WO2021124913A1 - ガラスクロス、プリプレグ、及びプリント配線板 - Google Patents

ガラスクロス、プリプレグ、及びプリント配線板 Download PDF

Info

Publication number
WO2021124913A1
WO2021124913A1 PCT/JP2020/045099 JP2020045099W WO2021124913A1 WO 2021124913 A1 WO2021124913 A1 WO 2021124913A1 JP 2020045099 W JP2020045099 W JP 2020045099W WO 2021124913 A1 WO2021124913 A1 WO 2021124913A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass cloth
less
glass
warp
amount
Prior art date
Application number
PCT/JP2020/045099
Other languages
English (en)
French (fr)
Inventor
裕幸 本間
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to CN202080052374.1A priority Critical patent/CN114207203B/zh
Priority to KR1020227007025A priority patent/KR102633930B1/ko
Priority to JP2021565463A priority patent/JP7371122B2/ja
Publication of WO2021124913A1 publication Critical patent/WO2021124913A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/242Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads inorganic, e.g. basalt
    • D03D15/267Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H18/00Winding webs
    • B65H18/28Wound package of webs
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0006Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0015Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
    • D06N3/0022Glass fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0086Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the application technique
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/038Textiles

Definitions

  • the present invention relates to a glass cloth, a prepreg, a printed wiring board, and the like.
  • the printed wiring boards used are becoming denser and ultrathin, and the dielectric constant and the dielectric loss tangent are remarkably progressing. ..
  • a laminated board obtained by impregnating a glass cloth with a thermosetting resin such as an epoxy resin (hereinafter referred to as "matrix resin") and laminating a prepreg obtained by laminating and heat-pressurizing and curing the prepreg. Is widely used. While the dielectric constant of the matrix resin used for the above-mentioned high-speed communication board is about 3, the dielectric constant of general E glass cloth is about 6.7, and the problem of high dielectric constant during lamination becomes apparent. It is becoming. The signal transmission loss is described in Edward A. et al.
  • Japanese Unexamined Patent Publication No. 5-170483 Japanese Unexamined Patent Publication No. 2009-263569 Japanese Unexamined Patent Publication No. 2009-19150 Japanese Unexamined Patent Publication No. 2009-263824
  • tearing may occur when pressure is applied in the thickness direction of the glass cloth in order to scrape off excess treatment liquid or resin.
  • the present invention presents a surface treatment on a glass cloth having a width of 1000 mm or more in the direction (TD) forming 90 ° with the warp, a relative permittivity (Dk) of 5.0 or less, and a thickness of 35 ⁇ m or less.
  • the purpose is to suppress the occurrence of tears in the process and / or the prepreg manufacturing process, and / or reduce the frequency of tears.
  • the present inventors have conducted a study on a low-dielectric and ultra-thin glass cloth, and even when the tension of the warp threads is set to a uniform condition in the width direction, the glass cloth is produced as a woven glass cloth in the width direction.
  • the present invention is as follows.
  • Dk dielectric constant
  • MD tension in the direction parallel to the warp
  • ABS acrylonitrile-butadiene-styrene copolymer
  • a glass cloth roll in which the difference in winding hardness between the central portion and the end portion of the glass cloth is 10 or less when the glass cloth is wound 1000 m with a width of 1.3 m.
  • the present invention when a low-dielectric and ultra-thin glass cloth is subjected to a surface treatment step and / or a prepreg manufacturing step, the occurrence of breakage of the glass cloth is suppressed and the frequency of breakage is reduced. be able to.
  • the present embodiment will be described in detail, but the present invention is not limited thereto, and various modifications can be made without departing from the gist thereof. Is.
  • a glass cloth is formed by weaving glass threads composed of a plurality of glass filaments as warp threads and weft threads.
  • the mechanical direction (MD) is a direction parallel to the warp threads installed during the weaving process
  • the width direction (TD) is a direction forming 90 ° with MD on the woven glass cloth surface
  • the z direction is a direction perpendicular to the glass cloth surface composed of MD and TD.
  • the glass cloth according to this embodiment has a relative permittivity (Dk) of 5.0 or less and a thickness of 35 ⁇ m or less.
  • Dk relative permittivity
  • the relative permittivity (Dk) refers to a frequency of 10 GHz unless otherwise specified.
  • the relative permittivity and thickness are measured by the methods described in the Examples.
  • the relative permittivity of the glass cloth according to the present embodiment is preferably 4.7 or less, more preferably 3.8 or less or 3.7 or less.
  • the lower limit of the relative permittivity can exceed 0, for example.
  • the thickness of the glass cloth according to the present embodiment is 35 ⁇ m or less when measured along the z direction according to the method described in the examples, and is 30 ⁇ m or less from the viewpoint of ultrathinning of the prepreg and the substrate. It is preferably 25 ⁇ m or less, or 20 ⁇ m or less, and more preferably 17 ⁇ m or less, or 15 ⁇ m or less. Further, it is clear that the lower limit of the thickness exceeds 0 ⁇ m, and it can be 1 ⁇ m or more from the viewpoint of suppressing the occurrence of tearing, the diameter of the glass yarn and the weaving process.
  • the glass cloth according to the present embodiment has a TD width of 1000 mm or more, and is characterized by a slack amount measured under specific conditions as shown below.
  • the upper limit of the width of the TD of the glass cloth can be determined according to the type or size of the loom, and can be, for example, 2000 mm or less, 1500 mm or less, 1400 mm or less, 1300 mm or less, or 1200 mm or less.
  • the glass cloth according to the present embodiment has a width of 1000 mm or more in the direction (TD) forming 90 ° with the warp, and the amount of slack in the z direction when the tension in the direction parallel to the warp (MD) is set to 50N. Is 10 mm / m or less. This amount of slack is measured by the method described in Examples with reference to FIG. Of the glass cloth manufacturing processes having a Dk of 5.0 or less and a thickness of 35 ⁇ m or less, focusing on the surface treatment step and the prepreg manufacturing process, slack is more likely to occur at the end (2) than at the center of the glass cloth.
  • the glass cloth end portion (2) The portion from both ends to 20% of the total length (t) in the width direction (TD) of the glass cloth is called the glass cloth end portion (2), and the portion of the glass cloth other than the end portion is the central portion. That is.
  • the total width t shown in FIG. 1 is 1000 mm or more.
  • the occurrence of tearing in the surface treatment process and the prepreg manufacturing process by reducing the amount of slack in the glass cloth (1) (maximum value of x in FIG. 1a). It can be seen that it is possible to suppress the occurrence and reduce the frequency of occurrence. Specifically, if the amount of slack of the glass cloth is adjusted within the range of 10 mm / m or less, the frequency of occurrence can be reduced by about 80% as compared with the glass cloth having the amount of slack exceeding 10 mm / m.
  • the amount of slack of the glass cloth is 10 mm / m or less, preferably 6 mm / m or less, or 5 mm / m or less, and preferably 4 mm / m or less, or 3 mm / m or less. More preferably, it is 2 mm / m or less, or even more preferably 1 mm / m or less.
  • the lower limit of the amount of slack of the glass cloth exceeds 0 mm / m in consideration of gravity, for example, it can be 0.1 mm / m, or it can be 0.1 mm / m or more. it can.
  • the ratio of the tension of the warp of the portion should be 1.2 or less, or less than 1.2 (specifically, the central warp tension / end warp tension ⁇ 1.2 so that the end does not loosen).
  • the ratio of the tension of the warp in the center to the tension of the warp at the end of the glass cloth can be measured by measuring the tension of all the warp and finding the difference between the average tension at the end and the average tension at the center. .. Specifically, it can be measured by the method described in Examples.
  • As a means for adjusting the ratio of the tension of the warp in the center to the tension of the warp at the end of the glass cloth within the above range for example, changing the tension of the thread feeding at the end and the center of the glass cloth can be mentioned. Be done.
  • the portion from both ends to 20% of the total length (t) in the width direction (TD) of the glass cloth is referred to as the end portion of the glass cloth, and the portion of the glass cloth other than the end portion is referred to as the central portion.
  • the difference in winding hardness between the central portion and the end portion of the glass cloth is 10 or less in the state of a wound body in which the glass cloth is wound with a width of 1.3 m for 1000 m. ..
  • the winding hardness difference is measured by the method described in Examples.
  • the difference in winding hardness is within the range of 10 or less, the frequency of breakage of the glass cloth in the surface treatment process and the prepreg manufacturing process tends to decrease.
  • the winding hardness difference is more preferably 8 or less, and further preferably 6 or less. It is clear that the lower limit of the winding hardness difference exceeds 0, and can be, for example, 1 or more, or 2 or more.
  • the difference in winding hardness is, for example, by making the loom ground entangled yarn thinner than the yarn used for the warp, specifically, the ratio of the warp TEX to the ground entangled yarn TEX exceeds 1 (that is, the warp TEX). / Ground entangled yarn TEX> 1) By weaving, it can be adjusted within the range of 10 or less.
  • the inclination difference of the stress-strain curve (SS curve) in the direction parallel to the warp (MD) is 10% or less in the central portion and the end portion of the glass cloth according to the present embodiment.
  • the SS curve of the MD of the glass cloth and its inclination are measured by the method described in the examples.
  • the difference between the inclination of the center of the glass cloth and the inclination of the end of the glass cloth is 10% or less in the SS curve of the MD of the glass cloth, the frequency of breakage of the glass cloth in the surface treatment process and the prepreg manufacturing process occurs. Tends to decrease. From such a viewpoint, the inclination difference of the SS curve of MD is more preferably 5% or less, further preferably 3% or less, still more preferably 1% or less. It is clear that the lower limit of the inclination difference of the SS curve of MD exceeds 0%.
  • the inclination difference of the SS curve of MD is 10% or less, for example, by uniformly opening the glass cloth to TD in the fiber opening step to reduce the thread width difference between the central portion and the end portion of the glass cloth. It can be adjusted within the range. Specifically, in the fiber opening step, the ratio of the water pressure at the center of the glass cloth to the water pressure at the end of the glass cloth is adjusted to less than 1.2 (that is, the water pressure at the center / the water pressure at the end ⁇ 1. 2) You can.
  • the glass type of the glass filament constituting the glass thread is D glass, NE glass, L glass, NL glass, L2 glass, and Q glass as long as the amount of slack of the obtained glass cloth is within the numerical range explained above. It may be at least one selected from the group consisting of. From the viewpoint of low dielectric constant, amount of slack, and suppression of occurrence of breakage, it is preferable to use L glass, NL glass, L2 glass or Q glass.
  • Glass filaments may have a composition of SiO 2, may have a composition other than SiO 2, or may have other compositions in addition to SiO 2.
  • Other compositions are not particularly limited, and examples thereof include Al 2 O 3 , CaO, MgO, B 2 O 3 , TIO 2 , Na 2 O, K 2 O, Sr 2 O 3 , Fe 2 O 3, and the like. Be done.
  • the composition amount can be adjusted according to the amount of the raw material used for producing the glass filament. From the viewpoint of adjusting the CTE to a low level, the SiO 2 content is preferably 50% by mass or more, more preferably 60% by mass or more, further preferably 70% or more, and 95% or more. Is even more preferable, and 99% or more is particularly preferable.
  • the average filament diameter of the glass filaments constituting the glass thread is preferably 2 ⁇ m to 10 ⁇ m, more preferably 3.5 ⁇ m to 8 ⁇ m, and further preferably 4 to 6 ⁇ m.
  • the average filament diameter of the glass filament is 2 ⁇ m or more, yarn breakage is less likely to occur even with respect to the tension or processing pressure applied to the glass filament in the weaving step, the washing step, and the fiber opening step, and fluffing is suppressed. It becomes possible. Further, by adjusting the average filament diameter of the warp and weft to 10 ⁇ m or less, the thickness of the glass cloth can be reduced, and a thin substrate can be obtained.
  • the number of glass filaments of the glass filaments constituting the glass thread is preferably 30 to 200, and more preferably 40 to 100. When the number of glass filaments is within the above range, tension or processing pressure can be suppressed and fluffing can be suppressed in the weaving step, the washing step or the fiber opening step.
  • the amount of bending means the one that takes the maximum value among Z N (Z 0 , Z 1 , and Z 2) defined by the following formula (I).
  • Z N
  • X 0 to X 3 and Y 0 to Y 3 are (X 0 , Y 0 ), (X 1 , Y 1 ), (X 2 , Y 2 ), and (X 3 , Y 3). ) Is expressed and defined as shown below.
  • a glass cloth, prepreg, or printed wiring board composed of a plurality of warp threads and a plurality of weft threads is used as a sample to be tested, the warp direction of the sample to be tested is the Y direction, and the direction perpendicular to the Y direction is the X direction.
  • the contact point between the first warp and the above weft is the origin (0,0), that is, Define the Y-axis and the X-axis to be (X 0 , Y 0). Further, the contact point between the second warp and the weft is set as the end point (X 3 , Y 3 ), and one of the points having the maximum value and the minimum value with respect to the coordinate Y of the weft on the X axis and the Y axis is (X). 1 , Y 1 ) and the other (X 2 , Y 2 ). In this case, (X 0 , Y 0 ), (X 1 , Y 1 ), (X 2 , Y 2 ) on the weft. , And (X 3 , Y 3 ) are arranged in this order.
  • 2 to 4 are schematic views showing one form of weft.
  • the form of the weft in the present embodiment is not limited to the form of the weft of FIGS. 2 to 4.
  • X 3, Y 3) are arranged in this order.
  • Z 0 is calculated by substituting two adjacent points (X 0 , Y 0 ) and (X 1 , Y 1 ) into the above equation (I), and Z 1 is two adjacent points (X 1).
  • the maximum value of the measured value of the amount of bending is defined as the amount of bending in the present embodiment.
  • the amount of bending is measured by the method described in Examples according to JIS L1096.
  • the amount of bending of the weft is within the range of 15 mm or less, even if the glass cloth has a Dk of 5.0 or less and a thickness of 35 ⁇ m or less, tearing may occur in the surface treatment process and the prepreg manufacturing process. It can be suppressed or prevented.
  • the amount of bending of the weft yarn is more preferably 10 mm or less, further preferably 5 mm or less, and even more preferably 3 mm or less.
  • the lower limit of the bending amount of the weft is 0 mm or more, or can exceed 0 mm.
  • the amount of weft bending is increased, for example, by increasing the opening tension in the opening process of glass cloth production so that the ratio of the opening tension to the tensile strength of the glass cloth exceeds 0.1. (That is, opening tension / tensile strength> 0.1)
  • opening the fiber it can be adjusted within a range of 15 mm or less.
  • the tensile strength of the glass cloth is preferably 150 N / 25 mm or less in the direction parallel to the warp threads (MD).
  • MD warp threads
  • the MD tensile strength is more preferably 100 N / 25 mm or less, still more preferably 50 N / 25 mm or less.
  • the lower limit of the MD tensile strength of the glass cloth exceeds 0 N / 25 mm, and from the viewpoint of improving the insulation reliability in the thickness (T) direction of the substrate containing the glass cloth, it is 20 N / 25 mm or more. It is preferable to have.
  • the tensile strength of the glass cloth can be measured according to Section 7.4 of JIS R3420.
  • the unit bending rigidity in the direction (TD) forming 90 ° with the warp of the glass cloth is preferably 0.03 gf ⁇ cm 2 / cm or less. Bending rigidity is used as an index of texture by modeling the movement of a hand to bend a molded body such as glass cloth. In the present technical field, the bending rigidity may reflect the stiffness of the texture of the glass cloth.
  • the unit bending rigidity of the glass cloth is within the range of 0.03 gf ⁇ cm 2 / cm or less, tearing is usually likely to occur in the surface treatment step and the prepreg manufacturing step, but the above-mentioned slack amount is 10 mm / cm. By setting it to m or less, it is possible to remarkably suppress or prevent tearing. From this point of view, the unit bending stiffness is more preferably less 0.02gf ⁇ cm 2 / cm, and more preferably less 0.01gf ⁇ cm 2 / cm. Further, the unit bending rigidity can be arbitrarily set according to the dimensional stability of the glass cloth, and can exceed, for example, 0 gf ⁇ cm 2 / cm. The unit bending rigidity (texture) of the glass cloth is measured by the method described in the examples.
  • the driving densities of the warp threads and the weft threads constituting the glass cloth are independently, preferably 50 to 140 threads / inch, and more preferably 80 to 130 threads / inch.
  • the cloth weight (basis weight) of the glass cloth is preferably 4 to 200 g / m 2 , more preferably 10 to 100 g / m 2 , and further preferably 10 to 60 g / m 2 .
  • the woven structure of the glass cloth is not particularly limited, and examples thereof include woven structures such as plain weave, Nanako weave, satin weave, and twill weave. Of these, a plain weave structure is preferable.
  • silane coupling agent preferably a silane coupling agent having an unsaturated double bond group (hereinafter, also simply referred to as “silane coupling agent”).
  • silane coupling agent preferably a silane coupling agent having an unsaturated double bond group
  • the reactivity with the matrix resin is further improved, and hydrophilic functional groups are less likely to be generated after the reaction with the matrix resin, so that the insulation reliability is further improved. ..
  • the silane coupling agent having an unsaturated double bond group is not particularly limited, and examples thereof include compounds represented by the following general formula (1).
  • a silane coupling agent By using such a silane coupling agent, the hygroscopicity tends to be further improved, and as a result, the insulation reliability tends to be further improved.
  • the silane coupling agent having an unsaturated double bond group the plating liquid penetration property, insulation reliability, and fluffing after drilling of a glass cloth having a SiO 2 composition amount of 98 to 100% by mass are used. The quality can be improved.
  • X is an organic functional group having at least one of an amino group and an unsaturated double bond group
  • Y is an alkoxy group independently
  • n is 1 or more and 3 or less.
  • R is a group independently selected from the group consisting of a methyl group, an ethyl group, and a phenyl group.
  • X is an organic functional group having at least one of an amino group and an unsaturated double-bonding group, more preferably an organic functional group having three or more, and an amino group. And an organic functional group having at least four or more unsaturated double-bonding groups is more preferable.
  • the organic functional group having one or more unsaturated double bond groups represented by X is not particularly limited, and examples thereof include a vinyl group, an allyl group, a vinylidene group, an acryloxy group, and a methacryloxy group.
  • alkoxy group in the above general formula (1), but an alkoxy group having 5 or less carbon atoms is preferable for stable treatment on the glass cloth.
  • the silane coupling agent that can be specifically used is not particularly limited, but for example, N- ⁇ - (N-vinylbenzylaminoethyl) - ⁇ -aminopropyltrimethoxysilane and its hydrochloride, N- ⁇ - (N).
  • the silane coupling agent tends to have excellent reactivity with a glass thread (glass filament) of a glass cloth or a matrix resin of a substrate, particularly a radical polymerization resin. Therefore, the silane coupling agent can suppress a decrease in insulation reliability due to the resin and the glass cloth being easily peeled off at the interface, and a decrease in insulation reliability due to the plating liquid permeating into the glass cloth. Tends to be suppressed.
  • the warp and weft counts (hereinafter, also referred to as Tex) constituting the glass cloth are independently obtained from the viewpoint of thinning the glass cloth and controlling the difference in winding hardness between the central portion and the end portion. It is preferably 2 g / 1000 m or more and 20.0 g / 1000 m or less, and more preferably 0.5 g / 1000 m or more and 10.0 g / 1000 m or less.
  • the method for producing the glass cloth of the present embodiment is not particularly limited, but for example, a coating step of almost completely covering the surface of the glass filament with a silane coupling agent with a treatment liquid having a concentration of 0.1% by weight to 3.0% by weight. And a method having a fixing step of fixing the silane coupling agent to the surface of the glass filament by heating and drying. Further, in the method for producing a glass cloth of the present embodiment, at least a part of the silane coupling agent fixed on the surface of the glass filament is washed with high-pressure spray water or the like to adjust the amount of the silane coupling agent adhered. It may include steps.
  • the solvent for dissolving or dispersing the silane coupling agent either water or an organic solvent can be used, but from the viewpoint of safety and protection of the global environment, it is preferable to use water as the main solvent.
  • a method of obtaining a treatment liquid using water as a main solvent a method of directly adding a silane coupling agent to water, a method of dissolving the silane coupling agent in a water-soluble organic solvent to prepare an organic solvent solution, and then using the organic solvent solution. Any method of adding water to water is preferable. It is also possible to use a surfactant in combination in order to improve the water dispersibility and stability of the silane coupling agent in the treatment liquid.
  • the coating step, the fixing step, and the adjusting step are performed on the glass cloth after the weaving step. Further, if necessary, a fiber opening step of opening the glass yarn of the glass cloth may be provided after the weaving process. When the adjusting step is performed after the weaving step, the adjusting step may also serve as the fiber opening step.
  • the composition of the glass cloth usually does not change before and after opening the fiber.
  • silane coupling agent layer can be formed almost completely and uniformly on the entire surface of each glass filament constituting the glass thread by the above manufacturing method.
  • immersion method a method of collecting the treatment liquid in a bath and dipping and passing the glass cloth
  • B a roll coater, a die coater, and the like.
  • immersion time it is preferable to select the immersion time of the glass cloth in the treatment liquid to be 0.5 seconds or more and 1 minute or less.
  • the heating and drying temperature is preferably 90 ° C. or higher, more preferably 100 ° C. or higher so that the reaction between the silane coupling agent and the glass is sufficiently carried out.
  • the heat-drying temperature is preferably 300 ° C. or lower, more preferably 200 ° C. or lower, in order to prevent deterioration of the organic functional groups of the silane coupling agent.
  • the method for opening the fiber in the fiber opening step is not particularly limited, and examples thereof include a method for opening the glass cloth with spray water (high pressure water opening), vibro washer, ultrasonic water, mangle, and the like. ..
  • a method for opening the glass cloth with spray water high pressure water opening
  • vibro washer ultrasonic water
  • mangle mangle
  • the like mangle
  • the air permeability tends to be made smaller.
  • the glass cloth manufacturing method may have an arbitrary step even after the fiber opening step.
  • the arbitrary process is not particularly limited, and examples thereof include a slit processing process.
  • the storage period between the surface treatment of the glass cloth and the application of the matrix resin is preferably 2 years or less.
  • the storage temperature is preferably set to 10 ° C to 40 ° C. When the storage temperature is 40 ° C. or lower or 30 ° C. or lower, the deactivation of the unsaturated double bond group of the silane coupling agent on the surface of the glass cloth can be suppressed, and the reactivity with the matrix resin tends to be maintained. It is in.
  • the silane coupling agents react with each other due to the water adhering to the glass surface, and there is a tendency that it is possible to suppress the increase in the focusing property of the glass filament bundle. This tends to improve the permeability of the matrix resin.
  • Glass cloth roll In another embodiment of the present invention, a glass cloth roll containing an acrylonitrile-butadiene-styrene copolymer (ABS) core tube having a core tube diameter of 200 mm and a glass cloth wound around the core tube is formed. Can be done.
  • ABS acrylonitrile-butadiene-styrene copolymer
  • the difference in winding hardness between the central portion and the end portion of the glass cloth is preferably 10 or less.
  • the difference in winding hardness between the central portion and the end portion of the glass cloth in the rolled state is 10 or less, the occurrence of tearing is suppressed or the frequency of occurrence of tearing is reduced when the glass cloth roll is subjected to the prepreg manufacturing process. Can be done.
  • the glass cloth constituting the glass cloth roll is as described above as an embodiment of the glass cloth.
  • the prepreg of the present embodiment has the above glass cloth and a matrix resin impregnated in the glass cloth. This makes it possible to provide a prepreg that is thin, has a low dielectric constant, and has improved insulation reliability.
  • thermosetting resin is not particularly limited, but for example, a) a compound having an epoxy group, an amino group, a phenol group, an acid anhydride group, a hydrazide group, an isocyanate group, a cyanate group, and a hydroxyl group that react with the epoxy group.
  • Resin b) A radical polymerization type curable resin in which a compound having at least one of an allyl group, a methacryl group, and an acrylic group is cured using a thermosetting catalyst or a photodegradable catalyst as a reaction initiator; c. ) Maleimide triazine resin in which a compound having a cyanate group and a compound having a maleimide group are reacted and cured; d) A thermosetting polyimide resin in which a maleimide compound and an amine compound are reacted and cured; e) Benzo Examples thereof include a benzoxazine resin in which a compound having an oxazine ring is crosslinked and cured by heat polymerization.
  • thermoplastic resin is not particularly limited, but for example, polyphenylene ether, modified polyphenylene ether, polyphenylene sulfide, polysulfone, polyether sulphon, polyarylate, aromatic polyamide, polyether ether ketone, thermoplastic polyimide, insoluble polyimide, etc. Examples thereof include polyamide-imide and fluororesin. Further, the thermosetting resin and the thermoplastic resin may be used in combination.
  • the printed wiring board of this embodiment has the above-mentioned prepreg. As a result, it is possible to provide a printed wiring board having a low dielectric constant and improved insulation reliability.
  • the prepreg in the printed wiring board of the present embodiment may be a laminated body composed of two or more layers.
  • Example 1 As shown in Table 1, a glass thread made of L glass is woven to form a glass cloth, and a hydrochloride of N- ⁇ - (N-vinylbenzylaminoethyl) - ⁇ -aminopropyltrimethoxysilane (Toredau). Co., Ltd .; Z6032) was immersed in a treatment liquid dispersed in water and dried by heating. Next, high-pressure water defibration was carried out by spraying, and heat drying was carried out to obtain a glass cloth product for evaluation.
  • Example 2 to 12 Comparative Examples 1 to 6
  • An evaluation glass cloth product was obtained in the same manner as in Example 1 except that the glass cloth thickness, glass type, dielectric constant, slack property, winding property, etc. were changed as shown in Table 1.
  • a polyphenylene ether resin varnish (a mixture of 30 parts by mass of a modified polyphenylene ether resin, 10 parts by mass of triallyl isocyanurate, 60 parts by mass of toluene, and 0.1 parts by mass of a catalyst) was added to the glass cloth obtained in the above Examples and Comparative Examples. It was impregnated and dried at 120 ° C. for 2 minutes to obtain a prepreg. The resin content of this prepreg was adjusted to 60% by volume. This prepreg was layered, and copper foil having a thickness of 12 ⁇ m was further layered on top and bottom, and heated and pressed at 200 ° C. and 40 kg / cm 2 for 60 minutes to obtain a substrate.
  • ⁇ Measurement / calculation method of permittivity> As described above, a substrate was prepared so that the resin content per 100% by volume of the prepreg was 60% by volume, and the copper foil was removed to obtain a sample for dielectric constant evaluation. The dielectric constant of the obtained sample at a frequency of 10 GHz was measured using an impedance analyzer (manufactured by Agilent Technologies). From the obtained substrate permittivity, the relative permittivity (Dk) of the glass cloth at 10 GHz was calculated based on the volume fraction of the glass cloth and the resin permittivity of 2.5.
  • Dk relative permittivity
  • a glass cloth (1) having a total width t of 1000 mm is horizontally stretched on two rolls (4, 4) having a distance between rolls of 1 m, and both ends of the MD of the glass cloth (1) (FIG.
  • the end 2) of 1b is grasped and the glass cloth (1) is pulled with a force of tension 50N in the MD direction, the most depressed part of the cloth is visually determined, and a laser displacement meter (LK) manufactured by Keyence Co., Ltd. is visually determined.
  • LK laser displacement meter
  • -G5000 was used to measure up to 1 mm units, and the amount of depression of the glass cloth slack portion (3) in the vertical direction (z direction) was measured as the amount of slack (x).
  • the amount of depression refers to the distance from the plane connecting the upper surfaces of the two rolls (4, 4) with a straight line to the place where the glass cloth (1) is farthest away.
  • a wound body was prepared by winding a glass cloth with a width of 1.3 m and a length of 1000 m around an ABS core tube (hardness ⁇ 90) having a core tube diameter of 200 mm.
  • the difference in winding hardness between the central portion and the end portion of the wound body was measured according to JIS K 7312 using a winding hardness measuring device "GS-701N” manufactured by TECLOCK. Further, using an autograph "AGS-J5kN” manufactured by Shimadzu Corporation, the inclination difference of the stress-strain curve in the direction parallel to the warp of the glass cloth (MD) was measured at the central portion and the end portion of the winding body.
  • ⁇ Amount of bending> According to JIS L1096, the amount of bending of the sample was measured with reference to FIGS. 2 to 4. Specifically, one weft thread in a 1000 mm wide glass cloth stretched on a pair of rolls is visually observed, and the amount of displacement from the reference line is measured with the TD tangent line of the roll and the cloth as the reference line. , The difference between the maximum value and the minimum value of the displacement amount was calculated as the bending amount, and this operation was performed 5 times to calculate the average value.
  • Table 1 summarizes the evaluation results of the glass cloth shown in Examples and Comparative Examples.
  • Example 8-9 From the comparison between Example 8-9 and Comparative Example 5-6, in Comparative Example, the thinner the glass cloth is, the more the glass cloth is torn, but in Example 8-9, the amount of slack is even under the condition that the glass cloth is easily torn. It can be seen that the effect of the present invention is remarkably exhibited by the control of.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Woven Fabrics (AREA)

Abstract

複数本のガラスフィラメントから成るガラス糸を経糸及び緯糸として構成され、前記経糸と90°を成す方向(TD)の幅(t)が1000mm以上であるガラスクロス(1)であって、5.0以下の比誘電率(Dk)及び35μm以下の厚さを有し、かつ経糸と平行な方向(MD)の張力を50Nに設定した際の垂直方向(z)の弛み量(xの最大値)が10mm/m以下であるガラスクロス(1)が提供される。

Description

ガラスクロス、プリプレグ、及びプリント配線板
 本発明は、ガラスクロス、プリプレグ、及びプリント配線板等に関する。
 現在、スマートフォン等の情報端末の高性能化、高速通信化に伴い、使用されるプリント配線板において、高密度化、極薄化とともに、低誘電率化、低誘電正接化が著しく進行している。
 このプリント配線板の絶縁材料としては、ガラスクロスをエポキシ樹脂等の熱硬化性樹脂(以下、「マトリックス樹脂」という。)に含浸させて得られるプリプレグを積層して加熱加圧硬化させた積層板が広く使用されている。上記の高速通信基板に使用されるマトリックス樹脂の誘電率は3程度であるのに対し、一般的なEガラスクロスの誘電率は6.7程度であり、積層時の高い誘電率の問題が顕在化してきている。なお、信号の伝送ロスは、Edward A. Wolff式:
  伝送損失∝√ε×tanδ
に示されるように、誘電率(ε)及び誘電正接(tanδ)が小さい材料ほど改善されることが知られている。そのため、Eガラスとは異なるガラス組成を有するDガラス、NEガラス、Lガラス等から形成された低誘電率ガラスクロスが提案されている(例えば、特許文献1~4参照)。
特開平5-170483号公報 特開2009-263569号公報 特開2009-19150号公報 特開2009-263824号公報
 従来、ガラスクロス製造の表面処理工程、又はプリプレグ製造の樹脂塗工工程では、余分な処理液又は樹脂をかき落とすためにガラスクロス厚さ方向に圧力を加えた際に、破れが発生することがあった。破れの発生については、表面処理工程でのガラスクロスの長手方向(MD)の張力の低減、又は厚さ方向の圧力(絞り圧力)の低減により改善が試みられた。
 しかしながら、近年、強度が低い低誘電率ガラスクロス、又は超極薄ガラスクロスに対する要求が増えるにつれて、より一層、ガラスクロスの破れの発生頻度が増加している。従来のようにMD張力又は厚さ方向の圧力を低減したとしても、従来よりも薄く、かつ誘電率の低いガラスクロスの破れの発生を抑制するものではない。
 したがって、本発明は、経糸と90°を成す方向(TD)の幅が1000mm以上であり、かつ5.0以下の比誘電率(Dk)及び35μm以下の厚さを有するガラスクロスについて、表面処理工程及び/又はプリプレグ製造工程での破れの発生を抑制し、かつ/又は破れの発生頻度を低減することを目的とする。
 本発明者らは、鋭意検討した結果、低誘電かつ極薄のガラスクロスについて、経糸の張力を幅方向で均一な条件に設定した場合でも、ガラスクロスの織物として生産した際に幅方向の一部に弛みが発生することを特定し、その弛みを制御することによって、上記課題を解決できることを見出し、本発明の完成に至った。
 すなわち本発明は、以下のとおりである。
(1) 複数本のガラスフィラメントから成るガラス糸を経糸及び緯糸として構成され、前記経糸と90°を成す方向(TD)の幅が1000mm以上であるガラスクロスであって、5.0以下の比誘電率(Dk)及び35μm以下の厚さを有し、かつ前記経糸と平行な方向(MD)の張力を50Nに設定した際の垂直方向の弛み量が10mm/m以下であるガラスクロス。
(2) 前記ガラスクロスの中央部経糸張力と端部経糸張力の比率(中央部経糸張力/端部経糸張力)が、0.8以上、1.2以下である、項目(1)に記載のガラスクロス。
(3) 1.3mの幅の前記ガラスクロスが1000m巻かれた巻回体の状態で、前記ガラスクロスの中央部と端部の巻き硬度差が、10以下である、項目(1)または(2)に記載のガラスクロス。
(4) 前記ガラスクロスの中央部と端部の前記経糸と平行な方向(MD)の応力-ひずみ曲線の傾き差が、10%以下である、項目(1)~(3)のいずれか1項に記載のガラスクロス。
(5) 前記緯糸の目曲がり量が、10mm以下である、項目(1)~(4)のいずれか1項に記載のガラスクロス。
(6) 前記ガラスクロスの厚さが、25μm以下である、項目(1)~(5)のいずれか1項に記載のガラスクロス。
(7) 前記ガラスクロスの厚さが、17μm以下である、項目(1)~(6)のいずれか1項に記載のガラスクロス。
(8) 前記経糸と平行な方向(MD)の引張強度が、150N/25mm以下である、項目(1)~(7)のいずれか1項に記載のガラスクロス。
(9) 前記経糸と90°を成す方向(TD)の単位曲げ剛さが、0.03gf・cm/cm以下である、項目(1)~(8)のいずれか1項に記載のガラスクロス。
(10) 前記ガラスクロスは、前記経糸と90°を成す方向(TD)の幅が2000mm以下である、項目(1)~(9)のいずれか1項に記載のガラスクロス。
(11) 前記弛み量が6mm/m以下である、項目(1)~(10)のいずれか1項に記載のガラスクロス。
(12) 前記弛み量が4mm/m以下である、項目(11)に記載のガラスクロス。
(13) 前記弛み量が2mm/m以下である、項目(12)に記載のガラスクロス。
(14) 項目(1)~(13)のいずれか1項に記載のガラスクロスと、
 前記ガラスクロスに含浸されたマトリックス樹脂と、
を含むプリプレグ。
(15) 項目(14)に記載のプリプレグを含むプリント配線板。
(16) 芯管と、
 前記芯管に巻かれたガラスクロスと、
を含むガラスクロスロールであって、
 前記ガラスクロスが、複数本のガラスフィラメントから成るガラス糸を経糸及び緯糸として構成されており、かつ
 前記ガラスクロスが、芯管径が200mmのアクリロニトリル-ブタジエン-スチレン共重合体(ABS)製芯管に1.3mの幅で1000m巻かれた状態では、前記ガラスクロスの中央部と端部の巻き硬度差が、10以下であるガラスクロスロール。
 本発明によれば、低誘電かつ極薄のガラスクロスを表面処理工程及び/又はプリプレグ製造工程に供したときに、ガラスクロスの破れの発生を抑制したり、破れの発生頻度を低減したりすることができる。
弛み量の測定方法を説明するための模式図であり、一対のロールに設置されたガラスクロスの側面図(a)と上面図(b)である。 目曲がり量測定においてガラスクロスの一形態を示す模式図であって、緯糸の形態の一つを示す図である。 目曲がり量測定においてガラスクロスの一形態を示す模式図であって、緯糸の形態の一つを示す図である。 目曲がり量測定においてガラスクロスの一形態を示す模式図であって、緯糸の形態の一つを示す図である。
 以下、本発明の実施の形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。
〔ガラスクロス〕
 一般に、ガラスクロスは、複数本のガラスフィラメントから成るガラス糸を経糸及び緯糸として製織することにより構成される。
 本明細書において、機械方向(MD)は、製織工程時に設置される経糸と平行な方向であり、幅方向(TD)は、製織されたガラスクロス面においてMDと90°を成す方向であり、かつz方向は、MDとTDにより構成されるガラスクロス面に対して垂直な方向である。
 本実施形態に係るガラスクロスは、5.0以下の比誘電率(Dk)及び35μm以下の厚さを有する。本明細書では、比誘電率(Dk)は、特に断りがない限り、10GHzの周波数におけるものをいう。比誘電率及び厚さは、実施例に記載の方法により測定される。
 また、本実施形態に係るガラスクロスの比誘電率は、好ましくは4.7以下であり、より好ましくは3.8以下又は3.7以下である。比誘電率の下限値は、例えば、0を超えることができる。
 本実施形態に係るガラスクロスの厚さは、実施例に記載の方法に従って、z方向に沿って測定されるときに、35μm以下であり、プリプレグ及び基板の極薄化の観点から、30μm以下であることが好ましく、より好ましくは、25μm以下、又は20μm以下であり、さらに好ましくは、17μm以下、又は15μm以下である。また、厚さの下限値は、0μmを超えることが明らかであり、破れ発生の抑制、ガラス糸の直径及び開織工程の観点から、1μm以上であることができる。
 本実施形態に係るガラスクロスは、TDの幅が1000mm以上であり、以下に示されるとおり、特定の条件下で測定された弛み量を特徴とする。ガラスクロスのTDの幅の上限値は、織機の種類又は寸法に応じて決定されることができ、例えば、2000mm以下、1500mm以下、1400mm以下、1300mm以下、又は1200mm以下であることができる。
〔弛み量〕
 本実施形態に係るガラスクロスは、前記経糸と90°を成す方向(TD)の幅が1000mm以上であり、経糸と平行な方向(MD)の張力を50Nに設定した際のz方向の弛み量が10mm/m以下である。この弛み量は、図1を参照して、実施例に記載の方法により測定される。5.0以下のDk及び35μm以下の厚さを有するガラスクロスの製造プロセスのうち、表面処理工程とプリプレグ製造工程に着目すると、ガラスクロス中央部よりも端部(2)において弛みが発生し易く、厚み(z)方向に外力が掛かると弛み部(3)において皺が発生し、破れが発生する傾向にあることが見出された。また、この傾向は、Lガラス及びQガラスなどの低誘電ガラスに顕著なことも見出された。なお、ガラスクロスの幅方向(TD)の全長(t)に対して、両端から20%までの部分をガラスクロス端部(2)といい、ガラスクロスのうちで端部以外の部分を中央部という。上記のとおり、図1に示される幅全長tは、1000mm以上である。
 上記で説明された破れの発生の傾向を考慮すると、ガラスクロス(1)の弛み量(図1a中のxの最大値)を低減することによって、表面処理工程とプリプレグ製造工程での破れの発生の抑制と発生頻度の低減を実現し得ることが分かる。具体的には、ガラスクロスの弛み量を10mm/m以下の範囲内に調整すると、弛み量が10mm/mを超えるガラスクロスと比べて、発生頻度が約80%減少させることができる。このような観点から、ガラスクロスの弛み量は、10mm/m以下であり、6mm/m以下、または5mm/m以下であることが好ましく、4mm/m以下、または3mm/m以下であることがより好ましく、2mm/m以下、または1mm/m以下であることがさらに好ましい。
 ガラスクロスの弛み量の下限値は、重力を考慮すると、0mm/mを超えることが明らかであり、例えば、0.1mm/mであることができ、又は0.1mm/m以上であることができる。弛み量を10mm/m以下の範囲内に制御する手段としては、例えば、TD方向の経糸張力を均一にすること、具体的には、上記で説明されたガラスクロス端部の経糸の張力に対する中央部の経糸の張力の比を1.2以下、又は1.2未満にすること(具体的には、端部が緩まないように、例えば、中央部経糸張力/端部経糸張力≦1.2、又は中央部経糸張力/端部経糸張力<1.2、好ましくは0.8≦中央部経糸張力/端部経糸張力≦1.2、より好ましくは0.8≦中央部経糸張力/端部経糸張力<1.2、さらに好ましくは0.8≦中央部経糸張力/端部経糸張力≦1.1)などが挙げられる。また、TD方向の経糸張力を均一にすることによって、ガラスクロス端部の弛みだけでなく中央部の弛みも抑制することができる。
 ガラスクロス端部の経糸の張力に対する中央部の経糸の張力の比は、全数の経糸張力を測定し、端部の平均張力と中央部の平均張力との差を求めることで測定することができる。具体的には、実施例に記載の方法で測定することができる。
 ガラスクロス端部の経糸の張力に対する中央部の経糸の張力の比を上記の範囲に調整する手段として、例えば、ガラスクロスの端部と中央部とで、糸送り出しの張力を変更することが挙げられる。
 なお、ガラスクロスの幅方向(TD)の全長(t)に対して、両端から20%までの部分をガラスクロス端部といい、ガラスクロスのうちで端部以外の部分を中央部という。
〔巻回特性〕
 本実施形態に係るガラスクロスについては、ガラスクロスを1.3mの幅で1000m巻き付けた捲回体の状態で、ガラスクロスの中央部と端部の巻き硬度差が、10以下であることが好ましい。巻き硬度差は、実施例に記載の方法により測定される。
 巻き硬度差が10以下の範囲内にあると、表面処理工程及びプリプレグ製造工程でのガラスクロスの破れ発生頻度が低下する傾向にある。このような観点から、巻き硬度差は、8以下であることがより好ましく、6以下であることがさらに好ましい。巻き硬度差の下限値は、0を超えることが明らかであり、例えば、1以上、又は2以上であることができる。
 巻き硬度差は、例えば、織機地絡み糸を経糸に使用している糸より細くすることによって、具体的には、地絡み糸のTEXに対する経糸のTEXの比が1を超える(すなわち、経糸TEX/地絡み糸TEX>1)ように製織することによって、10以下の範囲内に調整されることができる。
〔S-Sカーブ特性〕
 本実施形態に係るガラスクロスの中央部及び端部は、経糸と平行な方向(MD)の応力-ひずみ曲線(S-Sカーブ)の傾き差が、10%以下であることが好ましい。ガラスクロスのMDのS-Sカーブ及びその傾きは、実施例に記載の方法により測定される。
 ガラスクロスのMDのS-Sカーブにおいて、ガラスクロス中央部の傾きとガラスクロス端部の傾きの差が、10%以下であると、表面処理工程及びプリプレグ製造工程でのガラスクロスの破れ発生頻度が低下する傾向にある。このような観点から、MDのS-Sカーブの傾き差は、より好ましくは5%以下であり、さらに好ましくは3%以下であり、よりさらに好ましくは1%以下である。MDのS-Sカーブの傾き差の下限値は、0%を超えることが明らかである。
 MDのS-Sカーブの傾き差は、例えば、開繊工程でガラスクロスをTDに均一に開繊して、ガラスクロスの中央部と端部の糸幅差を小さくすることにより10%以下の範囲内に調整されることができる。具体的には、開繊工程において、ガラスクロス端部の水圧に対するガラスクロス中央部の水圧の比を1.2未満に調整する(すなわち、中央部開繊水圧/端部開繊水圧<1.2)ことができる。
 本実施形態に係るガラスクロスの構成要素について以下に説明する。
〔ガラス種〕
 ガラス糸を構成するガラスフィラメントのガラス種は、得られるガラスクロスの弛み量が上記で説明された数値範囲内にある限り、Dガラス、NEガラス、Lガラス、NLガラス、L2ガラス、及びQガラスから成る群から選択される少なくとも1つでよい。低誘電率、弛み量、及び破れの発生の抑制の観点からは、Lガラス、NLガラス、L2ガラス又はQガラスを用いることが好ましい。
〔ガラスフィラメント組成〕
 ガラスフィラメントは、SiOの組成を有してよく、SiO以外の組成を有してよく、又はSiOに加えて他の組成を有していてもよい。その他の組成としては、特に限定されないが、例えば、Al、CaO、MgO、B、TiO、NaO、KO、Sr、Fe等が挙げられる。組成量は、ガラスフィラメント作製に用いる原料使用量によって調整することができる。CTEを低く調整する観点では、SiO含有量が50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70%以上であることがさらに好ましく、95%以上であることがよりさらに好ましく、99%以上であることが特に好ましい。
〔ガラスフィラメントの平均フィラメント径〕
 ガラス糸を構成するガラスフィラメントの平均フィラメント径は、好ましくは2μm~10μmであり、より好ましくは3.5μm~8μmであり、さらに好ましくは4~6μmである。ガラスフィラメントの平均フィラメント径が2μm以上であることにより、製織工程、水洗工程、及び開繊工程における、ガラスフィラメントに掛かる張力又は加工圧に対しても、糸切れを生じ難くなり、毛羽立ちを抑制することが可能となる。また、経糸及び緯糸の平均フィラメント径を10μm以下に調整することにより、ガラスクロスの厚さを薄くすることができ、厚さの薄い基板を得ることができる。製織工程、水洗工程、開繊工程での、張力又は加工圧を抑え、毛羽立ちを抑えながら、薄いガラスクロスを実現することができる。特に、ガラスフィラメントの平均フィラメント径を4μm~6μmの範囲内に調整することにより、ガラスクロスの厚さのバラツキを抑えられる。
〔ガラスフィラメント数〕
 ガラス糸を構成するガラスフィラメントのガラスフィラメント数は、好ましくは30本~200本であり、より好ましくは40~100本である。ガラスフィラメント数が上記範囲内であることにより、製織工程、水洗工程又は開繊工程で、張力又は加工圧を抑え、毛羽立ちを抑えることができる。
〔目曲がり量〕
 本実施形態に係るガラスクロスを構成する緯糸は、(15÷1000)=0.015mm/幅(mm)であるか、又は0.015mm/幅(mm)以下の目曲がり量を有することが好ましい。本明細書では、目曲がり量とは、下記の式(I)で定義されるZ(Z、Z、及びZ)のうち、最大値を採るものを意味する。
  Z=|(YN+1-Y)/(XN+1-X)|  (I)
{式中、Nは、0~2であり、XN+1-Xの値が0である場合には、Zは0であるものとする。}
 式(I)中、X~X及びY~Yは、(X,Y)、(X,Y)、(X,Y)、及び(X,Y)の組み合わせで表現され、以下に示すように定義される。
 複数の経糸及び複数の緯糸から成るガラスクロス、プリプレグ、又はプリント配線板を被試験サンプルとし、当該被試験サンプルの経糸方向をY方向とし、且つこのY方向に垂直な方向をX方向とし、当該被試験サンプルの両端にある第一及び第二の経糸のうち第一の経糸から第二の経糸へと伸びる緯糸に関して、第一の経糸と上記緯糸との接点を原点(0,0)、すなわち(X,Y)とするY軸及びX軸を定義する。また、第二の経糸と上記緯糸との接点を終点(X,Y)とし、当該X軸及びY軸上における上記緯糸の座標Yに関して最大値及び最小値をとる点の一方を(X,Y)とし、その他方を(X,Y)とし、この場合において、上記緯糸上に(X,Y)、(X,Y)、(X,Y)、及び(X,Y)がこの順に並ぶ。
 以下、図2~図4を参照して、Z、Z、及びZの算出方法を例示的に示す。図2~図4は、緯糸の一形態を示す模式図である。本実施形態における緯糸の形態は、図2~図4の緯糸の形態に限定されるものではない。
 図2では、緯糸上に、原点(X,Y)、Yの最大値をとる点(X,Y)、Yの最小値をとる点(X,Y)、及び終点(X,Y)がこの順で並ぶ。Zは、隣接する2点(X,Y)及び(X,Y)を上記の式(I)に代入することによって、算出され、Zは、隣接する2点(X,Y)及び(X,Y)を上記の式(I)に代入することによって、算出され、Zは、隣接する2点(X,Y)及び(X,Y)を上記の式(I)に代入することによって、算出される。
 図3では、緯糸上に、原点(X,Y)、Yの最大値を採る点(X,Y)、Yの最小値を採る点(X,Y)、及び終点(X,Y)がこの順で並び、ここで、(X,Y)と(X,Y)とは、同一の座標を示している。Z、Z、及びZは、上記図2の説明と同様にして算出することができる。
 なお、(X,Y)と(X,Y)とは、同一の座標を示しているため、Zは、上記の式(I)に関して0の値を採る。
 図4では、緯糸上に、原点(X,Y)、Yの最大値を採る点(X,Y)、Yの最小値を採る点(X,Y)、及び終点(X,Y)がこの順で並び、ここで、(X,Y)と(X,Y)とは、同一の座標を示し、かつ(X,Y)と(X,Y)とは、同一の座標を示しており、Z、Z、及びZは、上記図2の説明と同様にして算出することができる。
 なお、(X,Y)と(X,Y)とは、同一の座標を示しているため、Zは、上記の式(I)に関して0の値を採り、Zも0の値を採る。
 本明細書においては、目曲がり量測定値の最大の値を本実施形態における目曲がり量とする。目曲がり量は、JIS L1096に従って、実施例に記載の方法により測定される。
 緯糸の目曲がり量が15mm以下の範囲内にあると、ガラスクロスが5.0以下のDk及び35μm以下の厚さを有していたとしても、表面処理工程及びプリプレグ製造工程での破れ発生を抑制したり、防止したりすることができる。このような観点から、緯糸の目曲がり量は、より好ましくは10mm以下であり、さらに好ましくは5mm以下であり、よりさらに好ましくは3mm以下である。また、緯糸の目曲がり量の下限値は、0mm以上であるか、又は0mmを超えることができる。
 緯糸の目曲がり量は、例えば、ガラスクロス製造の開繊工程での開繊張力を上げることにより、具体的には、ガラスクロスの引張強度に対する開繊張力の比が0.1を超えるように(すなわち、開繊張力/引張強度>0.1)開繊を行うことによって、15mm以下の範囲内に調整されることができる。
〔引張強度〕
 ガラスクロスの引張強度は、経糸と平行な方向(MD)において、150N/25mm以下であることが好ましい。MD引張強度が、150N/25mm以下の範囲内にあると、通常、表面処理工程及びプリプレグ製造工程での破れが発生し易くなるが、上記の弛み量を10mm/m以下にすることで、顕著に破れを抑制したり、防止したりすることができる。このような観点から、MD引張強度は、より好ましくは100N/25mm以下、さらに好ましくは50N/25mm以下である。
 ガラスクロスのMD引張強度の下限値は、0N/25mmを超えることが明らかであり、ガラスクロスを含む基板の厚さ(T)方向の絶縁信頼性を向上させるという観点から、20N/25mm以上であることが好ましい。なお、ガラスクロスの引張強度は、JIS R3420の7.4項に準じて測定されることができる。
〔単位曲げ剛さ(風合い)〕
 ガラスクロスの前記経糸と90°を成す方向(TD)の単位曲げ剛さは、0.03gf・cm/cm以下であることが好ましい。曲げ剛さは、ガラスクロスなどの成形体について、折り曲げるという手の動きをモデル化して、風合いの指標として用いられる。本技術分野では、曲げ剛さは、ガラスクロスの風合いのうち、コシなどを反映することがある。
 ガラスクロスの単位曲げ剛さが0.03gf・cm/cm以下の範囲内にあると、通常、表面処理工程及びプリプレグ製造工程での破れが発生し易くなるが、上記の弛み量を10mm/m以下にすることで、顕著に破れを抑制したり、防止したりすることができる。このような観点から、単位曲げ剛さは、0.02gf・cm/cm以下であることがより好ましく、0.01gf・cm/cm以下であることがさらに好ましい。また、単位曲げ剛さは、ガラスクロスの寸法安定性に応じて任意に設定されることができ、例えば、0gf・cm/cmを超えることができる。なお、ガラスクロスの単位曲げ剛さ(風合い)は、実施例に記載される方法により測定される。
〔打ち込み密度〕
 ガラスクロスを構成する経糸及び緯糸の打ち込み密度は、各々独立して、好ましくは50~140本/inchであり、より好ましくは80~130本/inchである。
〔布重量(目付け)〕
 ガラスクロスの布重量(目付け)は、好ましくは4~200g/mであり、より好ましくは10~100g/mであり、さらに好ましくは10~60g/mである。
〔織り構造〕
 ガラスクロスの織り構造については、特に限定されないが、例えば、平織り、ななこ織り、朱子織り、綾織り等の織り構造が挙げられる。この中でも、平織り構造が好ましい。
〔表面処理〕
 ガラスクロスのガラス糸(ガラスフィラメントを含む)は、シランカップリング剤、好ましくは不飽和二重結合基を有するシランカップリング剤(以下、単に「シランカップリング剤」ともいう。)により表面処理されることが好ましい。不飽和二重結合基を有するシランカップリング剤を用いると、マトリックス樹脂との反応性がより向上し、また、マトリックス樹脂と反応した後に親水性官能基が生じ難く、絶縁信頼性がより向上する。
 不飽和二重結合基を有するシランカップリング剤としては、特に限定されないが、例えば、下記の一般式(1)で示される化合物が挙げられる。このようなシランカップリング剤を用いることにより、耐吸湿性がより向上し、結果として絶縁信頼性がより向上する傾向にある。特に、不飽和二重結合基を有するシランカップリング剤を用いることにより、SiO組成量が98~100質量%であるガラスクロスのドリル加工後のメッキ液染込み性、絶縁信頼性、及び毛羽立ち品質を改善することができる。
   X(R)3-nSiY      ・・・(1)
(式中、Xは、アミノ基及び不飽和二重結合基の少なくともいずれかを1つ以上有する有機官能基であり、Yは、各々独立して、アルコキシ基であり、nは1以上3以下の整数であり、Rは、各々独立して、メチル基、エチル基、及びフェニル基からなる群より選ばれる基である。)
 一般式(1)において、Xは、アミノ基及び不飽和二重結合基の少なくともいずれかを1つ以上有する有機官能基であり、3つ以上有する有機官能基であることがより好ましく、アミノ基及び不飽和二重結合基の少なくともいずれかを4つ以上有する有機官能基であることがさらに好ましい。Xがこのような官能基であることにより、耐吸湿性がより向上する傾向にある。Xで表される不飽和二重結合基を1つ以上有する有機官能基としては、特に限定されないが、例えば、ビニル基、アリル基、ビニリデン基、アクリロキシ基、メタクリロキシ基が挙げられる。
 上記一般式(1)中のアルコキシ基としては、何れの形態も使用できるが、ガラスクロスへの安定処理化のためには、炭素数5以下のアルコキシ基が好ましい。
 具体的に使用できるシランカップリング剤としては、特に限定されないが、例えば、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン及びその塩酸塩、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルメチルジメトキシシラン及びその塩酸塩、N-β-(N-ジ(ビニルベンジル)アミノエチル)-γ-アミノプロピルトリメトキシシラン及びその塩酸塩、N-β-(N-ジ(ビニルベンジル)アミノエチル)-N-γ-(N-ビニルベンジル)-γ-アミノプロピルトリメトキシシラン及びその塩酸塩、アミノプロピルトリメトキシシラン、ビニルトリメトキシシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシオクチルトリメトキシシラン、アクリロキシプロピルトリメトキシシラン等の公知の物質が挙げられる。上記シランカップリング剤は、ガラスクロスのガラス糸(ガラスフィラメント)、又は基板のマトリックス樹脂、特にラジカル重合系樹脂との反応性に優れる傾向にある。そのため、上記シランカップリング剤は、樹脂とガラスクロスが界面で剥がれ易くなることに由来する絶縁信頼性の低下を抑制でき、また、メッキ液がガラスクロスに染み込むことに由来する絶縁信頼性の低下を抑制できる傾向にある。
〔番手〕
 ガラスクロスを構成する経糸及び緯糸の番手(以下、Texともいう。)は、ガラスクロスを薄くする観点、及び中央部と端部の巻き硬度差を制御する観点から、各々独立して、0.2g/1000m以上、20.0g/1000m以下であることが好ましく、0.5g/1000m以上、10.0g/1000m以下であることがより好ましい。ガラスクロスのTexは、次式によって算出されることができる。
 Tex=m/l×1000
{式中、Tex:番手
    m:試験片の質量(g)
    l:試験片の長さ(m)}
〔ガラスクロスの製造方法〕
 本実施形態のガラスクロスの製造方法は、特に限定されないが、例えば、濃度0.1重量%~3.0重量%の処理液によってほぼ完全にガラスフィラメントの表面をシランカップリング剤で覆う被覆工程と、加熱乾燥によりシランカップリング剤をガラスフィラメントの表面に固着させる固着工程と、を有する方法が挙げられる。
 また、本実施形態のガラスクロスの製造方法は、ガラスフィラメントの表面に固着したシランカップリング剤の少なくとも一部を高圧スプレー水等により洗浄することにより、シランカップリング剤の付着量を調整する調整工程を含んでいてもよい。
 シランカップリング剤を溶解又は分散させる溶媒としては、水、又は有機溶媒のいずれも使用できるが、安全性及び地球環境保護の観点から、水を主溶媒とすることが好ましい。水を主溶媒とした処理液を得る方法としては、シランカップリング剤を直接水に投入する方法、シランカップリング剤を水溶性有機溶媒に溶解させて有機溶媒溶液とした後に該有機溶媒溶液を水に投入する方法、のいずれかの方法が好ましい。シランカップリング剤の処理液中での水分散性、安定性を向上させるために、界面活性剤を併用することも可能である。
 被覆工程、固着工程、及び調整工程は、製織工程後に、ガラスクロスに対して行うことが好ましい。さらに、必要に応じて、製織工程後に、ガラスクロスのガラス糸を開繊する開繊工程を有してもよい。なお、調整工程を製織工程後に行う場合には、調整工程が開繊工程を兼ねるものであってもよい。なお、開繊前後ではガラスクロスの組成は通常変化しない。
 上記製造方法により、ガラス糸を構成するガラスフィラメント1本ごとの表面全体に、ほぼ完全、かつ均一にシランカップリング剤層を形成することができると考えられる。
 処理液をガラスクロスに塗布する方法としては、(A)処理液をバスに溜め、ガラスクロスを浸漬、通過させる方法(以下、「浸漬法」という。)、(B)ロールコーター、ダイコーター、またはグラビアコーター等で処理液をガラスクロスに直接塗布する方法、等が可能である。上記(A)の浸漬法にて塗布する場合は、ガラスクロスの処理液への浸漬時間を0.5秒以上、1分以下に選定することが好ましい。
 また、ガラスクロスに処理液を塗布した後、溶媒を加熱乾燥させる方法としては、熱風、電磁波等の公知の方法が挙げられる。
 加熱乾燥温度は、シランカップリング剤とガラスとの反応が十分に行われるように、好ましくは90℃以上であり、より好ましくは100℃以上である。また、加熱乾燥温度は、シランカップリング剤が有する有機官能基の劣化を防ぐために、好ましくは300℃以下であり、より好ましくは200℃以下である。
 また、開繊工程の開繊方法としては、特に限定されないが、例えば、ガラスクロスを、スプレー水(高圧水開繊)、バイブロウォッシャー、超音波水、マングル等で開繊加工する方法が挙げられる。開繊加工によるガラスクロスの引張強度の低下を抑えるため、ガラス糸を製織する際の接触部材の低摩擦化、又は集束剤の最適化と高付着量化等の対策を施すことが好ましい。開繊加工時に、ガラスクロスに掛ける張力を下げることにより、通気度をより小さくすることができる傾向にある。
 ガラスクロスの製造方法は、開繊工程後においても、任意の工程を有していてもよい。任意の工程としては、特に限定されないが、例えば、スリット加工工程が挙げられる。
 ガラスクロスが表面処理された後、マトリックス樹脂が塗布されて、プリプレグが製造される。ガラスクロスが表面処理されて、マトリックス樹脂が塗布されるまでの間の保管期間は2年間以内であることが好ましい。また、保管温度は10℃~40℃に設定することが好ましい。保管温度が40℃以下または30℃以下であることにより、ガラスクロス表面のシランカップリング剤の不飽和二重結合基の失活を抑制することができ、マトリックス樹脂との反応性を維持できる傾向にある。また、保管期間が2年間以内であることにより、ガラス表面に付着した水によりシランカップリング剤同士が反応し、ガラスフィラメント束の集束性が高まることを抑制できる傾向にある。これにより、マトリックス樹脂の浸透性を向上できる傾向にある。
〔ガラスクロスロール〕
 本発明の別の実施形態では、芯管径が200mmのアクリロニトリル-ブタジエン-スチレン共重合体(ABS)製芯管と、芯管に巻かれたガラスクロスとを含むガラスクロスロールが形成されることができる。ロール中のガラスクロスは、芯管に1.3mの幅で1000m巻かれた状態では、ガラスクロスの中央部と端部の巻き硬度差が、10以下であることが好ましい。ロール状態でガラスクロスの中央部と端部の巻き硬度差が10以下であると、ガラスクロスロールをプリプレグ製造工程に供したときに、破れの発生を抑制したり、破れの発生頻度を低減したりすることができる。
 ガラスクロスロールを構成するガラスクロスは、ガラスクロスの実施形態として上記で説明されたとおりである。
〔プリプレグ〕
 本実施形態のプリプレグは、上記ガラスクロスと、該ガラスクロスに含侵されたマトリックス樹脂と、を有する。これにより、薄くて、誘電率が低く、絶縁信頼性の向上が図られたプリプレグを提供することができる。
 マトリックス樹脂としては、熱硬化性樹脂、熱可塑性樹脂の何れも使用可能である。熱硬化性樹脂としては、特に限定されないが、例えば、a)エポキシ基を有する化合物と、エポキシ基と反応するアミノ基、フェノール基、酸無水物基、ヒドラジド基、イソシアネート基、シアネート基、及び水酸基等の少なくとも1つを有する化合物と、を、無触媒で、又は、イミダゾール化合物、3級アミン化合物、尿素化合物、燐化合物等の反応触媒能を持つ触媒を添加して、反応させて硬化させるエポキシ樹脂;b)アリル基、メタクリル基、及びアクリル基の少なくとも1つを有する化合物を、熱分解型触媒、または光分解型触媒を反応開始剤として使用して、硬化させるラジカル重合型硬化樹脂;c)シアネート基を有する化合物と、マレイミド基を有する化合物と、を反応させて硬化させるマレイミドトリアジン樹脂;d)マレイミド化合物と、アミン化合物と、を反応させて硬化させる熱硬化性ポリイミド樹脂;e)ベンゾオキサジン環を有する化合物を加熱重合により架橋硬化させるベンゾオキサジン樹脂等が例示される。
 また、熱可塑性樹脂としては、特に限定されないが、例えば、ポリフェニレンエーテル、変性ポリフェニレンエーテル、ポリフェニレンサルファイド、ポリスルホン、ポリエーテルスルフォン、ポリアリレート、芳香族ポリアミド、ポリエーテルエーテルケトン、熱可塑性ポリイミド、不溶性ポリイミド、ポリアミドイミド、フッ素樹脂等が例示される。また、熱硬化性樹脂と、熱可塑性樹脂を併用してもよい。
〔プリント配線板〕
 本実施形態のプリント配線板は、上記プリプレグを有する。これにより、誘電率が低く、絶縁信頼性の向上が図られたプリント配線板を提供することができる。本実施形態のプリント配線板におけるプリプレグは2層以上からなる積層体であってもよい。
 次に、実施例及び比較例によって本発明をさらに詳細に説明する。本発明は、以下の実施例によって何ら限定されるものではない。
(実施例1)
 表1に示されるように、Lガラスから成るガラス糸を製織してガラスクロスを形成し、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシランの塩酸塩(東レダウコーニング株式会社製;Z6032)を水に分散させた処理液に浸漬し、加熱乾燥した。次にスプレーで高圧水開繊を実施し、加熱乾燥を行なって、評価用ガラスクロス製品を得た。
(実施例2~12、比較例1~6)
 表1に示されるようにガラスクロス厚、ガラス種、誘電率、弛み特性、巻回特性などを変化させたこと以外は実施例1と同様にして、評価用ガラスクロス製品を得た。
<ガラスクロスの厚さの評価方法>
 JIS R 3420の7.10に準じて、マイクロメータを用いて、スピンドルを静かに回転させて測定面に平行に軽く接触させる。ラチェットが3回音を立てた後の目盛を読み取る。
<基板の作製方法>
 上述の実施例・比較例で得たガラスクロスに、ポリフェニレンエーテル樹脂ワニス(変性ポリフェニレンエーテル樹脂30質量部、トリアリルイソシアヌレート10質量部、トルエン60質量部、触媒0.1質量部の混合物)を含浸させ、120℃で2分間乾燥後プリプレグを得た。このプリプレグの樹脂含有量を60体積%に調整した。このプリプレグを重ね、さらに上下に厚さ12μmの銅箔を重ね、200℃、40kg/cmで60分間加熱加圧して基板を得た。
<誘電率の測定・算出方法>
 上記のようにしてプリプレグ100体積%当たりの樹脂含量が60体積%となるように基板を作製し、銅箔を除去して誘電率評価のための試料を得た。得られた試料の周波数10GHzでの誘電率を、インピーダンスアナライザー(Agilent Technologies社製)を用いて測定した。得られた基板誘電率から、ガラスクロスの体積分率、及び樹脂誘電率2.5をもとに、ガラスクロスの10GHzでの比誘電率(Dk)を算出した。
<中央部経糸張力/端部経糸張力測定方法>
 上記製織工程において、経糸を引き揃える際の経糸1本ごとの張力を、シュミット社製の低荷重型デジタルテンションメーター(ZEF-100)を用いて0.1cN単位まで測定した。両端から20%までの部分(端部)と、端部以外の部分(中央部)の平均経糸張力をそれぞれ算出し、中央部経糸張力/端部経糸張力を求めた。
<弛み量測定>
 図1に示されるように、ロール間距離が1mの2本のロール(4,4)に幅全長tが1000mmのガラスクロス(1)を水平に張り、ガラスクロス(1)のMD両端(図1bの端部2)を把持してMD方向の張力50Nの力でガラスクロス(1)を引っ張った際に、クロスの最も落ち込んだ場所を目視で判断し、キーエンス社製のレーザー変位計(LK-G5000)を用いて、1mm単位まで測定し、ガラスクロス弛み部(3)の垂直方向(z方向)の落ち込み量を弛み量(x)として計測した。なお、落ち込み量とは、2本のロール(4,4)の上面を直線で結んだ平面から、ガラスクロス(1)が最も離れた場所までの距離をいう。
<巻回試験>
 芯管径が200mmのABS製芯管(硬度≧90)に、ガラスクロスを1.3mの幅で長さ1000mまで巻き付けて、巻回体を作製した。
 TECLOCK社製巻き硬度測定器「GS-701N」を用いて、JIS K 7312に従って、巻回体の中央部と端部の巻き硬度差を測定した。
 また、島津製作所製オートグラフ「AGS-J5kN」を用いて、巻回体の中央部と端部において、ガラスクロスの経糸と平行な方向(MD)の応力-ひずみ曲線の傾き差を測定した。
<目曲がり量>
 JIS L1096に従って、図2~4を参照して、サンプルの目曲がり量を測定した。具体的には、1対のロールに張られた1000mm幅のガラスクロス中の緯糸1本を目視で観察し、ロールとクロスのTD接線を基準線として、基準線からの変位量を計測して、その変位量の最大値と最小値の差を目曲がり量として算出し、この操作を5回行なって平均値を算出した。
<引張強度>
 ガラスクロスの引張強度は、JIS R3420の7.4項に準じて測定した。
<単位曲げ剛さ(風合い)>
 曲げ試験機としてカトーテック社製「KES-FB2-A」を用いて、ガラスクロスの単位曲げ剛さ(gf・cm/cm)を測定した。
<ガラスクロスの表面処理工程での破れ頻度>
 実施例及び比較例において、上記で説明されたとおりに、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシランの塩酸塩(東レダウコーニング株式会社製;Z6032)を水に分散させたシランカップリング剤処理液にガラスクロスを浸漬させて、余分なシランカップリング剤をかき落とすために、2対のロールに通してガラスクロスのZ方向に力を加えた際に、ガラスクロスに破れが発生するか否かを観察して、ガラスクロスのN数に対する破れ頻度(%)を算出した。
<プリプレグ製造工程での破れ頻度>
 上記<基板の作製方法>において説明されたとおりに実施例及び比較例で得たガラスクロスをポリフェニレンエーテル樹脂ワニスに含侵させ、余分なPPE樹脂をかき落とすために、2対のロールに通してガラスクロスのZ方向に力を加えた際に、プリプレグに破れが発生するか否かを観察して、プリプレグのN数に対する破れ頻度(%)を算出した。
 実施例と比較例で示したガラスクロスの評価結果を表1にまとめた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例8-9と比較例5-6の対比から、比較例ではガラスクロスが薄くなるほどに破れが発生するが、実施例8-9では、ガラスクロスの破れ易い条件下でさえも、弛み量の制御により本発明の効果を顕著に奏することが分かる。
 1  ガラスクロス
 2  ガラスクロス端部
 3  ガラスクロス弛み部
 4  ロール
 x  弛み量
 t  幅全長

Claims (16)

  1.  複数本のガラスフィラメントから成るガラス糸を経糸及び緯糸として構成され、前記経糸と90°を成す方向(TD)の幅が1000mm以上であるガラスクロスであって、5.0以下の比誘電率(Dk)及び35μm以下の厚さを有し、かつ前記経糸と平行な方向(MD)の張力を50Nに設定した際の垂直方向の弛み量が10mm/m以下であるガラスクロス。
  2.  前記ガラスクロスの中央部経糸張力と端部経糸張力の比率(中央部経糸張力/端部経糸張力)が、0.8以上、1.2以下である、請求項1に記載のガラスクロス。
  3.  1.3mの幅の前記ガラスクロスが1000m巻かれた巻回体の状態で、前記ガラスクロスの中央部と端部の巻き硬度差が、10以下である、請求項1または2に記載のガラスクロス。
  4.  前記ガラスクロスの中央部と端部の前記経糸と平行な方向(MD)の応力-ひずみ曲線の傾き差が、10%以下である、請求項1~3のいずれか1項に記載のガラスクロス。
  5.  前記緯糸の目曲がり量が、10mm以下である、請求項1~4のいずれか1項に記載のガラスクロス。
  6.  前記ガラスクロスの厚さが、25μm以下である、請求項1~5のいずれか1項に記載のガラスクロス。
  7.  前記ガラスクロスの厚さが、17μm以下である、請求項1~6のいずれか1項に記載のガラスクロス。
  8.  前記経糸と平行な方向(MD)の引張強度が、150N/25mm以下である、請求項1~7のいずれか1項に記載のガラスクロス。
  9.  前記経糸と90°を成す方向(TD)の単位曲げ剛さが、0.03gf・cm/cm以下である、請求項1~8のいずれか1項に記載のガラスクロス。
  10.  前記ガラスクロスは、前記経糸と90°を成す方向(TD)の幅が2000mm以下である、請求項1~9のいずれか1項に記載のガラスクロス。
  11.  前記弛み量が6mm/m以下である、請求項1~10のいずれか1項に記載のガラスクロス。
  12.  前記弛み量が4mm/m以下である、請求項11に記載のガラスクロス。
  13.  前記弛み量が2mm/m以下である、請求項12に記載のガラスクロス。
  14.  請求項1~13のいずれか1項に記載のガラスクロスと、
     前記ガラスクロスに含浸されたマトリックス樹脂と、
    を含むプリプレグ。
  15.  請求項14に記載のプリプレグを含むプリント配線板。
  16.  芯管と、
     前記芯管に巻かれたガラスクロスと、
    を含むガラスクロスロールであって、
     前記ガラスクロスが、複数本のガラスフィラメントから成るガラス糸を経糸及び緯糸として構成されており、かつ
     前記ガラスクロスが、芯管径が200mmのアクリロニトリル-ブタジエン-スチレン共重合体(ABS)製芯管に1.3mの幅で1000m巻かれた状態では、前記ガラスクロスの中央部と端部の巻き硬度差が、10以下であるガラスクロスロール。
PCT/JP2020/045099 2019-12-16 2020-12-03 ガラスクロス、プリプレグ、及びプリント配線板 WO2021124913A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080052374.1A CN114207203B (zh) 2019-12-16 2020-12-03 玻璃布、预浸料和印刷电路板
KR1020227007025A KR102633930B1 (ko) 2019-12-16 2020-12-03 유리 클로스, 프리프레그 및 프린트 배선판
JP2021565463A JP7371122B2 (ja) 2019-12-16 2020-12-03 ガラスクロス、プリプレグ、及びプリント配線板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-226572 2019-12-16
JP2019226572 2019-12-16

Publications (1)

Publication Number Publication Date
WO2021124913A1 true WO2021124913A1 (ja) 2021-06-24

Family

ID=76477304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045099 WO2021124913A1 (ja) 2019-12-16 2020-12-03 ガラスクロス、プリプレグ、及びプリント配線板

Country Status (5)

Country Link
JP (1) JP7371122B2 (ja)
KR (1) KR102633930B1 (ja)
CN (1) CN114207203B (ja)
TW (1) TWI827895B (ja)
WO (1) WO2021124913A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016011484A (ja) * 2014-06-03 2016-01-21 信越石英株式会社 石英ガラスクロス、それを用いたプリプレグ及び半導体パッケージ基板並びに石英ガラスフィラメントの製造方法
JP2017132651A (ja) * 2016-01-27 2017-08-03 旭化成株式会社 ガラスクロス、プリプレグ、及びプリント配線板
JP2018127748A (ja) * 2017-02-10 2018-08-16 旭化成株式会社 ガラスクロス、プリプレグ、及びプリント配線板

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04240268A (ja) * 1991-01-25 1992-08-27 Kanebo Ltd 積層板用ガラス織物の製造方法
JPH05170483A (ja) 1991-12-25 1993-07-09 Asahi Glass Co Ltd 繊維強化プラスチック用ガラス繊維および繊維強化プラスチック製品
JPH0742045A (ja) * 1993-07-30 1995-02-10 Nitto Boseki Co Ltd ガラス織布およびそれを用いた積層板
JPH10226941A (ja) * 1997-02-06 1998-08-25 Nitto Boseki Co Ltd ガラス繊維織物及びそれを用いた繊維強化樹脂成型品
JP2004500488A (ja) * 1999-07-30 2004-01-08 ピーピージー インダストリーズ オハイオ, インコーポレイテッド 含浸ガラス繊維ストランドおよび同ストランドを含む製品
JP3756066B2 (ja) * 2001-02-16 2006-03-15 旭シュエーベル株式会社 プリント配線板用ガラスクロス
JP4446754B2 (ja) * 2004-01-27 2010-04-07 旭化成イーマテリアルズ株式会社 ガラスクロス
TWI292445B (en) * 2004-02-09 2008-01-11 Asahi Schwebel Co Ltd Double weaved glass cloth, and prepreg and substrate for print circuit board using the glass cloth
JP2009019150A (ja) 2007-07-13 2009-01-29 Panasonic Corp 伝熱プリプレグ及びその製造方法とこれを用いた伝熱プリント配線板
JP4613977B2 (ja) 2008-04-28 2011-01-19 日立化成工業株式会社 薄層石英ガラスクロスを含むプリプレグ、およびそれを用いた配線板
JP5177742B2 (ja) 2008-04-28 2013-04-10 信越石英株式会社 石英ガラスクロス
KR101251141B1 (ko) * 2009-08-26 2013-04-05 아사히 가세이 이-매터리얼즈 가부시키가이샤 인쇄 배선판용 유리 클로스
DE102011084132A1 (de) * 2011-10-07 2013-04-11 Schott Ag Glasrolle
CN113337934B (zh) * 2017-02-10 2022-12-02 旭化成株式会社 玻璃布、预浸料、及印刷电路板
JP7010684B2 (ja) * 2017-12-11 2022-02-10 旭化成株式会社 ガラスクロス、プリプレグ、及びプリント配線板
CN110494602B (zh) * 2018-02-22 2020-06-16 日东纺绩株式会社 玻璃布、预浸料以及玻璃纤维强化树脂成型品
JP7054359B2 (ja) * 2018-04-02 2022-04-13 旭化成株式会社 ガラスクロス、プリプレグ、及びプリント配線板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016011484A (ja) * 2014-06-03 2016-01-21 信越石英株式会社 石英ガラスクロス、それを用いたプリプレグ及び半導体パッケージ基板並びに石英ガラスフィラメントの製造方法
JP2017132651A (ja) * 2016-01-27 2017-08-03 旭化成株式会社 ガラスクロス、プリプレグ、及びプリント配線板
JP2018127748A (ja) * 2017-02-10 2018-08-16 旭化成株式会社 ガラスクロス、プリプレグ、及びプリント配線板

Also Published As

Publication number Publication date
CN114207203A (zh) 2022-03-18
TW202142750A (zh) 2021-11-16
JP7371122B2 (ja) 2023-10-30
KR20220037515A (ko) 2022-03-24
JPWO2021124913A1 (ja) 2021-06-24
TWI827895B (zh) 2024-01-01
KR102633930B1 (ko) 2024-02-07
CN114207203B (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
CN108411446B (zh) 玻璃布、预浸料、及印刷电路板
JP6866178B2 (ja) ガラスクロス、プリプレグ、及びプリント配線板
JP7145586B2 (ja) ガラスクロス、プリプレグ、及びプリント配線板
JP2020105683A (ja) ガラスクロスの製造方法及びガラス糸
CN111379063B (zh) 玻璃布的制造方法和玻璃纱
JP6915999B2 (ja) ガラスクロス、プリプレグ、及びプリント配線板
JP6917724B2 (ja) ガラスクロス、プリプレグ、及びプリント配線板
WO2021124913A1 (ja) ガラスクロス、プリプレグ、及びプリント配線板
JP7054359B2 (ja) ガラスクロス、プリプレグ、及びプリント配線板
CN112626670B (zh) 玻璃布、预浸料及印刷布线板
JP7305467B2 (ja) ロール状長尺ガラスクロス、プリプレグ、及びプリント配線板
JP2023034712A (ja) ガラスクロス、プリプレグ、及びプリント配線板
JP7011396B2 (ja) ガラスクロス、プリプレグ、及びプリント配線板
JP2020066827A (ja) ロール状長尺ガラスクロス、プリプレグ、及びプリント配線板
CN117917490A (zh) 玻璃布、预浸料及印刷布线板
JP7335991B2 (ja) ガラスクロス、プリプレグ、及びプリント配線板
JP2023129413A (ja) ガラスクロス、プリプレグ、及びプリント配線板
CN117904775A (zh) 玻璃布、预浸料及印刷布线板
JP2022183025A (ja) ガラス糸、ガラスクロスの製造方法及びガラスクロス
JP2024048028A (ja) ガラスクロス、プリプレグ、およびプリント配線基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903789

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021565463

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227007025

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20903789

Country of ref document: EP

Kind code of ref document: A1