WO2017002351A1 - 電解コンデンサおよびその製造方法 - Google Patents

電解コンデンサおよびその製造方法 Download PDF

Info

Publication number
WO2017002351A1
WO2017002351A1 PCT/JP2016/003078 JP2016003078W WO2017002351A1 WO 2017002351 A1 WO2017002351 A1 WO 2017002351A1 JP 2016003078 W JP2016003078 W JP 2016003078W WO 2017002351 A1 WO2017002351 A1 WO 2017002351A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive polymer
layer
polymer layer
electrolytic capacitor
dopant
Prior art date
Application number
PCT/JP2016/003078
Other languages
English (en)
French (fr)
Inventor
伸幸 山口
耕二 福地
哲郎 岩佐
浩治 岡本
小林 孝裕
泰央 田中
諒 森岡
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2017526177A priority Critical patent/JP6956319B2/ja
Priority to CN201680037572.4A priority patent/CN107735845B/zh
Publication of WO2017002351A1 publication Critical patent/WO2017002351A1/ja
Priority to US15/841,500 priority patent/US10679795B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/0425Electrodes or formation of dielectric layers thereon characterised by the material specially adapted for cathode

Definitions

  • the present invention relates to an electrolytic capacitor having a conductive polymer layer and a method for manufacturing the same.
  • an electrolytic capacitor including an anode body having a dielectric layer formed thereon and a conductive polymer layer formed so as to cover at least a part of the dielectric layer is promising.
  • the conductive polymer layer includes a conductive polymer such as a ⁇ -conjugated polymer.
  • Patent Document 1 when an electrolytic capacitor is manufactured, the anode body subjected to anodization treatment is immersed in a solution containing a monomer of a conductive polymer, an oxidant, and the like, and the monomer is polymerized to thereby polymerize the first conductive high capacitor. A molecular layer is formed, and then a second conductive polymer layer is formed using the conductive polymer dispersion.
  • Patent Document 2 from the viewpoint of improving the adhesion of the conductive polymer layer, an amine compound is formed between the first conductive polymer layer and the second conductive polymer layer or in the second conductive polymer layer. It has been proposed to provide a layer.
  • Electrolytic capacitors provided with such a conductive polymer layer have an increasing working voltage range year by year, and further improvement of the withstand voltage characteristics of electrolytic capacitors is required.
  • an anode body a dielectric layer formed on the anode body, a first conductive polymer layer covering at least a part of the derivative layer, and at least one of the first conductive polymer layer
  • a second conductive polymer layer covering part of the first conductive polymer layer, the first conductive polymer layer including a first conductive polymer and a first silane compound
  • the electrolytic capacitor includes a second conductive polymer and a basic compound.
  • the withstand voltage characteristic of the electrolytic capacitor can be improved.
  • a second invention of the present application includes a first conductive polymer and a first silane compound on the dielectric layer of the anode body on which the dielectric layer is formed, and at least a part of the dielectric layer is formed.
  • an electrolytic capacitor having excellent withstand voltage characteristics can be manufactured.
  • An electrolytic capacitor includes an anode body, a dielectric layer formed on the anode body, a first conductive polymer layer covering at least a part of the derivative layer, and a first conductive polymer layer A second conductive polymer layer covering at least a part of the first conductive polymer layer.
  • the first conductive polymer layer includes a first conductive polymer and a silane compound (first silane compound).
  • the second conductive polymer layer includes a second conductive polymer and a basic compound.
  • the first conductive polymer layer is formed by the interaction or bonding between the first silane compound contained in the first conductive polymer layer and the basic compound contained in the second conductive polymer layer. It is considered that the adhesion between the layer and the second conductive polymer layer is increased.
  • the first conductive polymer layer containing the first silane compound tends to have a low affinity for the solvent, and it is difficult to cover the second conductive polymer layer on the first conductive polymer layer.
  • the amine compound comes into contact with the first conductive polymer layer, so that the affinity for the solvent is improved. Therefore, as a second reason, it becomes easier to cover the surface of the first conductive polymer layer with the treatment liquid containing the second conductive polymer used when forming the second conductive polymer layer. It is conceivable that the coverage of the conductive polymer layer with respect to the second conductive polymer layer is improved.
  • FIG. 1 is a cross-sectional view schematically showing the structure of an electrolytic capacitor according to an embodiment of the present invention.
  • an electrolytic capacitor 100 is formed on an anode body 11 having a dielectric layer 12 formed on a surface, a conductive polymer layer 13 formed on the dielectric layer 12, and a conductive polymer layer 13.
  • the cathode layer has a carbon layer 14 and a silver paste layer 15 as a cathode lead layer.
  • the electrolytic capacitor 100 further includes an anode lead 16, an anode terminal 17, an adhesive layer 18, and a cathode terminal 19.
  • the anode lead 16 is a rod-shaped body made of a valve action metal (tantalum, niobium, titanium, aluminum, etc.), one end of which is embedded in the anode body 11 and the other end projects out of the capacitor element 10. Be placed.
  • a part of the anode terminal 17 is connected to the anode lead 16 by welding.
  • the cathode terminal 19 is arranged so as to be connected to the silver paste layer 15 that is the outermost layer of the capacitor element 10 through an adhesive layer 18 made of a conductive adhesive.
  • the electrolytic capacitor 100 further includes an exterior resin 20.
  • the exterior resin 20 is a capacitor element 10 in which the anode lead 16, the anode terminal 17, the adhesive layer 18, and the cathode terminal 19 are arranged so that a part of the anode terminal 17 and a part of the cathode terminal 19 are exposed from the exterior resin 20. Is sealed.
  • the conductive polymer layer 13 includes a first conductive polymer layer and a second conductive polymer layer.
  • the first conductive polymer layer is formed so as to cover the dielectric layer 12, and the second conductive polymer layer is formed so as to cover the first conductive polymer layer.
  • the first conductive polymer layer does not necessarily need to cover the entire dielectric layer 12 (the entire surface), and may be formed so as to cover at least a part of the dielectric layer 12.
  • the second conductive polymer layer does not necessarily need to cover the entire first conductive polymer layer (the entire surface), and is formed to cover at least a part of the first conductive polymer layer. Just do it.
  • a layer containing a conductive polymer may be referred to as a solid electrolyte layer.
  • the first conductive polymer layer is preferably formed so as to fill the unevenness of the dielectric layer 12.
  • anode body As the anode body, a conductive material having a large surface area can be used.
  • the conductive material include a valve action metal, an alloy containing the valve action metal, and a compound containing the valve action metal. These materials can be used alone or in combination of two or more.
  • the valve metal for example, tantalum, niobium, titanium, and aluminum are preferably used.
  • the anode body include a molded body of a particle of a conductive material or a sintered body thereof, and a roughened surface of a base material (such as a foil-like or plate-like base material) formed of a conductive material. Can be mentioned.
  • the sintered body has a porous structure.
  • the dielectric layer is formed by anodizing the conductive material on the surface of the anode body by chemical conversion treatment or the like.
  • the dielectric layer comprises an oxide of a conductive material (especially a valve metal).
  • the dielectric layer when tantalum is used as the valve action metal contains Ta2O5
  • the dielectric layer when aluminum is used as the valve action metal contains Al2O3.
  • the dielectric layer is not limited to this, and any layer that functions as a dielectric may be used.
  • the dielectric layer is formed along the surface of the anode body (including the inner wall surface of the inner pit).
  • the first conductive polymer layer includes a conductive polymer (first conductive polymer) and a silane compound (first silane compound), and may further include a dopant (first dopant).
  • the dopant may be included in a state of being doped in the conductive polymer, or may be included in a state of being bonded to the conductive polymer.
  • the first conductive polymer layer may be formed of one layer or a plurality of layers.
  • a known polymer used for an electrolytic capacitor for example, a ⁇ -conjugated conductive polymer can be used.
  • a conductive polymer include a polymer having a basic skeleton of polypyrrole, polythiophene, polyfuran, polyaniline, polyacetylene, polyphenylene, polyphenylene vinylene, polyacene, and / or polythiophene vinylene.
  • Such a polymer includes a homopolymer, a copolymer of two or more monomers, and derivatives thereof (substituents having a substituent, etc.).
  • polythiophene includes poly (3,4-ethylenedioxythiophene) and the like.
  • Such a conductive polymer has high conductivity and excellent ESR characteristics.
  • These conductive polymers may be used singly or in combination of two or more.
  • the weight average molecular weight of the conductive polymer is not particularly limited, but is, for example, 1,000 to 1,000,000.
  • the conductive polymer can be obtained, for example, by polymerizing a precursor of the conductive polymer.
  • the conductive polymer to which the dopant is bonded or doped can be obtained by polymerizing a precursor of the conductive polymer in the presence of the dopant.
  • the polymerization may be performed in the presence of a silane compound.
  • the conductive polymer precursor include a monomer constituting the conductive polymer and / or an oligomer in which several monomers are connected.
  • both chemical oxidation polymerization and electrolytic oxidation polymerization can be employed.
  • the conductive polymer may be synthesized in advance before being attached to the anode body having the dielectric layer. In the case of chemical oxidative polymerization, the conductive polymer may be polymerized on the dielectric layer.
  • the first conductive polymer is preferably obtained by polymerizing a precursor of the first conductive polymer on the dielectric layer. In this case, it is easy to form the first conductive polymer layer by penetrating into the hole on the surface of the anode body and the inner wall surface of the pit, and the adhesion and covering properties between the dielectric layer and the first conductive polymer layer are easy to form. Easy to increase.
  • silane compound Although it does not restrict
  • the silane compound may be interposed between the first conductive polymer or between the first conductive polymer and another component such as the first dopant and chemically bonded thereto. In this case, the connection of the first conductive polymer becomes strong, and the withstand voltage characteristics are further improved. Further, a part of the silane compound or a silicon-containing component derived therefrom may be present at the interface between the dielectric layer and the first conductive polymer layer. In this case, the silane compound contributes to improvement in adhesion.
  • a silane coupling agent can be used as the silane compound.
  • the silane coupling agent has a reactive organic group and a hydrolytic condensation group.
  • the reactive organic group an epoxy group, a halogenated alkyl group, an amino group, a ureido group, a mercapto group, an isocyanate group, a polymerizable group and the like are preferable.
  • the polymerizable group include a (meth) acryloyl group and a vinyl group.
  • an acryloyl group and a methacryloyl group are generically called a (meth) acryloyl group.
  • alkoxy groups such as a methoxy group, an ethoxy group, a propoxy group, are preferable, for example.
  • a silane coupling agent shall contain the hydrolyzate and condensate.
  • silane coupling agent having an epoxy group examples include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane ( ⁇ -glycidoxypropyltrimethoxysilane), 3-glycol. Examples thereof include sidoxypropylmethyldiethoxysilane and 3-glycidoxypropyltriethoxysilane. Examples of the silane coupling agent having a halogenated alkyl group include 3-chloropropyltrimethoxysilane.
  • silane coupling agent having an amino group examples include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, N-2- ( Aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N- Examples thereof include phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane, and salts thereof (such as hydrochloride). Examples of the silane coupling agent having a ureido group include 3-urei
  • silane coupling agent having a mercapto group examples include 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, and bis (triethoxysilylpropyl) tetrasulfide.
  • silane coupling agent having an isocyanate group examples include 3-isocyanatopropyltriethoxysilane.
  • silane coupling agents having a (meth) acryloyl group examples include 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, and 3-methacryloxypropyltriethoxysilane. And 3-acryloxypropyltrimethoxysilane ( ⁇ -acryloxypropyltrimethoxysilane).
  • Examples of the silane coupling agent having a vinyl group include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, and p-styryltrimethoxysilane.
  • silane compounds may be used singly or in combination of two or more.
  • a silane coupling agent having an epoxy group or a (meth) acryloyl group is preferable from the viewpoint of reducing ESR and increasing the capacity.
  • first conductive polymer layer contains a silane compound
  • EDX energy dispersive X-ray spectroscopy
  • ICP inductively coupled plasma analysis
