WO2021114481A1 - 一种hfc-23资源化利用中提高催化剂稳定性的方法 - Google Patents

一种hfc-23资源化利用中提高催化剂稳定性的方法 Download PDF

Info

Publication number
WO2021114481A1
WO2021114481A1 PCT/CN2020/076372 CN2020076372W WO2021114481A1 WO 2021114481 A1 WO2021114481 A1 WO 2021114481A1 CN 2020076372 W CN2020076372 W CN 2020076372W WO 2021114481 A1 WO2021114481 A1 WO 2021114481A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
hfc
selectivity
resource utilization
hcfc
Prior art date
Application number
PCT/CN2020/076372
Other languages
English (en)
French (fr)
Inventor
刘武灿
张建君
韩文锋
王术成
周飞翔
Original Assignee
浙江省化工研究院有限公司
浙江蓝天环保高科技股份有限公司
中化蓝天集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江省化工研究院有限公司, 浙江蓝天环保高科技股份有限公司, 中化蓝天集团有限公司 filed Critical 浙江省化工研究院有限公司
Priority to JP2022535668A priority Critical patent/JP7402343B2/ja
Priority to EP20900673.3A priority patent/EP3904319A4/en
Priority to US17/427,523 priority patent/US20220105504A1/en
Publication of WO2021114481A1 publication Critical patent/WO2021114481A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/132Halogens; Compounds thereof with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/862Iron and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/864Cobalt and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/866Nickel and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/94Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/22Halogenating
    • B01J37/26Fluorinating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • B01J38/14Treating with free oxygen-containing gas with control of oxygen content in oxidation gas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to the resource utilization of HFC-23, in particular to a method for improving the stability of a catalyst in the resource utilization of HFC-23 while suppressing the selectivity of the by-product CFC-12.
  • HFC-23 (CHF 3 , trifluoromethane, R23) is an inevitable by-product of industrial production of HFC-22 (HCFC-22, difluoromonochloromethane, R22 or CHClF 2 ). It has a strong greenhouse effect and has a global The global warming potential (GWP, Global Warming Potential) is 14,800 times that of CO 2. According to statistics, in 2013, China's HFC-23 emissions accounted for 68% of the world's emissions, and the production volume reached more than 20,000 tons, which is equivalent to the annual CO 2 emissions of 296 million tons. Therefore, the resource utilization of HFC-23 is an important topic in the realization of energy saving and emission reduction.
  • GWP Global Warming Potential
  • HFC-23 a by-product produced in the production process of HCFC-22, is generally discharged directly or processed by high temperature incineration at 1200°C.
  • direct discharge will cause environmental pollution, and the operation and equipment cost of high temperature incineration at 1200°C Higher, increase the production cost of HCFC-22.
  • the following methods are adopted in the prior art for resource utilization of HFC-23:
  • US patent US3009966A discloses a method for preparing TFE and hexafluoropropylene (HFP) by pyrolysis of trifluoromethane at 700-1090°C.
  • HFP hexafluoropropylene
  • this method produces more perfluoroisobutene (PFIB) by-products, even at the cost of lowering the yield Performing at a lower temperature will also produce a non-negligible amount of PFIB, and PFIB has extremely high toxicity and the treatment process is more complicated.
  • PFIB perfluoroisobutene
  • WO96/29296A discloses a method for co-cracking HCFC-22 and HFC-23 to form macromolecular fluoroalkanes. Although the conversion rate of HCFC-22 in this method can reach 100%, the yield of the product pentafluoroethane is only 60%. , And produce additional low-value by-products that need to be treated.
  • US patent US2003/0166981 discloses that gold is used as a catalyst, and HFC-23 and HCFC-22 are pyrolyzed to produce pentafluoroethane (HFC-125), heptafluoropropane (HFC-227ea), TFE and TFE at a temperature of 690 to 775°C. A mixture of HFP. However, this method has high pyrolysis temperature and severe reaction conditions.
  • Chinese patent CN104628513A discloses a method for converting trifluoromethane and chloroform as raw materials into HCFC-22 under the catalysis of Lewis acid.
  • the method realizes the conversion of trifluoromethane at a relatively low temperature (below 400° C.) through intermolecular fluorine and chlorine exchange.
  • this method uses a strong Lewis acid catalyst, which has poor catalyst stability and is very prone to deactivation due to carbon deposition and sintering.
  • Chinese patent CN109748775A discloses that in the presence of M g F 2 , Al 2 O 3 , partially fluorinated alumina, or AlF 3 catalysts, trifluoromethane and dichloromethane are reacted and converted into higher-value difluoromethane. Continuously adding Cl 2 , CCl 4 , H 2 , O 2 , CO 2 , O 3 and nitrogen oxide promoting gas in the stage to improve the catalytic efficiency and stability of the catalyst.
  • the selectivity of the by-product CFC-12 is significantly increased, reaching 2% to 8%, and the product selectivity is low.
  • the present invention proposes a method for simultaneously improving the stability and life of the catalyst and controlling the content of the by-product CFC-12.
  • the above-mentioned fluorine-chlorine exchange products include difluoromonochloromethane (HCFC-22) and monofluorodichloromethane (HCFC-21).
  • HCFC-22 difluoromonochloromethane
  • HCFC-21 monofluorodichloromethane
  • the catalyst includes a main catalyst and a metal oxide, and the metal oxide is selected from at least one metal oxide selected from K, Na, Fe, Co, Cu, Ni, Zn or Ti, and the addition amount is 0.1-5wt%,
  • the addition method can adopt the conventional method of the existing catalyst preparation, such as: physical grinding with the main catalyst, or incorporation by the metal salt solution precursor wet mixing method or impregnation method and then roasting.
