した。
 (7)電解コンデンサの組み立て
 上記(6)で得られたコンデンサ素子11の陰極層5と、陰極端子14の一端部(第1端部)14aとを導電性接着剤17で接合した。コンデンサ素子11から突出した陽極体2の他端部と、陽極端子13の一端部(第1端部)13aとをレーザ溶接により接合した。
 次いで、トランスファモールド法により、コンデンサ素子11の周囲に、絶縁性樹脂で形成された樹脂外装体12を形成した。このとき、陽極端子13の他端部(第2端部)13bと、陰極端子14の他端部(第2端部)14bとは、樹脂外装体12から引き出した状態とした。
 このようにして、電解コンデンサ1(A1)を完成させた。上記と同様にして、電解コンデンサ1を合計250個作製した。
 (8)評価
 電解コンデンサを用いて、下記の評価を行った。
 (a)ESR
 電解コンデンサからランダムに120個選び、4端子測定用のLCRメータを用いて、電解コンデンサの周波数100kHzにおけるESR値(mΩ)を測定し、平均値を求めた。
 (b)漏れ電流
 電解コンデンサに1kΩの抵抗を直列につなぎ、直流電源にて25Vの定格電圧を1分間印加した後の漏れ電流(μA)を測定し、250個の電解コンデンサの平均値を求めた。
 (c)耐電圧
 1.0V/秒のレートで昇圧しながら、電解コンデンサに電圧を印加し、1Aの過電流が流れる破壊耐電圧(BVD)を測定した。250個の電解コンデンサの平均値を求めた。
 (比較例1)
 第4工程において、アニオン剤として、ポリスチレンスルホン酸(重量平均分子量:75,000)を用い、第2処理液中のアニオン剤の濃度を0.075mol/Lに変更する以外は、実施例1と同様にして、電解コンデンサ(B1)を作製した。そして、実施例1と同様の評価を行った。
 (比較例2および3)
 第4工程において、第2処理液中のアニオン剤の濃度を0.05mol/L(比較例2)および0.03mol/L(比較例3)に変更する以外は、比較例1と同様にして、電解コンデンサ(B2およびB3)を作製し、実施例1と同様の評価を行った。
 (比較例4)
 第4工程において、アニオン剤として、パラトルエンスルホン酸を用い、第2処理液中のアニオン剤の濃度を0.075mol/Lに変更する以外は、実施例1と同様にして、電解コンデンサ(B4)を作製した。そして、実施例1と同様の評価を行った。
 (実施例2~5)
 第4工程において、第2処理液(または中間層)の第1アニオン性基の数に対する第2アニオン性基の数の比が表1に示す値となるように、第1アニオン性基を有するモノマーと、第2アニオン性基を有するモノマーとの共重合比(モル比)、および/または第2処理液中のアニオン剤の濃度を変更した以外は、実施例1と同様にして、電解コンデンサ(A2~A5)を作製した。そして、実施例1と同様の評価を行った。
 (実施例6~8)
 第4工程において、アニオン剤として、アシッドホスホオキシエチルアクリレート(第1アニオン性基を有するモノマー)とアクリル酸(第2アニオン性基を有するモノマー)との共重合体を、表1に示す濃度で含む第2処理液を用いた。第1アニオン性基を有するモノマーと第2アニオン性基を有するモノマーとの共重合比(モル比)を、表1に示すように変更した。これら以外は、実施例1と同様にして、電解コンデンサ(A6~A8)を作製した。そして、実施例1と同様の評価を行った。
 (実施例9および10)
 第4工程において、アニオン剤として、スチレンスルホン酸(第1アニオン性基を有するモノマー)とアクリル酸(第2アニオン性基を有するモノマー)との共重合体を、表1に示す濃度で含む第2処理液を用いた。第1アニオン性基を有するモノマーと第2アニオン性基を有するモノマーとの共重合比(モル比)を、表1に示す値とした。これら以外は、実施例1と同様にして、電解コンデンサ(A9およびA10)を作製した。そして、実施例1と同様の評価を行った。
 (実施例11~13)
 第4工程において、アニオン剤として、スチレンスルホン酸(第1アニオン性基を有するモノマー)と表1に示す第2アニオン性基を有するモノマーとの共重合体を用いる以外は、実施例1と同様にして、電解コンデンサ(A11~A13)を作製した。そして、実施例1と同様の評価を行った。
 (実施例14)
 第4工程において、アニオン剤として、ビニルホスホン酸(第1アニオン性基を有するモノマー)とアクリル酸(第2アニオン性基を有するモノマー)との共重合体を用いた。第1アニオン性基を有するモノマーと第2アニオン性基を有するモノマーとの共重合比(モル比)を50:50に変更した。これら以外は、実施例1と同様にして、電解コンデンサ(A14)を作製した。そして、実施例1と同様の評価を行った。
 表1に、実施例および比較例の評価結果を示す。表1には使用したアニオン剤の分子量も合わせて示した。なお、実施例および比較例1~3で使用したアニオン剤の分子量は重量平均分子量である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、アニオン剤としてポリスチレンスルホン酸が用いられた比較例1~3およびパラトルエンスルホン酸を用いた比較例4に比べて、第1アニオン性基と、第1アニオン性基よりも電子求引性が低い第2アニオン性基とを含む重合体が用いられた実施例のESR値および漏れ電流は、格段に小さい。また、実施例の耐電圧は、比較例と比べて、顕著に高い。
 本発明の実施形態に係る電解コンデンサは、ESRの低下および漏れ電流の抑制が求められる様々な用途に利用できる。
1  電解コンデンサ
2  陽極体
3  誘電体層
4  導電性高分子層
4a  第1導電性高分子層
4b  第2導電性高分子層
4c  中間層
5  陰極層
5a  カーボン層
5b  銀ペースト層
11  コンデンサ素子
12  樹脂外装体
13  陽極端子
13a  陽極端子の第1端部
13b  陽極端子の第2端部
14  陰極端子
14a  陰極端子の第1端部
14b  陰極端子の第2端部
15  陰極部
16  分離部
17  導電性接着剤

