WO2021120839A1 - 一种用于二氧化碳加氢制甲醇的催化剂及其制备方法 - Google Patents

一种用于二氧化碳加氢制甲醇的催化剂及其制备方法 Download PDF

Info

Publication number
WO2021120839A1
WO2021120839A1 PCT/CN2020/122976 CN2020122976W WO2021120839A1 WO 2021120839 A1 WO2021120839 A1 WO 2021120839A1 CN 2020122976 W CN2020122976 W CN 2020122976W WO 2021120839 A1 WO2021120839 A1 WO 2021120839A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
hydrogenation
carbon dioxide
salt
methanol
Prior art date
Application number
PCT/CN2020/122976
Other languages
English (en)
French (fr)
Inventor
王晓龙
程阿超
王琪
郜时旺
肖天存
Original Assignee
华能国际电力股份有限公司
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华能国际电力股份有限公司, 中国华能集团清洁能源技术研究院有限公司 filed Critical 华能国际电力股份有限公司
Publication of WO2021120839A1 publication Critical patent/WO2021120839A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/165Polymer immobilised coordination complexes, e.g. organometallic complexes
    • B01J31/1658Polymer immobilised coordination complexes, e.g. organometallic complexes immobilised by covalent linkages, i.e. pendant complexes with optional linking groups, e.g. on Wang or Merrifield resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/154Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing copper, silver, gold, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • B01J2531/62Chromium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention belongs to the technical field of methanol production through synthesis gas hydrogenation catalysis, and in particular relates to a catalyst used for hydrogenation of carbon dioxide to produce methanol and a preparation method thereof.
  • CO 2 As a gas that can cause the greenhouse effect, CO 2 has caused great harm to the natural environment, but it is also a precious C1 resource with the characteristics of abundant yield, non-toxic, cheap, and non-flammable. In recent years, more and more chemical fixation CO2 cause for concern, you can take advantage of CO 2 that non-toxic, non-flammable materials to obtain high value-added products that meet the requirements of green chemistry, greater environmental and economic effects.
  • Methanol has broad application prospects as a basic organic chemical raw material and power fuel, and can be used to prepare products such as low-carbon olefins, formic acid, methyl formate and acetic acid.
  • Copper-based materials are a very special type of catalyst in CO 2 reduction reactions, whether in CO 2 electrical reduction, photoreduction or thermal reduction hydrogenation reactions.
  • the particularity of Cu is that Cu has weak adsorption of H and moderate adsorption of CO 2. In the thermal catalytic hydrogenation, the adsorption of H is weak, which can avoid the complete hydrogenation of C to produce methane. Therefore, Cu is an efficient catalyst for the hydrogenation of CO 2 to produce methanol.
  • Chinese patent CN105498780B discloses a Cu/ZnO nanocatalyst with a methanol selectivity of 46.6%. Studies have found that the synergy between Cu and ZnO is beneficial to improve the methanol synthesis activity of the catalyst, but the Cu active phase is unevenly dispersed and prone to aggregation, resulting in a low level of activity.
  • Cu/ZnO/Al 2 O 3 is a commercial catalyst for methanol production invented by ICI in the 1970s.
  • the traditional copper-based methanol synthesis catalyst (mainly composed of Cu0, Zn0 and Al 2 0 3 ) has insufficient catalytic performance for the reaction of CO 2 hydrogenation to methanol.
  • CN101983765A, CN102000578A, CN102302934A, CN101513615A, and CN104549299A respectively disclose a catalyst and a preparation method for the hydrogenation of CO 2 modified by an auxiliary agent to produce methanol
  • the main body of the catalyst is Cu-ZnO-Al 2 0 3
  • the auxiliary Agents include Zr0 2 , SiO 2 and MgO and so on.
  • the introduction of promoters can achieve the effect of improving the catalytic performance of the catalyst.
  • the introduction of promoters uses co-precipitation, for the gas-solid heterogeneous catalytic reaction such as CO 2 hydrogenation to methanol, it is embedded in the catalyst body phase.
  • the internal auxiliary components cannot be fully and effectively used.
  • Cu-ZnO-ZrO 2 (CZZ) catalytic system has received more and more attention.
  • [Nature communications, 2019,10(1):1166-1175] reported a Cu/ZnO/ZrO 2 catalyst, which was applied to CO 2 reaction, and the methanol selectivity could reach 80.2%.
  • ZrO 2 has weak hydrophilicity, which may inhibit the toxic effect of water on active sites during methanol synthesis.
  • Cu/ZnO/ZrO 2 catalysts are prone to surface remodeling and particle growth, thereby reducing catalytic activity and selectivity. Therefore, the construction of a stable catalyst is one of the current hotspots in the research of CO 2 hydrogenation to methanol.
  • Chinese patents CN106622252A and CN106076395B respectively disclose a kind of Cu-ZnO-ZrO 2 /GO and Cu-ZnO-ZrO 2 /NH 2 -SBA-15 catalysts, which are based on graphene oxide and SBA-15 with large specific surface area.
  • Molecular sieve as the carrier can improve the stability and dispersibility of the catalyst, thereby affecting the life of the catalyst and the selectivity of methanol.
