WO2021114748A1 - 基于模型预测虚拟电压矢量控制的逆变器环流抑制方法 - Google Patents

基于模型预测虚拟电压矢量控制的逆变器环流抑制方法 Download PDF

Info

Publication number
WO2021114748A1
WO2021114748A1 PCT/CN2020/113040 CN2020113040W WO2021114748A1 WO 2021114748 A1 WO2021114748 A1 WO 2021114748A1 CN 2020113040 W CN2020113040 W CN 2020113040W WO 2021114748 A1 WO2021114748 A1 WO 2021114748A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage vector
zero
voltage
inverter
candidate
Prior art date
Application number
PCT/CN2020/113040
Other languages
English (en)
French (fr)
Inventor
金涛
黄宇升
张伟锋
Original Assignee
福州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福州大学 filed Critical 福州大学
Publication of WO2021114748A1 publication Critical patent/WO2021114748A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current

Definitions

  • the invention relates to the field of NPC inverters, and relates to an inverter circulating current suppression method based on model prediction virtual voltage vector control.
  • the purpose of the present invention is to provide an inverter circulating current suppression method based on model prediction virtual voltage vector control, which can effectively suppress the zero-sequence circulating current in the system and significantly reduce the distortion rate of the inverter output current. Thereby reducing system loss, improving output current quality, and improving system reliability.
  • a method for suppressing inverter circulating current based on model prediction virtual voltage vector control including the following steps:
  • Step S1 Collect i a1 (k), i b1 (k), i c1 (k), V C1P (k), V C1N (k), e(k), values at time k;
  • i a1 , i b1 , i c1 are the three-phase filter inductor current of the upper three-level NPC inverter respectively
  • V C1P and V C1N are the upper/lower support capacitors of the upper three-level NPC inverter respectively Voltage
  • e is the grid voltage on the grid-connected side
  • Step S2 using the optimal switching vector v opt found in the last switching cycle
  • Step S3 Calculate the current reference value i * (k+2) at time k+2, and the grid voltage e(k+1) at time k+1;
  • Step S4 Calculate the inverter three-phase output current value i p (k+1) at the moment k+1;
  • Step S5 Predict the current at time k+2 according to the candidate voltage vector
  • Step S6 According to the candidate voltage vector, predict the difference between the upper and lower capacitor voltages of the same inverter at time k+2;
  • Step S7 calculate the cost function value according to the cost function with the predicted values obtained in step S4 and step S5;
  • Step S8 Compare the size of the cost function value obtained in step S6, take the smaller one, and record it as g opt ;
  • Step S9 Determine whether the prediction and optimization of all 19 candidate voltage vectors have been completed, if completed, go to step S10; if not, go back to step S4 to perform the prediction of the next candidate vector;
  • Step S10 Obtain the optimal switching state S opt and the optimal voltage vector corresponding to g opt.
  • the 19 candidate voltage vectors include 7 actual voltage vectors and 12 virtual voltage vectors, and the contributions of the 19 candidate voltage vectors to the zero sequence circulating current are all zero.
  • the 12 virtual voltage vectors are combined by 7 actual voltage vectors, and the action time of each actual voltage vector is half a control period.
  • step S5 is specifically: substituting the candidate voltage vector into the following formula to predict the current at time k+2
  • i p is the predicted current value
  • R is the equivalent resistance of the filter inductance and the circuit
  • T s is the control period of the controller.
  • step S6 is specifically: substituting the candidate voltage vector into the following equation to predict the difference between the upper and lower capacitor voltages of the same inverter at time k+2:
  • I the predicted value of the voltage difference between the upper/lower support capacitors of the upper inverter
  • C is the capacitance value of the support capacitor on the DC side
  • H represents a variable related to the switching state, and its value is 0 or 1.
  • step S7 specifically includes: substituting the predicted value obtained in step S4 and step S5 into the cost function shown in the following formula;
  • the first candidate vector in the candidate vector library is applied.
  • the present invention has the following beneficial effects:
  • the present invention analyzes the zero-sequence circulating current equivalent circuit of a three-level NPC inverter running in parallel with a common AC and DC bus, and selects 7 voltage vectors that can effectively suppress the zero-sequence circulating current as the basic vector. Twelve virtual voltage vectors are synthesized to enrich the candidate voltage vector library, which can effectively suppress the zero-sequence circulating current and significantly reduce the distortion rate of the system output current.
  • Figure 1 is a flowchart of a method in an embodiment of the present invention
  • Figure 2 is a vector diagram of the space voltage in an embodiment of the present invention.
  • Figure 3 is a schematic diagram of the overall system structure in an embodiment of the present invention.
  • Fig. 4 is an equivalent circuit diagram of the zero sequence circulating current of the system in an embodiment of the present invention.
  • the present invention provides a method for suppressing inverter circulating current based on model prediction virtual voltage vector control, which includes the following steps:
  • Step S1 Measure i a1 (k), i b1 (k), i c1 (k), V C1P (k), V C1N (k), e(k), the value at time k;
  • i a1 , i b1 and i c1 are the three-phase filter inductor currents of the upper three-level NPC inverter, which are collected by the Hall current transformer.
  • V C1P and V C1N are the upper/lower values of the upper three-level NPC inverter.
  • the supporting capacitor voltage on the lower side is collected by the Hall voltage transformer, and e is the grid voltage on the grid-connected side, which is collected by the Hall voltage transformer;
  • Step S2 Apply the optimal switching vector v opt found in the last switching cycle (the first candidate vector in the candidate vector library is used in the first cycle);
  • Step S3 Estimate the current reference value i * (k+2) at the time k+2, and the grid voltage e(k+1) at the time k+1;
  • Step S4 Estimate the three-phase output current value i p (k+1) of the inverter at time k+1;
  • Step S5 Substitute the candidate voltage vector into the following formula to predict the current at time k+2;
  • i p is the predicted current value
  • R is the equivalent resistance of the filter inductance and the circuit
  • T s is the control period of the controller.
  • Step S6 Substitute the candidate voltage vector into the following formula to predict the difference between the upper and lower capacitor voltages of the same inverter at time k+2;
  • I the predicted value of the voltage difference between the upper/lower support capacitors of the upper inverter
  • C is the capacitance value of the support capacitor on the DC side
  • H represents a variable related to the switching state, and its value is 0 or 1, which can be preliminarily determined according to different
  • the corresponding H value table is preset for the switch state, which will be used when calculating.
  • Step S7 Substituting the predicted values obtained in steps S4 and S5 into the cost function shown in the following formula. If the value of the cost function is smaller, it means that the voltage vector is closer to the demand vector at the next moment;
  • Step S8 Compare the size of the cost function value obtained in step S6, take the smaller one, and record it as g opt ;
  • Step S9 Determine whether the prediction and optimization of all 19 candidate voltage vectors have been completed, if completed, go to step S10; if not completed, return to step S4 to perform the prediction of the next candidate vector;
  • Step S10 storing g opt corresponding to the optimal switch state S opt, and waiting for next sampling timing.
  • the 19 candidate voltage vectors include 7 actual voltage vectors and 12 virtual voltage vectors, and their spatial distribution is shown in Figure 2. Substituting the above 19 candidate voltage vectors into the following equation It can be seen that its contribution to the zero-sequence circulation is zero.
  • R 1 , R 2 are the equivalent resistances of the filter inductance of the upper and lower inverters respectively
  • L 1 , L 2 are the filter inductances of the upper and lower inverters, respectively
  • ⁇ V 1 , ⁇ V 2 respectively Is the voltage difference between the upper and lower capacitors on the DC side of the upper and lower inverters
  • i z is the zero-sequence circulating current
  • u j1O1 , u j2O2 are the output voltages of the upper and lower inverters, respectively.
  • the 12 virtual voltage vectors are all synthesized from 7 actual voltage vectors in a two-by-two combination, and the action time of each actual voltage vector is half a control period.
  • the optimal switch state S opt is the smallest item of the cost function value g during the 19th cost function optimization process of the control cycle, and g being the smallest means the corresponding value obtained by applying the voltage vector in the next cycle
  • the current vector of will be the closest to the reference value i * , and so on, the actual output vector in each cycle is the item closest to the reference vector in the candidate vector, so the reference current can be tracked in real time.
  • the newly added 12 virtual voltage vectors expand the candidate vector library, making it more likely that the candidate vector is close to the actual demand vector (as can be seen from Figure 2), so the distortion rate of the output current can be significantly reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明涉及一种基于模型预测虚拟电压矢量控制的三电平NPC逆变器零序环流抑制方法,通过分析三电平逆变器的空间矢量,从中选出7个对零序环流贡献为零的电压矢量作为基本矢量,并通过其合成12个虚拟电压矢量,在有效抑制并联系统的零序环流的同时还能显著降低其输出电流的畸变率,提高并网电流质量,非常适合用于并联运行的三电平逆变系统。

Description

基于模型预测虚拟电压矢量控制的逆变器环流抑制方法 技术领域
本发明涉及NPC逆变器领域,涉及一种基于模型预测虚拟电压矢量控制的逆变器环流抑制方法。
背景技术
近年来我国光伏和风电呈现出爆发式的增长,据2018年中国能源发展报告,我国风电和光伏装机分别为1.84亿千瓦和1.7亿千瓦,均位居世界第一。如何将这部分电能高效率、高质量、低成本的输送到电网已成为近几十年来的研究热点。中点钳位型三电平逆变器(Neutral-Point-Clamped,NPC)具有输出谐波小,系统效率高,低开关应力等优点被广泛应用于新能源发电领域。然而,单台三电平逆变器难以满足大规模光伏和风电的应用场景,故多台逆变器并联运行已成为主流趋势,在提高系统输出功率的同时还能提升系统可靠性和降低成本。
技术问题
然而,共交直流母线的非隔离三电平逆变器因硬件参数差异,死区时间,控制信号延时等问题将在逆变器之间产生零序环流,严重影响系统的运行性能,如增加系统损耗、致使输出电流严重畸变和中性点电压偏移等,重则导致系统崩溃。
技术解决方案
有鉴于此,本发明的目的在于提供一种基于模型预测虚拟电压矢量控制的逆变器环流抑制方法,能有效抑制系统内的零序环流,还能显著降低逆变器输出电流的畸变率,从而降低系统损耗、提高输出电流质量,提高系统的可靠性。
为实现上述目的,本发明采用如下技术方案:
一种基于模型预测虚拟电压矢量控制的逆变器环流抑制方法,包括以下步骤:
步骤S1:采集i a1(k),i b1(k),i c1(k),V C1P(k),V C1N(k),e(k),在k时刻的值;
其中i a1,i b1,i c1分别为上侧三电平NPC逆变器的三相滤波电感电流,V C1P,V C1N分别为上侧三电平NPC逆变器的上/下侧支撑电容电压,e为并网侧的电网电压;
步骤S2:采用上一开关周期所寻得的最优开关矢量v opt
步骤S3:计算k+2时刻的电流参考值i *(k+2),k+1时刻的电网电压e(k+1);
步骤S4:计算k+1时刻的逆变器三相输出电流值i p(k+1);
步骤S5:根据备选电压矢量,预测k+2时刻的电流;
步骤S6:根据备选电压矢量,预测k+2时刻同一逆变器上下侧电容电压的差值;
步骤S7:将步骤S4和步骤S5所得的预测值,根据代价函数计算代价函数值;
步骤S8:比较步骤S6中获得的代价函数值的大小,取较小者,并记为g opt
步骤S9:判断是否已经完成全部19个备选电压矢量的预测和寻优,如果已完成,则进入步骤S10;如果未完成,则返回步骤S4,进行下一个备选矢量的预测;
步骤S10:得到与g opt对应的最优开关状态S opt和最优电压矢量。
进一步的,所述19个备选电压矢量包括7个实际电压矢量和12个虚拟电压矢量,所述19个备选电压矢量对零序环流的贡献均为零。
进一步的,所述的12个虚拟电压矢量由7个实际电压矢量来两两合成,每个实际电压矢量的作用时间均为半个控制周期。
进一步的,所述步骤S5具体为:将备选电压矢量代入到下式预测k+2时刻的电流
Figure PCTCN2020113040-appb-000001
式中:i p为电流预测值,R为滤波电感和线路的等效电阻,T s为控制器的控制周期。
进一步的,所述步骤S6具体为:将备选电压矢量代入到下式来预测k+2时刻同一逆变器上下侧电容电压的差值:
Figure PCTCN2020113040-appb-000002
式中:
Figure PCTCN2020113040-appb-000003
为上侧逆变器上/下侧支撑电容电压差的预测值,C为直流侧支撑电容的容值,H代表与开关状态有关的变量,其取值为0或1。
进一步的,所述步骤S7具体为:将步骤S4和步骤S5所得的预测值代入到如下式所示的代价函数中;
Figure PCTCN2020113040-appb-000004
式中:
Figure PCTCN2020113040-appb-000005
分别为参考电流的α,β分量,
Figure PCTCN2020113040-appb-000006
分别为预测电流的α,β分量,λ dc为直流侧中点平衡的权重系数。
进一步的,所述步骤S2第一个周期应用备选矢量库中的第一个备选矢量。
有益效果
本发明与现有技术相比具有以下有益效果:
本发明通过分析共交直流母线并联运行的三电平NPC逆变器零序环流的等效电路,选取了其中7个能有效抑制零序环流的电压矢量作为基本矢量,同时根据7个基本矢量合成了12个虚拟电压矢量来丰富备选电压矢量库,可以在有效抑制零序环流的同时显著降低系统输出电流的畸变率。
附图说明
图1是本发明一实施例中方法流程图;
图2是本发明一实施例中的空间电压矢量图;
图3是本发明一实施例中整体系统结构示意图;
图4是本发明一实施例中系统零序环流等效电路图。
本发明的实施方式
下面结合附图及实施例对本发明做进一步说明。
请参照图1,本发明提供一种基于模型预测虚拟电压矢量控制的逆变器环流抑制方法,包括以下步骤:
步骤S1:测量i a1(k),i b1(k),i c1(k),V C1P(k),V C1N(k),e(k),在k时刻的值;其中i a1,i b1,i c1分别为上侧三电平NPC逆变器的三相滤波电感电流,通过霍尔电流互感器采集得到,V C1P,V C1N分别为上侧三电平NPC逆变器的上/下侧支撑电容电压,通过霍尔电压互感器采集得到,e为并网侧的电网电压,通过霍尔电压互感器采集得到;
步骤S2:应用上一开关周期所寻得的最优开关矢量v opt(第一个周期应用备选矢量库中的第一个备选矢量);
步骤S3:估算k+2时刻的电流参考值i *(k+2),k+1时刻的电网电压e(k+1);
步骤S4:估算k+1时刻的逆变器三相输出电流值i p(k+1);
步骤S5:将备选电压矢量代入到下式预测k+2时刻的电流;
Figure PCTCN2020113040-appb-000007
式中:i p为电流预测值,R为滤波电感和线路的等效电阻,T s为控制器的控制周期。
步骤S6:将备选电压矢量代入到下式来预测k+2时刻同一逆变器上下侧电容电压的差值;
Figure PCTCN2020113040-appb-000008
式中:
Figure PCTCN2020113040-appb-000009
为上侧逆变器上/下侧支撑电容电压差的预测值,C为直流侧支撑电容的容值,H代表与开关状态有关的变量,其取值为0或1,可预先根据不同的开关状态预设相应的H值表,待计算时取用。
步骤S7:将步骤S4和步骤S5所得的预测值代入到如下式所示的代价函数中,若代价函数值越小,则代表该电压矢量与下一时刻的需求矢量越接近;
Figure PCTCN2020113040-appb-000010
式中:
Figure PCTCN2020113040-appb-000011
分别为参考电流的α,β分量,
Figure PCTCN2020113040-appb-000012
分别为预测电流的α,β分量,λ dc为直流侧中点平衡的权重系数。
步骤S8:比较步骤S6中获得的代价函数值的大小,取较小者,并记为g opt
步骤S9:判断是否已经完成全部19个备选电压矢量的预测和寻优,如果已完成,则进入步骤S10;如果未完成,则返回步骤S4,进行下一个备选矢量的预测;
步骤S10:存储与g opt对应的最优开关状态S opt,并等待下一次采样时刻。
在本实施例中,所述19个备选电压矢量中包含有7个实际电压矢量和12个虚拟电压矢量,其空间分布如图2所示,将上述19个备选电压矢量代入下式中可知,其对零序环流的贡献均为零。
Figure PCTCN2020113040-appb-000013
式中,R 1,R 2分别为上、下侧逆变器的滤波电感的等效电阻,L 1,L 2分别为上、下侧逆变器的滤波电感值,ΔV 1,ΔV 2分别为上、下侧逆变器直流侧上、下电容的电压差,i z为零序环流,u j1O1,u j2O2分别为上、下侧逆变器的输出电压。
在本实施例中,所述的12个虚拟电压矢量皆由7个实际电压矢量通过两两组合的方式合成,每个实际电压矢量的作用时间均为半个控制周期。
在本实施例中,所述最优开关状态S opt为本控制周期19次代价函数寻优过程中代价函数值g的最小项,g为最小意味着在下个周期应用该电压矢量所得到的相应的电流矢量将最接近参考值i *,如此 反复,在每个周期内的实际输出矢量都为备选矢量中最接近参考矢量的项,故可实时跟踪参考电流。同时,新增的12个虚拟电压矢量扩充了备选矢量库,使得备选矢量接近实际需求矢量的可能性增大(从图2中可以看出),故可显著降低输出电流的畸变率。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (7)

  1. 一种基于模型预测虚拟电压矢量控制的逆变器环流抑制方法,其特征在于,包括以下步骤:
    步骤S1:采集i a1(k),i b1(k),i c1(k),V C1P(k),V C1N(k),e(k),在k时刻的值;
    其中i a1,i b1,i c1分别为上侧三电平NPC逆变器的三相滤波电感电流,V C1P,V C1N分别为上侧三电平NPC逆变器的上/下侧支撑电容电压,e为并网侧的电网电压;
    步骤S2:采用上一开关周期所寻得的最优开关矢量v opt
    步骤S3:计算k+2时刻的电流参考值i *(k+2),k+1时刻的电网电压e(k+1);
    步骤S4:计算k+1时刻的逆变器三相输出电流值i p(k+1);
    步骤S5:根据备选电压矢量,预测k+2时刻的电流;
    步骤S6:根据备选电压矢量,预测k+2时刻同一逆变器上下侧电容电压的差值;
    步骤S7:将步骤S4和步骤S5所得的预测值,根据代价函数计算代价函数值;
    步骤S8:比较步骤S6中获得的代价函数值的大小,取较小者,并记为g opt
    步骤S9:判断是否已经完成全部19个备选电压矢量的预测和寻优,如果已完成,则进入步骤S10;如果未完成,则返回步骤S4,进行下一个备选矢量的预测;
    步骤S10:得到与g opt对应的最优开关状态S opt和最优电压矢量。
  2. 根据权利要求1所述的基于模型预测虚拟电压矢量控制的三电平NPC逆变器零序环流抑制方法,其特征在于:所述19个备选电压矢量包括7个实际电压矢量和12个虚拟电压矢量,所述19个备选电压矢量对零序环流的贡献均为零。
  3. 根据权利要求2所述的基于模型预测虚拟电压矢量控制的三电平NPC逆变器零序环流抑制方法,其特征在:所述的12个虚拟电压矢量由7个实际电压矢量来两两合成,每个实际电压矢量的作用时间均为半个控制周期。
  4. 根据权利要求1所述的基于模型预测虚拟电压矢量控制的三电平NPC逆变器零序环流抑制方法,其特征在于,所述步骤S5具体为:将备选电压矢量代入到下式预测k+2时刻的电流
    Figure PCTCN2020113040-appb-100001
    式中:i p为电流预测值,R为滤波电感和线路的等效电阻,T s为控制器的控制周期。
  5. 根据权利要求1所述的基于模型预测虚拟电压矢量控制的三电平NPC逆变器零序环流抑制方法,其特征在于,所述步骤S6具体为:将备选电压矢量代入到下式来预测k+2时刻同一逆变器上下侧电容电压的差值:
    Figure PCTCN2020113040-appb-100002
    式中:ΔV 1 p为上侧逆变器上/下侧支撑电容电压差的预测值,C为直流侧支撑电容的容值,H代表与开关状态有关的变量,其取值为0或1。
  6. 根据权利要求1所述的基于模型预测虚拟电压矢量控制的三电平NPC逆变器零序环流抑制方法,其特征在于,所述步骤S7具体为:将步骤S4和步骤S5所得的预测值代入到如下式所示的代价函数中;
    Figure PCTCN2020113040-appb-100003
    式中:
    Figure PCTCN2020113040-appb-100004
    分别为参考电流的α,β分量,
    Figure PCTCN2020113040-appb-100005
    分别为预测电流的α,β分量,λ dc为直流侧中点平衡的权重系数。
  7. 根据权利要求1所述的基于模型预测虚拟电压矢量控制的三电平NPC逆变器零序环流抑制方法,其特征在于,所述步骤S2第一个周期应用备选矢量库中的第一个备选矢量。
PCT/CN2020/113040 2019-12-12 2020-09-02 基于模型预测虚拟电压矢量控制的逆变器环流抑制方法 WO2021114748A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911270613.6 2019-12-12
CN201911270613.6A CN110912431B (zh) 2019-12-12 2019-12-12 基于模型预测虚拟电压矢量控制的逆变器环流抑制方法

Publications (1)

Publication Number Publication Date
WO2021114748A1 true WO2021114748A1 (zh) 2021-06-17

Family

ID=69824858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113040 WO2021114748A1 (zh) 2019-12-12 2020-09-02 基于模型预测虚拟电压矢量控制的逆变器环流抑制方法

Country Status (2)

Country Link
CN (1) CN110912431B (zh)
WO (1) WO2021114748A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113659583A (zh) * 2021-09-01 2021-11-16 青岛鼎信通讯股份有限公司 一种低压配电网末端低电压治理装置并联补偿的方法
CN113726202A (zh) * 2021-09-07 2021-11-30 重庆理工大学 一种pwm整流器的模型预测控制策略
CN113922689A (zh) * 2021-12-09 2022-01-11 希望森兰科技股份有限公司 一种二极管箝位型三电平变换器高性能模型预测控制算法
CN113991739A (zh) * 2021-11-05 2022-01-28 福州大学 一种并网逆变器简化矢量定频预测电流控制方法
CN114243788A (zh) * 2021-12-29 2022-03-25 河北工业大学 基于Lyapunov准则的逆变器模型预测控制大信号稳定性方法
CN114256874A (zh) * 2021-12-16 2022-03-29 云南电网有限责任公司电力科学研究院 一种t型逆变器快速有限集模型预测控制方法
CN114447928A (zh) * 2022-02-14 2022-05-06 湖南大学 基于动态可重构虚拟电压参考单元的孤岛微电网的协同故障穿越控制方法
CN114531078A (zh) * 2022-02-27 2022-05-24 西北工业大学 一种开关磁阻电机转矩脉动和母线电流脉动抑制方法
CN114625204A (zh) * 2022-03-25 2022-06-14 大航有能电气有限公司 实时电容辨识的模型预测控制方法
CN114665763A (zh) * 2022-04-21 2022-06-24 湖南工业大学 一种永磁同步风力发电机最优电压矢量确定方法
CN114710055A (zh) * 2022-04-26 2022-07-05 南京理工大学 基于有限集单矢量的两并联功率变流器模型预测控制方法
CN117239711A (zh) * 2023-11-13 2023-12-15 四川大学 改善抽油机井群供电质量的储能控制方法和装置
CN117240118A (zh) * 2023-11-09 2023-12-15 国网浙江省电力有限公司丽水供电公司 逆变器控制方法和电子设备
CN117650710A (zh) * 2023-11-30 2024-03-05 山东大学 优先考虑零序环流抑制的模型预测电流控制方法及系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110912431B (zh) * 2019-12-12 2021-10-29 福州大学 基于模型预测虚拟电压矢量控制的逆变器环流抑制方法
CN113193766B (zh) * 2021-04-02 2022-04-15 山东大学 一种并联变流器集群的环流抑制直接预测控制方法及系统
CN113315436B (zh) * 2021-06-05 2023-01-13 青岛大学 一种基于虚拟矢量的九相开绕组永磁同步电机模型预测控制方法
CN113595147B (zh) * 2021-07-29 2023-12-01 上海电力大学 基于模型预测控制的虚拟同步发电机控制方法
CN113676072A (zh) * 2021-08-04 2021-11-19 广东工业大学 一种三相开关电容多电平逆变器的脉宽调制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103036462A (zh) * 2012-11-26 2013-04-10 天津大学 电网电压不平衡时电压源型整流器模型预测控制方法
CN105375804A (zh) * 2015-12-17 2016-03-02 福州大学 一种不对称电压下基于npc拓扑并网逆变器的模型预测电流控制方法
CN107171584A (zh) * 2017-06-22 2017-09-15 南京理工大学 Npc三相三电平并网逆变器的模型预测控制方法及装置
CN107546994A (zh) * 2017-10-17 2018-01-05 南京理工大学 一种多电平逆变器并网系统及方法
KR20180077700A (ko) * 2016-12-29 2018-07-09 중앙대학교 산학협력단 멀티레벨 인버터를 동작시키는 제어 방법 및 장치
CN110912431A (zh) * 2019-12-12 2020-03-24 福州大学 基于模型预测虚拟电压矢量控制的逆变器环流抑制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9473013B2 (en) * 2012-07-06 2016-10-18 Abb Schweiz Ag Controlling a modular converter with a plurality of converter modules
CN103036460B (zh) * 2012-11-26 2014-10-22 天津大学 一种三电平电压源型变换器模型预测控制方法
CN104811074B (zh) * 2015-04-15 2017-06-20 西安理工大学 一种多台单相电压源型逆变器并联的无功环流抑制方法
US10554142B2 (en) * 2016-08-18 2020-02-04 Abb Schweiz Ag Modulation of AC/AC MMC
CN106786748B (zh) * 2016-12-27 2019-01-25 电子科技大学 一种三电平逆变器并联系统零序环流抑制方法
CN107104604B (zh) * 2017-04-14 2019-05-14 华南理工大学 一种三电平并网逆变器模型预测直接功率控制方法
WO2019199964A1 (en) * 2018-04-10 2019-10-17 University Of Maryland College Park Vehicle on-board charger for bi-directional charging of low/high voltage batteries
CN108649821B (zh) * 2018-07-03 2019-06-25 南通大学 一种并联pwm整流器分区间双矢量模型预测控制方法
CN109347351B (zh) * 2018-11-19 2021-01-12 北京化工大学 一种模块化多电平换流器的模型预测控制方法
CN110149066B (zh) * 2019-05-16 2020-05-19 华中科技大学 一种基于模型控制预测的mmc桥臂电流控制方法及系统
CN110545046B (zh) * 2019-10-12 2021-02-05 南通大学 一种基于虚拟矢量的并联pwm整流器环流抑制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103036462A (zh) * 2012-11-26 2013-04-10 天津大学 电网电压不平衡时电压源型整流器模型预测控制方法
CN105375804A (zh) * 2015-12-17 2016-03-02 福州大学 一种不对称电压下基于npc拓扑并网逆变器的模型预测电流控制方法
KR20180077700A (ko) * 2016-12-29 2018-07-09 중앙대학교 산학협력단 멀티레벨 인버터를 동작시키는 제어 방법 및 장치
CN107171584A (zh) * 2017-06-22 2017-09-15 南京理工大学 Npc三相三电平并网逆变器的模型预测控制方法及装置
CN107546994A (zh) * 2017-10-17 2018-01-05 南京理工大学 一种多电平逆变器并网系统及方法
CN110912431A (zh) * 2019-12-12 2020-03-24 福州大学 基于模型预测虚拟电压矢量控制的逆变器环流抑制方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113659583A (zh) * 2021-09-01 2021-11-16 青岛鼎信通讯股份有限公司 一种低压配电网末端低电压治理装置并联补偿的方法
CN113726202A (zh) * 2021-09-07 2021-11-30 重庆理工大学 一种pwm整流器的模型预测控制策略
CN113726202B (zh) * 2021-09-07 2023-08-18 重庆理工大学 一种pwm整流器的模型预测控制方法
CN113991739A (zh) * 2021-11-05 2022-01-28 福州大学 一种并网逆变器简化矢量定频预测电流控制方法
CN113922689A (zh) * 2021-12-09 2022-01-11 希望森兰科技股份有限公司 一种二极管箝位型三电平变换器高性能模型预测控制算法
CN113922689B (zh) * 2021-12-09 2022-02-22 希望森兰科技股份有限公司 一种二极管箝位型三电平变换器高性能模型预测控制算法
CN114256874A (zh) * 2021-12-16 2022-03-29 云南电网有限责任公司电力科学研究院 一种t型逆变器快速有限集模型预测控制方法
CN114256874B (zh) * 2021-12-16 2023-11-17 云南电网有限责任公司电力科学研究院 一种t型逆变器快速有限集模型预测控制方法
CN114243788A (zh) * 2021-12-29 2022-03-25 河北工业大学 基于Lyapunov准则的逆变器模型预测控制大信号稳定性方法
CN114243788B (zh) * 2021-12-29 2023-11-21 河北工业大学 基于Lyapunov准则的逆变器模型预测控制大信号稳定性方法
CN114447928A (zh) * 2022-02-14 2022-05-06 湖南大学 基于动态可重构虚拟电压参考单元的孤岛微电网的协同故障穿越控制方法
CN114531078A (zh) * 2022-02-27 2022-05-24 西北工业大学 一种开关磁阻电机转矩脉动和母线电流脉动抑制方法
CN114531078B (zh) * 2022-02-27 2024-02-06 西北工业大学 一种开关磁阻电机转矩脉动和母线电流脉动抑制方法
CN114625204A (zh) * 2022-03-25 2022-06-14 大航有能电气有限公司 实时电容辨识的模型预测控制方法
CN114625204B (zh) * 2022-03-25 2024-03-29 大航有能电气有限公司 实时电容辨识的模型预测控制方法
CN114665763A (zh) * 2022-04-21 2022-06-24 湖南工业大学 一种永磁同步风力发电机最优电压矢量确定方法
US11848624B2 (en) 2022-04-26 2023-12-19 Nanjing University Of Science And Technology Single vector-based finite control set model predictive control method of two parallel power converters
CN114710055A (zh) * 2022-04-26 2022-07-05 南京理工大学 基于有限集单矢量的两并联功率变流器模型预测控制方法
CN117240118A (zh) * 2023-11-09 2023-12-15 国网浙江省电力有限公司丽水供电公司 逆变器控制方法和电子设备
CN117240118B (zh) * 2023-11-09 2024-02-23 国网浙江省电力有限公司丽水供电公司 逆变器控制方法和电子设备
CN117239711B (zh) * 2023-11-13 2024-02-02 四川大学 改善抽油机井群供电质量的储能控制方法和装置
CN117239711A (zh) * 2023-11-13 2023-12-15 四川大学 改善抽油机井群供电质量的储能控制方法和装置
CN117650710A (zh) * 2023-11-30 2024-03-05 山东大学 优先考虑零序环流抑制的模型预测电流控制方法及系统

Also Published As

Publication number Publication date
CN110912431B (zh) 2021-10-29
CN110912431A (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
WO2021114748A1 (zh) 基于模型预测虚拟电压矢量控制的逆变器环流抑制方法
Pan et al. Voltage balancing control of diode-clamped multilevel rectifier/inverter systems
TWI530082B (zh) 可允許電感值變化之三相模組化多階換流器電流控制方法
CN105870969B (zh) 一种可进行架构重组的并联逆变器系统及其控制方法
CN109347351B (zh) 一种模块化多电平换流器的模型预测控制方法
CN110311582B (zh) 一种三电平逆变器的模型预测控制方法及系统
CN107134939B (zh) 一种三电平并网逆变器双模型预测直接功率控制方法
CN110460089B (zh) 一种基于多变量预测的lcl并网逆变器fcs-mpc控制方法
CN111541411A (zh) 一种双三电平逆变器开绕组电机模型控制方法
CN109038673A (zh) 光伏发电系统的模型预测优化控制方法
CN109301823A (zh) 一种基于有限状态模型预测控制策略的电能质量扰动补偿方法
CN108400616B (zh) 一种基于mpdpc的光伏并网逆变器动态性能优化方法
CN114785166A (zh) 基于滑模控制的t型整流器三矢量模型预测控制方法
Zhang et al. Unbalance loads compensation with STATCOM based on PR controller and notch filter
CN113746107B (zh) 一种基于序列模型预测控制的并网逆变器容错控制方法
Renault et al. Current control based on space vector modulation applied to three-phase H-Bridge STATCOM
CN108321831A (zh) 一种铁路功率调节器滤波电感参数不确定的控制方法
CN112994498A (zh) 一种七电平逆变电路、逆变器及控制方法
CN110244567B (zh) 一种基于扩展瞬时无功理论的快速模型预测控制方法
CN109936299B (zh) 一种a相开路故障下三相四开关变换器模型预测控制方法
CN110676860A (zh) 一种基于扩展瞬时有功理论的快速预测不平衡控制方法
Meng-Ting et al. Design and implementation of a multifunctional DC electronic load
CN103199550A (zh) 级联无功补偿装置的电容电压平衡控制方法
CN114256874B (zh) 一种t型逆变器快速有限集模型预测控制方法
Gu et al. Control Strategy of Three-Level NPC Inverter Based on Variable Coefficient Virtual Vector Model Predictive Control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899813

Country of ref document: EP

Kind code of ref document: A1