WO2017173791A1 - 一种用于合成气直接制备烯烃的碳化钴基催化剂及其制备方法和应用 - Google Patents

一种用于合成气直接制备烯烃的碳化钴基催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2017173791A1
WO2017173791A1 PCT/CN2016/100772 CN2016100772W WO2017173791A1 WO 2017173791 A1 WO2017173791 A1 WO 2017173791A1 CN 2016100772 W CN2016100772 W CN 2016100772W WO 2017173791 A1 WO2017173791 A1 WO 2017173791A1
Authority
WO
WIPO (PCT)
Prior art keywords
hours
water
solution
cobalt
temperature
Prior art date
Application number
PCT/CN2016/100772
Other languages
English (en)
French (fr)
Inventor
李正甲
钟良枢
孙予罕
于飞
安芸蕾
齐行振
林铁军
肖亚宁
刘斌
王东飞
Original Assignee
中国科学院上海高等研究院
山西潞安环保能源开发股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海高等研究院, 山西潞安环保能源开发股份有限公司 filed Critical 中国科学院上海高等研究院
Priority to US16/090,586 priority Critical patent/US11154844B2/en
Priority to EP16897723.9A priority patent/EP3441140B1/en
Publication of WO2017173791A1 publication Critical patent/WO2017173791A1/zh
Priority to ZA2018/07414A priority patent/ZA201807414B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/0445Preparation; Activation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/20Carbon compounds
    • C07C2527/22Carbides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/22Higher olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to the technical field of catalysts, in particular to a cobalt carbide-based catalyst for direct conversion of synthesis gas to olefins, a preparation method and application thereof.
  • olefins The production of olefins is one of the most important parts of petrochemicals. Syngas synthesis (Syngas, a mixture of hydrogen H 2 and carbon monoxide CO) Fischer-Tropsch synthesis as a potential non-petroleum route for the preparation of olefins (Fischer-Tropsch to Olefins) has received great attention.
  • Fischer-Tropsch synthesis is the main route for the conversion and utilization of syngas.
  • the current Fischer-Tropsch synthesis process is divided into two categories: high temperature Fischer-Tropsch synthesis and low temperature Fischer-Tropsch synthesis.
  • South Africa's Sasol's high-temperature Fischer-Tropsch synthesis process uses Fe-based catalysts, using fluidized bed reactors at temperatures between 300-350 ° C, and produces gasoline and linear low molecular weight alkanes.
  • Low-temperature Fischer-Tropsch synthesis uses Fe-based or Co-based catalysts at temperatures between 200 and 240 ° C to produce high molecular weight linear hydrocarbons.
  • There are various factors affecting Fischer-Tropsch synthesis such as catalyst structure, reactor and reaction conditions.
  • the reaction temperature, reaction pressure, space velocity and gas composition may greatly affect the final catalytic performance.
  • the reaction temperature mainly affects the reaction chemical equilibrium, and the higher the temperature, is not necessarily favorable for the F-T synthesis reaction.
  • the temperature rises the CO conversion rate increases, but the carbon deposition reaction is an endothermic reaction.
  • Increasing the temperature is conducive to the occurrence of carbon deposition reaction.
  • the catalyst is easily over-temperature sintered, shortening the service life. It can even damage the device. From the point of view of kinetics, the temperature rises, the reaction speed increases, and the side reaction rate also increases.
  • the FTO catalysts in the above literature generally have the disadvantages of low olefin selectivity and high methane selectivity. Therefore, it is necessary to develop an excellent FTO catalyst while achieving higher olefin selectivity and lower methane selectivity.
  • the object of the present invention is to overcome the defects of the prior art, and to provide a cobalt carbide-based catalyst for direct conversion of synthesis gas to produce olefin, a preparation method thereof and application thereof, the preparation method is simple, and the prepared catalyst has good selectivity and conversion. The rate is high.
  • a first aspect of the present invention provides a method for preparing a cobalt carbide-based catalyst for directly producing an olefin from a synthesis gas, comprising the steps of:
  • the separation can be filtration separation or centrifugation.
  • the solid obtained in the step 3) is added to the alkali metal auxiliary by an equal volume impregnation method, dried, and calcined; or the solid obtained in the step 2) is added to the alkali metal auxiliary by an equal volume impregnation method, dried, and calcined. It is then reduced in a reducing atmosphere.
  • the alkali metal promoter is an alkali metal base and/or an alkali metal salt.
  • the alkali metal promoter may be an alkali metal base and/or an alkali metal salt well known in the art.
  • the alkali metal base may be lithium hydroxide, sodium hydroxide, potassium hydroxide, barium hydroxide or barium hydroxide.
  • the alkali metal salt may be lithium nitrate, lithium carbonate, sodium nitrate, potassium nitrate, cerium nitrate, cerium nitrate or the like.
  • the cobalt source is Co
  • the molar ratio of the cobalt source to the alkali metal auxiliary is 1:0.001 to 0.5, more preferably 1:0.001 to 0.1, such as 1:0.001 to 0.01, 1:0.01 to 0.1 or 1:0.1. ⁇ 0.5;
  • drying temperature is 60 to 120 ° C, more preferably 60 to 100 ° C, drying time is 4 to 48 hours, more preferably 4 to 24 hours;
  • the calcination temperature is 200 to 500 ° C, more preferably 300 to 500 ° C, and the calcination time is 1 to 24 hours, more preferably 1 to 12 hours.
  • the method further includes any one or more of the following features:
  • the cobalt source is an organic cobalt source and/or an inorganic cobalt source
  • the electron auxiliary agent is selected from one or more of a transition metal salt, an alkaline earth metal salt, and a rare earth metal salt;
  • the precipitating agent is an alkali and/or a basic salt
  • the structural aid is selected from one or more of the group consisting of alumina, silica, titania, zirconia, magnesia, and carbon materials.
  • the cobalt source may be any of various organic cobalt sources and/or inorganic cobalt sources known in the art that are capable of obtaining cobalt oxide.
  • the organic cobalt source may be one or more of an organic cobalt source such as cobalt formate or cobalt acetate;
  • the inorganic cobalt source may be one or more of inorganic cobalt sources such as cobalt nitrate, cobalt chloride, and cobalt sulfate. kind. More preferably, it is cobalt nitrate and/or cobalt chloride.
  • the electronic auxiliary agent may be one or more of a transition metal auxiliary agent, an alkaline earth metal auxiliary agent, and a rare earth metal auxiliary agent known in the art.
  • the transition metal promoter may be one or more of transition metals such as vanadium, chromium, manganese, etc.
  • the alkaline earth metal adjuvant may be one or more of cerium, magnesium, calcium, strontium and barium
  • the rare earth metal adjuvant may be one or more of a lanthanide metal, lanthanum and cerium. More preferably, it is one or more of manganese, hydrazine, and hydrazine.
  • the precipitating agent can be a base and/or a basic salt well known in the art.
  • the base may be one or more of a base such as lithium hydroxide, sodium hydroxide, potassium hydroxide or ammonia;
  • the basic salt may be alkaline such as sodium carbonate, ammonium carbonate, sodium hydrogencarbonate or potassium carbonate.
  • the salts More preferably, it is sodium carbonate and/or ammonium carbonate.
  • the structural adjuvant can be one or more of the carriers well known in the art.
  • the carrier may be one or more of a carrier of alumina, silica, titania, zirconia, magnesia, carbon, and the like. More preferably, it is a carbon material and/or zirconia.
  • the method further includes any one or more of the following features:
  • the cobalt source is calculated as Co, and the cobalt source: electron adjuvant: water molar ratio is 1:0 to 10:1 to 1000; more preferably 1:0 to 5:1 to 1000; further Preferably, it is 1:0 to 5:25 to 1000; still more preferably 1:0 to 2:25 to 500; for example, the cobalt source: the molar ratio of the electron auxiliary agent is 1:0 to 0.1, 1:0.1 to 0.2.
  • cobalt source water molar ratio of 1:1 to 25 1,25 ⁇ 35, 1:35 ⁇ 40, 1:40 ⁇ 50, 1:50 ⁇ 60, 1:60 ⁇ 100, 1:100 ⁇ 500 or 1:500 ⁇ 1000;
  • step 1) the molar ratio of the precipitating agent to water is 1:1 to 1000; more preferably 1:25 to 800; for example, 1:1 to 25, 1:25 ⁇ 30, 1:30 ⁇ 50, 1:50 ⁇ 75, 1:75 ⁇ 100, 1:100 ⁇ 200, 1:200 ⁇ 500, 1:500 ⁇ 800 or 1:800 ⁇ 1000;
  • step 2) when the first solution and the second solution are added to water, the mass ratio of cobalt:water is 1:1 to 1000; for example, 1:1 to 10, 1:10 to 20, 1:20. 50, 1:50-80, 1:80-100, 1:100-110, 1:110-150, 1:150-250, 1:250-500, 1:500-800, 1:800-900 or 1:900 ⁇ 1000;
  • step 2) when the first solution and the second solution are added with water and a structural auxiliary, the mass ratio of the structural auxiliary: cobalt:water is 1:0.05 to 1:1 to 1000; more preferably 1:0.1 ⁇ 0.5:10 ⁇ 1000, such as: structural auxiliary: cobalt mass ratio is 1:0.05-0.1, 1:0.1-0.2, 1:0.2-0.3, 1:0.3-0.4, 1:0.4-0.5, 1: 0.5 to 0.8 or 1:0.8 to 1; structural auxiliary: water mass ratio is 1:10 to 100, 1:100 to 500, 1:500 to 800 or 1:800 to 1000.
  • the water in the mass ratio refers to the water added in the step 2).
  • the method further includes any one or more of the following features:
  • the precipitation temperature is 0 to 90 ° C, more preferably 0 to 80 ° C
  • the pH is controlled to 7 to 12, more preferably 7 to 10; for example, the precipitation temperature is 0 to 15 ° C, 15 to 20 °C, 20 ⁇ 25°C, 25 ⁇ 30°C, 30 ⁇ 50°C, 50 ⁇ 60°C, 60 ⁇ 80°C or 80 ⁇ 90°C
  • pH control is 7 ⁇ 7.5, 7.5 ⁇ 8, 8 ⁇ 9, 9 ⁇ 10 Or 10 ⁇ 12;
  • the crystallization temperature is 0 to 200 ° C, more preferably 30 to 180 ° C, and the crystallization time is 1 to 72 hours, more preferably 2 to 48 hours; for example, the crystallization temperature is 0 to 30. °C, 30 to 60 ° C, 60 to 70 ° C, 70 to 80 ° C, 80 to 100 ° C, 100 to 120 ° C, 120 to 150 ° C, 150 to 180 ° C or 180 to 200 ° C; crystallization time is 1 to 2 hours 2 to 4 hours, 4 to 5 hours, 5 to 6 hours, 6 to 10 hours, 10 to 12 hours, 12 to 48 hours, or 48 to 72 hours;
  • the drying temperature is 60 to 120 ° C, more preferably 60 to 100 ° C, and the drying time is 4 to 48 hours, more preferably 4 to 24 hours; for example, the drying temperature is 60 to 80 ° C, 80 ⁇ 100 ° C or 100 ⁇ 120 ° C; drying time is 4 to 10 hours, 10 to 12 hours, 12 to 24 hours or 24 to 48 hours;
  • the calcination temperature is 200 to 500 ° C, more preferably 300 to 500 ° C, and the calcination time is 1 to 24 hours, more preferably 1 to 12 hours; for example, the calcination temperature is 200 to 300 ° C, 300 ⁇ 330°C, 330 ⁇ 400°C or 400 ⁇ 500°C; calcination time is 1-3, 3-4, 4-5, 5-6, 6-12 or 12-24;