  • the adsorption capacity of GO and SBA-15 to carbon dioxide is relatively small. Therefore, finding an excellent carrier with a large specific surface area, a high adsorption capacity for CO 2 and a pore structure or a frame structure is an urgent problem in the methanol synthesis catalyst research.
  • the purpose of the present invention is to provide a catalyst for the hydrogenation of carbon dioxide to produce methanol and a preparation method thereof, so as to improve the stability and dispersibility of the catalyst used for the hydrogenation of CO 2 to produce methanol, and affect the life of the catalyst and the selectivity of methanol.
  • a method for preparing a catalyst for the hydrogenation of carbon dioxide to produce methanol includes the following steps:
  • S1 weigh chromium salt, 2-aminoterephthalic acid and NaOH, wherein the molar ratio of chromium salt, 2-aminoterephthalic acid and NaOH is (1-4): (1-4): (2-8 );
  • the chromium salt is one or a mixture of chromium nitrate, chromium acetate and chromium sulfate.
  • the solvent for removing unreacted 2-aminoterephthalic acid from the surface of the precipitate and the pores in S3 is one or more mixtures of water, absolute ethanol and N,N-dimethylformamide.
  • the copper salt is one or a mixture of copper nitrate, copper acetate and copper sulfate.
  • the reducing agent is one or a mixture of sodium borohydride, lithium aluminum hydride and sodium cyanoborohydride.
  • the zinc salt is one or a mixture of zinc nitrate, zinc acetate and zinc sulfate.
  • the zirconium salt is one or a mixture of zirconium nitrate, zirconium acetate and zirconium sulfate.
  • the solvent for dissolving the copper salt, zinc salt, and zirconium salt is one or a mixture of water, absolute ethanol and N,N-dimethylformamide.
  • reaction in S2 is 8-12h, and the reaction is complete.
  • the preparation method is a catalyst for hydrogenation of carbon dioxide to methanol.
  • the present invention provides a catalyst for the hydrogenation of carbon dioxide to produce methanol and a preparation method thereof.
  • the framework-modified metal organic framework material MIL-101(Cr)-NH 2 is used as a carrier, and the pore structure of MIL-101(Cr) is selected.
  • MIL-101(Cr) has a high specific surface area and has a high adsorption capacity for CO 2 , which can effectively improve the catalytic selectivity of CO 2 ;
  • MIL-101(Cr)- NH 2 -NH 2 group in nitric acid to form a complex of copper with a carrier to enhance the interaction between the two, while preventing excessive copper loss of the active ingredient, may be Cu particles in the restricting portion in which the opening to inhibit the long Larger; and the use of chemical reduction method can obtain smaller and better dispersible copper particles, thereby improving the catalytic activity of the reaction of CO 2 hydrogenation to methanol;
  • MIL-101(Cr)-NH 2 has strong thermal stability , To avoid the high reaction temperature in the CO 2 conversion process leading to the deactivation of the catalyst by carbon deposition.
  • the present invention provides a method for preparing a catalyst for the hydrogenation of carbon dioxide to produce methanol, which comprises the following steps:
  • S1 weigh chromium salt, 2-aminoterephthalic acid and NaOH, where the molar ratio of chromium salt, 2-aminoterephthalic acid and NaOH is (1-4): (1-4): (2) -8);
  • S6 Add the solid sample obtained in S4 to the mixed solution of S5, stir evenly at 20-60°C, wash and dry to obtain a solid sample.
  • the solid sample is roasted and ground to obtain a carbon dioxide to methanol catalyst.
  • the chromium salt is one or a mixture of chromium nitrate, chromium acetate and chromium sulfate;
  • the solvent for removing unreacted 2-aminoterephthalic acid from the surface of the precipitate and the pores in S3 is one or more mixtures of water, absolute ethanol and N,N-dimethylformamide;
  • the copper salt is one or a mixture of copper nitrate, copper acetate and copper sulfate;
  • the reducing agent is one or a mixture of sodium borohydride, lithium aluminum hydride and sodium cyanoborohydride;
  • the zinc salt is one or a mixture of zinc nitrate, zinc acetate and zinc sulfate;
  • the zirconium salt is one or a mixture of zirconium nitrate, zirconium acetate and zirconium sulfate;
  • the solvent for dissolving copper salt, zinc salt, and zirconium salt is one or a mixture of water, absolute ethanol and N,N-dimethylformamide.
  • a method for preparing a catalyst for hydrogenation of carbon dioxide to produce methanol includes the following steps:
  • a method for preparing a catalyst for hydrogenation of carbon dioxide to produce methanol includes the following steps:
  • the preparation method of the metal-organic framework material MIL-101(Cr)-NH 2 in this embodiment includes the following steps:
  • a method for preparing a catalyst for hydrogenation of carbon dioxide to produce methanol includes the following steps:
  • a method for preparing a catalyst for hydrogenation of carbon dioxide to produce methanol includes the following steps:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供一种用于二氧化碳加氢制甲醇的催化剂及其制备方法,采用骨架改性的金属有机骨架材料MIL-101(Cr)-NH 2作为载体,利用MIL-101(Cr)的孔道结构的择型选择性,提高甲醇的选择性;同时MIL-101(Cr)具有高比表面积,对CO 2具有很高的吸附量,有效提高了CO2的催化选择性;通过MIL-101(Cr)-NH2中的-NH2基团使硝酸铜与载体形成络合物以增强两者的相互作用,防止活性组分铜过多流失的同时,可将部分Cu颗粒限制其孔道内以抑制其长大;并且采用化学还原法可得到更小且分散性好的铜颗粒,从而提高了CO 2加氢制甲醇反应的催化活性;同时,MIL-101(Cr)-NH 2具有较强的热稳定性,避免了CO 2转化过程中较高的反应温度导致催化剂积碳失活。

