WO2021124626A1 - 熱硬化性樹脂組成物 - Google Patents

熱硬化性樹脂組成物 Download PDF

Info

Publication number
WO2021124626A1
WO2021124626A1 PCT/JP2020/034339 JP2020034339W WO2021124626A1 WO 2021124626 A1 WO2021124626 A1 WO 2021124626A1 JP 2020034339 W JP2020034339 W JP 2020034339W WO 2021124626 A1 WO2021124626 A1 WO 2021124626A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
mass
parts
thermosetting resin
polyester resin
Prior art date
Application number
PCT/JP2020/034339
Other languages
English (en)
French (fr)
Inventor
洋輔 平木
隆仁 石内
祐輔 原田
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to CN202080082992.0A priority Critical patent/CN114746456B/zh
Priority to JP2021565332A priority patent/JPWO2021124626A1/ja
Publication of WO2021124626A1 publication Critical patent/WO2021124626A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/01Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to unsaturated polyesters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/04Details of the magnetic circuit characterised by the material used for insulating the magnetic circuit or parts thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/08Insulating casings

Definitions

  • thermosetting resin composition an internal encapsulating material for a motor, a motor containing a cured product of the thermosetting resin composition, and a method for manufacturing the motor.
  • thermosetting resin composition that can be used for encapsulating electrical and electronic parts such as a motor and a coil, an internal encapsulating material for the motor, a motor containing a cured product of the thermosetting resin composition, and a motor.
  • thermosetting resin composition obtained by blending an unsaturated polyester resin with a fiber reinforced plastic, a filler, etc. has good fluidity and gives a cured product having excellent dimensional accuracy, heat resistance, and mechanical strength. Therefore, OA It is widely used in the manufacture of equipment, chassis of office equipment, lamp reflectors for automobile head lamps, enclosed motors, and the like.
  • Patent Document 1 describes an unsaturated polyester resin composition having excellent in-mold fluidity.
  • the thermosetting resin composition may be required to have a low molding shrinkage rate.
  • a low shrinkage agent may be added to the thermosetting resin composition, and polystyrene is generally used as the low shrinkage agent.
  • polystyrene is used as the low shrinkage agent as in Patent Document 1
  • the viscosity of the thermosetting resin composition does not sufficiently decrease during molding, resulting in poor fluidity, and there is room for improvement in moldability.
  • thermosetting resin composition may be added to the thermosetting resin composition.
  • the present inventors have found that when a saturated polyester resin is blended with a thermosetting resin composition containing carbon black in order to achieve both fluidity and low shrinkage, a problem of color unevenness occurs. It was.
  • An object of the present invention is to provide a thermosetting resin composition having good fluidity, a small molding shrinkage rate, and an excellent appearance of a cured product.
  • thermosetting resin composition having a small molding shrinkage rate and an excellent appearance of a cured product can be obtained, and have completed the present invention.
  • thermosetting resin composition containing (A) unsaturated polyester resin, (B) ethylenically unsaturated compound, (C) saturated polyester resin, (D) glass fiber, (E) filler, and (F) carbon black.
  • the heat is such that at least one of the monomer units constituting the unsaturated polyester resin (A) has a cyclic structure, and the content of the monomer unit having the cyclic structure is 2.6 to 10.4 mol%.
  • Curable resin composition [2] The thermosetting resin composition according to [1], wherein the cyclic structure is an alicyclic or aromatic ring having 6 to 10 carbon atoms.
  • the monomer unit having a cyclic structure is derived from at least one monomer selected from the group consisting of cyclohexanediol, bisphenol A, hydrogenated bisphenol A, phthalic acid, phthalic anhydride, terephthalic acid, and isophthalic acid [1].
  • the thermosetting resin composition according to [2].
  • thermosetting resin composition according to any one of [1] to [4], wherein the saturated polyester resin (C) has a weight average molecular weight of 3,000 to 25,000.
  • thermosetting resin composition [11] An internal encapsulant for a motor containing the thermosetting resin composition according to any one of [1] to [10].
  • the present invention comprises encapsulating the thermosetting resin composition according to any one of [1] to [10] in a housing having electrical and electronic components inside, and heat-curing the thermosetting resin composition. How to make a motor.
  • thermosetting resin composition having good fluidity, a small molding shrinkage rate, and an excellent appearance of a cured product.
  • thermosetting resin composition exemplary embodiments of the thermosetting resin composition will be described in detail.
  • the present invention is not limited to the embodiments shown below.
  • the "ethylenically unsaturated bond” means a double bond formed between carbon atoms other than the carbon atom forming the aromatic ring, and the “ethylenically unsaturated compound” is ethylenically. It means a compound having an unsaturated bond.
  • the “median diameter” means a particle size that is cumulatively 50% of the volume-based particle size distribution obtained by the laser diffraction / scattering method.
  • (Meta) acrylate means acrylate or methacrylate
  • (meth) acrylic means acrylic or methacryl
  • thermosetting resin composition comprises at least (A) unsaturated polyester resin, (B) ethylenically unsaturated compound, (C) saturated polyester resin, (D) glass fiber, (E) filler, and (F) carbon. Including black.
  • At least one of the monomer units constituting the unsaturated polyester resin has a cyclic structure, and the content of the monomer unit having the cyclic structure is 2.6 to 10.4 mol% with respect to the entire unsaturated polyester resin. is there.
  • the lower limit is 2.6 mol%, 3.0 mol%, 3.5 mol%, 3.8 mol%
  • the upper limit is 10.4 mol%, 10.0 mol%, 9.0 mol. %, 8.0 mol%, 7.0 mol%, 6.8 mol%, and the range is preferably 3.0 to 10.0 mol%, more preferably 3.5 to 7.0 mol%. ..
  • the content of the monomer unit having a cyclic structure is 2.6 mol% or more, the appearance of the molded product is good.
  • the cause of the color unevenness that occurs when carbon black is blended in the thermosetting resin composition is that the compatibility between the unsaturated polyester resin and the saturated polyester resin and the carbon black is low, and the carbon black is poorly dispersed. it is conceivable that.
  • the content of the monomer unit having a cyclic structure is 2.6 mol% or more, the resin skeleton is rigid, so that carbon black is easily dispersed and color unevenness is caused. It is suppressed.
  • the content of the monomer unit having a cyclic structure is 10.4 mol% or less, the molding shrinkage rate is good.
  • a plurality of unsaturated polyester resins having or not having a cyclic structure may be blended, and the content of the monomer unit having a cyclic structure in the entire unsaturated polyester resin may be in the above range.
  • the cyclic structure is a structure containing at least one selected from an alicyclic ring and an aromatic ring, and the monomer unit may have a cyclic structure in the main chain or the side chain.
  • the unsaturated polyester resin is a polycondensate obtained by polycondensing a polyhydric alcohol, an unsaturated polybasic acid, and a saturated polybasic acid, if necessary.
  • the unsaturated polybasic acid is a polybasic acid having an ethylenically unsaturated bond
  • the saturated polybasic acid is a polybasic acid having no ethylenically unsaturated bond.
  • An unsaturated polyester resin having a cyclic structure contains a cyclic structure in at least one of a polyhydric alcohol to be polycondensed, an unsaturated polybasic acid, and a saturated polybasic acid used as needed. Above all, it is preferable that at least one of the polyhydric alcohol and the saturated polybasic acid contains a cyclic structure.
  • Examples of the cyclic structure include an alicyclic ring or an aromatic ring having 3 to 14 carbon atoms. From the viewpoint of availability, an alicyclic or aromatic ring having 6 to 10 carbon atoms is preferable, and a cyclohexane ring and a benzene ring are more preferable.
  • the polyhydric alcohol is not particularly limited as long as it is a compound having two or more hydroxyl groups, for example, ethylene glycol, propylene glycol, butanediol, diethylene glycol, dipropylene glycol, triethylene glycol, pentanediol, hexanediol, neopentane.
  • alkylene glycol such as hydrogenated bisphenol A
  • ethylene oxide adduct of bisphenol A ethylene oxide adduct of bisphenol A
  • Alkylene oxide-modified bisphenol A such as a propylene oxide adduct of bisphenol A
  • bisphenol A, glycerin and the like can be mentioned.
  • cyclohexanediol, hydrogenated bisphenol A, alkylene oxide-modified bisphenol A, and bisphenol A are polyhydric alcohols having a
  • propylene glycol, neopentanediol, hydrogenated bisphenol A and bisphenol A are preferable, and propylene glycol is more preferable, from the viewpoint of heat resistance, mechanical strength and resin fluidity during molding of the cured product.
  • the polyhydric alcohol may be used alone or in combination of two or more.
  • the unsaturated polybasic acid is not particularly limited as long as it is a compound having an ethylenically unsaturated bond and having two or more carboxy groups or an acid anhydride thereof, and is, for example, maleic acid, maleic anhydride, fumaric acid.
  • examples thereof include acids, citraconic acid, itaconic acid, chloromalic acid, 4-cyclohexene-1,2-dicarboxylic acid and the like.
  • 4-cyclohexene-1,2-dicarboxylic acid is an unsaturated polybasic acid having a cyclic structure.
  • maleic anhydride and fumaric acid are preferable from the viewpoints of heat resistance of the cured product, mechanical strength, resin fluidity during molding, and the like.
  • the unsaturated polybasic acid may be used alone or in combination of two or more.
  • the saturated polybasic acid is not particularly limited as long as it is a compound having no ethylenically unsaturated bond and having two or more carboxy groups or an acid anhydride thereof, and is, for example, phthalic acid, phthalic anhydride, or isophthalic anhydride.
  • phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, halogenated phthalic anhydride, nitrophthalic acid, hexahydroterephthalic acid, hexahydrophthalic acid and hexahydrophthalic anhydride are saturated polybasic acids having a cyclic structure.
  • phthalic anhydride and isophthalic acid are preferable from the viewpoints of heat resistance of the cured product, mechanical strength, resin fluidity during molding, and the like.
  • the saturated polybasic acid may be used alone or in combination of two or more.
  • Preferred polyhydric alcohols, unsaturated polybasic acids, and saturated polybasic acids having a cyclic structure include cyclohexanediol, bisphenol A, hydrogenated bisphenol A, phthalic acid, phthalic anhydride, terephthalic acid, and isophthalic acid. More preferably, hydrogenated bisphenol A, phthalic anhydride and isophthalic acid can be mentioned.