  • the reduction conditions are: a reduction temperature of 100 to 600 ° C, more preferably 300 to 500 ° C, a reduction pressure of 0.1 to 10 MPa, more preferably 0.1 to 1 MPa, and a volumetric space velocity of 500 to 100,000 h -1 , preferably from 2000 to 10000 h -1 , a reduction time of from 1 to 24 hours, more preferably from 1 to 12 hours; for example, a reduction temperature of from 100 to 250 ° C, from 250 to 300 ° C, from 300 to 400 ° C, from 400 to 500 ° C or 500 to 600 ° C; reduction pressure is 0.1 to 0.7 MPa, 0.7 to 0.8 MPa, 0.8 to 1 MPa, 1 to 2 MPa, 2 to 3 MPa, 3 to 5 MPa, 5 to 6 MPa, 6 to 7 MPa, 7 to 8 MPa or 8 to 10 MPa; volume space velocity of 500 ⁇ 2000h -1, 2000 ⁇ 4000h -1, 4000 ⁇ 5000h -1, 5000
  • the carbonization conditions are: a carbonization temperature of 100 to 500 ° C, more preferably 150 to 300 ° C, a carbonization pressure of 0.1 to 10 MPa, more preferably 0.1 to 1 MPa, and a volumetric space velocity of 500 to 100,000 h -1 More preferably, it is 2000 to 10000 h -1 , and the carbonization time is 1 to 72 hours, more preferably 1 to 48 hours; for example, the carbonization temperature is 100 to 150 ° C, 150 to 200 ° C, 200 to 250 ° C, and 250 to 300 ° C.
  • the carbonization time is 1 to 4 hours, 4 to 6 hours, 6 to 8 hours, 8 to 12 hours, 12 to 18 hours, 18 to 24 hours, 24 to 48 hours, or 48 to 72 hours.
  • the reducing atmosphere in step 3) may be one or more of reducing gases known in the art.
  • the reducing atmosphere is hydrogen, carbon monoxide, hydrogen or a mixture of carbon monoxide and inert gas in any ratio. More preferably, the reducing atmosphere is a mixture of hydrogen and/or 10% hydrogen argon.
  • the carbonization atmosphere in step 3) may be one or more of the carbonization atmospheres known in the art.
  • the carbonization atmosphere is a mixture of carbon monoxide, carbon monoxide and other gases, and the other gases are hydrogen and/or an inert gas. More preferably, it is carbon monoxide and/or synthesis gas.
  • a second aspect of the invention provides a cobalt carbide-based catalyst for the direct preparation of an olefin from a synthesis gas, which is obtained by the preparation method according to any of the above.
  • the third aspect of the present invention provides the above-mentioned application of a cobalt carbide-based catalyst for synthesizing a olefin directly for syngas, which is used for directly preparing an olefin by a synthesis gas, and the reaction condition is a reaction temperature of 150 to 500 ° C, preferably 200 ° C to 300 ° C.
  • reaction pressure 0.1 ⁇ 10MPa, preferably 0.1 ⁇ 1MPa, volume space velocity of 500 ⁇ 100000h -1, preferably 1000 ⁇ 40000h -1, H 2 and CO molar ratio of from 1: 10 to 10: 1, preferably 1 : 3 ⁇ 3: 1; such as: reaction temperature is 150 ⁇ 200 ° C, 200 ⁇ 230 ° C, 230 ⁇ 240 ° C, 240 ⁇ 250 ° C, 250 ⁇ 260 ° C, 260 ⁇ 270 ° C, 270 ⁇ 300 ° C or 300 ⁇ 500 °C; reaction pressure is 0.1-0.5MPa, 0.5 ⁇ 1MPa or 1 ⁇ 10MPa; volumetric space velocity is 500 ⁇ 1000h -1 , 1000 ⁇ 2000h -1 , 2000 ⁇ 4000h -1 or 4000 ⁇ 100000h -1 ; H 2 and CO The molar ratio is 1:10 to 1:3, 1:3 to 2:1, 2:1 to 3:1 or 3:1 to 10:1.
  • the reaction is carried out in a fixed bed, a slurry bed or a fluidized bed. More preferably, the reaction is carried out in a fixed bed.
  • the method of precipitation is a method known to those skilled in the art.
  • a double drop method or a single drop method can be carried out at a certain dropping temperature at a certain temperature and pH.
  • the method of crystallization is a method known to those skilled in the art. For example, stirring at a certain temperature or hydrothermal crystallization for a certain period of time.
  • the drying method is a method known to those skilled in the art. For example, drying at a certain temperature for a certain period of time.
  • the drying can be carried out under vacuum conditions, an air atmosphere, and an inert atmosphere.
  • the method of calcination is a method known to those skilled in the art. For example, baking at a certain temperature for a certain period of time.
  • the calcination can be carried out under vacuum conditions, an air atmosphere, and an inert atmosphere.
  • the method of reduction is a method known to those skilled in the art. For example, it is reduced for a certain period of time under a certain temperature volume and space velocity reducing atmosphere.
  • the method of carbonization is a method known to those skilled in the art. For example, it is carbonized for a certain period of time under a certain temperature volume airspeed carbonization atmosphere.
  • the method of the equal volume impregnation is a method known to those skilled in the art.
  • the solution is disposed at a certain ratio, dried at a certain temperature for a certain period of time, and baked at a certain temperature for a certain period of time.
  • the drying can be carried out under vacuum conditions, an air atmosphere, and an inert atmosphere;
  • the baking can be carried out under vacuum conditions, an air atmosphere, and an inert atmosphere.
  • the invention relates to a method for preparing a cobalt carbide-based catalyst for directly preparing an olefin by syngas, which comprises dissolving a mixture of an active center cobalt source and an electron auxiliary agent to form a mixed solution, and then precipitating the solution on the carrier with a precipitant solution, thereby accurately controlling the precipitation.
  • the temperature and the pH of the precipitated, the prepared catalyst are subjected to low temperature reduction and mild carbonization treatment, and the obtained cobalt carbide-based catalyst has high olefin selectivity, low methane selectivity and high conversion rate.
  • Fig. 1 is a chart showing the X-ray diffraction spectrum of the catalyst obtained in Example 1, and it is understood that the catalyst is Co 2 C.
  • it was crystallized at a temperature of 60 ° C for 2 hours, centrifuged, and the obtained solid product was dried at 80 ° C for 12 hours, and the dried solid was baked at 330 ° C for 4 hours.
  • Table 1 The experimental results are shown in Table 1.
  • it was crystallized at a temperature of 180 ° C for 2 hours, centrifuged, and the obtained solid product was dried at 80 ° C for 12 hours, and the dried solid was baked at 330 ° C for 4 hours.
  • it was crystallized at a temperature of 60 ° C for 2 hours, centrifuged, and the obtained solid product was dried at 80 ° C for 12 hours, and the dried solid was baked at 330 ° C for 4 hours.
  • the molar ratio of ammonium carbonate:water 1:100 was sufficiently stirred and dissolved to obtain a second solution.
  • the mixture was crystallized at 70 ° C for 6 hours, centrifuged, and the obtained solid product was dried at 80 ° C for 10 hours, and the dried solid was calcined at 300 ° C for 5 hours.
  • an H 2 atmosphere at 600 ° C, 0.1 MPa, reduction for 5 hours, space velocity of 8000 h -1 , in 10% CO / He atmosphere at 250 ° C, 7 MPa, carbonization for 6 hours, space velocity of 8000 h -1 , with H 2 /
  • Table 1 The experimental results are shown in Table 1.
  • the mixture was crystallized at 70 ° C for 6 hours, centrifuged, and the obtained solid product was dried at 80 ° C for 10 hours, and the dried solid was calcined at 300 ° C for 5 hours.
  • 300 ° C, 10 MPa reduction for 5 hours, space velocity of 8000 h -1 , 300 ° C in 10% CO / He atmosphere, 0.1 MPa, carbonization for 72 hours, space velocity of 500 h -1 , to H 2 /
  • Table 1 The experimental results are shown in Table 1.
  • the molar ratio of ammonium carbonate:water 1:100 was sufficiently stirred and dissolved to obtain a second solution.
  • the pH is controlled at 9, and the first solution and the second solution obtained in the step 1) are simultaneously added dropwise to the liquid obtained in the step 2).
  • the pH was controlled at 7.5, and the first solution and the second solution obtained in the step 1) were simultaneously added dropwise to the liquid obtained in the step 2).
  • the pH is controlled at 7, and the first solution and the second solution obtained in the step 1) are simultaneously added dropwise to the liquid obtained in the step 2).
  • the pH is controlled at 10, and the first solution and the second solution obtained in the step 1) are simultaneously added dropwise to the liquid obtained in the step 2).
  • the mixture was crystallized at a temperature of 80 ° C for 72 hours, centrifuged, and the obtained solid product was dried at 60 ° C for 48 hours, and the dried solid was calcined at 330 ° C for 12 hours.
  • the experimental results are shown in Table 1.
  • the pH is controlled at 9, and the first solution and the second solution obtained in the step 1) are simultaneously added dropwise to the liquid obtained in the step 2).
  • the molar ratio of potassium carbonate:water 1:30 was sufficiently stirred and dissolved to obtain a second solution.
  • the pH is controlled at 9, and the first solution and the second solution obtained in the step 1) are simultaneously added dropwise to the liquid obtained in the step 2).
  • the sodium carbonate: water 1:25 molar ratio is sufficiently stirred to dissolve to obtain a second solution.
  • the pH is controlled at 9, and the first solution and the second solution obtained in the step 1) are simultaneously added dropwise to the liquid obtained in the step 2).
  • the experimental results are shown in Table 1.
  • the molar ratio of potassium carbonate:water 1:100 was sufficiently stirred to dissolve to obtain a second solution.
  • the pH is controlled at 8, and the first solution and the second solution obtained in the step 1) are simultaneously dropped into the liquid obtained in the step 2).
  • the mixture was crystallized at a temperature of 80 ° C for 72 hours, centrifuged, and the obtained solid product was dried at 80 ° C for 48 hours, and the dried solid was calcined at 330 ° C for 12 hours.
  • the molar ratio of potassium carbonate:water 1:100 was sufficiently stirred to dissolve to obtain a second solution.
  • the pH is controlled at 8, and the first solution and the second solution obtained in the step 1) are simultaneously dropped into the liquid obtained in the step 2).
  • the molar ratio of potassium carbonate:water 1:30 was sufficiently stirred and dissolved to obtain a second solution.
  • the pH is controlled at 9, and the first solution and the second solution obtained in the step 1) are simultaneously added dropwise to the liquid obtained in the step 2).
  • the catalyst can be effectively used in the direct production of olefins from syngas, which has high reactivity, high olefin selectivity and low methane selectivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

一种用于合成气直接转化制备烯烃的碳化钴基催化剂及其制备方法和应用,催化剂的制备方法包括以下步骤:1)将钴源与水或者钴源、电子助剂与水混合得到第一溶液;将沉淀剂与水混合得到第二溶液;2)将第一溶液和第二溶液加入水或者水和结构助剂中进行沉淀,晶化,分离,干燥,焙烧;3)将步骤2)得到的固体在还原气氛中还原,然后在碳化气氛中碳化。制得的催化剂在合成气直接转化制备烯烃反应中选择性好,转化率高。

Description

一种用于合成气直接制备烯烃的碳化钴基催化剂及其制备方法和应用 技术领域
本发明涉及催化剂技术领域,具体涉及一种用于合成气直接转化制备烯烃的碳化钴基催化剂及其制备方法和应用。
背景技术
烯烃的生产是石油化工中最重要的部分之一。合成气(Syngas,氢气H2和一氧化碳CO的混合气体)费托合成作为一种潜在的非石油资源路线制备烯烃(Fischer-Tropsch to Olefins)受到了极大的关注。
费托合成是合成气转化利用的主要途径,当前费托合成工艺分两类:高温费托合成和低温费托合成。南非索萨(Sasol)公司的高温费托合成工艺使用Fe基催化剂,采用流化床反应器,温度在300-350℃之间,主要生产汽油和直链低分子量烷烃。低温费托合成使用Fe基或Co基催化剂,温度在200-240℃之间,主要生产高分子量直链烃。影响费托合成的因素有多种,如催化剂结构、反应器及反应条件等。就反应条件而言,反应温度、反应压力、空速及气体组成皆可能极大影响最终的催化性能。从热力学角度来说,反应温度主要影响的是反应化学平衡,温度越高,对F-T合成反应不一定有利。温度升高,CO转化速率加快,但积炭反应为吸热反应,升高温度有利于积炭反应的发生,此外,若温度过高,易使催化剂超温烧结,缩短了使用寿命,严重时甚至会损坏装置。而从动力学角度考虑,温度升高,反应速度加快,同时副反应速度也随之加快。因此,合适的反应温度的寻求是十分有必要的,而操作温度取决于所用催化剂。对于压力对费托反应的影响,研究人员发现,增大压力一般可加快F-T合成反应速度加快,但副反应速度也加快。同时过大的压力需要高压容器,设备的投资费用高且能耗随之增大。总之,为得到最佳的费托催化性能,需要综合优化各种影响因素。
Krijn P.de Jong等(文献Science,2012,335,835-838.)报道了FTO负载型铁基催化剂。该方法以惰性载体碳纳米管负载铁物种为催化剂,减弱载体与活性中心相互作用,从而提高烯烃选择性,其低碳烯烃选择性可达61%,但甲烷选择性高达23%,且反应活性较低,转化率约1%。Yi Zhang等(文献ACS Catalysis,2015,5,3905-3909.)报道了在实心Fe3O4微球表面进行MnOx修饰,由于只有微球表面的FeCx活性位参与反应进而降低了扩散限制的影响,该催化剂体现出高达60.1%的低碳烯烃选择性,但催化剂制备方法较为繁琐。
Bruce C.Gates等(文献J.Am.Chem.Soc.,1980,102,2478–2480.)报道了利用Cd气体还原法在A型分子筛笼内负载Co团簇,发现该催化剂在151℃下产物几乎以丙烯为主,但笼内的Co团簇很不稳定,随着反应的进行,易于迁移至笼外并发生团聚长大,最终体现出传统Co基费托性能。
上述文献中FTO催化剂普遍存在烯烃选择性不高,甲烷选择性过高的不足之处。因此,有必要研发性能优异的FTO催化剂,同时实现较高的烯烃选择性及较低的甲烷选择性。
发明内容
本发明的目的在于克服现有技术的缺陷,提供一种用于合成气直接转化制备烯烃的碳化钴基催化剂及其制备方法和应用,该制备方法简单,所制得的催化剂选择性好,转化率高。
本发明是通过以下技术方案实现的:
本发明第一方面提供一种用于合成气直接制备烯烃的碳化钴基催化剂的制备方法,包括以下步骤:
1)将钴源与水或者钴源、电子助剂与水混合得到第一溶液;将沉淀剂与水混合得到第二溶液;
2)将第一溶液和第二溶液加入水或者水和结构助剂中进行沉淀,晶化,分离,干燥,焙烧;
3)将步骤2)得到的固体在还原气氛中还原,然后在碳化气氛中碳化。
所述分离可以为过滤分离或离心分离。
优选的,还包括将步骤3)得到的固体通过等体积浸渍法添加碱金属助剂,干燥,焙烧;或者将步骤2)得到的固体通过等体积浸渍法添加碱金属助剂,干燥,焙烧后再在还原气氛中还原。
更优选的,所述碱金属助剂为碱金属碱和/或碱金属盐。
所述碱金属助剂可以为本领域所公知的碱金属碱和/或碱金属盐。所述碱金属碱可以为氢氧化锂、氢氧化钠、氢氧化钾、氢氧化铷及氢氧化铯。所述碱金属盐可以为硝酸锂、碳酸锂、硝酸钠、硝酸钾、硝酸铷、硝酸铯等。
更优选的,还包括以下特征中任一项或多项:
1)钴源以Co计,钴源与碱金属助剂的摩尔比为1:0.001~0.5,更优选为1:0.001~0.1,如1:0.001~0.01、1:0.01~0.1或1:0.1~0.5;
2)干燥温度为60~120℃,更优选为60~100℃,干燥时间为4~48小时,更优选为4~24小时;
3)焙烧温度为200~500℃,更优选为300~500℃,焙烧时间为1~24小时,更优选为1~12小时。
优选的,还包括以下特征中任一项或多项:
1)所述钴源为有机钴源和/或无机钴源;
2)所述电子助剂选自过渡金属盐、碱土金属盐和稀土金属盐中的一种或多种;
3)所述沉淀剂为碱和/或碱性盐;
4)所述结构助剂选自氧化铝、氧化硅、氧化钛、氧化锆、氧化镁和碳材料中的一种或多种。
所述钴源可以为本领域所公知的各种能够得到钴氧化物的有机钴源和/或无机钴源。所述有机钴源可以为甲酸钴、乙酸钴等有机钴源中的一种或多种;所述无机钴源可以为硝酸钴、氯化钴、硫酸钴等无机钴源中的一种或多种。更优选为硝酸钴和/或氯化钴。
所述电子助剂可以为本领域所公知的过渡金属助剂、碱土金属助剂及稀土金属助剂中的一种或多种。所述过渡金属助剂可以为钒、铬、锰等过渡金属中的一种或多种;所述碱土金属助剂可以为铍、镁、钙、锶和钡中的一种或多种;所述稀土金属助剂可以为镧系金属、钪和钇中的一种或多种。更优选为锰、镧和铈中的一种或多种。
所述沉淀剂可以为本领域所公知的碱和/或碱性盐。所述碱可以为氢氧化锂、氢氧化钠、氢氧化钾、氨水等碱中的一种或多种;所述碱性盐可以为碳酸钠、碳酸铵、碳酸氢钠、碳酸钾等碱性盐中的一种或多种。更优选为碳酸钠和/或碳酸铵。
所述结构助剂可以为本领域所公知的载体中的一种或多种。所述载体可以为氧化铝、氧化硅、氧化钛、氧化锆、氧化镁、碳材料等载体中的一种或多种。更优选为碳材料和/或氧化锆。
优选的,还包括以下特征中任一项或多项:
1)步骤1)中,钴源以Co计,钴源:电子助剂:水的摩尔比为1:0~10:1~1000;更优选为1:0~5:1~1000;进一步更优选为1:0~5:25~1000;再进一步更优选为1:0~2:25~500;如:钴源:电子助剂的摩尔比为1:0~0.1、1:0.1~0.2、1:0.2~0.3、1:0.3~0.5、1:0.5~1、1:1~2、1:2~5或1:5~10,钴源:水的摩尔比为1:1~25、1:25~35、1:35~40、1:40~50、1:50~60、1:60~100、1:100~500或1:500~1000;
2)步骤1)中,沉淀剂与水的摩尔比为1:1~1000;更优选为1:25~800;如:1:1~25、 1:25~30、1:30~50、1:50~75、1:75~100、1:100~200、1:200~500、1:500~800或1:800~1000;
3)步骤2)中,当第一溶液和第二溶液加入水时,钴:水的质量比为1:1~1000;如:1:1~10、1:10~20、1:20~50、1:50~80、1:80~100、1:100~110、1:110~150、1:150~250、1:250~500、1:500~800、1:800~900或1:900~1000;
4)步骤2)中,当第一溶液和第二溶液加入水和结构助剂时,结构助剂:钴:水的质量比为1:0.05~1:1~1000;更优选为1:0.1~0.5:10~1000,如:结构助剂:钴的质量比为1:0.05~0.1、1:0.1~0.2、1:0.2~0.3、1:0.3~0.4、1:0.4~0.5、1:0.5~0.8或1:0.8~1;结构助剂:水的质量比为1:10~100、1:100~500、1:500~800或1:800~1000。质量比中的水是指步骤2)中加入的水。
优选的,还包括以下特征中任一项或多项:
1)步骤2)中,沉淀温度为0~90℃,更优选为0~80℃,pH控制在7~12,更优选为7~10;如:沉淀温度为0~15℃、15~20℃、20~25℃、25~30℃、30~50℃、50~60℃、60~80℃或80~90℃;pH控制在7~7.5、7.5~8、8~9、9~10或10~12;
2)步骤2)中,晶化温度为0~200℃,更优选为30~180℃,晶化时间为1~72小时,更优选为2~48小时;如:晶化温度为0~30℃、30~60℃、60~70℃、70~80℃、80~100℃、100~120℃、120~150℃、150~180℃或180~200℃;晶化时间为1~2小时、2~4小时、4~5小时、5~6小时、6~10小时、10~12小时、12~48小时或48~72小时;
3)步骤2)中,干燥温度为60~120℃,更优选为60~100℃,干燥时间为4~48小时,更优选为4~24小时;如:干燥温度为60~80℃、80~100℃或100~120℃;干燥时间为4~10小时、10~12小时、12~24小时或24~48小时;
4)步骤2)中,焙烧温度为200~500℃,更优选为300~500℃,焙烧时间为1~24小时,更优选为1~12小时;如:焙烧温度为200~300℃、300~330℃、330~400℃或400~500℃;焙烧时间为1~3、3~4、4~5、5~6、6~12或12~24;
5)步骤3)中,还原条件为:还原温度为100~600℃,更优选为300~500℃,还原压力为0.1~10MPa,更优选为0.1~1MPa,体积空速为500~100000h-1,优选为2000~10000h-1,还原时间为1~24小时,更优选为1~12小时;如:还原温度为100~250℃、250~300℃、300~400℃、400~500℃或500~600℃;还原压力为0.1~0.7MPa、0.7~0.8MPa、0.8~1MPa、1~2MPa、2~3MPa、3~5MPa、5~6MPa、6~7MPa、7~8MPa或8~10MPa;体积空速为500~2000h-1、2000~4000h-1、4000~5000h-1、 5000~8000h-1、8000~10000h-1;还原时间为1~4小时、4~5小时、5~8小时、8~12小时或12~24小时;
6)步骤3)中,碳化条件为:碳化温度为100~500℃,更优选为150~300℃,碳化压力为0.1~10MPa,更优选为0.1~1MPa,体积空速为500~100000h-1,更优选为2000~10000h-1,碳化时间为1~72小时,更优选为1~48小时;如:碳化温度为100~150℃、150~200℃、200~250℃、250~300℃、300~320℃、320~350℃、350~400℃或400~500℃;碳化压力为0.1~0.2MPa、0.2~0.5MPa、0.5~0.9MPa、0.9~1MPa、1~2MPa、2~4MPa、4~5MPa、5~7MPa、7~8MPa或8~10MPa;体积空速为500~2000h-1、2000~8000h-1、8000~10000h-1、10000~20000h-1或20000~100000h-1;碳化时间为1~4小时、4~6小时、6~8小时、8~12小时、12~18小时、18~24小时、24~48小时或48~72小时。
步骤3)中所述还原气氛可以为本领域所公知的还原气中的一种或多种。优选的,步骤3)中,所述还原气氛为氢气、一氧化碳、氢气或一氧化碳与惰性气体任意比例的混合气。更优选的,所述还原气氛为氢气和/或10%氢气氩气混合气。
步骤3)中所述碳化气氛可以为本领域所公知的碳化气氛中的一种或多种。优选的,步骤3)中,所述碳化气氛为一氧化碳、一氧化碳与其他气体混合气,所述其他气体为氢气和/或惰性气体。更优选为一氧化碳和/或合成气。
本发明第二方面提供一种用于合成气直接制备烯烃的碳化钴基催化剂,采用上述任一项所述的制备方法制得。
本发明第三方面提供一种上述用于合成气直接制备烯烃的碳化钴基催化剂的应用,用于合成气直接制备烯烃,反应条件:反应温度为150~500℃,优选为200℃~300℃,反应压力以为0.1~10MPa,优选为0.1~1MPa,体积空速为500~100000h-1,优选为1000~40000h-1,H2与CO摩尔比为1:10~10:1,优选为1:3~3:1;如:反应温度为150~200℃、200~230℃、230~240℃、240~250℃、250~260℃、260~270℃、270~300℃或300~500℃;反应压力为0.1~0.5MPa、0.5~1MPa或1~10MPa;体积空速为500~1000h-1、1000~2000h-1、2000~4000h-1或4000~100000h-1;H2与CO摩尔比为1:10~1:3、1:3~2:1、2:1~3:1或3:1~10:1。
优选的,所述反应在固定床、浆态床或流化床中进行。更优选的,所述反应在固定床中进行。
上述技术方案中,所述沉淀的方法为本领域技术人员所公知的方法。例如在一定的温度及pH下以一定滴加速率进行双滴法或单滴法。
上述技术方案中,所述晶化的方法为本领域技术人员所公知的方法。例如在一定的温度下搅拌或水热法晶化一定时间。
上述技术方案中,所述干燥的方法为本领域技术人员所公知的方法。例如在一定的温度下干燥一定的时间。所述干燥可以在真空条件、空气气氛以及惰性气氛下进行。
上述技术方案中,所述焙烧的方法为本领域技术人员所公知的方法。例如在一定的温度下焙烧一定的时间。所述焙烧可以在真空条件、空气气氛以及惰性气氛下进行。
上述技术方案中,所述还原的方法为本领域技术人员所公知的方法。例如在一定的温度体积空速还原气氛下还原一定的时间。
上述技术方案中,所述碳化的方法为本领域技术人员所公知的方法。例如在一定的温度体积空速碳化气氛下碳化一定的时间。
上述技术方案中,所述等体积浸渍的方法为本领域技术人员所公知的方法。例如在按一定比例配置溶液,在一定的温度下干燥一定的时间,一定温度下焙烧一定时间。所述干燥可以在真空条件、空气气氛以及惰性气氛下进行;所述焙烧可以在真空条件、空气气氛以及惰性气氛下进行。
本发明用于合成气直接制备烯烃的碳化钴基催化剂的制备方法,通过先将活性中心钴源与电子助剂的混合溶解形成混合溶液,再以沉淀剂溶液沉淀于载体上,通过精确控制沉淀温度及沉淀pH值,制备所得催化剂低温还原温和碳化处理后,所得的碳化钴基催化剂具有较高的烯烃选择性,较低的甲烷选择性,较高的转化率。
附图说明
图1为实施例1中所得催化剂X射线衍射谱图,可知该催化剂为Co2C。
具体实施方式
以下通过特定的具体实例说明本发明的技术方案。应理解,本发明提到的一个或多个方法步骤并不排斥在所述组合步骤前后还存在其他方法步骤或在这些明确提到的步骤之间还可以插入其他方法步骤;还应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。而且,除非另有说明,各方法步骤的编号仅为鉴别各方法步骤的便利工具,而非为限制各方法步骤的排列次序或限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容的情况下,当亦视为本发明可实施的范畴。
本发明技术细节由下述实施例加以详尽描述。需要说明的是所举的实施例,其作用只 是进一步说明本发明的技术特征,而不是限定本发明。
【实施例1】
按硝酸钴:水=1:25的摩尔比充分搅拌溶解得到第一溶液。碳酸钠:水=1:25的摩尔比充分搅拌溶解得到第二溶液。在沉淀温度为60℃下,pH控制在8,按照钴:水=1:10的质量比配置一定量的去离子水,将第一溶液和第二溶液同时滴加入去离子水中。滴加完毕后,在温度为60℃下晶化2小时,离心分离,并将所得固体产物于80℃干燥12小时,将干燥所得固体于330℃焙烧4小时。在纯H2气氛中250℃,0.1MPa,还原4小时,空速为8000h-1,在CO气氛中250℃,0.1MPa,碳化6小时,空速为8000h-1,X射线衍射谱图见图1,以H2/CO=2的合成气为原料气,240℃反应,0.1MPa,空速为2000h-1,其实验结果列于表1。
【实施例2】
按硝酸钴:硝酸锰:水=1:5:25的摩尔比充分搅拌溶解得到第一溶液。碳酸钠:水=1:25的摩尔比充分搅拌溶解得到第二溶液。在沉淀温度为30℃下,pH控制在8,按照钴:水=1:100的质量比配置一定量的去离子水,将第一溶液和第二溶液同时滴加入去离子水中。滴加完毕后,在温度为30℃下晶化4小时,离心分离,并将所得固体产物于80℃干燥10小时,将干燥所得固体于330℃焙烧3小时。在10%H2/Ar气氛中300℃,1MPa,还原5小时,空速为8000h-1,在CO气氛中250℃,0.1MPa,碳化8小时,空速为8000h-1,以H2/CO=10的合成气为原料气,260℃反应,0.1MPa,空速为2000h-1,其实验结果列于表1。
【实施例3】
按乙酸钴:水=1:25的摩尔比充分搅拌溶解得到第一溶液。碳酸钠:水=1:1000的摩尔比充分搅拌溶解得到第二溶液。在沉淀温度为60℃下,pH控制在8,按照钴:水=1:20的质量比配置一定量的去离子水,将第一溶液和第二溶液同时滴加入去离子水中。滴加完毕后,在温度为180℃下晶化2小时,离心分离,并将所得固体产物于80℃干燥12小时,将干燥所得固体于330℃焙烧4小时。在纯H2气氛中250℃,10MPa,还原4小时,空速为10000h-1,在CO气氛中250℃,0.1MPa,碳化6小时,空速为8000h-1,以H2/CO=0.1的合成气为原料气,240℃反应,0.1MPa,空速为2000h-1,其实验结果列于表1。
【实施例4】
按甲酸钴:水=1:50的摩尔比充分搅拌溶解得到第一溶液。碳酸钠:水=1:500的摩尔比充分搅拌溶解得到第二溶液。在沉淀温度为60℃下,pH控制在8,按照钴:水=1:1000的质量比配置一定量的去离子水,将第一溶液和第二溶液同时滴加入去离子水中。滴加完毕后,在 温度为60℃下晶化2小时,离心分离,并将所得固体产物于80℃干燥12小时,将干燥所得固体于330℃焙烧4小时。在纯H2气氛中250℃,0.1MPa,还原4小时,空速为8000h-1,在CO气氛中250℃,10MPa,碳化6小时,空速为10000h-1,以H2/CO=1:3的合成气为原料气,240℃反应,0.1MPa,空速为2000h-1,其实验结果列于表1。
【实施例5】
按硝酸钴:水=1:25的摩尔比充分搅拌溶解得到第一溶液。氢氧化钾:水=1:1的摩尔比充分搅拌溶解得到第二溶液。在沉淀温度为60℃下,pH控制在8,按照钴:水=1:500的质量比配置一定量的去离子水,将第一溶液和第二溶液同时滴加入去离子水中。滴加完毕后,在温度为60℃下晶化2小时,离心分离,并将所得固体产物于80℃干燥12小时,将干燥所得固体于330℃焙烧4小时。在纯H2气氛中250℃,0.1MPa,还原4小时,空速为8000h-1,在CO气氛中250℃,5MPa,碳化6小时,空速为8000h-1,以H2/CO=3的合成气为原料气,240℃反应,0.1MPa,空速为2000h-1,其实验结果列于表1。
【实施例6】