Description

一种用于二氧化碳加氢制甲醇的催化剂及其制备方法 技术领域
本发明属于合成气加氢催化制甲醇的技术领域,特别涉及一种用于二氧化碳加氢制甲醇的催化剂及其制备方法。
背景技术
CO 2作为一种可引起温室效应的气体,对自然环境造成了很大的危害,但它又是珍贵的C1资源,具有产量丰富、无毒、廉价、不易燃等特点。近年来,化学固定CO2越来越引起人们的关注,可以利用CO 2这种无毒、不易燃的原料得到高附加值的产品,符合绿色化学的要求,有较大的环境效应和经济效应。
CO 2利用新工艺研究有合成甲醇、甲酸、生产合成气、乙醇、燃油等。甲醇作为基本有机化工原料和动力燃料具有广阔的应用前景,可用于制备低碳烯烃、甲酸、甲酸甲酯和醋酸等产品。
铜基材料是CO 2还原反应中非常特殊的一类催化剂,无论是在CO 2电还原、光还原还是热还原加氢反应中。为Cu的特殊性在于Cu对H的吸附弱,而对CO 2的吸附适中。在热催化加氢中,对H的吸附弱,可以避免C完全加氢生成甲烷,因此,Cu是CO 2加氢制甲醇的高效催化剂。
1、中国专利CN105498780B公开了一种Cu/ZnO纳米催化剂,其甲醇选择性为46.6%。研究发现,Cu和ZnO之间的协同作用有利于提高催化剂的甲醇合成活性,但是其中的Cu活性相分散不均匀、易发生聚集,导致活性仍处于较低水平。
2、Cu/ZnO/Al 2O 3是20世纪70年代ICI公司发明的一种用于制甲醇的商用催化剂。传统的铜系甲醇合成催化剂(主要组成包括Cu0、Zn0和A1 20 3)对C0 2加氢合成甲醇反应的催化性能不够高。中国专利公开第CN101983765A、CN102000578A、CN102302934A、CN101513615A和 CN104549299A号中分别公开了一种助剂改性的C0 2加氢制甲醇的催化剂及制备方法,催化剂主体为Cu-ZnO-Al 20 3,助剂包括Zr0 2、Si0 2和MgO等。引入助剂后均能够达到提高催化剂催化性能的效果,但由于助剂的引入都采用共沉淀方式,对于C0 2加氢合成甲醇这样的气固多相催化反应而言,包埋在催化剂体相内部的助剂成分并不能得到充分、有效地利用。
3、Cu-ZnO-ZrO 2(CZZ)催化体系受到越来越多的关注。昆明理工大学王华等人[Nature communications,2019,10(1):1166-1175]报道了一种Cu/ZnO/ZrO 2催化剂,将其应用于C0 2反应,甲醇选择性可达80.2%。与Al 2O 3相比,ZrO 2具有弱亲水性,可能抑制水在甲醇合成过程中对活性位点的毒害作用。但是在高温高压的反应条件下,Cu/ZnO/ZrO 2催化剂易发生表面重构和颗粒生长现象,从而降低催化活性和选择性。因此,构筑稳定的催化剂是目前CO 2加氢制甲醇研究的热点之一。中国专利CN106622252A和CN106076395B分别公开了一种Cu-ZnO-ZrO 2/GO和Cu-ZnO-ZrO 2/NH 2-SBA-15催化剂,该类催化剂以具有大比表面积的氧化石墨烯和SBA-15分子筛为载体,可提高催化剂的稳定性和分散性,从而影响催化剂的寿命和甲醇选择性。然而GO和SBA-15对二氧化碳的吸附量较小。因此,寻找一种大比表面积、对CO 2具有高吸附量、具有孔道结构或框架结构的优良载体,是甲醇合成催化剂研究中急需解决的问题。
发明内容
本发明的目的在于提供一种用于二氧化碳加氢制甲醇的催化剂及其制备方法,以提高CO 2加氢制甲醇所使用的催化剂的稳定性和分散性,影响催化剂的寿命和甲醇选择性。
为了达到上述目的,本发明采用的技术方案是:
一种用于二氧化碳加氢制甲醇的催化剂的制备方法,包括以下步骤:
S1,称取铬盐、2-氨基对苯二甲酸和NaOH,其中铬盐、2-氨基对苯二甲酸和NaOH的摩尔比为(1-4):(1-4):(2-8);
S2,将S1称取的物质加入到去离子水中,搅拌均匀获得反应液;然后将反应液转移到反 应釜中,在130-170℃下反应;反应结束后,冷却、洗涤得到沉淀物;
S3,将S2得到的沉淀物用溶剂洗涤,除去沉淀物表面和孔道中未反应的2-氨基对苯二甲酸,得到纯净的MIL-101(Cr)-NH 2
S4,将MIL-101(Cr)-NH 2与铜盐溶液混合,搅拌均匀,然后加入还原剂,洗涤干燥得到固体样品,其中,液固比为50-80mL/g,铜盐溶液浓度为0.02-0.15mol/L,还原剂浓度为0.3-1.0mol/L;
S5,称取锌盐、锆盐溶解获得混合溶液,其中,锌盐、锆盐按照与S4中铜盐的摩尔比Cu:Zn:Zr为(1-8):(1-6):(1-6);
S6,将S4得到的固体样品加入到S5的混合溶液中,搅拌均匀,产物洗涤、干燥、焙烧、研磨,得到用于二氧化碳制甲醇的催化剂。
进一步的,所述铬盐为硝酸铬、醋酸铬和硫酸铬中的一种或者多种混合物。
进一步的,S3中除去沉淀物表面和孔道中未反应的2-氨基对苯二甲酸的溶剂为水、无水乙醇和N,N-二甲基甲酰胺中的一种或者多种混合物。
进一步的,所述铜盐为硝酸铜、醋酸铜和硫酸铜中一种或者多种混合物。
进一步的,所述还原剂为硼氢化钠、氢化锂铝和氰基硼氢化钠中一种或者多种混合物。
进一步的,所述锌盐为硝酸锌、醋酸锌和硫酸锌中一种或者多种混合物。
进一步的,所述锆盐为硝酸锆、醋酸锆和硫酸锆中一种或者多种混合物。
进一步的,溶解铜盐、锌盐、锆盐的溶剂为水、无水乙醇和N,N-二甲基甲酰胺中一种或者多种混合物。
进一步的,S2中反应8-12h,反应结束。
进一步的,S6中所述焙烧为250℃,焙烧6h。
制备方法所制备的用于二氧化碳加氢制甲醇的催化剂。
与现有技术相比,本发明的有益效果是:
本发明提供一种二氧化碳加氢制甲醇的催化剂及其制备方法,采用骨架改性的金属有机骨架材料MIL-101(Cr)-NH 2作为载体,利用MIL-101(Cr)的孔道结构的择型选择性,提高甲醇的选择性;同时MIL-101(Cr)具有高比表面积,对CO 2具有很高的吸附量,可以有效提高CO 2的催化选择性;通过MIL-101(Cr)-NH 2中的-NH 2基团使硝酸铜与载体形成络合物以增强两者的相互作用,防止活性组分铜过多流失的同时,可将部分Cu颗粒限制其孔道内以抑制其长大;并且采用化学还原法可得到更小且分散性好的铜颗粒,从而提高CO 2加氢制甲醇反应的催化活性;同时,MIL-101(Cr)-NH 2具有较强的热稳定性,避免了CO 2转化过程中较高的反应温度导致催化剂积碳失活。
具体实施方式
下面将参考结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
以下详细说明均是示例性的说明,旨在对本发明提供进一步的详细说明。除非另有指明,本发明所采用的所有技术术语与本申请所属领域的一般技术人员的通常理解的含义相同。本发明所使用的术语仅是为了描述具体实施方式,而并非意图限制根据本发明的示例性实施方式。
本发明提供一种二氧化碳加氢制甲醇的催化剂的制备方法,包括以下步骤:
S1,称取铬盐、2-氨基对苯二甲酸和NaOH,其中铬盐、2-氨基对苯二甲酸和NaOH所占的摩尔比为(1-4):(1-4):(2-8);
S2,将S1称取的固体样品加入到去离子水中,搅拌均匀获得反应液;然后将反应液转移到特氟龙内衬不锈钢高压釜中,在130-170℃下反应8-12h;反应结束后,冷却、洗涤得到沉淀物;
S3,将S2得到的沉淀物用溶剂洗涤,除去粗产物(沉淀物)表面未反应的2-氨基对苯二 甲酸;将处理后的产物分散到溶剂中,于60-120℃烘箱中反应2-10h,即可得到纯净的MIL-101(Cr)-NH 2
S4,将MIL-101(Cr)-NH 2与铜盐溶液混合,搅拌均匀,然后在超声搅拌条件下加入还原剂,洗涤干燥得到固体样品,其中,液固比为50-80mL/g,铜盐溶液浓度为0.02-0.15mol/L,还原剂浓度为0.3-1.0mol/L;
S5,称取锌盐、锆盐溶解获得混合溶液,其中,锌盐、锆盐按照与S4中铜盐的摩尔比Cu:Zn:Zr为(1-8):(1-6):(1-6);
S6,将S4得到的固体样品加入到S5的混合溶液中,20-60℃下搅拌均匀,洗涤、干燥得到固体样品,固体样品经焙烧、研磨,得到二氧化碳制甲醇的催化剂。
优选地,所述铬盐为硝酸铬、醋酸铬和硫酸铬中的一种或者多种混合物;
优选地,S3中除去沉淀物表面和孔道中未反应的2-氨基对苯二甲酸的溶剂为水、无水乙醇和N,N-二甲基甲酰胺中的一种或者多种混合物;
优选地,所述铜盐为硝酸铜、醋酸铜和硫酸铜中一种或者多种混合物;
优选地,所述还原剂为硼氢化钠、氢化锂铝和氰基硼氢化钠中一种或者多种混合物;
优选地,所述锌盐为硝酸锌、醋酸锌和硫酸锌中一种或者多种混合物;
优选地,所述锆盐为硝酸锆、醋酸锆和硫酸锆中一种或者多种混合物;
优选地,所述溶解铜盐、锌盐、锆盐的溶剂为水、无水乙醇和N,N-二甲基甲酰胺中一种或者多种混合物。
实施例1
本实施例一种用于二氧化碳加氢制甲醇的催化剂的制备方法,包括以下步骤:
1、将Cr(NO 3) 3·9H 2O(800mg,2mmol)、2-氨基对苯二甲酸(360mg,2mmol)和NaOH(200 mg,4mmol)分散在去离子水(15mL)中,搅拌5分钟,然后将反应液转移到50mL特氟龙内衬不锈钢高压釜中,在150℃下反应10h。反应结束后,取出反应釜自然冷却到室温。将悬浊液用双层纱布过滤1次、单层滤纸过滤2次,用离心法收集绿色沉淀物。
2、将以上绿色沉淀物用DMF洗涤,除去大部分未反应的2-氨基对苯二甲酸;将处理后的产物分散到25mL无水乙醇中,于90℃烘箱中反应6h,以去除产物孔道中未反应的2-氨基对苯二甲酸,即可得到纯净的MIL-101(Cr)-NH 2
3、取2.0g骨架改性的金属有机骨架材料MIL-101(Cr)-NH 2;绿色粉末按液固比为63.5:1mL/g加入到浓度为0.05mol/L的Cu(NO 3) 2无水乙醇溶液中,超声10min后,在40℃条件下磁力搅拌3h;然后置于冰水中加入50ml浓度为0.5mol/L的NaBH 4溶液,继续搅拌30min,离心、用无水乙醇洗涤3次,60℃干燥得到固体样品。
4、将硝酸锌和硝酸锆按照与Cu(NO 3) 2中Cu2+:Zn2+:Zr2+摩尔比为4:3:3加入到无水乙醇中得到混合溶液,混合溶液中Zn2+和Zr2+的浓度都是0.03mol/L;将步骤3得到的固体样品加入到硝酸锌和硝酸锆的混合溶液中,在40℃下磁力搅拌3h,离心、无水乙醇洗涤3次,60℃干燥得到固体样品,固体样品在250℃下焙烧6h,得到用于二氧化碳制甲醇的Cu-ZnO-ZrO 2/MIL-101(Cr)-NH 2催化剂。
实施例2
本实施例一种用于二氧化碳加氢制甲醇的催化剂的制备方法,包括以下步骤:
1、将Cr(NO 3) 3·9H 2O(800mg,2mmol)、2-氨基对苯二甲酸(720mg,4mmol)和NaOH(200mg,4mmol)分散在去离子水(15mL)中,搅拌5分钟,然后将反应液转移到50mL特氟龙内衬不锈钢高压釜中,在130℃下反应12h。反应结束后,取出反应釜自然冷却到室温。将悬浊液用双层纱布过滤1次、单层滤纸过滤2次,用离心法收集绿色沉淀物。
2、将以上绿色沉淀物用DMF洗涤,除去大部分未反应的2-氨基对苯二甲酸;将处理后的 产物分散到25mLN,N-二甲基甲酰胺中,于90℃烘箱中反应6h,以去除产物孔道中未反应的2-氨基对苯二甲酸,即可得到纯净的MIL-101(Cr)-NH 2
3、取2.0g骨架改性的金属有机骨架材料MIL-101(Cr)-NH 2绿色粉末,按液固比为63.5:1mL/g加入到浓度为0.05mol/L的硫酸铜无水乙醇溶液中,超声10min后,在40℃条件下磁力搅拌3h;经离心、无水乙醇洗涤3次,60℃干燥得到固体样品。
4、将醋酸锌和硫酸锆按照与Cu(NO 3) 2中Cu2+:Zn2+:Zr2+摩尔比为4:3:1加入到无水乙醇中得到混合溶液,混合溶液中Zn2+和Zr2+的浓度都是0.03mol/L;将3得到的固体样品加入到硝酸锌和硝酸锆的混合溶液中,在40℃下磁力搅拌3h,离心、用无水乙醇洗涤3次,60℃干燥得到固体样品,固体样品在250℃下焙烧6h,得到用于二氧化碳制甲醇的Cu-ZnO-ZrO 2/MIL-101(Cr)-NH 2催化剂。
实施例3
本实施例金属有机骨架材料MIL-101(Cr)-NH 2的制备方法,包括以下步骤:
将Cr(NO 3) 3·9H 2O(800mg,2mmol)、2-氨基对苯二甲酸(360mg,2mmol)和NaOH(200mg,4mmol)分散在去离子水(15mL)中,搅拌5分钟,然后将反应液转移到50mL特氟龙内衬不锈钢高压釜中,在150℃下反应10h。反应结束后,取出反应釜自然冷却到室温。将悬浊液用双层纱布过滤1次、单层滤纸过滤2次,用离心法收集绿色沉淀物。
将以上绿色沉淀物用DMF洗涤,除去大部分未反应的2-氨基对苯二甲酸;将处理后的产物分散到25mL无水乙醇中,于90℃烘箱中反应6h,以去除产物孔道中未反应的2-氨基对苯二甲酸,即可得到金属有机骨架材料MIL-101(Cr)-NH 2催化剂。
实施例4
本实施例一种用于二氧化碳加氢制甲醇的催化剂的制备方法,包括以下步骤:
1、将Cr(NO 3) 3·9H 2O(1600mg,4mmol)、2-氨基对苯二甲酸(360mg,2mmol)和NaOH(100 mg,2mmol)分散在去离子水(15mL)中,搅拌5分钟,然后将反应液转移到50mL特氟龙内衬不锈钢高压釜中,在170℃下反应8h。反应结束后,取出反应釜自然冷却到室温。将悬浊液用双层纱布过滤1次、单层滤纸过滤2次,用离心法收集绿色沉淀物。
2、将以上绿色沉淀物用DMF洗涤,除去大部分未反应的2-氨基对苯二甲酸;将处理后的产物分散到25mL水中,于90℃烘箱中反应6h,以去除产物孔道中未反应的2-氨基对苯二甲酸,即可得到纯净的MIL-101(Cr)-NH 2
3、取2.0g骨架改性的金属有机骨架材料MIL-101(Cr)-NH 2绿色粉末按液固比为50:1mL/g加入到浓度为0.02mol/L的Cu(NO 3) 2无水乙醇溶液中,超声10min后,在40℃条件下磁力搅拌3h;然后置于冰水中加入50ml浓度为1.0mol/L的氢化锂铝溶液,继续搅拌30min,离心、用无水乙醇洗涤3次,60℃干燥得到固体样品。
4、将硫酸锌和醋酸锆按照与Cu(NO 3) 2中Cu2+:Zn2+:Zr2+摩尔比为1:6:6加入到无水乙醇中得到混合溶液,混合溶液中Zn2+和Zr2+的浓度都是0.03mol/L;将3得到的固体样品加入到硝酸锌和硝酸锆的混合溶液中,在40℃下磁力搅拌3h,离心、无水乙醇洗涤3次,60℃干燥得到固体样品,固体样品在250℃下焙烧6h,得到用于二氧化碳制甲醇的Cu-ZnO-ZrO 2/MIL-101(Cr)-NH 2催化剂。
实施例5
本实施例一种用于二氧化碳加氢制甲醇的催化剂的制备方法,包括以下步骤:
1、将Cr(NO 3) 3·9H 2O(400mg,1mmol)、2-氨基对苯二甲酸(180mg,1mmol)和NaOH(400mg,8mmol)分散在去离子水(15mL)中,搅拌5分钟,然后将反应液转移到50mL特氟龙内衬不锈钢高压釜中,在150℃下反应10h。反应结束后,取出反应釜自然冷却到室温。将悬浊液用双层纱布过滤1次、单层滤纸过滤2次,用离心法收集绿色沉淀物。
2、将以上绿色沉淀物用DMF洗涤,除去大部分未反应的2-氨基对苯二甲酸;将处理后的 产物分散到25mL无水乙醇中,于90℃烘箱中反应6h,以去除产物孔道中未反应的2-氨基对苯二甲酸,即可得到纯净的MIL-101(Cr)-NH 2
3、取2.0g骨架改性的金属有机骨架材料MIL-101(Cr)-NH 2绿色粉末,按液固比为80:1mL/g加入到浓度为0.15mol/L的Cu(NO 3) 2无水乙醇溶液中,超声10min后,在40℃条件下磁力搅拌3h;然后置于冰水中加入50ml浓度为0.3mol/L的NaBH4溶液,继续搅拌30min,离心、用无水乙醇洗涤3次,60℃干燥得到固体样品。
4、将硝酸锌和硝酸锆按照与Cu(NO 3) 2中Cu2+:Zn2+:Zr2+摩尔比为8:1:6加入到无水乙醇中得到混合溶液,混合溶液中Zn2+和Zr2+的浓度都是0.03mol/L;将3得到的固体样品加入到硝酸锌和硝酸锆的混合溶液中,在40℃下磁力搅拌3h,离心、无水乙醇洗涤3次,60℃干燥得到固体样品,固体样品在250℃下焙烧6h,得到用于二氧化碳制甲醇的Cu-ZnO-ZrO 2/MIL-101(Cr)-NH 2催化剂。
活性评价结果
对制备所得的二氧化碳合成低碳混合醇的催化剂的活性进行试验:
取2.0g上述Cu-ZnO-ZrO 2/MIL-101(Cr)-NH 2复合催化剂置于CO 2加氢制甲醇的微型固定床反应器中。首先于10%H 2/Ar气氛下230-250℃恒温还原4-12h,升温速率1℃/min;然后降温到200℃切换成评价气体H 2:CO 2=(2-4):1,评价温度为200-250℃、评价压力为3-8;最后通过Agilent Technologies 7980B气相色谱(GC)对尾气及液相产物进行检测分析,计算CO 2转化率和CH 3OH产物的选择性。结果见表1。
表1不同实例中催化剂的活性评价数据
实施例 CO 2转化率(%) CH 3OH选择性(%) CH 3OH产率(%)
1 22.4 38.2 8.56
2 17.5 20.2 3.54
3 - - -
4 19.0 34.0 6.45
5 20.7 27.6 5.71
由技术常识可知,本发明可以通过其它的不脱离其精神实质或必要特征的实施方案来实现。因此,上述公开的实施方案,就各方面而言,都只是举例说明,并不是仅有的。所有在本发明范围内或在等同于本发明的范围内的改变均被本发明包含。

Claims (10)

  1. 一种用于二氧化碳加氢制甲醇的催化剂的制备方法,其特征在于,包括以下步骤:
    S1,称取铬盐、2-氨基对苯二甲酸和NaOH,其中铬盐、2-氨基对苯二甲酸和NaOH的摩尔比为(1-4):(1-4):(2-8);
    S2,将S1称取的物质加入到去离子水中,搅拌均匀获得反应液;然后将反应液转移到反应釜中,在130-170℃下反应;反应结束后,冷却、洗涤得到沉淀物;
    S3,将S2得到的沉淀物用溶剂洗涤,除去沉淀物表面和孔道中未反应的2-氨基对苯二甲酸,得到纯净的MIL-101(Cr)-NH 2
    S4,将MIL-101(Cr)-NH 2与铜盐溶液混合,搅拌均匀,然后加入还原剂,洗涤干燥得到固体样品,其中,液固比为50-80mL/g,铜盐溶液浓度为0.02-0.15mol/L,还原剂浓度为0.3-1.0mol/L;
    S5,称取锌盐、锆盐溶解获得混合溶液,其中,锌盐、锆盐按照与S4中铜盐的摩尔比Cu:Zn:Zr为(1-8):(1-6):(1-6);
    S6,将S4得到的固体样品加入到S5的混合溶液中,搅拌均匀,产物洗涤、干燥、焙烧、研磨,得到用于二氧化碳制甲醇的催化剂。
  2. 根据权利要求1所述的一种用于二氧化碳加氢制甲醇的催化剂的制备方法,其特征在于,所述铬盐为硝酸铬、醋酸铬和硫酸铬中的一种或者多种混合物。
  3. 根据权利要求1所述的一种用于二氧化碳加氢制甲醇的催化剂的制备方法,其特征在于,S3中除去沉淀物表面和孔道中未反应的2-氨基对苯二甲酸的溶剂为水、无水乙醇和N,N-二甲基甲酰胺中的一种或者多种混合物。
  4. 根据权利要求1所述的一种用于二氧化碳加氢制甲醇的催化剂的制备方法,其特征在于,所述铜盐为硝酸铜、醋酸铜和硫酸铜中一种或者多种混合物。
  5. 根据权利要求1所述的一种用于二氧化碳加氢制甲醇的催化剂的制备方法,其特征在 于,所述还原剂为硼氢化钠、氢化锂铝和氰基硼氢化钠中一种或者多种混合物。
  6. 根据权利要求1所述的一种用于二氧化碳加氢制甲醇的催化剂的制备方法,其特征在于,所述锌盐为硝酸锌、醋酸锌和硫酸锌中一种或者多种混合物。
  7. 根据权利要求1所述的一种用于二氧化碳加氢制甲醇的催化剂的制备方法,其特征在于,所述锆盐为硝酸锆、醋酸锆和硫酸锆中一种或者多种混合物。
  8. 根据权利要求1所述的一种用于二氧化碳加氢制甲醇的催化剂的制备方法,其特征在于,溶解铜盐、锌盐、锆盐的溶剂为水、无水乙醇和N,N-二甲基甲酰胺中一种或者多种混合物。
  9. 根据权利要求1所述的一种用于二氧化碳加氢制甲醇的催化剂的制备方法,其特征在于,S2中反应8-12h,反应结束。
  10. 权利要求1至9中任一项所述的制备方法所制备的用于二氧化碳加氢制甲醇的催化剂。
PCT/CN2020/122976 2019-12-18 2020-10-22 一种用于二氧化碳加氢制甲醇的催化剂及其制备方法 WO2021120839A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911311440.8 2019-12-18
CN201911311440.8A CN110975938A (zh) 2019-12-18 2019-12-18 一种用于二氧化碳加氢制甲醇的催化剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2021120839A1 true WO2021120839A1 (zh) 2021-06-24

Family

ID=70095556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122976 WO2021120839A1 (zh) 2019-12-18 2020-10-22 一种用于二氧化碳加氢制甲醇的催化剂及其制备方法

Country Status (2)

Country Link
CN (1) CN110975938A (zh)
WO (1) WO2021120839A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110975938A (zh) * 2019-12-18 2020-04-10 华能国际电力股份有限公司 一种用于二氧化碳加氢制甲醇的催化剂及其制备方法
CN112979984B (zh) * 2021-03-03 2023-05-30 辽宁大学 一种离子型MOFs材料及其制备方法和在制备环状碳酸酯中的应用
CN112973758A (zh) * 2021-03-09 2021-06-18 中国华能集团清洁能源技术研究院有限公司 一种基于ZIFs的高分散Co基双金属催化剂及其制备方法
CN112981456A (zh) * 2021-03-17 2021-06-18 扬州大学 一种高效制备丙酮的Cu@MIL-101-Cr电催化剂的制备方法
CN114315496B (zh) * 2021-05-27 2024-04-26 上海科技大学 一种烷烃类化合物的制备方法、催化剂及其应用
CN116173947A (zh) * 2021-11-29 2023-05-30 中国华能集团清洁能源技术研究院有限公司 一种加氢催化剂及其制备方法和应用
CN114807249B (zh) * 2022-03-25 2023-12-15 北京化工大学 催化co2合成2c或4c化合物的多酶级联途径
CN114904584B (zh) * 2022-06-21 2024-04-12 万华化学集团股份有限公司 一种丁二酸二烷基酯加氢生产1,4-丁二醇的催化剂及其制备方法和应用
CN115069308A (zh) * 2022-07-26 2022-09-20 华东理工大学 一种用于二氧化碳加氢的催化剂及其制备方法
CN115518690B (zh) * 2022-07-28 2023-11-10 广东工业大学 一种Cu7S4-MOF复合材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090221418A1 (en) * 2005-08-10 2009-09-03 Sud-Chemie Ag Method for production of highly-active metal/metal oxide catalysts
CN105233878A (zh) * 2015-11-11 2016-01-13 北京林业大学 一种金属负载型mil-101生物油加氢催化剂的合成方法
CN106076395A (zh) * 2016-06-06 2016-11-09 昆明理工大学 一种Cu‑ZnO‑ZrO2‑NH2/SBA‑15复合催化剂的制备方法及其应用
CN108704670A (zh) * 2018-06-07 2018-10-26 中国科学技术大学先进技术研究院 一种Pt1@MIL纳米催化剂及其制备方法和应用
CN110433864A (zh) * 2019-07-11 2019-11-12 厦门大学 一种mof负载双金属型催化剂的制备及其应用
CN110975938A (zh) * 2019-12-18 2020-04-10 华能国际电力股份有限公司 一种用于二氧化碳加氢制甲醇的催化剂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090221418A1 (en) * 2005-08-10 2009-09-03 Sud-Chemie Ag Method for production of highly-active metal/metal oxide catalysts
CN105233878A (zh) * 2015-11-11 2016-01-13 北京林业大学 一种金属负载型mil-101生物油加氢催化剂的合成方法
CN106076395A (zh) * 2016-06-06 2016-11-09 昆明理工大学 一种Cu‑ZnO‑ZrO2‑NH2/SBA‑15复合催化剂的制备方法及其应用
CN108704670A (zh) * 2018-06-07 2018-10-26 中国科学技术大学先进技术研究院 一种Pt1@MIL纳米催化剂及其制备方法和应用
CN110433864A (zh) * 2019-07-11 2019-11-12 厦门大学 一种mof负载双金属型催化剂的制备及其应用
CN110975938A (zh) * 2019-12-18 2020-04-10 华能国际电力股份有限公司 一种用于二氧化碳加氢制甲醇的催化剂及其制备方法

Also Published As

Publication number Publication date
CN110975938A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
WO2021120839A1 (zh) 一种用于二氧化碳加氢制甲醇的催化剂及其制备方法
CN107497437B (zh) 一种用于co2加氢制取低碳烯烃的铁基催化剂及其应用
WO2012040977A1 (zh) 一种二氧化碳催化加氢制甲醇的催化剂及制备方法
WO2019137020A1 (zh) 一种用于甲醛净化的过渡金属和氮共掺杂碳复合材料及其制备方法
CN112473730B (zh) 一种铜基cha型硅铝分子筛催化剂及其制备方法
CN111085241B (zh) 一种硝基苯加氢制备苯胺的方法及其催化剂的制备方法
WO2012151776A1 (zh) 一种改性的二氧化碳催化加氢制甲醇的催化剂及其制备方法
CN114797912A (zh) 一种脱氢催化剂及其制备方法
WO2022166084A1 (zh) 一种溶剂配位金属催化剂的制备方法及应用
CN114700084A (zh) 用于有机储氢液体加氢与脱氢的催化剂及其制备方法和有机储氢液体加氢与脱氢的方法
WO2012065326A1 (zh) 一种助剂改性的二氧化碳催化加氢制甲醇的催化剂及制备方法
CN107899583A (zh) 一种用于甲醇合成气制备乙醇的催化剂及其制备方法
WO2019196703A1 (zh) 一种合成气合成航空煤油用催化剂的制备方法以及由此得到的催化剂和其应用
CN110201711B (zh) 一种二氧化碳加氢合成低碳混合醇的催化剂及其制备方法
CN110368949B (zh) 一种CO加氢制低碳醇GaFe基催化剂及制法和应用
WO2020253712A1 (zh) 一种合成气直接转化制低碳烯烃的催化剂及其制备方法
CN110129084B (zh) 一种生物质供氢-催化液化耦合方法和一种负载型生物质液化催化剂
CN112191253A (zh) 一种负载型纳米金属催化剂、其制备方法及应用
CN113856688B (zh) 一种用于CO2加氢制甲醇的Cu基催化剂的制备方法
CN105170156A (zh) 类气凝胶结构的镍基甲烷干重整催化剂的制备方法
CN102441388B (zh) 一种高稳定性钴基费托合成催化剂的制备方法
CN112237931B (zh) 一种体相磷化镍催化剂、制备方法和在苯酚加氢脱氧中的应用
CN108043412A (zh) 一种用于二氧化碳加氢合成甲醇催化剂的制备方法
WO2018150284A1 (zh) 金属氧化物负载的贵金属催化剂、制备方法及用途
CN108503518A (zh) 一种复合海泡石基催化剂的制备及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20902785

Country of ref document: EP

Kind code of ref document: A1