CN113351215B - 一种核壳结构催化剂、其制备方法及其应用 - Google Patents

一种核壳结构催化剂、其制备方法及其应用 Download PDF

Info

Publication number
CN113351215B
CN113351215B CN202010148046.3A CN202010148046A CN113351215B CN 113351215 B CN113351215 B CN 113351215B CN 202010148046 A CN202010148046 A CN 202010148046A CN 113351215 B CN113351215 B CN 113351215B
Authority
CN
China
Prior art keywords
catalyst
zro
fecu
mass
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010148046.3A
Other languages
English (en)
Other versions
CN113351215A (zh
Inventor
椿范立
宋晓玲
周军
殷双杰
余显军
李进
张立
张永龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang Tianye Convergence New Materials Co ltd
Shihezi Zhongyi Lianjiang New Energy Co ltd
Xinjiang Tianye Group Co Ltd
Original Assignee
Xinjiang Tianye Convergence New Materials Co ltd
Shihezi Zhongyi Lianjiang New Energy Co ltd
Xinjiang Tianye Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinjiang Tianye Convergence New Materials Co ltd, Shihezi Zhongyi Lianjiang New Energy Co ltd, Xinjiang Tianye Group Co Ltd filed Critical Xinjiang Tianye Convergence New Materials Co ltd
Priority to CN202010148046.3A priority Critical patent/CN113351215B/zh
Publication of CN113351215A publication Critical patent/CN113351215A/zh
Application granted granted Critical
Publication of CN113351215B publication Critical patent/CN113351215B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • C07C1/044Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof containing iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/0445Preparation; Activation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with alkali- or alkaline earth metals or beryllium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本申请公开了一种核壳结构催化剂ZrO2@FeCu‑K,包括ZrO2、Fe元素、Cu元素和K元素;所述ZrO2被包覆在含有Fe元素、Cu元素和K元素的壳的内部。并公开了该催化剂的制备方法,该方法制得的ZrO2@FeCu‑K催化剂,具有比表面积大,孔容大,粒径大等物理特性。用于费托合成,能够有效的提升催化剂吸附的CO/H2比例,使得费托合成反应产物向高碳组分移动,显著提高α‑烯烃选择性。