  • Preferred combinations of raw materials used in the synthesis of unsaturated polyester resins include propylene glycol, hydrogenated bisphenol A and maleic anhydride, propylene glycol and phthalic anhydride and maleic anhydride, and propylene glycol, isophthalic acid and maleic anhydride. ..
  • the unsaturated polyester resin may be used alone or in combination of two or more.
  • the unsaturated polyester resin can be synthesized by a known method using the above-mentioned raw materials.
  • Various conditions in the synthesis of the unsaturated polyester resin can be appropriately set according to the raw materials used and the amount thereof, but are generally at a temperature of 140 to 230 ° C. in an inert gas stream such as nitrogen gas.
  • the esterification reaction under normal pressure, pressure or reduced pressure can be used.
  • an esterification catalyst can be used if necessary.
  • esterification catalysts include known catalysts such as manganese acetate, dibutyltin oxide, stannous oxalate, zinc acetate, and cobalt acetate.
  • the esterification catalyst may be used alone or in combination of two or more.
  • the weight average molecular weight (Mw) of the unsaturated polyester resin is not particularly limited.
  • the weight average molecular weight of the unsaturated polyester resin is preferably 3,000 to 25,000, more preferably 5,000 to 20,000, and even more preferably 7,000 to 18,000.
  • the weight average molecular weight is 3,000 to 25,000, the moldability of the thermosetting resin composition becomes even better.
  • the "weight average molecular weight” was measured at room temperature (23 ° C.) under the following conditions using gel permeation chromatography (GPC), and was determined using a standard polystyrene calibration curve. It means a value.
  • the degree of unsaturation of the unsaturated polyester resin is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, still more preferably 70 to 100 mol%. When the degree of unsaturation is in the above range, the moldability of the thermosetting resin composition is better.
  • the degree of unsaturation of the unsaturated polyester resin can be calculated by the following formula using the number of moles of the unsaturated polybasic acid and the saturated polybasic acid used as raw materials.
  • Degree of unsaturation ⁇ (number of moles of unsaturated polybasic acid x number of ethylenically unsaturated bonds per molecule of unsaturated polybasic acid) / (number of moles of unsaturated polybasic acid + saturated polybase) Number of moles of acid) ⁇ ⁇ 100
  • the ethylenically unsaturated compound can be used without particular limitation as long as it has an ethylenically unsaturated bond capable of radical copolymerizing with the unsaturated polyester resin.
  • the ethylenically unsaturated group may be one or more.
  • the ethylenically unsaturated compound include aromatic monomers such as styrene, vinyltoluene, ⁇ -methylstyrene, and divinylbenzene; 2-hydroxyethyl methacrylate, polyalkylene oxide diacrylate, and triethylene glycol di (meth) acrylate.
  • a monomer having an alkenyl group and an oligomer or the like in which a plurality of the above monomers are bonded.
  • styrene and methyl methacrylate are preferable, and styrene is particularly preferable, from the viewpoint of reactivity with the unsaturated polyester resin.
  • the ethylenically unsaturated compound may be used alone or in combination of two or more.
  • the content of the ethylenically unsaturated compound is preferably 40 parts by mass or more with respect to 100 parts by mass of the unsaturated polyester resin.
  • the thermosetting resin composition can have a viscosity that is easy to handle.
  • the content of the ethylenically unsaturated compound is more preferably 50 parts by mass or more, and further preferably 60 parts by mass or more.
  • the content of the ethylenically unsaturated compound is preferably 240 parts by mass or less with respect to 100 parts by mass of the unsaturated polyester resin. Thereby, the mechanical strength of the cured product of the thermosetting resin composition can be increased. From this viewpoint, the content of the ethylenically unsaturated compound is more preferably 230 parts by mass or less, and further preferably 220 parts by mass or less.
  • thermosetting resin composition By using the saturated polyester resin, the molding shrinkage rate of the thermosetting resin composition can be reduced, and at the same time, a low viscosity of the thermosetting resin composition at the time of molding can be obtained. Without being bound by any theory, this is because common saturated polyester resins have a smaller molecular weight and lower viscosity than polystyrene commonly used as a low shrinkage agent, so that the flow of thermosetting resin compositions Since the property can be improved and the compatibility with the unsaturated polyester resin is good, a sphere structure is formed at the time of curing, the transmission of the shrinkage force of the saturated polyester resin is reduced, and the shrinkage of the entire system is reduced. Because.
  • the saturated polyester resin is a polycondensate of a polyhydric alcohol having no ethylenically unsaturated bond and a saturated polybasic acid, and is not particularly limited.
  • the saturated polybasic acid is a polybasic acid having no ethylenically unsaturated bond.
  • the saturated polyester resin may be used alone or in combination of two or more.
  • polyhydric alcohol examples include ethylene glycol, propylene glycol, butanediol, diethylene glycol, dipropylene glycol, triethylene glycol, pentanediol, hexanediol, neopentanediol, alkylene glycol such as hydrogenated bisphenol A, and bisphenol A. Glycerin and the like can be mentioned. Among these, propylene glycol, neopentanediol, hydrogenated bisphenol A and bisphenol A are preferable, and propylene glycol is more preferable, from the viewpoint of heat resistance, mechanical strength and resin fluidity during molding of the cured product.
  • the polyhydric alcohol may be used alone or in combination of two or more.
  • saturated polybasic acid examples include aromatic saturated polybasic acids such as phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, tetrachlorophthalic anhydride and tetrabromophthalic anhydride or acid anhydrides thereof; succinic acid and adipic acid.
  • aromatic saturated polybasic acids such as phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, tetrachlorophthalic anhydride and tetrabromophthalic anhydride or acid anhydrides thereof; succinic acid and adipic acid.
  • aliphatic saturated polybasic acids such as acid and sebacic acid.
  • phthalic anhydride and isophthalic acid are more preferable from the viewpoints of heat resistance of the cured product, mechanical strength, resin fluidity during molding, and the like.
  • the saturated polybasic acid may be used alone or in combination of two or more.
  • Preferred combinations of polyhydric alcohol and saturated polybasic acid include propylene glycol and isophthalic acid, propylene glycol and adipic acid, and propylene glycol and isophthalic acid and adipic acid.
  • the saturated polyester resin can be synthesized by the same method as the unsaturated polyester resin using the above-mentioned raw materials.
  • the weight average molecular weight (Mw) of the saturated polyester resin is not particularly limited.
  • the weight average molecular weight of the saturated polyester resin is preferably 3,000 to 25,000, more preferably 5,000 to 20,000, and even more preferably 7,000 to 18,000.
  • the weight average molecular weight is 3,000 to 25,000, the moldability of the thermosetting resin composition becomes even better.
  • the blending amount of the saturated polyester resin is preferably 5 to 20 parts by mass, more preferably 8 to 16 parts by mass, and further preferably 10 to 14 parts by mass with respect to 100 parts by mass of the unsaturated polyester resin. ..
  • the molding shrinkage rate is good.
  • the blending amount of the saturated polyester resin is 20 parts by mass or less, the saturated polyester resin, the low shrinkage agent, carbon black and the like can be dispersed more uniformly.
  • thermosetting resin composition further comprises (D) glass fiber.
  • the glass fiber is not particularly limited, and those known in the technical field of the present invention can be used. Chopped strand glass cut to a fiber length of 3 to 25 mm is preferably used.
  • the blending amount of the glass fiber is preferably 50 to 250 parts by mass, more preferably 50 to 180 parts by mass, and further preferably 50 to 100 parts by mass with respect to 100 parts by mass of the unsaturated polyester resin.
  • the blending amount of the glass fiber is 50 parts by mass or more, the mechanical properties of the molded product are better.
  • the blending amount of the glass fibers is 250 parts by mass or less, the glass fibers are more uniformly dispersed in the thermosetting resin composition, and a homogeneous molded product can be produced.
  • the filler organic fillers and inorganic fillers known in the technical field of the present invention can be used. Of these, an inorganic filler is preferable.
  • the inorganic filler include calcium carbonate, silica, aluminum oxide, aluminum hydroxide, barium sulfate, calcium sulfate, calcium hydroxide, calcium oxide, magnesium oxide, magnesium hydroxide, wallastnite, clay, kaolin, mica, and the like. Examples include gypsum, silicic anhydride, glass powder and the like.
  • calcium carbonate, aluminum oxide and aluminum hydroxide are preferable because they are inexpensive, and calcium carbonate, aluminum oxide and aluminum hydroxide are more preferable.
  • the filler may be used alone or in combination of two or more.
  • the median diameter of the filler is preferably 1 to 100 ⁇ m, more preferably 1 to 60 ⁇ m, still more preferably 1 to 50 ⁇ m, from the viewpoint of the viscosity of the thermosetting resin composition at the time of molding. ..
  • the median diameter of the filler is 1 ⁇ m or more, aggregation of the filler can be suppressed.
  • the median diameter of the filler is 100 ⁇ m or less, the moldability of the thermosetting resin composition is good.
  • the shape of the filler is not particularly limited. Examples of the shape of the filler include a substantially true sphere, an ellipsoid, a scaly shape, and an amorphous shape.
  • the blending amount of the filler is preferably 400 to 1600 parts by mass, more preferably 600 to 1200 parts by mass, and further preferably 800 to 1000 parts by mass with respect to 100 parts by mass of the unsaturated polyester resin.
  • the blending amount of the filler is 400 parts by mass or more, the mechanical properties of the cured product are better.
  • the filler is 1600 parts by mass or less, the filler is more uniformly dispersed in the thermosetting resin composition, and a homogeneous molded product can be produced.
  • the thermosetting resin composition further comprises (F) carbon black.
  • carbon black include polymer charcoal, carbon fiber and acetylene black.
  • the blending amount of carbon black is preferably 1 to 15 parts by mass, more preferably 1 to 13 parts by mass, and further preferably 1 to 10 parts by mass with respect to 100 parts by mass of the unsaturated polyester resin. preferable.
  • the thermosetting resin composition is well colored.