  • the metal oxide is selected from metal oxides of Fe, Co, Ni or Zn, and the addition amount is 0.5-2 wt%.
  • the main catalyst is a chromium, aluminum, magnesium-based catalyst or a catalyst in which chromium, aluminum, and magnesium are supported on activated carbon/graphite; preferably, the main catalyst is selected from Cr 2 O 3 , Cr 2 O 3 /Al 2 O 3 At least one of Cr 2 O 3 /AlF 3 , Cr 2 O 3 /C, MgO, MgO/Al 2 O 3 , MgO/AlF 3 , MgO/AlF 3 , Al 2 O 3 or AlF 3 .
  • the halogenated hydrocarbon in the above fluorine-chlorine exchange reaction is chloroform or a mixture containing chloroform.
  • the fluorine-chlorine exchange reaction conditions are: the molar ratio of HFC-23 and the halogenated hydrocarbon is 1:1 to 3, and the reaction temperature is 250 to 400°C , The reaction pressure is: 0.1 ⁇ 3bar, and the residence time is 4 ⁇ 50s.
  • the molar ratio of HFC-23 and the halogenated hydrocarbon is 1:1.2-2.2, the reaction temperature is 300-360°C, the reaction pressure is: 1-2 bar, and the residence time is 4-12s.
  • the selectivity of HCFC-22 during the fluorine-chlorine exchange reaction is monitored.
  • the selectivity of HCFC-22 drops to 46% to 48%, the decarbonization gas is introduced to maintain the selectivity of HCFC-22 at 50% to 55%.
  • the decarbonization gas is passed through the catalyst bed and can react with the carbon deposition on the catalyst surface to generate gaseous substances, thereby achieving the purpose of eliminating the catalyst carbon deposition and improving the stability and life of the catalyst.
  • the carbon elimination gas is a mixed gas of at least one of air, Cl 2 , CO 2 or O 2 and N 2.
  • the carbon elimination gas, HFC-23, and halogenated hydrocarbons form a mixed gas and then pass in.
  • selectivity of HCFC-22 drops to 46% to 48%
  • the volume content of the mixed gas is 0.5%.
  • n% decarbonization gas, the duration is 10n hours, n is the number of regenerations, and n ⁇ 6.
  • the selectivity of HCFC-22 is basically maintained at 50%-55%, the selectivity of by-product CFC-12 is less than 1%, and the catalyst maintains good stability.
  • the selectivity of HCFC-22 presents an accelerated decline trend.
  • the decarbonization gas with a volume content of 1% to 3% of the mixed gas is continuously introduced to maintain good stability of the catalyst.
  • the raw materials HFC-23 and halogenated hydrocarbons are normally fed.
  • the present invention has the following beneficial effects:
  • the present invention accelerates the desorption of the products HCFC-22 and HCFC-21 on the surface of the catalyst by adding metal oxides to the catalyst, thereby inhibiting the disproportionation reaction on the surface of the catalyst, reducing the carbon deposition caused by side reactions, and improving Improve the stability and life of the catalyst;
  • the present invention monitors the selectivity of HCFC-22 to adjust the timing of the carbon removal gas, which not only improves the stability of the catalyst, but also controls the selectivity of the by-product CFC-12 to be less than 1%, which improves the product Selectivity, suitable for industrialized production.
  • chromium trioxide and cobalt trioxide powder are mixed through grinding, and the mass content of Co is controlled to be 1.0% to obtain a 1.0% Co/Cr 2 O 3 catalyst precursor.
  • the 1.0% Co/Cr 2 O 3 catalyst precursor was subjected to two-stage fluorination treatment: 1) Under a mixed atmosphere of 10% hydrogen fluoride and 90% nitrogen, fluorination treatment at 250°C for 2 hours; 2) In a hydrogen fluoride atmosphere Fluorination treatment at 300°C for 5 hours.
  • the catalyst obtained after the fluorination treatment is referred to as catalyst 1.
  • HFC-23 resource utilization Trifluoromethane and chloroform are fed into a reactor equipped with 50ml of catalyst 1 at a ratio of 1:1.5 (molar ratio), and the reaction is carried out under the conditions of a reaction temperature of 310°C, a pressure of 1 bar, and a residence time of 5s.
  • the conversion rate of trifluoromethane was 26.6%
  • the selectivity of HCFC-22 was 44.8%
  • the selectivity of HCFC-21 was 54.7%
  • the selectivity of by-product CFC-12 was 0.5%
  • the catalyst was significantly deactivated after 973 hours.
  • the preparation of the catalyst the chromium trioxide and the iron trioxide powder are mixed through grinding, and the Fe mass content is controlled to be 1.0% to obtain a 1.0% Fe/Cr 2 O 3 catalyst precursor.
  • the 1.0% Fe/Cr 2 O 3 catalyst precursor was subjected to two-stage fluorination treatment: 1) Under a mixed atmosphere of 10% hydrogen fluoride and 90% nitrogen, fluorination treatment was carried out at 250°C for 2 hours; 2) In a hydrogen fluoride atmosphere Fluorination treatment at 300°C for 5 hours. After the fluorination treatment, a catalyst was obtained, which was recorded as catalyst 2.
  • HFC-23 resource utilization Trifluoromethane and chloroform are fed into a reactor equipped with 50ml catalyst 2 at a ratio of 1:1.5 (molar ratio), and the reaction is carried out under the conditions of a reaction temperature of 310°C, a pressure of 1 bar, and a residence time of 5s.
  • the conversion rate of trifluoromethane was 26.3%
  • the selectivity of HCFC-22 was 44.9%
  • the selectivity of HCFC-21 was 54.5%
  • the selectivity of by-product CFC-12 was 0.6%
  • the catalyst was significantly deactivated after 861h.
  • Preparation of the catalyst mixing chromium trioxide and nickel trioxide powder through grinding, and controlling the mass content of Ni to 1.0% to obtain a 1.0% Ni/Cr 2 O 3 catalyst precursor.