Claims (8)

  1. 陽極体、前記陽極体上に形成された誘電体層、前記誘導体層の少なくとも一部を覆う第1導電性高分子層、前記第1導電性高分子層の少なくとも一部を覆う第2導電性高分子層、および前記第1導電性高分子層と前記第2導電性高分子層との間に形成された中間層を含み、
    前記中間層は、カチオン性基を含むカチオン剤と、第1アニオン性基および第2アニオン性基を含むアニオン剤とを含み、
    前記アニオン剤は、前記第1アニオン性基と前記第2アニオン性基とを含む重合体を含み、
    前記第1アニオン性基は、前記第2アニオン性基よりも電子求引性が高い、
    電解コンデンサ。
  2. 前記第1アニオン性基は、スルホン酸基、リン酸基、またはホスホン酸基である、
    請求項1に記載の電解コンデンサ。
  3. 前記第1アニオン性基は、スルホン酸基である、
    請求項1に記載の電解コンデンサ。
  4. 前記第2アニオン性基は、リン酸基、ホスホン酸基、カルボキシル基およびヒドロキシル基からなる群より選択される少なくとも一種である、
    請求項3に記載の電解コンデンサ。
  5. 前記第2アニオン性基は、少なくともカルボキシル基を含む、
    請求項1に記載の電解コンデンサ。
  6. 前記中間層において、前記第2アニオン性基の数は、前記第1アニオン性基の数よりも多い、
    請求項1に記載の電解コンデンサ。
  7. 前記第2アニオン性基の数は、前記第1アニオン性基の数の0.3倍以上、6倍以下である、
    請求項6に記載の電解コンデンサ。
  8. 陽極体を準備する第1工程と、
    前記陽極体上に誘電体層を形成する第2工程と、
     前記誘電体層が形成された前記陽極体を、第1導電性高分子を含む第1処理液で処理する第3工程と、
     前記第1処理液で処理された前記陽極体を、カチオン性基を含むカチオン剤と、第1アニオン性基および第2アニオン性基を含むアニオン剤とを含む第2処理液で処理する第4工程と、
     前記第2処理液で処理された前記陽極体を、第2導電性高分子を含む第3処理液で処理する第5工程と、を含み、
     前記アニオン剤は、
     前記第1アニオン性基と前記第2アニオン性基とを含む重合体を含み、
     前記第1アニオン性基は、前記第2アニオン性基よりも電子求引性が高い、電解コンデンサの製造方法。
PCT/JP2015/003433 2014-07-10 2015-07-08 電解コンデンサおよびその製造方法 WO2016006236A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016532438A JP6603884B2 (ja) 2014-07-10 2015-07-08 電解コンデンサおよびその製造方法
CN201580033465.XA CN106463265B (zh) 2014-07-10 2015-07-08 电解电容器及其制造方法
US15/381,479 US10236130B2 (en) 2014-07-10 2016-12-16 Electrolytic capacitor and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-142594 2014-07-10
JP2014142594 2014-07-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/381,479 Continuation US10236130B2 (en) 2014-07-10 2016-12-16 Electrolytic capacitor and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2016006236A1 true WO2016006236A1 (ja) 2016-01-14

Family

ID=55063888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003433 WO2016006236A1 (ja) 2014-07-10 2015-07-08 電解コンデンサおよびその製造方法

Country Status (4)

Country Link
US (1) US10236130B2 (ja)
JP (1) JP6603884B2 (ja)
CN (1) CN106463265B (ja)
WO (1) WO2016006236A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016194277A1 (ja) * 2015-05-29 2018-04-12 パナソニックIpマネジメント株式会社 電解コンデンサおよび導電性高分子分散体
JP2019522354A (ja) * 2016-05-19 2019-08-08 ケメット エレクトロニクス コーポレーション 固体電解コンデンサにおいて導電性ポリマーと共に使用するためのポリアニオンコポリマー
WO2024135668A1 (ja) * 2022-12-21 2024-06-27 パナソニックIpマネジメント株式会社 固体電解コンデンサ素子および固体電解コンデンサ
US12131872B2 (en) 2019-12-24 2024-10-29 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor and method for producing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6497563B2 (ja) * 2014-07-03 2019-04-10 パナソニックIpマネジメント株式会社 電解コンデンサの製造方法
CN114846571A (zh) * 2019-12-24 2022-08-02 松下知识产权经营株式会社 电解电容器及其制造方法
US20230026186A1 (en) * 2021-07-14 2023-01-26 Tokin Corporation Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017398A (ja) * 2010-07-07 2012-01-26 Nagase Chemtex Corp 導電性樹脂組成物、印刷インキ、透明電極基板及び電磁波シールド材
WO2013035548A1 (ja) * 2011-09-06 2013-03-14 テイカ株式会社 導電性高分子の分散液、導電性高分子およびその用途

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009007594A1 (de) 2009-02-05 2010-08-12 H.C. Starck Clevios Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit polymerer Außenschicht.
JP5988824B2 (ja) * 2012-10-22 2016-09-07 テイカ株式会社 電解コンデンサの製造方法
US20140199585A1 (en) * 2013-01-17 2014-07-17 Esionic Es, Inc. Low Symmetry Molecules And Phosphonium Salts, Methods Of Making And Devices Formed There From

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017398A (ja) * 2010-07-07 2012-01-26 Nagase Chemtex Corp 導電性樹脂組成物、印刷インキ、透明電極基板及び電磁波シールド材
WO2013035548A1 (ja) * 2011-09-06 2013-03-14 テイカ株式会社 導電性高分子の分散液、導電性高分子およびその用途

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016194277A1 (ja) * 2015-05-29 2018-04-12 パナソニックIpマネジメント株式会社 電解コンデンサおよび導電性高分子分散体
JP2019522354A (ja) * 2016-05-19 2019-08-08 ケメット エレクトロニクス コーポレーション 固体電解コンデンサにおいて導電性ポリマーと共に使用するためのポリアニオンコポリマー
US12131872B2 (en) 2019-12-24 2024-10-29 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor and method for producing same
WO2024135668A1 (ja) * 2022-12-21 2024-06-27 パナソニックIpマネジメント株式会社 固体電解コンデンサ素子および固体電解コンデンサ

Also Published As

Publication number Publication date
CN106463265A (zh) 2017-02-22
CN106463265B (zh) 2019-05-03
US10236130B2 (en) 2019-03-19
JP6603884B2 (ja) 2019-11-13
JPWO2016006236A1 (ja) 2017-04-27
US20170098510A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
JP6603884B2 (ja) 電解コンデンサおよびその製造方法
JP6796755B2 (ja) 電解コンデンサおよびその製造方法
JP7065307B2 (ja) 電解コンデンサおよびその製造方法
JP6603882B2 (ja) 電解コンデンサおよびその製造方法
WO2017163728A1 (ja) 電解コンデンサの製造方法
WO2021132223A1 (ja) 電解コンデンサおよびその製造方法
JP6485457B2 (ja) 電解コンデンサ
WO2017002351A1 (ja) 電解コンデンサおよびその製造方法
JP6702186B2 (ja) 電解コンデンサおよびその製造方法
JP6745431B2 (ja) 電解コンデンサおよび導電性高分子分散体
JP6760272B2 (ja) 電解コンデンサ
JP6678301B2 (ja) 電解コンデンサおよび導電性高分子分散体
US12131872B2 (en) Electrolytic capacitor and method for producing same
WO2024135668A1 (ja) 固体電解コンデンサ素子および固体電解コンデンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016532438

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15819693

Country of ref document: EP

Kind code of ref document: A1