  • the blending amount of carbon black is 15 parts by mass or less, the carbon black is more uniformly dispersed in the thermosetting resin composition, and a molded product having a good appearance without color unevenness can be obtained.
  • the median diameter of carbon black is preferably 1 to 50 nm, more preferably 1 to 40 nm, and even more preferably 1 to 30 nm, from the viewpoint of the viscosity of the thermosetting resin composition at the time of molding. ..
  • the median diameter of carbon black is 1 nm or more, agglomeration of particles can be suppressed.
  • the median diameter of carbon black is 50 nm or less, the moldability of the thermosetting resin composition is good.
  • (G) low shrinkage agent In addition to (C) saturated polyester resin, (G) low shrinkage agent may be blended in the thermosetting resin composition.
  • the low shrinkage agent is not particularly limited, and those known in the technical field of the present invention can be used.
  • Examples of the low shrinkage agent include polystyrene, polyethylene, polymethylmethacrylate, polyvinyl acetate, polycaprolactone, styrene-butadiene rubber and the like.
  • the low shrinkage agent to be added may be used alone or in combination of two or more.
  • the blending amount of the low shrinkage agent is preferably 10 to 100 parts by mass, more preferably 20 to 80 parts by mass, and preferably 30 to 70 parts by mass with respect to 100 parts by mass of the unsaturated polyester resin. More preferred.
  • the saturated polyester resin is not included in the blending amount of the low shrinkage agent.
  • the blending amount of the low shrinkage agent is 10 parts by mass or more, the shrinkage rate of the cured product becomes small, and a desired dimensional accuracy can be obtained in the molded product.
  • the blending amount of the low shrinkage agent is 100 parts by mass or less, the fluidity of the thermosetting resin composition is better.
  • the (H) curing agent may be blended in the thermosetting resin composition.
  • the curing agent is not particularly limited as long as it is a radical initiator capable of polymerizing an ethylenically unsaturated bond, and those known in the technical field of the present invention can be used.
  • the curing agent include peroxides such as diacyl peroxide, peroxy ester, hydroperoxide, dialkyl peroxide, ketone peroxide, peroxyketal, alkyl peroxide, and percarbonate.
  • t-butylperoxyoctate t-butylperoxy-2-ethylhexanoate
  • benzoyl peroxide 1,1-di-t-butylperoxy-3,3,5 -Trimethylcyclohexane
  • t-butylperoxyisopropyl carbonate 1,1-di-t-butylperoxy-3,3,5 -Trimethylcyclohexane
  • t-butylperoxyisopropyl carbonate 1,1-di-t-butylperoxy-3,3,5 -Trimethylcyclohexane
  • t-butylperoxyisopropyl carbonate 1,1-di-t-butylperoxy-3,3,5 -Trimethylcyclohexane
  • t-butylperoxyisopropyl carbonate 1,1-di-t-butylperoxy-3,3,5 -Trimethylcyclohexane
  • the blending amount of the curing agent is preferably 1 to 20 parts by mass, more preferably 1 to 15 parts by mass, and further preferably 1 to 10 parts by mass with respect to 100 parts by mass of the unsaturated polyester resin. preferable.
  • the blending amount of the curing agent is 1 part by mass or more, the curing reaction at the time of molding occurs uniformly, and the physical properties and appearance of the cured product are improved.
  • the blending amount of the curing agent is 20 parts by mass or less, the storage stability of the thermosetting resin composition is good and the handleability is improved.
  • the thermosetting resin composition may contain (I) a mold release agent.
  • the release agent is not particularly limited, and those known in the technical field of the present invention can be used.
  • Examples of the release agent include stearic acid, oleic acid, zinc stearate, calcium stearate, aluminum stearate, magnesium stearate, stearic acid amide, oleic acid amide, silicone oil, synthetic wax and the like.
  • the release agent may be used alone or in combination of two or more.
  • the amount of the release agent to be blended is preferably 5 to 40 parts by mass, more preferably 5 to 35 parts by mass, and 5 to 30 parts by mass with respect to 100 parts by mass of the unsaturated polyester resin. More preferred.
  • the blending amount of the release agent is 5 parts by mass or more, the release property of the cured product at the time of molding is good and the productivity of the product is good.
  • the blending amount of the release agent is 40 parts by mass or less, an excessive mold release agent does not contaminate the surface of the cured product, and a cured product having a good appearance can be obtained.
  • thermosetting resin composition is used in the technical fields of the present invention such as thickeners, colorants other than carbon black (hereinafter, also simply referred to as colorants), polymerization inhibitors, and thickeners.
  • colorants colorants other than carbon black
  • polymerization inhibitors polymerization inhibitors
  • thickeners Known components can be included as long as the effects of the present invention are not impaired.
  • the thickener is a compound other than the (E) filler that exhibits a thickening effect, and examples thereof include isocyanate compounds.
  • the thickener may be used alone or in combination of two or more. The amount of the thickener added can be appropriately adjusted according to the handleability, fluidity, etc. required for the thermosetting resin composition.
  • the colorant is used when coloring a cured product or the like.
  • Various inorganic pigments or organic pigments can be used as the colorant.
  • the colorant may be used alone or in combination of two or more.
  • the amount of the colorant added can be appropriately adjusted according to the degree of coloring desired for the cured product.
  • the colorant can be uniformly dispersed, and a molded product having no color unevenness can be provided.
  • polymerization inhibitor examples include hydroquinone, trimethylhydroquinone, p-benzoquinone, naphthoquinone, t-butylhydroquinone, catechol, pt-butylcatechol, 2,6-di-t-butyl-4-methylphenol and the like. Be done.
  • the polymerization inhibitor may be used alone or in combination of two or more.
  • the amount of the polymerization inhibitor added can be appropriately adjusted according to the storage environment and period of the curable resin composition, curing conditions, and the like.
  • thermosetting resin composition includes (A) unsaturated polyester resin, (B) ethylenically unsaturated compound, (C) saturated polyester resin, (D) glass fiber, (E) filler, and ( F) Carbon black and, if necessary, (G) low shrinkage agent, (H) curing agent, (I) mold release agent, or additive, or a combination of two or more of these, which are optional components. It can be produced by mixing. Examples of the mixing method include kneading. The kneading method is not particularly limited, and for example, a kneader, a disper, a planetary mixer, or the like can be used. The kneading temperature is preferably 5 ° C. to 40 ° C., more preferably 10 to 30 ° C.
  • thermosetting resin composition there is no particular limitation on the order in which each component is mixed when producing a thermosetting resin composition.
  • a thermosetting resin composition in which each component is sufficiently dispersed or uniformly mixed is obtained. It is preferable because it is easy to obtain.
  • At least a part of the ethylenically unsaturated compound may be premixed with the unsaturated polyester resin so as to act as a solvent, a dispersion medium and the like.
  • thermosetting resin composition can be used as an internal encapsulant for a motor.
  • an internal encapsulant for the motor is provided that contains a thermosetting resin composition.
  • thermosetting resin composition By molding the thermosetting resin composition into a desired shape and curing it, a molded product containing the cured product of the thermosetting resin composition can be produced.
  • the molding and curing methods are not particularly limited, and methods usually used in the technical field of the present invention, for example, compression molding, transfer molding, injection molding and the like can be used.
  • thermosetting resin composition are not particularly limited, and are represented by, for example, a method of opening a mold and pouring the resin composition into the mold, depressurizing the inside of the mold, or injection molding. There is a method of injecting a resin composition from the outside into a closed mold through a hole provided in a mold such as a sprue by applying pressure from the outside of the mold.
  • the conditions for curing the thermosetting resin composition in the mold can be appropriately set depending on the material used, and examples of preferable conditions are a temperature of 120 to 180 ° C. and a curing time of 1 to 30 minutes.
  • a motor containing a cured product of a thermosetting resin composition is provided.
  • the motor can be manufactured, for example, by a method including encapsulating the thermosetting resin composition in a housing having an electric / electronic component inside, and heat-curing the thermosetting resin composition.
  • F Carbon black: MA-100R (manufactured by Mitsubishi Kasei Corp., median diameter 24 nm)
  • thermosetting resin composition > Examples 1 to 5, Comparative Examples 1 to 8 Ingredients excluding glass fibers according to the formulation shown in Table 1 were put into a double-armed kneader and kneaded for 30 minutes. Then, glass fibers were added and kneaded for 10 minutes to obtain thermosetting resin compositions of Examples 1 to 5 and Comparative Examples 1 to 8.
  • thermosetting resin composition obtained in Examples 1 to 5 and Comparative Examples 1 to 8 were evaluated in various ways by the following test methods. The results of these evaluations are shown in Table 1.
  • thermosetting resin composition was molded under the following conditions and then visually observed. Those having no non-uniformity in appearance were rated as "good”, and those having non-uniformity in appearance were rated as “poor”. Molding machine: 150 ton compression molding machine (manufactured by Osaka Jack Mfg. Co., Ltd.) Molding mold: 320 x 220 mm t3 mm Mold for flat plate molding Molding mold temperature: 160 ° C up and down Molding pressure: 80 kgf / cm 2 Pressurization time: 300 seconds Sample amount: 400 g
  • a 320 mm ⁇ 220 mm ⁇ 3 mm flat plate is formed under the conditions of a pressurizing time of 5 minutes and a forming pressure of 10 MPa with a compression molding die heated to 140 ° C. did.
  • the molded product was taken out from the mold, and a test piece of (125 ⁇ 5) mm ⁇ (13 ⁇ 0.5) mm ⁇ 3 mm was cut out.
  • These test pieces were evaluated by a vertical combustion test in accordance with the UL94 V-0 standard, and in Table 1 below, those satisfying the V-0 standard were shown as acceptable, and those not satisfying the V-0 standard were shown as unacceptable.
  • thermosetting resin compositions of Examples 1 to 5 in which the content of the monomer unit having a cyclic structure is in the range of 2.6 to 10.4 mol% have good fluidity and a molding shrinkage rate. It is small and has good appearance and flame retardancy.
  • Comparative Examples 1, 3 and 8 containing no saturated polyester resin (C) had poor fluidity.
  • Comparative Examples 2, 4 and 7 in which the content of the monomer unit having a cyclic structure was less than 2.6 mol% had a bad appearance

