WO2019196703A1 - 一种合成气合成航空煤油用催化剂的制备方法以及由此得到的催化剂和其应用 - Google Patents

一种合成气合成航空煤油用催化剂的制备方法以及由此得到的催化剂和其应用 Download PDF

Info

Publication number
WO2019196703A1
WO2019196703A1 PCT/CN2019/080955 CN2019080955W WO2019196703A1 WO 2019196703 A1 WO2019196703 A1 WO 2019196703A1 CN 2019080955 W CN2019080955 W CN 2019080955W WO 2019196703 A1 WO2019196703 A1 WO 2019196703A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
active component
catalytic
weight
water
Prior art date
Application number
PCT/CN2019/080955
Other languages
English (en)
French (fr)
Inventor
柴剑宇
椿范立
高潮
李�杰
彭小波
Original Assignee
株式会社模范
高化学技术株式会社
柴剑宇
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社模范, 高化学技术株式会社, 柴剑宇 filed Critical 株式会社模范
Priority to JP2020555431A priority Critical patent/JP7320532B2/ja
Publication of WO2019196703A1 publication Critical patent/WO2019196703A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/166Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/334Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing molecular sieve catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions

Definitions

  • the present invention relates to a process for the preparation of a catalyst for syngas synthesis of aviation kerosene, and to a catalyst obtained by the process and to the use of the catalyst.
  • Aviation kerosene also known as jet fuel, is mainly used as a fuel for jet spacecraft engines. It is a liquid fuel that is currently in high demand in the world, and is generally composed of mixed hydrocarbons with a carbon number of 8-16. Due to the increasing demand for aviation kerosene, its price remains high, and the synthesis of aviation kerosene has received wide attention from countries around the world. It is estimated that by 2020, the demand for aviation kerosene in China will exceed 40 million tons. At present, aviation kerosene production mainly has the following methods: 1) distillation from crude oil. This method relies heavily on increasingly depleted petroleum resources and requires high material requirements.
  • biomass is pyrolyzed to produce biomass oil, which is then deoxygenated to liquid fuel.
  • the process is complicated, and the prepared biomass oil is of poor quality and cannot be directly used as an engine fuel, and needs further refining;
  • biomass is obtained by chemical and biological treatment (including hydrolysis, fermentation, selective hydrogenation, etc.) to obtain small molecules.
  • the platform material and then using these small molecular platform compounds as raw materials, obtains an oxygen-containing organic compound having an aviation kerosene chain length (C 8 -C 16 ) through a carbon-carbon coupling reaction.
  • the process is complex, the technology is immature, and the investment is too large.
  • syngas can convert coal, natural gas and biomass into clean oil, which is considered to be one of the most potential alternatives to petroleum.
  • Fischer and Tropsch developed a synthetic route for the synthesis of hydrocarbons (liquid fuels) from syngas as a feedstock under suitable conditions, known as Fischer-Tropsch synthesis.
  • the route first prepares synthesis gas from non-petroleum resources, and then catalytically hydrogenates CO to form liquid fuel.
  • the carbon-synthesis route not only has the advantages of environmental protection, mild reaction conditions and high atomic economy, but also has important strategic significance for adjusting the world energy structure and improving the dependence on petroleum resources.
  • the traditional Fischer-Tropsch synthesis product distribution conforms to the Anderson-Schulz-Flory (ASF) distribution, which means that the theoretical value of aviation kerosene in the ASF distribution is less than 40%, resulting in the industrial production of aviation kerosene by the Fischer-Tropsch reaction.
  • ASF Anderson-Schulz-Flory
  • Toyama University uses a method of injecting olefin into the reactor to move the ASF distribution curve to the aviation kerosene distribution interval (J. Li, G. Yang, Y. Yoneyama, T. Vitidsant, N. Tsubaki, Fuel, 2016, 171). :159-166) to improve the selectivity of aviation kerosene.
  • this method requires an additional olefin injection matching process and is not suitable for a fixed bed reactor, and has low applicability.
  • the inventors of the present invention conducted extensive and intensive research on a catalyst for synthesizing gas aviation kerosene, in order to find a new preparation method of a catalyst for aerospace kerosene for syngas, through which The catalyst prepared by the method can break the ASF distribution of the conventional Fischer-Tropsch reaction when used in synthetic gas kerosene, obtain high selectivity of aviation kerosene, and obtain acceptable or higher CO conversion rate.
  • the inventors have found that in the preparation of a catalyst for aerospace kerosene for syngas, if the carrier is heat-treated with a weak acid and a strong base and then the catalytic aid and the catalytically active metal are supported, the catalyst thus prepared is used in the synthesis of aviation kerosene. At the same time, it is possible to break the ASF distribution of the conventional Fischer-Tropsch reaction, obtain high selectivity of aviation kerosene, and obtain acceptable or higher CO conversion rate.
  • the present invention has been achieved based on the foregoing findings.
  • the method firstly heat-treats the carrier with a weak acid and a strong base and then supports the catalytic aid and the catalytically active metal.
  • the catalyst thus prepared can break the ASF distribution of the conventional Fischer-Tropsch reaction and obtain the aviation kerosene when used in the synthesis of aviation kerosene. High selectivity, in addition to acceptable or higher CO conversion.
  • Another object of the present invention is to provide a catalyst for aerospace kerosene produced by the synthesis gas produced by the process of the present invention.
  • the catalyst can break the ASF distribution of the conventional Fischer-Tropsch reaction, obtain high selectivity of aviation kerosene, and obtain acceptable or higher CO conversion rate.
  • a final object of the present invention is to provide the use of a catalyst prepared by the process of the invention as a catalyst in syngas aviation kerosene.
  • the catalyst can break the ASF distribution of the conventional Fischer-Tropsch reaction, obtain high selectivity of aviation kerosene, and obtain acceptable or higher CO conversion rate.
  • a method for producing a catalyst for synthesizing gas aviation kerosene the catalyst being a supported catalyst comprising a support and a catalytically active component supported on the support and a catalytic aid, the catalyst comprising the catalyst based on the total weight of the catalyst :
  • (A) 1 to 50% by weight, based on the element, of one or more elements selected from the group consisting of Ru, Fe, Ni, Co, Pt, and Pd as a catalytically active component,
  • (B) 1 to 20% by weight, based on the element of the catalytically active component, one or more elements selected from the group consisting of the first main group metal elements, transition elements and lanthanides of the periodic table as catalytic auxiliaries ,as well as
  • step (3) The product obtained in the step (3) is filtered, washed, dried, and calcined, and then contacted with a water-soluble metal salt of a metal element as a catalytically active component or a solution thereof, as a catalytically active group. a metal element;
  • the catalytically active component is one or more elements selected from the group consisting of Ni, Co and Fe, especially Co, Fe or a combination thereof; and/or a catalytic aid is selected From one or more elements of Na, K, La, Ce and Mn, especially La, Ce or a combination thereof; and/or the support is selected from the group consisting of carbon nanotubes, graphene, activated carbon, SiO 2 , Al 2 One or more of O 3 , ZrO 2 , silicon carbide, TiO 2 and molecular sieves, preferably one or more molecular sieves, especially one of Y-type molecular sieve, clinoptilolite, mordenite and ZSM-5 Or a variety of preconditions: when the catalytic aid is Ti, the carrier is not TiO 2 , and when the catalytic aid is Zr, the carrier is not ZrO 2 .
  • the water-soluble metal salt of the catalytically active component is a nitrate, an acetate, a chloride salt, a hydrate thereof or any mixture thereof, preferably a nitrate or The hydrate thereof; and/or the water-soluble salt of the catalytic aid is a nitrate, an acetate, a chloride salt, a hydrate thereof or any mixture thereof, preferably a nitrate or a hydrate thereof.
  • the weak acid in the step (1) is an organic weak acid, preferably selected from the group consisting of oxalic acid, phenylhexacarboxylic acid, maleic acid, salicylic acid and EDTA.
  • One or more, especially EDTA; and/or the concentration of the weak acid aqueous solution in step (1) is from 0.04 to 0.5 mol/L, preferably from 0.04 to 0.1 mol/L; and/or the heat treatment in step (1)
  • the reaction is carried out at a temperature not exceeding the reflux temperature, preferably at a temperature of 40 to 100 ° C, more preferably 70 to 100 ° C; and/or the heat treatment in the step (1) is carried out for 1 to 10 hours, preferably 4 to 10 hours.
  • the alkali metal hydroxide in the step (2) is sodium hydroxide, potassium hydroxide or a combination thereof, preferably sodium hydroxide; and/or alkali metal hydrogen
  • concentration of the aqueous oxide solution is 0.1 to 1 mol/L, preferably 0.1 to 0.5 mol/L; and/or the heat treatment in the step (2) is carried out at 40 to 100 ° C, preferably 40 to 80 ° C; and/or, the step (2)
  • the time of the medium heat treatment is from 0.1 to 2 h, preferably from 0.1 to 1 h.
  • the carrier obtained by the step (1) is filtered, washed and dried before the heat treatment of the step (2); and/or, in the step (3)
  • the product obtained in the step (2) is filtered, washed, dried, and then contacted with an aqueous solution of a water-soluble salt of a metal element as a catalytic aid to support a metal element as a catalyst auxiliary.
  • the concentration of the aqueous solution of the water-soluble salt of the metal element as the catalytic aid is from 0.1 to 4 mol/L, preferably from 0.5 to 2 mol/ L; in the step (3), the contact of the carrier with an aqueous solution of a water-soluble salt of a metal element as a catalytic aid is carried out at 40 to 100 ° C, preferably 40 to 80 ° C; and/or, the carrier and the catalyst auxiliary The contacting of the aqueous solution of the water-soluble salt of the metal element is carried out for 2 to 24 hours, preferably 4 to 12 hours.
  • step (4) the water-soluble metal salt of the metal element as the catalytically active component is contacted with the product obtained in the step (3) in a molten state, preferably The water-soluble metal salt of the metal element as the catalytically active component is mixed with the product obtained in the step (3) and then melted in a closed vessel.
  • step (4) is carried out independently at 60-120 ° C; and/or, step (4) And the calcination in the step (5) are each independently carried out at 350 to 650 ° C.
  • the calcination in the step (4) is carried out at 450 to 650 ° C
  • the calcination in the step (5) is carried out at 350 to 500 Perform at °C.
  • the H 2 /CO molar ratio is from 1 to 5, preferably from 1 to 3, more preferably from 1 to less than 2.
  • reaction pressure is 1-5 MPa (gauge pressure)
  • the reaction temperature is 150-350 ° C
  • the W/F is 5-20 gh mol.
  • the preferred reaction pressure is 1-3 MPa (gauge pressure)
  • the reaction temperature is 200-300 ° C
  • the W/F is 8-15 gh mol -1 .
  • a method for preparing a catalyst for aerospace kerosene for syngas is provided, which is a supported catalyst comprising a support and a catalytically active component supported on a support and a catalytic aid, based on the catalyst