Description

一种核壳结构催化剂、其制备方法及其应用
技术领域
本申请涉及一种核壳结构催化剂ZrO2@FeCu-K、其制备方法及其应用,属于催化剂领域。
背景技术
费托合成是由煤、天然气或生物质得到的合成气通过催化剂合成烃类燃料。经过进一步分离后可得到液化石油气、航空燃油、汽油、柴油和低碳烯烃等特种燃料。α-烯烃(α-olefin,AlphaOlefins)指双键在分子链端部的单烯烃,分子式是R-CH=CH2,其中R为烷基。若R为直链烷基,则称为直链α-烯烃。α-烯烃按其碳链长度有不同的应用。较低碳链α-烯烃如C4(丁烯-1)、C6(己烯-1)和C8(辛烯-1)用作HDPE和LLDPE生产用共聚单体,占总消费量50%以上。C8(二异丁烯)生产辛基酚是生产子午线轮胎所必须的配套加工助剂。C8(辛烯-1)可以制辛烯基琥珀酸衍生物用作乳化剂,还可以和C12用作聚α-烯烃(PAO)生产润滑油。C9和C10用于制取无毒增塑剂邻苯二甲酸二异壬酯(DINP)和邻苯二甲酸二异癸酯(DIDP),在电线电缆料中用量增长迅速。C12-C16用于生产洗涤剂。C14-C18用于生产AOS。C16-C18用于生产造纸上浆剂。大于C18的α-烯烃直接用于润滑剂和钻井液。C20+用于生产润滑油添加剂。C24+用于生产石蜡流变改性剂。此外α-烯烃还可用于生产其余多种精细化学品和功能化学品中间体,有制乳化剂、皮革处理剂、润滑油添加剂、防锈剂、织物整理剂、纸张用化学品等。
同时α-烯烃是汽车、机械工业和航天工业用合成润滑油剂的主要原料。由于产品性能优异,在军事工业中应用量也很大。它具有挥发度低、高粘度指数、低倾点、高闪点和良好的高温氧化性能,使用寿命比纯石油基产品长等特点。蜡裂解所得液态混合α-烯烃主要是C5-C18。在混合物中含有正构α-烯烃,异构α-烯烃,内烯烃及其它非烯烃。其中正构α-烯烃约占40,这样的原料聚合得到的聚α-烯烃合成润滑油,不但收率低,粘温性质差,其它各项性质与同粘度的矿物油相比,并无明显的优势。而据国外文献报道,用C8-C10为原料得到的聚α-烯烃合成润滑油,粘温性质、低温性质都极佳,对各种添加剂感受性良好,各项性质都大大优于同粘度的矿物油。可作为高档合成润滑油使用,其市场价格也比用宽范围混合原料生产得到的合成润滑油的价格高出许多倍。那么可以利用现有的蒸馏设备首先对混合α-烯烃进行分离,把它分成不同的馏份。取出C8-C10的馏份进行聚合。由蜡裂解制得的α-烯烃,虽然不如乙烯齐聚法所得α-烯烃的纯度高,但对窄馏份进行聚合,其操作条件要缓和的多,所得重合油经过加氢精制可得到稳定性好的聚α-烯烃合成润滑油。如果对于某些特殊用途用油,还可以根据具体需要调整,分离方案和工艺条件,使其可满足不同的使用要求。例如可把窄馏份的范围适当扩宽,用C8-C12或C8-C14馏份进行聚合。
目前α-烯烃的生产方法有石蜡裂解法;乙烯在三乙基铝催化剂存在下生成低聚合度产物的低聚反应以及SHOP工艺,采用镍络合物为催化剂的乙烯低聚方法。但上述方法存在工艺复杂、能耗高以及污染重等问题,导致α-烯烃价格居高不下。煤化工路线通过合成气/热解气FT合成的产物通过减压精馏分离制备α-烯烃是潜在的生产路线。目前,原油价格回落,提高α-烯烃的选择性可以极大地推动在FT技术获得更高的收益。文献和专利中有大量的报道提升α-烯烃选择性的方法,但遗憾是对于FT催化活性较好的铁基催化剂研究和报道均较少。
Figure GDA0003829220470000021
等研究了采用沉淀浸渍法制备Fe/Cu/K催化剂,Soled等研究沉淀法制备Fe–Zn催化剂,目的是提升碳链长度为C5-C15的α-烯烃选择性。高α-烯烃选择性的原因他们归属于K和Cu的协同效应。ZrO2由于具有独特的表面特性,如适宜的酸-碱性和氧化还原性,被广泛用作催化剂和催化剂载体使用,如应用于醇脱水、CO/CO2催化加氢等反应。Lohithern等研究了100Fe/5Cu/17SiO2催化剂引入Zr后提升了催化剂的活性。Zhang等研究了ZrO2在钴基催化剂上的F-T合成反应,ZrO2载体具有规则大孔孔道特点,使得活性组分高度分散,降低了载体与活性物质之间的相互作用,从而提升了活性与高碳组分选择性。也有科学家研究了Zr和K的协同作用,协同增效铁基催化剂。但是上述研究中存在,虽然提出了锆与铁有相互作用,但是并未解决,钴基催化剂上活性不高,低于70%,铁基催化剂上存在α-烯烃选择性低下,在40%以下等问题。
发明内容
根据本申请的一个方面,提供了一种核壳结构催化剂及其制备方法,该催化剂应用于费托合成,实现费托合成产物向高碳组分分布的目的。
一种核壳结构催化剂ZrO2@FeCu-K,包括ZrO2、Fe元素、Cu元素和K元素;