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

流動性が良好であり、成形収縮率が小さく、硬化物の外観が優れた熱硬化性樹脂組成物の提供。(A)不飽和ポリエステル樹脂、(B)エチレン性不飽和化合物、(C)飽和ポリエステル樹脂、(D)ガラス繊維、(E)充填材、及び(F)カーボンブラックを含む熱硬化性樹脂組成物であって、前記(A)不飽和ポリエステル樹脂を構成するモノマー単位の少なくとも1つが環状構造を有し、当該環状構造を有するモノマー単位の含有量が2.6~10.4モル%である熱硬化性樹脂組成物。

Description

熱硬化性樹脂組成物
 本開示は、熱硬化性樹脂組成物、モーターの内部封入材、該熱硬化性樹脂組成物の硬化物を含むモーター、及びモーターの製造方法に関する。詳細には、モーター、コイル等の電気電子部品を封入するために用いることのできる熱硬化性樹脂組成物、モーターの内部封入材、該熱硬化性樹脂組成物の硬化物を含むモーター、及びモーターの製造方法に関する。
 不飽和ポリエステル樹脂に繊維強化材、充填材などを配合した熱硬化性樹脂組成物は、流動性が良好であると共に、寸法精度、耐熱性及び機械的強度に優れた硬化物を与えるため、OA機器、事務機器のシャーシ、自動車用ヘッドランプのランプリフレクター、封入モーター等の製造において広く使用されている。
 中でも、封入モーターの製造では、モーター、コイル等の電気電子部品が封入されるため、材料の粘度が高いと封入時に封入部品が樹脂圧力により初期位置から移動してしまい、断線、短絡等の発生により封入部品が損傷する場合がある。特許文献1には、型内流動性に優れる不飽和ポリエステル樹脂組成物が記載されている。
特開2001-226573号公報
 用途により、熱硬化性樹脂組成物に低成形収縮率が要求される場合がある。熱硬化性樹脂組成物の成形収縮率を低減する方法として、熱硬化性樹脂組成物に低収縮剤を配合することが挙げられ、低収縮剤としては、一般にポリスチレンが用いられている。しかしながら、特許文献1のように低収縮剤としてポリスチレンを用いた場合、成形時に熱硬化性樹脂組成物の粘度が十分に下がらないため流動性が悪く、成形性には改善の余地があった。
 一方で、用途により、熱硬化性樹脂組成物にカーボンブラックを配合する場合がある。本発明者らは、流動性と、低収縮性を両立させるべく、カーボンブラックを含有する熱硬化性樹脂組成物に飽和ポリエステル樹脂を配合した場合、色むらが発生するという問題が生じることを見出した。
 本発明は、流動性が良好であり、成形収縮率が小さく、硬化物の外観が優れた熱硬化性樹脂組成物を提供することを目的とする。
 本発明者らは、上記のような問題を解決すべく鋭意研究した結果、熱硬化性樹脂組成物において環状構造を有する不飽和ポリエステル樹脂と、飽和ポリエステル樹脂を配合することで、流動性が良好であり、成形収縮率が小さく、硬化物の外観が優れた熱硬化性樹脂組成物を得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の[1]~[13]を含む。
[1]
 (A)不飽和ポリエステル樹脂、(B)エチレン性不飽和化合物、(C)飽和ポリエステル樹脂、(D)ガラス繊維、(E)充填材、及び(F)カーボンブラックを含む熱硬化性樹脂組成物であって、前記(A)不飽和ポリエステル樹脂を構成するモノマー単位の少なくとも1つが環状構造を有し、当該環状構造を有するモノマー単位の含有量が2.6~10.4モル%である熱硬化性樹脂組成物。
[2]
 前記環状構造が、炭素原子数6~10の脂環又は芳香環である[1]に記載の熱硬化性樹脂組成物。
[3]
 前記環状構造を有するモノマー単位が、シクロヘキサンジオール、ビスフェノールA、水添ビスフェノールA、フタル酸、無水フタル酸、テレフタル酸、及びイソフタル酸からなる群から選ばれる少なくとも1種のモノマーに由来する[1]又は[2]に記載の熱硬化性樹脂組成物。
[4]
 前記(A)不飽和ポリエステル樹脂の構成成分中の環状構造を有するモノマー単位の含有量が3.0~10.0モル%である[1]~[3]のいずれかに記載の熱硬化性樹脂組成物。
[5]
 前記(C)飽和ポリエステル樹脂の重量平均分子量が3,000~25,000である[1]~[4]のいずれかに記載の熱硬化性樹脂組成物。
[6]
 前記(B)エチレン性不飽和化合物の含有量が、前記(A)不飽和ポリエステル樹脂100質量部に対して40~240質量部である[1]~[5]のいずれかに記載の熱硬化性樹脂組成物。
[7]
 前記(C)飽和ポリエステル樹脂の配合量が、前記(A)不飽和ポリエステル樹脂100質量部に対して5~20質量部である[1]~[6]のいずれかに記載の熱硬化性樹脂組成物。
[8]
 前記(D)ガラス繊維の配合量が、前記(A)不飽和ポリエステル樹脂100質量部に対して50~250質量部である[1]~[7]のいずれかに記載の熱硬化性樹脂組成物。
[9]
 前記(E)充填材の配合量が、前記(A)不飽和ポリエステル樹脂100質量部に対して400~1600質量部である[1]~[8]のいずれかに記載の熱硬化性樹脂組成物。
[10]
 前記(F)カーボンブラックの配合量が、前記(A)不飽和ポリエステル樹脂100質量部に対して1~15質量部である[1]~[9]のいずれかに記載の熱硬化性樹脂組成物。
[11]
 [1]~[10]のいずれかに記載の熱硬化性樹脂組成物を含むモーターの内部封入材。
[12]
 [1]~[10]のいずれかに記載の熱硬化性樹脂組成物の硬化物を含むモーター。
[13]
 内部に電気電子部品を有する筐体内に[1]~[10]のいずれかに記載の熱硬化性樹脂組成物を封入すること、及び前記熱硬化性樹脂組成物を加熱硬化することを含む、モーターの製造方法。
 本発明によれば、流動性が良好であり、成形収縮率が小さく、硬化物の外観が優れた熱硬化性樹脂組成物を提供することができる。
 以下、熱硬化性樹脂組成物の例示的な実施形態について詳細に説明する。なお、本発明は、以下に示す実施形態のみに限定されるものではない。
 以下の説明において、「エチレン性不飽和結合」とは、芳香環を形成する炭素原子を除く炭素原子間で形成される二重結合を意味し、「エチレン性不飽和化合物」とは、エチレン性不飽和結合を有する化合物を意味する。
 「メジアン径」とは、レーザ回折・散乱法によって求めた体積基準の粒径分布における累積50%となる粒子径を意味する。
 「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味し、「(メタ)アクリル」とは、アクリル又はメタクリルを意味する。
<1.熱硬化性樹脂組成物>
 熱硬化性樹脂組成物は、少なくとも(A)不飽和ポリエステル樹脂、(B)エチレン性不飽和化合物、(C)飽和ポリエステル樹脂、(D)ガラス繊維、(E)充填材、及び(F)カーボンブラックを含む。
[(A)不飽和ポリエステル樹脂]
 不飽和ポリエステル樹脂を構成するモノマー単位の少なくとも1つは環状構造を有し、当該環状構造を有するモノマー単位の含有量は、不飽和ポリエステル樹脂全体に対して2.6~10.4モル%である。下限としては、2.6モル%、3.0モル%、3.5モル%、3.8モル%が挙げられ、上限としては10.4モル%、10.0モル%、9.0モル%、8.0モル%、7.0モル%、6.8モル%が挙げられ、範囲としては3.0~10.0モル%が好ましく、3.5~7.0モル%がより好ましい。環状構造を有するモノマー単位の含有量が2.6モル%以上であれば成形品外観が良好である。熱硬化性樹脂組成物にカーボンブラックを配合した際に生じる色むらの原因は、不飽和ポリエステル樹脂及び飽和ポリエステル樹脂と、カーボンブラックとの相溶性が低く、カーボンブラックが分散不良となるためであると考えられる。いかなる理論に拘束されるものではないが、環状構造を有するモノマー単位の含有量が2.6モル%以上である場合、樹脂骨格が剛直であるため、カーボンブラックが分散しやすくなり、色むらが抑制される。環状構造を有するモノマー単位の含有量が10.4モル%以下であれば成形収縮率が良好である。環状構造を有するか、有さない複数の不飽和ポリエステル樹脂をブレンドして、不飽和ポリエステル樹脂全体で環状構造を有するモノマー単位の含有量を上記範囲としてもよい。環状構造とは、脂環及び芳香環から選択される少なくとも1つを含む構造であり、モノマー単位は環状構造を主鎖に有していても側鎖に有していてもよい。
 不飽和ポリエステル樹脂は、多価アルコールと不飽和多塩基酸と、必要に応じて飽和多塩基酸とを重縮合させて得られる重縮合体である。不飽和多塩基酸とは、エチレン性不飽和結合を有する多塩基酸であり、飽和多塩基酸とは、エチレン性不飽和結合を有さない多塩基酸である。
 環状構造を有する不飽和ポリエステル樹脂は、重縮合させる多価アルコール、不飽和多塩基酸、及び必要に応じて使用される飽和多塩基酸の少なくとも1つに環状構造を含む。中でも、多価アルコール及び飽和多塩基酸の少なくとも1つに環状構造を含むことが好ましい。
 環状構造としては炭素原子数3~14の脂環又は芳香環が挙げられる。入手性の観点から、中でも炭素原子数6~10の脂環又は芳香環が好ましく、シクロヘキサン環及びベンゼン環がより好ましい。