  • the total weight of the catalyst comprises:
  • (A) 1 to 50% by weight, based on the element, of one or more elements selected from the group consisting of Ru, Fe, Ni, Co, Pt, and Pd as a catalytically active component,
  • (B) 1 to 20% by weight, based on the element of the catalytically active component, one or more elements selected from the group consisting of the first main group metal elements, transition elements and lanthanides of the periodic table as catalytic auxiliaries ,as well as
  • step (3) The product obtained in the step (3) is filtered, washed, dried, and calcined, and then contacted with a water-soluble metal salt of a metal element as a catalytically active component or a solution thereof, as a catalytically active group. a metal element;
  • the catalyst of the present invention is a supported catalyst comprising a catalytically active component, a catalytic aid and a support, and the catalytically active component and the catalytic aid are supported on a carrier.
  • the catalytically active component it is usually one or more elements selected from the group consisting of Ru, Fe, Ni, Co, Pt and Pd, preferably one or more elements selected from the group consisting of Co, Ni and Fe, in particular Is Co and / or Fe.
  • the catalytically active component may be present in the catalyst as a simple substance, or may be present in the catalyst as a compound such as an oxide, or may be present in the catalyst as a mixture of the two.
  • the catalyst of the invention generally comprises from 1 to 50% by weight, based on the element, of the catalytically active component, preferably from 5 to 30% by weight, more preferably from 12 to 18% by weight, of the catalytically active component, based on the total weight of the catalyst.
  • the catalyst of the invention further comprises a catalytic aid.
  • the presence of catalytic auxiliaries can further improve the aviation kerosene selectivity in the synthesis of aviation kerosene, and sometimes increase the CO conversion rate.
  • the catalytic auxiliary it is usually one or more elements different from the catalytically active component selected from the first main group metal elements, transition elements and lanthanides of the periodic table.
  • the first main group metal elements include Li, Na and K.
  • the first main group element is used as a catalytic aid, it is preferably Na and/or K.
  • the transition element refers to a series of metal elements in the d region of the periodic table.
  • This region includes elements of 10-12 total ten families, but does not include the inner transition elements of the f region, that is, does not include actinides and actinides. element.
  • element there may be mentioned Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Os, Rh, Ir, Zn, Cd and Hg.
  • the transition metal is used as a catalytic aid, it is preferably one or more selected from the group consisting of Mo, Mn and Zn, with Mo and/or Mn being particularly preferred.
  • the lanthanoid element is used as a catalytic aid, it is preferably one or more selected from the group consisting of La, Ce, Pr and Tb, and particularly preferably La and/or Ce.
  • the catalytic promoter is one or more elements selected from the group consisting of Na, K, La, Ce and Mn, especially La, Ce or a combination thereof.
  • the catalytic promoter may be present in the catalyst as a simple substance, or may be present in the catalyst as a compound such as an oxide, or may be present in the catalyst as a mixture of the two.
  • the catalyst according to the invention generally comprises from 1 to 20% by weight, based on the element, of a catalytic aid, preferably from 1 to 15% by weight, more preferably from 8 to 12% by weight, based on the total weight of the catalyst.
  • the catalyst of the present invention is a supported catalyst, and the catalytically active component and the catalytic aid are supported on a carrier.
  • the carrier it may be any carrier suitable for the synthesis of a catalyst for the synthesis of aviation kerosene by synthesis gas.
  • the support is preferably one or more supports selected from the group consisting of carbon nanotubes, graphene, activated carbon, SiO 2 , Al 2 O 3 , ZrO 2 , SiC and molecular sieves, more preferably one or more molecular sieve supports, especially one And a plurality of carriers selected from the group consisting of Y-type molecular sieves, clinoptilolite, mordenite and ZSM-5, provided that when the catalytic aid is Ti, the carrier is not TiO 2 , and when the catalytic aid is Zr, the carrier is not ZrO 2 .
  • the catalyst according to the invention generally comprises from 40 to 98% by weight of support, preferably from 60 to 94% by weight, more preferably from 70 to 80% by weight, based on the total weight of the catalyst.
  • the catalyst of the invention can heat the carrier by using a weak acid and a strong base and then load the catalytic auxiliary agent and the catalytically active metal.
  • the catalyst thus prepared can break the ASF distribution of the conventional Fischer-Tropsch reaction when used in the synthesis of aviation kerosene.
  • the catalyst of the invention is typically prepared by a process comprising the following steps:
  • step (3) The product obtained in the step (3) is filtered, washed, dried, and calcined, and then contacted with a water-soluble metal salt of a metal element as a catalytically active component or a solution thereof, as a catalytically active group. a metal element;
  • the ionization constant K a (the ratio of the product of various ion concentrations in the solution to the concentration of unionized molecules in the solution when the weak electrolyte reaches the ionization equilibrium in the solution at 25 ° C is required).
  • the carrier is heat-treated with a weak acid aqueous solution of 1.0 ⁇ 10 -3 - 1.0 ⁇ 10 -1 .
  • a weak acid it is advantageous to use an organic weak acid, in particular one or more selected from the group consisting of oxalic acid, phenyl hexacarboxylic acid, maleic acid, salicylic acid and EDTA (ethylenediaminetetraacetic acid), in particular EDTA.
  • the concentration of the weak acid aqueous solution is usually from 0.04 to 0.5 mol/L, preferably from 0.04 to 0.1 mol/L.
  • the heat treatment here is usually required to be carried out at a temperature higher than room temperature or at an elevated temperature. However, the temperature usually does not exceed the reflux temperature, for example, the heat treatment temperature is 40 to 100 ° C, preferably 70 to 100 ° C.
  • the heat treatment time is usually from 1 to 10 hours, preferably from 4 to 10 hours.
  • the carrier obtained by the step (1) may be directly treated with an alkali metal hydroxide aqueous solution under basic conditions, or the carrier obtained by the step (1) may be filtered. After washing and drying, it is further treated with an aqueous alkali metal hydroxide solution under basic conditions, preferably the latter.
  • "directly” means that the product obtained in the step (1) is heat-treated under an alkaline condition with an aqueous alkali metal hydroxide solution without isolation (for example, without performing any one selected from the group consisting of filtration, washing, and drying).
  • washing washing may be carried out using deionized water or the like, and the washing may be carried out once or several times.
  • the washing is carried out under reduced pressure, for example under suction filtration.
  • the washed solid is usually dried at a temperature of from 60 to 120 ° C for from 10 to 48 h, preferably from 10 to 24 h.
  • the support obtained by the step (1) is heat-treated under an alkaline condition with an aqueous alkali metal hydroxide solution.
  • an aqueous alkali metal hydroxide solution As the alkali metal hydroxide herein, sodium hydroxide, potassium hydroxide or a combination thereof can be usually used, and sodium hydroxide is preferred.
  • the concentration of the aqueous alkali metal hydroxide solution is usually from 0.1 to 1 mol/L, preferably from 0.1 to 0.5 mol/L.
  • This heat treatment can usually be carried out at 40 to 100 ° C, preferably 40 to 80 ° C.
  • the heat treatment time is usually from 0.1 to 2 h, preferably from 0.1 to 1 h.
  • the product obtained in the step (2) is directly contacted with an aqueous solution of a water-soluble salt of a metal element as a catalytic aid, or the product obtained in the step (2) is filtered, washed, dried. Thereafter, it is contacted with an aqueous solution of a water-soluble salt of a metal element as a catalytic aid to support a metal element as a catalytic auxiliary.
  • "directly” means that the product obtained in the step (2) does not require separation (for example, without performing any one selected from the steps of filtration, washing, and drying) and an aqueous solution of a water-soluble salt of a metal element as a catalyst auxiliary. Make contact.
  • washing may be carried out using deionized water or the like, and the washing may be carried out once or several times.
  • the washing is carried out under reduced pressure, for example under suction filtration.
  • the washed solid is usually dried at a temperature of from 60 to 120 ° C for from 10 to 48 h, preferably from 10 to 24 h.
  • an aqueous solution of a water-soluble metal salt of a metal as a catalytic aid in water, preferably deionized water is provided in the step (3).
  • the concentration of the aqueous solution of the water-soluble metal salt is usually from 0.1 to 4 mol/L, preferably from 0.5 to 2 mol/L.
  • the water-soluble metal salt of the catalytic aid may be a nitrate, an acetate, a chloride salt, a hydrate thereof or any mixture thereof, preferably a nitrate, an acetate, a hydrate thereof or any mixture thereof, especially Nitrate or its hydrate.
  • the contact of the treated carrier with the aqueous solution of the water-soluble salt of the metal element as the catalytic auxiliary in the step (3) is usually carried out at 40 to 100 ° C, preferably 40 to 80 ° C.
  • the contact time is usually from 2 to 24 hours, preferably from 4 to 12 hours.
  • the product obtained in the step (3) is filtered, washed, dried, and calcined, and then contacted with a water-soluble metal salt of a metal element as a catalytically active component or a solution thereof to be loaded thereon.
  • a metal element as a catalytically active component may be carried out using deionized water or the like, and the washing may be carried out once or several times.
  • the washing is carried out under reduced pressure, for example by filtration under suction.
  • the washed solid is usually dried at a temperature of from 60 to 120 ° C for from 10 to 48 h, preferably from 10 to 24 h.
  • the calcination temperature is usually from 350 to 650 ° C, preferably from 450 to 650 ° C.
  • the calcination time is usually from 2 to 8 h, preferably from 4 to 8 h.
  • the water-soluble metal salt of the metal element as the catalytically active component may be a nitrate, an acetate, a chloride salt, a hydrate thereof or any mixture thereof, preferably a nitrate, an acetate, a hydrate thereof or Any mixture thereof, especially a nitrate or a hydrate thereof.
  • the water-soluble metal salt of the metal element as the catalytically active component When contacted with the water-soluble metal salt of the metal element as the catalytically active component, the water-soluble metal salt is usually contacted or mixed with the product obtained in the step (3) in a molten state (for example, heated above its melting point). It is advantageous to mix the water-soluble metal salt with the product obtained in the step (3) and then melt it in a closed vessel.
  • a water-soluble metal salt of a metal element as a catalytically active component When contacted with an aqueous solution of a water-soluble metal salt of a metal element as a catalytically active component, a water-soluble metal salt of a metal element as a catalytically active component is formulated into an aqueous solution, and then the product obtained in the step (3) is impregnated or Soaking in an aqueous solution of the water-soluble metal salt or spraying the aqueous solution of the water-soluble metal salt onto the product obtained in the step (3).
  • the concentration thereof is not particularly limited as long as the metal element as a catalytically active component can be supported on the carrier, and usually it can be 5 to 50. % by weight, preferably 5 to 30% by weight.
  • the temperature in contact with the aqueous solution is also not particularly limited and may usually be 20 to 40 °C.
  • the product obtained in the step (4) is calcined to obtain a catalyst.
  • the calcination is usually carried out at 350 to 650 ° C, preferably at 350 to 500 ° C.
  • the calcination time is usually from 2 to 8 h, preferably from 4 to 8 h.
  • the firing atmosphere is usually air or an inert atmosphere.
  • an inert atmosphere refers to an atmosphere that does not participate in a chemical reaction under calcination conditions, such as nitrogen, argon.
  • the catalyst of the invention can heat the carrier by heat treatment with a weak acid and a strong base, and then load the catalytic auxiliary agent and the catalytically active component.
  • the catalyst thus prepared can break the ASF distribution of the conventional Fischer-Tropsch reaction when used in synthetic gas aviation kerosene. , to obtain high selectivity of aviation kerosene, in addition to acceptable or higher CO conversion.
  • a catalyst produced by the catalyst preparation method of the present invention. All of the features involved in this catalyst are the same as described above for catalyst preparation.
  • the catalyst of the present invention requires reduction of the catalyst prior to its use in syngas to produce aviation kerosene such that the catalytically active component of the catalyst and optionally the catalytic aid are in elemental form.
  • the catalyst is usually reduced in a hydrogen-containing atmosphere.
  • the reduction temperature is usually from 200 to 400 ° C, preferably from 250 to 350 ° C.
  • the reduction pressure is usually from 0 to 4.0 MPa, preferably from 0 to 1.0 MPa.
  • the reduction time is usually from 3 to 12 h, preferably from 6 to 12 h.
  • the reducing atmosphere may be either pure hydrogen or a mixture containing hydrogen.
  • the H 2 /CO molar ratio is usually from 1 to 5, preferably from 1 to 3.
  • the selectivity of the aviation kerosene of the reaction can be further improved as compared with the case where the molar ratio is 2 or more.
  • the H 2 /CO molar ratio is from 1 to less than 2.
  • the reaction pressure of the synthesis reaction is usually 1-5 MPa (gauge pressure), preferably 1-3 MPa (gauge pressure).
  • the temperature of the synthesis reaction is usually from 150 to 350 ° C, preferably from 200 to 300 ° C.
  • the W/F (gas hourly space velocity) of the synthesis reaction is usually 5-20 gh mol -1 , preferably 8-15 gh mol -1 .
  • the reaction pressure is 1-5 MPa (gauge pressure)
  • the reaction temperature is 150-350 ° C
  • the W/F is 5-20 gh mol -1 .
  • the reaction pressure is 1-3 MPa (gauge pressure)
  • the reaction temperature is 200-300 ° C
  • the W/F is 8-15 gh mol -1 .
  • Syngas produced aviation kerosene is a strong exothermic reaction and produces by-product water.
  • Cobalt-based single metal catalyst is easy to agglomerate, sinter and deactivate in the reaction due to easy oxidation; common Fischer-Tropsch reaction conforms to ASF distribution, target product (ie Aviation kerosene) has low selectivity and the theoretical value does not exceed 40%.
  • high dispersion can be obtained by first heat-treating the support with a weak acid and a strong base, and then supporting the catalytically active component (Ru, Fe, Ni, Co, Pt, Pd or any combination thereof) and a catalytic aid.
  • the catalyst for synthesizing gas aviation kerosene is beneficial to solve the problem of poor stability of the catalyst in the reaction process, improve the stability of the catalyst, and can break the ASF distribution of the conventional Fischer-Tropsch reaction, in particular, the high selectivity of aviation kerosene can be obtained. In addition, acceptable or higher CO conversion rates are also obtained.
  • EDTA was prepared into a solution I having a concentration of 0.07 mol/L with deionized water, and 6.7 g of a Y-type molecular sieve (HSZ-320NAA) was weighed and placed in solution I, stirred under reflux for 6 hours, filtered, and washed with deionized water. It was then dried at 120 °C.
  • NaOH was prepared into a solution of concentration 0.4 mol/L with deionized water, and placed in 3.4 g of the Y-type molecular sieve treated as described above, mixed and stirred at 40 ° C for 30 min, filtered, washed with deionized water, and then at 120 The precursor a was obtained after drying at °C.
  • Manganese nitrate was formulated into a solution III having a concentration of 1 mol/L with deionized water. 1 g of the precursor a was added to the solution III, and kept at 80 ° C for 12 hours, followed by filtration, washing with deionized water, and then drying at 120 ° C to obtain a precursor b. The precursor b was baked at 650 ° C for 6 h in an air atmosphere. Then, 1 g of the resultant and 1.72 g of cobalt nitrate hexahydrate were weighed and placed in a mortar, and ground for 30 minutes. The obtained product was placed in a closed glass bottle and melted at 60 ° C for 48 h. It was then calcined at 400 ° C for 4 h in a tube furnace under a nitrogen atmosphere to obtain a catalyst A comprising 15% by weight of Co and 10% by weight of Mn based on the element.
  • a total of 0.5 g of the obtained catalyst A was placed in an upright 9 mm diameter tubular reactor, and the catalyst A was placed in a fixed bed. Hydrogen was introduced from the upper inlet of the tubular reactor, and the catalyst A was continuously reduced for 8 h at a temperature of 400 ° C and a gauge pressure of 0 MPa. After the reduction of the catalyst A, the temperature was lowered to 250 ° C, the synthesis gas was introduced, the H 2 /CO molar ratio was 1, the reaction pressure was 2 MPa (gauge pressure), the reaction temperature was 250 ° C, and the W/F was 10 gh mol -1 . A continuous reaction is carried out. The reaction results are shown in Table 1.
  • Example 1 The preparation of the catalyst in Example 1 was repeated except that Solution III was replaced with a 1 mol/L aqueous solution of sodium nitrate. Finally, Catalyst B was obtained, which contained 15% by weight of Co and 10% by weight of Na based on the element.
  • Example 1 The catalyst reduction and reaction procedures in Example 1 were repeated except that Catalyst A was replaced with Catalyst B. The reaction results are shown in Table 1.
  • Example 1 The preparation of the catalyst in Example 1 was repeated except that Solution III was replaced with a 1 mol/L aqueous solution of cerium nitrate. Finally, a catalyst C was obtained which contained 15% by weight of Co and 10% by weight of Ce as the element.
  • Example 1 The catalyst reduction and reaction procedures in Example 1 were repeated except that Catalyst A was replaced with Catalyst C. The reaction results are shown in Table 1.
  • Example 1 The preparation of the catalyst in Example 1 was repeated except that Solution III was replaced with a 1 mol/L aqueous solution of cerium nitrate. Finally, a catalyst D was obtained which contained 15% by weight of Co and 10% by weight of La based on the element.
  • Example 1 The catalyst reduction and reaction procedures in Example 1 were repeated except that Catalyst A was replaced with Catalyst D. The reaction results are shown in Table 1.
  • Example 1 The preparation of the catalyst in Example 1 was repeated except that Solution III was replaced with a 1 mol/L aqueous lithium nitrate solution. Finally, a catalyst E was obtained which contained 15% by weight of Co and 10% by weight of Li based on the element.
  • Example 1 The catalyst reduction and reaction procedures in Example 1 were repeated except that Catalyst A was replaced with Catalyst E. The reaction results are shown in Table 1.
  • Example 1 The preparation of the catalyst of Example 1 was repeated except that Solution III was replaced with a 1 mol/L potassium nitrate aqueous solution. Finally, a catalyst F was obtained which contained 15% by weight of Co and 10% by weight of K based on the element.
  • Example 1 The catalyst reduction and reaction procedures in Example 1 were repeated except that Catalyst A was replaced with Catalyst F. The reaction results are shown in Table 1.
  • Example 1 The catalyst reduction and reaction procedures in Example 1 were repeated except that Catalyst A was replaced with Catalyst C-A. The reaction results are shown in Table 1.
  • EDTA was prepared into a solution I having a concentration of 0.07 mol/L with deionized water, and 3.4 g of a Y-type molecular sieve (HSZ-320NAA) was weighed and placed in solution I, stirred under reflux for 6 hours, filtered, and washed with deionized water. Then, after drying at 120 ° C, the precursor a was obtained. Sodium nitrate was formulated into a solution II having a concentration of 1 mol/L with deionized water.
  • HZ-320NAA Y-type molecular sieve
  • Example 1 The catalyst reduction and reaction procedures in Example 1 were repeated except that Catalyst A was replaced with Catalyst C-B. The reaction results are shown in Table 1.
  • NaOH was prepared into a solution I with a concentration of 0.4 mol/L with deionized water, and 6.7 g of Y-type molecular sieve (HSZ-320NAA) was weighed and placed in solution I, mixed and stirred at 40 ° C for 30 min, and then filtered. The ion was washed with water and then dried at 120 ° C to obtain a precursor a.
  • Sodium nitrate was formulated into a solution II having a concentration of 1 mol/L with deionized water.
  • Example 1 The catalyst reduction and reaction procedures in Example 1 were repeated except that Catalyst A was replaced with Catalyst C-C. The reaction results are shown in Table 1.
  • Example 1 The catalyst reduction and reaction procedures in Example 1 were repeated except that Catalyst A was replaced with Catalyst C-D. The reaction results are shown in Table 1.
  • Sodium nitrate was formulated into a solution I having a concentration of 1 mol/L with deionized water.
  • a solution I having a concentration of 1 mol/L with deionized water.
  • 1 g of a Y-type molecular sieve (HSZ-320NAA) was added, and the mixture was kept at 80 ° C for 12 hours, and then filtered, washed with deionized water, and then dried at 120 ° C to obtain a precursor a.
  • the precursor a was baked at 650 ° C for 6 h in an air atmosphere.
  • 1 g of the resultant and 1.72 g of cobalt nitrate hexahydrate were weighed and placed in a mortar, and ground for 30 minutes.
  • the obtained product was placed in a closed glass bottle and melted at 60 ° C for 48 h. It was then calcined at 400 ° C for 4 h in a tube furnace under a nitrogen atmosphere to obtain a catalyst C-E comprising 15% by weight of Co and 10% by weight of Na based on the element.
  • Example 1 The catalyst reduction and reaction procedures in Example 1 were repeated except that Catalyst A was replaced with Catalyst C-E. The reaction results are shown in Table 1.
  • a is the iso/ratio ratio of the aviation kerosene component, that is, the molar ratio of the isomerized hydrocarbons to the normal hydrocarbons in the hydrocarbon component of the C 8 -C 16 component, the higher the iso/ratio, the lower the freezing point of the oil The more favorable it is to the use of aircraft.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种制备合成气制航空煤油用催化剂的方法、该方法制备的催化剂,以及该催化剂在合成气合成航空煤油中的用途,该催化剂包含载体和负载其上的催化活性组分和催化助剂,包含:(A)1-50重量%选自Ru、Fe、Ni、Co、Pt和Pd的元素作为催化活性组分,(B)1-20重量%的不同于催化活性组分的选自元素周期表第一主族金属元素、过渡元素和镧系元素中的元素作为催化助剂,以及(C)载体。催化剂通过在负载催化活性金属之前用弱酸和强碱对载体进行热处理,如此制备的催化剂在用于合成气制航空煤油时,打破了传统费托反应的ASF分布,获得高航空煤油选择性,此外还可获得可接受或更高的CO转化率。

Description

一种合成气合成航空煤油用催化剂的制备方法以及由此得到的催化剂和其应用 技术领域
本发明涉及一种用于合成气合成航空煤油的催化剂的制备方法,本发明还涉及由该方法得到的催化剂和该催化剂的应用。
背景技术
航空煤油又称喷气燃料,主要用作喷气式航天器发动机的燃料,是目前国际上需求量很大的液体燃料,一般是由碳数在8-16间的混合烃类所组成。由于对于航空煤油需求量的日渐增长,其价格居高不下,航空煤油的合成受到世界各国的广泛关注。预计到2020年,我国航空煤油的需求量将超过4000万吨。目前,航空煤油生产主要有如下方式:1)由原油蒸馏。此法严重依赖日益枯竭的石油资源,而且对设备材质要求高;2)生物质高温热解生成生物质油,再经脱氧升级成液态燃料。该过程复杂,且制得的生物质油品质较差,无法直接用作发动机燃料,需进一步精炼;3)生物质通过化学及生物处理(包括水解、发酵、选择性加氢等)得到小分子平台物,再以这些小分子平台化合物为原料通过碳-碳偶联反应获得具有航空煤油链长(C 8-C 16)的含氧有机化合物。该过程复杂,技术不成熟,投资过大。合成气作为能源转化的桥梁,可以将煤炭、天然气、生物质转化为清洁油品,被认为是最有潜力的石油替代途径之一。上世纪二十年代,Fischer和Tropsch开发了一种由合成气为原料在催化剂和适当条件下合成碳氢化合物(液体燃料)的合成路线,被称之为费托合成。该路线首先由非石油资源制备合成气,再由CO催化加氢生成液体燃料。该碳一合成路线不仅具有绿色环保、反应条件温和、原子经济性高的优点,而且对于调整世界能源结构、改善对石油资源的依存度具有重要的战略意义。然而,传统的费托合成产物分布符合Anderson-Schulz-Flory(ASF)分布,这意味着ASF分布中航空煤油的选择性理论值不到40%,致使通过费托反应工业化生产航空煤油受阻。可见,如何打破传统费托反应的ASF分布是实现工业化合 成气制航空煤油的关键,其中,合成气制航空煤油反应中催化剂的开发是打破传统费托反应的ASF分布的关键。
研究表明,合成气直接制航空煤油需要打破传统ASF分布并将产物集中在C 8-C 16区间。例如,富山大学就采用往反应器中注入烯烃的方法使得ASF分布曲线向航空煤油分布区间移动(J.Li,G.Yang,Y.Yoneyama,T.Vitidsant,N.Tsubaki,Fuel,2016,171:159-166)以提高航空煤油的选择性。但是此方法需要额外的烯烃注入配套工艺,且不适用于固定床反应器,应用性低。
众所周知,合成气制航空煤油为强放热反应并有副产物水生成,钴基单金属催化剂因易氧化导致其在反应中易团聚、烧结、失活;普通费托反应符合ASF分布,目标产物选择性低,限制了该路线在合成航空煤油中的大规模应用。
发明内容
鉴于现有技术的上述状况,本发明的发明人在合成气制航空煤油用催化剂方面进行了广泛而又深入的研究,以期发现一种新的合成气制航空煤油用催化剂的制备方法,通过该方法制备的催化剂在用于合成气制航空煤油时,能够打破传统费托反应的ASF分布,获得航空煤油的高选择性,此外还可获得可接受的或更高的CO转化率。本发明人发现,在制备合成气制航空煤油用催化剂时,如果先采用弱酸和强碱对载体进行热处理然后再负载催化助剂和催化活性金属,如此制备的催化剂在用于合成气制航空煤油时,能够打破传统费托反应的ASF分布,获得航空煤油的高选择性,此外还可获得可接受的或更高的CO转化率。本发明正是基于前述发现得以实现。
因此,本发明的一个目的是提供一种制备合成气制航空煤油用催化剂的方法。该方法先采用弱酸和强碱对载体进行热处理然后再负载催化助剂和催化活性金属,如此制备的催化剂在用于合成气制航空煤油时,能够打破传统费托反应的ASF分布,获得航空煤油的高选择性,此外还可获得可接受的或更高的CO转化率。
本发明的另一个目的是提供通过本发明方法制备的合成气制航空煤 油用催化剂。该催化剂在用于合成气制航空煤油时,能够打破传统费托反应的ASF分布,获得航空煤油的高选择性,此外还可获得可接受的或更高的CO转化率。
本发明的最后一个目的是提供通过本发明方法制备的催化剂在合成气制航空煤油中作为催化剂的用途。该催化剂在用于合成气制航空煤油时,能够打破传统费托反应的ASF分布,获得航空煤油的高选择性,此外还可获得可接受的或更高的CO转化率。
实现本发明上述目的的技术方案可以概括如下:
1.一种制备合成气制航空煤油用催化剂的方法,该催化剂为负载型催化剂,包含载体和负载于该载体上的催化活性组分和催化助剂,基于该催化剂的总重量,该催化剂包含:
(A)以元素计为1-50重量%的一种或多种选自Ru、Fe、Ni、Co、Pt和Pd中的元素作为催化活性组分,
(B)以元素计为1-20重量%的不同于催化活性组分的一种或多种选自元素周期表第一主族金属元素、过渡元素和镧系元素中的元素作为催化助剂,以及
(C)载体,
其特征在于所述催化剂通过包括如下步骤的方法制备:
(1)将载体用电离常数K a为1.0×10 -3-1.0×10 -1的弱酸水溶液热处理;
(2)将经步骤(1)处理得到的载体用碱金属氢氧化物水溶液在碱性条件下热处理;
(3)将步骤(2)中得到的产物直接与作为催化助剂的金属元素的水溶性盐的水溶液进行接触,或者在将步骤(2)中得到的产物过滤,洗涤,干燥后与作为催化助剂的金属元素的水溶性盐的水溶液进行接触,以负载上作为催化助剂的金属元素;
(4)将步骤(3)中得到的产物过滤,洗涤,干燥,并焙烧后,再与作为催化活性组分的金属元素的水溶性金属盐本身或其溶液接触,以负载上作为催化活性组分的金属元素;以及
(5)将步骤(4)得到的产物焙烧,得到催化剂。
2.根据第1项的方法,其中基于该催化剂的总重量,该催化剂包含:
(A)以元素计为5-30重量%,更优选12-18重量%的催化活性组分,和
(B)以元素计为1-15重量%,更优选8-12重量%的催化助剂;以及
(C)60-94重量%,更优选70-80重量%的载体。
3.根据第1或2项的方法,其中催化活性组分为选自Ni、Co和Fe中的一种或多种元素,尤其是Co、Fe或其组合;和/或催化助剂为选自Na、K、La、Ce和Mn中的一种或多种元素,尤其是La、Ce或其组合;和/或,载体为选自碳纳米管、石墨烯、活性炭、SiO 2、Al 2O 3、ZrO 2、碳化硅、TiO 2和分子筛中的一种或多种,优选为一种或多种分子筛,尤其是Y型分子筛、斜发沸石、丝光沸石和ZSM-5中的一种或多种,前提是:当催化助剂为Ti时,载体不是TiO 2,当催化助剂为Zr时,载体不是ZrO 2
4.根据第1-3项中任一项的方法,其中催化活性组分的水溶性金属盐为硝酸盐、醋酸盐、氯化物盐、它们的水合物或其任意混合物,优选硝酸盐或其水合物;和/或,催化助剂的水溶性盐为硝酸盐、醋酸盐、氯化物盐、它们的水合物或其任意混合物,优选硝酸盐或其水合物。
5.根据第1-4项中任一项的方法,其中步骤(1)中所述弱酸为有机弱酸,优选为选自草酸、苯基六甲酸、马来酸、水杨酸和EDTA中的一种或多种,尤其是EDTA;和/或步骤(1)中的弱酸水溶液的浓度为0.04-0.5mol/L,优选为0.04-0.1mol/L;和/或步骤(1)中的热处理在不超过回流温度的条件下进行,优选在40-100℃、更优选70-100℃的温度下进行;和/或步骤(1)中的热处理进行1-10小时,优选4-10小时。
6.根据第1-5项中任一项的方法,其中步骤(2)中碱金属氢氧化物为氢氧化钠、氢氧化钾或其组合,优选氢氧化钠;和/或,碱金属氢氧化物水溶液浓度为0.1-1mol/L,优选为0.1-0.5mol/L;和/或,步骤(2)中的热处理于40-100℃、优选40-80℃下进行;和/或,步骤(2)中热处理的时间为0.1-2h,优选0.1-1h。
7.根据第1-6项中任一项的方法,其中在进行步骤(2)的热处理之前,将经步骤(1)处理得到的载体过滤、洗涤和干燥;和/或,在步骤(3)中,将步骤(2)中得到的产物过滤,洗涤,干燥后再与作为催化助剂的金属元素的 水溶性盐的水溶液进行接触以负载上作为催化助剂的金属元素。
8.根据第1-7项中任一项的方法,其中在步骤(3)中,作为催化助剂的金属元素的水溶性盐的水溶液的浓度为0.1-4mol/L,优选0.5-2mol/L;在步骤(3)中,载体与作为催化助剂的金属元素的水溶性盐的水溶液的接触在40-100℃,优选40-80℃下进行;和/或,载体与作为催化助剂的金属元素的水溶性盐的水溶液的接触进行2-24小时,优选4-12小时。
9.根据第1-8项中任一项的方法,其中步骤(4)中,作为催化活性组分的金属元素的水溶性金属盐以熔融态与步骤(3)中得到的产物接触,优选的是,将作为催化活性组分的金属元素的水溶性金属盐与步骤(3)中得到的产物混合后再在密闭容器内熔融。
10.根据第1-9项中任一项的方法,其中步骤(2)、(3)和(4)中的干燥各自独立地在60-120℃条件下进行;和/或,步骤(4)和步骤(5)中的焙烧各自独立地在350-650℃下进行,优选的是,步骤(4)中的焙烧在450-650℃下进行,步骤(5)中的焙烧在350-500℃下进行。
11.通过根据第1-10项中任一项的方法制得的催化剂。
12.通过根据第1-10项中任一项的方法制得的催化剂在合成气制航空煤油中的用途。
13.根据第12项的用途,其中在合成气制航空煤油的反应中,H 2/CO摩尔比为1-5,优选为1-3,更优选为1至小于2。
14.根据第12或13项的用途,其中在合成气制航空煤油的反应中,反应压力为1-5MPa(表压),反应温度为150-350℃,和W/F为5-20gh mol -1;优选反应压力为1-3MPa(表压),反应温度为200-300℃,和W/F为8-15gh mol -1
本发明的这些和其它目的、特征和优点在结合下文考虑本发明后,将易于为普通技术人员所明白。
具体实施方式
根据本发明的一个方面,提供了一种制备合成气制航空煤油用催化剂的方法,该催化剂为负载型催化剂,包含载体和负载于载体上的催化活性 组分和催化助剂,基于该催化剂的总重量,该催化剂包含:
(A)以元素计为1-50重量%的一种或多种选自Ru、Fe、Ni、Co、Pt和Pd中的元素作为催化活性组分,
(B)以元素计为1-20重量%的不同于催化活性组分的一种或多种选自元素周期表第一主族金属元素、过渡元素和镧系元素中的元素作为催化助剂,以及
(C)载体,
其特征在于所述催化剂通过包括如下步骤的方法制备:
(1)将载体用电离常数K a为1.0×10 -3-1.0×10 -1的弱酸水溶液热处理;
(2)将经步骤(1)处理得到的载体用碱金属氢氧化物水溶液在碱性条件下热处理;
(3)将步骤(2)中得到的产物直接与作为催化助剂的金属元素的水溶性盐的水溶液进行接触,或者在将步骤(2)中得到的产物过滤,洗涤,干燥后再与作为催化助剂的金属元素的水溶性盐的水溶液进行接触,以负载上作为催化助剂的金属元素;
(4)将步骤(3)中得到的产物过滤,洗涤,干燥,并焙烧后,再与作为催化活性组分的金属元素的水溶性金属盐本身或其溶液接触,以负载上作为催化活性组分的金属元素;以及
(5)将步骤(4)得到的产物焙烧,得到催化剂。
本发明催化剂为负载型催化剂,包含催化活性组分、催化助剂和载体,所述催化活性组分和催化助剂负载于载体上。作为催化活性组分,它通常为一种或多种选自Ru、Fe、Ni、Co、Pt和Pd中的元素,优选为一种或多种选自Co、Ni和Fe中的元素,尤其是Co和/或Fe。催化活性组分可以作为单质存在于催化剂中,也可作为化合物如氧化物的形式存在于催化剂中,再或者以二者的混合物形式存在于催化剂中。以元素计,本发明催化剂通常包含1-50重量%的催化活性组分,优选5-30重量%,更优选12-18重量%的催化活性组分,基于催化剂的总重量。
本发明催化剂还包含催化助剂。催化助剂的存在可以进一步提高合成气制航空煤油时的航空煤油选择性,有时还可提高CO转化率。作为催化 助剂,它通常为一种或多种不同于催化活性组分的选自元素周期表第一主族金属元素、过渡元素和镧系元素中的元素。第一主族金属元素包括Li,Na和K。当第一主族元素作为催化助剂时,优选为Na和/或K。过渡元素是指元素周期表中d区的一系列金属元素,这一区域包括3-12一共十个族的元素,但不包括f区的内过渡元素,也就是不包括镧系元素和锕系元素。作为过渡元素可提及Sc、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Tc、Re、Os、Rh、Ir、Zn、Cd和Hg。当过渡金属作为催化助剂时,优选为选自Mo、Mn和Zn中的一种或多种,特别优选Mo和/或Mn。作为镧系元素可提及La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu。当镧系元素作为催化助剂时,优选为选自La、Ce、Pr和Tb中的一种或多种,特别优选La和/或Ce。在本发明的一个优选实施方案中,催化助剂为选自Na、K、La、Ce和Mn中的一种或多种元素,尤其是La、Ce或其组合。催化助剂可以作为单质存在于催化剂中,也可作为化合物如氧化物的形式存在于催化剂中,再或者以二者的混合物形式存在于催化剂中。以元素计,本发明催化剂通常包含1-20重量%的催化助剂,优选1-15重量%,更优选8-12重量%的催化助剂,基于催化剂的总重量。
本发明催化剂为负载型催化剂,催化活性组分和催化助剂负载于载体上。作为载体,它可以是任何适于合成气催化合成航空煤油用催化剂的载体。载体优选为一种或多种选自碳纳米管、石墨烯、活性炭、SiO 2、Al 2O 3、ZrO 2、SiC和分子筛的载体,更优选为一种或多种分子筛载体,尤其是一种和多种选自Y型分子筛、斜发沸石、丝光沸石和ZSM-5中的载体,前提是:当催化助剂为Ti时,载体不是TiO 2,当催化助剂为Zr时,载体不是ZrO 2。本发明催化剂通常包含40-98重量%的载体,优选60-94重量%,更优选70-80重量%的载体,基于催化剂的总重量。
本发明催化剂通过先采用弱酸和强碱对载体进行热处理然后再负载催化助剂和催化活性金属,如此制备的催化剂在用于合成气制航空煤油时,能够打破传统费托反应的ASF分布,获得航空煤油的高选择性,此外还可获得可接受的或更高的CO转化率。为此,通常通过包括如下步骤的方法 来制备本发明催化剂:
(1)将载体用电离常数K a为1.0×10 -3-1.0×10 -1的弱酸水溶液热处理;
(2)将经步骤(1)处理得到的载体用碱金属氢氧化物水溶液在碱性条件下热处理;
(3)将步骤(2)中得到的产物直接与作为催化助剂的金属元素的水溶性盐的水溶液进行接触,或者在将步骤(2)中得到的产物过滤,洗涤,干燥后再与作为催化助剂的金属元素的水溶性盐的水溶液进行接触,以负载上作为催化助剂的金属元素;
(4)将步骤(3)中得到的产物过滤,洗涤,干燥,并焙烧后,再与作为催化活性组分的金属元素的水溶性金属盐本身或其溶液接触,以负载上作为催化活性组分的金属元素;以及
(5)将步骤(4)得到的产物焙烧,得到催化剂。
首先,在步骤(1)中,需要用电离常数K a(25℃下,当弱电解质在溶液中达到电离平衡时,溶液中各种离子浓度的乘积跟溶液中未电离的分子浓度之比)为1.0×10 -3-1.0×10 -1的弱酸水溶液对载体进行热处理。作为这里的弱酸,有利地使用有机弱酸,尤其是可使用选自草酸、苯基六甲酸、马来酸、水杨酸和EDTA(乙二胺四乙酸)中的一种或多种,尤其是EDTA。在该热处理中,弱酸水溶液的浓度通常为0.04-0.5mol/L,优选为0.04-0.1mol/L。这里的热处理通常要求在高于室温的温度下或者在升高的温度下进行。但是该温度通常不超过回流温度,例如热处理温度为40-100℃,优选70-100℃。热处理时间通常为1-10小时,优选4-10小时。
在步骤(1)的热处理完成之后,可以直接将经步骤(1)处理得到的载体用碱金属氢氧化物水溶液在碱性条件下热处理,也可以将经步骤(1)处理得到的载体过滤、洗涤和干燥后再用碱金属氢氧化物水溶液在碱性条件下热处理,优选后者。这里的“直接”指的是步骤(1)中得到的产物无需分离(例如不进行选自过滤、洗涤和干燥中的任何一个工序)就用碱金属氢氧化物水溶液在碱性条件下热处理。对于这里的洗涤,可采用去离子水等进行洗涤,洗涤可进行一次,也可进行多次。有利的是,洗涤在减压下进行,例如在抽滤条件下进行。对于这里的干燥,通常将洗涤后的固体在60-120℃的温度 下干燥10-48h,优选10-24h。
在步骤(2)中,将经步骤(1)处理得到的载体用碱金属氢氧化物水溶液在碱性条件下热处理。作为这里的碱金属氢氧化物,通常可以使用氢氧化钠、氢氧化钾或其组合,优选氢氧化钠。碱金属氢氧化物水溶液浓度通常为0.1-1mol/L,优选为0.1-0.5mol/L。该热处理通常可以于40-100℃、优选40-80℃下进行。该热处理的时间通常为0.1-2h,优选0.1-1h。
在步骤(3)中,将步骤(2)中得到的产物直接与作为催化助剂的金属元素的水溶性盐的水溶液进行接触,或者在将步骤(2)中得到的产物过滤,洗涤,干燥后再与作为催化助剂的金属元素的水溶性盐的水溶液进行接触,以负载上作为催化助剂的金属元素。这里的“直接”指的是步骤(2)中得到的产物无需分离(例如不进行选自过滤、洗涤和干燥中的任何一个工序)就与作为催化助剂的金属元素的水溶性盐的水溶液进行接触。对于这里的洗涤,可采用去离子水等进行洗涤,洗涤可进行一次,也可进行多次。有利的是,洗涤在减压下进行,例如在抽滤条件下进行。对于这里的干燥,通常将洗涤后的固体在60-120℃的温度下干燥10-48h,优选10-24h。在步骤(3)中,提供作为催化助剂的金属的水溶性金属盐在水、优选去离子水中的水溶液。该水溶性金属盐水溶液的浓度通常为0.1-4mol/L,优选0.5-2mol/L。催化助剂的水溶性金属盐可以为硝酸盐、醋酸盐、氯化物盐、它们的水合物或其任意混合物,优选为硝酸盐、醋酸盐、它们的水合物或其任意混合物,尤其是硝酸盐或其水合物。步骤(3)中经处理载体与作为催化助剂的金属元素的水溶性盐的水溶液的接触通常在40-100℃,优选40-80℃下进行。该接触时间通常为2-24小时,优选4-12小时。
在步骤(4)中,将步骤(3)中得到的产物过滤,洗涤,干燥,并焙烧后,再与作为催化活性组分的金属元素的水溶性金属盐本身或其溶液接触,以负载上作为催化活性组分的金属元素。对于这里的洗涤,可采用去离子水等进行洗涤,洗涤可进行一次,也可进行多次。有利的是,洗涤在减压下进行,例如通过在抽滤条件下进行。对于这里的干燥,通常将洗涤后的固体在60-120℃的温度下干燥10-48h,优选10-24h。对于这里的焙烧,焙烧温度通常为350-650℃,优选450-650℃。焙烧时间通常为2-8h,优选 4-8h。作为催化活性组分的金属元素的水溶性金属盐,可以为硝酸盐、醋酸盐、氯化物盐、它们的水合物或其任意混合物,优选为硝酸盐、醋酸盐、它们的水合物或其任意混合物,尤其是硝酸盐或其水合物。当与作为催化活性组分的金属元素的水溶性金属盐本身接触时,通常将该水溶性金属盐以熔融态(例如加热至其熔点以上)与步骤(3)中得到的产物接触或混合,有利的是将该水溶性金属盐与步骤(3)中得到的产物混合后再在密闭容器内熔融。当与作为催化活性组分的金属元素的水溶性金属盐的水溶液接触时,将作为催化活性组分的金属元素的水溶性金属盐配成水溶液,然后将步骤(3)中得到的产物浸渍或浸泡在该水溶性金属盐的水溶液中,或者将该水溶性金属盐的水溶液喷雾到步骤(3)中得到的产物上。当采用作为催化活性组分的金属元素的水溶性金属盐的水溶液时,其浓度没有特别的限制,只要能够将作为催化活性组分的金属元素负载到载体上即可,通常可以为5-50重量%,优选5-30重量%。以水溶液形式接触的温度也没有特别的限制,通常可以为20-40℃。
在步骤(5)中,将步骤(4)得到的产物焙烧,得到催化剂。该焙烧通常在350-650℃下进行,优选350-500℃下进行。焙烧时间通常为2-8h,优选4-8h。焙烧气氛通常为空气或惰性气氛。
在本文中,惰性气氛指的是,在焙烧条件下不参与化学反应的气氛,例如氮气、氩气。
本发明催化剂通过先用弱酸和强碱对载体进行热处理,然后再负载催化助剂和催化活性组分,如此制备的催化剂在用于合成气制航空煤油时,能够打破传统费托反应的ASF分布,获得航空煤油的高选择性,此外还可获得可接受或更高的CO转化率。
因此,根据本发明的另一个方面,提供了一种通过本发明的催化剂制备方法制得的催化剂。该催化剂涉及的所有特征与上文对催化剂制备所述相同。
根据本发明的最后一个方面,提供了通过本发明方法制得的催化剂在合成气制航空煤油中的用途。
本发明的催化剂在用于合成气制航空煤油之前,需要将该催化剂进行 还原,以使得催化剂中的催化活性组分和任选存在的催化助剂呈单质形式。为此,通常将催化剂用含氢气的气氛还原。还原温度通常为200-400℃,优选为250-350℃。还原压力通常为0-4.0MPa,优选0-1.0MPa的表压。还原时间通常为3-12h,优选6-12h。还原气氛可以使用纯氢气,也可以使用含氢气的混合气。还原之后,催化剂中的催化活性组分和催化助剂呈单质形式,表现出催化活性。
在使用本发明催化剂由合成气制航空煤油的反应中,H 2/CO摩尔比通常为1-5,优选为1-3。当该摩尔比低于2时,可以相比于摩尔比大于等于2的情形进一步提高该反应的航空煤油的选择性。因此,在本发明的一个优选实施方案中,H 2/CO摩尔比为1至小于2。该合成反应的反应压力通常为1-5MPa(表压),优选1-3MPa(表压)。该合成反应的温度通常为150-350℃,优选200-300℃。该合成反应的W/F(气时空速)通常为5-20gh mol -1,优选8-15gh mol -1。在一个优选实施方案中,在合成气制航空煤油的反应中,反应压力为1-5MPa(表压),反应温度为150-350℃,和W/F为5-20gh mol -1。在一个更优选的实施方案中,在合成气制航空煤油的反应中,反应压力为1-3MPa(表压),反应温度为200-300℃,和W/F为8-15gh mol -1
相对于已有技术,本发明的有益效果为:
合成气制航空煤油为强放热反应并有副产物水生成,钴基单金属催化剂因易氧化导致其在反应中易团聚、烧结、失活;普通费托反应符合ASF分布,目标产物(即航空煤油)选择性低,理论值不超过40%。本发明中,通过先用弱酸和强碱对载体进行热处理,然后再负载催化活性组分(Ru、Fe、Ni、Co、Pt、Pd或其任意组合)和催化助剂,可获得高分散性的合成气制航空煤油用催化剂,有利于解决催化剂在反应过程中稳定性差的问题,提高催化剂的稳定性,并能打破传统费托反应的ASF分布,特别是能够获得航空煤油的高选择性,此外还可获得可接受的或更高的CO转化率。
实施例
以下将结合具体实施例对本发明作进一步说明,但不应将其理解为对本发明保护范围的限制。
实施例1
催化剂的制备
将EDTA用去离子水配成浓度为0.07mol/L的溶液Ⅰ,称取6.7gY型分子筛(東ソー株式会社,HSZ-320NAA)放入溶液Ⅰ中回流搅拌6h后过滤,用去离子水洗涤,然后于120℃下干燥。将NaOH用去离子水配成浓度为0.4mol/L的溶液Ⅱ,放入3.4g经前述处理后的Y型分子筛,在40℃下混合搅拌30min后过滤,用去离子水洗涤,然后于120℃下干燥后得到前驱体a。将硝酸锰用去离子水配成浓度为1mol/L的溶液Ⅲ。向溶液Ⅲ中加入1g前驱体a,在80℃下保持12h,之后过滤,用去离子水洗涤,然后于120℃下干燥后得到前驱体b。将前驱体b在空气气氛下650℃焙烧6h。然后称取1g所得物与1.72g六水硝酸钴放入研钵中,研磨30min。将得到的产物置于密闭玻璃瓶中,在60℃条件下熔融48h。然后在管式炉中氮气气氛下400℃焙烧4h,得到催化剂A,其以元素计包含15重量%Co和10%重量的Mn。
催化剂还原和反应
将所得催化剂A共0.5克装入竖立的直径为9毫米的管式反应器中,催化剂A以固定床设置。从管式反应器的上方入口通入氢气,在400℃的温度和0MPa的表压下将催化剂A持续还原8h。催化剂A还原之后,将温度降为250℃,通入合成气,H 2/CO摩尔比为1,反应压力为2MPa(表压),反应温度为250℃,和W/F为10gh mol -1进行连续的反应。反应结果见表1。
实施例2
重复实施例1中的催化剂的制备,不同之处在于:溶液III替换为1mol/L的硝酸钠水溶液。最终得到催化剂B,其以元素计包含15重量%Co和10重量%Na。
催化剂还原和反应
重复实施例1中的催化剂还原和反应工序,不同的是:将催化剂A替换为催化剂B。反应结果见表1。
实施例3
重复实施例1中的催化剂的制备,不同之处在于:溶液III替换为1mol/L的硝酸铈水溶液。最终得到催化剂C,其以元素计包含15重量%Co和10重量%Ce。
催化剂还原和反应
重复实施例1中的催化剂还原和反应工序,不同的是:将催化剂A替换为催化剂C。反应结果见表1。
实施例4
重复实施例1中的催化剂的制备,不同之处在于:溶液III替换为1mol/L的硝酸镧水溶液。最终得到催化剂D,其以元素计包含15重量%Co和10重量%La。
催化剂还原和反应
重复实施例1中的催化剂还原和反应工序,不同的是:将催化剂A替换为催化剂D。反应结果见表1。
实施例5
重复实施例1中的催化剂的制备,不同之处在于:溶液III替换为1mol/L的硝酸锂水溶液。最终得到催化剂E,其以元素计包含15重量%Co和10重量%Li。
催化剂还原和反应
重复实施例1中的催化剂还原和反应工序,不同的是:将催化剂A替换为催化剂E。反应结果见表1。
实施例6
重复实施例1中的催化剂的制备,不同之处在于:溶液III替换为1mol/L的硝酸钾水溶液。最终得到催化剂F,其以元素计包含15重量%Co和10重量%K。
催化剂还原和反应
重复实施例1中的催化剂还原和反应工序,不同的是:将催化剂A替换为催化剂F。反应结果见表1。
比较例1
称取1g Y型分子筛(東ソー株式会社,HSZ-320NAA)与1.72g六水硝酸钴放入研钵中,研磨30min。将得到的产物置于密闭玻璃瓶中,在60℃条件下熔融48h。然后在管式炉中氮气气氛下400℃焙烧4h,得到催化剂C-A,其以元素计包含15重量%Co。
催化剂还原和反应
重复实施例1中的催化剂还原和反应工序,不同的是:将催化剂A替换为催化剂C-A。反应结果见表1。
比较例2
将EDTA用去离子水配成浓度为0.07mol/L的溶液Ⅰ,称取3.4gY型分子筛(東ソー株式会社,HSZ-320NAA)放入溶液Ⅰ中回流搅拌6h后过滤,用去离子水洗涤,然后于120℃下干燥后得到前驱体a。将硝酸钠用去离子水配成浓度为1mol/L的溶液Ⅱ。向溶液Ⅱ中加入1g前驱体a,在80℃下保持12h,之后过滤,用去离子水洗涤,然后于120℃下干燥后得到前驱体b。将前驱体b在空气气氛下650℃焙烧6h。然后称取1g所得物与1.72g六水硝酸钴放入研钵中,研磨30min。将得到的产物置于密闭玻璃瓶中,在60℃条件下熔融48h。然后在管式炉中氮气气氛下400℃焙烧4h,得到催化剂C-B,其以元素计包含15重量%Co和10重量%Na。催化剂还原和反应
重复实施例1中的催化剂还原和反应工序,不同的是:将催化剂A替 换为催化剂C-B。反应结果见表1。
比较例3
将NaOH用去离子水配成浓度为0.4mol/L的溶液Ⅰ,称取6.7gY型分子筛(東ソー株式会社,HSZ-320NAA)放入溶液Ⅰ中在40℃下混合搅拌30min后过滤,用去离子水洗涤,然后于120℃下干燥后得到前驱体a。将硝酸钠用去离子水配成浓度为1mol/L的溶液Ⅱ。向溶液Ⅱ中加入1g前驱体a,在80℃下保持12h,之后过滤,用去离子水洗涤,然后于120℃下干燥后得到前驱体b。将前驱体b在空气气氛下650℃焙烧6h。然后称取1g所得物与1.72g六水硝酸钴放入研钵中,研磨30min。将得到的产物置于密闭玻璃瓶中,在60℃条件下熔融48h。然后在管式炉中氮气气氛下400℃焙烧4h,得到催化剂C-C,其以元素计包含15重量%Co和10重量%Na。
催化剂还原和反应
重复实施例1中的催化剂还原和反应工序,不同的是:将催化剂A替换为催化剂C-C。反应结果见表1。
比较例4
称取1g Y型分子筛(東ソー株式会社,HSZ-320NAA)与1.72g六水硝酸钴的饱和水溶液浸渍后干燥。然后在管式炉中氮气气氛下400℃焙烧4h,得到催化剂C-D,其以元素计包含15重量%Co。
催化剂还原和反应
重复实施例1中的催化剂还原和反应工序,不同的是:将催化剂A替换为催化剂C-D。反应结果见表1。
比较例5
将硝酸钠用去离子水配成浓度为1mol/L的溶液Ⅰ。向溶液Ⅰ中加入1g Y型分子筛(東ソー株式会社,HSZ-320NAA),在80℃下保持12h,之后过滤,用去离子水洗涤,然后于120℃下干燥后得到前驱体a。将前驱体a在空气气氛下650℃焙烧6h。然后称取1g所得物与1.72g六水硝酸钴放入研钵中,研磨30min。将得到的产物置于密闭玻璃瓶中,在60℃条件下熔融48h。然后在管式炉中氮气气氛下400℃焙烧4h,得到催化剂C-E,其以元素计包含15重量%Co和10重量%Na。
催化剂还原和反应
重复实施例1中的催化剂还原和反应工序,不同的是:将催化剂A替换为催化剂C-E。反应结果见表1。
表1
Figure PCTCN2019080955-appb-000001
a:为航空煤油组分中的异/正比,即产物组分为C 8-C 16的烃类中异构烃类与正构烃类的摩尔比,异/正比越高油品冰点越低越有利于航空器的使用。

Claims (14)

  1. 一种制备合成气制航空煤油用催化剂的方法,该催化剂为负载型催化剂,包含载体和负载于该载体上的催化活性组分和催化助剂,基于该催化剂的总重量,该催化剂包含:
    (A)以元素计为1-50重量%的一种或多种选自Ru、Fe、Ni、Co、Pt和Pd中的元素作为催化活性组分,
    (B)以元素计为1-20重量%的不同于催化活性组分的一种或多种选自元素周期表第一主族金属元素、过渡元素和镧系元素中的元素作为催化助剂,以及
    (C)载体,
    其特征在于所述催化剂通过包括如下步骤的方法制备:
    (1)将载体用电离常数K a为1.0×10 -3-1.0×10 -1的弱酸水溶液热处理;
    (2)将经步骤(1)处理得到的载体用碱金属氢氧化物水溶液在碱性条件下热处理;
    (3)将步骤(2)中得到的产物直接与作为催化助剂的金属元素的水溶性盐的水溶液进行接触,或者在将步骤(2)中得到的产物过滤,洗涤,干燥后与作为催化助剂的金属元素的水溶性盐的水溶液进行接触,以负载上作为催化助剂的金属元素;
    (4)将步骤(3)中得到的产物过滤,洗涤,干燥,并焙烧后,再与作为催化活性组分的金属元素的水溶性金属盐本身或其溶液接触,以负载上作为催化活性组分的金属元素;以及
    (5)将步骤(4)得到的产物焙烧,得到催化剂。
  2. 根据权利要求1的方法,其中基于该催化剂的总重量,该催化剂包含:
    (A)以元素计为5-30重量%,更优选12-18重量%的催化活性组分,和
    (B)以元素计为1-15重量%,更优选8-12重量%的催化助剂;以及
    (C)60-94重量%、更优选70-80重量%的载体。
  3. 根据权利要求1或2的方法,其中催化活性组分为选自Ni、Co和Fe中的一种或多种元素,尤其是Co、Fe或其组合;和/或催化助剂为选自Na、K、La、Ce和Mn中的一种或多种元素,尤其是La、Ce或其组合;和/或,载体为选自碳纳米管、石墨烯、活性炭、SiO 2、Al 2O 3、ZrO 2、碳化硅、TiO 2和分子筛中的一种或多种,优选为一种或多种分子筛,尤其是Y型分子筛、斜发沸石、丝光沸石和ZSM-5中的一种或多种,前提是:当催化助剂为Ti时,载体不是TiO 2,当催化助剂为Zr时,载体不是ZrO 2
  4. 根据权利要求1-3中任一项的方法,其中催化活性组分的水溶性金属盐为硝酸盐、醋酸盐、氯化物盐、它们的水合物或其任意混合物,优选硝酸盐或其水合物;和/或,催化助剂的水溶性盐为硝酸盐、醋酸盐、氯化物盐、它们的水合物或其任意混合物,优选硝酸盐或其水合物。
  5. 根据权利要求1-4中任一项的方法,其中步骤(1)中所述弱酸为有机弱酸,优选为选自草酸、苯基六甲酸、马来酸、水杨酸和EDTA中的一种或多种,尤其是EDTA;和/或步骤(1)中的弱酸水溶液的浓度为0.04-0.5mol/L,优选为0.04-0.1mol/L;和/或步骤(1)中的热处理在不超过回流温度的条件下进行,优选在40-100℃、更优选70-100℃的温度下进行;和/或步骤(1)中的热处理进行1-10小时,优选4-10小时。
  6. 根据权利要求1-5中任一项的方法,其中步骤(2)中碱金属氢氧化物为氢氧化钠、氢氧化钾或其组合,优选氢氧化钠;和/或,碱金属氢氧化物水溶液浓度为0.1-1mol/L,优选为0.1-0.5mol/L;和/或,步骤(2)中的热处理于40-100℃、优选40-80℃下进行;和/或,步骤(2)中热处理的时间为0.1-2h,优选0.1-1h。
  7. 根据权利要求1-6中任一项的方法,其中在进行步骤(2)的热处理之前,将经步骤(1)处理得到的载体过滤、洗涤和干燥;和/或,在步骤(3)中,将步骤(2)中得到的产物过滤,洗涤,干燥后再与作为催化助剂的金属元素的水溶性盐的水溶液进行接触以负载上作为催化助剂的金属元素。
  8. 根据权利要求1-7中任一项的方法,其中在步骤(3)中,作为催化助剂的金属元素的水溶性盐的水溶液的浓度为0.1-4mol/L,优选0.5-2mol/L; 在步骤(3)中,载体与作为催化助剂的金属元素的水溶性盐的水溶液的接触在40-100℃,优选40-80℃下进行;和/或,载体与作为催化助剂的金属元素的水溶性盐的水溶液的接触进行2-24小时,优选4-12小时。
  9. 根据权利要求1-8中任一项的方法,其中步骤(4)中,作为催化活性组分的金属元素的水溶性金属盐以熔融态与步骤(3)中得到的产物接触,优选的是,将作为催化活性组分的金属元素的水溶性金属盐与步骤(3)中得到的产物混合后再在密闭容器内熔融。
  10. 根据权利要求1-9中任一项的方法,其中步骤(2)、(3)和(4)中的干燥各自独立地在60-120℃条件下进行;和/或,步骤(4)和步骤(5)中的焙烧各自独立地在350-650℃下进行,优选的是,步骤(4)中的焙烧在450-650℃下进行,步骤(5)中的焙烧在350-500℃下进行。
  11. 通过根据权利要求1-10中任一项的方法制得的催化剂。
  12. 通过根据权利要求1-10中任一项的方法制得的催化剂在合成气制航空煤油中的用途。
  13. 根据权利要求12的用途,其中在合成气制航空煤油的反应中,H 2/CO摩尔比为1-5,优选为1-3,更优选为1至小于2。
  14. 根据权利要求12或13的用途,其中在合成气制航空煤油的反应中,反应压力为1-5MPa(表压),反应温度为150-350℃,和W/F为5-20gh mol -1;优选反应压力为1-3MPa(表压),反应温度为200-300℃,和W/F为8-15gh mol -1
PCT/CN2019/080955 2018-04-13 2019-04-02 一种合成气合成航空煤油用催化剂的制备方法以及由此得到的催化剂和其应用 WO2019196703A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020555431A JP7320532B2 (ja) 2018-04-13 2019-04-02 合成ガスから航空灯油を合成する際に使用される触媒の製造方法、その方法により得られた触媒、及びその使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810331053.XA CN110368983A (zh) 2018-04-13 2018-04-13 一种合成气合成航空煤油用催化剂的制备方法以及由此得到的催化剂和其应用
CN201810331053.X 2018-04-13

Publications (1)

Publication Number Publication Date
WO2019196703A1 true WO2019196703A1 (zh) 2019-10-17

Family

ID=68162816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080955 WO2019196703A1 (zh) 2018-04-13 2019-04-02 一种合成气合成航空煤油用催化剂的制备方法以及由此得到的催化剂和其应用

Country Status (3)

Country Link
JP (1) JP7320532B2 (zh)
CN (1) CN110368983A (zh)
WO (1) WO2019196703A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113351215A (zh) * 2020-03-05 2021-09-07 石河子市中易连疆新能源有限责任公司 一种核壳结构催化剂、其制备方法及其应用
CN114425411A (zh) * 2020-10-14 2022-05-03 中国石油化工股份有限公司 负载型Fe基催化剂及其制备和应用
CN115663215A (zh) * 2022-12-12 2023-01-31 华北电力大学 负载型电催化剂的制备方法
CN115920954A (zh) * 2022-12-20 2023-04-07 江苏润普食品科技股份有限公司 用于催化山梨酸聚酯的解聚以制备山梨酸的固体碱催化剂及其制备方法和用途

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006010148A2 (en) * 2004-07-16 2006-01-26 Conocophillips Company Combination of amorphous materials for hydrocracking catalysts
CN101940958A (zh) * 2009-07-09 2011-01-12 中国石油化工股份有限公司抚顺石油化工研究院 负载型铁基合成气制低碳烯烃催化剂的制备方法
CN101993739A (zh) * 2009-08-03 2011-03-30 沙索技术有限公司 全合成的喷气燃料
CN103212449A (zh) * 2013-04-15 2013-07-24 沈阳三聚凯特催化剂有限公司 加氢精制催化剂载体及其制备方法、使用该载体的加氢精制催化剂及其制备方法
CN105032496A (zh) * 2015-06-16 2015-11-11 武汉凯迪工程技术研究总院有限公司 用于合成气选择性合成高品质煤油馏分的载体及其催化剂和制备方法
EP2995377A1 (en) * 2014-09-09 2016-03-16 ETH Zurich Catalytic materials based on functionalized ZSM-5
CN105562079A (zh) * 2016-02-05 2016-05-11 中科合成油技术有限公司 临氢异构化催化剂及其制备方法与应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023481A (ja) * 1983-07-18 1985-02-06 Res Assoc Petroleum Alternat Dev<Rapad> 炭化水素類の製造方法
US4556645A (en) * 1984-06-27 1985-12-03 Union Carbide Corporation Enhanced catalyst for conversion of syngas to liquid motor fuels
JPH0283038A (ja) * 1988-09-20 1990-03-23 Union Carbide Corp 改善された選択率を有するコバルトフィッシャー‐トロプシュ触媒
GB9103417D0 (en) * 1991-02-19 1991-04-03 Shell Int Research Washing treatment for catalysts and/or catalyst precursors
US6262132B1 (en) 1999-05-21 2001-07-17 Energy International Corporation Reducing fischer-tropsch catalyst attrition losses in high agitation reaction systems
CN1167650C (zh) * 2000-07-17 2004-09-22 中国科学院山西煤炭化学研究所 一种由合成气合成烃的生产方法
CN1219569C (zh) * 2004-03-19 2005-09-21 中国科学院山西煤炭化学研究所 浆态床费托合成废钴基催化剂与重质烃的分离回收方法
WO2012135993A1 (zh) * 2011-04-02 2012-10-11 万华实业集团有限公司 由合成气高选择性制备高品质汽油馏分的催化剂及其制备方法
JP5919145B2 (ja) 2012-09-03 2016-05-18 新日鉄住金エンジニアリング株式会社 合成ガスから炭化水素を製造する触媒の製造方法、合成ガスから炭化水素を製造する方法、及び触媒の再生方法
WO2015155216A1 (en) 2014-04-10 2015-10-15 Danmarks Tekniske Universitet A general method to incorporate metal nanoparticles in zeolites and zeotypes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006010148A2 (en) * 2004-07-16 2006-01-26 Conocophillips Company Combination of amorphous materials for hydrocracking catalysts
CN101940958A (zh) * 2009-07-09 2011-01-12 中国石油化工股份有限公司抚顺石油化工研究院 负载型铁基合成气制低碳烯烃催化剂的制备方法
CN101993739A (zh) * 2009-08-03 2011-03-30 沙索技术有限公司 全合成的喷气燃料
CN103212449A (zh) * 2013-04-15 2013-07-24 沈阳三聚凯特催化剂有限公司 加氢精制催化剂载体及其制备方法、使用该载体的加氢精制催化剂及其制备方法
EP2995377A1 (en) * 2014-09-09 2016-03-16 ETH Zurich Catalytic materials based on functionalized ZSM-5
CN105032496A (zh) * 2015-06-16 2015-11-11 武汉凯迪工程技术研究总院有限公司 用于合成气选择性合成高品质煤油馏分的载体及其催化剂和制备方法
CN105562079A (zh) * 2016-02-05 2016-05-11 中科合成油技术有限公司 临氢异构化催化剂及其制备方法与应用

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113351215A (zh) * 2020-03-05 2021-09-07 石河子市中易连疆新能源有限责任公司 一种核壳结构催化剂、其制备方法及其应用
CN113351215B (zh) * 2020-03-05 2022-12-20 石河子市中易连疆新能源有限责任公司 一种核壳结构催化剂、其制备方法及其应用
CN114425411A (zh) * 2020-10-14 2022-05-03 中国石油化工股份有限公司 负载型Fe基催化剂及其制备和应用
CN114425411B (zh) * 2020-10-14 2023-08-29 中国石油化工股份有限公司 负载型Fe基催化剂及其制备和应用
CN115663215A (zh) * 2022-12-12 2023-01-31 华北电力大学 负载型电催化剂的制备方法
CN115663215B (zh) * 2022-12-12 2024-03-12 华北电力大学 负载型电催化剂的制备方法
CN115920954A (zh) * 2022-12-20 2023-04-07 江苏润普食品科技股份有限公司 用于催化山梨酸聚酯的解聚以制备山梨酸的固体碱催化剂及其制备方法和用途
CN115920954B (zh) * 2022-12-20 2023-10-24 江苏润普食品科技股份有限公司 用于催化山梨酸聚酯的解聚以制备山梨酸的固体碱催化剂及其制备方法和用途

Also Published As

Publication number Publication date
JP2021520992A (ja) 2021-08-26
JP7320532B2 (ja) 2023-08-03
CN110368983A (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
WO2019196703A1 (zh) 一种合成气合成航空煤油用催化剂的制备方法以及由此得到的催化剂和其应用
CN108236955B (zh) 一种草酸二甲酯加氢合成乙醇用催化剂的制备方法以及由此得到的催化剂和其应用
WO2017173791A1 (zh) 一种用于合成气直接制备烯烃的碳化钴基催化剂及其制备方法和应用
CN110975938A (zh) 一种用于二氧化碳加氢制甲醇的催化剂及其制备方法
KR20190029109A (ko) 선택적 수소화용 촉매 및 그것을 이용하는 선택적 수소화법
CN113101964B (zh) 一种介孔氧化铈光催化剂及其制备方法和应用
CN101270297A (zh) 煤基合成气钴基费托合成液体燃料并附产芳烃的工艺
CN108940355B (zh) 一种碱修饰的催化剂及一氧化碳加氢反应制乙烯的方法
CN111167460A (zh) 一种用于天然气直裂解制备H2与CNTs的催化剂及其制备方法和应用
CN105879862B (zh) 一种蛋壳型贵金属催化剂的制备方法及其用于氧芴加氢开环制备邻苯基苯酚的方法
CN103846100A (zh) 对苯二甲酸加氢精制用Pd/C-SiC催化剂及其制备与应用
CN109569623B (zh) 合成气直接制烯烃的催化剂、制备方法及使用方法
CN112808295B (zh) 一种单位点Co(Ⅱ)催化剂的制备方法及其应用
CN105642282B (zh) 一种低碳烷烃脱氢催化剂及其制备方法和应用
JPH0674215B2 (ja) 炭化水素の製造方法
CN107376936B (zh) 一种铂-钴/凹凸棒石催化剂及其制备方法和应用
GB2474806A (en) Process for producing aromatic compound
CN101993362A (zh) 由co偶联生产草酸酯的方法
CN114804997B (zh) 环己基苯的制备方法及相应的金属催化剂
KR101988370B1 (ko) 이산화탄소 메탄화 촉매 및 이의 제조 방법
CN103769227B (zh) 一种改性硅胶载体及其制备方法和应用
CN114100653B (zh) 一种氮化物负载钯催化剂及其制备方法和应用
CN101869834B (zh) 用于石油烃类裂解原料内加热的选择性氢燃烧催化剂及其应用
CN114054079A (zh) 一种乙醇脱氢制备乙醛催化剂的制备方法与应用
CN111111726A (zh) 一种丙烷氧化脱氢制备丙烯的催化剂的制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19784799

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020555431

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19784799

Country of ref document: EP

Kind code of ref document: A1