  • the amount of the silane compound is, for example, 1 to 20 parts by mass and preferably 3 to 15 parts by mass with respect to 100 parts by mass of the first conductive polymer.
  • the withstand voltage characteristic can be further enhanced.
  • the first conductive polymer layer may contain one kind of dopant or two or more kinds of dopant.
  • Examples of the first dopant include a sulfonic acid group, a carboxy group, a phosphoric acid group (—O—P ( ⁇ O) (— OH) 2), and / or a phosphonic acid group (—P ( ⁇ O) (— OH). ) Those having an anionic group such as 2) are used.
  • the first dopant may have one type of anionic group or two or more types.
  • a sulfonic acid group is preferable, and a combination of a sulfonic acid group and an anionic group other than the sulfonic acid group may be used.
  • a low molecular compound (monomer compound) having the above anionic group can be used as the low molecular dopant.
  • specific examples of compounds having a sulfonic acid group include alkylbenzene sulfonic acids such as benzene sulfonic acid and p-toluene sulfonic acid, naphthalene sulfonic acid, and anthraquinone sulfonic acid.
  • the polymer dopant having a sulfonic acid group includes a homopolymer of a monomer having a sulfonic acid group (first monomer), and a copolymer of the first monomer and another monomer (second monomer). Examples thereof include sulfonated phenol resins (sulfonated phenol novolak resins and the like).
  • first monomer and the second monomer may be used singly or in combination of two or more.
  • the first monomer examples include vinyl sulfonic acid, allyl sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, styrene sulfonic acid, and isoprene sulfonic acid.
  • a monomer having no anionic group can be used, but a monomer having an anionic group other than a sulfonic acid group is preferably used.
  • a polyester having a sulfonic acid group is also preferable.
  • the polyester having a sulfonic acid group for example, a polycarboxylic acid having a sulfonic acid group and / or a polyol having a sulfonic acid group is used as a first monomer, and a polyester using a polycarboxylic acid and a polyol as a second monomer.
  • Etc. As the first monomer, a dicarboxylic acid having a sulfonic acid group is preferably used.
  • dicarboxylic acid having a sulfonic acid group for example, aromatic dicarboxylic acids such as sulfonated phthalic acid, sulfonated isophthalic acid, and sulfonated terephthalic acid are preferable.
  • polycarboxylic acid as the second monomer those having no sulfonic acid group, for example, aromatic dicarboxylic acids such as phthalic acid, isophthalic acid and terephthalic acid are preferable.
  • polyol as the second monomer those having no sulfonic acid group, for example, alkylene glycols such as ethylene glycol and propylene glycol are preferable.
  • the anionic group is not particularly limited as long as it can generate an anion in a dissociated state, and may be a salt or ester of the above anionic group. .
  • a first dopant having a relatively low molecular weight such as a low molecular dopant.
  • the dedoping of the first dopant may be suppressed by increasing the proportion of the first silane compound.
  • a first dopant having a relatively large molecular weight such as a polymer dopant. In this case, the ratio of the silane compound in the first conductive polymer layer can be reduced.
  • the weight average molecular weight of the polymer dopant is, for example, 1,000 to 1,000,000. When a polymer dopant having such a molecular weight is used, ESR is easily reduced.
  • the amount of dopant contained in the first conductive polymer layer is preferably 10 to 1,000 parts by mass with respect to 100 parts by mass of the first conductive polymer.
  • the first conductive polymer layer may further contain a known additive and / or a known conductive material other than the conductive polymer (manganese dioxide, TCNQ complex salt, etc.) as necessary. Between the dielectric layer and the first conductive polymer layer, a layer for improving adhesion may be interposed.
  • a known additive and / or a known conductive material other than the conductive polymer manganese dioxide, TCNQ complex salt, etc.
  • the second conductive polymer layer includes a conductive polymer (second conductive polymer) and a basic compound, and may further include a dopant (second dopant).
  • the dopant may be included in a state of being doped in the conductive polymer, or may be included in a state of being bonded to the conductive polymer.
  • the conductive polymer and the dopant can be selected from those exemplified for the first conductive polymer layer.
  • the polymerization of the precursor of the conductive polymer may be performed in the presence of a dopant and / or a basic compound.
  • the second conductive polymer is preferably synthesized in advance before being attached to the first conductive polymer layer.
  • the second conductive polymer layer is preferably formed using a treatment liquid containing the second conductive polymer, for example, a dispersion or a solution. In this case, since the second conductive polymer layer can be densified, the withstand voltage characteristic can be further improved.
  • the second conductive polymer layer is denser than the first conductive polymer layer.
  • the denseness of the conductive polymer layer can be evaluated based on roughness based on, for example, electron micrographs of the cross sections of both conductive polymer layers.
  • the amount of dopant contained in the second conductive polymer layer is preferably 10 to 1,000 parts by mass with respect to 100 parts by mass of the second conductive polymer.
  • Basic compound examples include inorganic bases such as ammonia and organic bases such as amine compounds.
  • amine compounds are preferred from the viewpoint of high effect of suppressing the decrease in conductivity.
  • the amine compound may be any of primary amine, secondary amine, and tertiary amine.
  • Examples of amine compounds include aliphatic amines and cyclic amines.
  • a basic compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Examples of the aliphatic amine include alkylamines such as ethylamine, diethylamine, triethylamine, N, N-dimethyloctylamine and N, N-diethyloctylamine; alkanolamines such as ethanolamine, 2-ethylaminoethanol and diethanolamine; allylamine; N Examples thereof include alkylenediamines such as ethylethylenediamine and 1,8-diaminooctane.
  • Examples of the alicyclic amine include aminocyclohexane, diaminocyclohexane, isophorone diamine, and the like.
  • Examples of the aromatic amine include aniline and toluidine.
  • a cyclic amine having a 5- to 8-membered (preferably 5-membered or 6-membered) nitrogen-containing ring skeleton such as pyrrole, imidazoline, imidazole, pyrazole, pyridine, pyrazine, pyrimidine, and triazine is preferable.
  • the cyclic amine may have one nitrogen-containing ring skeleton or two or more (for example, 2 or 3). When the cyclic amine has two or more nitrogen-containing ring skeletons, the nitrogen-containing ring skeletons may be the same or different.
  • the amine compound may have a substituent as necessary.
  • the fact that the second conductive polymer layer contains an amine compound can be analyzed by, for example, gas chromatography (GC).
  • GC gas chromatography
  • the amount of the basic compound in the second conductive polymer layer is 5 to 200 parts by mass or 10 to 100 parts by mass with respect to 100 parts by mass of the conductive polymer. preferable.
  • the second conductive polymer layer can contain a silane compound (second silane compound).
  • the second conductive polymer layer does not contain a silane compound, or even if it contains a silane compound in the first conductive polymer layer.
  • the ratio of (first silane compound) is preferably larger than the ratio of silane compound (second silane compound) in the second conductive polymer layer. In this case, it becomes easy to suppress that the dopant in the 1st conductive polymer layer is dedope by the basic compound contained in the 2nd conductive polymer. Moreover, since the ratio of the silane compound in the second conductive polymer layer is small, an increase in ESR is easily suppressed.
  • the dedoping of the first dopant is particularly prominent when a dopant having a relatively low molecular weight such as a low molecular dopant is used.
  • a dopant having a relatively low molecular weight such as a low molecular dopant
  • ESR increases when dopant de-doping occurs. Therefore, in such a case, by using a second dopant having a relatively high molecular weight such as a polymer dopant for the second conductive polymer layer, de-doping from the second conductive polymer layer is suppressed. And increase in ESR can be suppressed.
  • the second conductive polymer layer is formed using a second conductive polymer polymerized in advance, excellent withstand voltage characteristics are easily obtained. Therefore, the effect of suppressing ESR becomes remarkable by reducing the ratio of the silane compound in the second conductive polymer layer. Therefore, when the second dopant having a molecular weight larger than that of the first dopant is used, the ratio of the second silane compound in the second conductive polymer layer is reduced (or the second silane compound is not included). Is preferred.
  • the second silane compound can be appropriately selected from those exemplified for the first silane compound.
  • the second conductive polymer layer may further contain a known additive and a known conductive material other than the conductive polymer (such as manganese dioxide and TCNQ complex salt) as necessary.
  • a known additive such as manganese dioxide and TCNQ complex salt
  • the second conductive polymer layer may be formed of one layer or may be formed of a plurality of layers.
  • the second conductive polymer layer preferably includes a first layer containing a basic compound and a second layer containing a second conductive polymer formed on the first layer.
  • the 2nd layer should just contain the 2nd conductive polymer at least, and may contain the 2nd conductive polymer and a basic compound.
  • the second layer can further include a second dopant.
  • the first conductive polymer layer and the second layer are both easily anionic and have low coverage even when the second layer is formed directly on the first conductive polymer layer. By providing the first layer, the affinity between the first conductive polymer layer and the second layer can be increased, so that the coverage of the second conductive polymer layer with respect to the first conductive polymer layer is further increased. It becomes easy to raise.
  • the second conductive polymer layer may include a plurality of first layers and a plurality of second layers. It is desirable to form the first layer and the second layer alternately. Even if only the second layer is laminated, it is difficult to cover the upper layer with respect to the lower layer due to repulsion of electric charges.
  • the first layer between the second layers the second layer of the lower layer can be sufficiently covered with the second layer of the upper layer through the first layer, so that the second conductive polymer layer is covered. It becomes easy to further improve the property.
  • the basic compound of the first layer may migrate to the second layer when forming the first layer or laminating the second layer.
  • the concentration of the basic compound in the first layer may be higher than the concentration of the basic compound in the second layer.
  • the thickness (average thickness) of the second conductive polymer layer is larger than the thickness (average thickness) of the first conductive polymer layer. It is preferable. This configuration is particularly effective when the configurations and roles of the first and second conductive polymer layers are different from each other.
  • a first conductive polymer precursor is polymerized on the dielectric layer to generate a first conductive polymer, and the generated first conductive polymer is covered with the dielectric layer.
  • the first conductive polymer layer is formed.
  • the second conductive polymer layer is formed using a treatment liquid containing the second conductive polymer.
  • the thicknesses of the first conductive polymer layer and the second conductive polymer layer have the above relationship.
  • the generated first conductive polymer easily enters the pores of the porous anode body, and is formed on the inner wall surface of the complicated holes.
  • the first conductive polymer layer can be formed up to.
  • the density of the first conductive polymer layer obtained by this method tends to be low.
  • the thickness of the second conductive polymer layer is made thicker than the first conductive polymer layer, The withstand voltage characteristics and leakage current characteristics of the entire conductive polymer layer can be further improved.
  • the average thickness of the second conductive polymer layer is, for example, 5 to 100 ⁇ m, preferably 10 to 50 ⁇ m.
  • the ratio of the average thickness of the second conductive polymer layer to the average thickness of the first conductive polymer layer is, for example, 5 times or more, preferably 10 times or more. When the average thickness or the ratio of the average thickness is in such a range, the strength of the entire conductive polymer layer can be increased.
  • the carbon layer should just have electroconductivity, for example, can be comprised using electroconductive carbon materials, such as graphite.
  • electroconductive carbon materials such as graphite.
  • a composition containing silver powder and a binder resin such as an epoxy resin
  • the structure of the cathode layer is not limited to this, and any structure having a current collecting function may be used.
  • the anode terminal and the cathode terminal can be made of metal such as copper or copper alloy, for example.
  • an epoxy resin can be used, for example.
  • the electrolytic capacitor of the present invention is not limited to the electrolytic capacitor having the above structure, and can be applied to electrolytic capacitors having various structures. Specifically, the present invention can be applied to a wound type electrolytic capacitor, an electrolytic capacitor using a sintered body of metal powder as an anode body, and the like.
  • the electrolytic capacitor includes a step (first step) of forming a first conductive polymer layer on the dielectric layer of the anode body on which the dielectric layer is formed, and a second conductive property on the first conductive polymer layer. It can manufacture by passing through the process (2nd process) of forming a polymer layer.
  • the method for manufacturing an electrolytic capacitor may include a step of preparing an anode body and a step of forming a dielectric layer on the anode body prior to the first step.
  • the manufacturing method may further include a step of forming a cathode layer.
  • the anode body is formed by a known method according to the type of the anode body.
  • the anode body can be prepared, for example, by roughening the surface of a foil-like or plate-like substrate formed of a conductive material.
  • the surface roughening may be performed by forming irregularities on the surface of the base material.
  • the surface of the base material may be etched by etching the base material surface (for example, electrolytic etching).
  • it may be performed by depositing particles of a conductive material.
  • a powder of a valve action metal is prepared, and a molded body formed into a desired shape (for example, a block shape) in a state where one end side of the longitudinal direction of the anode lead of the rod-shaped body is embedded in this powder. obtain.
  • a molded body formed into a desired shape (for example, a block shape) in a state where one end side of the longitudinal direction of the anode lead of the rod-shaped body is embedded in this powder.
  • a dielectric layer is formed on the anode body.
  • the dielectric layer is formed by anodizing the anode body by chemical conversion treatment or the like.
  • Anodization can be performed by a known method such as chemical conversion treatment.
  • the chemical conversion treatment for example, by immersing the anode body in the chemical conversion liquid, the chemical conversion liquid is impregnated up to the surface of the anode body (the inner wall surface of the hole or the depression on the inner side), and the anode liquid is used as the anode.
  • This can be performed by applying a voltage between the cathode immersed in the cathode.
  • an aqueous phosphoric acid solution is preferably used as the chemical conversion solution.
  • Step of forming first conductive polymer layer In the first step, a first conductive polymer layer containing a first conductive polymer and a silane compound is formed so as to cover at least a part of the dielectric layer.
  • the first conductive polymer layer may be formed using a dispersion or a solution containing the components of the first conductive polymer layer such as the first conductive polymer, the silane compound, and the dopant.
  • the first conductive polymer layer is formed by polymerizing a precursor of the first conductive polymer. That is, the precursor of the first conductive polymer layer is polymerized on the dielectric layer.
  • the dielectric layer is formed on the surface of the anode body having many holes and pits (the surface including the holes and pit inner walls of the anode body). Therefore, by polymerizing the precursor on the dielectric layer, it becomes easy to form the first conductive polymer layer deep inside the holes and pits.
  • the polymerization can be performed by chemical oxidative polymerization. The polymerization may be performed in the presence of a dopant.
  • Polymerization may be performed in the presence of a silane compound.
  • the first conductive polymer layer is formed by polymerizing the precursor of the first conductive polymer, and the first conductive polymer layer is coated or impregnated with the silane compound.
  • the molecular layer may contain a silane compound.
  • the first conductive polymer layer formed by polymerization in the presence of the silane compound may be coated or impregnated with the silane compound.
  • Polymerization may be performed in the presence of a catalyst in order to promote polymerization.
  • a catalyst ferrous sulfate, ferric sulfate and the like can be used.
  • oxidizing agents such as persulfate (Ammonium persulfate, sodium persulfate, potassium persulfate, etc.) and a sulfonic acid metal salt.
  • the polymerization may be performed in the presence of a dopant and / or a silane compound as necessary.
  • a solvent that dissolves or disperses the precursor of the conductive polymer may be used.
  • the first solvent include water, water-soluble organic solvents, and mixtures thereof.
  • Step of forming second conductive polymer layer In the second step, the second conductive polymer layer containing the second conductive polymer and the basic compound is covered on at least a part of the first conductive polymer layer on the first conductive polymer layer.
  • the second conductive polymer layer may be formed by polymerizing a precursor of the second conductive polymer on the first conductive polymer layer. The polymerization may be performed in the presence of a dopant.
  • the treatment liquid may further contain a dopant.
  • the second conductive polymer layer is formed, for example, by impregnating the anode body obtained in the first step with a treatment liquid and drying.
  • the anode body obtained in the first step is immersed in the treatment liquid, or the treatment liquid is dropped onto the anode body obtained in the first step, thereby impregnating the treatment liquid into the anode body.
  • the treatment liquid containing the second conductive polymer may contain a basic compound, but the second conductive polymer and the basic compound may be separately deposited on the first conductive polymer layer. Good.
  • the first treatment liquid containing the basic compound is impregnated into the anode body obtained in the first step and dried, and then the second treatment liquid containing the second conductive polymer is impregnated. And drying (step a).
  • step a a second conductive polymer layer containing the second conductive polymer and the basic compound is formed.
  • the anode body When the anode body is dried in the second step or step a, the anode body may be heated as necessary.
  • Step a may be repeated.
  • a second conductive polymer layer in which the first layer containing the basic compound and the second layer containing the second conductive polymer are alternately stacked can be formed.
  • the coverage of the first conductive polymer layer with the second conductive polymer layer can be enhanced.
  • the solvent (second solvent) used in the solution is preferably water, and a mixed solvent of water and an organic solvent may be used.
  • the organic solvent include aliphatic alcohols having 1 to 5 carbon atoms, acetone, acetonitrile, benzonitrile, N, N-dimethylformamide, dimethyl sulfoxide and the like.
  • the organic solvent may be used alone or in combination of two or more.
  • a dispersion or solution containing the second conductive polymer as the treatment liquid containing the second conductive polymer (such as the second treatment liquid).
  • a treatment liquid includes a second conductive polymer and a solvent (third solvent).
  • the treatment liquid containing the second conductive polymer may contain a basic compound and / or a second dopant as necessary.
  • the third solvent include water, organic solvents, and mixtures thereof. The organic solvent can be appropriately selected from those exemplified as the second solvent.
  • the second conductive polymer and / or dopant dispersed in the dispersion is preferably particles (or powder).
  • the average particle size of the particles dispersed in the dispersion is preferably 5 to 500 nm.
  • the average particle size can be determined from, for example, a particle size distribution by a dynamic light scattering method.
  • the treatment liquid containing the second conductive polymer can be obtained by dispersing or dissolving the second conductive polymer and, if necessary, a dopant and / or a basic compound in a solvent.
  • impurities are dispersed from the dispersion liquid (dispersion a) in which the dopant is mixed, or from the polymerization liquid obtained by polymerizing the second conductive polymer in the presence of the dopant.
  • the removed dispersion liquid (dispersion liquid b) may be used as a treatment liquid containing the second conductive polymer.
  • a 3rd solvent may be used as a solvent at the time of superposition
  • the formed second conductive polymer layer may be coated or impregnated with the second silane compound.
  • the second silane compound may be used by adding to a treatment liquid containing a second conductive polymer such as a second treatment liquid, or may be used by adding to the first treatment liquid.
  • the first treatment liquid and the second treatment liquid may contain known additives as necessary. You may add an acid component to a 1st process liquid as needed.
  • a cathode layer is formed by sequentially laminating a carbon layer and a silver paste layer on the surface (preferably of the formed conductive polymer layer) of the anode body obtained in the second step.
  • Example 1 The electrolytic capacitor 1 shown in FIG. 1 was produced in the following manner, and its characteristics were evaluated.
  • Tantalum powder was prepared, and the powder was molded into a rectangular parallelepiped in a state where one end side in the longitudinal direction of the rod-shaped anode lead 16 was embedded in the metal powder. And this was sintered and the anode body 11 in which one end of the anode lead 16 was embedded was prepared.
  • Step of forming the dielectric layer 12 The anode body 11 is immersed in a phosphoric acid solution having a concentration of 0.02% by mass and a voltage of 100 V is applied, whereby the dielectric layer 12 made of Ta2O5 is formed on the surface of the anode body 11. Formed.
  • first conductive polymer layer 1 part by mass of 3,4-ethylenedioxythiophene which is a polymerizable monomer, and 0.9 part by mass of ferric paratoluenesulfonate as a dopant component
  • 5 parts by mass of 3-glycidoxypropyltrimethoxysilane as the first silane compound and 11.5 parts by mass of n-butanol as the first solvent were mixed to prepare a solution.
  • the anode body 11 on which the dielectric layer 12 obtained in (2) was formed was immersed in the obtained solution, pulled up, and then dried.
  • the first conductive polymer layer was formed so as to cover the surface of the dielectric layer 12 by further repeating the immersion in the solution and the drying. It was about 1 micrometer when the average thickness of the 1st conductive polymer layer was measured with the scanning electron microscope (SEM).
  • Anode body 11 obtained in (3) is an aqueous solution containing N, N-dimethyloctylamine as a basic compound at a concentration of 5% by mass (first treatment). Dipped in a liquid), taken out and dried. Next, the anode body is applied to a second treatment liquid in a dispersion liquid containing poly 3,4-ethylenedioxythiophene (PEDOT) as the second conductive polymer and polystyrene sulfonic acid (PSS) as the second dopant. Immersion, removal, and drying.
  • PEDOT poly 3,4-ethylenedioxythiophene
  • PSS polystyrene sulfonic acid
  • the second conductive polymer is so covered as to cover the surface of the first conductive polymer layer by alternately immersing and drying in the first treatment liquid and dipping and drying in the second treatment liquid a plurality of times. A layer was formed.
  • the average thickness of the second conductive polymer layer was measured in the same manner as in the case of the first conductive polymer layer, it was about 30 ⁇ m. In this way, the first conductive polymer layer and the second conductive polymer layer were formed so as to cover the surface of the dielectric layer 12.
  • the 2nd process liquid was prepared in the following procedure.
  • the rough first conductive polymer layer was thinly formed on the dielectric layer side. It was.
  • a dense second conductive polymer layer is formed on the opposite side of the dielectric layer so as to cover the surface of the first conductive polymer layer.
  • Cathode layer forming step At least a second conductive polymer is applied to the anode body 11 obtained in (4) above by applying a dispersion of graphite particles dispersed in water and drying in the air. A carbon layer 14 was formed on the surface of the layer. Drying was performed at 130 to 180 ° C. for 10 to 30 minutes.
  • a silver paste containing silver particles and a binder resin (epoxy resin) is applied to the surface of the carbon layer 14, and the binder resin is cured by heating at 150 to 200 ° C. for 10 to 60 minutes. Formed. Thus, a cathode layer composed of the carbon layer 14 and the silver paste layer 15 was formed.
  • An electrolytic capacitor was manufactured by disposing an anode terminal 17, an adhesive layer 18, and a cathode terminal 19 on the anode body obtained in (5) and sealing with an exterior resin.
  • Example 2 An electrolytic capacitor was fabricated in the same manner as in Example 1 except that 1,8-diaminooctane was used in place of N, N-dimethyloctylamine in (4).
  • Comparative Example 1 In (4), electrolysis was carried out in the same manner as in Example 1 except that the second conductive polymer layer was formed by repeating immersion in the second treatment liquid and drying without using the first treatment liquid. A capacitor was produced.
  • Comparative Example 3 In (3), an electrolytic capacitor was produced in the same manner as in Comparative Example 1 except that the first silane compound was not used. (Evaluation) The following evaluation was performed using the electrolytic capacitors of Examples and Comparative Examples.
  • Cap Capacity remaining rate
  • Table 1 shows the results of Examples and Comparative Examples. Examples 1 and 2 are A1 and A2, and Comparative Examples 1 and 3 are B1 and B3.
  • the electrolytic capacitor of the example As shown in Table 1, in the electrolytic capacitor of the example, a high withstand voltage characteristic was obtained as compared with the comparative example. In addition, the electrolytic capacitor of the example had a higher capacitance value than the comparative example even after a high voltage was applied for a long time, and had a long life and excellent reliability.
  • the electrolytic capacitor according to an embodiment of the present invention can be used in various applications that require high withstand voltage characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

電解コンデンサは、陽極体、前記陽極体上に形成された誘電体層、前記誘導体層の少なくとも一部を覆う第1導電性高分子層、および前記第1導電性高分子層の少なくとも一部を覆う第2導電性高分子層を備え、前記第1導電性高分子層は、第1導電性高分子と、第1シラン化合物とを含み、前記第2導電性高分子層は、第2導電性高分子と、塩基性化合物とを含む。前記塩基性化合物は、アミン化合物であってもよい。以上の構成により、この電解コンデンサは優れた耐電圧特性を有する。

Description

電解コンデンサおよびその製造方法
 本発明は、導電性高分子層を有する電解コンデンサおよびその製造方法に関する。
 小型かつ大容量で低ESRのコンデンサとして、誘電体層を形成した陽極体と、誘電体層の少なくとも一部を覆うように形成された導電性高分子層とを具備する電解コンデンサが有望視されている。導電性高分子層は、π共役系高分子などの導電性高分子を含んでいる。
 電解コンデンサの性能を高める観点から、複数の導電性高分子層を形成することが提案されている。特許文献1では、電解コンデンサを作製する際に、陽極酸化処理した陽極体を、導電性高分子のモノマー、酸化剤などを含む溶液に浸漬させて、モノマーを重合することで第1導電性高分子層を形成し、引き続き導電性高分子分散液を用いて第2導電性高分子層を形成している。特許文献2では、導電性高分子層の密着性を高める観点から、第1導電性高分子層と第2導電性高分子層との間や、第2導電性高分子層内にアミン化合物の層を設けることが提案されている。
 このような導電性高分子層を備えた電解コンデンサは、年々、使用電圧の範囲が高まっており、電解コンデンサの耐電圧特性の更なる改善が求められている。
特表2002-524593号公報 特開2012-043958号公報
 本願の第1発明は、陽極体、前記陽極体上に形成された誘電体層、前記誘導体層の少なくとも一部を覆う第1導電性高分子層、および前記第1導電性高分子層の少なくとも一部を覆う第2導電性高分子層を備え、前記第1導電性高分子層は、第1導電性高分子と、第1シラン化合物とを含み、前記第2導電性高分子層は、第2導電性高分子と、塩基性化合物とを含む、電解コンデンサである。
 本願の第1発明によると、電解コンデンサの耐電圧特性を向上することができる。
 本願の第2発明は、誘電体層が形成された陽極体の前記誘電体層上に、第1導電性高分子と、第1シラン化合物とを含み、かつ前記誘電体層の少なくとも一部を覆う第1導電性高分子層を形成する第1工程と、前記第1導電性高分子層上に、第2導電性高分子と、塩基性化合物とを含み、かつ前記第1導電性高分子層の少なくとも一部を覆う第2導電性高分子層を形成する第2工程と、を含む電解コンデンサの製造方法に関する。
 本願の第2発明によると、耐電圧特性が優れた電解コンデンサを製造することができる。
本発明の一実施形態に係る電解コンデンサの構造を概略的に示す断面図である。
 [電解コンデンサ]
 本発明の一実施形態に係る電解コンデンサは、陽極体、陽極体上に形成された誘電体層、誘導体層の少なくとも一部を覆う第1導電性高分子層、および第1導電性高分子層の少なくとも一部を覆う第2導電性高分子層を備える。第1導電性高分子層は、第1導電性高分子と、シラン化合物(第1シラン化合物)とを含む。第2導電性高分子層は、第2導電性高分子と、塩基性化合物とを含む。
 このような構成により、本実施形態では、電解コンデンサの耐電圧特性が向上する。その詳細は定かではないが、次のような要因によるものと考えられる。
 第1に、第1導電性高分子層に含まれる第1シラン化合物と、第2導電性高分子層に含まれる塩基性化合物とが、相互作用または結合することにより、第1導電性高分子層と第2導電性高分子層との間における密着性が高まると考えられる。
 また、第1シラン化合物を含む第1導電性高分子層は、溶媒に対する親和性が低くなる傾向があり、第1導電性高分子層上に第2導電性高分子層を被覆し難い。しかし、第2導電性高分子層を形成する際に、アミン化合物が第1導電性高分子層と接触して、溶媒に対する親和性が改善する。よって、第2の理由として、第2導電性高分子層を形成する際に使用する第2導電性高分子を含む処理液で、第1導電性高分子層の表面を覆い易くなり、第1導電性高分子層の第2導電性高分子層に対する被覆性が改善することが考えられる。
 図1は、本発明の一実施形態に係る電解コンデンサの構造を概略的に示す断面図である。図1において、電解コンデンサ100は、表面に誘電体層12が形成された陽極体11と、誘電体層12上に形成された導電性高分子層13と、導電性高分子層13上に形成された陰極層と、を有するコンデンサ素子10を備える。陰極層は、陰極引出層としてのカーボン層14および銀ペースト層15を有する。
 電解コンデンサ100は、さらに、陽極リード16と、陽極端子17と、接着層18と、陰極端子19とを備える。陽極リード16は、弁作用金属(タンタル、ニオブ、チタン、アルミニウムなど)からなる棒状体であり、その一端は陽極体11に埋設されており、他端がコンデンサ素子10の外部へ突出するように配置される。陽極端子17は、溶接により、その一部が陽極リード16に接続される。また、陰極端子19は、導電性の接着剤からなる接着層18を介して、コンデンサ素子10の最外層である銀ペースト層15と接続するように配置される。
 電解コンデンサ100は、外装樹脂20をさらに備える。外装樹脂20は、陽極端子17の一部および陰極端子19の一部が外装樹脂20から露出するように、陽極リード16、陽極端子17、接着層18および陰極端子19が配置されたコンデンサ素子10を封止する。
 導電性高分子層13は、第1導電性高分子層と第2導電性高分子層とを備える。第1導電性高分子層は、誘電体層12を覆うように形成されており、第2導電性高分子層は、第1導電性高分子層を覆うように形成されている。第1導電性高分子層は、必ずしも誘電体層12の全体(表面全体)を覆う必要はなく、誘電体層12の少なくとも一部を覆うように形成されていればよい。同様に、第2導電性高分子層は、必ずしも第1導電性高分子層
の全体(表面全体)を覆う必要はなく、第1導電性高分子層の少なくとも一部を覆うように形成されていればよい。一般に、導電性高分子を含む層を、固体電解質層と称する場合がある。
 誘電体層12は、陽極体11の表面に沿って形成されるため、誘電体層12の表面には、陽極体11の表面の形状に応じて、凹凸が形成されている。第1導電性高分子層は、このような誘電体層12の凹凸を埋めるように形成することが好ましい。
 以下に、電解コンデンサの構成について、より詳細に説明する。
 (陽極体)
 陽極体としては、表面積の大きな導電性材料が使用できる。導電性材料としては、弁作用金属、弁作用金属を含む合金、および弁作用金属を含む化合物などが例示できる。これらの材料は一種を単独でまたは二種以上を組み合わせて使用できる。弁作用金属としては、例えば、タンタル、ニオブ、チタン、アルミニウムが好ましく使用される。陽極体は、例えば、導電性材料の粒子の成形体またはその焼結体、導電性材料で形成された基材(箔状または板状の基材など)の表面を粗面化したものなどが挙げられる。なお、焼結体は、多孔質構造を有している。
 (誘電体層)
 誘電体層は、陽極体表面の導電性材料を、化成処理などにより陽極酸化することで形成される。陽極酸化により、誘電体層は導電性材料(特に、弁作用金属)の酸化物を含む。例えば、弁作用金属としてタンタルを用いた場合の誘電体層はTa2O5を含み、弁作用金属としてアルミニウムを用いた場合の誘電体層はAl2O3を含む。尚、誘電体層はこれに限らず、誘電体として機能するものであれば良い。
 陽極体の表面が粗面化されている場合や、陽極体が多孔質化している場合、誘電体層は、陽極体の表面(より内側のピットの内壁面を含む)に沿って形成される。
 (第1導電性高分子層)
 第1導電性高分子層は、導電性高分子(第1導電性高分子)と、シラン化合物(第1シラン化合物)とを含み、さらにドーパント(第1ドーパント)を含んでもよい。第1導電性高分子層において、ドーパントは、導電性高分子にドープされた状態で含まれていてもよく、導電性高分子と結合した状態で含まれていてもよい。また、第1導電性高分子層は、1層で形成されていてもよく、複数の層で形成されていてもよい。
 (導電性高分子)
 導電性高分子としては、電解コンデンサに使用される公知のもの、例えば、π共役系導電性高分子などが使用できる。このような導電性高分子としては、例えば、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、および/またはポリチオフェンビニレンなどを基本骨格とする高分子が挙げられる。
 このような高分子には、単独重合体、二種以上のモノマーの共重合体、およびこれらの誘導体(置換基を有する置換体など)も含まれる。例えば、ポリチオフェンには、ポリ(3,4-エチレンジオキシチオフェン)などが含まれる。このような導電性高分子は、導電性が高く、ESR特性に優れている。
 これらの導電性高分子は、それぞれ、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 導電性高分子の重量平均分子量は、特に限定されないが、例えば1,000~1,000,000である。
 導電性高分子は、例えば、導電性高分子の前駆体を重合することにより得ることができる。ドーパントが結合またはドープされた導電性高分子は、ドーパントの存在下で、導電性高分子の前駆体を重合させることにより得ることができる。重合は、シラン化合物の存在下で行ってもよい。導電性高分子の前駆体としては、導電性高分子を構成するモノマー、および/またはモノマーがいくつか連なったオリゴマーなどが例示できる。重合方法としては、化学酸化重合および電解酸化重合のどちらも採用することができる。導電性高分子は、誘電体層を有する陽極体に付着させる前に、予め合成しておいてもよい。化学酸化重合の場合、導電性高分子の重合を、誘電体層上で行ってもよい。
 第1導電性高分子は、誘電体層上で、第1導電性高分子の前駆体を重合して得られたものであることが好ましい。この場合、陽極体の表面の孔やピットの内壁面にまで入りこんで第1導電性高分子層を形成し易く、また、誘電体層と第1導電性高分子層との密着性や被覆性を高め易い。
 (シラン化合物)
 シラン化合物(第1シラン化合物)としては、特に制限されないが、例えば、ケイ素含有有機化合物が使用できる。シラン化合物は、少なくとも一部が、第1導電性高分子層中に取り込まれていればよい。シラン化合物は、第1導電性高分子どうし、あるいは、第1導電性高分子と第1ドーパント等の他の成分との間に介在して、これらと化学的に結合していてもよい。この場合、第1導電性高分子の結びつきが強固なものとなり、さらに耐電圧特性が向上する。また、シラン化合物またはこれに由来するケイ素含有成分の一部は、誘電体層と第1導電性高分子層との界面に存在してもよい。この場合、シラン化合物は、密着性の向上に寄与する。
 シラン化合物としては、例えば、シランカップリング剤を用いることができる。シランカップリング剤は、反応性の有機基と、加水分解縮合基とを有する。反応性の有機基としては、エポキシ基、ハロゲン化アルキル基、アミノ基、ウレイド基、メルカプト基、イソシアネート基、重合性基などが好ましい。重合性基としては、(メタ)アクリロイル基、ビニル基などが挙げられる。シラン化合物として、このような反応性の有機基を有するシランカップリング剤を用いる場合、反応性の有機基と、塩基性化合物とが相互作用したり、反応したりし易くなる。よって、第1導電性高分子層と第2導電性高分子層との密着性をより高め易い。なお、アクリロイル基およびメタクリロイル基を、(メタ)アクリロイル基と総称する。加水分解縮合基としては、例えば、メトキシ基、エトキシ基、プロポキシ基などのアルコキシ基が好ましい。なお、シランカップリング剤には、その加水分解物や縮合物を含むものとする。
 エポキシ基を有するシランカップリング剤としては、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン(γ-グリシドキシプロピルトリメトキシシラン)、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシランなどが例示できる。ハロゲン化アルキル基を有するシランカップリング剤としては、3-クロロプロピルトリメトキシシランなどが例示される。
 アミノ基を有するシランカップリング剤としては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン、またはこれらの塩(塩酸塩など)などが例示できる。ウレイド基を有するシランカップリング剤としては、例えば、3-ウレイドプロピルトリエトキシシランまたはその塩(塩酸塩など)などが挙げられる。
 メルカプト基を有するシランカップリング剤としては、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィドなどが例示できる。イソシアネート基を有するシランカップリング剤としては、3-イソシアネートプロピルトリエトキシシランなどが例示できる。
 (メタ)アクリロイル基を有するシランカップリング剤としては、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン(γ-アクリロキシプロピルトリメトキシシラン)などが例示できる。ビニル基を有するシランカップリング剤としては、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、p-スチリルトリメトキシシランなどが例示できる。
 これらのシラン化合物は、一種を単独でまたは二種以上を組み合わせて用いてもよい。ESRを低減できるとともに、高容量化し易い観点から、シラン化合物のうち、エポキシ基や(メタ)アクリロイル基を有するシランカップリング剤が好ましい。
 第1導電性高分子層がシラン化合物を含むことは、例えば、エネルギー分散型X線分光法(EDX)や誘導結合プラズマ分析(ICP)などにより分析することができる。
 第1導電性高分子層において、シラン化合物の量は、第1導電性高分子100質量部に対して、例えば、1~20質量部であり、3~15質量部であることが好ましい。シラン化合物の量がこのような範囲である場合、耐電圧特性をさらに高めることができる。
 (ドーパント)
 第1ドーパントとしては、例えば、低分子ドーパント、および高分子ドーパントが挙げられる。第1導電性高分子層は、一種のドーパントを含んでもよく、二種以上のドーパントを含んでもよい。
 第1ドーパントとしては、例えば、スルホン酸基、カルボキシ基、リン酸基(-O-P(=O)(-OH)2)、および/またはホスホン酸基(-P(=O)(-OH)2)などのアニオン性基を有するものが使用される。第1ドーパントは、アニオン性基を一種有してもよく、二種以上有してもよい。
 アニオン性基としては、スルホン酸基が好ましく、スルホン酸基とスルホン酸基以外のアニオン性基との組み合わせでもよい。
 低分子ドーパントとしては、上記のアニオン性基を有する低分子化合物(モノマー化合物))を用いることができる。このような化合物のうち、スルホン酸基を有する化合物の具体例としては、ベンゼンスルホン酸、p-トルエンスルホン酸などのアルキルベンゼンスルホン酸、ナフタレンスルホン酸、およびアントラキノンスルホン酸などが挙げられる。
 高分子ドーパントのうち、スルホン酸基を有する高分子ドーパントとしては、スルホン酸基を有するモノマー(第1モノマー)の単独重合体、第1モノマーと他のモノマー(第2モノマー)との共重合体、スルホン化フェノール樹脂(スルホン化フェノールノボラック樹脂など)などが例示できる。高分子ドーパントにおいて、第1モノマーおよび第2モノマーは、それぞれ、一種を単独で用いてもよく、二種以上を組み合わせて使用してもよ
い。
 第1モノマーとしては、ビニルスルホン酸、アリルスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、スチレンスルホン酸、イソプレンスルホン酸などが例示できる。これらのうち、スチレンスルホン酸などのスルホン酸基を有する芳香族ビニルモノマーを少なくとも用いることが好ましい。第2モノマーとしては、アニオン性基を有さないモノマーなどを用いることもできるが、スルホン酸基以外のアニオン性基を有するモノマーを用いることが好ましい。
 高分子ドーパントとしては、スルホン酸基を有するポリエステルなども好ましい。スルホン酸基を有するポリエステルとしては、例えば、第1モノマーとして、スルホン酸基を有するポリカルボン酸および/またはスルホン酸基を有するポリオールを用い、第2モノマーとして、ポリカルボン酸およびポリオールを用いたポリエステルなどが挙げられる。第1モノマーとしては、スルホン酸基を有するジカルボン酸が好ましく使用される。スルホン酸基を有するジカルボン酸としては、例えば、スルホン化フタル酸、スルホン化イソフタル酸、スルホン化テレフタル酸などの芳香族ジカルボン酸が好ましい。第2モノマーとしてのポリカルボン酸としては、スルホン酸基を有さないもの、例えば、フタル酸、イソフタル酸、テレフタル酸などの芳香族ジカルボン酸などが好ましい。第2モノマーとしてのポリオールとしては、スルホン酸基を有さないもの、例えば、エチレングリコール、プロピレングリコールなどのアルキレングリコールなどが好ましい。
 なお、ドーパントまたは高分子ドーパントの構成モノマーにおいて、アニオン性基は、解離した状態でアニオンを生成することができる限り特に制限されず、上記のアニオン性基の塩、またはエステルなどであってもよい。
 誘電体層に対する第1導電性高分子層の被覆性を高める観点からは、低分子ドーパントなどの比較的分子量が小さい第1ドーパントを用いることが好ましい。この場合、第1シラン化合物の割合を多くすることで、第1ドーパントの脱ドープを抑制してもよい。また、塩基性化合物による脱ドープを抑制する観点から、高分子ドーパントなどの比較的分子量が大きい第1ドーパントを用いる場合も好ましい。この場合、第1導電性高分子層におけるシラン化合物の割合を少なくすることもできる。
 高分子ドーパントの重量平均分子量は、それぞれ、例えば、1,000~1,000,000である。このような分子量を有する高分子ドーパントを用いると、ESRを低減し易い。
 第1導電性高分子層に含まれるドーパントの量は、第1導電性高分子100質量部に対して、10~1,000質量部であることが好ましい。
 第1導電性高分子層は、必要に応じて、さらに、公知の添加剤、および/または導電性高分子以外の公知の導電性材料(二酸化マンガン、TCNQ錯塩など)を含んでもよい。誘電体層と第1導電性高分子層との間には、密着性を高める層などを介在させてもよい。
 (第2導電性高分子層)
 第2導電性高分子層は、導電性高分子(第2導電性高分子)と、塩基性化合物とを含み、さらにドーパント(第2ドーパント)を含んでもよい。第2導電性高分子層において、ドーパントは、導電性高分子にドープされた状態で含まれていてもよく、導電性高分子と結合した状態で含まれていてもよい。
 導電性高分子およびドーパントとしては、それぞれ、第1導電性高分子層について例示したものから選択できる。第2導電性高分子の場合、導電性高分子の前駆体の重合は、ドーパントおよび/または塩基性化合物の存在下で行ってもよい。第2導電性高分子は、第1導電性高分子層に付着させる前に、予め合成しておくことが好ましい。例えば、第2導電性高分子層は、第2導電性高分子を含む処理液、例えば、分散液または溶液を用いて形成することが好ましい。この場合、第2導電性高分子層を緻密化することができるため、耐電圧特性をさらに高めることができる。
 このように、第2導電性高分子層は、第1導電性高分子層よりも緻密であることが好ましい。導電性高分子層の緻密性は、例えば、双方の導電性高分子層の断面の電子顕微鏡写真から粗密に基づいて評価することができる。
 第2導電性高分子層に含まれるドーパントの量は、第2導電性高分子100質量部に対して、10~1,000質量部であることが好ましい。
 (塩基性化合物)
 塩基性化合物としては、アンモニアなどの無機塩基の他、アミン化合物などの有機塩基が例示される。導電性の低下を抑制する効果が高い観点から、塩基性化合物のうち、アミン化合物が好ましい。アミン化合物は、1級アミン、2級アミン、3級アミンのいずれであってもよい。アミン化合物としては、脂肪族アミン、環状アミンなどが例示できる。塩基性化合物は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 脂肪族アミンとしては、エチルアミン、ジエチルアミン、トリエチルアミン、N、N-ジメチルオクチルアミン、N,N-ジエチルオクチルアミンなどのアルキルアミン;エタノールアミン、2-エチルアミノエタノール、ジエタノールアミンなどのアルカノールアミン;アリルアミン;N-エチルエチレンジアミン、1,8-ジアミノオクタンなどのアルキレンジアミンなどが例示できる。脂環族アミンとしては、例えば、アミノシクロヘキサン、ジアミノシクロヘキサン、イソホロンジアミンなどが挙げられる。芳香族アミンとしては、例えば、アニリン、トルイジンなどが挙げられる。
 環状アミンとしては、ピロール、イミダゾリン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリミジン、トリアジンなどの5~8員(好ましくは5員または6員)の窒素含有環骨格を有する環状アミンが好ましい。環状アミンは、窒素含有環骨格を1つ有してもよく、2つ以上(例えば、2または3個)有してもよい。環状アミンが2つ以上の窒素含有環骨格を有する場合、窒素含有環骨格は同じであってもよく、異なっていてもよい。
 アミン化合物は、必要に応じて、置換基を有していてもよい。
 第2導電性高分子層がアミン化合物を含むことは、例えば、ガスクロマグトラフィー(GC)により分析することができる。
 ESRを低減し易い観点から、第2導電性高分子層において、塩基性化合物の量は、導電性高分子100質量部に対して、5~200質量部または10~100質量部であることが好ましい。
 第2導電性高分子層は、シラン化合物(第2シラン化合物)を含むことができる。ただし、導電性高分子層全体のESRを改善する観点からは、第2導電性高分子層は、シラン化合物を含まないか、もしくは、含む場合でも、第1導電性高分子層中のシラン化合物(第1シラン化合物)の割合が、第2導電性高分子層中のシラン化合物(第2シラン化合物)の割合よりも多いことが好ましい。この場合、第1導電性高分子層中のドーパントが、第2導電性高分子に含まれる塩基性化合物で脱ドープされることを抑制し易くなる。また、第2導電性高分子層中のシラン化合物の割合が少ないことで、ESRの増大を抑制し易くなる。
 第1ドーパントの脱ドープは、低分子ドーパントなどの分子量が比較的小さなドーパントを用いた場合に、特に顕著となり易い。しかし、誘電体層表面のできるだけ多くの領域に第1導電性高分子層を形成するには、このような第1ドーパントを用いることが有利である。一般に、ドーパントの脱ドープが起こるとESRが増加する。そのため、このような場合には、第2導電性高分子層に、高分子ドーパントなどの分子量が比較的大きな第2ドーパントを用いることで、第2導電性高分子層からの脱ドープを抑制することができ、ESRの増加を抑制できる。また、第2導電性高分子層を、予め重合した第2導電性高分子を用いて形成する場合には、優れた耐電圧特性が得られ易い。そのため、第2導電性高分子層中のシラン化合物の割合を少なくすることで、ESRの抑制効果が顕著になる。よって、第1ドーパントよりも分子量が大きい第2ドーパントを用いる場合に、第2導電性高分子層中の第2シラン化合物の割合を小さくする(もしくは第2シラン化合物を含まないようにする)ことが好ましい。
 第2シラン化合物としては、第1シラン化合物について例示したものから適宜選択できる。
 第2導電性高分子層は、必要に応じて、さらに、公知の添加剤、導電性高分子以外の公知の導電性材料(二酸化マンガン、TCNQ錯塩など)を含んでもよい。
 (その他)
 第2導電性高分子層は、1層で形成されていてもよく、複数の層で形成されていてもよい。
 第2導電性高分子層は、塩基性化合物を含む第1層と、第1層上に形成された第2導電性高分子を含む第2層とを含むことが好ましい。第2層は、少なくとも第2導電性高分子を含んでいればよく、第2導電性高分子と塩基性化合物とを含んでもよい。第2層は、さらに第2ドーパントを含むことができる。第1導電性高分子層と第2層はいずれもアニオン性を帯び易く、第1導電性高分子層上に直接第2層を形成しようとしても被覆性が低い。第1層を設けることで、第1導電性高分子層と第2層との親和性を高めることができるため、第1導電性高分子層に対する第2導電性高分子層の被覆性をさらに高め易くなる。
 第2導電性高分子層は、複数の第1層と、複数の第2層とを含んでもよい。第1層と第2層とは交互に形成することが望ましい。第2層のみを積層しようとしても、電荷の反発により下層に対して上層を被覆し難い。第2層間に第1層を配することで、第1層を介して、下層の第2層を上層の第2層で十分に被覆することができるため、第2導電性高分子層の被覆性をさらに高め易くなる。
 第2導電性高分子層において、第1層の塩基性化合物は、第1層を形成する際や第2層を積層する際などに、第2層に移行することがある。第2導電性高分子層において、第1層中の塩基性化合物の濃度は、第2層中の塩基性化合物の濃度よりも高くてもよい。
 漏れ電流を抑制したり、耐電圧特性をさらに高めたりする観点からは、第2導電性高分子層の厚み(平均厚み)は、第1導電性高分子層の厚み(平均厚み)よりも大きいことが好ましい。この構成は、第1および第2導電性高分子層の構成や役割が互いに異なる場合に、特に有効である。好ましい実施形態では、例えば、誘電体層上で第1導電性高分子の前駆体を重合して第1導電性高分子を生成させ、生成した第1導電性高分子を、誘電体層を覆うように付着させることで第1導電性高分子層を形成する。そして、第2導電性高分子層を、第2導電性高分子を含む処理液を用いて形成する。このような場合に、第1導電性高分子層および第2導電性高分子層の厚みが上記のような関係であることが有効である。誘電体層上での重合により第1導電性高分子層を形成する場合、生成した第1導電性高分子が、多孔質である陽極体の孔内へ入り込み易く、入り組んだ孔の内壁面にまで第1導電性高分子層を形成することができる。しかし、この方法で得られた第1導電性高分子層は、密度が低くなり易い。そのため、第2導電性高分子層を、予め重合した第2導電性高分子を用いて形成し、第2導電性高分子層の厚さを第1導電性高分子層より厚くすることで、導電性高分子層全体としての耐電圧特性や漏れ電流特性をさらに改善することができる。
 第2導電性高分子層の平均厚みは、例えば、5~100μm、好ましくは10~50μmである。第1導電性高分子層の平均厚みに対する第2導電性高分子層の平均厚みの比は、例えば、5倍以上、好ましくは10倍以上である。平均厚みや平均厚みの比がこのような範囲である場合、導電性高分子層全体の強度を高めることができる。
 (陰極層)
 カーボン層は、導電性を有していればよく、例えば、黒鉛などの導電性炭素材料を用いて構成することができる。銀ペースト層には、例えば、銀粉末とバインダ樹脂(エポキシ樹脂など)を含む組成物を用いることができる。なお、陰極層の構成は、これに限られず、集電機能を有する構成であればよい。
 陽極端子および陰極端子は、例えば銅または銅合金などの金属で構成することができる。また、樹脂外装体の素材としては、例えばエポキシ樹脂を用いることができる。
 本発明の電解コンデンサは、上記構造の電解コンデンサに限定されず、様々な構造の電解コンデンサに適用することができる。具体的に、巻回型の電解コンデンサ、金属粉末の焼結体を陽極体として用いる電解コンデンサなどにも、本発明を適用できる。
 [電解コンデンサの製造方法]
 電解コンデンサは、誘電体層が形成された陽極体の誘電体層上に第1導電性高分子層を形成する工程(第1工程)と、第1導電性高分子層上に第2導電性高分子層を形成する工程(第2工程)と、を経ることにより製造できる。電解コンデンサの製造方法は、第1工程に先立って、陽極体を準備する工程、および陽極体上に誘電体層を形成する工程を含んでもよい。製造方法は、さらに陰極層を形成する工程を含んでもよい。
 以下に、各工程についてより詳細に説明する。
 (陽極体を準備する工程)
 この工程では、陽極体の種類に応じて、公知の方法により陽極体を形成する。
 陽極体は、例えば、導電性材料で形成された箔状または板状の基材の表面を粗面化することにより準備することができる。粗面化は、基材表面に凹凸を形成できればよく、例えば、基材表面をエッチング(例えば、電解エッチング)することにより行ってもよく、蒸着などの気相法を利用して、基材表面に導電性材料の粒子を堆積させることにより行ってもよい。
 また、弁作用金属の粉末を用意し、この粉末の中に、棒状体の陽極リードの長手方向の一端側を埋め込んだ状態で、所望の形状(例えば、ブロック状)に成形された成形体を得る。この成形体を焼結することで、陽極リードの一端が埋め込まれた多孔質構造の陽極体を形成してもよい。
 (誘電体層を形成する工程)
 この工程では、陽極体上に誘電体層を形成する。誘電体層は、陽極体を化成処理などにより陽極酸化することにより形成される。陽極酸化は、公知の方法、例えば、化成処理などにより行うことができる。化成処理は、例えば、陽極体を化成液中に浸漬することにより、陽極体の表面(より内側の表面の孔や窪みの内壁面)まで化成液を含浸させ、陽極体をアノードとして、化成液中に浸漬したカソードとの間に電圧を印加することにより行うことができる。化成液としては、例えば、リン酸水溶液などを用いることが好ましい。
 (第1導電性高分子層を形成する工程(第1工程))
 第1工程では、第1導電性高分子とシラン化合物とを含む第1導電性高分子層を、誘電体層の少なくとも一部を覆うように形成する。第1導電性高分子層は、第1導電性高分子、シラン化合物およびドーパントなどの第1導電性高分子層の構成成分を含む分散液や溶液を用いて形成してもよい。
 好ましい実施形態では、第1導電性高分子の前駆体を重合させることにより第1導電性高分子層を形成する。つまり、誘電体層上で第1導電性高分子層の前駆体を重合させる。誘電体層は、多くの孔やピットを有する陽極体の表面(陽極体の孔やピットの内壁面を含む表面)に形成される。そのため、誘電体層上で前駆体を重合させることで、孔やピットの奥にまで第1導電性高分子層を形成し易くなる。重合は、化学酸化重合により行うことができる。重合は、ドーパントの存在下で行ってもよい。
 重合は、シラン化合物の存在下で行ってもよい。また、第1導電性高分子の前駆体を重合することにより第1導電性高分子層を形成し、シラン化合物を第1導電性高分子層に塗布または含浸させることで、第1導電性高分子層にシラン化合物を含有させてもよい。また、シラン化合物の存在下での重合により形成した第1導電性高分子層に、シラン化合物を塗布または含浸させてもよい。
 重合は、重合を促進させるために触媒の存在下で行ってもよい。触媒としては、硫酸第一鉄、硫酸第二鉄などを用いることができる。また、過硫酸塩(過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウムなど)、スルホン酸金属塩などの酸化剤を用いてもよい。重合は、必要に応じて、ドーパントおよび/またはシラン化合物の存在下で行ってもよい。
 重合には、必要に応じて、導電性高分子の前駆体を溶解または分散させる溶媒(第1溶媒)を用いてもよい。第1溶媒としては、水、水溶性有機溶媒、およびこれらの混合物などが挙げられる。
 (第2導電性高分子層を形成する工程(第2工程)
 第2工程では、第2導電性高分子と塩基性化合物とを含む第2導電性高分子層を、第1導電性高分子層上に、第1導電性高分子層の少なくとも一部を覆うように形成する。第2導電性高分子層は、第1導電性高分子層上で、第2導電性高分子の前駆体を重合させることにより形成してもよい。重合はドーパントの存在下で行ってもよい。しかし、膜質が緻密な第2導電性高分子層を形成する観点からは、第2導電性高分子を含む処理液を用いて第2導電性高分子層を形成することが好ましい。処理液は、さらにドーパントを含んでもよい。第2導電性高分子層は、例えば、第1工程で得られた陽極体に処理液を含浸させ、乾燥することにより形成される。第1工程で得られた陽極体を処理液に浸漬させたり、または第1工程で得られた陽極体に処理液を滴下したりすることにより、処理液を陽極体に含浸させる。
 第2導電性高分子を含む処理液は、塩基性化合物を含んでもよいが、第2導電性高分子と、塩基性化合物とは、別々に第1導電性高分子層上に付着させてもよい。第2工程は、例えば、塩基性化合物を含む第1処理液を、第1工程で得られた陽極体に含浸させて乾燥させ、その後、第2導電性高分子を含む第2処理液を含浸させて乾燥する工程(工程a)を含む。工程aにより、第2導電性高分子と塩基性化合物とを含む第2導電性高分子層が形成される。
 第2工程や工程aで陽極体を乾燥する際には、必要に応じて、陽極体を加熱してもよい。
 工程aを繰り返してもよい。この場合、塩基性化合物を含む第1層と第2導電性高分子を含む第2層とが交互に積層された第2導電性高分子層を形成することができる。工程aを繰り返すことで、第1導電性高分子層の第2導電性高分子層による被覆性を高めることができる。
 塩基性化合物を含む第1処理液としては、例えば、塩基性化合物の溶液が使用される。溶液に使用される溶媒(第2溶媒)としては、水が好ましく、水と有機溶媒との混合溶媒を使用してもよい。有機溶媒としては、例えば、炭素数1~5の脂肪族アルコール、アセトン、アセトニトリル、ベンゾニトリル、N,N-ジメチルホルムアミド、ジメチルスルホキシドなどが挙げられる。有機溶媒は一種を単独でまたは二種以上を組み合わせてもよい。
 第2導電性高分子を含む処理液(第2処理液など)としては、第2導電性高分子を含む分散液または溶液を用いることが好ましい。このような処理液は、第2導電性高分子と、溶媒(第3溶媒)とを含む。第2導電性高分子を含む処理液は、必要により、塩基性化合物および/または第2ドーパントを含んでもよい。このような処理液を用いることで、緻密な第2導電性高分子層を容易に形成することができ、優れた耐電圧特性が得られ易い。第3溶媒としては、水、有機溶媒、およびこれらの混合物が例示できる。有機溶媒としては、第2溶媒として例示したものから適宜選択できる。
 分散液に分散された第2導電性高分子および/またはドーパントは、粒子(または粉末)であることが好ましい。分散液中に分散された粒子の平均粒径は、5~500nmであることが好ましい。平均粒径は、例えば、動的光散乱法による粒径分布から求めることができる。
 第2導電性高分子を含む処理液は、第2導電性高分子と、必要によりドーパントおよび/または塩基性化合物とを溶媒に分散または溶解させることにより得ることができる。例えば、第2導電性高分子の重合液から不純物を除去した後、ドーパントを混合した分散液(分散液a)、またはドーパントの存在下で第2導電性高分子を重合した重合液から不純物を除去した分散液(分散液b)を、第2導電性高分子を含む処理液として用いてもよい。この場合、第3溶媒として例示したものを重合時の溶媒として用いてもよく、重合後に不純物を除去する際に、第3溶媒を添加してもよい。また、分散液aおよびbに、さらに第3溶媒を添加してもよい。また、いずれの分散液にも、必要に応じて、塩基性化合物を添加してもよい。
 第2導電性高分子層が、第2シラン化合物を含む場合、形成された第2導電性高分子層に、第2シラン化合物を塗布または含浸させてもよい。また、第2シラン化合物を、第2処理液などの第2導電性高分子を含む処理液に添加して用いてもよく、第1処理液に添加して用いてもよい。
 第1処理液や第2処理液は、必要に応じて公知の添加剤を含んでもよい。第1処理液には、必要に応じて酸成分を添加してもよい。
 (陰極層を形成する工程)
 この工程では、第2工程で得られた陽極体の(好ましくは形成された導電性高分子層の)表面に、カーボン層と銀ペースト層とを順次積層することにより陰極層が形成される。
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 (実施例1)
 下記の要領で、図1に示す電解コンデンサ1を作製し、その特性を評価した。
 (1)陽極体11を準備する工程
タンタル粉末を準備し、棒状体の陽極リード16の長手方向の一端側を金属粉末に埋め込んだ状態で、当該粉末を直方体に成形した。そして、これを焼結して、陽極リード16の一端が埋め込まれた陽極体11を準備した。
 (2)誘電体層12を形成する工程
 陽極体11を濃度0.02質量%のリン酸溶液に浸して100Vの電圧を印加することにより、陽極体11の表面にTa2O5からなる誘電体層12を形成した。
 (3)第1導電性高分子層を形成する工程
 重合性モノマーである3,4-エチレンジオキシチオフェン1質量部と、ドーパント成分としての、パラトルエンスルホン酸第二鉄0.9質量部と、第1シラン化合物としての3-グリシドキシプロピルトリメトキシシラン5質量部と、第1溶媒としてのn-ブタノール11.5質量部とを混合して溶液を調製した。得られた溶液中に、(2)で得られた誘電体層12が形成された陽極体11を浸漬し、引き上げた後、乾燥させた。溶液への浸漬と、乾燥とをさらに繰り返すことで、誘電体層12の表面を覆うように第1導電性高分子層を形成した。第1導電性高分子層の平均厚みを走査型電子顕微鏡(SEM)により測定したところ、約1μmであった。
 (4)第2導電性高分子層を形成する工程
 (3)で得られた陽極体11を、塩基性化合物としてのN,N-ジメチルオクチルアミンを5質量%濃度で含む水溶液(第1処理液)に浸漬し、取り出して乾燥させた。次いで、陽極体を、第2導電性高分子としてのポリ3,4-エチレンジオキシチオフェン(PEDOT)と、第2ドーパントとしてのポリスチレンスルホン酸(PSS)とを含む分散液状の第2処理液に浸漬し、取り出して、乾燥させた。第1処理液への浸漬および乾燥と、第2処理液への浸漬および乾燥とを、交互に複数回繰り返すことにより、第1導電性高分子層の表面を覆うように第2導電性高分子層を形成した。第2導電性高分子層の平均厚みを、第1導電性高分子層の場合と同様にして測定したところ、約30μmであった。このようにして、第1導電性高分子層および第2導電性高分子層を、誘電体層12の表面を覆うように形成した。
 なお、第2処理液は、下記の手順で調製した。
 攪拌下で、ポリスチレンスルホン酸(スルホン化度:100モル%)を含む水溶液に、3,4-エチレンジオキシチオフェンモノマーを添加し、次いで、酸化剤(硫酸鉄(III)および過硫酸ナトリウム)を添加して、化学酸化重合を行った。得られた重合液を、イオン交換装置によりろ過して不純物を除去することにより、第2導電性高分子としてのPEDOTと、第2ドーパントとしてのPSSとを含む溶液を得た。得られた溶液に、純水を加えて、高圧ホモジナイザーでホモジナイズし、さらにフィルターでろ過することにより第2処理液を調製した。第2処理液中のPSSの量は、PEDOT100質量部に対して4質量部であった。
 走査型電子顕微鏡により、第1導電性高分子層および第2導電性高分子層の厚み方向の断面を観察したところ、誘電体層側に粗な第1導電性高分子層が薄く形成されていた。そして、第1導電性高分子層の表面を覆うように、誘電体層とは反対側に緻密な第2導電性高分子層が形成されていた。
 (5)陰極層の形成工程
 上記(4)で得られた陽極体11に、黒鉛粒子を水に分散した分散液を塗布して、大気中で乾燥させることにより、少なくとも第2導電性高分子層の表面にカーボン層14を形成した。乾燥は、130~180℃で10~30分間行った。
 次いで、カーボン層14の表面に、銀粒子とバインダ樹脂(エポキシ樹脂)とを含む銀ペーストを塗布し、150~200℃で10~60分間加熱することでバインダ樹脂を硬化させ、銀ペースト層15を形成した。こうして、カーボン層14と銀ペースト層15とで構成される陰極層を形成した。
 (6)電解コンデンサの組み立て
 (5)で得られた陽極体に、さらに、陽極端子17、接着層18、陰極端子19を配置し、外装樹脂で封止することにより、電解コンデンサを製造した。
 (実施例2)
 (4)において、N,N-ジメチルオクチルアミンに代えて、1,8-ジアミノオクタンを用いたこと以外は、実施例1と同様にして、電解コンデンサを作製した。
 比較例1
 (4)において、第1処理液を用いずに、第2処理液への浸漬と乾燥とを繰り返して第2導電性高分子層を形成したこと以外は、実施例1と同様にして、電解コンデンサを作製した。
 比較例2
 (3)において、第1シラン化合物を用いなかったこと以外は、実施例1と同様にして、電解コンデンサを作製した。
 比較例3
 (3)において、第1シラン化合物を用いなかったこと以外は、比較例1と同様にして、電解コンデンサを作製した。
(評価)
 実施例および比較例の電解コンデンサを用いて、下記の評価を行った。
 (a)耐電圧特性
 電解コンデンサの電圧を1V/sで昇圧し、電流値が0.5Aを超えた時の電圧値(V)を測定した。そして、比較例3の電圧値を1としたときの電圧値の比率を算出し、耐電圧特性の評価指標とした。この値が大きいほど、耐電圧特性が高いことを示す。
 (b)容量残存率(Cap)
 125℃の温度にて、16Vの電圧を電解コンデンサに500時間印加した後、容量値を測定した。そして比較例3のコンデンサの容量値を1としたときの容量値の比率(容量残存率)を求めた。この容量残存率の数値が大きいほど、電解コンデンサの信頼性や寿命が向上していることを示す。
 実施例および比較例の結果を表1に示す。実施例1~2は、A1~A2であり、比較例1~3は、B1~B3である。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例の電解コンデンサでは、比較例に比べて高い耐電圧特性が得られた。また、実施例の電解コンデンサでは、高電圧を長時間印加したあとも、比較例に比べて高い容量値が得られており、長寿命で、信頼性に優れていた。
 本発明の一実施形態に係る電解コンデンサは、高い耐電圧特性が求められる様々な用途に利用できる。
10 コンデンサ素子、11 陽極体、12 誘電体層、13 導電性高分子層、14 カーボン層、15 銀ペースト層、16 陽極リード、17 陽極端子、18 接着層、19 陰極端子、20 外装樹脂、100 電解コンデンサ

Claims (14)

  1.  陽極体、前記陽極体上に形成された誘電体層、前記誘導体層の少なくとも一部を覆う第1導電性高分子層、および前記第1導電性高分子層の少なくとも一部を覆う第2導電性高分子層を備え、
     前記第1導電性高分子層は、第1導電性高分子と、第1シラン化合物とを含み、
     前記第2導電性高分子層は、第2導電性高分子と、塩基性化合物とを含む、電解コンデンサ。
  2.  前記塩基性化合物は、アミン化合物である、請求項1に記載の電解コンデンサ。
  3.  前記第1シラン化合物は、シランカップリング剤である、請求項1に記載の電解コンデンサ。
  4.  前記第2導電性高分子層は、
     前記塩基性化合物を含む第1層と、
     前記第1層上に形成され、かつ前記第2導電性高分子を含む第2層と、を含む、請求項1に記載の電解コンデンサ。
  5.  前記第2導電性高分子層は、複数の前記第1層と、複数の前記第2層とを含み、
     前記第1層と前記第2層とが交互に形成されている、請求項4に記載の電解コンデンサ。
  6.  前記第2導電性高分子層は、前記第1導電性高分子層よりも緻密である、請求項1に記載の電解コンデンサ。
  7.  前記第2の導電性高分子層の厚みは、前記第1の導電性高分子層の厚みより大きい、請求項1に記載の電解コンデンサ。
  8.  前記第2導電性高分子層は、さらに第2シラン化合物を含み、
     前記第1導電性高分子層中の前記第1シラン化合物の割合は、前記第2導電性高分子層中の前記第2シラン化合物の割合より多い請求項1に記載の電解コンデンサ。
  9.  前記第1導電性高分子層は、第1ドーパントを含み、
     前記第2導電性高分子層は、第2ドーパントを含み、
     前記第1ドーパントの分子量は、前記第2ドーパントの分子量よりも小さい、請求項1に記載の電解コンデンサ。
  10.  前記第1導電性高分子は、前記誘電体層上で、前記第1導電性高分子の前駆体を重合して得られたものであり、
     前記第2導電性高分子層は、前記第2導電性高分子を含む分散液または溶液を用いて形成されたものである、請求項1に記載の電解コンデンサ。
  11.  誘電体層が形成された陽極体の前記誘電体層上に、第1導電性高分子と、第1シラン化合物とを含み、かつ前記誘電体層の少なくとも一部を覆う第1導電性高分子層を形成する第1工程と、
     前記第1導電性高分子層上に、第2導電性高分子と、塩基性化合物とを含み、かつ前記第1導電性高分子層の少なくとも一部を覆う第2導電性高分子層を形成する第2工程と、を含む電解コンデンサの製造方法。
  12.  前記第1工程では、前記第1シラン化合物の存在下で、前記第1導電性高分子の前駆体を重合させることにより前記第1導電性高分子層を形成する、請求項11に記載の電解コンデンサの製造方法。
  13.  前記第2工程は、前記第1工程で得られた前記陽極体に、塩基性化合物を含む第1処理液を含浸させて乾燥し、さらに第2導電性高分子を含む第2処理液を含浸させて乾燥する工程aを含む、請求項11に記載の電解コンデンサの製造方法。
  14.  前記工程aを繰り返す、請求項13に記載の電解コンデンサの製造方法。
PCT/JP2016/003078 2015-06-30 2016-06-27 電解コンデンサおよびその製造方法 WO2017002351A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017526177A JP6956319B2 (ja) 2015-06-30 2016-06-27 電解コンデンサおよびその製造方法
CN201680037572.4A CN107735845B (zh) 2015-06-30 2016-06-27 电解电容器及其制造方法
US15/841,500 US10679795B2 (en) 2015-06-30 2017-12-14 Electrolytic capacitor and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-131918 2015-06-30
JP2015131918 2015-06-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/841,500 Continuation US10679795B2 (en) 2015-06-30 2017-12-14 Electrolytic capacitor and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2017002351A1 true WO2017002351A1 (ja) 2017-01-05

Family

ID=57608009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003078 WO2017002351A1 (ja) 2015-06-30 2016-06-27 電解コンデンサおよびその製造方法

Country Status (4)

Country Link
US (1) US10679795B2 (ja)
JP (3) JP6956319B2 (ja)
CN (1) CN107735845B (ja)
WO (1) WO2017002351A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120309A1 (ja) * 2021-12-24 2023-06-29 パナソニックIpマネジメント株式会社 電解コンデンサの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230026186A1 (en) * 2021-07-14 2023-01-26 Tokin Corporation Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
WO2023145618A1 (ja) * 2022-01-28 2023-08-03 パナソニックIpマネジメント株式会社 固体電解コンデンサおよび固体電解コンデンサの製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123630A (ja) * 2003-10-17 2005-05-12 Hc Starck Gmbh ポリマー外層を有する電解コンデンサ
WO2007031206A1 (de) * 2005-09-13 2007-03-22 H.C. Starck Gmbh Verfahren zur herstellung von elektrolytkondensatoren
WO2007091656A1 (ja) * 2006-02-09 2007-08-16 Shin-Etsu Polymer Co., Ltd. 導電性高分子溶液、導電性塗膜、コンデンサ及びコンデンサの製造方法
JP2010177421A (ja) * 2009-01-29 2010-08-12 Sanyo Electric Co Ltd 固体電解コンデンサの製造方法及び固体電解コンデンサ
JP2011049458A (ja) * 2009-08-28 2011-03-10 Sanyo Electric Co Ltd 固体電解コンデンサおよびその製造方法
JP2012517113A (ja) * 2009-02-05 2012-07-26 ヘレウス クレビオス ゲゼルシャフト ミット ベシュレンクテル ハフツング ポリマー外層を有する電解コンデンサを製造するためのプロセス
WO2014087617A1 (ja) * 2012-12-07 2014-06-12 パナソニック株式会社 固体電解コンデンサの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001281A (en) 1998-09-04 1999-12-14 Kemet Electronics Corporation Preparation of conductive polymers from stabilized precursor solutions
JP4845645B2 (ja) 2006-08-30 2011-12-28 三洋電機株式会社 固体電解コンデンサおよびその製造方法
JP2012043958A (ja) 2010-08-19 2012-03-01 Nec Tokin Corp 固体電解コンデンサおよびその製造方法
JP5965100B2 (ja) 2010-11-22 2016-08-03 Necトーキン株式会社 固体電解コンデンサ及びその製造方法
JP2012174948A (ja) 2011-02-23 2012-09-10 Nec Tokin Corp 固体電解コンデンサ及びその製造方法
JP5788282B2 (ja) * 2011-09-29 2015-09-30 Necトーキン株式会社 固体電解コンデンサおよびその製造方法
JP6233952B2 (ja) * 2012-05-31 2017-11-22 カーリットホールディングス株式会社 固体電解コンデンサ製造用導電性高分子分散液及びそれを用いて作製した固体電解コンデンサ
JP6142280B2 (ja) 2012-08-31 2017-06-07 パナソニックIpマネジメント株式会社 固体電解コンデンサおよびその製造方法
US9959980B2 (en) * 2014-12-09 2018-05-01 Showa Denko K.K. Solid electrolytic capacitor element and method for manufacturing solid electrolytic capacitor element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123630A (ja) * 2003-10-17 2005-05-12 Hc Starck Gmbh ポリマー外層を有する電解コンデンサ
WO2007031206A1 (de) * 2005-09-13 2007-03-22 H.C. Starck Gmbh Verfahren zur herstellung von elektrolytkondensatoren
WO2007091656A1 (ja) * 2006-02-09 2007-08-16 Shin-Etsu Polymer Co., Ltd. 導電性高分子溶液、導電性塗膜、コンデンサ及びコンデンサの製造方法
JP2010177421A (ja) * 2009-01-29 2010-08-12 Sanyo Electric Co Ltd 固体電解コンデンサの製造方法及び固体電解コンデンサ
JP2012517113A (ja) * 2009-02-05 2012-07-26 ヘレウス クレビオス ゲゼルシャフト ミット ベシュレンクテル ハフツング ポリマー外層を有する電解コンデンサを製造するためのプロセス
JP2011049458A (ja) * 2009-08-28 2011-03-10 Sanyo Electric Co Ltd 固体電解コンデンサおよびその製造方法
WO2014087617A1 (ja) * 2012-12-07 2014-06-12 パナソニック株式会社 固体電解コンデンサの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120309A1 (ja) * 2021-12-24 2023-06-29 パナソニックIpマネジメント株式会社 電解コンデンサの製造方法

Also Published As

Publication number Publication date
JP2022185094A (ja) 2022-12-13
JPWO2017002351A1 (ja) 2018-04-19
JP7170191B2 (ja) 2022-11-14
JP6956319B2 (ja) 2021-11-02
JP7511157B2 (ja) 2024-07-05
US10679795B2 (en) 2020-06-09
US20180108488A1 (en) 2018-04-19
CN107735845A (zh) 2018-02-23
CN107735845B (zh) 2020-05-15
JP2021193747A (ja) 2021-12-23

Similar Documents

Publication Publication Date Title
JP7511157B2 (ja) 電解コンデンサおよびその製造方法
JP5995262B2 (ja) Pedot/pssを固体電解質として含有するコンデンサにおける電気パラメータをポリグリセロールによって改善するための方法
EP3664112B1 (en) Solid electrolytic capacitor, and method for producing solid electrolytic capacitor
JP7539000B2 (ja) 電解コンデンサおよびその製造方法
US10453619B2 (en) Electrolytic capacitor with conductive polymer layer
US10600579B2 (en) Electrolytic capacitor including hydroxy compound and manufacturing method therefor
US11152158B2 (en) Electrolytic capacitor and method for manufacturing same
US10991514B2 (en) Method for producing electrolytic capacitor
JP5623214B2 (ja) 固体電解コンデンサ
JP7108811B2 (ja) 電解コンデンサおよびその製造方法
US10304634B2 (en) Electrolytic capacitor
JP7558130B2 (ja) キャパシタ及びその製造方法
WO2024203133A1 (ja) 固体電解コンデンサ素子およびその製造方法、ならびに固体電解コンデンサ
WO2022191050A1 (ja) 電解コンデンサおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017526177

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817462

Country of ref document: EP

Kind code of ref document: A1