 多価アルコールは、2個以上の水酸基を有する化合物であれば特に制限はなく、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ペンタンジオール、ヘキサンジオール、ネオペンタンジオール、テトラエチレングリコール、ポリエチレングリコール、2-メチル-1,3-プロパンジオール、1,4-シクロヘキサン-ジメタノール等のシクロヘキサンジオール、水添ビスフェノールA等のアルキレングリコール;ビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物等のアルキレンオキサイド変性ビスフェノールA;ビスフェノールA及びグリセリン等が挙げられる。これらのうち、シクロヘキサンジオール、水添ビスフェノールA、アルキレンオキサイド変性ビスフェノールA、ビスフェノールAは、環状構造を有する多価アルコールである。これらの中でも、硬化物の耐熱性、機械的強度及び成形時の樹脂流動性の観点から、プロピレングリコール、ネオペンタンジオール、水添ビスフェノールA及びビスフェノールAが好ましく、プロピレングリコールがより好ましい。多価アルコールは、単独で使用してもよいし、2種以上を併用してもよい。
 不飽和多塩基酸は、エチレン性不飽和結合を有し、かつ、2個以上のカルボキシ基を有する化合物又はその酸無水物であれば特に限定されず、例えば、マレイン酸、無水マレイン酸、フマル酸、シトラコン酸、イタコン酸、クロロマレイン酸、4-シクロヘキセン-1、2-ジカルボン酸等が挙げられる。これらのうち、4-シクロヘキセン-1、2-ジカルボン酸は、環状構造を有する不飽和多塩基酸である。これらの中でも、硬化物の耐熱性、機械的強度及び成形時の樹脂流動性等の観点から、無水マレイン酸及びフマル酸が好ましい。不飽和多塩基酸は、単独で使用してもよいし、2種以上を併用してもよい。
 飽和多塩基酸は、エチレン性不飽和結合を有さず、かつ、2個以上のカルボキシ基を有する化合物又はその酸無水物であれば特に限定されず、例えば、フタル酸、無水フタル酸、イソフタル酸、テレフタル酸、テトラクロロ無水フタル酸及びテトラブロモ無水フタル酸等のハロゲン化無水フタル酸、並びにニトロフタル酸等の芳香族飽和多塩基酸又はその酸無水物;コハク酸、アジピン酸、セバシン酸、シュウ酸、マロン酸、アゼライン酸、グルタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロフタル酸及びヘキサヒドロ無水フタル酸等の脂肪族飽和多塩基酸又はその酸無水物等が挙げられる。これらのうち、フタル酸、無水フタル酸、イソフタル酸、テレフタル酸、ハロゲン化無水フタル酸、ニトロフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロフタル酸及びヘキサヒドロ無水フタル酸は、環状構造を有する飽和多塩基酸である。これらの中でも硬化物の耐熱性、機械的強度及び成形時の樹脂流動性等の観点から、無水フタル酸及びイソフタル酸が好ましい。飽和多塩基酸は、単独で使用してもよいし、2種以上を併用してもよい。
 環状構造を有する好ましい多価アルコール、不飽和多塩基酸、及び飽和多塩基酸としては、シクロヘキサンジオール、ビスフェノールA、水添ビスフェノールA、フタル酸、無水フタル酸、テレフタル酸、イソフタル酸が挙げられ、より好ましくは水添ビスフェノールA、無水フタル酸、イソフタル酸が挙げられる。
 不飽和ポリエステル樹脂の合成に用いられる原料の好ましい組み合わせとして、プロピレングリコールと水添ビスフェノールAと無水マレイン酸、プロピレングリコールと無水フタル酸と無水マレイン酸、プロピレングリコールとイソフタル酸と無水マレイン酸が挙げられる。
 不飽和ポリエステル樹脂は、単独で使用してもよいし、2種以上を併用してもよい。
 不飽和ポリエステル樹脂は、上記のような原料を用いて公知の方法で合成することができる。不飽和ポリエステル樹脂の合成における各種条件は、使用する原料及びその量に応じて適宜設定することができるが、一般的に、窒素ガス等の不活性ガス気流中、140~230℃の温度にて常圧、加圧又は減圧下でのエステル化反応を用いることができる。エステル化反応では、必要に応じてエステル化触媒を使用することができる。エステル化触媒の例としては、酢酸マンガン、ジブチル錫オキサイド、シュウ酸第一錫、酢酸亜鉛、及び酢酸コバルト等の公知の触媒が挙げられる。エステル化触媒は、単独で使用してもよいし、2種以上を併用してもよい。
 不飽和ポリエステル樹脂の重量平均分子量(Mw)は、特に限定されない。不飽和ポリエステル樹脂の重量平均分子量は、好ましくは3,000~25,000であり、より好ましくは5,000~20,000であり、さらに好ましくは7,000~18,000である。重量平均分子量が3,000~25,000であれば、熱硬化性樹脂組成物の成形性がより一層良好となる。なお、本開示において「重量平均分子量」とは、ゲルパーミエーションクロマトグラフィー(GPC:gel permeation chromatography)を用いて下記条件にて常温(23℃)で測定し、標準ポリスチレン検量線を用いて求めた値のことを意味する。
 装置:昭和電工株式会社製Shodex(登録商標)GPC-101
 カラム:昭和電工株式会社製LF-804
 カラム温度:40℃
 試料:測定対象物の0.2質量%テトラヒドロフラン溶液
 流量:1mL/分
 溶離液:テトラヒドロフラン
 検出器:RI-71S
 不飽和ポリエステル樹脂の不飽和度は50~100モル%であることが好ましく、より好ましくは60~100モル%であり、さらに好ましくは70~100モル%である。不飽和度が上記範囲であると、熱硬化性樹脂組成物の成形性がより良好である。不飽和ポリエステル樹脂の不飽和度は、原料として用いた不飽和多塩基酸及び飽和多塩基酸のモル数を用いて、以下の式により算出可能である。
 不飽和度(モル%)={(不飽和多塩基酸のモル数×不飽和多塩基酸1分子当たりのエチレン性不飽和結合の数)/(不飽和多塩基酸のモル数+飽和多塩基酸のモル数)}×100
[(B)エチレン性不飽和化合物]
 エチレン性不飽和化合物は、不飽和ポリエステル樹脂とラジカル共重合可能なエチレン性不飽和結合を有するものであれば、特に制限されることなく使用することができる。エチレン性不飽和基は1つでも複数でもよい。エチレン性不飽和化合物としては、例えば、スチレン、ビニルトルエン、α-メチルスチレン、ジビニルベンゼンなどの芳香族系モノマー;2-ヒドロキシエチルメタクリレート、ポリアルキレンオキサイドのジアクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、(メタ)アクリル酸エチル、(メタ)アクリル酸メチルなどのアクリル系モノマー;ジアリルフタレート、トリアリルイソシアヌレート、ジアリルフタレートプレポリマー等のアルケニル基を有するモノマー;及び上記モノマーが複数個結合したオリゴマー等などが挙げられる。これらの中でも、不飽和ポリエステル樹脂との反応性の観点から、スチレン及びメタクリル酸メチルが好ましく、特にスチレンが好ましい。エチレン性不飽和化合物は、単独で使用してもよいし、2種以上を併用してもよい。
 エチレン性不飽和化合物の含有量は、不飽和ポリエステル樹脂100質量部に対して40質量部以上であることが好ましい。これにより、熱硬化性樹脂組成物を取り扱いやすい粘度とすることができる。この観点から、エチレン性不飽和化合物の含有量は50質量部以上であることがより好ましく、60質量部以上であることがさらに好ましい。
 エチレン性不飽和化合物の含有量は、不飽和ポリエステル樹脂100質量部に対して240質量部以下であることが好ましい。これにより、熱硬化性樹脂組成物の硬化物の機械的強度を高くすることができる。この観点から、エチレン性不飽和化合物の含有量は230質量部以下であることがより好ましく、220質量部以下であることがさらに好ましい。
[(C)飽和ポリエステル樹脂]
 飽和ポリエステル樹脂を用いることで、熱硬化性樹脂組成物の成形収縮率を低減すると同時に、成形時における熱硬化性樹脂組成物の低い粘度を得ることができる。いかなる理論に拘束されるものではないが、これは、一般的な飽和ポリエステル樹脂が、低収縮剤として一般に用いられるポリスチレンと比べて分子量が小さく低粘度であるため、熱硬化性樹脂組成物の流動性を向上させることができ、さらに、不飽和ポリエステル樹脂に対し相溶性がよいため、硬化時に球群構造が形成されて飽和ポリエステル樹脂の収縮力の伝達が小さくなり、系全体の収縮が小さくなるためである。
 飽和ポリエステル樹脂は、エチレン性不飽和結合を有さない多価アルコールと飽和多塩基酸との重縮合体であり、特に限定されない。飽和多塩基酸とは、エチレン性不飽和結合を有さない多塩基酸である。飽和ポリエステル樹脂は、単独で使用してもよいし、2種以上を併用してもよい。
 前記多価アルコールとしては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ペンタンジオール、ヘキサンジオール、ネオペンタンジオール、水添ビスフェノールA等のアルキレングリコール、ビスフェノールA、グリセリン等が挙げられる。これらの中でも、硬化物の耐熱性、機械的強度及び成形時の樹脂流動性の観点から、プロピレングリコール、ネオペンタンジオール、水添ビスフェノールA及びビスフェノールAが好ましく、プロピレングリコールがより好ましい。多価アルコールは、単独で使用してもよいし、2種以上を併用してもよい。
 飽和多塩基酸としては、例えば、フタル酸、無水フタル酸、イソフタル酸、テレフタル酸、テトラクロロ無水フタル酸、テトラブロモ無水フタル酸等の芳香族飽和多塩基酸又はその酸無水物;コハク酸、アジピン酸、セバシン酸等の脂肪族飽和多塩基酸等が挙げられる。これらの中でも硬化物の耐熱性、機械的強度及び成形時の樹脂流動性等の観点から、無水フタル酸及びイソフタル酸がより好ましい。飽和多塩基酸は、単独で使用してもよいし、2種以上を併用してもよい。
 多価アルコールと飽和多塩基酸の好ましい組み合わせとして、プロピレングリコールとイソフタル酸、プロピレングリコールとアジピン酸、プロピレングリコールとイソフタル酸とアジピン酸が挙げられる。
 飽和ポリエステル樹脂は、上記のような原料を用いて不飽和ポリエステル樹脂と同様の方法で合成することができる。
 飽和ポリエステル樹脂の重量平均分子量(Mw)は、特に限定されない。飽和ポリエステル樹脂の重量平均分子量は、好ましくは3,000~25,000であり、より好ましくは5,000~20,000であり、さらに好ましくは7,000~18,000である。重量平均分子量が3,000~25,000であれば、熱硬化性樹脂組成物の成形性がより一層良好となる。
 飽和ポリエステル樹脂の配合量は、不飽和ポリエステル樹脂100質量部に対して5~20質量部であることが好ましく、より好ましくは8~16質量部であり、さらに好ましくは10~14質量部である。飽和ポリエステル樹脂の配合量が5質量部以上であれば、成形収縮率が良好である。一方、飽和ポリエステル樹脂の配合量が20質量部以下であれば、飽和ポリエステル樹脂、低収縮剤及びカーボンブラック等をより均一に分散させることができる。
[(D)ガラス繊維]
 熱硬化性樹脂組成物はさらに(D)ガラス繊維を含む。ガラス繊維としては特に限定されず、本発明の技術分野において公知のものを用いることができる。繊維長3~25mmに切断したチョップドストランドガラスが好ましく用いられる。
 ガラス繊維の配合量は、不飽和ポリエステル樹脂100質量部に対して50~250質量部であることが好ましく、より好ましくは50~180質量部であり、さらに好ましくは50~100質量部である。ガラス繊維の配合量が50質量部以上であれば、成形体の機械的特性がより良好である。一方、ガラス繊維の配合量が250質量部以下であれば、熱硬化性樹脂組成物中でガラス繊維がより均一に分散し、均質な成形体を製造することができる。
[(E)充填材]
 充填材としては、本発明の技術分野において公知の有機充填材及び無機充填材を用いることができる。中でも無機充填材が好ましい。無機充填材としては、例えば、炭酸カルシウム、シリカ、酸化アルミニウム、水酸化アルミニウム、硫酸バリウム、硫酸カルシウム、水酸化カルシウム、酸化カルシウム、酸化マグネシウム、水酸化マグネシウム、ワラストナイト、クレー、カオリン、マイカ、石膏、無水ケイ酸、ガラス粉末等が挙げられる。これらの中でも、炭酸カルシウム、酸化アルミニウム及び水酸化アルミニウムが安価であるため好ましく、炭酸カルシウム、酸化アルミニウム、及び水酸化アルミニウムがより好ましい。充填材は、単独で使用してもよいし、2種以上を併用してもよい。
 充填材のメジアン径は、成形時における熱硬化性樹脂組成物の粘度の観点から、1~100μmであることが好ましく、1~60μmであることがより好ましく、1~50μmであることがさらに好ましい。充填材のメジアン径が1μm以上であれば、充填材の凝集を抑制することができる。一方、充填材のメジアン径が100μm以下であれば、熱硬化性樹脂組成物の成形性が良好である。
 充填材の形状は、特に制限されない。充填材の形状としては、例えば、略真球、楕円体、鱗片状、無定形等が挙げられる。
 充填材の配合量は、不飽和ポリエステル樹脂100質量部に対して400~1600質量部であることが好ましく、より好ましくは600~1200質量部であり、さらに好ましくは800~1000質量部である。充填材の配合量が400質量部以上であれば、硬化物の機械的特性がより良好である。充填材の配合量が1600質量部以下であれば、熱硬化性樹脂組成物中で充填材がより均一に分散し、均質な成形体を製造することができる。
[(F)カーボンブラック]
 熱硬化性樹脂組成物はさらに(F)カーボンブラックを含む。カーボンブラックの例としては、ポリマー炭、カーボンファイバー、アセチレンブラックが挙げられる。カーボンブラックの配合量は、不飽和ポリエステル樹脂100質量部に対して1~15質量部であることが好ましく、1~13質量部であることがより好ましく、1~10質量部であることがさらに好ましい。カーボンブラックの配合量が1質量部以上であれば、熱硬化性樹脂組成物への着色が良好である。カーボンブラックの配合量が15質量部以下であれば、熱硬化性樹脂組成物中でカーボンブラックがより均一に分散し、色むらのない良好な外観の成形体を得ることができる。
 カーボンブラックのメジアン径は、成形時における熱硬化性樹脂組成物の粘度の観点から、1~50nmであることが好ましく、1~40nmであることがより好ましく、1~30nmであることがさらに好ましい。カーボンブラックのメジアン径が1nm以上であれば、粒子の凝集を抑制することができる。一方、カーボンブラックのメジアン径が50nm以下であれば、熱硬化性樹脂組成物の成形性が良好である。
[(G)低収縮剤]
 熱硬化性樹脂組成物には(C)飽和ポリエステル樹脂以外に(G)低収縮剤を配合してもよい。低収縮剤としては、特に限定されず、本発明の技術分野において公知のものを用いることができる。低収縮剤としては、例えば、ポリスチレン、ポリエチレン、ポリメチルメタクリレート、ポリ酢酸ビニル、ポリカプロラクトン、スチレン-ブタジエンゴム等が挙げられる。追加する低収縮剤は、単独で使用してもよいし、2種以上を併用してもよい。
 低収縮剤の配合量は、不飽和ポリエステル樹脂100質量部に対して10~100質量部であることが好ましく、20~80質量部であることがより好ましく、30~70質量部であることがさらに好ましい。なお、低収縮剤の配合量に飽和ポリエステル樹脂は含まれない。低収縮剤の配合量が10質量部以上であれば、硬化物の収縮率が小さくなり、成形体において所望の寸法精度を得ることができる。一方、低収縮剤の配合量が100質量部以下であれば、熱硬化性樹脂組成物の流動性がより良好である。
[(H)硬化剤]
 熱硬化性樹脂組成物には(H)硬化剤を配合してもよい。硬化剤としては、エチレン性不飽和結合を重合できるラジカル開始剤であれば特に限定されず、本発明の技術分野において公知のものを用いることができる。硬化剤としては、例えばジアシルパーオキサイド、パーオキシエステル、ハイドロパーオキサイド、ジアルキルパーオキサイド、ケトンパーオキサイド、パーオキシケタール、アルキルパーエステル、パーカーボネート等の過酸化物が挙げられる。これらの過酸化物の中でも、t-ブチルパーオキシオクトエート、t-ブチルパーオキシ-2-エチルヘキサノエート、ベンゾイルパーオキサイド、1,1-ジ-t-ブチルパーオキシ-3,3,5-トリメチルシクロヘキサン、t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシベンゾエート、ジクミルパーオキサイド、及びジ-t-ブチルパーオキサイドが好ましい。硬化剤は、単独で使用してもよいし、2種以上を併用してもよい。
 硬化剤の配合量は、不飽和ポリエステル樹脂100質量部に対して1~20質量部であることが好ましく、1~15質量部であることがより好ましく、1~10質量部であることがさらに好ましい。硬化剤の配合量が1質量部以上であれば、成形時の硬化反応が均一に起こり、硬化物の物性及び外観が良好となる。一方、硬化剤の配合量が20質量部以下であれば、熱硬化性樹脂組成物の保存安定性が良好となり、取扱い性が向上する。
[(I)離型剤]
 熱硬化性樹脂組成物には(I)離型剤を配合してもよい。離型剤としては、特に限定されず、本発明の技術分野において公知のものを用いることができる。離型剤としては、例えば、ステアリン酸、オレイン酸、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸マグネシウム、ステアリン酸アミド、オレイン酸アミド、シリコーンオイル、合成ワックス等が挙げられる。離型剤は、単独で使用してもよいし、2種以上を併用してもよい。
 離型剤の配合量は、不飽和ポリエステル樹脂100質量部に対して5~40質量部であることが好ましく、5~35質量部であることがより好ましく、5~30質量部であることがさらに好ましい。離型剤の配合量が5質量部以上であれば、型成形をした際の硬化物の離型性が良好で製品の生産性が良好となる。一方、離型剤の配合量が40質量部以下であれば、過剰な離型剤が硬化物の表面を汚染することなく、外観が良好な硬化物を得ることができる。
[その他の添加剤]
 熱硬化性樹脂組成物は、上記の成分に加えて、増粘剤、カーボンブラック以外の着色剤(以下、単に着色剤ともいう)、重合禁止剤、減粘剤等の本発明の技術分野において公知の成分を、本発明の効果を阻害しない範囲において含むことができる。
 増粘剤は増粘効果を示す(E)充填材以外の化合物であり、例えばイソシアネート化合物が挙げられる。増粘剤は、単独で使用してもよいし、2種以上を併用してもよい。増粘剤の添加量は、熱硬化性樹脂組成物に要求される取り扱い性、流動性等に応じて適宜調整することができる。
 着色剤は、硬化物を着色する場合等に用いられる。着色剤として、各種の無機顔料又は有機顔料を使用することができる。着色剤は、単独で使用してもよいし、2種以上を併用してもよい。着色剤の添加量は、硬化物に所望される着色度合いによって適宜調整することができる。熱硬化性樹脂組成物は、着色剤が均一に分散することができ、色むらのない成形体を与えることができる。
 重合禁止剤としては、例えば、ハイドロキノン、トリメチルハイドロキノン、p-ベンゾキノン、ナフトキノン、t-ブチルハイドロキノン、カテコール、p-t-ブチルカテコール、2,6-ジ-t-ブチル-4-メチルフェノールなどが挙げられる。重合禁止剤は、単独で使用してもよいし、2種以上を併用してもよい。重合禁止剤の添加量は、硬化性樹脂組成物の保管環境及び期間、硬化条件等に応じて適宜調整することができる。
<2.熱硬化性樹脂組成物の製造方法>
 熱硬化性樹脂組成物は、(A)不飽和ポリエステル樹脂と、(B)エチレン性不飽和化合物と、(C)飽和ポリエステル樹脂と、(D)ガラス繊維と、(E)充填材と、(F)カーボンブラックと、必要に応じて、任意成分である(G)低収縮剤、(H)硬化剤、(I)離型剤、若しくは添加剤、又はこれらの2種以上の組み合わせと、を混合することにより製造することができる。混合方法としては、例えば混練が挙げられる。混練方法としては特に制限はなく、例えば、ニーダー、ディスパー、プラネタリーミキサー等を用いることができる。混練温度は、好ましくは5℃~40℃であり、より好ましくは10~30℃である。
 熱硬化性樹脂組成物を製造する際の各成分を混合する順番については特に制限はない。例えば、不飽和ポリエステル樹脂と、エチレン性不飽和化合物の一部又は全部を混合してから他の成分を混合すると、各成分が十分に分散、あるいは均一に混合された熱硬化性樹脂組成物が得られやすいため好ましい。エチレン性不飽和化合物の少なくとも一部が、溶媒、分散媒等として作用するように、不飽和ポリエステル樹脂と予め混合されていてもよい。
<3.熱硬化性樹脂組成物の使用方法>
 熱硬化性樹脂組成物は、モーターの内部封入材として使用することができる。一実施態様では、熱硬化性樹脂組成物を含むモーターの内部封入材が提供される。
<4.熱硬化性樹脂組成物の硬化方法>
 熱硬化性樹脂組成物を、所望の形状に成形して硬化することによって、熱硬化性樹脂組成物の硬化物を含む成形体を製造することができる。成形及び硬化方法としては、特に限定されず、本発明の技術分野において通常行われる方法、例えば、圧縮成形、トランスファー成形、射出成形等を用いることができる。
 熱硬化性樹脂組成物の成形及び硬化工程としては、特に制限されないが、例えば、金型を開き、金型内に樹脂組成物を注ぎ込む方法、金型内を減圧、あるいは射出成形に代表されるような、金型の外側から圧力をかけて、スプルー等の金型に設けられた穴を通じて、閉じた金型内に外部から樹脂組成物を注入する方法等がある。金型内で熱硬化性樹脂組成物を硬化させる条件は、用いる材料によって適宜設定することができ、好ましい条件の一例としては、温度120~180℃、及び硬化時間1~30分である。
 一実施態様では、熱硬化性樹脂組成物の硬化物を含むモーターが提供される。モーターは、例えば、内部に電気電子部品を有する筐体内に熱硬化性樹脂組成物を封入すること、及び熱硬化性樹脂組成物を加熱硬化することを含む方法によって製造することができる。
 以下、実施例及び比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
<1.成分>
 (A)不飽和ポリエステル樹脂の合成例を以下に示す。
[合成例1]
 温度計、撹拌機、窒素ガス導入口及び還流冷却器を備えた4口フラスコに、無水マレイン酸98.0質量部とプロピレングリコール76.0質量部(無水マレイン100モルに対して100モル)とを入れ、窒素ガス気流下で加熱撹拌しながら210℃まで昇温して、常法の手順によりエステル化反応を行なうことで不飽和ポリエステル樹脂A1(環状構造を有するモノマー単位0モル%、重量平均分子量10,000、不飽和度100モル%)を得た。次に、反応物100質量部に対してハイドロキノンを0.015質量部添加して160℃に冷却した後、スチレンモノマーをさらに添加して、不飽和ポリエステル樹脂A1を70質量%含むスチレン溶液を得た。
[合成例2]
 プロピレングリコール60.0質量部と水添ビスフェノールA50.4質量部と無水マレイン酸98.0質量部とを用い、プロピレングリコール:水添ビスフェノールA:無水マレイン酸のモル比を79:21:100とする以外は、実施例1と同様にして、不飽和ポリエステル樹脂A2(環状構造を有するモノマー単位10.5モル%、重量平均分子量10,000、不飽和度100モル%)を含むスチレン溶液を得た。
[合成例3]
 プロピレングリコール76.0質量部と無水フタル酸7.4質量部と無水マレイン酸93.1質量部とを用い、プロピレングリコール:無水フタル酸:無水マレイン酸のモル比を100:5:95とする以外は、実施例1と同様にして、不飽和ポリエステル樹脂A3(環状構造を有するモノマー単位2.5モル%、重量平均分子量10,000、不飽和度95モル%)を含むスチレン溶液を得た。
[合成例4]
 プロピレングリコール76.0質量部とイソフタル酸41.5質量部と無水マレイン酸73.5質量部とを用い、プロピレングリコール:イソフタル酸:無水マレイン酸のモル比を100:25:75とする以外は、実施例1と同様にして、不飽和ポリエステル樹脂A4(環状構造を有するモノマー単位12.5モル%、重量平均分子量10,000、不飽和度100モル%)を含むスチレン溶液を得た。
 (C)飽和ポリエステル樹脂の合成例を以下に示す。
[合成例5]
 温度計、撹拌機、窒素ガス導入口及び還流冷却器を備えた4口フラスコに、イソフタル酸83.0質量部とアジピン酸73.0質量部とプロピレングリコール76.0質量部とを入れてプロピレングリコール:イソフタル酸:アジピン酸のモル比を100:50:50とし、窒素気流下で加熱撹拌しながら210℃まで昇温して、常法の手順によりエステル化反応を行なうことで飽和ポリエステル樹脂C1を得た。次に、反応物100質量部に対してハイドロキノンを0.1質量部添加して160℃に冷却した後、スチレンモノマーをさらに添加して、飽和ポリエステル樹脂C1(重量平均分子量10,000)を70質量%含むスチレン溶液を得た。
 (D)ガラス繊維:チョップドストランドガラス ECS03B-173(日東紡績株式会社製)、繊維長3mm
 (E)充填材:タンカルG-100(炭酸カルシウム、三共製粉株式会社製、メジアン径 65μm)、B-103(水酸化アルミニウム、日本軽金属株式会社、メジアン径 8μm)
 (F)カーボンブラック:MA-100R(三菱化成工業株式会社製、メジアン径 24nm)
 (G)低収縮剤:MS-200(ポリスチレン、積水化成品工業株式会社製)、アサプレン(登録商標) T-411G(スチレン-ブタジエンブロックポリマー、旭化成株式会社製)
 (H)硬化剤:パーブチル(登録商標)I―75(t-ブチルパーオキシイソプロピルカーボネート、日油株式会社製)
 (I)離型剤:ステアリン酸カルシウム(日油株式会社製)
<2.熱硬化性樹脂組成物の作製>
実施例1~5、比較例1~8
 表1に示す配合でガラス繊維を除く成分を双腕式ニーダーに投入し、30分間混練した。その後、ガラス繊維を添加し、10分間混練して、実施例1~5及び比較例1~8の熱硬化性樹脂組成物を得た。
<3.熱硬化性樹脂組成物の評価方法>
 実施例1~5及び比較例1~8で得られた熱硬化性樹脂組成物について、以下の試験方法により各種評価を行った。これらの評価結果を表1に示す。
(1)流動性
 流動性をスパイラルフロー試験による流動長(スパイラルフロー値)で評価した。具体的には、断面形状がφ3mmの半円状のスパイラルフロー金型を70tトランスファー成形機に取り付け、原料チャージ量50g、成形温度150℃、成形圧力10MPaの条件下で、熱硬化性樹脂組成物のスパイラルフロー値(cm)を測定した。
(2)外観
 下記条件にて熱硬化性樹脂組成物を成形した後に目視観察し、外観の不均一性がないものを「良好」、外観の不均一性があるものを「不良」とした。
 成形機:150トン圧縮成形機(株式会社大阪ジャッキ製作所製)
 成形金型:320×220mm t3mm平板成形用金型
 成形金型温度:上下160℃
 成形圧力:80kgf/cm2
 加圧時間:300秒
 試料量:400g
 (3)成形収縮率
 JIS K6911:1995 5.7に準拠し、収縮円盤(φ90mm×11mm)を、成形温度120℃、成形圧力5MPa、成形時間5分の条件下で圧縮成形(株式会社テクノマルシチ製コンプレッション成形機)して成形収縮率を算出した。
 (4)難燃性
 熱硬化性樹脂組成物340gを用いて、140℃に加熱した圧縮成形用金型で、加圧時間5分、成形圧力10MPaの条件で320mm×220mm×3mmの平板を成形した。150℃、60分間の条件で後硬化させた後、成形品を金型から取り出し、(125±5)mm×(13±0.5)mm×3mmの試験片を切り出した。これらの試験片を用いてUL94 V-0規格に則した垂直燃焼試験にて評価を行い、下記表1においては、V-0規格を満たすものを可、満たさないものを不可として表した。
Figure JPOXMLDOC01-appb-T000001
 表1より、環状構造を有するモノマー単位の含有量が2.6~10.4モル%の範囲内である実施例1~5の熱硬化性樹脂組成物は流動性がよく、成形収縮率が小さく、外観及び難燃性も良好である。一方、(C)飽和ポリエステル樹脂を含まない比較例1、3、8は流動性が悪かった。環状構造を有するモノマー単位の含有量が2.6モル%未満の比較例2、4、7は外観が悪く、環状構造を有するモノマー単位の含有量が10.4モル%超の比較例5及び6は成形収縮率が大きかった。

Claims (13)

  1.  (A)不飽和ポリエステル樹脂、(B)エチレン性不飽和化合物、(C)飽和ポリエステル樹脂、(D)ガラス繊維、(E)充填材、及び(F)カーボンブラックを含む熱硬化性樹脂組成物であって、前記(A)不飽和ポリエステル樹脂を構成するモノマー単位の少なくとも1つが環状構造を有し、当該環状構造を有するモノマー単位の含有量が2.6~10.4モル%である熱硬化性樹脂組成物。
  2.  前記環状構造が、炭素原子数6~10の脂環又は芳香環である請求項1に記載の熱硬化性樹脂組成物。
  3.  前記環状構造を有するモノマー単位が、シクロヘキサンジオール、ビスフェノールA、水添ビスフェノールA、フタル酸、無水フタル酸、テレフタル酸、及びイソフタル酸からなる群から選ばれる少なくとも1種のモノマーに由来する請求項1又は2に記載の熱硬化性樹脂組成物。
  4.  前記(A)不飽和ポリエステル樹脂の構成成分中の環状構造を有するモノマー単位の含有量が3.0~10.0モル%である請求項1~3のいずれか一項に記載の熱硬化性樹脂組成物。
  5.  前記(C)飽和ポリエステル樹脂の重量平均分子量が3,000~25,000である請求項1~4のいずれか一項に記載の熱硬化性樹脂組成物。
  6.  前記(B)エチレン性不飽和化合物の含有量が、前記(A)不飽和ポリエステル樹脂100質量部に対して40~240質量部である請求項1~5のいずれか一項に記載の熱硬化性樹脂組成物。
  7.  前記(C)飽和ポリエステル樹脂の配合量が、前記(A)不飽和ポリエステル樹脂100質量部に対して5~20質量部である請求項1~6のいずれか一項に記載の熱硬化性樹脂組成物。
  8.  前記(D)ガラス繊維の配合量が、前記(A)不飽和ポリエステル樹脂100質量部に対して50~250質量部である請求項1~7のいずれか一項に記載の熱硬化性樹脂組成物。
  9.  前記(E)充填材の配合量が、前記(A)不飽和ポリエステル樹脂100質量部に対して400~1600質量部である請求項1~8のいずれか一項に記載の熱硬化性樹脂組成物。
  10.  前記(F)カーボンブラックの配合量が、前記(A)不飽和ポリエステル樹脂100質量部に対して1~15質量部である請求項1~9のいずれか一項に記載の熱硬化性樹脂組成物。
  11.  請求項1~10のいずれか一項に記載の熱硬化性樹脂組成物を含むモーターの内部封入材。
  12.  請求項1~10のいずれか一項に記載の熱硬化性樹脂組成物の硬化物を含むモーター。
  13.  内部に電気電子部品を有する筐体内に請求項1~10のいずれか一項に記載の熱硬化性樹脂組成物を封入すること、及び前記熱硬化性樹脂組成物を加熱硬化することを含む、モーターの製造方法。
PCT/JP2020/034339 2019-12-16 2020-09-10 熱硬化性樹脂組成物 WO2021124626A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080082992.0A CN114746456B (zh) 2019-12-16 2020-09-10 热固性树脂组合物
JP2021565332A JPWO2021124626A1 (ja) 2019-12-16 2020-09-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-226201 2019-12-16
JP2019226201 2019-12-16

Publications (1)

Publication Number Publication Date
WO2021124626A1 true WO2021124626A1 (ja) 2021-06-24

Family

ID=76478615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034339 WO2021124626A1 (ja) 2019-12-16 2020-09-10 熱硬化性樹脂組成物

Country Status (3)

Country Link
JP (1) JPWO2021124626A1 (ja)
CN (1) CN114746456B (ja)
WO (1) WO2021124626A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127718A (ja) * 1982-01-27 1983-07-29 Toshiba Corp 不飽和ポリエステル樹脂組成物および着色成形品
JPS6343948A (ja) * 1986-08-11 1988-02-25 Hitachi Chem Co Ltd 低収縮性不飽和ポリエステル樹脂の製造法
JPH07268196A (ja) * 1994-03-31 1995-10-17 Matsushita Electric Works Ltd 不飽和ポリエステル樹脂成形材料
JPH09241496A (ja) * 1996-03-12 1997-09-16 Nippon Shokubai Co Ltd 不飽和ポリエステル樹脂組成物およびシート状成形材料
JP2004231702A (ja) * 2003-01-28 2004-08-19 Matsushita Electric Works Ltd 不飽和ポリエステル樹脂組成物及びその成形品
JP2005220256A (ja) * 2004-02-06 2005-08-18 Kyocera Chemical Corp 2液性注形用エポキシ樹脂組成物および電気・電子部品装置
JP2009077576A (ja) * 2007-09-21 2009-04-09 Showa Highpolymer Co Ltd モータ構成部品封止用不飽和ポリエステル樹脂組成物及びそれを用いた封入モータ
JP5727628B2 (ja) * 2011-12-14 2015-06-03 昭和電工株式会社 不飽和ポリエステル樹脂組成物及び封入モータ
WO2019097824A1 (ja) * 2017-11-17 2019-05-23 昭和電工株式会社 バルクモールディングコンパウンド及びそれを用いてモーターを封止する方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1056388C (zh) * 1996-10-03 2000-09-13 中国石化扬子石油化工公司 双环戊二烯改性不饱和聚酯树脂的一种制备方法
JP3639778B2 (ja) * 2000-08-17 2005-04-20 ジャパンコンポジット株式会社 防水材組成物、防水被覆構造体、およびその施工方法
KR100868156B1 (ko) * 2001-12-21 2008-11-12 미츠비시 가스 가가쿠 가부시키가이샤 폴리에스테르 수지 조성물
CN1737057A (zh) * 2004-06-02 2006-02-22 关西涂料株式会社 不饱和聚酯树脂组合物以及使用它的涂布方法
JP2011202123A (ja) * 2010-03-26 2011-10-13 Japan Composite Co Ltd 不飽和ポリエステル樹脂組成物及び成形品
WO2016063616A1 (ja) * 2014-10-20 2016-04-28 昭和電工株式会社 不飽和ポリエステル樹脂組成物及び封入モータ
TWI715778B (zh) * 2016-06-10 2021-01-11 日商索馬龍股份有限公司 不飽和聚酯樹脂組合物及其固化物
CN107082875B (zh) * 2017-06-06 2019-04-30 无锡阿科力科技股份有限公司 耐热型不饱和聚酯树脂及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127718A (ja) * 1982-01-27 1983-07-29 Toshiba Corp 不飽和ポリエステル樹脂組成物および着色成形品
JPS6343948A (ja) * 1986-08-11 1988-02-25 Hitachi Chem Co Ltd 低収縮性不飽和ポリエステル樹脂の製造法
JPH07268196A (ja) * 1994-03-31 1995-10-17 Matsushita Electric Works Ltd 不飽和ポリエステル樹脂成形材料
JPH09241496A (ja) * 1996-03-12 1997-09-16 Nippon Shokubai Co Ltd 不飽和ポリエステル樹脂組成物およびシート状成形材料
JP2004231702A (ja) * 2003-01-28 2004-08-19 Matsushita Electric Works Ltd 不飽和ポリエステル樹脂組成物及びその成形品
JP2005220256A (ja) * 2004-02-06 2005-08-18 Kyocera Chemical Corp 2液性注形用エポキシ樹脂組成物および電気・電子部品装置
JP2009077576A (ja) * 2007-09-21 2009-04-09 Showa Highpolymer Co Ltd モータ構成部品封止用不飽和ポリエステル樹脂組成物及びそれを用いた封入モータ
JP5727628B2 (ja) * 2011-12-14 2015-06-03 昭和電工株式会社 不飽和ポリエステル樹脂組成物及び封入モータ
WO2019097824A1 (ja) * 2017-11-17 2019-05-23 昭和電工株式会社 バルクモールディングコンパウンド及びそれを用いてモーターを封止する方法

Also Published As

Publication number Publication date
CN114746456B (zh) 2024-07-12
CN114746456A (zh) 2022-07-12
JPWO2021124626A1 (ja) 2021-06-24

Similar Documents

Publication Publication Date Title
EP2787015B1 (en) Unsaturated polyester resin composition and encapsulated motor
US20120077921A1 (en) Unsaturated polyester resin composition and encapsulated motor
US11485801B2 (en) Crystalline radical polymerizable composition for electrical and electronic component, molded article of electrical and electronic component using the composition, and method of the molded article of electrical and electronic component
WO2013151151A1 (ja) ランプリフレクター用成形材料及び成形品
JP5057879B2 (ja) 成形材料及び成形品
JP6901257B2 (ja) 耐アーク性bmc
JP2019089871A (ja) 電気電子部品用結晶性ラジカル重合性組成物、当該組成物を使用した電気電子部品成形体、及び当該電気電子部品成形体の製造方法
WO2021124626A1 (ja) 熱硬化性樹脂組成物
JP7152271B2 (ja) 熱硬化性樹脂組成物、その硬化物からなる部材を備えたモーター、及びモーターの製造方法
JP2021031636A (ja) 不飽和ポリエステル樹脂組成物、及びその硬化物
WO2019116691A1 (ja) 不飽和ポリエステル樹脂組成物、その硬化物を含む成形体、及び該成形体を含むランプリフレクター
JP2020132737A (ja) 熱硬化性樹脂組成物、バルクモールディングコンパウンド、及び成形品
JP7420142B2 (ja) 熱硬化性樹脂組成物、及びその硬化物を含む電気電子部品
JP6782741B2 (ja) 車載用イグニッションコイル封止用結晶性ラジカル重合性組成物、当該組成物を使用した車載用イグニッションコイル封止体、及び当該封止体の製造方法
JP5636169B2 (ja) 熱硬化性樹脂組成物及び電気電子部品
JP6672757B2 (ja) 熱硬化性樹脂組成物、一体成形品及びその製造方法
WO2022137686A1 (ja) 不飽和ポリエステル樹脂組成物及び成形体
WO2021065217A1 (ja) 熱硬化性樹脂組成物、成形体及びランプリフレクター
JP2021095525A (ja) 熱硬化性樹脂組成物、その硬化物及び人工大理石
JP2001098062A (ja) 不飽和ポリエステルの製造方法、不飽和ポリエステル樹脂組成物及びその成形材料
JP5513143B2 (ja) 熱硬化性樹脂成形品
WO2022044507A1 (ja) 硬化性樹脂組成物、電気電子部品、及び電気電子部品の製造方法
JP2004161813A (ja) 圧入嵌合成形品用熱硬化性成形材料および成形品
JP2023119908A (ja) 硬化性樹脂組成物及び電気電子部品
WO2022030115A1 (ja) 硬化性樹脂組成物、電気電子部品、及び電気電子部品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902122

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021565332

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20902122

Country of ref document: EP

Kind code of ref document: A1