  • the 1.0% Ni/Cr 2 O 3 catalyst precursor was subjected to a two-stage fluorination treatment: 1) In a mixed atmosphere of 10% hydrogen fluoride and 90% nitrogen, fluorination treatment was carried out at 250°C for 2 hours; 2) In a hydrogen fluoride atmosphere Fluorination treatment at 300°C for 5 hours. After the fluorination treatment, a catalyst was obtained, which was recorded as catalyst 3.
  • HFC-23 resource utilization Trifluoromethane and chloroform are fed into a reactor equipped with 50ml catalyst 3 at a ratio of 1:1.5 (molar ratio), and the reaction is carried out under the conditions of a reaction temperature of 310°C, a pressure of 1 bar, and a residence time of 5s.
  • the conversion rate of trifluoromethane was 25.3%
  • the selectivity of HCFC-22 was 43.8%
  • the selectivity of HCFC-21 was 55.5%
  • the selectivity of by-product CFC-12 was 0.7%
  • the catalyst was significantly deactivated after 758h.
  • the selectivity of methyl chloride drops to 27.2%.
  • the catalyst was deactivated after 2507 hours of reaction.
  • the conversion rate of trifluoromethane was 25.1%
  • the selectivity of HCFC-22 was 43.3%
  • the selectivity of HCFC-21 was 55.4%
  • the selectivity of by-product CFC-12 was 0.9%.
  • this embodiment is the same as that of embodiment 2, the only difference is that the selectivity of R22 is reduced to 46.0% when the catalyst reacts for 411h, and then after six intermittent charcoal burning and continuous charcoal burning, the catalyst continues to react until 1945h. Presents an inactive state.
  • the conversion rate of trifluoromethane is 24.9%
  • the selectivity of HCFC-22 is 43.6%
  • the selectivity of HCFC-21 is 55.5%
  • the selectivity of by-product CFC-12 is 0.9%
  • this embodiment is the same as that of embodiment 1, except that the mass content of Co is reduced from 1.0% to 0.5%.
  • the prepared catalyst is subjected to the fluorine-chlorine exchange reaction. After the reaction, the conversion of trifluoromethane is 26.5%, the selectivity of HCFC-22 is 44.6%, the selectivity of HCFC-21 is 54.8%, and the selectivity of by-product CFC-12 is 0.6%, the catalyst is significantly deactivated after 654h.
  • the operation of this embodiment is the same as that of embodiment 1, except that the mass content of Co is increased from 1.0% to 2.0%.
  • the prepared catalyst is subjected to the fluorine-chlorine exchange reaction. After the reaction, the conversion rate of trifluoromethane is 26.7%, the selectivity of HCFC-22 is 44.5%, the selectivity of HCFC-21 is 54.8%, and the selectivity of by-product CFC-12 is 0.5%, the catalyst is significantly deactivated after 756h.
  • this embodiment is the same as that of embodiment 1, except that the molar ratio of trifluoromethane and chloroform is changed from 1:1.5 to 1:1.
  • the conversion of trifluoromethane was 24.7%
  • the selectivity of HCFC-22 was 43.6%
  • the selectivity of HCFC-21 was 55.6%
  • the selectivity of by-product CFC-12 was 0.7%
  • the catalyst was significantly deactivated after 507h .
  • this embodiment is the same as that of embodiment 1, except that the molar ratio of trifluoromethane and chloroform in embodiment 1 is changed from 1:1.5 to 1:2.
  • the conversion of trifluoromethane was 25.5%
  • the selectivity of HCFC-22 was 43.3%
  • the selectivity of HCFC-21 was 55.8%
  • the selectivity of by-product CFC-12 was 0.9%
  • the catalyst was significantly deactivated after 486h .
  • HFC-23 resource utilization Trifluoromethane and chloroform are introduced into the reactor equipped with 50ml catalyst D1 at a ratio of 1:1.5, and the reaction is carried out under the conditions of a reaction temperature of 310°C, a pressure of 1 bar, and a residence time of 5s.
  • the conversion rate of trifluoromethane was 25.6%
  • the selectivity of HCFC-22 was 44.4%
  • the selectivity of HCFC-21 was 54.2%
  • the selectivity of by-product CFC-12 was 1.4%
  • the catalyst was significantly deactivated after 340 hours. After the catalyst was taken out, it was found to be obviously black, and serious carbon deposition occurred.
  • Preparation of the catalyst mixing chromium trioxide and calcium oxide powder through grinding and controlling the mass content of Ca to 1.0% to obtain a 1.0% Ca/Cr 2 O 3 catalyst precursor.
  • the 1.0% Ca/Cr 2 O 3 catalyst precursor was subjected to two-stage fluorination treatment: 1) Under a mixed atmosphere of 10% hydrogen fluoride and 90% nitrogen, fluorination treatment was carried out at 250°C for 2 hours; 2) In a hydrogen fluoride atmosphere Fluorination treatment at 300°C for 5 hours.
  • the catalyst obtained after the fluorination treatment is referred to as catalyst D2.
  • HFC-23 resource utilization Trifluoromethane and chloroform are fed into a reactor equipped with 50ml catalyst D2 at a ratio of 1:1.5 (molar ratio), and the reaction is carried out under the conditions of a reaction temperature of 310°C, a pressure of 1 bar, and a residence time of 5s.
  • the conversion rate of trifluoromethane is 26.6%
  • the selectivity of HCFC-22 is 44.3%
  • the selectivity of HCFC-21 is 54.7%
  • the selectivity of by-product CFC-12 is 1%.
  • the catalyst is significantly deactivated after 345h. The addition of elements did not increase the life of the catalyst.
  • the operation of this embodiment is the same as that of Comparative Example 2, except that the raw material gas is continuously mixed with 3.0% wt O 2 and passed into the bed for reaction.
  • the conversion rate of trifluoromethane is 26.3%
  • the selectivity of HCFC-22 is 41.5%
  • the selectivity of HCFC-21 is 55.0%
  • the selectivity of by-product CFC-12 is 3.5%
  • the catalyst is significantly deactivated after 341h.
  • the continuous introduction of 3.0% wt O 2 through the raw materials will increase the selectivity of the by-product CFC-12.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明公开了一种HFC-23资源化利用中提高催化剂稳定性的方法,所述资源化利用采用HFC-23和卤代烃进行氟氯交换反应实现,所述氟氯交换反应的催化剂包括主体催化剂和金属氧化物,所述金属氧化物选自K、Na、Fe、Co、Cu、Ni、Zn或Ti中的至少一种金属氧化物,添加量为0.1~5wt%。本发明具有催化剂稳定性好、寿命长,副产CFC-12含量低等优点。

Description

一种HFC-23资源化利用中提高催化剂稳定性的方法 技术领域
本发明涉及HFC-23资源化利用,特别涉及在HFC-23资源化利用中提高催化剂稳定性,同时抑制副产CFC-12选择性的方法。
背景技术
HFC-23(CHF 3,三氟甲烷,R23)是工业生产HFC-22(HCFC-22,二氟一氯甲烷,R22或CHClF 2)不可避免的副产物,具有较强的温室效应,其全球变暖潜值(GWP,Global Warming Potential)是CO 2的14800倍。据统计,2013年我国HFC-23的排放量占全世界排放量的68%,产生量达2万吨以上,折合CO 2年排放量达到2.96亿吨。因此,HFC-23资源化利用是实现节能减排中一个重要的课题。
目前工业上对HCFC-22生产过程中产生的副产HFC-23一般采取直接排放或者通过1200℃高温焚烧的方法处理,但直接排放会带来环境污染,而1200℃高温焚烧处理运行和设备成本较高,增加HCFC-22的生产成本。鉴于此,现有技术中对HFC-23的资源化利用采用如下手段:
美国专利US3009966A公开了在700-1090℃下三氟甲烷热解制备TFE和六氟丙烯(HFP)的方法,然而此方法产生较多的全氟异丁烯(PFIB)副产,即使以降低产率为代价在较低温度下进行也会产生不可忽略的PFIB的量,而PFIB具有极高的毒性,处理过程也比较复杂。
WO96/29296A公开了HCFC-22与HFC-23共裂解形成大分子氟代烷的方法,虽然该方法HCFC-22的转化率可达100%,但产物五氟乙烷的收率仅为60%,且 产生了额外需处理的低价值副产物。
美国专利US2003/0166981公开了以金作为催化剂,在690~775℃的温度下,HFC-23与HCFC-22热解生产五氟乙烷(HFC-125)、七氟丙烷(HFC-227ea)、TFE和HFP的混合物。但该方法热解温度高,反应条件严苛。
中国专利CN104628514A公开了甲烷和三氟甲烷以一定比例通入装有催化剂的反应器,同时添加O 2,在较高温度的条件下反应生成偏氟乙烯(VDF)。但该路线同样属于裂解途径,热解温度高,反应条件严苛。
中国专利CN104628513A公开了三氟甲烷和氯仿为原料、在路易斯酸催化作用下转化成HCFC-22的方法。该方法通过分子间氟氯交换,在相对较低的温度(低于400℃)下实现了三氟甲烷的转化。但该方法采用较强的路易斯酸催化剂,催化剂稳定性差,非常容易因积碳和烧结而导致失活。
中国专利CN109748775A公开了在M gF 2、Al 2O 3、部分氟化氧化铝或AlF 3催化剂的存在下,三氟甲烷和二氯甲烷反应转化为价值更高的二氟甲烷,同时在反应阶段持续加入Cl 2、CCl 4、H 2、O 2、CO 2、O 3和氮氧化物促进气体,来提高催化剂的催化效率和稳定性。但该方法中副产物CFC-12的选择性明显增加,达到2%~8%,产物选择性较低。
发明内容
为了解决上述技术问题,本发明提出了一种同时提高催化剂稳定性、寿命及控制副产CFC-12含量的方法。
本发明的目的是通过以下技术方案实现的:
一种HFC-23资源化利用中提高催化剂稳定性的方法,所述资源化利用采用HFC-23和卤代烃进行氟氯交换反应实现:
Cat.
CHF 3+CHCl 3→CHClF 2+CHClF 2F
上述氟氯交换的产物包括二氟一氯甲烷(HCFC-22)和一氟二氯甲烷(HCFC-21),发明人发现两者在催化剂表面容易发生歧化反应,反应式如下:
2CHClF 2→CHF 3+CHFCl 2
2CHCl 2F→CHCl 3+CHClF 2
为了实现产物HCFC-22和HCFC-21在催化剂表面快速脱附,降低催化剂表面积碳,提高催化剂稳定性及寿命,故:
所述催化剂包括主体催化剂和金属氧化物,所述金属氧化物选自K、Na、Fe、Co、Cu、Ni、Zn或Ti中的至少一种金属氧化物,添加量为0.1~5wt%,添加方法采用现有催化剂制备的常规方法即可,如:通过与主体催化剂物理研磨,或经金属盐溶液前驱体湿混法或浸渍法掺入再焙烧。作为优选,所述金属氧化物选自Fe、Co、Ni或Zn的金属氧化物,添加量为0.5~2wt%。
所述主体催化剂为铬、铝、镁基催化剂或铬、铝、镁负载在活性炭/石墨上的催化剂;作为优选,所述主体催化剂选自Cr 2O 3、Cr 2O 3/Al 2O 3、Cr 2O 3/AlF 3、Cr 2O 3/C、MgO、MgO/Al 2O 3、MgO/AlF 3、MgO/AlF 3、Al 2O 3或AlF 3中的至少一种。
上述氟氯交换反应中的卤代烃为氯仿或含有氯仿的混合物,氟氯交换反应条件为:HFC-23和卤代烃的摩尔配比为1:1~3,反应温度为250~400℃,反应压力为:0.1~3bar,停留时间为4~50s。作为优选,HFC-23和卤代烃的摩尔配比为:1:1.2~2.2,反应温度为300~360℃,反应压力为:1~2bar,停留时间为4~12s。
为了进一步提高催化剂稳定性并抑制副产CFC-12含量,故:
监测氟氯交换反应过程中HCFC-22的选择性,当HCFC-22的选择性降至46%~48%时,通入消碳气使得HCFC-22的选择性维持在50%~55%。
所述消碳气在催化剂床层通入,可与催化剂表面的积碳反应生成气体物质 的气体,从而达到消除催化剂积碳,提高催化剂稳定性和寿命的目的。所述消碳气为空气、Cl 2、CO 2或O 2中的至少一种与N 2的混合气体。
进一步地,所述消碳气与HFC-23、卤代烃形成混合气后通入,当HCFC-22的选择性降至46%~48%时,通入占所述混合气体积含量为0.5n%的消碳气,持续时间为10n小时,n为再生次数,且n≤6。
具体地,当HCFC-22的选择性降至46%~48%时,通入0.5%的消碳气,并持续10h,HCFC-22的选择性逐渐恢复至50%~55%;当HCFC-22的选择性第2次下降后,通入1%的消碳气,并持续20h,HCFC-22的选择性逐渐恢复;当HCFC-22的选择性第3次下降后,通入1.5%的消碳气,并持续30h,选择性逐渐恢复。以此类推,直至n=6。当再生次数n≤6,除碳效果较理想,HCFC-22选择性基本维持在50%~55%,副产CFC-12选择性低于1%,催化剂保持良好的稳定性。当再生次数n>6时,HCFC-22选择性呈现加速下降的趋势,此时持续通入占所述混合气体积含量为1%~3%的消碳气,以保持催化剂良好的稳定性。
在间歇式或持续通消碳气时,原料HFC-23及卤代烃正常进料。
与现有技术相比,本发明具有的有益效果为:
(1)本发明通过在催化剂中添加金属氧化物,加速产物HCFC-22和HCFC-21在催化剂表面的脱附,从而抑制其在催化剂表面发生歧化反应,减少了副反应产生的积碳,提高了催化剂的稳定性及寿命;
(2)本发明通过监测HCFC-22的选择性,来调整消碳气的通入时机,不仅提高了催化剂的稳定性,同时控制副产CFC-12选择性低于1%,提高了产物的选择性,适用于产业化生产。
具体实施方式
下面结合具体实施例来对本发明进行进一步说明,但并不将本发明局限于 这些具体实施方式。本领域技术人员应该认识到,本发明涵盖了权利要求书范围内所可能包括的所有备选方案、改进方案和等效方案。
实施例1
催化剂的制备:将三氧化二铬和三氧化二钴粉末通过研磨混合,控制Co质量含量为1.0%,获得1.0%Co/Cr 2O 3催化剂前驱体。对所述1.0%Co/Cr 2O 3催化剂前驱体进行二段式氟化处理:1)在10%氟化氢和90%氮气混合气氛下,250℃下氟化处理2小时;2)在氟化氢气氛下,300℃下氟化处理5小时。氟化处理后获得催化剂,记为催化剂1。
HFC-23资源化:三氟甲烷和氯仿以1:1.5(摩尔比)通入装有50ml催化剂1的反应器,在反应温度310℃,压力1bar,停留时间5s的条件下进行反应。三氟甲烷的转化率为26.6%,HCFC-22的选择性为44.8%,HCFC-21选择性为54.7%,副产CFC-12的选择性为0.5%,催化剂经过973h后显著失活。
实施例2
催化剂的制备:将三氧化二铬和三氧化二铁粉末通过研磨混合,控制Fe质量含量为1.0%,获得1.0%Fe/Cr 2O 3催化剂前驱体。对所述1.0%Fe/Cr 2O 3催化剂前驱体进行二段式氟化处理:1)在10%氟化氢和90%氮气混合气氛下,250℃下氟化处理2小时;2)在氟化氢气氛下,300℃下氟化处理5小时。氟化处理后获得催化剂,记为催化剂2。
HFC-23资源化:三氟甲烷和氯仿以1:1.5(摩尔比)通入装有50ml催化剂2的反应器,在反应温度310℃,压力1bar,停留时间5s的条件下进行反应。三氟甲烷的转化率为26.3%,HCFC-22的选择性为44.9%,HCFC-21选择性为54.5%,副产CFC-12的选择性为0.6%,催化剂经过861h后显著失活。
实施例3
催化剂的制备:将三氧化二铬和三氧化二镍粉末通过研磨混合,控制Ni质量含量为1.0%,获得1.0%Ni/Cr 2O 3催化剂前驱体。对所述1.0%Ni/Cr 2O 3催化剂前驱体进行二段式氟化处理:1)在10%氟化氢和90%氮气混合气氛下,250℃下氟化处理2小时;2)在氟化氢气氛下,300℃下氟化处理5小时。氟化处理后获得催化剂,记为催化剂3。
HFC-23资源化:三氟甲烷和氯仿以1:1.5(摩尔比)通入装有50ml催化剂3的反应器,在反应温度310℃,压力1bar,停留时间5s的条件下进行反应。三氟甲烷的转化率为25.3%,HCFC-22的选择性为43.8%,HCFC-21选择性为55.5%,副产CFC-12的选择性为0.7%,催化剂经过758h后显著失活。
实施例4
本实施例的操作同实施例1,区别仅在于:HFC-23资源化过程中增加间歇式通消碳气进行烧炭。所述间歇式通入烧炭气的时机:反应551h时二氟一氯甲烷的选择性降至46.0%时,停止通原料,通0.5%wt(占三氟甲烷和氯仿总流量之和)O 2进行第一次烧炭10h。继续通原料反应一段时间后R22选择性逐渐恢复至54.1%,反应至952h时R22选择性降至46.0%;立即停止反应,通1.0%wt O 2进行第二次烧炭20h,烧炭结束后通原料反应,R22选择性逐渐恢复至53.2%,至1304h时又降至46.0%;立即停止反应通1.5%wt O 2进行第三次烧炭30h,继续通原料反应R22逐渐恢复至52.6%,至1605h时又降至46.0%;立即停止反应通2.0%wt O 2进行第四次烧炭40h,继续通原料反应R22逐渐恢复至51.9%,至1856h时又降至46.0%;立即停止反应通2.5%wt O 2进行第四次烧炭50h,继续通原料反应R22选择性逐渐恢复至51.1%,至2057h时又降至46.0%;立即停止反应通3.0%wt O 2进行第四次烧炭60h,继续通原料反应R22逐渐恢复至50.6%,至2210h时又降至46.0%;在原料中混入3.0wt%O 2持续反应至2507h时三氟甲 烷的转化率降低至16.6%,二氟一氯甲烷的选择性下降至27.2%。催化剂反应2507h后失活,三氟甲烷的转化率为25.1%,HCFC-22的选择性为43.3%,HCFC-21选择性为55.4%,副产CFC-12的选择性为0.9%,尾气中还有痕量的CH 4等气体。
实验结果说明在合适的时机下间歇式通入适量的O 2进行合理时间烧炭,烧炭次数超过6次之后连续通入O 2烧炭后催化剂稳定性和寿命明显提高,且保证了副产CFC-12的选择性1.0%以下。
实施例5
本实施例的操作同实施例2,区别仅在于:催化剂反应了411h时R22选择性降至46.0%,然后经过六次间歇性烧炭和持续通烧炭气后,催化剂继续反应至1945h时催化剂呈现失活状态。三氟甲烷的转化率为24.9%,HCFC-22的选择性为43.6%,HCFC-21选择性为55.5%,副产CFC-12的选择性为0.9%,尾气中还有痕量的CH 4等气体。
实施例6
本实施例的操作同实施例3,区别仅在于:催化剂反应了386h时R22选择性降至46.0%,然后经过六次间歇性烧炭和持续通烧炭气后,催化剂继续反应至1623h时催化剂呈现失活状态。三氟甲烷的转化率为24.7%,HCFC-22的选择性为42.8%,HCFC-21选择性为55.9%,副产CFC-12的选择性为1.0%,尾气中还有痕量的CH 4等气体。
实施例7
本实施例的操作同实施例1,区别仅在于:Co质量含量由1.0%降至0.5%。制备获得的催化剂进行氟氯交换反应,反应后三氟甲烷的转化率为26.5%,HCFC-22的选择性为44.6%,HCFC-21选择性为54.8%,副产CFC-12的选择性为 0.6%,催化剂经过654h后显著失活。
实施例8
本实施例的操作同实施例1,区别仅在于:Co质量含量由1.0%升高为2.0%。制备获得的催化剂进行氟氯交换反应,反应后三氟甲烷的转化率为26.7%,HCFC-22的选择性为44.5%,HCFC-21选择性为54.8%,副产CFC-12的选择性为0.5%,催化剂经过756h后显著失活。
实施例9
本实施例的操作同实施例1,区别仅在于:三氟甲烷和氯仿摩尔比由1:1.5改为1:1。反应后三氟甲烷的转化率为24.7%,HCFC-22的选择性为43.6%,HCFC-21选择性为55.6%,副产CFC-12的选择性为0.7%,催化剂经过507h后显著失活。
实施例10
本实施例的操作同实施例1,区别仅在于:将实施例1中三氟甲烷和氯仿摩尔比由1:1.5改为1:2。反应后三氟甲烷的转化率为25.5%,HCFC-22的选择性为43.3%,HCFC-21选择性为55.8%,副产CFC-12的选择性为0.9%,催化剂经过486h后显著失活。
对比例1
催化剂的制备:对三氧化二铬催化剂进行二段式氟化处理:1)在10%氟化氢和90%氮气混合气氛下,250℃下氟化处理2小时;2)在氟化氢气氛下,300℃下氟化处理5小时。氟化处理后获得催化剂,记为催化剂D1。
HFC-23资源化:三氟甲烷和氯仿以1:1.5(摩尔比)通入装有50ml催化剂D1的反应器,在反应温度310℃,压力1bar,停留时间5s的条件下进行反应。 三氟甲烷的转化率为25.6%,HCFC-22的选择性为44.4%,HCFC-21选择性为54.2%,副产CFC-12的选择性为1.4%,催化剂经过340h后显著失活。取出催化剂后发现明显变黑,发生严重的积碳现象。
对比例2
催化剂的制备:将三氧化二铬和氧化钙粉末通过研磨混合,控制Ca质量含量为1.0%,获得1.0%Ca/Cr 2O 3催化剂前驱体。对所述1.0%Ca/Cr 2O 3催化剂前驱体进行二段式氟化处理:1)在10%氟化氢和90%氮气混合气氛下,250℃下氟化处理2小时;2)在氟化氢气氛下,300℃下氟化处理5小时。氟化处理后获得催化剂,记为催化剂D2。
HFC-23资源化:三氟甲烷和氯仿以1:1.5(摩尔比)通入装有50ml催化剂D2的反应器,在反应温度310℃,压力1bar,停留时间5s的条件下进行反应。三氟甲烷的转化率为26.6%,HCFC-22的选择性为44.3%,HCFC-21选择性为54.7%,副产CFC-12的选择性为1%,催化剂经过345h后显著失活,Ca元素的添加并没有提高催化剂的寿命。
对比例3
本实施例的操作同对比例2,区别仅在于:在原料气持续混入3.0%wt O 2通入床层反应。三氟甲烷的转化率为26.3%,HCFC-22的选择性为41.5%,HCFC-21选择性为55.0%,副产CFC-12的选择性为3.5%,尾气中还有痕量的CH 4等气体,催化剂经过341h后显著失活,随原料持续通入3.0%wt O 2通会提高副产CFC-12的选择性。

Claims (10)

  1. 一种HFC-23资源化利用中提高催化剂稳定性的方法,所述资源化利用采用HFC-23和卤代烃进行氟氯交换反应实现,其特征在于:所述氟氯交换反应的催化剂包括主体催化剂和金属氧化物,所述金属氧化物选自K、Na、Fe、Co、Cu、Ni、Zn或Ti中的至少一种金属氧化物,添加量为0.1~5wt%。
  2. 根据权利要求1所述的HFC-23资源化利用中提高催化剂稳定性的方法,其特征在于:所述金属氧化物选自Fe、Co、Ni或Zn的金属氧化物,添加量为0.5~2wt%。
  3. 根据权利要求1或2所述的HFC-23资源化利用中提高催化剂稳定性的方法,其特征在于:监测氟氯交换反应过程中HCFC-22的选择性,当HCFC-22的选择性降至46%~48%时,通入消碳气使得HCFC-22的选择性维持在50%~54%。
  4. 根据权利要求3所述的HFC-23资源化利用中提高催化剂稳定性的方法,其特征在于:所述消碳气与HFC-23、卤代烃形成混合气后通入,当HCFC-22的选择性降至46%~48%时,通入占所述混合气体积含量为0.5n%的消碳气,持续时间为10n小时,n为再生次数,且n≤6。
  5. 根据权利要求4所述的HFC-23资源化利用中提高催化剂稳定性的方法,其特征在于:当n>6时,持续通入占所述混合气体积含量为1%~3%的消碳气。
  6. 根据权利要求3-5任一所述的HFC-23资源化利用中提高催化剂稳定性的方法,其特征在于:所述消碳气为空气、Cl 2、CO 2或O 2中的至少一种与N 2的混合气体。
  7. 根据权利要求1-6任一所述的HFC-23资源化利用中提高催化剂稳定性的 方法,其特征在于:所述卤代烃为氯仿或含有氯仿的混合物。
  8. 根据权利要求7所述的HFC-23资源化利用中提高催化剂稳定性的方法,其特征在于:所述主体催化剂为铬、铝、镁基催化剂或铬、铝、镁负载在活性炭/石墨上的催化剂。
  9. 根据权利要求1-8任一所述的HFC-23资源化利用中提高催化剂稳定性的方法,其特征在于:所述氟氯交换反应条件为:HFC-23和卤代烃的摩尔配比为:1:1~3,反应温度为250~400℃,反应压力为:0.1~3bar,停留时间为4~50s。
  10. 根据权利要求9所述的HFC-23资源化利用中提高催化剂稳定性的方法,其特征在于:所述氟氯交换反应条件为:HFC-23和卤代烃的摩尔配比为:1:1.2~2.2,反应温度为300~360℃,反应压力为:1~2bar,停留时间为4~12s。
PCT/CN2020/076372 2019-12-13 2020-02-24 一种hfc-23资源化利用中提高催化剂稳定性的方法 WO2021114481A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022535668A JP7402343B2 (ja) 2019-12-13 2020-02-24 Hfc-23のリサイクルにおける触媒安定性を向上する方法
EP20900673.3A EP3904319A4 (en) 2019-12-13 2020-02-24 METHOD FOR IMPROVING CATALYST STABILITY IN HFC-23 RECYCLING
US17/427,523 US20220105504A1 (en) 2019-12-13 2020-02-24 Method for improving stability of catalyst in recycling hfc-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911281818.4A CN112979410B (zh) 2019-12-13 2019-12-13 一种hfc-23资源化利用中提高催化剂稳定性的方法
CN201911281818.4 2019-12-13

Publications (1)

Publication Number Publication Date
WO2021114481A1 true WO2021114481A1 (zh) 2021-06-17

Family

ID=76329480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076372 WO2021114481A1 (zh) 2019-12-13 2020-02-24 一种hfc-23资源化利用中提高催化剂稳定性的方法

Country Status (5)

Country Link
US (1) US20220105504A1 (zh)
EP (1) EP3904319A4 (zh)
JP (1) JP7402343B2 (zh)
CN (1) CN112979410B (zh)
WO (1) WO2021114481A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115779935A (zh) * 2021-12-08 2023-03-14 浙江省化工研究院有限公司 一种氟掺杂复合硫酸盐催化剂的制备方法及其应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112973685B (zh) * 2019-12-13 2022-06-28 浙江省化工研究院有限公司 一种hfc-23资源化利用中减少催化剂积碳的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3009966A (en) 1960-02-08 1961-11-21 Pennsalt Chemicals Corp Production of fluorinated compounds
DD231341A1 (de) * 1984-10-23 1985-12-24 Nuenchritz Chemie Katalysator fuer die konmutierung von fluorhaltigen kohlenwasserstoffen und fluorhaltigen halogenkohlenwasserstoffen
WO1996029296A1 (fr) 1995-03-17 1996-09-26 Elf Atochem S.A. Procede de fabrication de fluoroalcanes
EP1148039A1 (en) * 2000-04-21 2001-10-24 Ausimont S.p.A. A process for the production of CHF3 (HFC-23)
US20030166981A1 (en) 2001-12-18 2003-09-04 Gelblum Peter Gideon Disposal of fluoroform (HFC-23)
CN103467239A (zh) * 2013-09-13 2013-12-25 常熟三爱富中昊化工新材料有限公司 一种三氟甲烷裂解制备二氟一氯甲烷的工艺方法
CN104628514A (zh) 2015-02-11 2015-05-20 浙江工业大学 一种偏氟乙烯的制备方法及其所用催化剂的制备方法
CN104628513A (zh) 2015-02-11 2015-05-20 浙江工业大学 一种三氟甲烷资源化利用的方法
CN109748775A (zh) 2017-11-08 2019-05-14 浙江蓝天环保高科技股份有限公司 一种hcfc-22生产中副产三氟甲烷的资源化利用方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3856409B2 (ja) * 1997-05-08 2006-12-13 昭和電工株式会社 トリフルオロメタンの精製方法
JPH11559A (ja) * 1997-06-11 1999-01-06 Komatsu Ltd 脂肪族ハロゲン化物の分解用触媒の再生法
FR2771027B1 (fr) * 1997-11-20 2000-01-14 Atochem Elf Sa Catalyseur mixte de fluoration
EP2172441A1 (en) * 2008-10-02 2010-04-07 Solvay Fluor GmbH Process for the manufacture of hydrochlorofluorocarbons using trifluoromethane as fluorinating agent
US8293954B2 (en) * 2010-03-10 2012-10-23 Honeywell International Inc. Catalyst life improvement for the vapor phase manufacture of 1-chloro-3,3,3-trifluoropropene
CN105727929B (zh) * 2014-12-11 2019-04-26 中化近代环保化工(西安)有限公司 一种高比表面积的氟化催化剂、其制备方法及应用
WO2017205273A1 (en) 2016-05-23 2017-11-30 Basf Corporation A chromium catalyst, its preparation and use
CN106748626B (zh) * 2016-11-22 2020-10-27 江苏理文化工有限公司 一种合成反式1-氯-3,3,3-三氟丙烯的方法及其催化剂的制备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3009966A (en) 1960-02-08 1961-11-21 Pennsalt Chemicals Corp Production of fluorinated compounds
DD231341A1 (de) * 1984-10-23 1985-12-24 Nuenchritz Chemie Katalysator fuer die konmutierung von fluorhaltigen kohlenwasserstoffen und fluorhaltigen halogenkohlenwasserstoffen
WO1996029296A1 (fr) 1995-03-17 1996-09-26 Elf Atochem S.A. Procede de fabrication de fluoroalcanes
EP1148039A1 (en) * 2000-04-21 2001-10-24 Ausimont S.p.A. A process for the production of CHF3 (HFC-23)
US20030166981A1 (en) 2001-12-18 2003-09-04 Gelblum Peter Gideon Disposal of fluoroform (HFC-23)
CN103467239A (zh) * 2013-09-13 2013-12-25 常熟三爱富中昊化工新材料有限公司 一种三氟甲烷裂解制备二氟一氯甲烷的工艺方法
CN104628514A (zh) 2015-02-11 2015-05-20 浙江工业大学 一种偏氟乙烯的制备方法及其所用催化剂的制备方法
CN104628513A (zh) 2015-02-11 2015-05-20 浙江工业大学 一种三氟甲烷资源化利用的方法
CN109748775A (zh) 2017-11-08 2019-05-14 浙江蓝天环保高科技股份有限公司 一种hcfc-22生产中副产三氟甲烷的资源化利用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3904319A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115779935A (zh) * 2021-12-08 2023-03-14 浙江省化工研究院有限公司 一种氟掺杂复合硫酸盐催化剂的制备方法及其应用

Also Published As

Publication number Publication date
JP7402343B2 (ja) 2023-12-20
EP3904319A4 (en) 2022-10-26
JP2023505582A (ja) 2023-02-09
CN112979410B (zh) 2022-06-28
US20220105504A1 (en) 2022-04-07
EP3904319A1 (en) 2021-11-03
CN112979410A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
EP2326612B1 (en) Process for preparing 2,3,3,3-tetrafluoropropene
CN110833837B (zh) 一种用于三氟甲烷资源化利用的催化剂
KR100336337B1 (ko) 플루오르화촉매및플루오르화방법
WO2021114481A1 (zh) 一种hfc-23资源化利用中提高催化剂稳定性的方法
WO2009155029A2 (en) A process for dehydrochlorinating 1,1,1,2-tetrafluoro-2-chloropropane to 2,3,3,3-tetrafluoropropene in the presence of an alkali metal-doped magnesium oxyfluoride catalyst and methods for making the catalyst
JPH07206728A (ja) 結晶質触媒による気相フッ素化
FR2740994A1 (fr) Catalyseurs massiques a base d'oxyde de chrome, leur procede de preparation et leur application a la fluoration d'hydrocarbures halogenes
WO2014094587A1 (zh) 一种制备1,3,3,3-四氟丙烯的工艺
US20110201495A1 (en) Process for the preparation of 1,1,1,2-tetrafluoroethane
CN102836722B (zh) 一种卤氟烷烃脱卤化氢制备含氟烯烃的催化剂及其制备方法
JP6544741B2 (ja) フルオロオレフィン化合物の製造方法
CN110975876A (zh) 一种活性炭负载铬基催化剂及其制备方法和用途
WO2022028236A1 (zh) 一种气相催化合成二氟甲烷的方法
US6281395B1 (en) 1,1,1,2,3,3,3-heptafluoropropane manufacturing process
JPH03115234A (ja) 弗素化アルカンの脱弗化水素及び脱水素方法
CN103038198B (zh) 氟代烯烃的制造方法
US11878290B2 (en) Method for reducing carbon deposits on catalyst in recycling HFC-23
CN106380369B (zh) 一种2,3,3,3-四氟丙烯的合成方法
CN111116304B (zh) 一种合成1,2-二氟乙烷和1,1,2-三氟乙烷的方法
JP5138605B2 (ja) ペンタフルオロエタンの製造方法
CN109331864B (zh) 一种氢化偶联催化剂及其制备方法及制备1,1,1,4,4,4-六氟-2-丁烯的方法
CN111217669B (zh) 一种三氟甲烷资源化转化制备偏氟乙烯的方法
CN112371110B (zh) 一种用于气相法合成气体灭火剂三氟碘甲烷的催化剂及其制备方法和应用
CN111604092B (zh) 一种铬单原子氟化催化剂的制备方法及其应用
CN116139887A (zh) 一种混合晶型AlF3催化剂及其在氟氯交换反应中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900673

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 20900673.3

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020900673

Country of ref document: EP

Effective date: 20210729

ENP Entry into the national phase

Ref document number: 2022535668

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE