WO2022191050A1 - 電解コンデンサおよびその製造方法 - Google Patents

電解コンデンサおよびその製造方法 Download PDF

Info

Publication number
WO2022191050A1
WO2022191050A1 PCT/JP2022/009293 JP2022009293W WO2022191050A1 WO 2022191050 A1 WO2022191050 A1 WO 2022191050A1 JP 2022009293 W JP2022009293 W JP 2022009293W WO 2022191050 A1 WO2022191050 A1 WO 2022191050A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solid electrolyte
electrolyte layer
electrolytic capacitor
based polymer
Prior art date
Application number
PCT/JP2022/009293
Other languages
English (en)
French (fr)
Inventor
慎司 近藤
和哉 山崎
隆志 川崎
幸司 横山
仁 石本
純久 長崎
祐治 宮地
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US18/549,498 priority Critical patent/US20240161985A1/en
Priority to JP2023505494A priority patent/JPWO2022191050A1/ja
Priority to CN202280020493.8A priority patent/CN117063256A/zh
Publication of WO2022191050A1 publication Critical patent/WO2022191050A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure

Definitions

  • the present invention relates to an electrolytic capacitor with a solid electrolyte layer and a manufacturing method thereof.
  • An electrolytic capacitor includes a capacitor element, electrode terminals electrically connected to the capacitor element, and an exterior body that seals the capacitor element.
  • a capacitor element includes, for example, an anode body, a dielectric layer covering the anode body, and a solid electrolyte layer covering the dielectric layer.
  • the solid electrolyte layer contains a conductive polymer.
  • a conductive polymer for example, polypyrrole is used as the conductive polymer (eg, Patent Document 1).
  • One aspect of the present invention includes an anode body, a dielectric layer covering the anode body, a first solid electrolyte layer covering the dielectric layer, and a second solid electrolyte layer covering the first solid electrolyte layer.
  • the first solid electrolyte layer includes a first conductive polymer having a polypyrrole as a basic skeleton;
  • the second solid electrolyte layer includes a second conductive polymer having a polythiophene as a basic skeleton;
  • the solid electrolyte layer has a thickness of 1 ⁇ m or more, and relates to the electrolytic capacitor.
  • Another aspect of the present invention includes a first step of preparing an anode body having a dielectric layer formed thereon, and electrolytically polymerizing a precursor of a first conductive polymer having a polypyrrole as a basic skeleton on the dielectric layer. a second step of forming a first solid electrolyte layer containing the first conductive polymer; and a third step of forming a second solid electrolyte layer containing the second conductive polymer, wherein the thickness of the second solid electrolyte layer is 1 ⁇ m or more.
  • FIG. 1 is a cross-sectional view schematically showing an electrolytic capacitor according to one embodiment of the present invention
  • FIG. FIG. 2 is an enlarged cross-sectional view schematically showing a region II in FIG. 1;
  • An electrolytic capacitor comprises an anode body, a dielectric layer covering the anode body, a first solid electrolyte layer covering the dielectric layer, a second solid electrolyte layer covering the first solid electrolyte layer, Prepare.
  • the first solid electrolyte layer (hereinafter also referred to as first layer) includes a first conductive polymer (hereinafter also referred to as polypyrrole-based polymer) having polypyrrole as a basic skeleton.
  • the second solid electrolyte layer (hereinafter also referred to as the second layer) contains a second conductive polymer (hereinafter also referred to as a polythiophene-based polymer) having a polythiophene as a basic skeleton.
  • the thickness of the second solid electrolyte layer is 1 ⁇ m or more. 90% by mass or more of the first layer penetrates into the pores of the anode body. 90 mass % or more of the second layer exists outside the pores of the anode body.
  • the second layer may have the form of a skin layer formed along the outline of the anode body ignoring the pores.
  • the first layer contains a polypyrrole-based polymer, and while it is easy to reduce leakage current, it is difficult to improve capacitance. On the other hand, the capacitance can be improved by disposing the second layer having high conductivity on the first layer.
  • the second layer contains a polythiophene-based polymer, which tends to increase the electrical conductivity, but tends to increase the leakage current.
  • the second layer contains a polythiophene-based polymer, which tends to increase the electrical conductivity, but tends to increase the leakage current.
  • the anode body Since it is advantageous for the anode body to have a large surface area for forming the dielectric layer and the solid electrolyte layer, it usually has a porous portion at least on the surface (surface layer).
  • the porous portion contains many holes (pits).
  • a dielectric layer covers the outer surface of the porous portion and the inner wall surfaces of the pores.
  • the first layer may cover at least the inner wall surfaces of the pores of the porous portion with the dielectric layer interposed therebetween.
  • the first layer may cover the outer surface of the porous section via a dielectric layer, in which case the thickness of the first layer covering the outer surface of the porous section is the thickness of the pores of the porous section. It may be smaller than the thickness of the first layer covering the inner wall surface.
  • the second layer covers the outer surface of the porous portion via the dielectric layer (or the dielectric layer and the first layer). The second layer may further cover the inner wall surfaces of the pores of the porous portion via the dielectric layer and the first layer.
  • the thickness of the second layer is set to 1 ⁇ m or more. Easy to grow. In this case, the second layer is difficult to form in the pores of the porous portion.
  • the second layer may be formed on the outer surface of the porous portion so as to cover the openings of the pores of the porous portion. In this case, the second layer may be formed to the extent that it slightly enters the opening side of the pores of the porous portion.
  • the second layer may be partially in direct contact with the first layer (in the vicinity of the pore openings of the porous portion). A gap may be formed between the first layer covering the inner wall surface of the pores of the porous portion and the second layer covering the outer surface (opening of the pores) of the porous portion.
  • Leakage current can be reduced when the thickness of the second layer (thickness T2 of the second layer 9b in FIG. 2) is 1 ⁇ m or more.
  • the thickness of the second layer is preferably 5 ⁇ m or more.
  • the thickness of the second layer may be 1 ⁇ m or more and 20 ⁇ m or less, or may be 5 ⁇ m or more and 20 ⁇ m or less. When the thickness of the second layer is 20 ⁇ m or less, it is easy to reduce the ESR.
  • the thickness of the second layer means the thickness of the second layer (thickness T2 in FIG. 2) covering the outer surface of the porous portion of the anode body through the dielectric layer and the first layer.
  • the thickness of the second layer can be obtained by the following method. First, the electrolytic capacitor is disassembled, the capacitor element is taken out, and a cross-sectional image of the capacitor element is obtained using a scanning electron microscope (SEM). Using the image, any 10 of the second layer covering the outer surface of the porous portion (outside the line defining the outer shape of the anode body) via the dielectric layer (or the dielectric layer and the first layer) Measure the thickness of the point. An average value of the measured values of the thickness is calculated. The first layer and the second layer can be confirmed by SEM-EDX (energy dispersive X-ray spectroscopy) analysis.
  • SEM-EDX energy dispersive X-ray spectroscopy
  • the thickness of the first layer (the thickness T1 of the first layer 9a in FIG. 2) may be 50 nm or more, or may be 50 nm or more and 100 nm or less. When the thickness of the first layer is 50 nm or more, it is easy to reduce leakage current. When the thickness of the first layer is 100 nm or less, it is easy to cover the inner wall surfaces of the pores of the porous portion with the first layer through the dielectric layer.
  • the thickness of the first layer means the thickness (thickness T1 in FIG. 2) of the first layer covering the inner wall surface of the porous portion through the dielectric layer.
  • the thickness of the first layer can be obtained by the same method as for the thickness of the second layer. That is, in a cross-sectional image obtained by SEM, the thickness of the second layer covering the inner wall surfaces of the pores of the porous portion via the dielectric layer is measured at arbitrary 10 points, and the average value is calculated.
  • the first layer preferably has lower conductivity than the second layer.
  • a second layer having a high conductivity is advantageous in improving the capacitance, but tends to increase the leakage current.
  • the conductivity of the first layer is preferably 200 S/cm or less, more preferably 60 S/cm or more and 150 S/cm or less.
  • the conductivity of the first layer can be obtained by the following method.
  • the electrolytic capacitor is disassembled, the capacitor element is taken out, and the components of the first layer (polypyrrole-based polymer and first dopant) are analyzed.
  • the first treatment liquid may be analyzed.
  • TEM-EELS method electron energy loss spectroscopy
  • NMR method nuclear magnetic resonance spectroscopy
  • Raman spectroscopy and the like can be used as analysis methods. Based on the analysis results, a sample film (for example, 20 to 40 ⁇ m thick) containing the same components as the first layer is formed, and the conductivity of the sample film is obtained as the conductivity of the first layer.
  • the first layer is usually formed by electrolytically polymerizing a polypyrrole polymer precursor in the presence of the first dopant. Therefore, a sample film containing the same components as the first layer is obtained by preparing a sample solution containing a polypyrrole-based polymer precursor and a first dopant, immersing a metal substrate in the sample solution, passing an electric current through the metal substrate, and It can be formed by electropolymerizing the body.
  • a sample film may be formed using the first treatment liquid. Loresta-GX and PSP probes manufactured by Nitto Seiko Analyticc can be used to measure the conductivity of the sample film.
  • the conductivity of the second layer is preferably 350 S/cm or more, more preferably 350 S/cm or more and 800 S/cm or less.
  • the conductivity of the second layer can be determined by the same method as for the first layer. Based on the analysis results, a sample film (for example, 20 to 40 ⁇ m thick) containing the same components as the second layer is formed, and the conductivity of the sample film is obtained as the conductivity of the second layer.
  • a sample film containing the same components (polythiophene-based polymer and second dopant) as the second layer was prepared by preparing a sample solution containing the polythiophene-based polymer and the second dopant, applying the sample solution to the substrate, drying it, can be formed.
  • the second treatment liquid may be analyzed, and the sample film may be formed using the second treatment liquid.
  • the electrolytic capacitor and its manufacturing method will be described in more detail below.
  • the anode body can contain a valve action metal, an alloy containing a valve action metal, a compound containing a valve action metal, and the like. These materials may be used singly or in combination of two or more. For example, aluminum, tantalum, niobium, and titanium are preferably used as valve metals.
  • the anode body may have a porous portion on its surface. Such an anode body can be obtained, for example, by roughening the surface of a base material (such as a foil-like or plate-like base material) containing a valve metal by etching or the like.
  • the anode body may be a molded body of particles containing a valve metal or a sintered body thereof. Since the sintered body has a porous structure, the entire anode body can be the porous portion.
  • the dielectric layer is formed by anodizing the valve action metal on the surface of the anode body by chemical conversion treatment or the like.
  • the dielectric layer may be formed so as to cover at least part of the anode body.
  • a dielectric layer is usually formed on the surface of the anode body. Since the dielectric layer is formed on the surface of the porous portion of the anode body, it is formed along the inner wall surfaces of the holes and pits on the surface of the anode body.
  • the dielectric layer contains an oxide of a valve metal.
  • the dielectric layer contains Ta 2 O 5 when tantalum is used as the valve metal, and the dielectric layer contains Al 2 O 3 when aluminum is used as the valve metal.
  • the dielectric layer is not limited to this, and may be any material as long as it functions as a dielectric.
  • a solid electrolyte layer is formed to cover the dielectric layer.
  • the solid electrolyte layer does not necessarily need to cover the entire dielectric layer (entire surface), and may be formed to cover at least a portion of the dielectric layer.
  • the solid electrolyte layer includes a first layer containing polypyrrole-based polymer and a second layer containing polythiophene-based polymer formed on the first layer. If there is a region on the dielectric layer where the first layer is not formed, the second layer may be formed on the dielectric layer in this region.
  • the first layer contains a polypyrrole-based polymer.
  • Polypyrrole-based polymers include polypyrrole and derivatives thereof.
  • the weight average molecular weight of the polypyrrole-based polymer is, for example, 100 or more and 100,000 or less. In the present specification, the weight average molecular weight is the polystyrene-based weight average molecular weight measured by gel permeation chromatography (GPC).
  • the first layer usually contains a non-self-doped polypyrrole-based polymer.
  • the first layer contains a polypyrrole-based polymer (non-self-doping type) and a first dopant.
  • the conductivity of the first layer can be adjusted according to the first dopant.
  • non-self-doping polypyrrole-based polymer for example, an anionic group (specifically, a sulfonic acid group, a carboxy group , phosphate groups, phosphonate groups, and salts thereof).
  • an anionic group specifically, a sulfonic acid group, a carboxy group , phosphate groups, phosphonate groups, and salts thereof.
  • the first dopant may be a low-molecular-weight dopant.
  • Low-molecular-weight dopants are, for example, dopants capable of forming anions.
  • Specific examples of low-molecular-weight dopants include sulfuric acid, nitric acid, phosphoric acid, boric acid, and organic sulfonic acids.
  • organic sulfonic acids include aromatic sulfonic acids.
  • Aromatic sulfonic acids include benzenesulfonic acid, alkylbenzenesulfonic acid (eg, paratoluenesulfonic acid), naphthalenesulfonic acid, alkylnaphthalenesulfonic acid, and the like.
  • the first dopant may form a polypyrrole-based polymer composite with a polypyrrole-based polymer.
  • the first dopant may be contained in the form of an anion or in the form of a salt.
  • the content of the first dopant in the first layer is, for example, 10 parts by mass or more and 70 parts by mass or less with respect to 100 parts by mass of the polypyrrole-based polymer.
  • the first layer may contain a conductive polymer other than the polypyrrole-based polymer, it is preferable that the content of the polypyrrole-based polymer is large.
  • the ratio of the polypyrrole-based polymer to the entire conductive polymer contained in the first layer is, for example, 90% by mass or more, and may be 100% by mass.
  • the first layer may be a single layer or may be composed of multiple layers.
  • the polypyrrole-based polymer contained in each layer may be the same or different.
  • the first layer may further contain other components within a range that does not impair the effects of the present invention.
  • the second layer contains a polythiophene-based polymer.
  • Polythiophene-based polymers include polythiophene and derivatives thereof. Examples of polythiophene-based polymers include poly(3,4-ethylenedioxythiophene) (PEDOT).
  • PEDOT poly(3,4-ethylenedioxythiophene)
  • the conductivity of the second layer is high, and a high capacitance can be easily obtained.
  • the weight average molecular weight of the polythiophene-based polymer is, for example, 100 or more and 100,000 or less.
  • the second layer may contain a non-self-doping polythiophene polymer.
  • the second layer contains a polythiophene-based polymer (non-self-doping type) and a second dopant.
  • the conductivity of the second layer can be adjusted according to the second dopant.
  • the polythiophene-based polymer is of a non-self-doping type, the particles of the polythiophene-based polymer are easily dispersed in the second treatment liquid used in the third step (formation of the second layer) to be described later, and a thick second layer is formed. Easy to form.
  • non-self-doping polythiophene-based polymer for example, an anionic group (specifically, a sulfonic acid group, a carboxy group , phosphate groups, phosphonate groups, and salts thereof).
  • an anionic group specifically, a sulfonic acid group, a carboxy group , phosphate groups, phosphonate groups, and salts thereof.
  • the second dopant may be a polymer dopant.
  • a polymeric dopant is, for example, a dopant that can form a polyanion.
  • Specific examples of polymeric dopants include polyvinylsulfonic acid, polystyrenesulfonic acid (PSS), polyallylsulfonic acid, polyacrylsulfonic acid, polymethacrylsulfonic acid, and the like.
  • the second dopant may form a polythiophene-based polymer and a polythiophene-based polymer composite.
  • the second dopant may be contained in the form of a polyanion or in the form of a salt.
  • the content of the second dopant in the second layer is, for example, 0.1 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the polythiophene-based polymer.
  • the second layer may contain a conductive polymer other than the polythiophene-based polymer, it preferably contains a large amount of the polythiophene-based polymer.
  • the ratio of the polythiophene-based polymer to the entire conductive polymer contained in the second layer is, for example, 90% by mass or more, and may be 100% by mass.
  • the second layer may be a single layer or may be composed of multiple layers.
  • the polythiophene-based polymer contained in each layer may be the same or different.
  • the second layer may further contain other components within a range that does not impair the effects of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing the structure of an electrolytic capacitor according to one embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view schematically showing region II in FIG.
  • the electrolytic capacitor 1 includes a capacitor element 2 , a resin sealing material (armor) 3 that seals the capacitor element 2 , and an anode terminal 4 and a cathode terminal that are at least partially exposed to the outside of the resin sealing material 3 . 5 and .
  • the anode terminal 4 and the cathode terminal 5 can be made of, for example, metal (copper or copper alloy, etc.).
  • the resin encapsulant 3 has a substantially rectangular parallelepiped outer shape, and the electrolytic capacitor 1 also has a substantially rectangular parallelepiped outer shape. Epoxy resin, for example, can be used as the material of the resin sealing material 3 .
  • Capacitor element 2 includes anode body 6 , dielectric layer 7 covering anode body 6 , and cathode portion 8 covering dielectric layer 7 .
  • the cathode section 8 includes a solid electrolyte layer 9 covering the dielectric layer 7 and a cathode extraction layer 10 covering the solid electrolyte layer 9 .
  • Cathode extraction layer 10 has carbon layer 11 and silver paste layer 12 .
  • the anode body 6 has a porous portion 6a and includes a region facing the cathode portion 8 and a region not facing the cathode portion 8.
  • the porous portion 6a includes a large number of holes P. As shown in FIG.
  • the holes P may be sponge-like pits or tunnel-like pits.
  • An insulating separation layer 13 is formed so as to cover the surface of the anode body 6 in a strip shape in a portion adjacent to the cathode part 8 in the region of the anode body 6 not facing the cathode part 8 , so that the cathode part 8 and the anode are separated from each other. Contact with the body 6 is restricted.
  • the other portion of the region of anode body 6 that does not face cathode portion 8 is electrically connected to anode terminal 4 by welding.
  • the cathode terminal 5 is electrically connected to the cathode section 8 via an adhesive layer 14 made of a conductive adhesive.
  • the main surfaces 4S and 5S of the anode terminal 4 and the cathode terminal 5 are exposed from the same surface of the resin sealing material 3. This exposed surface is used for solder connection with a board (not shown) on which the electrolytic capacitor 1 is to be mounted.
  • the carbon layer 11 only needs to be conductive, and can be configured using a conductive carbon material (such as graphite), for example.
  • a conductive carbon material such as graphite
  • a composition containing silver powder and a binder resin such as an epoxy resin
  • the configuration of the cathode extraction layer 10 is not limited to this, and may be any configuration having a current collecting function.
  • the solid electrolyte layer 9 is formed so as to cover the dielectric layer 7 .
  • Dielectric layer 7 is formed along the surface of anode body 6 (inner wall surface of hole P and outer surface S of porous portion 6a).
  • the surface of dielectric layer 7 has an uneven shape corresponding to the shape of the surface of anode body 6 .
  • the solid electrolyte layer 9 is preferably formed so as to fill such unevenness of the dielectric layer 7 .
  • the solid electrolyte layer 9 includes a first layer 9a and a second layer 9b.
  • the first layer 9a is formed to cover the inner wall surface of the hole P of the porous portion 6a with the dielectric layer 7 interposed therebetween. As shown in FIG. 2, the first layer 9a does not have to cover the outer surface S of the porous portion 6a.
  • the second layer 9b is formed to cover the outer surface S of the porous portion 6a with the dielectric layer 7 interposed therebetween. As shown in FIG. 2, the second layer 9b may not enter the holes P of the porous portion 6a, and may be formed so as to cover the openings of the holes P of the porous portion 6a. In this case, a gap may exist in the hole P between the first layer 9a and the second layer 9b.
  • the first layer 9a contains a polypyrrole-based polymer
  • the second layer 9b contains a polythiophene-based polymer.
  • the first layer 9a and the second layer 9b have a thickness T1 and a thickness T2, respectively.
  • the thickness T2 of the second layer 9b is 1 ⁇ m or more.
  • the first layer may also be formed to cover the outer surface S of the porous portion 6a with the dielectric layer 7 interposed therebetween.
  • the second layer is formed to cover the outer surface S of the porous portion 6a via the dielectric layer and the first layer.
  • the electrolytic capacitor according to this embodiment is not limited to the electrolytic capacitor having the above structure, and can be applied to electrolytic capacitors having various structures. Specifically, the present invention can be applied to an electrolytic capacitor using a sintered body of metal powder as an anode, a wound type electrolytic capacitor, and the like.
  • a method for manufacturing an electrolytic capacitor comprises a first step of preparing an anode body having a dielectric layer formed thereon, a second step of forming a first layer on the dielectric layer, a first and a third step of forming a second layer on the layer.
  • the first layer contains a polypyrrole-based polymer and the second layer contains a polythiophene-based polymer.
  • the second layer has a thickness of 1 ⁇ m or more.
  • a solid electrolyte layer including a first layer and a second layer is formed by the second step and the third step.
  • the method for manufacturing an electrolytic capacitor may include a step of preparing an anode body prior to the first step.
  • the manufacturing method may further include forming a cathode extraction layer and/or sealing the capacitor element. Each step will be described in more detail below.
  • the anode body is formed by a known method depending on the type of anode body.
  • the anode body can be prepared, for example, by roughening the surface of a foil-like or plate-like base material containing a valve metal.
  • the surface roughening forms a porous portion in the surface layer of the anode body.
  • Roughening may be performed by forming unevenness on the surface of the base material, for example, by etching (eg, electrolytic etching) the surface of the base material.
  • a powder of a valve metal for example, tantalum
  • a rod-shaped anode lead is formed into a desired shape (for example, a block shape) with one longitudinal end of the anode lead embedded in the powder.
  • a shaped body is obtained.
  • the first step is to form a dielectric layer on the anode body.
  • the dielectric layer is formed by anodizing the anode body.
  • Anodization can be performed by a known method such as chemical conversion treatment.
  • the chemical conversion treatment for example, the surface of the anode body is impregnated with the chemical conversion liquid by immersing the anode body in the chemical conversion liquid, and a voltage is applied between the anode body used as the anode and the cathode immersed in the chemical conversion liquid. It can be done by As the conversion liquid, for example, it is preferable to use an aqueous solution of phosphoric acid.
  • Step 2 it is preferable to electropolymerize a polypyrrole-based polymer precursor on the dielectric layer to form a first layer containing the polypyrrole-based polymer.
  • a conductive precoat layer may be formed prior to electrolytic polymerization.
  • the first layer may be formed directly on the dielectric layer, or may be formed via a precoat layer.
  • the first layer is formed using a first treatment liquid containing a polypyrrole-based polymer precursor, a first dopant, and a dispersion medium (or solvent).
  • the first layer may be formed, for example, by immersing the anode body on which the dielectric layer and the precoat layer are formed in the first treatment liquid, and supplying power from the supply electrode using the precoat layer as an electrode.
  • the precoat layer is made of, for example, a conductive material (conductive polymer, inorganic conductive material, etc.).
  • the conductive material constituting the precoat layer is not particularly limited, and known materials can be used, for example.
  • the first layer may be formed by chemically polymerizing a polypyrrole-based polymer precursor.
  • the first layer is formed using a treatment liquid containing a polypyrrole-based polymer precursor, a first dopant, an oxidizing agent, and a dispersion medium (or solvent). After applying the treatment liquid to the dielectric layer, it may be heated.
  • a treatment liquid containing a polypyrrole-based polymer, a first dopant, and a dispersion medium (or solvent) may be adhered to the dielectric layer to form the first layer.
  • polypyrrole-based polymer and the first dopant examples include those exemplified above.
  • polypyrrole-based polymer precursors include monomers constituting the polypyrrole-based polymer and/or oligomers in which several monomers are linked.
  • Dispersion media include, for example, water, organic solvents, or mixtures thereof.
  • organic solvents include monohydric alcohols (methanol, ethanol, propanol, etc.), polyhydric alcohols (ethylene glycol, glycerin, etc.), or aprotic polar solvents (N,N-dimethylformamide, dimethylsulfoxide, acetonitrile, acetone , benzonitrile, etc.).
  • the treatment liquid (first treatment liquid) may further contain other components.
  • a second treatment liquid containing polythiophene-based polymer is attached to the first layer to form a second layer containing polythiophene-based polymer.
  • the anode body having the first layer formed on the dielectric layer may be immersed in the second treatment liquid and then dried to form the second layer.
  • the second treatment liquid may be dried to form the second layer.
  • the second treatment liquid contains a polythiophene-based polymer, a dispersion medium (or solvent), and, if necessary, a second dopant.
  • a polythiophene-based polymer and the second dopant those exemplified above can be used.
  • the dispersion medium (or solvent) those exemplified in the second step can be used.
  • the second treatment liquid may further contain other components.
  • the second treatment liquid for example, a polythiophene-based polymer dispersion (or solution) or a polythiophene-based polymer composite dispersion (or solution) of a polythiophene-based polymer and a second dopant may be used.
  • the second treatment liquid can be obtained, for example, by oxidative polymerization of a polythiophene-based polymer precursor in a dispersion medium (or solvent). Examples of this precursor include a monomer constituting a polythiophene-based polymer and/or an oligomer in which several monomers are linked.
  • the second treatment liquid containing the polythiophene-based polymer composite can be obtained by oxidative polymerization of a polythiophene-based polymer precursor in the presence of the second dopant in a dispersion medium (or solvent).
  • Polythiophene-based polymer composites include PEDOT doped with PSS (PEDOT/PSS).
  • the second treatment liquid may be a dispersion liquid of polythiophene-based polymer (or polythiophene-based polymer composite).
  • the non-self-doping polythiophene-based polymer is less soluble in water than the self-doping-type polythiophene-based polymer, and the polythiophene-based polymer (or polythiophene-based polymer complex) is dissolved in the second treatment liquid containing water.
  • the average particle size of the particles of the polythiophene-based polymer (or polythiophene-based polymer composite) dispersed in the second treatment liquid may be 20 nm or more, It may be 100 nm or more, or 150 nm or more.
  • the upper limit of the average particle size is not particularly limited, it is, for example, 1000 nm or less.
  • the average particle size here means the median size (D50) in the volume-based particle size distribution.
  • the average particle size of the polythiophene-based polymer can be obtained from the particle size distribution by the dynamic light scattering method (DLS). Specifically, the particles are dispersed in water (in a second treatment liquid containing water) by ultrasonic waves, and the particle size distribution of the particles is measured using a dynamic light scattering particle size distribution analyzer (LB-550, manufactured by HORIBA). is measured on a volume basis, and the median diameter (D50) is taken as the average particle diameter.
  • DLS dynamic light scattering particle size distribution analyzer
  • Step of forming cathode extraction layer In this step, a cathode extraction layer is formed by successively laminating a carbon layer and a silver paste layer on the second layer formed in the third step. A capacitor element can be obtained by forming a cathode extraction layer.
  • a conductive adhesive layer is arranged on the surface of the cathode extraction layer, and one end of the cathode terminal is electrically connected to the capacitor element via this adhesive layer.
  • an electrode terminal used in an electrolytic capacitor can be used without any particular limitation, and for example, what is called a lead frame may be used.
  • Step of encapsulating capacitor element with resin encapsulant The formed capacitor element is sealed with a resin material together with a part of each of the anode terminal and the cathode terminal, for example.
  • a resin sealing material is formed by this sealing.
  • the resin material a thermosetting resin (such as an epoxy resin) or a resin composition is preferable.
  • the resin sealing material includes a thermosetting resin or a cured product of a resin composition.
  • ⁇ Example 1>> (Step of forming a dielectric layer on the surface of the anode body)
  • a tantalum sintered body porous body in which a part of the anode lead was embedded was prepared.
  • the tantalum sintered body is a rectangular parallelepiped, and the anode lead is planted from one end face of the rectangular parallelepiped.
  • the anode body was anodized in a phosphoric acid aqueous solution to form a dielectric layer containing tantalum oxide (Ta 2 O 5 ) on the surface of the anode body.
  • Step of forming first layer An aqueous dispersion (first treatment liquid) containing pyrrole and a first dopant (a sulfonate having a naphthalene skeleton) was prepared.
  • the concentration of pyrrole in the first treatment liquid can be appropriately selected, for example, in the range of 1 to 6% by mass, and the concentration of the first dopant in the first treatment liquid is, for example, 3 to 12% by mass. can be selected as appropriate within the range of
  • the anode body with the dielectric layer formed thereon was immersed in a treatment liquid containing a conductive material to form a precoat layer.
  • the anode body on which the dielectric layer and the precoat layer are formed is immersed in the first treatment liquid, and the electropolymerization of pyrrole is allowed to proceed using the precoat layer as an electrode to form the first layer containing polypyrrole and the first dopant (conductivity : 80 S/cm).
  • Step of forming second layer An aqueous dispersion (second treatment liquid) containing a polymer composite (PEDOT/PSS) of PEDOT (polythiophene-based polymer) and a second dopant (PSS) was prepared.
  • the concentration of PEDOT/PSS in the second treatment liquid can be appropriately selected, for example, within the range of 1 to 2% by mass.
  • the average particle size of PEDOT/PSS was 200 nm.
  • the step of drying at 150°C for 10 to 30 minutes was performed once to form the second layer (conductivity: 400 S/cm).
  • the second layer conductivity: 400 S/cm.
  • a solid electrolyte layer composed of the first layer and the second layer was formed.
  • the thickness T1 of the first layer was 100 nm.
  • the thickness T2 of the second layer was 1 ⁇ m.
  • Step of forming cathode extraction layer A carbon layer was formed by applying a dispersion of graphite particles in water to the surface of the solid electrolyte layer and then drying it. Next, after applying a silver paste containing silver particles and a binder resin (epoxy resin) to the surface of the carbon layer, the binder resin was cured by heating to form a silver paste layer. In this manner, a cathode extraction layer composed of a carbon layer and a silver paste layer was formed. Thus, a capacitor element was obtained.
  • a binder resin epoxy resin
  • Step of encapsulating the capacitor element An anode terminal (anode lead frame) was welded to the anode lead, a cathode terminal (cathode lead frame) was connected to the cathode lead layer with a conductive adhesive, and the capacitor element was sealed with a resin sealing material. Thus, the electrolytic capacitor A1 of Example 1 was produced.
  • Table 1 shows the evaluation results.
  • the capacitance and leakage current are shown as relative values when the capacitance and leakage current of the electrolytic capacitor B1 of Comparative Example 1 are set to 100, respectively.
  • the initial ESR (m ⁇ ) at a frequency of 100 kHz was measured using an LCR meter for four-terminal measurement in an environment of 20°C.
  • the electrolytic capacitors A1 to A4 exhibited good ESR.
  • the electrolytic capacitors A1 to A3 in which the thickness T2 of the second layer was 1 to 20 ⁇ m provided a lower ESR.
  • the electrolytic capacitor according to the present invention is suitable for applications that require a high capacitance and a small leakage current compared to electrolytic capacitors.
  • 1 electrolytic capacitor
  • 2 capacitor element
  • 3 resin sealing material
  • 4 anode terminal
  • 4S main surface of anode terminal
  • 5 cathode terminal
  • 5S main surface of cathode terminal
  • 6 anode body
  • 7 Dielectric layer
  • 8 cathode portion
  • 9 solid electrolyte layer
  • 9a first layer
  • 9b second layer
  • 10 cathode extraction layer
  • 11 carbon layer
  • 12 silver paste layer
  • 13 separation layer
  • 14 adhesive layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

電解コンデンサは、陽極体と、陽極体を覆う誘電体層と、誘導体層を覆う第1固体電解質層と、第1固体電解質層を覆う第2固体電解質層と、を備える。第1固体電解質層は、ポリピロールを基本骨格とする第1導電性高分子を含む。第2固体電解質層は、ポリチオフェンを基本骨格とする第2導電性高分子を含む。第2固体電解質層の厚みは、1μm以上である。

Description

電解コンデンサおよびその製造方法
 本発明は、固体電解質層を備える電解コンデンサおよびその製造方法に関する。
 電解コンデンサは、コンデンサ素子と、コンデンサ素子と電気的に接続された電極端子と、コンデンサ素子を封止する外装体とを備える。コンデンサ素子は、例えば、陽極体と、陽極体を覆う誘電体層と、誘電体層を覆う固体電解質層とを備える。
 固体電解質層は導電性高分子を含む。導電性高分子として、例えば、ポリピロールが用いられる(例えば、特許文献1)。
特開2008-118060号公報
 近年、電解コンデンサの静電容量の向上および漏れ電流の低減が求められている。
 本発明の一側面は、陽極体と、前記陽極体を覆う誘電体層と、前記誘導体層を覆う第1固体電解質層と、前記第1固体電解質層を覆う第2固体電解質層と、を備え、前記第1固体電解質層は、ポリピロールを基本骨格とする第1導電性高分子を含み、前記第2固体電解質層は、ポリチオフェンを基本骨格とする第2導電性高分子を含み、前記第2固体電解質層の厚みは、1μm以上である、電解コンデンサに関する。
 本発明の他の側面は、誘電体層が形成された陽極体を準備する第1工程と、前記誘電体層上でポリピロールを基本骨格とする第1導電性高分子の前駆体を電解重合させて、前記第1導電性高分子を含む第1固体電解質層を形成する第2工程と、前記第1固体電解質層にポリチオフェンを基本骨格とする第2導電性高分子を含む処理液を付着させて、前記第2導電性高分子を含む第2固体電解質層を形成する第3工程と、を含み、前記第2固体電解質層の厚みは、1μm以上である、電解コンデンサの製造方法に関する。
 本発明によれば、電解コンデンサについて、静電容量の向上および漏れ電流の低減を実現することができる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
本発明の一実施形態に係る電解コンデンサを模式的に示す断面図である。 図1の領域IIを模式的に示す拡大断面図である。
 以下、本開示の実施形態について例を挙げて説明するが、本開示は以下で説明する例に限定されない。以下の説明では、具体的な数値、材料等を例示する場合があるが、本開示の効果が得られる限り、他の数値、材料等を適用してもよい。なお、本開示に特徴的な部分以外の構成要素には、公知の電解コンデンサの構成要素を適用してもよい。この明細書において、「数値A~数値Bの範囲」という場合、当該範囲には数値Aおよび数値Bが含まれる。複数の材料が例示される場合、その中から1種を選択して単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明の一実施形態に係る電解コンデンサは、陽極体と、陽極体を覆う誘電体層と、誘導体層を覆う第1固体電解質層と、第1固体電解質層を覆う第2固体電解質層と、を備える。第1固体電解質層(以下、第1層とも称する。)は、ポリピロールを基本骨格とする第1導電性高分子(以下、ポリピロール系高分子とも称する。)を含む。第2固体電解質層(以下、第2層とも称する。)は、ポリチオフェンを基本骨格とする第2導電性高分子(以下、ポリチオフェン系高分子とも称する。)を含む。第2固体電解質層の厚みは、1μm以上である。第1層の90質量%以上は、陽極体の細孔内に侵入している。第2層の90質量%以上は、陽極体の細孔外に存在する。第2層は、陽極体の細孔を無視した外形に沿って形成される表皮層の態様を有してもよい。
 上記構成を満たす場合、静電容量の向上および漏れ電流の低減を両立することができる。
 第1層はポリピロール系高分子を含み、漏れ電流を低減し易い反面、静電容量を向上させにくい。これに対して、導電率が高い第2層を第1層の上に配置することにより、静電容量を向上させることができる。
 また、第2層はポリチオフェン系高分子を含み、導電率を高めやすい反面、漏れ電流を増大させやすい傾向がある。これに対して、第2層の厚みを1μm以上に大きくすることにより、漏れ電流の増大が顕著に抑制される。
 陽極体は、誘電体層および固体電解質層を形成するのに大きな表面積を有することが有利であるため、通常、少なくとも表面(表層)に多孔質部を有する。多孔質部は、多くの孔(ピット)を含む。誘電体層は、多孔質部の外表面および孔の内壁面を覆っている。第1層は、少なくとも、誘電体層を介して多孔質部の孔の内壁面を覆っていればよい。第1層は、誘電体層を介して多孔質部の外表面を覆っていてもよく、その場合、多孔質部の外表面を覆っている第1層の厚みは、多孔質部の孔の内壁面を覆っている第1層の厚みよりも小さくてもよい。第2層は、誘電体層(もしくは誘電体層および第1層)を介して、多孔質部の外表面を覆っている。第2層は、さらに、誘電体層および第1層を介して、多孔質部の孔の内壁面を覆っていてもよい。
 後述の第2処理液がポリチオフェン系高分子の粒子を多く含む場合、および/または、後述の第2処理液に含まれるポリチオフェン系高分子の粒子が大きい場合、第2層の厚みを1μm以上に大きくし易い。この場合、第2層は多孔質部の孔内に形成されにくい。第2層は、多孔質部の孔の開口を覆うように多孔質部の外表面に形成されていてもよい。この場合、第2層は、多孔質部の孔内の開口部側に少し入り込む程度に形成されていてもよい。第2層は第1層と部分的に(多孔質部の孔の開口部付近において)直に接していてもよい。多孔質部の孔の内壁面を覆う第1層と、多孔質部の外表面(孔の開口)を覆う第2層との間に空隙が形成されていてもよい。
 第2層の厚み(図2の第2層9bの厚みT2)が1μm以上の場合、漏れ電流を低減できる。漏れ電流の低減の観点から、第2層の厚みは5μm以上であることが好ましい。第2層の厚みは、1μm以上、20μm以下であってもよく、5μm以上、20μm以下であってもよい。第2層の厚みが20μm以下の場合、ESRを低減し易い。
 なお、第2層の厚みとは、誘電体層および第1層を介して、陽極体の多孔質部の外表面を覆う第2層の厚み(図2の厚みT2)を意味する。第2層の厚みは、以下の方法により求めることができる。まず、電解コンデンサを分解して、コンデンサ素子を取り出し、走査型電子顕微鏡(SEM)を用いてコンデンサ素子の断面の画像を得る。当該画像を用いて、誘電体層(もしくは誘電体層および第1層)を介して、多孔質部の外表面(陽極体の外形を規定するラインの外側)を覆う第2層の任意の10点の厚みを測定する。当該厚みの測定値の平均値を算出する。なお、第1層および第2層は、SEM-EDX(エネルギー分散型X線分光法)の分析により確認することができる。
 第1層の厚み(図2の第1層9aの厚みT1)は、50nm以上であってもよく、50nm以上、100nm以下であってもよい。第1層の厚みが50nm以上である場合、漏れ電流を低減し易い。第1層の厚みが100nm以下である場合、誘電体層を介して多孔質部の孔の内壁面を第1層で覆い易い。なお、第1層の厚みとは、誘電体層を介して多孔質部の内壁面を覆う第1層の厚み(図2の厚みT1)を意味する。第1層の厚みは、第2層の厚みと同様の方法により求めることができる。すなわち、SEMによる断面画像において、誘電体層を介して多孔質部の孔の内壁面を覆う第2層の任意の10点の厚みを測定し、平均値を算出する。
 第1層は第2層よりも導電率が低いことが好ましい。導電率が高い第2層は、静電容量の向上に有利である反面、漏れ電流が増大し易い。第2層よりも導電率が低く、漏れ電流の低減に有利な第1層を介して、誘電体層の表面を第2層で覆うことにより、漏れ電流の低減および静電容量の向上の両立を図り易い。
 漏れ電流の低減の観点から、第1層の導電率は、200S/cm以下であることが好ましく、60S/cm以上、150S/cm以下であることがより好ましい。
 第1層の導電率は、以下の方法により求めることができる。
 電解コンデンサを分解して、コンデンサ素子を取り出し、第1層の成分(ポリピロール系高分子および第1ドーパント)の分析を行う。後述の第2工程の第1処理液を用いて第1層を形成する場合、第1処理液について分析を行ってもよい。分析法としては、TEM-EELS法(電子エネルギー損失分光法)、NMR法(核磁気共鳴分光法)、ラマン分光法などを用いることができる。分析結果に基づいて、第1層と同じ成分を含む試料膜(例えば、厚み20~40μm)を形成し、試料膜の導電率を第1層の導電率として求める。
 第1層は、通常、第1ドーパントの存在下でポリピロール系高分子の前駆体を電解重合させることにより形成される。よって、第1層と同じ成分を含む試料膜は、ポリピロール系高分子の前駆体および第1ドーパントを含む試料液を調製し、試料液に金属基板を浸漬し、金属基板に電流を流し、前駆体を電解重合させて形成することができる。第1処理液を用いて試料膜を形成してもよい。試料膜の導電率の測定には、日東精工アナリテック社製のロレスタ-GXおよびPSPプローブを用いることができる。
 静電容量の向上の観点から、第2層の導電率は、350S/cm以上であることが好ましく、350S/cm以上、800S/cm以下であることがより好ましい。第2層の導電率は、第1層と同様の方法により求めることができる。分析結果に基づいて、第2層と同じ成分を含む試料膜(例えば、厚み20~40μm)を形成し、試料膜の導電率を第2層の導電率として求めればよい。第2層と同じ成分(ポリチオフェン系高分子および第2ドーパント)を含む試料膜は、ポリチオフェン系高分子および第2ドーパントを含む試料液を調製し、試料液を基板に塗布し、乾燥させて、形成することができる。後述の第3工程の第2処理液を用いて第2層を形成する場合、第2処理液について分析を行ってもよく、第2処理液を用いて試料膜を形成してもよい。
 以下、電解コンデンサおよびその製造方法について、より具体的に説明する。
[電解コンデンサ]
(陽極体)
 陽極体は、弁作用金属、弁作用金属を含む合金、および弁作用金属を含む化合物などを含むことができる。これらの材料は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。弁作用金属としては、例えば、アルミニウム、タンタル、ニオブ、チタンが好ましく使用される。陽極体は、表層に多孔質部を備えてもよい。このような陽極体は、例えば、エッチングなどにより弁作用金属を含む基材(箔状または板状の基材など)の表面を粗面化することで得られる。また、陽極体は、弁作用金属を含む粒子の成形体またはその焼結体でもよい。焼結体は、多孔質構造を有するため、陽極体の全体が多孔質部となり得る。
(誘電体層)
 誘電体層は、陽極体表面の弁作用金属を、化成処理などにより陽極酸化することで形成される。誘電体層は、陽極体の少なくとも一部を覆うように形成されていればよい。誘電体層は、通常、陽極体の表面に形成される。誘電体層は、陽極体の多孔質部の表面に形成されるため、陽極体の表面の孔および窪み(ピット)の内壁面に沿って形成される。
 誘電体層は弁作用金属の酸化物を含む。例えば、弁作用金属としてタンタルを用いた場合の誘電体層はTa25を含み、弁作用金属としてアルミニウムを用いた場合の誘電体層はAl23を含む。尚、誘電体層はこれに限らず、誘電体として機能するものであればよい。
(固体電解質層)
 固体電解質層は、誘電体層を覆うように形成される。固体電解質層は、必ずしも誘電体層の全体(表面全体)を覆う必要はなく、誘電体層の少なくとも一部を覆うように形成されていればよい。固体電解質層には、ポリピロール系高分子を含む第1層と、第1層上に形成されたポリチオフェン系高分子を含む第2層とが含まれる。誘電体層上に、第1層が形成されていない領域が存在する場合には、この領域において、誘電体層上に第2層が形成されていてもよい。
(第1層)
 第1層は、ポリピロール系高分子を含む。ポリピロール系高分子は、ポリピロールおよびその誘導体を含む。ポリピロール系高分子の重量平均分子量は、例えば、100以上、100000以下である。なお、本明細書中、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されるポリスチレン基準の重量平均分子量である。
 第1層は、通常、非自己ドープ型のポリピロール系高分子を含む。この場合、第1層は、ポリピロール系高分子(非自己ドープ型)と、第1ドーパントとを含む。この場合、第1ドーパントに応じて第1層の導電率を調節することができる。
 なお、非自己ドープ型のポリピロール系高分子としては、例えば、導電性高分子のポリピロール骨格に共有結合で直接的または間接的に結合したアニオン性基(具体的には、スルホン酸基、カルボキシ基、リン酸基、ホスホン酸基、およびこれらの塩)を有さない導電性高分子が挙げられる。
 第1ドーパントは低分子ドーパントであってもよい。低分子ドーパントは、例えば、アニオンを形成し得るドーパントである。低分子ドーパントの具体例としては、硫酸、硝酸、燐酸、硼酸、有機スルホン酸などが挙げられる。有機スルホン酸としては、芳香族スルホン酸などが挙げられる。芳香族スルホン酸としては、ベンゼンスルホン酸、アルキルベンゼンスルホン酸(例えば、パラトルエンスルホン酸)、ナフタレンスルホン酸、アルキルナフタレンスルホン酸などが挙げられる。
 第1層において、第1ドーパントはポリピロール系高分子とポリピロール系高分子複合体を形成していてもよい。第1層において、第1ドーパントは、アニオンの形態で含まれていてもよく、塩の形態で含まれていてもよい。
 第1層中の第1ドーパントの含有量は、ポリピロール系高分子100質量部に対して、例えば、10質量部以上、70質量部以下である。
 第1層は、ポリピロール系高分子以外の導電性高分子を含んでいてもよいが、ポリピロール系高分子の含有量が多いことが好ましい。第1層に含まれる導電性高分子全体に占めるポリピロール系高分子の比率は、例えば、90質量%以上であり、100質量%であってもよい。
 第1層は、単層であってもよく、複数の層で構成してもよい。第1層が複数層で構成される場合、各層に含まれるポリピロール系高分子は同じであってもよく、異なっていてもよい。第1層は、本発明の効果を損なわない範囲内で、更に他の成分を含んでもよい。
(第2層)
 第2層は、ポリチオフェン系高分子を含む。ポリチオフェン系高分子は、ポリチオフェンおよびその誘導体を含む。ポリチオフェン系高分子としては、例えば、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)が挙げられる。この場合、第2層の導電性が高く、高い静電容量が得られ易い。ポリチオフェン系高分子の重量平均分子量は、例えば、100以上、100000以下である。
 第2層は、非自己ドープ型のポリチオフェン系高分子を含んでもよい。この場合、第2層は、ポリチオフェン系高分子(非自己ドープ型)と、第2ドーパントとを含む。この場合、第2ドーパントに応じて第2層の導電率を調節することができる。ポリチオフェン系高分子が非自己ドープ型の場合、後述の第3工程(第2層の形成)で用いる第2処理液中にポリチオフェン系高分子の粒子を分散させ易く、厚みが大きい第2層を形成し易い。
 なお、非自己ドープ型のポリチオフェン系高分子としては、例えば、導電性高分子のポリチオフェン骨格に共有結合で直接的または間接的に結合したアニオン性基(具体的には、スルホン酸基、カルボキシ基、リン酸基、ホスホン酸基、およびこれらの塩)を有さない導電性高分子が挙げられる。
 第2ドーパントは、高分子ドーパントであってもよい。高分子ドーパントは、例えば、ポリアニオンを形成し得るドーパントである。高分子ドーパントの具体例としては、ポリビニルスルホン酸、ポリスチレンスルホン酸(PSS)、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸などが挙げられる。
 第2層において、第2ドーパントはポリチオフェン系高分子とポリチオフェン系高分子複合体を形成していてもよい。第2層において、第2ドーパントは、ポリアニオンの形態で含まれていてもよく、塩の形態で含まれていてもよい。
 第2層中の第2ドーパントの含有量は、ポリチオフェン系高分子100質量部に対して、例えば、0.1質量部以上、50質量部以下である。
 第2層は、ポリチオフェン系高分子以外の導電性高分子を含んでいてもよいが、ポリチオフェン系高分子の含有量が多いことが好ましい。第2層に含まれる導電性高分子全体に占めるポリチオフェン系高分子の比率は、例えば、90質量%以上であり、100質量%であってもよい。
 第2層は、単層であってもよく、複数の層で構成されていてもよい。第2層が複数層で構成される場合、各層に含まれるポリチオフェン系高分子は同じであってもよく、異なっていてもよい。第2層は、本発明の効果を損なわない範囲内で、更に他の成分を含んでもよい。
 図1は、本発明の一実施形態に係る電解コンデンサの構造を概略的に示す断面図である。図2は、図1の領域IIを模式的に示す拡大断面図である。電解コンデンサ1は、コンデンサ素子2と、コンデンサ素子2を封止する樹脂封止材(外装体)3と、樹脂封止材3の外部にそれぞれ少なくともその一部が露出する陽極端子4および陰極端子5と、を備えている。陽極端子4および陰極端子5は、例えば金属(銅または銅合金など)で構成することができる。樹脂封止材3は、ほぼ直方体の外形を有しており、電解コンデンサ1もほぼ直方体の外形を有している。樹脂封止材3の素材としては、例えばエポキシ樹脂を用いることができる。
 コンデンサ素子2は、陽極体6と、陽極体6を覆う誘電体層7と、誘電体層7を覆う陰極部8とを備える。陰極部8は、誘電体層7を覆う固体電解質層9と、固体電解質層9を覆う陰極引出層10とを備える。陰極引出層10は、カーボン層11および銀ペースト層12を有する。
 陽極体6は、多孔質部6aを有するとともに、陰極部8と対向する領域と、対向しない領域とを含む。多孔質部6aは、多数の孔Pを含む。孔Pは、スポンジ状ピットでもよく、トンネル状ピットでもよい。陽極体6の陰極部8と対向しない領域のうち、陰極部8に隣接する部分には、陽極体6の表面を帯状に覆うように絶縁性の分離層13が形成され、陰極部8と陽極体6との接触が規制されている。陽極体6の陰極部8と対向しない領域のうち、他の一部は、陽極端子4と、溶接により電気的に接続されている。陰極端子5は、導電性接着剤により形成される接着層14を介して、陰極部8と電気的に接続している。
 陽極端子4および陰極端子5の主面4Sおよび5Sは、樹脂封止材3の同じ面から露出している。この露出面は、電解コンデンサ1を搭載すべき基板(図示せず)との半田接続などに用いられる。
 カーボン層11は、導電性を有していればよく、例えば、導電性炭素材料(黒鉛など)を用いて構成することができる。銀ペースト層12には、例えば、銀粉末とバインダ樹脂(エポキシ樹脂など)を含む組成物を用いることができる。なお、陰極引出層10の構成は、これに限られず、集電機能を有する構成であればよい。
 固体電解質層9は、誘電体層7を覆うように形成されている。誘電体層7は、陽極体6の表面(多孔質部6aの孔Pの内壁面および外表面S)に沿って形成される。誘電体層7の表面は、陽極体6の表面の形状に応じた凹凸形状が形成されている。固体電解質層9は、このような誘電体層7の凹凸を埋めるように形成されていることが好ましい。
 固体電解質層9は、第1層9aおよび第2層9bを備える。第1層9aは、誘電体層7を介して、多孔質部6aの孔Pの内壁面を覆うように形成されている。図2に示すように、第1層9aは、多孔質部6aの外表面Sを覆っていなくてもよい。第2層9bは、誘電体層7を介して、多孔質部6aの外表面Sを覆うように形成されている。図2に示すように、第2層9bは、多孔質部6aの孔P内に入り込んでいなくてもよく、多孔質部6aの孔Pの開口を覆うように形成されていてもよい。この場合、孔P内において、第1層9aと第2層9bの間に空隙が存在していてもよい。第1層9aはポリピロール系高分子を含み、第2層9bはポリチオフェン系高分子を含む。第1層9aおよび第2層9bは、それぞれ厚みT1および厚みT2を有する。第2層9bの厚みT2は、1μm以上である。
 第1層は、さらに、誘電体層7を介して、多孔質部6aの外表面Sを覆うように形成されていてもよい。この場合、第2層は、誘電体層および第1層を介して、多孔質部6aの外表面Sを覆うように形成される。
 本実施形態に係る電解コンデンサは、上記構造の電解コンデンサに限定されず、様々な構造の電解コンデンサに適用することができる。具体的に、金属粉末の焼結体を陽極体として用いる電解コンデンサ、巻回型の電解コンデンサなどにも、本発明を適用できる。
[電解コンデンサの製造方法]
 本発明の一実施形態に係る電解コンデンサの製造方法は、誘電体層が形成された陽極体を準備する第1工程と、誘電体層上に第1層を形成する第2工程と、第1層上に第2層を形成する第3工程とを含む。第1層はポリピロール系高分子を含み、第2層はポリチオフェン系高分子を含む。また、第2層は1μm以上の厚みを有する。第2工程および第3工程により、第1層と第2層とを備える固体電解質層を形成する。また、電解コンデンサの製造方法は、第1工程に先立って、陽極体を準備する工程を含んでもよい。製造方法は、さらに陰極引出層を形成する工程、および/またはコンデンサ素子を封止する工程を含んでもよい。
 以下に、各工程についてより詳細に説明する。
(陽極体を準備する工程)
 この工程では、陽極体の種類に応じて、公知の方法により陽極体を形成する。
 陽極体は、例えば、弁作用金属を含む箔状または板状の基材の表面を粗面化することにより準備することができる。粗面化により、陽極体の表層に多孔質部が形成される。粗面化は、基材表面に凹凸を形成できればよく、例えば、基材表面をエッチング(例えば、電解エッチング)することにより行ってもよい。
 また、弁作用金属(例えば、タンタル)の粉末を用意し、この粉末の中に、棒状体の陽極リードの長手方向の一端側を埋め込んだ状態で、所望の形状(例えば、ブロック状)に成形された成形体を得る。この成形体を焼結することで、陽極リードの一端が埋め込まれた多孔質構造の陽極体を形成してもよい。
(第1工程)
 第1工程では、陽極体上に誘電体層を形成する。誘電体層は、陽極体を陽極酸化することにより形成される。陽極酸化は、公知の方法、例えば、化成処理などにより行うことができる。化成処理は、例えば、陽極体を化成液中に浸漬することにより、陽極体の表面に化成液を含浸させ、陽極体をアノードとして、化成液中に浸漬したカソードとの間に電圧を印加することにより行うことができる。化成液としては、例えば、リン酸水溶液などを用いることが好ましい。
(第2工程)
 第2工程では、誘電体層上でポリピロール系高分子の前駆体を電解重合させて、ポリピロール系高分子を含む第1層を形成することが好ましい。電解重合の場合には、電解重合に先立って導電性のプレコート層を形成してもよい。この場合、第1層は、誘電体層上に直接形成されていてもよく、プレコート層を介して形成されていてもよい。
 電解重合の場合、例えば、ポリピロール系高分子の前駆体と、第1ドーパントと、分散媒(または溶媒)とを含む第1処理液を用いて第1層が形成される。第1層は、例えば、誘電体層およびプレコート層が形成された陽極体を第1処理液に浸漬し、プレコート層を電極として供給電極から給電することにより形成してもよい。プレコート層は、例えば、導電性材料(導電性高分子、無機導電性材料など)で形成される。プレコート層を構成する導電性材料としては特に制限されず、例えば公知のものが使用できる。
 また、第2工程では、ポリピロール系高分子の前駆体を化学重合させて第1層を形成してもよい。化学重合の場合、例えば、ポリピロール系高分子の前駆体と、第1ドーパントと、酸化剤と、分散媒(または溶媒)とを含む処理液を用いて第1層が形成される。誘電体層に処理液を付着させた後、加熱してもよい。
 また、第2工程では、ポリピロール系高分子と、第1ドーパントと、分散媒(または溶媒)とを含む処理液を、誘電体層に付着させて第1層を形成してもよい。
 ポリピロール系高分子および第1ドーパントとしては、それぞれ、上記で例示したものを使用することができる。ポリピロール系高分子の前駆体としては、ポリピロール系高分子を構成するモノマー、および/またはモノマーがいくつか連なったオリゴマーなどが例示できる。分散媒(または溶媒)としては、例えば、水、有機溶媒、またはこれらの混合物が挙げられる。有機溶媒としては、例えば、1価アルコール(メタノール、エタノール、プロパノールなど)、多価アルコール(エチレングリコール、グリセリンなど)、または非プロトン性極性溶媒(N,N-ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン、ベンゾニトリルなど)が挙げられる。処理液(第1処理液)は、さらに、他の成分を含んでもよい。
(第3工程)
 第3工程では、例えば、第1層にポリチオフェン系高分子を含む第2処理液を付着させて、ポリチオフェン系高分子を含む第2層を形成する。例えば、第1層が誘電体層上に形成された陽極体を第2処理液に浸漬した後、乾燥し、第2層を形成してもよい。第1層が誘電体層上に形成された陽極体に第2処理液を塗布または滴下した後、乾燥し、第2層を形成してもよい。
 第2処理液は、ポリチオフェン系高分子と、分散媒(または溶媒)と、必要により、第2ドーパントとを含む。ポリチオフェン系高分子および第2ドーパントとしては、上記で例示したものを使用することができる。分散媒(または溶媒)としては、第2工程で例示したものを用いることができる。第2処理液は、さらに、他の成分を含んでもよい。
 第2処理液としては、例えば、ポリチオフェン系高分子の分散液(または溶液)、ポリチオフェン系高分子と第2ドーパントとのポリチオフェン系高分子複合体の分散液(または溶液)を用いてもよい。第2処理液は、例えば、分散媒(または溶媒)中、ポリチオフェン系高分子の前駆体を酸化重合させることにより得ることができる。この前駆体としては、ポリチオフェン系高分子を構成するモノマー、および/またはモノマーがいくつか連なったオリゴマーなどが例示できる。ポリチオフェン系高分子複合体を含む第2処理液は、分散媒(または溶媒)中、第2ドーパントの存在下、ポリチオフェン系高分子の前駆体を酸化重合させることにより得ることができる。ポリチオフェン系高分子複合体としては、PSSがドープされたPEDOT(PEDOT/PSS)が挙げられる。
 厚みが大きい第2層を形成する観点から、第2処理液はポリチオフェン系高分子(またはポリチオフェン系高分子複合体)の分散液であってもよい。自己ドープ型のポリチオフェン系高分子よりも非自己ドープ型のポリチオフェン系高分子の方が、水に溶けにくく、水を含む第2処理液中にポリチオフェン系高分子(またはポリチオフェン系高分子複合体)の粒子を多く分散させることができ、厚みが大きい第2層を形成し易い。
 厚みが大きい第2層を形成し易い観点から、第2処理液中に分散するポリチオフェン系高分子(またはポリチオフェン系高分子複合体)の粒子の平均粒子径は、20nm以上であってもよく、100nm以上であってもよく、150nm以上であってもよい。平均粒子径の上限は、特に制限されないが、例えば、1000nm以下である。なお、ここでいう平均粒子径は、体積基準の粒度分布におけるメジアン径(D50)を意味する。
 ポリチオフェン系高分子(またはポリチオフェン系高分子複合体)の平均粒子径は、動的光散乱法(DLS)による粒径分布から求めることができる。具体的には、粒子を水中で(水を含む第2処理液中で)超音波により分散させ、動的光散乱法式粒度分布測定装置(HORIBA社製、LB-550)により、粒子の粒度分布を体積基準で測定し、そのメジアン径(D50)を平均粒子径とする。
(陰極引出層を形成する工程)
 この工程では、第3工程で形成された第2層上に、カーボン層と銀ペースト層とを順次積層することにより陰極引出層を形成する。陰極引出層を形成することにより、コンデンサ素子を得ることができる。
 なお、陰極引出層の表面に導電性の接着層を配置し、この接着層を介して陰極端子の一端部をコンデンサ素子に電気的に接続させる。陰極端子としては、電解コンデンサで使用される電極端子が特に制限なく利用でき、例えば、リードフレームと呼ばれるものを用いてもよい。
(樹脂封止材でコンデンサ素子を封止する工程)
 形成されたコンデンサ素子は、例えば、陽極端子および陰極端子のそれぞれの一部とともに樹脂材料で封止される。この封止により、樹脂封止材が形成される。樹脂材料としては、熱硬化性樹脂(エポキシ樹脂など)または樹脂組成物が好ましい。なお、樹脂封止材は、熱硬化性樹脂または樹脂組成物の硬化物を含む。
[実施例]
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
《実施例1》
(陽極体の表面に誘電体層を形成する工程)
 陽極体として、陽極リードの一部が埋設されたタンタル焼結体(多孔質体)を準備した。タンタル焼結体は直方体であり、陽極リードが直方体の一端面より植立されている。陽極体についてリン酸水溶液中で陽極酸化を行い、陽極体の表面に酸化タンタル(Ta25)を含む誘電体層を形成した。
(第1層を形成する工程)
 ピロールと、第1ドーパント(ナフタレン骨格を有するスルホン酸塩)とを含む水分散液(第1処理液)を調製した。なお、第1処理液中のピロールの濃度は、例えば、1~6質量%の範囲で適宜選択することができ、第1処理液中の第1ドーパントの濃度は、例えば、3~12質量%の範囲で適宜選択することができる。
 誘電体層が形成された陽極体を、導電性材料を含む処理液に浸漬し、プレコート層を形成した。誘電体層およびプレコート層が形成された陽極体を、第1処理液に浸漬し、プレコート層を電極として、ピロールの電解重合を進行させて、ポリピロールおよび第1ドーパントを含む第1層(導電率:80S/cm)を形成した。
(第2層を形成する工程)
 PEDOT(ポリチオフェン系高分子)と第2ドーパント(PSS)との高分子複合体(PEDOT/PSS)を含む水分散液(第2処理液)を準備した。第2処理液中のPEDOT/PSSの濃度は、例えば、1~2質量%の範囲で適宜選択することができる。PEDOT/PSSの平均粒子径は200nmであった。
 第1層が形成された陽極体を、第2処理液に浸漬した後、150℃で10~30分間乾燥する工程を1回行い、第2層(導電率:400S/cm)を形成した。このようにして、第1層と第2層とで構成される固体電解質層を形成した。第1層の厚みT1は100nmであった。第2層の厚みT2は1μmであった。
(陰極引出層を形成する工程)
 固体電解質層の表面に、黒鉛粒子を水に分散した分散液を塗布した後、乾燥することによりカーボン層を形成した。次いで、カーボン層の表面に、銀粒子とバインダ樹脂(エポキシ樹脂)とを含む銀ペーストを塗布した後、加熱してバインダ樹脂を硬化させ、銀ペースト層を形成した。このようにして、カーボン層と銀ペースト層とで構成される陰極引出層を形成した。このようにして、コンデンサ素子を得た。
(コンデンサ素子を封止する工程)
 陽極リードに陽極端子(陽極リードフレーム)を溶接し、陰極引出層に陰極端子(陰極リードフレーム)を導電性接着剤により接続し、コンデンサ素子を樹脂封止材で封止した。このようにして、実施例1の電解コンデンサA1を作製した。
《実施例2》
 第2層を形成する工程において、第1層が形成された陽極体を第2処理液に浸漬する工程を2回繰り返し行い、第2層の厚みT2を5μmとした以外、実施例1と同様にして、実施例2の電解コンデンサA2を作製した。
《実施例3》
 第2層を形成する工程において、第1層が形成された陽極体を第2処理液に浸漬する工程を4回繰り返し行い、第2層の厚みT2を20μmとした以外、実施例1と同様にして、実施例3の電解コンデンサA3を作製した。
《実施例4》
 第2層を形成する工程において、第1層が形成された陽極体を第2処理液に浸漬する工程を6回繰り返し行い、第2層の厚みT2を30μmとした以外、実施例1と同様にして、実施例4の電解コンデンサA4を作製した。
《比較例1》
 第2層として第1層と同じ成分(ポリピロールおよび第1ドーパント)を含む層(導電率:80S/cm)を形成した以外、実施例1と同様にして、比較例1の電解コンデンサB1を作製した。
《比較例2》
 第2層を形成する工程において、第2処理液中の水の含有量を増やして(第2処理液の粘度を低くして)、第2層の厚みT2を0.6μmとした以外、実施例1と同様にして、比較例2の電解コンデンサB2を作製した。
[評価]
 上記で作製した実施例および比較例の電解コンデンサについて、以下の評価を行った。
 20℃の環境下で、4端子測定用のLCRメータを用いて、周波数120Hzにおける初期の静電容量(μF)を測定した。また、25℃の環境下、所定電圧下で40秒後に流れる電流値を漏れ電流として測定した。漏れ電流は、機種に応じた電圧(例えば、2.5V、16V、35Vなど)で測定される。
 評価結果を表1に示す。なお、表1中、静電容量および漏れ電流は、それぞれ、比較例1の電解コンデンサB1の静電容量および漏れ電流を100としたときの相対値として表した。
Figure JPOXMLDOC01-appb-T000001
 電解コンデンサA1~A4では、電解コンデンサB1~B2よりも高い静電容量および小さい漏れ電流が得られた。
 さらに、電解コンデンサA1~A4について、20℃の環境下で、4端子測定用のLCRメータを用いて、周波数100kHzにおける初期のESR(mΩ)を測定した。その結果、電解コンデンサA1~A4のいずれも、良好なESRを示した。中でも、第2層の厚みT2が1~20μmである電解コンデンサA1~A3では、より低いESRが得られた。
 本発明に係る電解コンデンサは、電解コンデンサに対して、高い静電容量、小さい漏れ電流が要求される用途に好適に用いられる。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 1:電解コンデンサ、2:コンデンサ素子、3:樹脂封止材、4:陽極端子、4S:陽極端子の主面、5:陰極端子、5S:陰極端子の主面、6:陽極体、7:誘電体層、8:陰極部、9:固体電解質層、9a:第1層、9b:第2層、10:陰極引出層、11:カーボン層、12:銀ペースト層、13:分離層、14:接着層

Claims (15)

  1.  陽極体と、
     前記陽極体を覆う誘電体層と、
     前記誘導体層を覆う第1固体電解質層と、
     前記第1固体電解質層を覆う第2固体電解質層と、
    を備え、
     前記第1固体電解質層は、ポリピロールを基本骨格とする第1導電性高分子を含み、
     前記第2固体電解質層は、ポリチオフェンを基本骨格とする第2導電性高分子を含み、
     前記第2固体電解質層の厚みは、1μm以上である、電解コンデンサ。
  2.  前記陽極体は、少なくとも表面に多孔質部を有し、
     前記誘電体層は、前記多孔質部の外表面および孔の内壁面を覆い、
     前記第1固体電解質層は、前記誘電体層を介して、前記多孔質部の孔の内壁面を覆い、
     前記第2固体電解質層は、前記誘電体層を介して、前記多孔質部の外表面を覆う、請求項1に記載の電解コンデンサ。
  3.  前記第2固体電解質層の厚みは、1μm以上、20μm以下である、請求項1または2に記載の電解コンデンサ。
  4.  前記第2固体電解質層の厚みは、5μm以上、20μm以下である、請求項1または2に記載の電解コンデンサ。
  5.  前記第1固体電解質層の厚みは、50nm以上、100nm以下である、請求項1~4のいずれか1項に記載の電解コンデンサ。
  6.  前記第1固体電解質層は、前記第2固体電解質層よりも導電率が低い、請求項1~5のいずれか1項に記載の電解コンデンサ。
  7.  前記第1固体電解質層の導電率は、200S/cm以下である、請求項1~6のいずれか1項に記載の電解コンデンサ。
  8.  前記第1固体電解質層の導電率は、60S/cm以上、150S/cm以下である、請求項1~6のいずれか1項に記載の電解コンデンサ。
  9.  前記第2固体電解質層の導電率は、350S/cm以上である、請求項1~8のいずれか1項に記載の電解コンデンサ。
  10.  前記第2固体電解質層の導電率は、350S/cm以上、800S/cm以下である、請求項1~8のいずれか1項に記載の電解コンデンサ。
  11.  前記第1固体電解質層は、非自己ドープ型の前記第1導電性高分子を含む、請求項1~10のいずれか1項に記載の電解コンデンサ。
  12.  前記第2固体電解質層は、非自己ドープ型の前記第2導電性高分子を含む、請求項1~11のいずれか1項に記載の電解コンデンサ。
  13.  誘電体層が形成された陽極体を準備する第1工程と、
     前記誘電体層上でポリピロールを基本骨格とする第1導電性高分子の前駆体を電解重合させて、前記第1導電性高分子を含む第1固体電解質層を形成する第2工程と、
     前記第1固体電解質層にポリチオフェンを基本骨格とする第2導電性高分子を含む処理液を付着させて、前記第2導電性高分子を含む第2固体電解質層を形成する第3工程と、を含み、
     前記第2固体電解質層の厚みは、1μm以上である、電解コンデンサの製造方法。
  14.  前記第1固体電解質層は、非自己ドープ型の前記第1導電性高分子を含む、請求項13に記載の電解コンデンサの製造方法。
  15.  前記第2固体電解質層は、非自己ドープ型の前記第2導電性高分子を含む、請求項13または14に記載の電解コンデンサの製造方法。
PCT/JP2022/009293 2021-03-12 2022-03-04 電解コンデンサおよびその製造方法 WO2022191050A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/549,498 US20240161985A1 (en) 2021-03-12 2022-03-04 Electrolytic capacitor and method for producing same
JP2023505494A JPWO2022191050A1 (ja) 2021-03-12 2022-03-04
CN202280020493.8A CN117063256A (zh) 2021-03-12 2022-03-04 电解电容器及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021040633 2021-03-12
JP2021-040633 2021-03-12

Publications (1)

Publication Number Publication Date
WO2022191050A1 true WO2022191050A1 (ja) 2022-09-15

Family

ID=83227921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009293 WO2022191050A1 (ja) 2021-03-12 2022-03-04 電解コンデンサおよびその製造方法

Country Status (4)

Country Link
US (1) US20240161985A1 (ja)
JP (1) JPWO2022191050A1 (ja)
CN (1) CN117063256A (ja)
WO (1) WO2022191050A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1032145A (ja) * 1996-07-16 1998-02-03 Nec Corp 固体電解コンデンサ及びその製造方法
JP2002252148A (ja) * 2001-02-22 2002-09-06 Matsushita Electric Ind Co Ltd 固体電解コンデンサおよびその製造方法
JP2007184318A (ja) * 2006-01-04 2007-07-19 Shin Etsu Polymer Co Ltd 固体電解コンデンサの製造方法
JP2008311582A (ja) * 2007-06-18 2008-12-25 Nec Tokin Corp 固体電解コンデンサおよびその製造方法
JP2011253878A (ja) * 2010-06-01 2011-12-15 Holy Stone Polytech Co Ltd 固体電解コンデンサ
JP2014049602A (ja) * 2012-08-31 2014-03-17 Sanyo Electric Co Ltd 固体電解コンデンサおよびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1032145A (ja) * 1996-07-16 1998-02-03 Nec Corp 固体電解コンデンサ及びその製造方法
JP2002252148A (ja) * 2001-02-22 2002-09-06 Matsushita Electric Ind Co Ltd 固体電解コンデンサおよびその製造方法
JP2007184318A (ja) * 2006-01-04 2007-07-19 Shin Etsu Polymer Co Ltd 固体電解コンデンサの製造方法
JP2008311582A (ja) * 2007-06-18 2008-12-25 Nec Tokin Corp 固体電解コンデンサおよびその製造方法
JP2011253878A (ja) * 2010-06-01 2011-12-15 Holy Stone Polytech Co Ltd 固体電解コンデンサ
JP2014049602A (ja) * 2012-08-31 2014-03-17 Sanyo Electric Co Ltd 固体電解コンデンサおよびその製造方法

Also Published As

Publication number Publication date
CN117063256A (zh) 2023-11-14
JPWO2022191050A1 (ja) 2022-09-15
US20240161985A1 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
US11348739B2 (en) Electrolytic capacitor
US11094471B2 (en) Electrolytic capacitor
WO2018020985A1 (ja) 電解コンデンサおよびその製造方法
WO2020153242A1 (ja) 電解コンデンサおよびその製造方法
US10121599B2 (en) Method for producing electrolytic capacitor
WO2018221096A1 (ja) 電解コンデンサおよびその製造方法
US10079112B2 (en) Method for producing electrolytic capacitor
JP2020526916A (ja) 固体電解キャパシタアセンブリ
US20190259547A1 (en) Electrolytic capacitor
WO2018235434A1 (ja) 電解コンデンサおよびその製造方法
JP2001102255A (ja) タンタル固体電解コンデンサおよびその製造方法
JP7108811B2 (ja) 電解コンデンサおよびその製造方法
WO2022191050A1 (ja) 電解コンデンサおよびその製造方法
JP2000021687A (ja) コンデンサ及びその製造方法
WO2022220235A1 (ja) 電解コンデンサおよびその製造方法
JP6760272B2 (ja) 電解コンデンサ
WO2023171657A1 (ja) 電解コンデンサ
WO2022230818A1 (ja) 電解コンデンサ
JP2024077354A (ja) 固体電解コンデンサ
JP2022039775A (ja) 固体電解コンデンサ素子および固体電解コンデンサ
JP2015195313A (ja) 電解コンデンサおよびその製造方法
JPH11297570A (ja) コンデンサの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22767008

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023505494

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18549498

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280020493.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22767008

Country of ref document: EP

Kind code of ref document: A1