CN109936299B - 一种a相开路故障下三相四开关变换器模型预测控制方法 - Google Patents

一种a相开路故障下三相四开关变换器模型预测控制方法 Download PDF

Info

Publication number
CN109936299B
CN109936299B CN201910376078.6A CN201910376078A CN109936299B CN 109936299 B CN109936299 B CN 109936299B CN 201910376078 A CN201910376078 A CN 201910376078A CN 109936299 B CN109936299 B CN 109936299B
Authority
CN
China
Prior art keywords
voltage
phase
current
converter
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910376078.6A
Other languages
English (en)
Other versions
CN109936299A (zh
Inventor
郭磊磊
金楠
秦世耀
王瑞明
代林旺
罗魁
曹玲芝
李琰琰
武洁
吴振军
窦智峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Electric Power Research Institute Co Ltd CEPRI
Zhengzhou University of Light Industry
Original Assignee
China Electric Power Research Institute Co Ltd CEPRI
Zhengzhou University of Light Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Electric Power Research Institute Co Ltd CEPRI, Zhengzhou University of Light Industry filed Critical China Electric Power Research Institute Co Ltd CEPRI
Priority to CN201910376078.6A priority Critical patent/CN109936299B/zh
Publication of CN109936299A publication Critical patent/CN109936299A/zh
Application granted granted Critical
Publication of CN109936299B publication Critical patent/CN109936299B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Rectifiers (AREA)

Abstract

本发明提出了一种a相开路故障下三相四开关变换器模型预测控制方法,步骤为:根据变换器的开关状态得到变换器的电压矢量及其对应的第一电压值;采样k时刻变换器的三相输出电流和三相电网电压,并分别变换得到静止
Figure 454373DEST_PATH_IMAGE001
坐标系下的电流分量和电压分量;根据第一电压值、电流分量和电压分量预测k+1时刻的第一电流值及第一目标函数和电压矢量的作用时间;再根据作用时间计算新的电压矢量及其对应的第二电压值;根据第二电压值、电流分量和电压分量预测k+1时刻的第二电流值及第二目标函数;根据第二目标函数的大小选择最优电压矢量控制下一周期变换器的输出电流。本发明利用三相四开关和双矢量模型预测控制,提高了变换器的容错运行能力,降低了电流谐波。

Description

一种a相开路故障下三相四开关变换器模型预测控制方法
技术领域
本发明涉及电力电子技术领域,特别是指一种a相开路故障下三相四开关变换器模型预测控制方法。
背景技术
近年来,光伏、风电等新能源并网发电技术得到蓬勃发展。三相六开关双向交直流变换器也因此而得到广泛应用。然后,在高频、高压、高温、大电流的工作环境下,三相六开关双向交直流变换器极易出现开路故障,进而会影响含三相六开关双向交直流变换器的光伏、风电系统的可靠性。
目前已经有许多变换器模型预测控制方法申请了专利,比如申请号为201710154141.2,发明名称为一种双向交直流储能变换器故障容错均压控制方法,提出了一种三相六开关双向交直流变换器单相开路故障下的功率预测控制方法,并实现了直流电压平衡控制。然而,该发明方法每个控制周期仅使用一个电压矢量,导致其电流和功率纹波较大。文献[金楠,张涛,窦智峰,等.不平衡电网三相四开关变换器预测功率控制[J].电机与控制应用,2018,45(09):51-56.]提出了一种不平衡电网下三相四开关变换器的功率预测控制方法,实现了功率的灵活控制。然而,该方法也是在每个控制周期内仅使用一个电压矢量,导致电流和功率纹波较大。文献[马伟杰,章宝歌.基于电容电压平衡的三相四开关整流器FCS-MPPC策略[J].兰州交通大学学报,2018,37(6):55-61]提出了一种三相四开关整流器的功率预测控制方法,并实现了直流电容电压平衡控制,但该方法仍然是每个周期只使用一个电压矢量,导致电流和功率的谐波较大。
发明内容
针对现有变换器模型预测控制方法存在的电流谐波较大的技术问题,本发明提出了一种a相开路故障下三相四开关变换器模型预测控制方法,首先将a相开路故障下的三相六开关双向交直流变换器重构为三相四开关结构,并对其进行控制,以实现故障冗余运行,然后设计了双矢量模型预测控制方法,通过每个控制周期使用两个矢量,明显降低了电流和功率的谐波,提高电能质量。
本发明的技术方案是这样实现的:
一种a相开路故障下三相四开关变换器模型预测控制方法,其步骤如下:
S1、定义a相开路故障时三相四开关变换器的开关状态Sa、Sb、Sc,根据开关状态Sb、Sc得到双向交直流变换器有四个电压矢量Vi(SbSc),其中,i=1,2,3,4,开关状态
Figure BDA0002051704820000011
开关状态Sb、Sc等于0或1;
S2、根据步骤S1得到的电压矢量Vi(SbSc)对应的开关状态Sb、Sc以及变换器的直流侧电压Udc计算电压矢量Vi(SbSc)对应的第一电压值uαi和uβi
S3、采样k时刻的变换器的三相输出电流ia、ib、ic,并将三相输出电流ia、ib、ic变换得到静止αβ坐标系下的电流分量分别为电流iα和电流iβ
S4、采样k时刻的三相电网电压ea、eb、ec,并将三相电网电压ea、eb、ec变换得到静止αβ坐标系下的电压分量分别为电压eα和电压eβ
S5、根据步骤S2得到的第一电压值uαi、uβi,步骤S3得到的电流iα、电流iβ和步骤S4得到的电压eα、电压eβ预测k+1时刻的第一电流值iαi(k+1)和iβi(k+1);
S6、根据步骤S5得到的第一电流值iαi(k+1)和iβi(k+1)计算电压矢量Vi(SbSc)对应的第一目标函数gi,再根据第一目标函数gi计算电压矢量Vi(SbSc)的作用时间;
S7、根据步骤S6得到的作用时间合成新的电压矢量Vp,并根据作用时间和步骤S2得到的第一电压值uαi、uβi计算电压矢量Vp对应的第二电压值uαp和uβp,其中,p=5,6,7,8;
S8、根据步骤S7得到的第二电压值uαp、uβp,步骤S3得到的电流iα、电流iβ和步骤S4得到的电压eα、电压eβ预测k+1时刻的第二电流值iαp(k+1)和iβp(k+1),并根据第二电流值iαp(k+1)和iβp(k+1)计算电压矢量Vp对应的第二目标函数gp
S9、比较步骤S8得到的第二目标函数gp的大小,选择最小的第二目标函数gp所对应的电压矢量Vp作为最优矢量,并在下一周期将最优矢量作为三相四开关变换器输出的电压矢量。
优选地,所述步骤S1中的双向交直流变换器的四个电压矢量Vi(SbSc)的获得方法为:
Sb=1表示双向交直流变换器b相桥臂上管导通,下管关断;
Sb=0表示双向交直流变换器b相桥臂上管关断,下管导通;
Sc=1表示双向交直流变换器c相桥臂上管导通,下管关断;
Sc=0表示双向交直流变换器c相桥臂上管关断,下管导通;
若Sb=0,Sc=0,电压矢量记为V1(00);
若Sb=1,Sc=0,电压矢量记为V2(10);
若Sb=0,Sc=1,电压矢量记为V3(01);
若Sb=1,Sc=1,电压矢量记为V4(11)。
优选地,所述步骤S2中电压矢量Vi(SbSc)对应的第一电压值uαi和uβi的获得方法为:
Figure BDA0002051704820000031
其中,Sbi等于电压矢量Vi(SbSc)对应的Sb,Sci等于电压矢量Vi(SbSc)对应的Sc
优选地,所述步骤S3中三相输出电流ia、ib、ic变换得到静止αβ坐标系下的电流iα和电流iβ的方法为:
Figure BDA0002051704820000032
优选地,所述步骤S4中三相电网电压ea、eb、ec变换得到静止αβ坐标系下的电压eα和电压eβ的方法为:
Figure BDA0002051704820000033
优选地,所述步骤S5中的第一电流值iαi(k+1)和iβi(k+1)的获得方法为:
Figure BDA0002051704820000034
其中,Ts为采样周期,L为输出电感的电感值,R为输出电感的杂散电阻。
优选地,所述步骤S6中的第一目标函数gi的获得方法为:
gi=|iαref-iαi(k+1)|+|iβref-iβi(k+1)|,
其中,iαref和iβref均为电流参考值;
所述步骤S6中的电压矢量的作用时间的获得方法为:
Figure BDA0002051704820000035
Figure BDA0002051704820000041
Figure BDA0002051704820000042
Figure BDA0002051704820000043
其中,m为可调因子,且m>0。
优选地,所述步骤S7中的电压矢量Vp对应的第二电压值uαp和uβp的获得方法为:
Figure BDA0002051704820000044
Figure BDA0002051704820000045
Figure BDA0002051704820000046
Figure BDA0002051704820000047
其中,p=5,6,7,8,Ts为采样周期。
优选地,所述步骤S8中的第二电流值iαp(k+1)和iβp(k+1)的获得方法为:
Figure BDA0002051704820000048
优选地,所述步骤S8中的第二目标函数gp的获得方法为:
gp=|iαref-iαp(k+1)|+|iβref-iβp(k+1)|。
本技术方案能产生的有益效果:本发明根据相应矢量对应的目标函数值计算两个电压矢量各自的作用时间,同时引入了一个可调因子m来自适应调整两个电压矢量的作用时间,从而能够实现低电流误差控制,并降低三相四开关双向交直流变换器输出的电流谐波。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的整体结构示意图。
图2为文献[马伟杰,章宝歌.基于电容电压平衡的三相四开关整流器FCS-MPPC策略[J].兰州交通大学学报,2018,37(6:):55-61]的仿真结果图。
图3为本发明的仿真结果图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,一种a相开路故障下三相四开关变换器模型预测控制方法,首先,根据变换器的开关状态得到变换器的电压矢量及其对应的第一电压值;然后,采样k时刻变换器的三相输出电流和三相电网电压,并分别变换得到静止αβ坐标系下的电流分量和电压分量;再根据第一电压值、电流分量和电压分量预测k+1时刻的第一电流值及第一目标函数和电压矢量的作用时间;然后,根据作用时间计算新的电压矢量及其对应的第二电压值;再根据第二电压值、电流分量和电压分量预测k+1时刻的第二电流值及第二目标函数;最后,根据第二目标函数的大小选择最优电压矢量控制下一周期变换器的输出电流。具体步骤如下:
S1、定义a相开路故障时三相四开关变换器的开关状态Sa、Sb、Sc,根据开关状态Sb、Sc得到双向交直流变换器有四个电压矢量Vi(SbSc),其中,i=1,2,3,4,开关状态
Figure BDA0002051704820000051
开关状态Sb、Sc等于0或1:
Sb=1表示双向交直流变换器b相桥臂上管导通,下管关断;
Sb=0表示双向交直流变换器b相桥臂上管关断,下管导通;
Sc=1表示双向交直流变换器c相桥臂上管导通,下管关断;
Sc=0表示双向交直流变换器c相桥臂上管关断,下管导通;
若Sb=0,Sc=0,电压矢量记为V1(00);
若Sb=1,Sc=0,电压矢量记为V2(10);
若Sb=0,Sc=1,电压矢量记为V3(01);
若Sb=1,Sc=1,电压矢量记为V4(11);
因此,a相开路故障时双向交直流变换器的四个电压矢量分别记为V1(00)、V2(10)、V3(01)和V4(11)。
S2、根据步骤S1得到的电压矢量Vi(SbSc)对应的开关状态Sb、Sc以及变换器的直流侧电压Udc计算电压矢量Vi(SbSc)对应的第一电压值电压uαi和电压uβi如下式所示:
Figure BDA0002051704820000061
其中,Sbi等于电压矢量Vi(SbSc)对应的Sb,Sci等于电压矢量Vi(SbSc)对应的Sc;电压uα1和电压uβ1均为电压矢量V1(00)对应的电压值,电压uα2和电压uβ2均为电压矢量V2(10)对应的电压值,电压uα3和电压uβ3均为电压矢量V3(01)对应的电压值,电压uα4和电压uβ4均为电压矢量V4(11)对应的电压值。
S3、采样k时刻的变换器的三相输出电流ia、ib、ic,并根据下式将三相输出电流ia、ib、ic变换得到静止αβ坐标系下的电流分量分别为电流iα和电流iβ
Figure BDA0002051704820000062
S4、采样k时刻的三相电网电压ea、eb、ec,并根据下式将三相电网电压ea、eb、ec变换得到静止αβ坐标系下的电压分量分别为电压eα和电压eβ
Figure BDA0002051704820000063
S5、根据步骤S2得到的第一电压值uαi、uβi,步骤S3得到的电流iα、电流iβ和步骤S4得到的电压eα、电压eβ预测k+1时刻的第一电流值iαi(k+1)和iβi(k+1),如下式所示:
Figure BDA0002051704820000071
其中,Ts为采样周期,L为输出电感的电感值,R为输出电感的杂散电阻。
S6、根据步骤S5得到的第一电流值iαi(k+1)和iβi(k+1)计算电压矢量对应的第一目标函数gi如下式所示:
gi=|iαref-iαi(k+1)|+|iβref-iβi(k+1)|,
其中,iαref和iβref均为电流参考值。
再根据第一目标函数gi计算电压矢量的作用时间,如下式所示:
Figure BDA0002051704820000072
Figure BDA0002051704820000073
Figure BDA0002051704820000074
Figure BDA0002051704820000075
其中,Ts为采样周期,m为可调因子,且m>0。
S7、根据步骤S6得到的作用时间合成新的电压矢量Vp,并根据作用时间和步骤S2得到的第一电压值uαi、uβi计算电压矢量Vp对应的第二电压值uαp和uβp,其中,p=5,6,7,8,如下式所示:
Figure BDA0002051704820000076
Figure BDA0002051704820000081
Figure BDA0002051704820000082
Figure BDA0002051704820000083
其中,Ts为采样周期。
S8、根据步骤S7得到的第二电压值uαp、uβp,步骤S3得到的电流iα、电流iβ和步骤S4得到的电压eα、电压eβ预测k+1时刻的第二电流值iαp(k+1)和iβp(k+1),如下式所示:
Figure BDA0002051704820000084
再根据第二电流值iαp(k+1)和iβp(k+1)计算电压矢量Vp对应的第二目标函数gp,如下式所示:
gp=|iαref-iαp(k+1)|+|iβref-iβp(k+1)|,
其中,Ts为采样周期,iαref和iβref均为电流参考值。
S9、比较步骤S8得到的第二目标函数gp的大小,选择最小的第二目标函数gp所对应的电压矢量Vp作为最优矢量,并在下一周期将最优矢量作为三相四开关变换器输出的电压矢量。
为了验证本发明的有效性,进行了仿真验证。仿真采用并网逆变器的直流侧电压Udc为600V,逆变器侧输出电感L为20mH,阻尼电阻R为0.05Ω,网侧线电压e为70V,电网频率f为50Hz,采样频率为fs为10kHz,设定的电流参考值为10A,选择可调因子m=1。为了验证本发明的有效性,与文献[马伟杰,章宝歌.基于电容电压平衡的三相四开关整流器FCS-MPPC策略[J].兰州交通大学学报,2018,37(6):55-61]所提方案进行了对比研究。其中,图2给出了文献[马伟杰,章宝歌.基于电容电压平衡的三相四开关整流器FCS-MPPC策略[J].兰州交通大学学报,2018,37(6):55-61]所提方案的电网阻抗辨识仿真结果,图3则给出了本发明所提方案的仿真结果。如图2和图3所示,文献[马伟杰,章宝歌.基于电容电压平衡的三相四开关整流器FCS-MPPC策略[J].兰州交通大学学报,2018,37(6):55-61]所提方案,由于每个周期只使用一个电压矢量,导致电流和功率的谐波较大,也即a相电流的THD(谐波失真)较高;而本发明由于设计了双矢量模型预测控制方法,通过每个控制周期使用两个矢量,能够实现低电流误差控制,并降低三相四开关双向交直流变换器输出的电流谐波,也即a相电流的THD(谐波失真)降低。同时,本发明通过调节可调因子m,还可以进一步优化电流控制效果。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种a相开路故障下三相四开关变换器模型预测控制方法,其特征在于,其步骤如下:
S1、定义a相开路故障时三相四开关变换器的开关状态Sa、Sb、Sc,根据开关状态Sb、Sc得到双向交直流变换器有四个电压矢量Vi(SbSc),其中,i=1,2,3,4,开关状态
Figure FDA0002343338680000011
开关状态Sb、Sc等于0或1;
S2、根据步骤S1得到的电压矢量Vi(SbSc)对应的开关状态Sb、Sc以及变换器的直流侧电压Udc计算电压矢量Vi(SbSc)对应的第一电压值uαi和uβi
S3、采样k时刻的变换器的三相输出电流ia、ib、ic,并将三相输出电流ia、ib、ic变换得到静止αβ坐标系下的电流分量分别为电流iα和电流iβ
S4、采样k时刻的三相电网电压ea、eb、ec,并将三相电网电压ea、eb、ec变换得到静止αβ坐标系下的电压分量分别为电压eα和电压eβ
S5、根据步骤S2得到的第一电压值uαi、uβi,步骤S3得到的电流iα、电流iβ和步骤S4得到的电压eα、电压eβ预测k+1时刻的第一电流值iαi(k+1)和iβi(k+1);
S6、根据步骤S5得到的第一电流值iαi(k+1)和iβi(k+1)计算电压矢量Vi(SbSc)对应的第一目标函数gi,再根据第一目标函数gi计算电压矢量Vi(SbSc)的作用时间;
所述第一目标函数gi为:
gi=|iαref-iαi(k+1)|+|iβref-iβi(k+1)|,
其中,iαref和iβref均为电流参考值;
所述电压矢量Vi(SbSc)的作用时间分别为:
Figure FDA0002343338680000012
其中,Ts为采样周期,m为可调因子,且m>0;
S7、根据步骤S6得到的作用时间合成新的电压矢量Vp,并根据作用时间和步骤S2得到的第一电压值uαi、uβi计算电压矢量Vp对应的第二电压值uαp和uβp,其中,p=5,6,7,8;
所述电压矢量Vp对应的第二电压值uαp和uβp分别为:
Figure FDA0002343338680000021
其中,p=5,6,7,8,Ts为采样周期;
S8、根据步骤S7得到的第二电压值uαp、uβp,步骤S3得到的电流iα、电流iβ和步骤S4得到的电压eα、电压eβ预测k+1时刻的第二电流值iαp(k+1)和iβp(k+1),并根据第二电流值iαp(k+1)和iβp(k+1)计算电压矢量Vp对应的第二目标函数gp
S9、比较步骤S8得到的第二目标函数gp的大小,选择最小的第二目标函数gp所对应的电压矢量Vp作为最优矢量,并在下一周期将最优矢量作为三相四开关变换器输出的电压矢量。
2.根据权利要求1所述的a相开路故障下三相四开关变换器模型预测控制方法,其特征在于,所述步骤S1中的双向交直流变换器的四个电压矢量Vi(SbSc)的获得方法为:
Sb=1表示双向交直流变换器b相桥臂上管导通,下管关断;
Sb=0表示双向交直流变换器b相桥臂上管关断,下管导通;
Sc=1表示双向交直流变换器c相桥臂上管导通,下管关断;
Sc=0表示双向交直流变换器c相桥臂上管关断,下管导通;
若Sb=0,Sc=0,电压矢量记为V1(00);
若Sb=1,Sc=0,电压矢量记为V2(10);
若Sb=0,Sc=1,电压矢量记为V3(01);
若Sb=1,Sc=1,电压矢量记为V4(11)。
3.根据权利要求1所述的a相开路故障下三相四开关变换器模型预测控制方法,其特征在于,所述步骤S2中电压矢量Vi(SbSc)对应的第一电压值uαi和uβi的获得方法为:
Figure FDA0002343338680000022
其中,Sbi等于电压矢量Vi(SbSc)对应的Sb,Sci等于电压矢量Vi(SbSc)对应的Sc
4.根据权利要求1所述的a相开路故障下三相四开关变换器模型预测控制方法,其特征在于,所述步骤S3中三相输出电流ia、ib、ic变换得到静止αβ坐标系下的电流iα和电流iβ的方法为:
Figure FDA0002343338680000031
5.根据权利要求1所述的a相开路故障下三相四开关变换器模型预测控制方法,其特征在于,所述步骤S4中三相电网电压ea、eb、ec变换得到静止αβ坐标系下的电压eα和电压eβ的方法为:
Figure FDA0002343338680000032
6.根据权利要求1所述的a相开路故障下三相四开关变换器模型预测控制方法,其特征在于,所述步骤S5中的第一电流值iαi(k+1)和iβi(k+1)的获得方法为:
Figure FDA0002343338680000033
其中,Ts为采样周期,L为输出电感的电感值,R为输出电感的杂散电阻。
7.根据权利要求1所述的a相开路故障下三相四开关变换器模型预测控制方法,其特征在于,所述步骤S8中的第二电流值iαp(k+1)和iβp(k+1)的获得方法为:
Figure FDA0002343338680000034
8.根据权利要求1或7所述的a相开路故障下三相四开关变换器模型预测控制方法,其特征在于,所述第二目标函数gp的获得方法为:
gp=|iαref-iαp(k+1)|+|iβref-iβp(k+1)|。
CN201910376078.6A 2019-05-07 2019-05-07 一种a相开路故障下三相四开关变换器模型预测控制方法 Expired - Fee Related CN109936299B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910376078.6A CN109936299B (zh) 2019-05-07 2019-05-07 一种a相开路故障下三相四开关变换器模型预测控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910376078.6A CN109936299B (zh) 2019-05-07 2019-05-07 一种a相开路故障下三相四开关变换器模型预测控制方法

Publications (2)

Publication Number Publication Date
CN109936299A CN109936299A (zh) 2019-06-25
CN109936299B true CN109936299B (zh) 2020-06-19

Family

ID=66991444

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910376078.6A Expired - Fee Related CN109936299B (zh) 2019-05-07 2019-05-07 一种a相开路故障下三相四开关变换器模型预测控制方法

Country Status (1)

Country Link
CN (1) CN109936299B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112994110B (zh) * 2021-04-25 2023-04-11 郑州轻工业大学 一种lc滤波型并网逆变器无参数预测电容电压控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343884A (ja) * 2003-05-15 2004-12-02 Makita Corp 三相モータ駆動回路と駆動方法
CN103855711A (zh) * 2014-03-18 2014-06-11 东南大学 一种基于三相四开关型有源滤波器的svpwm调制方法
CN107834815A (zh) * 2017-10-31 2018-03-23 华南理工大学 一种基于双矢量作用的有限控制集模型预测控制方法
CN108712102A (zh) * 2018-06-13 2018-10-26 郑州轻工业学院 一种低损耗电压源逆变器模型预测电流控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343884A (ja) * 2003-05-15 2004-12-02 Makita Corp 三相モータ駆動回路と駆動方法
CN103855711A (zh) * 2014-03-18 2014-06-11 东南大学 一种基于三相四开关型有源滤波器的svpwm调制方法
CN107834815A (zh) * 2017-10-31 2018-03-23 华南理工大学 一种基于双矢量作用的有限控制集模型预测控制方法
CN108712102A (zh) * 2018-06-13 2018-10-26 郑州轻工业学院 一种低损耗电压源逆变器模型预测电流控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Model predictive current control for four-switch three-phase rectifiers in balanced grids;Yong-Chao Liu等;《ELECTRONICS LETTERS》;20170105;第53卷(第1期);第44-46页 *
电容均压三相四开关变换器预测功率控制;金楠等;《电机与控制应用》;20180531;第45卷(第5期);第46-51页 *
考虑预测误差的改进双矢量模型预测电流控制;徐艳平等;《电气传动》;20180930;第48卷(第9期);第62-66页 *

Also Published As

Publication number Publication date
CN109936299A (zh) 2019-06-25

Similar Documents

Publication Publication Date Title
CN103683319B (zh) 电网电压不平衡时基于滞环调制的并网逆变器控制方法
Blaabjerg et al. Comparison of two current modulation strategies for matrix converters under unbalanced input voltage conditions
CN110034690B (zh) 一种Vienna整流器模型预测虚拟磁链控制方法
CN110829466B (zh) 组合开关状态的npc三电平模型预测不平衡治理方法
CN110198130B (zh) 一种不平衡电网条件下的多矢量优化控制系统及方法
EP2481139A2 (en) Hod for controlling a power converter in a wind turbine generator
Zhang et al. Study on grid connected inverter used in high power wind generation system
Sun et al. Analysis of the DC-link capacitor current of power cells in cascaded H-bridge inverters for high-voltage drives
CN102055205A (zh) 一种基于电压不平衡数学模型的无刷双馈电机网侧变换器控制策略
Svensson Grid-connected voltage source converter: control principles and wind energy applications
Nakanishi et al. Modular Multilevel Converter for wind power generation system connected to micro-grid
CN108879773A (zh) 一种六相风力发电机直流并网结构及其控制方法
Zou et al. Generalized Clarke transformation and enhanced dual-loop control scheme for three-phase PWM converters under the unbalanced utility grid
Karafil et al. Power control of single phase active rectifier
CN109936299B (zh) 一种a相开路故障下三相四开关变换器模型预测控制方法
Wrona et al. Sensorless operation of an active front end converter with LCL filter
CN109510548B (zh) 一种双馈电机柔性功率控制方法及装置
CN110297446B (zh) 一种非理想电网条件下多矢量快速模型预测控制方法
CN107785934B (zh) 五相光伏逆变器系统及其控制方法
Wang et al. Grid Impedance Detection Based On Complex Coefficient Filter and Full-order Capacitor Current Observer for Three-phase Grid-connected Inverters
CN110676860B (zh) 一种基于扩展瞬时有功理论的快速预测不平衡控制方法
Chattopadhyay et al. Phase-angle balance control for harmonic filtering of a three-phase shunt active filter system
WO2023088568A1 (en) Controller for controlling a balancer circuit
CN107634657A (zh) 一种矩阵变换器的预测控制方法及装置
Roostaee et al. Predictive current control with modification of instantaneous reactive power minimization for direct matrix converter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200619