按硝酸钴:水=1:50的摩尔比充分搅拌溶解得到第一溶液。氢氧化钠:水=1:75的摩尔比充分搅拌溶解得到第二溶液。在沉淀温度为60℃下,pH控制在8,按照钴:水=1:50的质量比配置一定量的去离子水,将第一溶液和第二溶液同时滴加入去离子水中。滴加完毕后,在温度为60℃下晶化2小时,离心分离,并将所得固体产物于80℃干燥12小时,将干燥所得固体于330℃焙烧5小时。在纯H2气氛中250℃,5MPa,还原4小时,空速为8000h-1,在CO气氛中250℃,0.1MPa,碳化4小时,空速为8000h-1,以H2/CO=2的合成气为原料气,250℃反应,0.1MPa,空速为40000h-1,其实验结果列于表1。
【实施例7】
按硝酸钴:水=1:50的摩尔比充分搅拌溶解得到第一溶液。碳酸铵:水=1:100的摩尔比充分搅拌溶解得到第二溶液。在沉淀温度为80℃下,pH控制在8,按照钴:水=1:900的质量比配置一定量的去离子水,将第一溶液和第二溶液同时滴加入去离子水中。滴加完毕后,在温度为60℃下晶化2小时,离心分离,并将所得固体产物于80℃干燥12小时,将干燥所得固体于330℃焙烧5小时。在纯H2气氛中250℃,1MPa,还原4小时,空速为8000h-1,在CO气氛中250℃,1MPa,碳化12小时,空速为8000h-1,以H2/CO=2的合成气为原料气,230℃反应,0.1MPa,空速为500h-1,其实验结果列于表1。
【实施例8】
按硝酸钴:水=1:50的摩尔比充分搅拌溶解得到第一溶液。碳酸氢钠:水=1:50的摩尔比充 分搅拌溶解得到第二溶液。在沉淀温度为80℃下,pH控制在9,按照钴:水=1:80的质量比配置一定量的去离子水,将第一溶液和第二溶液同时滴加入去离子水中。滴加完毕后,在温度为60℃下晶化2小时,离心分离,并将所得固体产物于80℃干燥12小时,将干燥所得固体于330℃焙烧5小时。在纯H2气氛中250℃,0.1MPa,还原4小时,空速为8000h-1,在CO气氛中300℃,10MPa,碳化6小时,空速为8000h-1,以H2/CO=2的合成气为原料气,250℃反应,0.1MPa,空速为1000h-1,其实验结果列于表1。
【实施例9】
按硝酸钴:硝酸镧:水=1:0.5:25的摩尔比充分搅拌溶解得到第一溶液。碳酸钠:水=1:50的摩尔比充分搅拌溶解得到第二溶液。在沉淀温度为20℃下,pH控制在7.5,按照钴:水=1:10的质量比配置一定量的去离子水,将第一溶液和第二溶液同时滴加入去离子水中。滴加完毕后,在温度为60℃下晶化4小时,离心分离,并将所得固体产物于80℃干燥10小时,将干燥所得固体于330℃焙烧3小时。在10%H2/Ar气氛中500℃,1MPa,还原5小时,空速为8000h-1,在CO气氛中350℃,2MPa,碳化6小时,空速为8000h-1,以H2/CO=2的合成气为原料气,270℃反应,0.1MPa,空速为100000h-1,其实验结果列于表1。
【实施例10】
按硝酸钴:硝酸铈:水=1:0.3:25的摩尔比充分搅拌溶解得到第一溶液。碳酸钠:水=1:800的摩尔比充分搅拌溶解得到第二溶液。在沉淀温度为30℃下,pH控制在8,按照钴:水=1:110的质量比配置一定量的去离子水,将第一溶液和第二溶液同时滴加入去离子水中。滴加完毕后,在温度为60℃下晶化4小时,离心分离,并将所得固体产物于80℃干燥10小时,将干燥所得固体于330℃焙烧4小时。在10%H2/Ar气氛中300℃,3MPa,还原5小时,空速为500h-1,在CO气氛中350℃,8MPa,碳化12小时,空速为8000h-1,以H2/CO=2的合成气为原料气,260℃反应,10MPa,空速为2000h-1,其实验结果列于表1。
【实施例11】
按硝酸钴:偏钒酸铵:水=1:0.1:1000的摩尔比充分搅拌溶解得到第一溶液。碳酸钠:水=1:1000的摩尔比充分搅拌溶解得到第二溶液。在沉淀温度为20℃下,pH控制在8,按照钴:水=1:100的质量比配置一定量的去离子水,将第一溶液和第二溶液同时滴加入去离子水中。滴加完毕后,在温度为60℃下晶化2小时,离心分离,并将所得固体产物于80℃干燥10小时,将干燥所得固体于330℃焙烧4小时。在10%H2/Ar气氛中300℃,8MPa,还原1小时,空速为8000h-1,在CO气氛中300℃,0.1MPa,碳化12小时,空速为8000h-1,以H2/CO=2的合成气为原料气,150℃反应,0.1MPa,空速为2000h-1,其实验结果列于表 1。
【实施例12】
按硝酸钴:铬酸钾:水=1:0.3:1的摩尔比充分搅拌溶解得到第一溶液。碳酸钠:水=1:50的摩尔比充分搅拌溶解得到第二溶液。在沉淀温度为30℃下,pH控制在8,按照钴:水=1:50的质量比配置一定量的去离子水,将两种溶液同时滴加入去离子水中。滴加完毕后,在温度为60℃下晶化5小时,离心分离,并将所得固体产物于80℃干燥10小时,将干燥所得固体于330℃焙烧5小时。在10%H2/Ar气氛中100℃,5MPa,还原24小时,空速为8000h-1,在CO气氛中400℃,7MPa,碳化6小时,空速为8000h-1,以H2/CO=2的合成气为原料气,240℃反应,0.1MPa,空速为2000h-1,其实验结果列于表1。
【实施例13】
按硝酸钴:硝酸镧:水=1:10:100的摩尔比充分搅拌溶解得到第一溶液。碳酸钠:水=1:50的摩尔比充分搅拌溶解得到第二溶液。在沉淀温度为15℃下,pH控制在7.5,按照钴:水=1:100的质量比配置一定量的去离子水,将第一溶液和第二溶液同时滴加入去离子水中。滴加完毕后,在温度为70℃下晶化6小时,离心分离,并将所得固体产物于80℃干燥10小时,将干燥所得固体于300℃焙烧5小时。在H2气氛中600℃,0.1MPa,还原5小时,空速为8000h-1,在10%CO/He气氛中250℃,7MPa,碳化6小时,空速为8000h-1,以H2/CO=2的合成气为原料气,500℃反应,0.1MPa,空速为2000h-1,其实验结果列于表1。
【实施例14】
按硝酸钴:氯化镁:水=1:0.2:100的摩尔比充分搅拌溶解得到第一溶液。碳酸钠:水=1:50的摩尔比充分搅拌溶解得到第二溶液。在沉淀温度为25℃下,pH控制在9,按照钴:水=1:80的质量比配置一定量的去离子水,将第一溶液和第二溶液同时滴加入去离子水中。滴加完毕后,在温度为70℃下晶化6小时,离心分离,并将所得固体产物于80℃干燥10小时,将干燥所得固体于300℃焙烧5小时。在H2气氛中300℃,10MPa,还原5小时,空速为8000h-1,在10%CO/He气氛中300℃,0.1MPa,碳化72小时,空速为500h-1,以H2/CO=2的合成气为原料气,260℃反应,0.1MPa,空速为2000h-1,其实验结果列于表1。
【实施例15】
1)按乙酸钴:硝酸铈:水=1:5:50的摩尔比充分搅拌溶解得到第一溶液。碳酸铵:水=1:100的摩尔比充分搅拌溶解得到第二溶液。2)氧化锆以质量计,与水按照氧化锆:钴:水=1:0.05:10的质量比充分搅拌均匀。在沉淀温度为90℃下,pH控制在9,将步骤1)所得的第一溶液和第二溶液同时滴加入步骤2)所得液体中。滴加完毕后,在温度为150℃下晶化72小时, 过滤或离心分离,并将所得固体产物于80℃干燥48小时,将干燥所得固体于500℃焙烧4小时。在纯H2气氛中300℃,10MPa,还原5小时,空速为4000h-1,在10%CO/He气氛中250℃,10MPa,碳化12小时,空速为8000h-1,以H2/CO=2的合成气为原料气,270℃反应,0.1MPa,空速为2000h-1,其实验结果列于表1。
【实施例16】
1)按氯化钴:硝酸镧:水=1:2:100的摩尔比充分搅拌溶解得到第一溶液。碳酸钾:水=1:50的摩尔比充分搅拌溶解得到第二溶液。2)活性炭以质量计,与水按照活性炭:钴:水=1:0.3:1000的质量比充分搅拌均匀。在沉淀温度为50℃下,pH控制在7.5,将步骤1)所得的第一溶液和第二溶液同时滴加入步骤2)所得液体中。滴加完毕后,在温度为100℃下晶化10小时,离心分离,并将所得固体产物于120℃干燥48小时,将干燥所得固体于300℃焙烧4小时。在10%H2/Ar气氛中300℃,6MPa,还原5小时,空速为8000h-1,在10%CO/He气氛中100℃,0.1MPa,碳化1小时,空速为2000h-1,以H2/CO=2的合成气为原料气,240℃反应,0.1MPa,空速为2000h-1,其实验结果列于表1。
【实施例17】
1)按硝酸钴:硝酸镁:水=1:1:50的摩尔比充分搅拌溶解得到第一溶液。碳酸铵:水=1:100的摩尔比充分搅拌溶解得到第二溶液。2)氧化硅以质量计,与水按照氧化硅:钴:水=1:1:1的质量比充分搅拌均匀。在沉淀温度为0℃下,pH控制在7,将步骤1)所得的第一溶液和第二溶液同时滴加入步骤2)所得液体中。滴加完毕后,在温度为120℃下晶化12小时,过滤或离心分离,并将所得固体产物于80℃干燥24小时,将干燥所得固体于400℃焙烧6小时。在纯H2气氛中400℃,2MPa,还原12小时,空速为2000h-1,在10%CO/He气氛中500℃,2MPa,碳化6小时,空速为2000h-1,以H2/CO=2的合成气为原料气,300℃反应,0.1MPa,空速为2000h-1,其实验结果列于表1。
【实施例18】
1)按乙酸钴:水=1:25的摩尔比充分搅拌溶解得到第一溶液。氢氧化钾:水=1:25的摩尔比充分搅拌溶解得到第二溶液。2)二氧化钛以质量计,与水按照二氧化钛:钴:水=1:0.4:800的质量比充分搅拌均匀。在沉淀温度为90℃下,pH控制在10,将步骤1)所得的第一溶液和第二溶液同时滴加入步骤2)所得液体中。滴加完毕后,在温度为80℃下晶化72小时,离心分离,并将所得固体产物于60℃干燥48小时,将干燥所得固体于330℃焙烧12小时。在10%H2/Ar气氛中400℃,0.1MPa,还原8小时,空速为8000h-1,在10%CO/He气氛中250℃,2MPa,碳化6小时,空速为100000h-1,以H2/CO=2的合成气为原料气,200℃ 反应,0.1MPa,空速为2000h-1,其实验结果列于表1。
【实施例19】
1)按硝酸钴:水=1:35的摩尔比充分搅拌溶解得到第一溶液。碳酸钾:水=1:25的摩尔比充分搅拌溶解得到第二溶液。2)氧化铝以质量计,与水按照二氧化钛:钴:水=1:0.8:1000的质量比充分搅拌均匀。在沉淀温度为90℃下,pH控制在9,将步骤1)所得的第一溶液和第二溶液同时滴加入步骤2)所得液体中。滴加完毕后,在温度为80℃下晶化72小时,离心分离,并将所得固体产物于80℃干燥48小时,将干燥所得固体于330℃焙烧12小时。在10%CO/Ar气氛中400℃,0.1MPa,还原8小时,空速为8000h-1,在10%CO/He气氛中320℃,5MPa,碳化18小时,空速为8000h-1,以H2/CO=2的合成气为原料气,200℃反应,0.1MPa,空速为2000h-1,其实验结果列于表1。
【实施例20】
1)按硝酸钴:水=1:40的摩尔比充分搅拌溶解得到第一溶液。碳酸钾:水=1:30的摩尔比充分搅拌溶解得到第二溶液。2)氧化铝以质量计,与水按照二氧化钛:钴:水=1:1:500的质量比充分搅拌均匀。在沉淀温度为90℃下,pH控制在9,将步骤1)所得的第一溶液和第二溶液同时滴加入步骤2)所得液体中。滴加完毕后,在温度为80℃下晶化72小时,离心分离,并将所得固体产物于80℃干燥48小时,将干燥所得固体于330℃焙烧12小时。在10%CO/Ar气氛中400℃,0.1MPa,还原8小时,空速为8000h-1,在10%CO/He气氛中300℃,10MPa,碳化24小时,空速为8000h-1,以H2/CO=2的合成气为原料气,200℃反应,0.1MPa,空速为2000h-1,其实验结果列于表1。
【实施例21】
按硝酸钴:硝酸锰:水=1:0.5:25的摩尔比充分搅拌溶解得到第一溶液。碳酸钠:水=1:25的摩尔比充分搅拌溶解得到第二溶液。在沉淀温度为30℃下,pH控制在8,按照钴:水=1:800的质量比配置一定量的去离子水,将第一溶液和第二溶液同时滴加入去离子水中。滴加完毕后,在温度为60℃下晶化4小时,离心分离,并将所得固体产物于80℃干燥10小时,将干燥所得固体于330℃焙烧3小时。在10%H2/Ar气氛中300℃,7MPa,还原5小时,空速为8000h-1,在10%CO/He气氛中150℃,4MPa,碳化48小时,空速为2000h-1,以H2/CO=2的合成气为原料气,230℃反应,1MPa,空速为2000h-1,其实验结果列于表1。
【实施例22】
按硝酸钴:硝酸锰:水=1:0.5:25的摩尔比充分搅拌溶解得到第一溶液。碳酸钠:水=1:25的摩尔比充分搅拌溶解得到第二溶液。在沉淀温度为30℃下,pH控制在8,按照钴:水=1:150 的质量比配置一定量的去离子水,将第一溶液和第二溶液同时滴加入去离子水中。滴加完毕后,在温度为60℃下晶化4小时,离心分离,并将所得固体产物于80℃干燥10小时,将干燥所得固体于330℃焙烧3小时。在H2气氛中300℃,6MPa,还原5小时,空速为8000h-1,在10%CO/He气氛中400℃,0.1MPa,碳化24小时,空速为20000h-1,以H2/CO=2的合成气为原料气,240℃反应,0.5MPa,空速为4000h-1,其实验结果列于表1。
【实施例23】
按硝酸钴:硝酸锰:水=1:0.5:25的摩尔比充分搅拌溶解得到第一溶液。碳酸钠:水=1:25的摩尔比充分搅拌溶解得到第二溶液。在沉淀温度为30℃下,pH控制在8,按照钴:水=1:250的质量比配置一定量的去离子水,将第一溶液和第二溶液同时滴加入去离子水中。滴加完毕后,在温度为60℃下晶化4小时,离心分离,并将所得固体产物于80℃干燥10小时,将干燥所得固体于330℃焙烧3小时。在H2气氛中300℃,0.1MPa,还原5小时,空速为8000h-1,在10%CO/Ar气氛中350℃,0.5MPa,碳化12小时,空速为8000h-1,以H2/CO=2的合成气为原料气,240℃反应,0.5MPa,空速为4000h-1,其实验结果列于表1。
【实施例24】
按硝酸钴:硝酸锰:水=1:0.5:25的摩尔比充分搅拌溶解得到第一溶液。碳酸钠:水=1:25的摩尔比充分搅拌溶解得到第二溶液。在沉淀温度为30℃下,pH控制在8,按照钴:水=1:500的质量比配置一定量的去离子水,将第一溶液和第二溶液同时滴加入去离子水中。滴加完毕后,在温度为60℃下晶化4小时,离心分离,并将所得固体产物于80℃干燥10小时,将干燥所得固体于330℃焙烧3小时。将焙烧所得固体按钴源:氢氧化钠=1:0.001的摩尔比进行等体积浸渍,于60℃干燥24小时,将干燥所得固体于400℃,0.7MPa,焙烧3小时。在H2气氛中300℃,0.2MPa,还原5小时,空速为8000h-1,在10%CO/Ar气氛中200℃碳化6小时,空速为8000h-1,以H2/CO=2的合成气为原料气,240℃反应,1MPa,空速为4000h-1,其实验结果列于表1。
【实施例25】
1)按乙酸钴:硝酸镁:水=1:1:100的摩尔比充分搅拌溶解得到第一溶液。碳酸铵:水=1:200的摩尔比充分搅拌溶解得到第二溶液。2)氧化锆以质量计,与水按照氧化锆:钴:水=1:0.2:10的质量比充分搅拌均匀。在沉淀温度为90℃下,pH控制在9,将步骤1)所得的第一溶液和第二溶液同时滴加入步骤2)所得液体中。滴加完毕后,在温度为100℃下晶化12小时,过滤或离心分离,并将所得固体产物于120℃干燥4小时,将干燥所得固体于400℃焙烧5小时。在纯H2气氛中300℃,0.1MPa,还原5小时,空速为4000h-1,在10%CO/N2气氛 中150℃,0.9MPa,碳化48小时,空速为8000h-1。将碳化所得固体按钴源:碳酸钠=1:0.5的摩尔比进行等体积浸渍,于80℃干燥24小时,将干燥所得固体于400℃焙烧3小时。以H2/CO=2的合成气为原料气,270℃反应,0.1MPa,空速为2000h-1,其实验结果列于表1。
【实施例26】
1)按硝酸钴:水=1:60的摩尔比充分搅拌溶解得到第一溶液。碳酸钾:水=1:100的摩尔比充分搅拌溶解得到第二溶液。2)氧化铝以质量计,与水按照二氧化钛:钴:水=1:0.4:100的质量比充分搅拌均匀。在沉淀温度为90℃下,pH控制在8,将步骤1)所得的第一溶液和第二溶液同时滴加入步骤2)所得液体中。滴加完毕后,在温度为80℃下晶化72小时,离心分离,并将所得固体产物于80℃干燥48小时,将干燥所得固体于330℃焙烧12小时。将焙烧所得固体按钴源:氢氧化锂=1:0.01的摩尔比进行等体积浸渍,于100℃干燥12小时,将干燥所得固体于300℃焙烧6小时。在10%CO/Ar气氛中400℃,0.8MPa,还原8小时,空速为5000h-1,在10%CO/He气氛中300℃,0.1MPa,碳化18小时,空速为10000h-1,以H2/CO=2的合成气为原料气,300℃反应,0.1MPa,空速为2000h-1,其实验结果列于表1。
【实施例27】
1)按硝酸钴:水=1:500的摩尔比充分搅拌溶解得到第一溶液。碳酸钾:水=1:100的摩尔比充分搅拌溶解得到第二溶液。2)氧化铝以质量计,与水按照二氧化钛:钴:水=1:0.1:100的质量比充分搅拌均匀。在沉淀温度为90℃下,pH控制在8,将步骤1)所得的第一溶液和第二溶液同时滴加入步骤2)所得液体中。滴加完毕后,在温度为0℃下晶化1小时,离心分离,并将所得固体产物于100℃干燥48小时,将干燥所得固体于200℃焙烧24小时。将焙烧所得固体按钴源:氢氧化锂=1:0.1的摩尔比进行等体积浸渍,于100℃干燥12小时,将干燥所得固体于300℃焙烧6小时。在10%CO/Ar气氛中400℃,0.8MPa,还原8小时,空速为5000h-1,在10%CO/He气氛中300℃,0.1MPa,碳化18小时,空速为10000h-1,以H2/CO=2的合成气为原料气,300℃反应,0.1MPa,空速为2000h-1,其实验结果列于表1。
【实施例28】
1)按硝酸钴:水=1:40的摩尔比充分搅拌溶解得到第一溶液。碳酸钾:水=1:30的摩尔比充分搅拌溶解得到第二溶液。2)氧化铝以质量计,与水按照二氧化钛:钴:水=1:0.5:500的质量比充分搅拌均匀。在沉淀温度为90℃下,pH控制在9,将步骤1)所得的第一溶液和第二溶液同时滴加入步骤2)所得液体中。滴加完毕后,在温度为200℃下晶化48小时,离 心分离,并将所得固体产物于80℃干燥48小时,将干燥所得固体于330℃焙烧1小时。在10%CO/Ar气氛中400℃,0.1MPa,还原8小时,空速为8000h-1,在10%CO/He气氛中300℃,10MPa,碳化24小时,空速为8000h-1,以H2/CO=2的合成气为原料气,200℃反应,0.1MPa,空速为2000h-1,其实验结果列于表1。
表1实施例催化剂反应结果
Figure PCTCN2016100772-appb-000001
Figure PCTCN2016100772-appb-000002
由表1可以看出,本催化剂可有效用于合成气直接制烯烃,该催化剂具有较高的反应活性,较高的烯烃选择性及较低的甲烷选择性。
以上所述,仅为本发明的较佳实施例,并非对本发明任何形式上和实质上的限制,应当指出,对于本技术领域的普通技术人员,在不脱离本发明方法的前提下,还将可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。凡熟悉本专业的技术人员,在不脱离本发明的精神和范围的情况下,当可利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对上述实施例所作的任何等同变化的更动、修饰与演变,均仍属于本发明的技术方案的范围内。

Claims (12)

  1. 一种用于合成气直接制备烯烃的碳化钴基催化剂的制备方法,其特征在于,包括以下步骤:
    1)将钴源与水或者钴源、电子助剂与水混合得到第一溶液;将沉淀剂与水混合得到第二溶液;
    2)将第一溶液和第二溶液加入水或者水和结构助剂中进行沉淀,晶化,分离,干燥,焙烧;
    3)将步骤2)得到的固体在还原气氛中还原,然后在碳化气氛中碳化。
  2. 根据权利要求1所述的制备方法,其特征在于,还包括将步骤3)得到的固体通过等体积浸渍法添加碱金属助剂,干燥,焙烧;或者将步骤2)得到的固体通过等体积浸渍法添加碱金属助剂,干燥,焙烧后再在还原气氛中还原。
  3. 根据权利要求2所述的制备方法,其特征在于,所述碱金属助剂为碱金属碱和/或碱金属盐。
  4. 根据权利要求2所述的制备方法,其特征在于,还包括以下特征中任一项或多项:
    1)钴源以Co计,钴源与碱金属助剂的摩尔比为1:0.001~0.5;
    2)干燥温度为60~120℃,干燥时间为4~48小时;
    3)焙烧温度为200~500℃,焙烧时间为1~24小时。
  5. 根据权利要求1或2所述的制备方法,其特征在于,还包括以下特征中任一项或多项:
    1)所述钴源为有机钴源和/或无机钴源;
    2)所述电子助剂选自过渡金属盐、碱土金属盐和稀土金属盐中的一种或多种;
    3)所述沉淀剂为碱和/或碱性盐;
    4)所述结构助剂选自氧化铝、氧化硅、氧化钛、氧化锆、氧化镁和碳材料中的一种或多种。
  6. 根据权利要求1或2所述的制备方法,其特征在于,还包括以下特征中任一项或多项:
    1)步骤1)中,钴源以Co计,钴源:电子助剂:水的摩尔比为1:0~10:1~1000;
    2)步骤1)中,沉淀剂与水的摩尔比为1:1~1000;
    3)步骤2)中,当第一溶液和第二溶液加入水时,钴:水的质量比为1:1~1000;
    4)步骤2)中,当第一溶液和第二溶液加入水和结构助剂时,结构助剂:钴:水的质量比为1:0.05~1:1~1000。
  7. 根据权利要求1或2所述的制备方法,其特征在于,还包括以下特征中任一项或多项:
    1)步骤2)中,沉淀温度为0~90℃,pH控制在7~12;
    2)步骤2)中,晶化温度为0~200℃,晶化时间为1~72小时;
    3)步骤2)中,干燥温度为60~120℃,干燥时间为4~48小时;
    4)步骤2)中,焙烧温度为200~500℃,焙烧时间为1~24小时;
    5)步骤3)中,还原条件为:还原温度为100~600℃,还原压力为0.1~10MPa,体积空速为500~100000h-1,还原时间为1~24小时;
    6)步骤3)中,碳化条件为:碳化温度为100~500℃,碳化压力为0.1~10MPa,体积空速为500~100000h-1,碳化时间为1~72小时。
  8. 根据权利要求1或2所述的制备方法,其特征在于,步骤3)中,所述还原气氛为氢气、一氧化碳、氢气或一氧化碳与惰性气体任意比例的混合气。
  9. 根据权利要求1或2所述的制备方法,其特征在于,步骤3)中,所述碳化气氛为一氧化碳、一氧化碳与其他气体混合气,所述其他气体为氢气和/或惰性气体。
  10. 一种用于合成气直接制备烯烃的碳化钴基催化剂采用权利要求1至9任一项所述的制备方法制得。
  11. 一种根据权利要求10所述的用于合成气直接制备烯烃的碳化钴基催化剂的应用,其特征在于,用于合成气直接制备烯烃,反应条件:反应温度为150~500℃,反应压力以为0.1~10MPa,体积空速为500~100000h-1,H2与CO摩尔比为1:10~10:1。
  12. 根据权利要求11所述的用于合成气直接制备烯烃的碳化钴基催化剂的应用,其特征在于,所述反应在固定床、浆态床或流化床中进行。
PCT/CN2016/100772 2016-04-06 2016-09-29 一种用于合成气直接制备烯烃的碳化钴基催化剂及其制备方法和应用 WO2017173791A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/090,586 US11154844B2 (en) 2016-04-06 2016-09-29 Cobalt carbide-based catalyst for direct preparation of olefin from synthesis gas, preparation method therefor and application thereof
EP16897723.9A EP3441140B1 (en) 2016-04-06 2016-09-29 Cobalt carbide-based catalyst for direct preparation of olefin form synthesis gas, preparation method therefor and application thereof
ZA2018/07414A ZA201807414B (en) 2016-04-06 2018-11-05 Cobalt carbide-based catalyst for direct preparation of olefin form synthesis gas, preparation method therefor and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610210920.5 2016-04-06
CN201610210920.5A CN105772049B (zh) 2016-04-06 2016-04-06 一种用于合成气直接制备烯烃的碳化钴基催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2017173791A1 true WO2017173791A1 (zh) 2017-10-12

Family

ID=56394876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100772 WO2017173791A1 (zh) 2016-04-06 2016-09-29 一种用于合成气直接制备烯烃的碳化钴基催化剂及其制备方法和应用

Country Status (5)

Country Link
US (1) US11154844B2 (zh)
EP (1) EP3441140B1 (zh)
CN (1) CN105772049B (zh)
WO (1) WO2017173791A1 (zh)
ZA (1) ZA201807414B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020205494A1 (en) 2019-03-29 2020-10-08 Exxonmobil Chemical Patents Inc. Supported nanoparticle compositions and precursors, processes for making the same and syngas conversion processes
CN115475637A (zh) * 2021-06-16 2022-12-16 中国石油化工股份有限公司 一种用于费托合成制备烯烃的催化剂及其制备方法和应用

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105772049B (zh) * 2016-04-06 2019-05-07 中国科学院上海高等研究院 一种用于合成气直接制备烯烃的碳化钴基催化剂及其制备方法和应用
CN107866250B (zh) * 2016-09-27 2021-03-26 中国科学院上海高等研究院 碳包贵金属纳米催化剂的制备方法
CN107867686B (zh) * 2016-09-27 2021-06-04 中国科学院上海高等研究院 基于Co2C制备石墨化空心纳米结构的方法
CN107866230A (zh) * 2016-09-27 2018-04-03 中国科学院上海高等研究院 钴催化剂及其制备方法与应用
CN107020154A (zh) * 2017-05-02 2017-08-08 江南大学 一种提高co加氢制烯烃的钴基催化剂活性的预处理方法
CN107362802B (zh) * 2017-07-06 2020-08-11 中国科学院上海高等研究院 一种合成气直接转化为烯烃的催化剂及其制备方法和应用
CN109317173B (zh) * 2018-09-30 2021-04-13 中国科学院山西煤炭化学研究所 一种直接成型的金属元素改性碳化钴材料的制备方法
CN109663597A (zh) * 2018-12-18 2019-04-23 中国科学院上海高等研究院 一种用于浆态床合成气直接制烯烃的含钴催化剂的原位还原活化方法及直接制烯烃的方法
CN109675597B (zh) * 2019-02-28 2021-09-28 福州大学 一种多孔碳化钴的制备方法
CN110038564A (zh) * 2019-03-25 2019-07-23 宁波大学 一种高效净化燃烧废气的核壳结构催化剂及其制备方法
CN112625726B (zh) * 2019-09-24 2022-12-09 中国石油化工股份有限公司 合成气制低碳烯烃的方法
CN113926461B (zh) * 2020-06-29 2024-01-12 中国石油化工股份有限公司 一种合成气直接制低碳烯烃的催化剂及其应用
CN114643062B (zh) * 2020-12-18 2023-10-31 中国石油化工股份有限公司 一种合成气制低碳烯烃催化剂及其制备方法和应用
CN114643064B (zh) * 2020-12-18 2023-11-28 中国石油化工股份有限公司 一种微球状流化床催化剂及其制备方法和应用
CN115518674A (zh) * 2021-06-26 2022-12-27 浙江大学 催化co/co2直接转化共产低碳烯烃和c5-c10阿尔法-烯烃的方法
CN114130394B (zh) * 2021-11-26 2024-04-30 合肥智慧环境研究院 一种氧化钴空心多面体型催化剂及其制备方法和应用
CN114988977B (zh) * 2022-06-17 2024-03-26 浙江大学 以物理混合疏水助剂方式催化co/co2加氢制烯烃的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6509382B1 (en) * 1999-11-22 2003-01-21 Institut Français Du Petrole Process for activating a fischer-tropsch synthesis catalyst
CN102770204A (zh) * 2010-02-26 2012-11-07 吉坤日矿日石能源株式会社 活化费托合成催化剂的制造方法以及烃的制造方法
CN105107523A (zh) * 2015-09-02 2015-12-02 中国科学院上海高等研究院 一种用于合成气直接转化为低碳烯烃的钴基催化剂及其制备方法和用途
CN105772049A (zh) * 2016-04-06 2016-07-20 中国科学院上海高等研究院 一种用于合成气直接制备烯烃的碳化钴基催化剂及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2473071B (en) * 2009-09-01 2013-09-11 Gtl F1 Ag Fischer-tropsch catalysts
KR102061235B1 (ko) * 2012-03-07 2020-01-02 한국화학연구원 피셔-트롭시 합성용 촉매의 활성화 방법
CN102688768B (zh) * 2012-06-05 2014-04-16 中国科学院山西煤炭化学研究所 一种用于合成乙醇的钴基催化剂及制法和应用
EP2911785B1 (en) * 2012-10-24 2020-02-12 Sasol Technology (Proprietary) Limited Process for preparing a fischer-tropsch catalyst
EP2940102A1 (en) * 2014-05-01 2015-11-04 Shell International Research Maatschappij B.V. A method for start-up and operation of a Fischer-Tropsch reactor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6509382B1 (en) * 1999-11-22 2003-01-21 Institut Français Du Petrole Process for activating a fischer-tropsch synthesis catalyst
CN102770204A (zh) * 2010-02-26 2012-11-07 吉坤日矿日石能源株式会社 活化费托合成催化剂的制造方法以及烃的制造方法
CN105107523A (zh) * 2015-09-02 2015-12-02 中国科学院上海高等研究院 一种用于合成气直接转化为低碳烯烃的钴基催化剂及其制备方法和用途
CN105772049A (zh) * 2016-04-06 2016-07-20 中国科学院上海高等研究院 一种用于合成气直接制备烯烃的碳化钴基催化剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3441140A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020205494A1 (en) 2019-03-29 2020-10-08 Exxonmobil Chemical Patents Inc. Supported nanoparticle compositions and precursors, processes for making the same and syngas conversion processes
US11857954B2 (en) 2019-03-29 2024-01-02 Exxonmobil Chemical Patents Inc. Supported nanoparticle compositions and precursors, processes for making the same and syngas conversion processes
CN115475637A (zh) * 2021-06-16 2022-12-16 中国石油化工股份有限公司 一种用于费托合成制备烯烃的催化剂及其制备方法和应用
CN115475637B (zh) * 2021-06-16 2024-01-30 中国石油化工股份有限公司 一种用于费托合成制备烯烃的催化剂及其制备方法和应用

Also Published As

Publication number Publication date
US11154844B2 (en) 2021-10-26
ZA201807414B (en) 2022-04-28
EP3441140A4 (en) 2019-09-18
EP3441140A1 (en) 2019-02-13
CN105772049B (zh) 2019-05-07
CN105772049A (zh) 2016-07-20
US20200406239A1 (en) 2020-12-31
EP3441140B1 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
WO2017173791A1 (zh) 一种用于合成气直接制备烯烃的碳化钴基催化剂及其制备方法和应用
US20170087537A1 (en) Mixed metal oxide catalysts for ammonia decomposition
CN114570360A (zh) 一种Ru基催化剂及其制备方法、应用
JP2004000900A (ja) 炭化水素の改質用触媒と炭化水素の改質方法
KR102035714B1 (ko) 탄화수소 개질용 니켈 촉매
CN104815659A (zh) 一种用于费托合成的铁基催化剂及制法和应用
JPH0768171A (ja) 二酸化炭素還元反応触媒
CN111229235A (zh) NiO/MgAl2O4催化剂及其制备方法和应用
CN109908931B (zh) 一种Al修饰活性炭为载体的催化剂及其制备方法
KR101847549B1 (ko) 철계 촉매의 제조방법 및 상기 제조방법으로 제조된 철계 촉매를 이용한 탄화수소의 제조방법
CN114308042A (zh) 一种凹凸棒石基有序微孔沸石催化剂及其制备方法与应用
CN111644169B (zh) 金属复合改性纳米氧化锆催化剂及其制备方法和应用
JPH02245239A (ja) 高活性ニッケル系触媒およびその調製方法
CN106391073B (zh) 一种用于合成气直接制备烯烃的钴基催化剂及其制法和应用
JP2004209408A (ja) 炭化水素の改質用触媒及び炭化水素の改質方法
KR101988370B1 (ko) 이산화탄소 메탄화 촉매 및 이의 제조 방법
CN114433059A (zh) Co2加氢合成低碳烯烃化合物的催化剂及制备和应用
JP3837520B2 (ja) Coシフト反応用触媒
CN114308093A (zh) 高载量镍基碳化物催化剂及其制备方法与应用
JP4012965B2 (ja) 高温coシフト反応用触媒
JPH05161848A (ja) 高活性高強度ニッケル/マグネシア系触媒の調製方法
KR101451407B1 (ko) 메탄의 자열 개질 반응용 촉매 조성물, 그 제조 방법, 및 이를 이용한 합성가스 제조 방법
CN115475637B (zh) 一种用于费托合成制备烯烃的催化剂及其制备方法和应用
JP2004057963A (ja) 炭化水素改質用触媒、炭化水素分解装置、及び燃料電池用改質器
KR102186052B1 (ko) 산화마그네슘-알루미나 복합 지지체를 이용한 아세톤의 이산화탄소 개질 반응용 촉매 및 이를 이용한 합성가스의 제조방법

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016897723

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016897723

Country of ref document: EP

Effective date: 20181106

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897723

Country of ref document: EP

Kind code of ref document: A1