所述ZrO2被包覆在含有Fe元素、Cu元素和K元素的壳的内部。
可选地,ZrO2占催化剂的质量分数为9.54%-19.54%;
Fe元素占催化剂的质量分数为67.72%-77.72%;
Cu元素占催化剂的质量分数为5.9%-15.9%;
K元素占催化剂的质量分数为0.8%-2.8%。
可选地,ZrO2占催化剂的质量分数为12.54%-16.54%;
Fe元素占催化剂的质量分数为70.72%-74.72%;
Cu元素占催化剂的质量分数为8.9%-12.9%;
K元素占催化剂的质量分数为1.4%-2.2%。
可选地,ZrO2占催化剂的质量分数为14.3%;
Fe元素占催化剂的质量分数为72.2%;
Cu元素占催化剂的质量分数为11.1%;
K元素占催化剂的质量分数为2.2%。
可选地,所述催化剂的粒径为10-14nm。
可选地,所述催化剂的平均孔半径为8-12nm。
可选地,所述催化剂的孔容为0.1-0.5cm3/g。
可选地,所述催化剂的比表面积为100-130m2/g。
可选地,所述催化剂的粒径为11.8nm。
可选地,所述催化剂的平均孔半径为10.1nm。
可选地,所述催化剂的孔容为0.291cm3/g。
可选地,所述催化剂的比表面积为115.8m2/g。
根据本申请的另一方面,提供上述核壳结构催化剂ZrO2@FeCu-K的制备方法,至少包括以下步骤:
a)获取ZrO2前驱体;
b)将上述ZrO2前驱体分散处理,加入铁盐、铜盐和尿素的混合水溶液,反应,煅烧得ZrO2@FeCu;
c)将上述ZrO2@FeCu添加K元素助剂,煅烧,得到ZrO2@FeCu-K催化剂。
可选地,步骤a)为采用水热法制备ZrO2前驱体。
可选地,步骤b)中,所述分散处理为超声波分散处理。
可选地,步骤b)中,所述铁盐选自硝酸铁、氯化铁其中的至少一种;
所述铜盐选自硝酸铜、氯化铜其中的至少一种。
可选地,步骤b)中,所述铁盐和铜盐的质量比为100:10-20;
其中,铁盐的质量以其含有的Fe元素的质量计,铜盐的质量以其含有的Cu元素的质量计。
可选地,所述铁盐和铜盐的质量比为100:15。
可选地,所述铁盐和尿素的摩尔比为1:10-14;
其中,铁盐的摩尔数以其含有的Fe元素的摩尔数计,尿素的摩尔数以其自身的摩尔数计;
可选地,所述铁盐和尿素的摩尔比为1:12。
可选地,步骤b)中,所述反应的条件为:60-120℃下保持2-6h。
可选地,反应的条件为:80-100℃下保持3-5h。
可选地,反应的条件为:90℃下保持4h。
可选地,步骤b)中,煅烧的条件为:400-600℃,3-7h。
可选地,煅烧的条件为:430-470℃,4-6h。
可选地,煅烧的条件为:450℃,5h。
可选地,步骤b)中,添加K元素助剂的方法选自浸渍法、熔融法中的至少一种。
可选地,所述K元素助剂的来源选自硝酸钾、氯化钾、硫酸钾中的至少一种。
可选地,所述K元素助剂的添加量为所述ZrO2@FeCu质量的2%-3%;
其中,K元素助剂的质量以其含有的K元素的质量计算;ZrO2@FeCu质量以其自身的质量计算。
可选地,步骤c)中,煅烧的条件为:400-600℃,3-7h;
可选地,煅烧的条件为:430-470℃,4-6h。
可选地,煅烧的条件为:450℃,5h。
作为本申请的另一方面,提供一种核壳结构催化剂ZrO2@FeCu-K在制备α-烯烃的应用。
一种制备α-烯烃的方法,将含有H2、CO的原料气和催化剂在反应器内接触,反应,获得α-烯烃;
所述催化剂选自上述所述的核壳结构催化剂ZrO2@FeCu-K、上述任一项所述方法制备的核壳结构催化剂ZrO2@FeCu-K中的至少一种。
可选地,所述反应条件为:
反应压力1-3MPa,反应温度220-320℃,H2和CO的摩尔比为1:1,进料空速W/F=5-15(g·h)/mol。
可选地,所述反应条件为:
反应压力1-2MPa,反应温度240-300℃,H2和CO的摩尔比为1:1,进料空速W/F=10(g·h)/mol。
本发明提供一种核壳结构催化剂及其制备方法,实现费托合成产物向高碳组分分布的目的。相对于FeCu@ZrO2-K,ZrO2+FeCu-K催化剂,通过该方法制备所得的核壳结构催化剂ZrO2@FeCu-K,具有比表面积大,孔容大,粒径大等物理特性,且由于通过这种方法,ZrO2被FeCu包裹在催化剂的内部,对比其他方法制备的催化剂,ZrO2更加的聚集,与Fe的相互作用力减少,使得催化剂相对较容易被还原,具有较高的活性,且由于ZrO2具有对CO吸附的特性,在ZrO2@FeCu-K中,CO更倾向于向催化剂内部扩散,CO停留时间较长,从而使得ZrO2@FeCu-K催化剂具有相对较强的CO吸附能力,能够有效的提升催化剂吸附的CO/H2比例,使得费托合成反应产物向高碳组分移动。
本申请能产生的有益效果包括:
1)本申请所提供的制备方法制得的核壳结构催化剂ZrO2@FeCu-K,是一种新式的核壳结构催化剂,具有比表面积大,孔容大,粒径大等物理特性。
2)本申请的核壳结构催化剂ZrO2@FeCu-K,具有相对较强的CO吸附能力,能够有效的提升催化剂吸附的CO/H2比例,使得费托合成反应产物向高碳组分移动。
附图说明
图1为本申请实施例1中不同方法制备的催化剂的XRD分析图;
图2为本申请实施例1中Fe-Cu-K催化剂的孔径分布情况图;
图3为本申请实施例1中ZrO2@FeCu-K催化剂的孔径分布情况图;
图4为本申请实施例1中FeCu@ZrO2-K催化剂的孔径分布情况图;
图5为本申请实施例1中ZrO2+FeCu-K催化剂的孔径分布情况图;
图6为本申请实施例1中ZrO2@FeCu-K、FeCu@ZrO2-K和ZrO2+FeCu-K催化剂的表面形貌及各种元素分布情况图;
图7为本申请实施例1中的催化剂FT反应活性及产物选择性变化情况;
图8为本申请实施例1中ZrO2@FeCu-K催化剂在不同反应温度下对FT活性及产物选择性的影响;
图9为本申请实施例1中ZrO2@FeCu-K催化剂在不同反应压力下对FT活性及产物选择性的影响;
图10为本申请实施例1中ZrO2@FeCu-K催化剂随反应时间变化对FT活性及产物选择性的影响。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料均通过商业途径购买。
本申请的实施例中分析方法如下:
X射线衍射谱图(XRD)分析采用仪器RINT2400System(Rigaku),分析条件Cu-Kα射线(λ=0.154nm)在40kV电压与20mA电流下,扫射速率为0.02°/min。
催化剂的BET比表面积与孔体积分析采用仪器NOVA-2200e(QuantachromeInstrumentsCo.),分析条件在试验之前,50-60mg的样品首先在200℃下脱气2h,然后在77k下记录N2吸附/解吸等温线,根据BJH方法获得比表面积、孔体积和平均孔径。
催化剂的表面形貌由SEM和SEM-EDS表征,SEM采用仪器(SEM,JEOL-JSM-6360);SEM-EDS采用仪器(EDX,JEOL-JED-2300)。
本申请的实施例中转化率、选择性计算如下:
本申请的实施例中,合成气转化率以及α-烯烃选择性都基于碳摩尔数进行计算:
合成气转化率=(合成气/Arin-合成气/Arout)/合成气/Arin*100%
CO转化率=(进去的CO的摩尔量-出去的CO的摩尔量)/进去的CO的摩尔量*100%
CO2选择性=CO2生成的碳摩尔量/反应生成的总碳氢化合物的碳摩尔量*100%
CH4选择性=CH4生成的碳摩尔量/反应生成的总碳氢化合物的碳摩尔量*100%
C2-C4选择性=C2-C4生成的碳摩尔量/反应生成的总碳氢化合物的碳摩尔量*100%
α-烯烃选择性=α-烯烃生成的碳摩尔量/反应生成的总碳氢化合物的碳摩尔量*100%
实施例1
铁铜前驱体的制备:采用均匀沉淀法制备铁铜催化剂前驱体。将40.4gFe(NO3)3·9H2O和3.18gCu(NO3)2·3H2O(Fe/Cu重量比100:15)和72g(NH2)2CO(尿素/Fe3+摩尔比=12)添加到含有500ml去离子水的烧瓶中,保持90℃下3小时。沉淀后,用1000毫升去离子水过滤沉淀除去沉淀中的尿素离子。
氧化锆前驱体的制备:采用水热法制备ZrO2。将8.55gZrO(NO3)2·2H2O、19.22g尿素和5ml聚乙二醇溶于75ml去离子水中,然后将上述溶液转移到聚四氟乙烯内衬不锈钢高压釜(100ml)中,在自生压力下保持在160℃下20h,直至自然冷却至室温。固体产物经蒸馏水过滤、多次洗涤后,于110℃干燥过夜,500℃煅烧3h。
ZrO2@FeCu-K催化剂制备:通过以下步骤制备ZrO2@FeCu。首先用超声波分散处理得到的1.116gZrO2前驱体,然后加40.4gFe(NO3)3·9H2O和3.18gCu(NO3)2·3H2O(Fe/Cu重量比100:15)和72g尿素(Fe/尿素摩尔比为1:12)的混合水溶液,在90℃下保持4h,120℃干燥,450℃煅烧5h,得到ZrO2@FeCu。采用浸渍法添加K助剂,首先将0.064g硝酸钾K助剂溶解在1ml去离子水溶液中,再将1gZrO2@FeCu催化剂超声分散,后将硝酸钾溶液缓慢滴入,在完全滴入之后,再继续超声分散30分钟。在120℃干燥后,在450℃煅烧5h,最终制备得到ZrO2@FeCu-K。
FeCu@ZrO2-K催化剂制备:将得到的9.02gFeCu前驱体经超声分散处理后,加入2.36gZrO(NO3)2·2H2O和1.05g尿素(Zr/尿素摩尔比=1/2)混合水溶液,保持90℃4h,在120℃下干燥,450℃煅烧5h,制备得到FeCu@ZrO2。随后,采用相同的方法引入K元素,命名为FeCu@ZrO2-K。
ZrO2+FeCu-K催化剂制备:将9.02gFeCu前驱体和1.08gZrO2前驱体分别在120℃下干燥12h,后将两种前驱体研磨30min,然后在120℃下干燥,后在450℃下煅烧5h,随后,采用相同的方法引入K元素,用K溶液浸渍混合物,标记为ZrO2+FeCu-K。
FeCu-K催化剂制备:将FeCu前驱体在120℃下干燥,450℃下煅烧5h,然后采用相同的方法引入K元素浸渍法引入K,将该催化剂命名为FeCu-K。
实施例2
实施例1制备的ZrO2@FeCu-K,FeCu@ZrO2-K,ZrO2+FeCu-K以及Fe-Cu-K催化剂,其X射线衍射谱图如图1所示。所有催化剂在谱图中均出现α-Fe2O3的特征峰,而对于ZrO2@FeCu-K,FeCu@ZrO2-K以及ZrO2+FeCu-K催化剂,在谱图上还出现t-ZrO2的特征峰,且FeCu@ZrO2-K与ZrO2+FeCu-K的ZrO2特征峰更强且比较尖锐,表明在FeCu@ZrO2-K与ZrO2+FeCu-K中,ZrO2的晶粒更大,而ZrO2@FeCu-K由于氧化锆被包在铁铜内部,所以ZrO2的特征峰并不明显。
实施例3
实施例1制备的催化剂的BET比表面积与孔体积及孔体积以及铁相的晶粒大小等物性参数如表1所示,孔分布情况如图2-5所示,我们发现通过氧化锆的引入,晶体颗粒大小增加,对于FeCu@ZrO2-K与ZrO2+FeCu-K,氧化锆引入之后比表面积下降,孔容增大,可能这些引入Zr的引入方式导致了催化剂的微孔孔道坍塌。孔径分布图可以发现FeCu@ZrO2-K与ZrO2+FeCu-K中,2-8nm的微孔有不同程度的下降。而对于ZrO2@FeCu-K,引入氧化锆后,孔容增大的同时,比表面积也增加。
表1不同方法制备的催化剂微观结构参数
Figure GDA0003829220470000091
实施例4
氧化锆的分布位置以及催化剂的表面形貌由SEM和SEM-EDS表征,如图6所示。不同方法制备的催化剂形貌明显不同,且差别较大。ZrO2@FeCu-K的SEM-EDS与Mapping可以发现其表面基本没有Zr元素,而FeCu@ZrO2-K与ZrO2+FeCu-K表面展现出ZrO2的特征形貌,在SEM-Mapping图中也可以看出ZrO2的分布。从图中看出,ZrO2@FeCu-K催化剂中各元素的含量如表2。
表2 ZrO2@FeCu-K催化剂中各元素的含量
元素 质量分数% 原子数分数%
O 13.7 36.2
K 2.2 2.3
Zr 0.6 0.3
Fe 72.2 54.0
Cu 11.1 7.4
实施例5
制备的催化剂在原料气摩尔比H2/CO=1,反应温度280℃,反应压力1.0MPa和W/F=10(g·h)/mol(1g催化剂,40ml/min)的条件下的F-T反应活性和选择性如图7所示。ZrO2添加使得活性得到提升,ZrO2@FeCu-K的活性最佳,说明Zr的添加提高了Fe/Cu/K的活性,且CH4与C2-C4选择性明显下降,C5+选择性上升,而且拥有最强的CO吸附能力的ZrO2@FeCu-K选择性上升的最多,α-olefin(C5-C12)选择性到达44%。
实施例6
以制备的ZrO2@FeCu-K为催化剂,在原料气摩尔比H2/CO=1,反应压力1.0MPa和W/F=10(g·h)/mol,反应温度分别为240、260、280以及300℃时的FT反应活性以及产物选择性情况如图8所示。随着温度升高,合成气转化率越高,但α-olefin(C5-C12)选择性下降。
实施例7
以制备的ZrO2@FeCu-K为催化剂,在原料气摩尔比H2/CO=1,反应温度280℃,反应压力2.0MPa和W/F=10(g·h)/mol时的FT反应活性以及产物选择性情况如图9所示。随着压力的升高,CO转化率略微上升,α-olefin(C5-C12)也随着上升。压力2.0MPa时,CO转化率可以达到97%,α-olefin(C5-C12)选择性到达49%。
实施例8
催化剂稳定性考察,以ZrO2@FeCu-K为催化剂,在原料气摩尔比H2/CO=1,反应温度280℃,反应压力1.0MPa和W/F=10(g·h)/mol时的FT反应活性以及产物选择性随反应时间变化情况如图10所示。随着反应的进行,原料气中CO转化率上升至95%后趋于稳定,α-olefin(C5-C12)选择性由初期的44%缓慢上升,在反应100h到达49%,展现出极佳的催化稳定性。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (22)

1.一种核壳结构催化剂ZrO2@FeCu-K,其特征在于,包括ZrO2、Fe元素、Cu元素和K元素;
所述ZrO2被包覆在含有Fe元素、Cu元素和K元素的壳的内部;
所述ZrO2占催化剂的质量分数为9.54%-19.54%;
所述Fe元素占催化剂的质量分数为67.72%-77.72%;
所述Cu元素占催化剂的质量分数为5.9%-15.9%;
所述K元素占催化剂的质量分数为0.8%-2.8%;
所述催化剂的粒径为10-14nm;
所述催化剂的平均孔半径为8-12nm;
所述催化剂的孔容为0.1-0.5cm3/g;
所述催化剂的比表面积为100-130m2/g。
2.根据权利要求1所述的催化剂,其特征在于,所述ZrO2占催化剂的质量分数为12.54%-16.54%;
所述Fe元素占催化剂的质量分数为70.72%-74.72%;
所述Cu元素占催化剂的质量分数为8.9%-12.9%;
所述K元素占催化剂的质量分数为1.4%-2.2%。
3.权利要求1-2任一项所述催化剂的制备方法,其特征在于,至少包括以下步骤:
a)获取ZrO2前驱体;
b)将所述ZrO2前驱体分散处理,加入含有铁盐、铜盐和尿素的混合水溶液,反应,煅烧得ZrO2@FeCu;
c)将所述ZrO2@FeCu添加K元素助剂,煅烧,得到核壳结构催化剂ZrO2@FeCu-K。
4.根据权利要求3所述的制备方法,其特征在于,步骤a)为采用水热法制备ZrO2前驱体。
5.根据权利要求3所述的制备方法,其特征在于,步骤b)中,所述分散处理为超声波分散处理。
6.根据权利要求3所述的制备方法,其特征在于,步骤b)中,所述铁盐选自硝酸铁、氯化铁中的至少一种;
所述铜盐选自硝酸铜、氯化铜中的至少一种。
7.根据权利要求3所述的制备方法,其特征在于,步骤b)中,所述铁盐和铜盐的质量比为100:10-20;
其中,铁盐的质量以其含有的Fe元素的质量计,铜盐的质量以其含有的Cu元素的质量计。
8.根据权利要求7所述的制备方法,其特征在于,所述铁盐和铜盐的质量比为100:15。
9.根据权利要求3所述的制备方法,其特征在于,所述铁盐和尿素的摩尔比为1:10-14;
其中,铁盐的摩尔数以其含有的Fe元素的摩尔数计,尿素的摩尔数以其自身的摩尔数计。
10.根据权利要求9所述的制备方法,其特征在于,所述铁盐和尿素的摩尔比为1:12。
11.根据权利要求3所述的制备方法,其特征在于,步骤b)中,所述反应的条件为:60-120℃下保持2-6h。
12.根据权利要求11所述的制备方法,其特征在于,步骤b)中,反应的条件为:80-100℃下保持3-5h。
13.根据权利要求3所述的制备方法,其特征在于,步骤b)中,煅烧的条件为:400-600℃,3-7h。
14.根据权利要求13所述的制备方法,其特征在于,步骤b)中,煅烧的条件为:430-470℃,4-6h。
15.根据权利要求3所述的制备方法,其特征在于,步骤c)中,添加K元素助剂的方法选自浸渍法、熔融法中的至少一种。
16.根据权利要求3所述的制备方法,其特征在于,所述K元素助剂的来源选自硝酸钾、氯化钾、硫酸钾中的至少一种。
17.根据权利要求3所述的制备方法,其特征在于,所述K元素助剂的添加量为所述ZrO2@FeCu质量的2%-3%;
其中,K元素助剂的质量以其含有的K元素的质量计算;ZrO2@FeCu质量以其自身的质量计算。
18.根据权利要求3所述的制备方法,其特征在于,步骤c)中,煅烧的条件为:400-600℃,3-7h。
19.根据权利要求18所述的制备方法,其特征在于,步骤c)中,煅烧的条件为:430-470℃,4-6h。
20.一种制备α-烯烃的方法,其特征在于,将含有H2、CO的原料气和催化剂在反应器内接触,反应,获得α-烯烃;
所述催化剂选自权利要求1-2所述的核壳结构催化剂ZrO2@FeCu-K、权利要求3-19任一项所述方法制备的核壳结构催化剂ZrO2@FeCu-K中的至少一种。
21.根据权利要求20所述的方法,其特征在于,所述反应条件为:
反应压力1-3MPa,反应温度220-320℃,H2和CO的摩尔比为1:1,进料空速W/F=5-15(g·h)/mol。
22.根据权利要求21所述的方法,其特征在于,反应压力1-2MPa,反应温度240-300℃,H2和CO的摩尔比为1:1,进料空速W/F=10(g·h)/mol。
CN202010148046.3A 2020-03-05 2020-03-05 一种核壳结构催化剂、其制备方法及其应用 Active CN113351215B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010148046.3A CN113351215B (zh) 2020-03-05 2020-03-05 一种核壳结构催化剂、其制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010148046.3A CN113351215B (zh) 2020-03-05 2020-03-05 一种核壳结构催化剂、其制备方法及其应用

Publications (2)

Publication Number Publication Date
CN113351215A CN113351215A (zh) 2021-09-07
CN113351215B true CN113351215B (zh) 2022-12-20

Family

ID=77523858

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010148046.3A Active CN113351215B (zh) 2020-03-05 2020-03-05 一种核壳结构催化剂、其制备方法及其应用

Country Status (1)

Country Link
CN (1) CN113351215B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1228036A (zh) * 1996-06-12 1999-09-08 计划地球工业公司 酸接触增强的吸附剂和/或催化剂和粘合剂系统
BRPI0704436A2 (pt) * 2007-11-30 2009-07-28 Petroleo Brasileiro Sa processo de produção de hidrocarbonetos
CN103055895A (zh) * 2013-01-15 2013-04-24 山东大学 一种核壳型纳米多孔铂基合金催化剂的制备方法
CN103071528A (zh) * 2013-01-21 2013-05-01 浙江大学 核壳结构催化剂及由合成气一步法制取低碳烯烃的方法
CN105251502A (zh) * 2014-12-02 2016-01-20 新疆兵团现代绿色氯碱化工工程研究中心(有限公司) 一种用于乙炔氢氯化的非汞催化剂
CN106397094A (zh) * 2016-10-27 2017-02-15 新疆兵团现代绿色氯碱化工工程研究中心(有限公司) 一种低温等离子体改性催化剂载体的方法
CN108906070A (zh) * 2018-07-02 2018-11-30 青岛大学 用于生物质合成气定向催化转化的核壳型催化剂及制备
WO2019196703A1 (zh) * 2018-04-13 2019-10-17 株式会社模范 一种合成气合成航空煤油用催化剂的制备方法以及由此得到的催化剂和其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107349954B (zh) * 2017-07-05 2020-10-09 江南大学 一种合成气直接制备芳香族化合物的多级纳米反应器催化剂及其制备与应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1228036A (zh) * 1996-06-12 1999-09-08 计划地球工业公司 酸接触增强的吸附剂和/或催化剂和粘合剂系统
BRPI0704436A2 (pt) * 2007-11-30 2009-07-28 Petroleo Brasileiro Sa processo de produção de hidrocarbonetos
CN103055895A (zh) * 2013-01-15 2013-04-24 山东大学 一种核壳型纳米多孔铂基合金催化剂的制备方法
CN103071528A (zh) * 2013-01-21 2013-05-01 浙江大学 核壳结构催化剂及由合成气一步法制取低碳烯烃的方法
CN105251502A (zh) * 2014-12-02 2016-01-20 新疆兵团现代绿色氯碱化工工程研究中心(有限公司) 一种用于乙炔氢氯化的非汞催化剂
CN106397094A (zh) * 2016-10-27 2017-02-15 新疆兵团现代绿色氯碱化工工程研究中心(有限公司) 一种低温等离子体改性催化剂载体的方法
WO2019196703A1 (zh) * 2018-04-13 2019-10-17 株式会社模范 一种合成气合成航空煤油用催化剂的制备方法以及由此得到的催化剂和其应用
CN108906070A (zh) * 2018-07-02 2018-11-30 青岛大学 用于生物质合成气定向催化转化的核壳型催化剂及制备

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
Core-shell zirconia-coated magnetic nanoparticles offering a strong option to prepare a novel and magnetized heteropolyacid based heterogeneous nanocatalyst for three- and four-component reactions;Zolfagharinia, S et al.;《Arabian Journal Of Chemistry》;20200131;227-241 *
Enhanced alpha-olefins selectivity by promoted CO adsorption on ZrO2@FeCu catalyst;Guo, XY et al.;《Catalysis Today》;20210329;290-297 *
Synthesis and room temperature coating of nano ZrB2 on copper using mechanical roll-milling;Olgun, U et al.;《Advanced Powder Technology》;20170930;2044-2051 *
The recent development of efficient Earth-abundant transition-metal nanocatalysts;Wang, D、Astruc, D;《Chemical Society Reviews》;20170207;816-854 *
Zr-1Nb-0.1Fe-xCu合金在500℃过热水蒸气中的耐蚀性;石明等;《腐蚀与防护》;20190915;650-654 *
合成气一步法制低碳烯烃技术进展及问题概述;李进等;《化工技术与开发》;20171115;36-38 *
新型磁性纳米材料和介孔氧化硅材料的设计合成及应用研究;汤慧利;《中国博士学位论文全文数据库》;20090315;B020-12 *
电子封装用可控热膨胀复合材料的制备与性能研究;徐桂芳;《中国博士学位论文全文数据库》;20090715;B020-4 *
锆基环境纳米材料的设计及其对水中典型污染物的协同去除行为;潘顺龙;《中国博士学位论文全文数据库》;20190715;B016-25 *

Also Published As

Publication number Publication date
CN113351215A (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
US8987163B2 (en) Production of lower olefins from synthesis gas
RU2659067C2 (ru) СТРУКТУРИРОВАННЫЙ КАТАЛИЗАТОР НА ОСНОВЕ ЖЕЛЕЗА ДЛЯ ПРОИЗВОДСТВА α-ОЛЕФИНА ИЗ СИНТЕЗ-ГАЗА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ПРИМЕНЕНИЕ
Pei et al. One-step production of C1–C18 alcohols via Fischer-Tropsch reaction over activated carbon-supported cobalt catalysts: Promotional effect of modification by SiO2
WO2018040798A1 (zh) 费托合成单分散铁基催化剂及其制备方法和应用
CN104549343A (zh) 合成气制低碳烯烃催化剂、制备方法及其用途
US6121190A (en) Catalytic composition useful in the Fischer-Tropsch reaction
Khadzhiev et al. Fischer-Tropsch process in a three-phase system over iron-cobalt catalyst nanoparticles in situ synthesized in a hydrocarbon medium
CN113351215B (zh) 一种核壳结构催化剂、其制备方法及其应用
CA2983738A1 (en) Method of manufacturing iron-based catalysts and method of manufacturing hydrocarbons using iron-based catalysts made by the method
JP2014151253A (ja) オレフィン低重合方法およびそれに用いる触媒
KR101468377B1 (ko) 합성가스로부터 함산소탄소화합물 제조를 위한 규칙적인 메조다공성 탄소계 촉매 및 이를 이용한 함산소탄소화합물의 제조방법
CN111068691B (zh) 合成气直接制低碳烯烃的催化剂和其应用
CN109092291B (zh) 合成气制低碳烯烃催化剂
CN104549358A (zh) 合成低碳烯烃的催化剂、制备方法及其使用方法
KR102632816B1 (ko) 고선택성의 알파올레핀을 제조하는 방법 및 이를 위한 듀얼-베드 촉매를 포함하는 반응장치
CN111068640B (zh) 合成气制低碳烯烃催化剂及在合成气制低碳烯烃中的应用
CN110639495B (zh) 用于合成气合成低碳烯烃的催化剂及合成低碳烯烃中的应用
CN109097091B (zh) 合成气直接制低碳烯烃的反应方法
CN109096024B (zh) Co加氢制低碳烯烃的反应方法
CN109096025B (zh) 合成气制低碳烯烃的反应方法
CN109092292B (zh) Co加氢制低碳烯烃催化剂
CN109092289B (zh) Co和h2直接制低碳烯烃催化剂
CN109092293B (zh) 合成气直接制低碳烯烃催化剂
Wang et al. A novel method for synthesis of nonylated diphenylamine by alkylation of diphenylamine with nonene over Fe-promoted SO42-/ZrO2 catalysts
Aldeen et al. Research Article Investigation of Effective Parameters Ce and Zr in the Synthesis of H-ZSM-5 and SAPO-34 on the Production of Light Olefins from Naphtha

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant