WO2021112042A1 - 水性樹脂組成物、皮膜および皮膜の形成方法 - Google Patents

水性樹脂組成物、皮膜および皮膜の形成方法 Download PDF

Info

Publication number
WO2021112042A1
WO2021112042A1 PCT/JP2020/044536 JP2020044536W WO2021112042A1 WO 2021112042 A1 WO2021112042 A1 WO 2021112042A1 JP 2020044536 W JP2020044536 W JP 2020044536W WO 2021112042 A1 WO2021112042 A1 WO 2021112042A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous resin
mass
copolymer
compound
resin composition
Prior art date
Application number
PCT/JP2020/044536
Other languages
English (en)
French (fr)
Inventor
卓也 葛谷
村田 直樹
康宏 中川
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to KR1020227014417A priority Critical patent/KR20220072867A/ko
Priority to CN202080082528.1A priority patent/CN114746458A/zh
Priority to JP2021562637A priority patent/JP7380709B2/ja
Publication of WO2021112042A1 publication Critical patent/WO2021112042A1/ja
Priority to JP2023136642A priority patent/JP2023166452A/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F291/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00
    • C08F291/06Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00 on to oxygen-containing macromolecules
    • C08F291/10Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00 on to oxygen-containing macromolecules on to macromolecules containing epoxy radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/44Amides
    • C08G59/46Amides together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • C08G59/58Amines together with other curing agents with polycarboxylic acids or with anhydrides, halides, or low-molecular-weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular

Definitions

  • the present invention relates to an aqueous resin composition, a film and a method for forming the film.
  • the present application claims priority based on Japanese Patent Application No. 2019-218183 filed in Japan on December 2, 2019, the contents of which are incorporated herein by reference.
  • metal products are surface-treated.
  • metal products used outdoors and metal products that are expected to be exposed to moisture are often surface-coated to prevent the occurrence of rust.
  • Patent Document 1 describes a coating composition for thick coating, which contains an emulsion composition in which polymer particles are dispersed in an aqueous medium and an aggregate.
  • the polymer particles described in Patent Document 1 are polymerized with an ethylenically unsaturated carboxylic acid monomer, which is a structural unit formed by polymerizing an alkyl (meth) acrylate monomer having an alkyl group having 4 to 14 carbon atoms. It is produced by emulsifying and polymerizing a structural unit composed of ethylene and a structural unit formed by polymerizing other monomers in the presence of a compound having at least two epoxy groups in one molecule and a basic catalyst. Is.
  • Patent Document 2 describes a composition containing an aqueous dispersion of thermoplastic polymer particles that has absorbed a thermosetting compound having an oxylan group. Further, Patent Document 2 describes that the polymer particles have an anticoagulant functional group at a concentration sufficient to stabilize the latex against aggregation.
  • Patent Document 3 describes that an acrylate resin (acrylic / epoxy latex) that has absorbed an epoxy compound is formed by mixing an epoxy emulsion with an emulsion of an acrylate resin.
  • the film yield strength of the conventional film made of a cured product of the aqueous resin composition was insufficient. Therefore, in the conventional aqueous resin composition, it is required to improve the yield strength of the film obtained by curing the conventional aqueous resin composition.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an aqueous resin composition capable of obtaining a cured product having good adhesion to a metal material and high film yield strength. Another object of the present invention is to provide a film having a high film yield strength, which is a cured product of the aqueous resin composition of the present invention. Another object of the present invention is to provide a method for forming a film for forming a film composed of a cured product of the aqueous resin composition of the present invention.
  • the configuration of the present invention for achieving the above object is as follows [1] to [15].
  • the first aspect of the present invention is the following aqueous resin composition.
  • [1] Contains an aqueous resin emulsion ( ⁇ ), a curing agent ( ⁇ ), and a curing accelerator ( ⁇ ).
  • the aqueous resin emulsion ( ⁇ ) contains a copolymer (X), a polyepoxy compound (Y) having no ethylenically unsaturated bond and having two or more epoxy groups in one molecule, and an aqueous medium (Z). ) And, including The content of the polyepoxy compound (Y) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 1 to 40% by mass.
  • the copolymer (X) contains a structural unit derived from (meth) acrylic acid ester (A) and a structural unit derived from ethylenically unsaturated carboxylic acid (B).
  • the content of the structural unit derived from the (meth) acrylic acid ester (A) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 20 to 98% by mass.
  • the content of the structural unit derived from the ethylenically unsaturated carboxylic acid (B) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 0.1 to 10% by mass.
  • the structural unit derived from the (meth) acrylic acid ester (A) includes a structural unit derived from the hydrophilic (meth) acrylic acid ester (A1) having 2 or less carbon atoms in the alcohol-derived portion.
  • the content of the structural unit derived from the hydrophilic (meth) acrylic acid ester (A1) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 15 to 98% by mass.
  • One or both of the copolymer (X) and the polyepoxy compound (Y) contains a carboxy group.
  • the curing agent ( ⁇ ) is composed of a compound having a functional group (F) having reactivity with an epoxy group.
  • the content of the functional group (F) contained in the curing agent ( ⁇ ) is 0.010 equivalent or more and 3.0 equivalent or less with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion ( ⁇ ).
  • the curing accelerator ( ⁇ ) is composed of a tertiary amine having no functional group having reactivity with an epoxy group.
  • the content of the curing accelerator ( ⁇ ) is 0.0070 mol or more and 1.5 mol or less with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion ( ⁇ ).
  • the aqueous resin composition of the first aspect of the present invention preferably contains the characteristics described in the following [2] to [12]. It is also preferable to combine two or more of these features.
  • [2] The aqueous resin composition according to [1], wherein the (meth) acrylic acid ester (A) comprises a (meth) acrylic acid alkyl ester.
  • the ethylenically unsaturated carboxylic acid (B) is at least one in the group consisting of ⁇ , ⁇ -unsaturated monocarboxylic acid, ⁇ , ⁇ -unsaturated dicarboxylic acid, and a vinyl compound containing a carboxy group.
  • the aqueous resin composition according to [1] or [2] which comprises a seed.
  • the polyepoxy compound (Y) is selected from bisphenol type epoxy compound, hydrogenated bisphenol type epoxy compound, diglycidyl ether, triglycidyl ether, tetraglycidyl ether, diglycidyl ester, triglycidyl ester, and tetraglycidyl ester.
  • the aqueous resin composition according to any one of [1] to [3], which is at least one of the above-mentioned aqueous resin compositions.
  • the copolymer (X) is composed of a structural unit derived from the (meth) acrylic acid ester (A) and a structural unit derived from the ethylenically unsaturated carboxylic acid (B) [1] to [4]. ].
  • the copolymer (X) is any of [1] to [4], which contains a structural unit derived from an ethylenically unsaturated aromatic compound (C) having a benzene ring and an ethylenically unsaturated bond.
  • the aqueous resin composition according to the above. [7] The aqueous resin composition according to [6], wherein the ethylenically unsaturated aromatic compound (C) is an aromatic vinyl compound.
  • the curing accelerator ( ⁇ ) is at least one compound selected from the group consisting of a tertiary aliphatic amine, a tertiary alicyclic amine, and a tertiary heteroaromatic amine [1]. ] To [8].
  • the monomer serving as the structural unit of the copolymer (X) is emulsion-polymerized in the aqueous medium (Z) in the presence of the polyepoxy compound (Y).
  • the content of the carboxy group in the total amount of the copolymer (X) and the polyepoxy compound (Y) is 0.10 ⁇ 10 -4 mol / g or more [1] to [10]. ].
  • the content of the epoxy group in the total amount of the copolymer (X) and the polyepoxy compound (Y) is 0.50 ⁇ 10 -4 mol / g or more [1] to [11]. ].
  • the aqueous resin composition according to any one of.
  • the second aspect of the present invention is the following cured product.
  • a film comprising a cured product of the aqueous resin composition according to any one of [1] to [12].
  • a third aspect of the present invention is the method for forming a film described below.
  • a film comprising a coating step of applying the aqueous resin composition according to any one of [1] to [12] to a surface to be coated and a curing step of curing the applied aqueous resin composition. Forming method.
  • an aqueous resin composition capable of obtaining a cured product having good adhesion to a metal material and high film yield strength. Further, according to the present invention, it is possible to provide a film having a high film yield strength, which is a cured product of the aqueous resin composition of the present invention. Further, according to the present invention, it is possible to provide a method for forming a film for forming a film made of a cured product of the aqueous resin composition of the present invention.
  • aqueous resin composition the film, and the method for forming the film of the present invention will be described in detail.
  • the present invention is not limited to the embodiments shown below.
  • the present invention can be added, omitted, replaced, changed, or the like with respect to numbers, types, positions, quantities, ratios, materials, configurations, etc., without departing from the spirit of the present invention.
  • (Meta) acrylate means acrylate or methacrylate.
  • (meth) acrylic means acrylic or methacrylic.
  • the “ethylenically unsaturated bond” means a double bond between carbon atoms excluding the carbon atoms forming an aromatic ring.
  • the “weight average molecular weight” is a standard polystyrene-equivalent value measured by gel permeation chromatography (GPC).
  • the structural unit derived from the compound having an ethylenically unsaturated bond is the chemical structure of a portion other than the ethylenically unsaturated bond in the compound and the above. It may mean a unit in which the chemical structure of the portion of the polymer other than the portion corresponding to the ethylenically unsaturated bond of the structural unit is the same.
  • the ethylenically unsaturated bond of the compound may be changed to a single bond when forming a polymer.
  • the structural unit derived from methyl methacrylate is represented by -CH 2- C (CH 3 ) (COOCH 3)-.
  • a structural unit having an ionic functional group such as a carboxy group is a structural unit derived from the same ionic compound even if a part of the functional group is ion-exchanged or not ion-exchanged. May be.
  • the structural unit represented by -CH 2- C (CH 3 ) (COONa)- may also be considered as a structural unit derived from methacrylic acid.
  • one or more ethylenically unsaturated bonds may remain inside the structural unit as the structural unit of the polymer of the compound.
  • the plurality of independent ethylenically unsaturated bonds may mean a plurality of ethylenically unsaturated bonds that do not form conjugated diene with each other.
  • the structural unit derived from divinylbenzene has a structure having no ethylenically unsaturated bond (both portions of divinylbenzene corresponding to the two tylene unsaturated bonds are polymer chains. It may be a form having one ethylenically unsaturated bond (a form in which only the portion corresponding to one ethylenically unsaturated bond is incorporated into the polymer chain).
  • “Curing” means that molecules contained in a raw material are bonded to each other by a chemical reaction to form a polymer having a network structure.
  • the “coating film” means a coating film formed by applying the aqueous resin composition of the present embodiment, drying the medium, and curing the resin component.
  • Aqueous resin composition contains an aqueous resin emulsion ( ⁇ ), a curing agent ( ⁇ ), and a curing accelerator ( ⁇ ).
  • the aqueous resin composition of the present embodiment is produced by mixing an aqueous resin emulsion ( ⁇ ), a curing agent ( ⁇ ), and a curing accelerator ( ⁇ ), as will be described later.
  • the aqueous resin emulsion ( ⁇ ) includes a copolymer (X), a polyepoxy compound (Y) having no ethylenically unsaturated bond and having two or more epoxy groups in one molecule, and an aqueous medium (Z). And include.
  • the aqueous resin emulsion ( ⁇ ) is an emulsion in which the monomer serving as the structural unit of the copolymer (X) is emulsion-polymerized in the presence of the polyepoxy compound (Y) in the aqueous medium (Z). This is because a coating film having high strength and high elongation can be obtained when it is mixed with a curing agent ( ⁇ ) described later and cured.
  • copolymer (X) has a structural unit (a) derived from the (meth) acrylic acid ester (A) and a structural unit (b) derived from the ethylenically unsaturated carboxylic acid (B).
  • the structural unit (a) derived from the (meth) acrylic acid ester (A) includes the structural unit (a1) derived from the hydrophilic (meth) acrylic acid ester (A1).
  • the copolymer (X) may be composed of only the structural unit (a) and the structural unit (b) (referred to as the copolymer (X1)).
  • the copolymer (X) is a structural unit (a), a structural unit (b), and a structural unit (c) derived from an ethylenically unsaturated aromatic compound (C) having a benzene ring and an ethylenically unsaturated bond. ) And (a copolymer (X2)) may be used.
  • the copolymer (X2) may consist of only structural units (a) to (c).
  • the copolymer (X) may have a structural unit (d) (referred to as a structural unit derived from another monomer (D)) other than the structural units (a) to (c).
  • the amount of the copolymer (X) contained in the aqueous resin emulsion ( ⁇ ) can be arbitrarily selected, but is preferably 10% by mass or more, preferably 20% by mass, based on the total amount of the aqueous resin emulsion ( ⁇ ). The above is more preferable, and 25% by mass or more is further preferable.
  • the amount of the copolymer (X) contained in the aqueous resin emulsion ( ⁇ ) can be arbitrarily selected, but is preferably 60% by mass or less, preferably 50% by mass, based on the total amount of the aqueous resin emulsion ( ⁇ ). It is more preferably less than or equal to 40% by mass or less. However, it is not limited to these examples.
  • the content of the copolymer (X) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) described later is preferably 50% by mass or more, and preferably 60% by mass or more. More preferably, it is 65% by mass or more.
  • the content of the copolymer (X) is preferably 99% by mass or less, and preferably 94% by mass or less, based on the total amount of the copolymer (X) and the polyepoxy compound (Y) described later. More preferably, it is 88% by mass or less.
  • (Meta) acrylic acid ester (A) As the (meth) acrylic acid ester (A), one or more kinds can be arbitrarily selected, but it is preferably composed of a (meth) acrylic acid alkyl ester.
  • a linear, branched chain or cyclic (meth) acrylic acid alkyl ester having an alkyl group having 1 to 18 carbon atoms is more preferable.
  • Specific examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, cyclohexyl (meth) acrylate, and 2-ethylhexyl.
  • Examples thereof include (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, and isobolonyl (meth) acrylate. These may be used alone or in combination of two or more.
  • Examples of the (meth) acrylic acid ester (A) may include examples of the hydrophilic (meth) acrylic acid ester (A1) described later.
  • the (meth) acrylic acid ester having a carboxy group is not contained in the (meth) acrylic acid ester (A), but is contained in the ethylenically unsaturated carboxylic acid (B) described later.
  • the (meth) acrylic acid ester (A) preferably contains a compound having low hydrophilicity. This is to improve the rust prevention property of the coating film. For the same reason, the (meth) acrylic acid ester (A) may contain a (meth) acrylic acid ester having an epoxy group.
  • Examples of the (meth) acrylic acid ester having an epoxy group include glycidyl (meth) acrylate, ⁇ -methylglycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, and 3,4-epoxycyclohexyl. Examples thereof include methyl (meth) acrylate, 3,4-epoxide cyclohexylethyl (meth) acrylate, and 3,4-epoxide cyclohexylpropyl (meth) acrylate.
  • the structural unit (a) may include a structural unit derived from only one of these compounds, or may include a structural unit derived from two or more of these compounds. Further, among these compounds, the structural unit (a) preferably contains a structural unit derived from glycidyl (meth) acrylate.
  • the (meth) acrylic acid ester (A) may be a (meth) acrylic acid ester which is neither a (meth) acrylic acid alkyl ester nor a compound having an epoxy group.
  • examples of such (meth) acrylic acid ester include (meth) acrylic acid ester having a hydroxy group.
  • Examples of the (meth) acrylic acid ester having a hydroxy group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 2-hydroxybutyl (meth). Examples thereof include acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, and 12-hydroxylauryl (meth) acrylate.
  • mono (meth) acrylic acid ester of polyethylene glycol mono (meth) acrylic acid ester of polyalkylene glycol such as mono (meth) acrylic acid ester of polypropylene glycol, and the like can also be mentioned. Only one type of (meth) acrylic acid ester having these hydroxy groups may be used, or two or more types may be used in combination.
  • the content of the structural unit (a) derived from the (meth) acrylic acid ester (A) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 20% by mass or more. This is because the dispersion stability of the monomer of the copolymer (X) and the polyepoxy compound (Y) can be improved in the method for producing an aqueous resin emulsion described later. From this viewpoint, the content of the structural unit (a) derived from the (meth) acrylic acid ester (A) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 35% by mass or more. Is more preferable, and it is more preferably 45% by mass or more, and further preferably 60% by mass or more.
  • the content of the structural unit (a) derived from the (meth) acrylic acid ester (A) with respect to the total amount of the copolymer (X) is preferably 40% by mass or more, more preferably 60% by mass or more. It is more preferably 75% by mass or more, and particularly preferably 90% by mass or more. This is because the water-resistant swelling rate of the film produced by using the aqueous resin composition can be further lowered within the above range.
  • the content of the structural unit (a) derived from the (meth) acrylic acid ester (A) with respect to the total amount of the copolymer (X) is preferably 99% by mass or less.
  • the content of the structural unit derived from the compound may mean the ratio (mass%) of the compound used.
  • the content of the structural unit (a) derived from the (meth) acrylic acid ester (A) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is the same weight with respect to the total amount. It may mean the percentage (% by mass) of the mass of the (meth) acrylic acid ester (A) used in the production of the coalesced (X).
  • the copolymer (X) is composed of only the structural unit (a) and the structural unit (b), that is, the copolymer (X1)
  • the content of the structural unit (a) derived from the (meth) acrylic acid ester (A) with respect to the total amount of the copolymer (X1) and the polyepoxy compound (Y) is 50% by mass or more. It is more preferably 60% by mass or more, and particularly preferably 60% by mass or more.
  • the preferable upper limit of the content is the same as that of the copolymer (X).
  • the content of the structural unit (a) derived from the (meth) acrylic acid ester (A) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 98% by mass or less. This is because the dispersion stability of the aqueous resin emulsion does not decrease unless it exceeds 98% by mass. From this viewpoint, the content of the structural unit (a) derived from the (meth) acrylic acid ester (A) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 92% by mass or less. Is preferable, and 87% by mass or less is more preferable.
  • the copolymer (X) has a structural unit (a), a structural unit (b), and a structural unit (c).
  • the copolymer (X) is a copolymer (X2)
  • the following ratio is preferable from the same viewpoint.
  • the content of the structural unit (a) derived from the (meth) acrylic acid ester (A) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is more preferably 75% by mass or less. , 65% by mass or less is particularly preferable.
  • the preferable lower limit of the content is the same as that of the copolymer (X).
  • the structural unit derived from the (meth) acrylic acid ester (A) includes a structural unit derived from the hydrophilic (meth) acrylic acid ester (A1).
  • the number of carbon atoms in the portion other than the acryloyloxy group may be, for example, 1 or 2.
  • hydrophilic (meth) acrylic acid ester (A1) examples include methyl (meth) acrylate, ethyl (meth) acrylate, and (meth) acrylate-2-hydroxyethyl.
  • the hydrophilic (meth) acrylic acid ester (A1) is preferably a (meth) acrylic acid alkyl ester having 2 or less carbon atoms in the alcohol-derived portion, and more preferably methyl methacrylate.
  • the content of the structural unit (a1) derived from the hydrophilic (meth) acrylic acid ester (A1) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 15% by mass or more. This is because, as described above, when the content of the hydrophilic (meth) acrylic acid ester is small, gelation proceeds rapidly when the aqueous resin emulsion ( ⁇ ) is mixed with a curing agent containing a polyamine.
  • the content of the structural unit (a1) derived from the hydrophilic (meth) acrylic acid ester (A1) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 15% by mass or more, which is 20. It is preferably 3% by mass or more, more preferably 30% by mass or more, and further preferably 40% by mass or more. This is because the water resistance and rust prevention of the coating film after curing are further improved.
  • the content may be 45% by mass or more or 50% by mass or more.
  • the upper limit of the content of the structural unit (a1) derived from the hydrophilic (meth) acrylic acid ester (A1) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is the (meth) acrylic acid ester. It is the same as the upper limit of the content rate described in the structural unit (a) derived from (A). That is, the upper limit is 98% by mass or less, preferably 92% by mass or less, and more preferably 87% by mass or less.
  • the polyepoxy compound (Y) described later is a hydrophobic compound such as a bisphenol type epoxy compound, a hydrogenated bisphenol type epoxy compound, or a phenol novolac type epoxy compound
  • the structural unit (a1) occupying the structural unit (a). ) Is preferably 90% by mass or less, more preferably 80% by mass or less, and further preferably 70% by mass or less. This is to improve the affinity between the copolymer (X) and the polyepoxy compound (Y).
  • the ethylenically unsaturated carboxylic acid (B) is a compound having an ethylenically unsaturated bond and a carboxy group.
  • the ethylenically unsaturated carboxylic acid (B) is an ⁇ , ⁇ -unsaturated monocarboxylic acid, an ⁇ , ⁇ -unsaturated dicarboxylic acid, a monoalkyl ester of an ⁇ , ⁇ -unsaturated dicarboxylic acid, and a vinyl containing a carboxy group.
  • the ⁇ , ⁇ -unsaturated mono or dicarboxylic acid include acrylic acid, methacrylic acid, crotonic acid, citraconic acid, itaconic acid, maleic acid, maleic anhydride, fumaric acid and the like.
  • the vinyl compound containing a carboxy group include monohydroxyethyl (meth) acrylate phthalate and monohydroxypropyl (meth) acrylate oxalate.
  • the structural unit (b) may be a structural unit derived from only one of these compounds, or may include a structural unit derived from two or more of these compounds.
  • the ethylenically unsaturated carboxylic acid (B) includes a compound having a (meth) acryloyl group and a carboxy group, or is composed of only a compound having a (meth) acryloyl group and a carboxy group. Is preferable. It is also preferable that the ethylenically unsaturated carboxylic acid (B) contains (meth) acrylic acid or is composed of only (meth) acrylic acid.
  • the structural unit (b) preferably comprises only a structural unit derived from a compound having a (meth) acryloyl group and a carboxy group, and further preferably contains a structural unit derived from (meth) acrylic acid.
  • the content of the structural unit (b) derived from the ethylenically unsaturated carboxylic acid (B) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 0.1% by mass or more. This is to improve the dispersion stability of the aqueous resin emulsion ( ⁇ ). From this point of view, the content of the structural unit (b) derived from the ethylenically unsaturated carboxylic acid (B) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 0.3% by mass or more. It is preferably present, and more preferably 0.5% by mass or more. The content may be 0.8% by mass or more, or 1.0% by mass or more.
  • the content of the structural unit (b) derived from the ethylenically unsaturated carboxylic acid (B) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 10% by mass or less. This is to prevent the copolymer (X) from forming a gel in a high temperature environment and to improve the high temperature stability of the aqueous resin emulsion ( ⁇ ). From this viewpoint, the content of the structural unit (b) derived from the ethylenically unsaturated carboxylic acid (B) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 7% by mass or less. It is preferably 5% by mass or less, and more preferably 5% by mass or less. The content may be 4% by mass or less, or 3% by mass or less.
  • the content of the structural unit (b) derived from the ethylenically unsaturated carboxylic acid (B) is preferably 0.2% by mass or more, preferably 0.5% by mass, based on the total amount of the copolymer (X). The above is more preferable, and 0.8% by mass or more is further preferable.
  • the content of the structural unit (b) derived from the ethylenically unsaturated carboxylic acid (B) with respect to the total amount of the copolymer (X) is preferably 12% by mass or less, and more preferably 8% by mass or less. It is preferably 5% by mass or less, more preferably 3% by mass or less.
  • the ethylenically unsaturated aromatic compound (C) does not correspond to either the (meth) acrylic acid ester (A) or the ethylenically unsaturated carboxylic acid (B), and has a benzene ring and an ethylenically unsaturated bond. It is a compound.
  • the ethylenically unsaturated aromatic compound (C) is preferably an aromatic vinyl compound.
  • aromatic vinyl compound as the ethylenically unsaturated aromatic compound (C) examples include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, and the like.
  • 2,4-Diisopropylstyrene 4-tert-butylstyrene, tert-butoxystyrene, vinyltoluene, divinyltorene, vinylnaphthalene, monochlorostyrene, dichlorostyrene, monobromostyrene, dibromostyrene, tribromostyrene, fluorostyrene, styrenesulfone Acids and their salts, ⁇ -methylstyrene sulfonic acid and its salts, p-hydroxystyrene, m-hydroxystyrene, o-hydroxystyrene, p-isopropenylphenol, m-isopropenylphenol, o-isopropenylphenol and the like Can be mentioned.
  • the structural unit (c) may be derived from only one of these compounds, or may include structural units derived from two or more of these compounds.
  • the structural unit (c) is more preferably composed of a structural unit derived from a hydrocarbon, and particularly preferably a structural unit derived from styrene.
  • the copolymer (X) contains a structural unit (c) derived from the ethylenically unsaturated aromatic compound (C), that is, when the copolymer (X) is a copolymer (X2)
  • the copolymer The content of the structural unit (c) with respect to the total amount of (X2) and the polyepoxy compound (Y) is preferably 5% by mass or more. This is to improve the water resistance of the coating film. From this viewpoint, the content of the structural unit (c) with respect to the total amount of the copolymer (X2) and the polyepoxy compound (Y) is more preferably 10% by mass or more, and more preferably 15% by mass or more. Is even more preferable. The content may be 18% by mass or more, 20% by mass or more, or 23% by mass or more.
  • the content of the structural unit (c) with respect to the total amount of the copolymer (X2) and the polyepoxy compound (Y) is 50% by mass or less. It is preferable to have. This is because the weather resistance of the coating film is improved. From this viewpoint, the content of the structural unit (c) with respect to the total amount of the copolymer (X2) and the polyepoxy compound (Y) is more preferably 40% by mass or less, and more preferably 35% by mass or less. Is even more preferable. The content may be 33% by mass or less, 30% by mass or less, or 28% by mass or less.
  • the content of the structural unit (c) with respect to the total amount of the copolymer (X2) is preferably 5% by mass or more, more preferably 15% by mass or more, and further preferably 25% by mass or more. preferable.
  • the content of the structural unit (c) with respect to the total amount of the copolymer (X2) is preferably 55% by mass or less, more preferably 45% by mass or less, and further preferably 35% by mass or less. preferable.
  • the other monomer (D) does not correspond to any of the (meth) acrylic acid ester (A), the ethylenically unsaturated carboxylic acid (B), and the ethylenically unsaturated aromatic compound (C), and It is a compound having an ethylenically unsaturated bond capable of copolymerizing with a compound used for synthesizing the copolymer (X).
  • the other monomer (D) include a conjugated diene compound, a maleimide compound, a vinyl ether compound, an allyl ether compound, a dialkyl ester of an unsaturated dicarboxylic acid, and a vinyl compound having a cyano group.
  • conjugated diene compound examples include 1,3-butadiene, isoprene (2-methyl-1,3-butadiene), 2,3-dimethyl-1,3 butadiene, and chloroprene (2-chloro-1,3-butadiene). And so on. Only one of these conjugated diene compounds may be used, or two or more of these conjugated diene compounds may be used in combination.
  • maleimide compound examples include maleimide, N-methylmaleimide, N-isopropylmaleimide, N-butylmaleimide, N-dodecylmaleimide, N-phenylmaleimide, N- (2-methylphenyl) maleimide, and N- (4-).
  • Methylphenyl) maleimide N- (2,6-dimethylphenyl) maleimide, N- (2,6-diethylphenyl) maleimide, N- (2-methoxyphenyl) maleimide, N-benzylmaleimide, N- (4-hydroxy) Phenyl) maleimide, N-naphthylmaleimide, N-cyclohexylmaleimide and the like can be mentioned. Only one type of these maleimide compounds may be used, or two or more types may be used in combination.
  • vinyl ether compound examples include alkyl vinyl ethers such as methyl vinyl ether and ethyl vinyl ether, and hydroxyl group-containing alkyl vinyl ethers in which some hydrogen atoms are substituted with hydroxyl groups.
  • allyl ether compound examples include allyl alkyl ethers such as allyl methyl ether and allyl ethyl ether, hydroxyl group-containing allyl alkyl ethers in which some hydrogen atoms are substituted with hydroxyl groups, and allyl glycidyl ethers.
  • dialkyl ester of the unsaturated dicarboxylic acid examples include unsaturated dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, maleic anhydride, itaconic anhydride, citraconic anhydride, and tetrahydrophthalic anhydride.
  • dialkyl ester of Only one of these dialkyl esters may be used, or two or more of these dialkyl esters may be used in combination. Only one of these unsaturated compounds may be used, or two or more of these unsaturated compounds may be used in combination.
  • Examples of the vinyl compound having a cyano group include acrylonitrile, methacrylonitrile, ⁇ -ethylacrylonitrile, ⁇ -isopropylacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -fluoroacrylonitrile, and the like. Only one kind of these cyano group-containing vinyl monomers may be used, or two or more kinds thereof may be used in combination.
  • the polyepoxy compound (Y) is selected from at least one selected from bisphenol type epoxy compound, hydrogenated bisphenol type epoxy compound, diglycidyl ether, triglycidyl ether, tetraglycidyl ether, diglycidyl ester, triglycidyl ester, and tetraglycidyl ester. It is preferably a seed.
  • Examples of compounds having two or more epoxy groups in one molecule are bisphenol A diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, and glycerin.
  • Examples thereof include glycidyl ether and diglycidyl ester of hexahydrophthalic acid.
  • One of these compounds may be contained, or two or more of these compounds may be contained.
  • the polyepoxy compound (Y) is more preferably a bisphenol type epoxy compound or a hydrogenated bisphenol type epoxy compound, further preferably a bisphenol A type epoxy compound or a hydrogenated bisphenol A type epoxy compound, and further preferably a bisphenol A type epoxy compound. It is more preferably an epoxy compound. This is because the water resistance and rust prevention of the coating film after curing are further improved.
  • the weight average molecular weight of the polyepoxy compound (Y) is not particularly limited, but is preferably 1000 or less, more preferably 800 or less, and further preferably 500 or less.
  • the compatibility of the polyepoxy compound (Y) with the copolymer (X) is improved, and an emulsion having excellent dispersion stability and storage stability can be obtained.
  • the lower limit of the molecular weight can be arbitrarily selected and may be, for example, 200 or 300, but is not limited thereto.
  • the epoxy equivalent of the polyepoxy compound (Y) (mass of the polyepoxy compound (Y) per 1 mol of epoxy group) is preferably 500 g / mol or less, more preferably 350 g / mol or less, and 250 g / mol. It is more preferably 200 g / mol or less, and particularly preferably 200 g / mol or less. This is because the strength of the coating film obtained by curing the aqueous resin composition described later is increased.
  • the lower limit of the epoxy equivalent can be arbitrarily selected, and may be, for example, 70 g / mol or more, 120 g / mol or more, but is not limited to these examples.
  • the content of the polyepoxy compound (Y) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 1% by mass or more. This is because the aqueous resin composition is cured to obtain a coating film having excellent rust prevention properties. From this viewpoint, the content of the polyepoxy compound (Y) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is preferably 5% by mass or more, preferably 8% by mass or more. Is more preferable, and 10% by mass or more is further preferable. If necessary, it may be 12% by mass or more, or 20% by mass or more.
  • the content of the polyepoxy compound (Y) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is 40% by mass or less. This is to obtain an aqueous resin emulsion ( ⁇ ) having high dispersion stability. From this viewpoint, the content of the polyepoxy compound (Y) with respect to the total amount of the copolymer (X) and the polyepoxy compound (Y) is preferably 35% by mass or less, preferably 30% by mass or less. Is more preferable.
  • the amount of the polyepoxy compound (Y) contained in the aqueous resin emulsion ( ⁇ ) is preferably 1% by mass or more, more preferably 3% by mass or more, based on the total amount of the aqueous resin emulsion ( ⁇ ). It is preferably 4% by mass or more, and more preferably 4% by mass or more.
  • the amount of the polyepoxy compound (Y) contained in the aqueous resin emulsion ( ⁇ ) is preferably 30% by mass or less, more preferably 20% by mass or less, based on the total amount of the aqueous resin emulsion ( ⁇ ). It is preferably 15% by mass or less, and more preferably 15% by mass or less.
  • the hydrophilic solvent to be added to water can be arbitrarily selected, and examples thereof include methanol, ethanol, and N-methylpyrrolidone.
  • the amount of the aqueous medium (Z) in the aqueous resin emulsion ( ⁇ ) can be selected as needed, but is preferably 20% by mass or more, more preferably 30% by mass or more, and 40% by mass or more. Is more preferable.
  • the amount of the aqueous medium (Z) in the aqueous resin emulsion ( ⁇ ) can be selected as needed, but is preferably 80% by mass or more, and more preferably 70% by mass or more.
  • the concentration may be 50 to 70% by mass or 55 to 65% by mass.
  • the method for producing the aqueous resin emulsion ( ⁇ ) according to the present embodiment is a monomer containing a (meth) acrylic acid ester (A) and an ethylenically unsaturated carboxylic acid (B) in the presence of the polyepoxy compound (Y). (That is, the monomer for forming the copolymer (X)) can be carried out by emulsion polymerization in the aqueous medium (Z).
  • an aqueous resin emulsion ( ⁇ ) in which the polyepoxy compound (Y) is uniformly dispersed in the particles of the produced copolymer (X) can be obtained.
  • "uniformly present” does not necessarily mean that the copolymer (X) and the polyepoxy compound (Y) are incompatible with each other, and the central side of the copolymer (X) particles. It is sufficient that the domain of the polyepoxy compound (Y) is evenly present on both the surface side and the surface side.
  • a method of collectively charging each component containing a monomer, a method of polymerizing while continuously supplying each component, and the like can be used. It is preferable to stir during the polymerization reaction.
  • the content of each raw material in the total raw material used for producing the aqueous resin emulsion ( ⁇ ) is the same as the content of the structural unit derived from the raw material or the compound corresponding to the raw material in the aqueous resin emulsion ( ⁇ ). ..
  • the polymerization is preferably carried out at an arbitrarily selected temperature, for example, a temperature of 30 to 90 ° C., more preferably 40 to 80 ° C., and even more preferably 40 to 70 ° C. .. This is to prevent the carboxy group contained in the monomer from reacting with the epoxy group contained in the polyepoxy compound (Y).
  • the emulsifier used for emulsification polymerization can be arbitrarily selected, and for example, a nonionic surfactant such as polyoxyalkylene alkyl ether, polyoxyalkylene alkyl phenol ether, polyoxyalkylene fatty acid ester, polyoxyalkylene sorbitan fatty acid ester, and alkyl sulfate ester.
  • a nonionic surfactant such as polyoxyalkylene alkyl ether, polyoxyalkylene alkyl phenol ether, polyoxyalkylene fatty acid ester, polyoxyalkylene sorbitan fatty acid ester, and alkyl sulfate ester.
  • Anionic surfactants such as salts, alkylbenzene sulfonates, alkyl sulfosuccinates, alkyldiphenyl ether disulfonates, polyoxyalkylene alkyl sulfates, polyoxyalkylene alkyl phosphates and
  • Alkylbenzene sulfonate is preferable as these emulsifiers, and sodium dodecylbenzene sulfonate is more preferable.
  • a polymerization initiator In emulsion polymerization, it is preferable to use a polymerization initiator.
  • the polymerization initiator for example, it is preferable to use a peroxide.
  • the peroxide used as the polymerization initiator include persulfates such as potassium persulfate and ammonium persulfate, hydrogen peroxide and the like.
  • a redox-based initiator in combination with a peroxide and a reducing agent.
  • the reducing agent include sodium sulfoxylate formaldehyde, ascorbic acid, sulfites, tartaric acid or salts thereof.
  • alcohol and mercaptans may be used as a chain transfer agent if necessary.
  • the pH of the aqueous resin emulsion ( ⁇ ) is preferably 2 to 10, and more preferably 5 to 9. When the pH is in this range, the mechanical stability and chemical stability of the aqueous resin emulsion ( ⁇ ) can be improved.
  • the pH is a value measured at a liquid temperature of 25 ° C. using a pH meter using a hydrogen ion concentration indicator with a glass electrode as a standard electrode.
  • the pH can be adjusted by adding a basic substance to the aqueous resin emulsion ( ⁇ ) during or after the emulsion polymerization. Examples of basic substances used for pH adjustment include ammonia, triethylamine, ethanolamine, caustic soda and the like. These may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the non-volatile content concentration of the aqueous resin emulsion ( ⁇ ) is preferably 10 to 65% by mass, more preferably 15 to 60% by mass, and even more preferably 20 to 55% by mass. The concentration may be 30 to 50% by mass, or 35 to 45% by mass.
  • the non-volatile content concentration in the aqueous resin emulsion ( ⁇ ) is determined in a step of mixing the aqueous resin emulsion ( ⁇ ) described later with a curing agent ( ⁇ ), a curing accelerator ( ⁇ ), or the like, or a step of coating the aqueous resin composition. It can be decided as appropriate in consideration of workability.
  • the non-volatile content concentration in the aqueous resin emulsion ( ⁇ ) can be appropriately adjusted by adjusting the amount of the aqueous medium (Z) added.
  • the non-volatile content concentration of the aqueous resin emulsion ( ⁇ ) was determined by the method shown below. 1 g of the aqueous resin emulsion ( ⁇ ) was weighed on an aluminum dish having a diameter of 5 cm, dried at 105 ° C. for 1 hour in a dryer at atmospheric pressure, and then the mass of the remaining residue was measured. .. The ratio (mass%) of the measured residual mass to the mass of the aqueous resin emulsion ( ⁇ ) before drying was determined as the non-volatile content concentration of the aqueous resin emulsion ( ⁇ ).
  • Viscosity of aqueous resin emulsion ( ⁇ ) the viscosity of the aqueous resin emulsion ( ⁇ ) is measured at 23 ° C.
  • the viscosity of the aqueous resin emulsion ( ⁇ ) is measured using a B-type viscometer, and is a value measured by selecting a rotor according to the viscosity of the aqueous resin emulsion at a rotation speed of 60 rpm. For example, when the viscosity of the aqueous resin emulsion ( ⁇ ) is about several mPa ⁇ s to several hundred mPa ⁇ s, the rotor No. Measure using 1.
  • the viscosity may be, for example, 0.1 to 300 mPa ⁇ s, 1 to 100 mPa ⁇ s, 3 to 50 mPa ⁇ s, or 5 to 25 mPa ⁇ s. ..
  • the glass transition point Tg of the copolymer (X) is calculated based on the glass transition point of the homopolymer of each monomer used in the synthesis of the copolymer (X).
  • the glass transition point Tg of the copolymer (X) is preferably ⁇ 30 ° C. (243K) or higher. This is because the strength of the coating film is improved. From this viewpoint, the glass transition point Tg of the copolymer (X) is more preferably ⁇ 10 ° C. (263K) or higher. It is more preferably 0 ° C. (273K) or higher. This is because the strength of the coating film after curing is improved in such a range.
  • the glass transition point Tg of the copolymer (X) may be 5 ° C. or higher, or 10 ° C. or higher.
  • the glass transition point Tg of the copolymer (X) is preferably 100 ° C. (373K) or lower, and more preferably 80 ° C.
  • the glass transition point Tg of the copolymer (X) is more preferably 60 ° C. (333K) or lower, and particularly preferably 50 ° C. (323K) or lower. This is because in such a range, the flexibility of the coating film after curing can be improved.
  • the glass transition point Tg of the copolymer (X) may be 40 ° C. or lower, or 30 ° C. or lower.
  • Epoxy group content in aqueous resin emulsion ( ⁇ ) The content of epoxy groups in the aqueous resin emulsion ( ⁇ ) is the ratio of the number of moles of epoxy groups contained in 1 g of the aqueous resin emulsion ( ⁇ ).
  • the method for determining the amount of epoxy groups N 1 [mol / g] contained in 1 g of the aqueous resin emulsion ( ⁇ ) is as described in Examples described later.
  • the polyepoxy compound (Y) contained in the aqueous resin emulsion ( ⁇ ) in the present embodiment contains an epoxy group.
  • the content of the epoxy group in the total amount of the copolymer (X) and the polyepoxy compound (Y) is preferably 0.50 ⁇ 10 -4 mol / g or more, preferably 1.0 ⁇ 10 -4. It is more preferably mol / g or more, further preferably 4.0 ⁇ 10 -4 mol / g or more, and further preferably 6.0 ⁇ 10 -4 mol / g or more. This is because the water resistance, rust prevention, and adhesion to the substrate of the coating film after curing can be improved.
  • the content of the epoxy group in the total amount of the copolymer (X) and the polyepoxy compound (Y) is preferably 50 ⁇ 10 -4 mol / g or less, preferably 30 ⁇ 10 -4 mol / g or less. It is more preferable that the amount is 20 ⁇ 10 -4 mol / g or less. Even if the content of the epoxy group in the total amount of the copolymer (X) and the polyepoxy compound (Y) is 15 ⁇ 10 -4 mol / g or less, or 10 ⁇ 10 -4 mol / g or less. Good.
  • the content of the epoxy group in the non-volatile content of the aqueous resin emulsion ( ⁇ ) is preferably 0.50 ⁇ 10 -4 mol / g or more, and preferably 3.0 ⁇ 10 -4 mol / g or more. More preferably, it is 5.0 ⁇ 10 -4 mol / g or more. This is because the water resistance, rust prevention, and adhesion to the substrate of the coating film after curing can be improved.
  • the content of the epoxy group in the non-volatile content of the aqueous resin emulsion ( ⁇ ) may be 1.0 ⁇ 10 -4 mol / g or more, or 6.0 ⁇ 10 -4 mol / g or more.
  • the content of the epoxy group in the non-volatile content of the aqueous resin emulsion ( ⁇ ) is preferably 50 ⁇ 10 -4 mol / g or less, more preferably 30 ⁇ 10 -4 mol / g or less, and 20 It is more preferably ⁇ 10 -4 mol / g or less.
  • the content of the epoxy group in the non-volatile content of the aqueous resin emulsion ( ⁇ ) may be 15 ⁇ 10 -4 mol / g or less, or 10 ⁇ 10 -4 mol / g or less.
  • the epoxy group content REP [mol / g] in the non-volatile content of the aqueous resin emulsion ( ⁇ ) is a value obtained as follows.
  • C S [wt%] a nonvolatile concentration of the aqueous resin emulsion (alpha), when the amount N 1 [mol / g] of the epoxy groups contained per aqueous resin emulsion (alpha) 1 g, the content of the epoxy groups R EP Is expressed as in equation (2).
  • the method of obtaining N 1 is as described later in the examples.
  • R EP [mol / g] N 1 / ( CS / 100) ...
  • composition of carboxy group in aqueous resin emulsion ( ⁇ ) The content of carboxy groups in the aqueous resin emulsion ( ⁇ ) is the ratio of the number of moles of carboxy groups contained in 1 g of the aqueous resin emulsion ( ⁇ ).
  • the method for determining the number of moles of the carboxy group contained in 1 g of the aqueous resin emulsion ( ⁇ ) is as described in Examples described later.
  • composition of carboxy group in total amount of copolymer (X) and polyepoxy compound (Y) In the present embodiment, one or both of the copolymer (X) and the polyepoxy compound (Y) contained in the aqueous resin emulsion ( ⁇ ) contain a carboxy group, and the copolymer (X) contains a carboxy group. It is preferable to include it.
  • the content of the carboxy group in the total amount of the copolymer (X) and the polyepoxy compound (Y) is preferably 0.10 ⁇ 10 -4 mol / g or more, preferably 0.50 ⁇ 10 -4 mol / g.
  • It is more preferably / g or more, and further preferably 1.0 ⁇ 10 -4 mol / g or more. This is because the aggregation of the copolymer (X) can be suppressed during the storage of the aqueous resin emulsion ( ⁇ ) during and after the polymerization.
  • the content of the carboxy group in the total amount of the copolymer (X) and the polyepoxy compound (Y) is preferably 10 ⁇ 10 -4 mol / g or less, preferably 5.0 ⁇ 10 -4 mol / g. It is more preferably g or less. It may be 3.0 ⁇ 10 -4 mol / g or less, 2.5 ⁇ 10 -4 mol / g or less, or 2.0 ⁇ 10 -4 mol / g or less.
  • the content of the carboxy group in the non-volatile content of the aqueous resin emulsion ( ⁇ ) is preferably 0.10 ⁇ 10 -4 mol / g or more, and preferably 0.50 ⁇ 10 -4 mol / g or more. More preferably, it is 1.0 ⁇ 10 -4 mol / g or more. This is because the aggregation of the copolymer (X) can be suppressed during the storage of the aqueous resin emulsion ( ⁇ ) during and after the polymerization.
  • the content of carboxyl groups in the nonvolatile content of the aqueous resin emulsion (alpha) is preferably not more than 10 ⁇ 10 -4 mol / g, more preferably not more than 5.0 ⁇ 10 -4 mol / g .. It may be 3.0 ⁇ 10 -4 mol / g or less, 2.5 ⁇ 10 -4 mol / g or less, or 2.0 ⁇ 10 -4 mol / g or less.
  • the content of the carboxy group in the non-volatile content of the aqueous resin emulsion ( ⁇ ) is, as shown by the following formula, the polymerization of the functional group that reacts with the carboxy group in the raw material from the content of the carboxy group in the raw material. It is calculated from the value obtained by subtracting the amount of decrease before and after.
  • the raw material refers to a component used for synthesizing the aqueous resin emulsion ( ⁇ ).
  • the functional group that reacts with the carboxy group is not considered to be an epoxy group, and the hydroxy group is not considered to be a functional group that reacts with the carboxy group.
  • the total amount of carboxy groups in the raw material (including the initiator, solvent, other additives, etc.) is N 3 [mol / g]
  • the total amount of epoxy groups in the raw material (including the initiator, solvent, other additives, etc.) Is N 2 [mol / g]
  • the amount of epoxy groups contained in 1 g of the aqueous resin emulsion ( ⁇ ) is N 1 [mol / g].
  • the non-volatile content concentration of the aqueous resin emulsion ( ⁇ ) is defined as CS [mass%].
  • the curing agent ( ⁇ ) consists of a compound having a functional group (F) having reactivity with an epoxy group.
  • the functional group (F) is composed of an unsubstituted amino group (-NH 2 (no substituent)), an amino group having only one substituent (-NHR (R is a substituent)), a carboxy group, and a mercapto group. It is preferable that it is one selected from the group.
  • the type of the functional group (F) having reactivity with the epoxy group contained in the curing agent ( ⁇ ) may be only one type or two or more types.
  • Examples of the curing agent ( ⁇ ) having an amino group having no substitution or only one substituent include polyamines.
  • a polyamine is a compound having an unsubstituted amino group (-NH 2 ) and / or an amino group having only one substituent (-NHR (R is a substituent)), for example, an aliphatic polyamine, a fat. Examples include cyclic polyamines and aromatic polyamines.
  • Examples of the aliphatic polyamine include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and modified products thereof.
  • Examples of the alicyclic polyamine include isophorone diamine, mentan diamine, N-aminoethylpiperazine, diaminodicyclohexylmethane, and modified products thereof.
  • Examples of the aromatic polyamine include m-xylylenediamine, diaminodiphenylmethane, m-phenylenediamine, diaminodiphenylsulfone, and modified products thereof.
  • the curing agent ( ⁇ ) having a carboxy group a compound having two or more carboxy groups in the molecule is preferable.
  • phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, methyltetrahydrophthalic acid, methylhexahydrophthalic acid, pyromellitic acid, benzophenonetetracarboxylic acid, 1,2,3,4-butanetetracarboxylic acid can be mentioned.
  • the curing agent ( ⁇ ) having a mercapto group a compound having two or more mercapto groups in the molecule is preferable.
  • a condensate of thioglycolic acid and a polyhydric alcohol, polysulfide and the like can be mentioned.
  • curing agents ( ⁇ ) may be used alone or in combination of two or more.
  • the curing agent ( ⁇ ) it is preferable to use a polyamine-based curing agent.
  • the curing agent ( ⁇ ) As the curing agent ( ⁇ ), a commercially available one may be used.
  • examples of commercially available hardeners include ADEKA Hardener EH-8051 (polyamine) (manufactured by ADEKA Corporation); Fujicure FXI-919; Tomide TXH-674-B and TXS-53-C (manufactured by T & K TOKA Corporation); Ricacid BTW (manufactured by New Japan Chemical Co., Ltd.); and Karenz MT BD-1 (manufactured by Showa Denko KK).
  • the content of the functional group (F) having reactivity with the epoxy group contained in the curing agent ( ⁇ ) is 0.010 equivalent or more with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion ( ⁇ ). It is preferably 0.10 equivalent or more, and more preferably 0.20 equivalent or more. This is because the rust preventive property and the adhesion to the metal material of the aqueous resin composition after curing are improved.
  • the equivalent of the functional group (F) when the functional group (F) has two active hydrogens such as an unsubstituted amine, the number of the functional groups (F) is counted as two.
  • the content of the functional group (F) having reactivity with the epoxy group contained in the curing agent ( ⁇ ) is 3.0 equivalent or less with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion ( ⁇ ). It is preferably 2.0 equivalents or less, more preferably 1.5 equivalents or less, further preferably 1.0 equivalents or less, still more preferably 0.80 equivalents or less, 0.50. It is more preferably equal to or less than the equivalent. This is because the strength of the coating film is improved.
  • the curing accelerator ( ⁇ ) has a function of accelerating the curing of the aqueous resin composition and forming a film having a high film yield strength.
  • the curing accelerator ( ⁇ ) consists of a tertiary amine having no functional group that is reactive with an epoxy group.
  • the tertiary amine in the present embodiment is NR 1 R 2 R 3 (in the formula, R 1 R 2 R 3 is a substituent, which may be different from each other and contains two or more of the same ones. R 1 R 2 R 3 may be bonded to each other to form a ring).
  • the curing accelerator ( ⁇ ) is directly bonded to the nitrogen atom of a tertiary aliphatic amine, a tertiary aliphatic amine, a tertiary heteroaromatic amine, or a tertiary amine (NR 1 R 2 R 3). It is preferably at least one compound selected from the group consisting of tertiary aromatic amines having no phenyl group. This is to enhance the nucleophile of the curing accelerator ( ⁇ ) and efficiently proceed with the curing reaction.
  • tertiary aliphatic amine examples include triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, tri-sec-butylamine, and tri-n-hexylamine.
  • tertiary alicyclic amine examples include 1,4-diazabicyclo [2.2.2] octane (DABCO), 1,5-diazabicyclo [4.3.0] nona-5-ene, and 1,8. -Diazabicyclo [5.4.0] Undec-7-ene, and the like.
  • a compound having an imidazole skeleton it is preferable to use a compound having an imidazole skeleton, and specific examples thereof include imidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole and the like.
  • tertiary aromatic amine having a phenyl group not directly bonded to the nitrogen atom of the tertiary amine examples include dimethylbenzylamine, diethylbenzylamine, tribenzylamine, 2,4. Examples thereof include 6-trisdimethylaminomethylphenol and 2-phenylimidazole.
  • curing accelerators ( ⁇ ) it is particularly preferable to use the following compounds (i) and / or (ii).
  • (I) A tertiary alicyclic amine that does not have a functional group (F) that is reactive with an epoxy group and has a saturated ring structure in which two nitrogen atoms are bonded to each other by three substituents of an amino group. ..
  • (Ii) A tertiary heteroaromatic amine having a heteroaromatic ring structure containing two or more nitrogen atoms without having a functional group (F) reactive with an epoxy group.
  • Examples of the tertiary alicyclic amine include 1,4-diazabicyclo [2.2.2] octane (DABCO).
  • Examples of the tertiary heteroaromatic amine include imidazole.
  • the curing accelerator ( ⁇ ) may be used alone or in combination of two or more.
  • the content of the curing accelerator ( ⁇ ) is 0.0070 mol or more, preferably 0.070 mol or more, preferably 0.18 mol or more, with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion ( ⁇ ). It is more preferable that the amount is 0.30 mol or more, and more preferably 0.30 mol or more. This is because a cured product having a high film yield strength can be obtained.
  • the content of the curing accelerator ( ⁇ ) is 1.5 mol or less, preferably 1.0 mol or less, and 0.70 mol or less, based on 1 equivalent of the epoxy group contained in the aqueous resin emulsion ( ⁇ ). It is more preferably 0.44 mol or less, further preferably 0.40 mol or less, and particularly preferably 0.38 mol or less. This is because gelation of the aqueous resin composition in a short time can be suppressed. This is also because a cured product having good rust prevention properties can be obtained.
  • the aqueous resin composition according to this embodiment may contain a pigment.
  • the pigment include titanium oxide, talc, barium sulfate, carbon black, red iron oxide, calcium carbonate, silicon oxide, talc, mica, kaolin, clay, ferrite, silica sand and the like.
  • the pigment may contain only one kind of compound, or may contain two or more kinds of compounds.
  • the pigment is preferably contained in the aqueous resin composition in an amount of 0.1 to 50% by mass, more preferably 1 to 40% by mass. This is to improve the hiding power of the coating film.
  • Pigments are 0.1 to 3% by mass, 3 to 6% by mass, 6 to 10% by mass, 10 to 20% by mass, 20 to 35% by mass, and 35 to 50% by mass, respectively, as required. It may be contained in the aqueous resin composition in an amount such as%.
  • Aqueous resin compositions include fillers, organic or inorganic hollow balloons, dispersants (eg, aminoalcohol, polycarboxylate, etc.), surfactants, coupling agents (eg, silane coupling agents, etc.), defoamers, Preservatives (eg, biocides, fungicides, fungicides, algae, and combinations thereof), fluidizers, leveling agents, neutralizers (eg, hydroxides, amines, ammonia, carbonates, etc.) Etc.) may be included.
  • dispersants eg, aminoalcohol, polycarboxylate, etc.
  • surfactants eg, silane coupling agents, etc.
  • defoamers e.g, silane coupling agents, etc.
  • Preservatives eg, biocides, fungicides, fungicides, algae, and combinations thereof
  • fluidizers eg, leveling agents, neutralizers (eg, hydroxides, amines, ammonia
  • silane coupling agent it is preferable to use a silane coupling agent.
  • the silane coupling agent include epoxy silane compounds. Specific examples include 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 2- (3,4-epoxycyclohexi) ethyl. Examples thereof include trimethoxysilane.
  • the amount of the silane coupling agent added can be arbitrarily selected, but is preferably 0.1 to 5 parts by mass, more preferably 0.3 to 3 parts by mass with respect to 100 parts by mass of the aqueous resin emulsion. .. This is because the rust preventive property and the adhesion to the metal material of the aqueous resin composition after curing are improved.
  • aqueous resin composition ⁇ 1-1-6.
  • Manufacturing method of aqueous resin composition The aqueous resin emulsion ( ⁇ ), the curing agent ( ⁇ ), the curing accelerator ( ⁇ ), and other components contained as necessary are mixed.
  • the mixing step for example, there is a method described later in Examples, but the mixing step is not limited to this.
  • an aqueous resin emulsion ( ⁇ ), a curing agent ( ⁇ ), a curing accelerator ( ⁇ ), and other components contained as necessary are mixed.
  • the aqueous resin composition of the present embodiment is prepared (mixing step).
  • the aqueous resin composition obtained in the mixing step is applied to the surface to be coated (coating step).
  • the aqueous resin emulsion ( ⁇ ), the curing agent ( ⁇ ), the curing accelerator ( ⁇ ), and other components contained as necessary are mixed and stirred.
  • an aqueous resin composition in which each component is dispersed can be obtained.
  • Stirring in the mixing step can be performed by any method or device, for example, by a device such as Robomics (manufactured by Primix Corporation).
  • stirring in the mixing step is preferably performed for 5 minutes or more. Further, in order to suppress the curing of the resin component, the stirring time is preferably 1 hour or less.
  • the aqueous resin composition is applied to the surface to be coated.
  • the material forming the surface to be coated can be arbitrarily selected, and examples thereof include a metal material.
  • the surface to be coated may be subjected to surface treatment such as a primer and an undercoat in advance.
  • Examples of the method for applying the aqueous resin composition include, but are not limited to, a method using a brush, a roller, or the like.
  • the coating step is preferably completed within 1 hour after the completion of the mixing step.
  • the resin component contained in the aqueous resin composition can be cured by drying and curing the surface to be coated of the object to be coated to which the aqueous resin composition is applied.
  • the curing time depends on the temperature of the curing atmosphere. For example, at 20 ° C., it is preferably 5 hours or more, at 40 ° C., it is preferably 1 hour or more, and at 60 ° C., it is preferably 5 minutes or more. Whether or not it has hardened may be determined by, for example, touching it with a finger.
  • the film of the present embodiment comprises a cured product of the aqueous resin composition of the present embodiment.
  • the film of the present embodiment can be formed by the above-mentioned film forming method.
  • the film of the present embodiment may be, if necessary, a film composed of an undercoat layer provided under the film made of a cured product of the aqueous resin composition of the present invention, and / or an overcoat layer provided on the upper layer. It may be provided in a laminated manner.
  • the aqueous resin composition of the present embodiment contains an aqueous resin emulsion ( ⁇ ), a curing agent ( ⁇ ), and a curing accelerator ( ⁇ ). Therefore, a cured product having a high film yield strength can be obtained.
  • an aqueous resin composition is prepared by mixing an aqueous resin emulsion ( ⁇ ), a curing agent ( ⁇ ), and a curing accelerator ( ⁇ ), and the aqueous resin composition is coated. Apply to the painted surface. As a result, the film of the present embodiment made of a cured product having a high film yield strength can be obtained.
  • the aqueous resin composition of the present invention is useful in various fields, and is particularly suitable for use as a coating material applied to the surface of a metal product.
  • An article in which a film made of a cured product of the aqueous resin composition of the present invention is formed, that is, an application object to be coated with the aqueous resin composition of the present invention can be arbitrarily selected.
  • the applicable objects include various household appliances, home appliances such as refrigerators, play equipment installed in amusement parks and parks, sports equipment, buildings (interior, exterior, etc.), transportation machines, and so on.
  • Various industrial products and parts including machine tools, automobile bodies and chassis, rolling stock bodies and underfloor equipment, ships, marine containers, aircraft and the like.
  • aqueous resin emulsion ( ⁇ )> (Aqueous resin emulsion ( ⁇ -1)) 158 parts of ion-exchanged water was charged into a separable flask having a cooling tube, a thermometer, a stirrer, and a dropping funnel, and the temperature was raised to 60 ° C. Nitrogen gas was blown into the contents of the separable flask to deoxidize it.
  • An emulsion consisting of the amounts (parts by mass) of methyl methacrylate, 2-ethylhexyl acrylate, methacrylic acid, hydrogenated bisphenol A type epoxy, sodium dodecylbenzenesulfonate as an emulsifier, and 356 parts by mass of ion-exchanged water shown here.
  • 1.2 parts by mass of potassium persulfate was dissolved in 41 parts by mass of ion-exchanged water as an oxidizing agent, and 0.4 parts by mass of sodium hydrogen sulfite was dissolved in 21 parts by mass of ion-exchanged water as a reducing agent.
  • the product was added dropwise at 60 ° C. over 3.3 hours to polymerize. After completion of the dropping, the mixture was aged for 1.5 hours. Then, it cooled and added 0.8 parts by mass of aqueous ammonia as a basic substance to obtain an aqueous resin emulsion ( ⁇ -1).
  • Table 1 shows the amount (parts by mass) of each material used in the synthesis of the aqueous resin emulsion ( ⁇ -1).
  • the numerical value of "ion-exchanged water” shown in Table 1 indicates the content of ion-exchanged water contained in the synthesized aqueous resin emulsion ( ⁇ -1).
  • the numerical values in parentheses in the amounts of the copolymer (X) and the polyepoxy compound (Y) used in Table 1 are the total amount (100%) of the copolymer (X) and the polyepoxy compound (Y). The ratio (mass%) of each material to the ratio is shown.
  • polyepoxy compound (Y) shown in Table 1 the following compounds were used. Hydrogenated bisphenol A type epoxy (epoxy equivalent 215 g / mol; manufactured by Kyoei Kagaku Co., Ltd .; Epolite 4000) Bisphenol A type epoxy (epoxy equivalent 190 g / mol; manufactured by Mitsubishi Chemical Corporation; JER828) Glycerin polyglycidyl ether (epoxy equivalent 143 g / mol; manufactured by Sakamoto Yakuhin Kogyo Co., Ltd .; SR-GLG) 1,6-Hexanediol diglycidyl ether (epoxy equivalent 160 g / mol; manufactured by Kyoei Kagaku Co., Ltd .; Epolite 1600)
  • Aqueous resin emulsion ( ⁇ -2) to ( ⁇ -7) Aqueous resin emulsions ( ⁇ -2) to ( ⁇ -7) were used in the same manner as the aqueous resin emulsion ( ⁇ -1) except that each material shown in Table 1 was used in the amount (parts by mass) shown in Table 1. ) was synthesized.
  • the numerical values of “ion-exchanged water” shown in Table 1 were synthesized in the same manner as in the synthesized aqueous resin emulsion ( ⁇ -1). The content of ion-exchanged water contained in the aqueous resin emulsions ( ⁇ -2) to ( ⁇ -7) is shown.
  • aqueous resin emulsion ( ⁇ )> The following items were evaluated for each of the aqueous resin emulsions ( ⁇ -1) to ( ⁇ -7). The results are shown in Table 2. The aqueous resin emulsion ( ⁇ -7) was not evaluated because it aggregated during the synthesis. In the following description, when the aqueous resin emulsions ( ⁇ -1) to ( ⁇ -7) are generically referred to, they may be described as the aqueous resin emulsion ( ⁇ ).
  • Epoxy group residual rate The residual ratio of epoxy groups in the aqueous resin emulsion ( ⁇ ) was used for the synthesis of the aqueous resin emulsion ( ⁇ ) having an amount of epoxy groups N 1 [mol / g] contained in the aqueous resin emulsion ( ⁇ ) after synthesis. It is a ratio to the total amount N 2 [mol / g] of the epoxy group contained in the component (including the raw material, the initiator, the solvent, and other additives).
  • the amount N 1 [mol / g] of the epoxy group of the aqueous resin emulsion ( ⁇ ) after the synthesis was measured by the method shown below. Excess hydrogen chloride was added to the total amount of epoxy groups contained in the component (raw material) used for the synthesis of the aqueous resin emulsion ( ⁇ ), and the mixture was reacted with the epoxy groups. Next, the amount of remaining hydrogen chloride was confirmed by titrating unreacted hydrogen chloride with potassium hydroxide. At this time, potassium hydroxide is consumed by the reaction with acidic components such as carboxylic acid contained in the aqueous resin emulsion ( ⁇ ). Therefore, the amount of the acidic component was titrated in advance by an empty measurement without using hydrogen chloride, and the result of this measurement was corrected.
  • the specific measurement procedure is as follows (i) to (ii).
  • the equivalence point was defined as the point at which purple color lasted for 30 seconds after the addition of the potassium hydroxide / ethanol solution.
  • the amount of potassium hydroxide / ethanol solution used for titration is defined as V KOH1 [mL].
  • the solution was titrated with stirring in 0.1 M potassium hydroxide / ethanol solution.
  • the equivalence point was defined as the point at which purple color lasted for 30 seconds after the addition of the potassium hydroxide / ethanol solution.
  • the amount of potassium hydroxide / ethanol solution used for titration is defined as V KOH2 [mL].
  • N 1 (0.2 ⁇ V HCl / 1000-0.1 ⁇ V KOH2 / 1000) / W 2 + (0.1 ⁇ V KOH1 / 1000) / W 1 ... (4)
  • the components used in the synthesis of the aqueous resin emulsion ( ⁇ ) mean all the components listed as raw materials for the aqueous resin emulsion ( ⁇ ) in Table 1.
  • N 2 ⁇ (m i / EP i) / ⁇ m i ... (5)
  • the epoxy group content R EP [mol / g] in the non-volatile content was determined based on the formula (2) described above.
  • R EP N 1 / ( CS / 100) ...
  • the epoxy group content N 1 of the aqueous resin emulsion (alpha) in the obtained in the above manner the total mass alpha [g] of all components used in the synthesis of the aqueous resin emulsion (alpha) (raw material), copolycondensation Using the mass X [g] of the raw material used for the coalescence (X) and the mass Y [g] of the raw material used for the polyepoxy compound (Y), among the components (X) + (Y) based on the following formula.
  • the epoxy group content R EP [mol / g] was calculated.
  • R EP in (X) + (Y) N 1 / ⁇ (X + Y) / ⁇
  • N 3 ⁇ (m i / CX i) / ⁇ m i ... (6) From N 3 obtained here, the content of the carboxy group in the nonvolatile matter R CX [mol / g] of the aqueous resin emulsion (alpha), were determined on the basis of the equation (3) described above.
  • RCX ⁇ N 3- (N 2- N 1 ) ⁇ / ( CS / 100) ... (3)
  • the epoxy group content N 1 in the aqueous resin emulsion ( ⁇ ) obtained by the above method, the total amount N 2 of epoxy groups in the raw material, and the components (raw materials) used for the synthesis of the aqueous resin emulsion ( ⁇ ) are contained.
  • the glass transition point Tg of the copolymer (X) is a value calculated by the above formula (1).
  • Dispersion stability The state of the aqueous resin emulsion ( ⁇ ) immediately after synthesis was visually observed and evaluated according to the following criteria. ⁇ (Yes): No aggregation, precipitation, separation, or gelation was observed. X (impossible): At least one of aggregation, precipitation, separation, and gelation was observed.
  • the high temperature stability of the aqueous resin emulsion ( ⁇ ) was evaluated as follows. First, the aqueous resin emulsion ( ⁇ ) was put into a 70 ml glass bottle, sealed, and allowed to stand at 60 ° C. for 7 days. Then, the state of the aqueous resin emulsion ( ⁇ ) in the glass bottle was visually observed and evaluated according to the following criteria. ⁇ (Yes): No aggregation, thickening, precipitation, separation, or gelation was observed. X (impossible): At least one of aggregation, thickening, precipitation, separation, and gelation was observed.
  • the aqueous resin emulsion ( ⁇ ) having a content of 40% by mass was excellent in high temperature stability.
  • the aqueous resin emulsion ( ⁇ -7) in which the amount of the polyepoxy compound (Y) added was excessive the polymer aggregated without being dispersed.
  • Examples 1 to 17 and Comparative Examples 1 to 2 (Preparation of aqueous resin composition)> 100 parts by mass of the aqueous resin emulsion ( ⁇ ) shown in Tables 3 and 4 (with a non-volatile content of 40% by mass), 60 parts by mass of ion-exchanged water, and the curing agent ( ⁇ ) shown in Tables 3 and 4.
  • the curing accelerator ( ⁇ ) was added in the amounts (parts by mass) shown in Tables 3 and 4 and stirred for 10 minutes to prepare the aqueous resin compositions of Examples 1 to 17 and Comparative Examples 1 and 2. ..
  • each curing agent ( ⁇ ) is the reactivity to the epoxy group contained in the curing agent ( ⁇ ) with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion ( ⁇ ). It is a numerical value which shows the equivalent of the functional group (F) which has.
  • the "equivalent to epoxy group” in each curing accelerator ( ⁇ ) is a numerical value indicating the number of moles of the curing accelerator ( ⁇ ) with respect to 1 equivalent of the epoxy group contained in the aqueous resin emulsion ( ⁇ ).
  • ADEKA Hardener EH-8051 manufactured by ADEKA Corporation
  • the amine equivalent of the polyamine used as the curing agent ( ⁇ ) is 187 g / mol.
  • the carboxy group equivalent of 1,2,3,4-butanetetracarboxylic acid is 58.5 g / mol.
  • aqueous resin composition was applied by salivation so as to spread over a flat plate made of a rectangular polyethylene film having a length of 90 mm and a width of 190 mm placed horizontally. This was dried at 23 ° C. for 72 hours and then cured at 50 ° C. for 24 hours to prepare a cured coating film (cured product). The obtained coating film was peeled off from the flat plate. The peeled coating film was cut into a rectangle having a width of 10 mm and a length of 30 mm to prepare a test piece.
  • the following test was conducted with the longitudinal direction of this test piece as the tensile direction.
  • the thickness of the test piece was measured using Mitutoyo Co., Ltd. Quick Micro (registered trademark) MDQ-MX. The measurement was performed at three locations for each test piece, and the average value of the measurement results at the three locations was defined as the thickness t [mm] of the test piece.
  • the film yield strength test was performed by the method shown below using Autograph AG-X (manufactured by Shimadzu Corporation).
  • the distance between the chucks was set to 10 mm, and both sides of the test piece in the longitudinal direction were gripped by the chucks.
  • the test piece was pulled at a speed of 100 mm / min in an atmosphere of a temperature of 23 ° C. and a relative humidity (RH) of 50%.
  • the strain S is 100. It is calculated by ⁇ ⁇ L / L [%]. Further, the load applied to the test piece (measured load) is set to F [N], the maximum value of the load until the test piece is broken is set to F max [N], and the following conditions are first met from the start of the test. Let the satisfied point be the yield point Y ( Sy , Fy ).
  • the strain S is 2% or more (S y ⁇ 2%).
  • the amount of change in the load F with the increase in the strain S changes from an increase to a decrease.
  • F F y ⁇ 0.01F max
  • dF / dS ⁇ 0 continues.
  • F F y + 0.05%
  • the coating film After weighing the cut out coating film, it was immersed in ion-exchanged water at 23 ° C. for 24 hours. The immersed coating film was taken out from the ion-exchanged water, and immediately after that, the coating film was weighed and used as the mass of the coating film before drying. Then, the coating film was dried at 105 ° C. for 3 hours, the coating film was weighed again, and this was taken as the mass of the dried coating film. From the mass of the coating film before drying and the mass of the coating film after drying, the value obtained by the following formula (4) was defined as the water swelling resistance.
  • Water swelling resistance (%) ⁇ (mass of coating film before drying-mass of coating film after drying) / mass of coating film after drying ⁇ x 100 ... (4)
  • the aqueous resin composition was applied to a cold-rolled steel sheet (hereinafter referred to as “base material”) using a brush so that the basis weight was 50 g / m 2 .
  • the coated substrate was dried in a constant temperature bath at 60 ° C. for 10 minutes to form a coating film on the surface of the substrate.
  • the rectangular area of 30 mm in length and 45 mm in width on the coating film formed on the surface of the base material was used as the test area.
  • a notch consisting of two intersecting straight lines (that is, an X-shape) was formed in the coating film so as to form a diagonal line of a rectangle forming a test region, and used as a test body.
  • the notch was formed by using a utility knife so as to reach from the coating film to the substrate.
  • a neutral salt spray test (Section 4.2.1) was performed on the test piece in which the notch was formed based on JIS Z-2371 (2000).
  • the area occupied by the swelling of the coating film in the test area [area%], the size of the swelling [mm], and the size of rust flow from the notch [mm] were measured.
  • the size of the bulge was set to the longest dimension in the area occupied by one independent bulge.
  • the size of the flowing rust was set to the maximum value of the width of the rust centered on the cross-cut portion.
  • Adhesion of coating film to metal materials A coating film was formed on the surface of the cold-rolled steel sheet in the same manner as in the above evaluation of rust prevention. According to JIS K-5400 (1990) "8.5.2. (100 squares) was put in and cellophane tape (registered trademark) was attached. After 1 hour, the cellophane tape (registered trademark) was peeled off, and the adhesion of the coating film to the metal material was evaluated by counting the number of cells remaining without the coating film peeling from the steel sheet.
  • an aqueous resin composition capable of obtaining a cured product having high film yield strength, water resistance and high adhesion to a metal material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Epoxy Resins (AREA)

Abstract

特定の水性樹脂エマルジョン(α)と、硬化剤(β)と、硬化促進剤(γ)とを含み、水性樹脂エマルジョン(α)は、共重合体(X)と、エチレン性不飽和結合を有さず1分子中に2個以上のエポキシ基を有するポリエポキシ化合物(Y)と、水性媒体(Z)とを含み、硬化剤(β)は、エポキシ基に対する反応性を有する官能基(F)を分子内に有する化合物からなり、硬化促進剤(γ)は、前記官能基(F)を分子内に有さない第三級アミンからなる、水性樹脂組成物とする。

Description

水性樹脂組成物、皮膜および皮膜の形成方法
 本発明は、水性樹脂組成物、皮膜および皮膜の形成方法に関する。
 本願は、2019年12月2日に、日本に出願された特願2019-218183号に基づき優先権を主張し、その内容をここに援用する。
 一般に、金属製品の表面には、表面処理がなされている。特に、屋外で使用される金属製品、および水分への暴露が想定される金属製品においては、錆の発生を防ぐために表面塗装が行われることが多い。
 従来、金属製品の表面塗装には、有機溶剤を含有する塗料が用いられていた。しかし、有機溶剤を含有する塗料を金属製品の表面に塗布する場合、作業者および周辺環境に対する揮発性有機化合物(VOC)対策が必要となる。そのため、金属製品の表面塗装に用いられる塗料において、有機溶剤を含む塗料に代えて水系塗料を用いる動きが活発となっている。
 特許文献1には、重合体粒子が水性媒体中に分散されてなるエマルジョン組成物及び骨材を含有する、厚塗り用塗料組成物が記載されている。特許文献1に記載された重合体粒子は、炭素数4~14のアルキル基を有するアルキル(メタ)アクリレート単量体が重合してなる構成単位、エチレン性不飽和カルボン酸単量体が重合してなる構成単位、及び他の単量体が重合してなる構成単位を、1分子中に少なくとも2個のエポキシ基を有する化合物及び塩基性触媒の存在下で、乳化重合して製造されたものである。
 特許文献2には、オキシラン基を有する熱硬化性化合物を吸収した、熱可塑性ポリマー粒子の水性分散物を含む組成物が記載されている。また、特許文献2には、ポリマー粒子が、凝集に対してラテックスを安定化するのに十分な濃度の抗凝集性官能基を有することが記載されている。
 特許文献3には、アクリレート樹脂の乳化物にエポキシエマルジョンを混合することで、エポキシ化合物を吸収したアクリレート樹脂(アクリル/エポキシラテックス)を形成させることが記載されている。
特開2011-89092号公報 特開2014-65914号公報 国際公開第2017/112018号
 しかしながら、従来の水性樹脂組成物の硬化物からなる皮膜は、皮膜降伏強度が不十分であった。このため、従来の水性樹脂組成物においては、これを硬化させて得られる皮膜の降伏強度を向上させることが要求されている。
 本発明は、上記事情を鑑みてなされたものであり、金属材料に対する密着性が良好であり、高い皮膜降伏強度を有する硬化物の得られる水性樹脂組成物を提供することを目的とする。
 また、本発明は、本発明の水性樹脂組成物の硬化物からなる高い皮膜降伏強度を有する皮膜を提供することを目的とする。
 また、本発明は、本発明の水性樹脂組成物の硬化物からなる皮膜を形成する皮膜の形成方法を提供することを目的とする。
 上記目的を達成するための本発明の構成は以下の[1]~[15]の通りである。
 本発明の第一の態様は、以下の水性樹脂組成物である。
[1] 水性樹脂エマルジョン(α)と、硬化剤(β)と、硬化促進剤(γ)とを含み、
 前記水性樹脂エマルジョン(α)は、共重合体(X)と、エチレン性不飽和結合を有さず1分子中に2個以上のエポキシ基を有するポリエポキシ化合物(Y)と、水性媒体(Z)と、を含み、
 前記共重合体(X)と前記ポリエポキシ化合物(Y)との合計量に対する、前記ポリエポキシ化合物(Y)の含有率は、1~40質量%であり、
 前記共重合体(X)は、(メタ)アクリル酸エステル(A)由来の構造単位と、エチレン性不飽和カルボン酸(B)由来の構造単位と、を含み、
 前記共重合体(X)と前記ポリエポキシ化合物(Y)との合計量に対する、前記(メタ)アクリル酸エステル(A)由来の構造単位の含有率は、20~98質量%であり、
 前記共重合体(X)と前記ポリエポキシ化合物(Y)との合計量に対する、前記エチレン性不飽和カルボン酸(B)由来の構造単位の含有率は、0.1~10質量%であり、
 前記(メタ)アクリル酸エステル(A)由来の構造単位は、アルコール由来の部分の炭素原子数が2以下である親水性(メタ)アクリル酸エステル(A1)由来の構造単位を含み、
 前記共重合体(X)と前記ポリエポキシ化合物(Y)との合計量に対する、前記親水性(メタ)アクリル酸エステル(A1)由来の構造単位の含有率は、15~98質量%であり、
 前記共重合体(X)と前記ポリエポキシ化合物(Y)の一方または両方が、カルボキシ基を含み、
 前記硬化剤(β)は、エポキシ基に対する反応性を有する官能基(F)を有する化合物からなり、
 前記硬化剤(β)に含まれる前記官能基(F)の含有量は、前記水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対して、0.010当量以上3.0当量以下であり、
 前記硬化促進剤(γ)は、エポキシ基に対する反応性を有する官能基を有さない第三級アミンからなり、
 前記硬化促進剤(γ)の含有量は、前記水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対して、0.0070mol以上1.5mol以下である、水性樹脂組成物。
 本発明の第一の態様の水性樹脂組成物は、以下の[2]~[12]に述べる特徴を好ましく含む。これらの特徴は2つ以上を組み合わせることも好ましい。
[2] 前記(メタ)アクリル酸エステル(A)は、(メタ)アクリル酸アルキルエステルからなる、[1]に記載の水性樹脂組成物。
[3] 前記エチレン性不飽和カルボン酸(B)は、α,β-不飽和モノカルボン酸、α,β-不飽和ジカルボン酸、及びカルボキシ基を含有するビニル化合物からなる群のうち、少なくとも1種を含む、[1]または[2]に記載の水性樹脂組成物。
[4] 前記ポリエポキシ化合物(Y)は、ビスフェノール型エポキシ化合物、水添ビスフェノール型エポキシ化合物、ジグリシジルエーテル、トリグリシジルエーテル、テトラグリシジルエーテル、ジグリシジルエステル、トリグリシジルエステル、及びテトラグリシジルエステルから選ばれる少なくとも1種である、[1]~[3]のいずれかに記載の水性樹脂組成物。
[5] 前記共重合体(X)は、前記(メタ)アクリル酸エステル(A)由来の構造単位及び前記エチレン性不飽和カルボン酸(B)由来の構造単位からなる、[1]~[4]のいずれかに記載の水性樹脂組成物。
[6] 前記共重合体(X)は、ベンゼン環及びエチレン性不飽和結合を有するエチレン性不飽和芳香族化合物(C)由来の構造単位を含む、[1]~[4]のいずれかに記載の水性樹脂組成物。
[7] 前記エチレン性不飽和芳香族化合物(C)は、芳香族ビニル化合物である[6]に記載の水性樹脂組成物。
[8] 前記硬化剤(β)は、無置換または1つのみ置換基を有するアミノ基、カルボキシ基、メルカプト基からなる群より選択される少なくともいずれかを含む、[1]~[7]のいずれかに記載の水性樹脂組成物。
[9] 前記硬化促進剤(γ)は、第三級脂肪族アミン、第三級脂環式アミン、第三級ヘテロ芳香族アミンからなる群より選択される少なくとも1つの化合物である、[1]~[8]のいずれかに記載の水性樹脂組成物。
[10] 前記水性樹脂エマルジョン(α)は、前記水性媒体(Z)中で、前記共重合体(X)の構造単位となるモノマーが、前記ポリエポキシ化合物(Y)の存在下で、乳化重合されたエマルジョンである、[1]~[9]のいずれかに記載の水性樹脂組成物。
[11] 前記共重合体(X)と前記ポリエポキシ化合物(Y)との合計量中におけるカルボキシ基の含有率が、0.10×10-4mol/g以上である[1]~[10]のいずれかに記載の水性樹脂組成物。
[12] 前記共重合体(X)と前記ポリエポキシ化合物(Y)との合計量中におけるエポキシ基の含有率が、0.50×10-4mol/g以上である[1]~[11]のいずれかに記載の水性樹脂組成物。
 本発明の第二の態様は、以下の硬化物である。
[13] [1]~[12]のいずれかに記載の水性樹脂組成物の硬化物からなる、皮膜。
 本発明の第三の態様は、以下に述べる皮膜の形成方法である。
[14] [1]~[12]のいずれかに記載の水性樹脂組成物を、被塗装面に塗布する塗布工程と、前記塗布された水性樹脂組成物を硬化させる硬化工程とを含む、皮膜の形成方法。
 本発明によれば、金属材料に対する密着性が良好であり、高い皮膜降伏強度を有する硬化物の得られる水性樹脂組成物を提供できる。
 また、本発明によれば、本発明の水性樹脂組成物の硬化物からなる高い皮膜降伏強度を有する皮膜を提供できる。
 また、本発明によれば、本発明の水性樹脂組成物の硬化物からなる皮膜を形成する皮膜の形成方法を提供できる。
 以下、本発明の水性樹脂組成物、皮膜および皮膜の形成方法について詳細に説明する。
 なお、本発明は、以下に示す実施形態のみに限定されるものではない。本発明は、例えば、本発明の趣旨を逸脱しない範囲で、数、種類、位置、量、比率、材料、構成などについて、付加、省略、置換、変更などが可能である。
 ここで、本明細書において使用する下記の語句について説明する。
「(メタ)アクリレート」とは、アクリレートまたはメタクリレートを意味する。また、「(メタ)アクリル」とは、アクリルまたはメタクリルを意味する。
「エチレン性不飽和結合」とは、芳香環を形成する炭素原子を除く、炭素原子間の二重結合を意味する。
「重量平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC:gel permeation chromatography)によって測定される標準ポリスチレン換算値とする。
 エチレン性不飽和結合を有する化合物を用いた重合体において、前記エチレン性不飽和結合を有する化合物に由来する構造単位とは、その化合物中のエチレン性不飽和結合以外の部分の化学構造と、前記重合体中における、前記構造単位のエチレン性不飽和結合に対応する部分以外の部分の化学構造とが、同じである単位を意味してよい。前記化合物のエチレン性不飽和結合は、重合体を形成する際に、単結合へと変化してもよい。例えば、メチルメタクリレートの重合体において、メチルメタクリレート由来の構造単位は、-CH-C(CH)(COOCH)-によって表される。
 なお、イオン性の官能基を有し、かつエチレン性不飽和結合を有する化合物の重合体の場合、例えば、後述するエチレン性不飽和カルボン酸(B)に由来する構造単位(b)のように、カルボキシ基のようなイオン性の官能基を有する構造単位については、前記官能基の一部がイオン交換されていても、またはイオン交換されていなくても、同じイオン性化合物に由来する構造単位としてよい。例えば、-CH-C(CH)(COONa)-で表される構造単位も、メタクリル酸由来の構造単位と考えてよい。
 また、独立した複数のエチレン性不飽和結合を有する化合物については、前記化合物の重合体の構造単位として、構造単位内部に1つ以上のエチレン性不飽和結合が残っていてもよい。独立した複数のエチレン性不飽和結合とは、互いに共役ジエンを形成しない複数のエチレン性不飽和結合を意味してよい。例えば、ジビニルベンゼンの重合体の場合、ジビニルベンゼン由来の構造単位は、エチレン性不飽和結合を有さない構造(ジビニルベンゼンの2つのチレン性不飽和結合に対応する部分が両方とも重合体の鎖に取り込まれた形態)であってもよく、1個のエチレン性不飽和結合を有する構造(一方のエチレン性不飽和結合に対応する部分のみが重合体の鎖に取り込まれた形態)でもよい。
「硬化」とは、原料に含まれる分子どうしが化学反応により結合し、網目構造の高分子を形成することを言う。
「塗膜」とは、特に断りがなければ、本実施形態の水性樹脂組成物を塗布後、媒体を乾燥させるとともに、樹脂成分を硬化させて形成された塗膜を意味する。
<1.水性樹脂組成物>
 本実施形態の水性樹脂組成物は、水性樹脂エマルジョン(α)と、硬化剤(β)と、硬化促進剤(γ)とを含む。本実施形態の水性樹脂組成物は、後述するように、水性樹脂エマルジョン(α)と、硬化剤(β)と、硬化促進剤(γ)とを混合することにより製造される。
[1-1.水性樹脂エマルジョン(α)]
 水性樹脂エマルジョン(α)は、共重合体(X)と、エチレン性不飽和結合を有さず1分子中に2個以上のエポキシ基を有するポリエポキシ化合物(Y)と、水性媒体(Z)とを含む。水性樹脂エマルジョン(α)は、水性媒体(Z)中で、共重合体(X)の構造単位となるモノマーが、ポリエポキシ化合物(Y)の存在下で、乳化重合されたエマルジョンである。後述する硬化剤(β)と混合し、硬化させた場合、高い強度及び伸び率の大きな塗膜が得られるためである。
<1-1-1.共重合体(X)>
 共重合体(X)は、(メタ)アクリル酸エステル(A)由来の構造単位(a)、及びエチレン性不飽和カルボン酸(B)由来の構造単位(b)を有する。なお(メタ)アクリル酸エステル(A)由来の構造単位(a)は、親水性(メタ)アクリル酸エステル(A1)由来の構造単位(a1)を含む。
 共重合体(X)は、構造単位(a)及び構造単位(b)のみからなるもの(共重合体(X1)とする)でもよい。共重合体(X)は、構造単位(a)と、構造単位(b)と、さらに、ベンゼン環及びエチレン性不飽和結合を有するエチレン性不飽和芳香族化合物(C)由来の構造単位(c)と、を有するもの(共重合体(X2)とする)でもよい。共重合体(X2)は、構造単位(a)~(c)のみからなってもよい。共重合体(X)は、前記構造単位(a)~(c)以外の、構造単位(d)(他の単量体(D)由来の構造単位とする)を有してもよい。
 水性樹脂エマルジョン(α)に含まれる共重合体(X)の量は、任意に選択できるが、水性樹脂エマルジョン(α)の総量に対して、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、25質量%以上であることがさらに好ましい。水性樹脂エマルジョン(α)に含まれる共重合体(X)の量は、任意に選択できるが、水性樹脂エマルジョン(α)の総量に対して、60質量%以下であることが好ましく、50質量%以下であることがより好ましく、40質量%以下であることがさらに好ましい。ただしこれら例のみに限定されない。
 共重合体(X)と後述するポリエポキシ化合物(Y)との合計量に対する、共重合体(X)の含有率は、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、65質量%以上であることがさらに好ましい。共重合体(X)と後述するポリエポキシ化合物(Y)との合計量に対する、共重合体(X)の含有率は、99質量%以下であることが好ましく、94質量%以下であることがより好ましく、88質量%以下であることがさらに好ましい。
[(メタ)アクリル酸エステル(A)]
 (メタ)アクリル酸エステル(A)としては、1種以上を任意に選択できるが、(メタ)アクリル酸アルキルエステルからなることが好ましい。(メタ)アクリル酸アルキルエステルの例としては、炭素数1~18の直鎖状、分岐鎖状または環状の、アルキル基を有する(メタ)アクリル酸アルキルエステルであることがより好ましい。具体的な例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、及び、イソボロニル(メタ)アクリレート等が挙げられる。これらは1種で使用されてもよく、2種以上を組み合わせて使用されてもよい。
 (メタ)アクリル酸エステル(A)の例には、後述する親水性(メタ)アクリル酸エステル(A1)の例も含まれ得る。なお、カルボキシ基を有する(メタ)アクリル酸エステルは、(メタ)アクリル酸エステル(A)には含まれず、後述するエチレン性不飽和カルボン酸(B)に含まれる。
 (メタ)アクリル酸エステル(A)としては、親水性の低い化合物が含まれることが好ましい。塗膜の防錆性を向上させるためである。同様の理由から、(メタ)アクリル酸エステル(A)として、エポキシ基を有する(メタ)アクリル酸エステルを含んでもよい。
 前記エポキシ基を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸グリシジル、(メタ)アクリル酸β-メチルグリシジル、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、3,4-エポキシシクロヘキシルエチル(メタ)アクリレート、及び、3,4-エポキシシクロヘキシルプロピル(メタ)アクリレート等が挙げられる。
 構造単位(a)は、これらの化合物の、1種のみに由来する構造単位を含むものでもよく、2種以上に由来する構造単位を含むものであってもよい。さらに、これらの化合物の中でも、構造単位(a)は、(メタ)アクリル酸グリシジルに由来する構造単位を含むことが好ましい。
 さらに、(メタ)アクリル酸エステル(A)は、(メタ)アクリル酸アルキルエステル及びエポキシ基を有する化合物のいずれでもない、(メタ)アクリル酸エステルであってもよい。このような(メタ)アクリル酸エステルとしては、ヒドロキシ基を有する(メタ)アクリル酸エステル等が挙げられる。
 前記ヒドロキシ基を有する(メタ)アクリル酸エステルの例としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート、12-ヒドロキシラウリル(メタ)アクリレートが挙げられる。また、ポリエチレングリコールのモノ(メタ)アクリル酸エステル、及びポリプロピレングリコールのモノ(メタ)アクリル酸エステル等のポリアルキレングリコールのモノ(メタ)アクリル酸エステル等も挙げられる。これらのヒドロキシ基を有する(メタ)アクリル酸エステルは、1種のみ用いてもよく、2種以上を併用することもできる。
 共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、(メタ)アクリル酸エステル(A)由来の構造単位(a)の含有率は、20質量%以上である。後述する水性樹脂エマルジョンの製造方法において、共重合体(X)のモノマーとポリエポキシ化合物(Y)との分散安定性を向上させることができるためである。この観点から、共重合体(X)とポリエポキシ化合物(Y)との合計量に対する(メタ)アクリル酸エステル(A)由来の構造単位(a)の含有率は、35質量%以上であることが好ましく、45質量%以上であることがより好ましく、60質量%以上であることがさらに好ましい。
 共重合体(X)の総量に対する、(メタ)アクリル酸エステル(A)由来の構造単位(a)の含有率は、40質量%以上であることが好ましく、60質量%以上であることがより好ましく、75質量%以上であることがさらに好ましく、90質量%以上であることが特に好ましい。前記範囲であると、水性樹脂組成物を用いて作製された皮膜耐水膨潤率をより低くすることができるためである。共重合体(X)の総量に対する、(メタ)アクリル酸エステル(A)由来の構造単位(a)の含有率は、99質量%以下であることが好ましい。
 また、本実施形態においては、化合物由来の構造単位の含有率とは、使用された前記化合物の割合(質量%)を意味してよい。例えば、共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、(メタ)アクリル酸エステル(A)由来の構造単位(a)の含有率とは、前記合計量に対する、共重合体(X)の製造に使用された(メタ)アクリル酸エステル(A)の質量の割合(質量%)を意味してよい。
 さらに、共重合体(X)が、構造単位(a)及び構造単位(b)のみからなるもの、すなわち共重合体(X1)である場合、同様の分散安定性の向上の観点で、以下の割合であることが好ましい。すなわち、共重合体(X1)とポリエポキシ化合物(Y)との合計量に対する、(メタ)アクリル酸エステル(A)由来の構造単位(a)の含有率は、50質量%以上であることがさらに好ましく、60質量%以上であることが特に好ましい。同含有率の好ましい上限は、共重合体(X)と同様である。
 共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、(メタ)アクリル酸エステル(A)由来の構造単位(a)の含有率は、98質量%以下である。98質量%を超えないと、水性樹脂エマルジョンの分散安定性が低下しないためである。この観点から、共重合体(X)とポリエポキシ化合物(Y)との合計量に対する(メタ)アクリル酸エステル(A)由来の構造単位(a)の含有率は、92質量%以下であることが好ましく、87質量%以下であることがより好ましい。
 さらに、共重合体(X)が、構造単位(a)、構造単位(b)、及び構造単位(c)を有する。共重合体(X)が共重合体(X2)である場合、同様の観点で、以下の割合であることが好ましい。共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、(メタ)アクリル酸エステル(A)由来の構造単位(a)の含有率は、75質量%以下であることがさらに好ましく、65質量%以下であることが特に好ましい。同含有率の好ましい下限は、共重合体(X)と同様である。
[親水性(メタ)アクリル酸エステル(A1)]
 前記(メタ)アクリル酸エステル(A)由来の構造単位は、親水性(メタ)アクリル酸エステル(A1)由来の構造単位を含む。
 親水性(メタ)アクリル酸エステル(A1)は、(メタ)アクリロイルオキシ基(CH=CR-COO-、Rは水素又はメチル基を示す。)を有し、アルコール由来の部分、すなわち(メタ)アクリロイルオキシ基以外の部分における炭素原子数が2以下である、(メタ)アクリル酸エステルである。アクリロイルオキシ基以外の部分の前記炭素原子数は、例えば、1または2であって良い。
 親水性(メタ)アクリル酸エステル(A1)としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、(メタ)アクリル酸-2-ヒドロキシエチル等が挙げられる。親水性(メタ)アクリル酸エステル(A1)は、アルコール由来の部分の炭素原子数が2以下の(メタ)アクリル酸アルキルエステルであることが好ましく、メチルメタクリレートであることがより好ましい。
 共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、親水性(メタ)アクリル酸エステル(A1)由来の構造単位(a1)の含有率は、15質量%以上である。上述したように親水性(メタ)アクリル酸エステルの含有量が少ないと、水性樹脂エマルジョン(α)を、ポリアミンを含む硬化剤と混合した場合に、急速にゲル化が進行するためである。
 共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、親水性(メタ)アクリル酸エステル(A1)由来の構造単位(a1)の含有率は、15質量%以上であり、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることがさらに好ましい。硬化後の塗膜の耐水性及び防錆性がより向上するためである。前記含有率は、45質量%以上または50質量%以上であっても良い。
 共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、親水性(メタ)アクリル酸エステル(A1)由来の構造単位(a1)の含有率の上限は、(メタ)アクリル酸エステル(A)由来の構造単位(a)に記載の含有率の上限と同様である。すなわち前記上限は、98質量%以下であり、92質量%以下であることが好ましく、87質量%以下であることがより好ましい。ただし、後述するポリエポキシ化合物(Y)が、ビスフェノール型エポキシ化合物、水添ビスフェノール型エポキシ化合物、フェノールノボラック型エポキシ化合物等の疎水性の化合物である場合、構造単位(a)に占める構造単位(a1)の割合は、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることがさらに好ましい。共重合体(X)と、ポリエポキシ化合物(Y)との親和性を向上させるためである。
[エチレン性不飽和カルボン酸(B)]
 エチレン性不飽和カルボン酸(B)は、エチレン性不飽和結合及びカルボキシ基を有する化合物である。エチレン性不飽和カルボン酸(B)は、α,β-不飽和モノカルボン酸、α,β-不飽和ジカルボン酸、α,β-不飽和ジカルボン酸のモノアルキルエステル、及びカルボキシ基を含有するビニル化合物からなる群のうち、少なくとも1種を含むことが好ましく、α,β-不飽和モノカルボン酸、α,β-不飽和ジカルボン酸、及びカルボキシ基を含有するビニル化合物からなる群のうち、少なくとも1種を含むことがさらに好ましい。α,β-不飽和モノまたはジカルボン酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸、シトラコン酸、イタコン酸、マレイン酸、無水マレイン酸、フマル酸等が挙げられる。カルボキシ基を含有するビニル化合物としては、例えば、フタル酸モノヒドロキシエチル(メタ)アクリレート、シュウ酸モノヒドロキシプロピル(メタ)アクリレート等が挙げられる。
 構造単位(b)は、これらの化合物の、1種のみに由来する構造単位であってもよく、2種以上に由来する構造単位を含んでもよい。これらの化合物の中でも、エチレン性不飽和カルボン酸(B)としては、(メタ)アクリロイル基及びカルボキシ基を有する化合物を含むこと、または、(メタ)アクリロイル基及びカルボキシ基を有する化合物のみからなることが好ましい。エチレン性不飽和カルボン酸(B)としては、(メタ)アクリル酸を含むこと、または(メタ)アクリル酸のみからなることも、好ましい。構造単位(b)は、(メタ)アクリロイル基及びカルボキシ基を有する化合物に由来する構造単位のみからなることが好ましく、さらに(メタ)アクリル酸に由来する構造単位を含むことも好ましい。
 共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、エチレン性不飽和カルボン酸(B)由来の構造単位(b)の含有率は、0.1質量%以上である。水性樹脂エマルジョン(α)の分散安定性を向上させるためである。この観点から、共重合体(X)とポリエポキシ化合物(Y)との合計量に対するエチレン性不飽和カルボン酸(B)由来の構造単位(b)の含有率は、0.3質量%以上であることが好ましく、0.5質量%以上であることがより好ましい。前記含有率は、0.8質量%以上、あるいは1.0質量%以上であっても良い。共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、エチレン性不飽和カルボン酸(B)由来の構造単位(b)の含有率は、10質量%以下である。高温環境下で共重合体(X)がゲル状になることを抑制し、水性樹脂エマルジョン(α)の高温安定性を向上させるためである。この観点から、共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、エチレン性不飽和カルボン酸(B)由来の構造単位(b)の含有率は、7質量%以下であることが好ましく、5質量%以下であることがより好ましい。前記含有率は、4質量%以下、あるいは3質量%以下であっても良い。
 なお、共重合体(X)の総量に対する、エチレン性不飽和カルボン酸(B)由来の構造単位(b)の含有率は、0.2質量%以上であることが好ましく、0,5質量%以上であることがより好ましく、0.8質量%以上であることがさらに好ましい。共重合体(X)の総量に対する、エチレン性不飽和カルボン酸(B)由来の構造単位(b)の含有率は、12質量%以下であることが好ましく、8質量%以下であることがより好ましく、5質量%以下であることがさらに好ましく、3質量%以下であることが特に好ましい。
[エチレン性不飽和芳香族化合物(C)]
 エチレン性不飽和芳香族化合物(C)は、(メタ)アクリル酸エステル(A)及びエチレン性不飽和カルボン酸(B)のいずれにも該当せず、かつベンゼン環及びエチレン性不飽和結合を有する化合物である。エチレン性不飽和芳香族化合物(C)は、芳香族ビニル化合物であることが好ましい。
 エチレン性不飽和芳香族化合物(C)としての芳香族ビニル化合物としては、例えば、スチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、α-メチルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、4-tert-ブチルスチレン、tert-ブトキシスチレン、ビニルトルエン、ジビニルトルエン、ビニルナフタレン、モノクロロスチレン、ジクロロスチレン、モノブロモスチレン、ジブロモスチレン、トリブロモスチレン、フルオロスチレン、スチレンスルホン酸及びその塩、α-メチルスチレンスルホン酸及びその塩、p-ヒドロキシスチレン、m-ヒドロキシスチレン、o-ヒドロキシスチレン、p-イソプロペニルフェノール、m-イソプロペニルフェノール、及びo-イソプロペニルフェノール等が挙げられる。構造単位(c)は、これらの化合物の、1種のみに由来するものでもよく、2種以上に由来する構造単位を含めてもよい。これらの中でも、構造単位(c)は、炭化水素に由来する構造単位からなることがより好ましく、スチレンに由来する構造単位であることが特に好ましい。
 共重合体(X)が、エチレン性不飽和芳香族化合物(C)由来の構造単位(c)を含む場合、すなわち共重合体(X)が共重合体(X2)である場合、共重合体(X2)とポリエポキシ化合物(Y)との合計量に対する、構造単位(c)の含有率は、5質量%以上であることが好ましい。塗膜の耐水性を向上させるためである。この観点から、共重合体(X2)とポリエポキシ化合物(Y)との合計量に対する、構造単位(c)の含有率は、10質量%以上であることがより好ましく、15質量%以上であることがさらにより好ましい。前記含有率は、18質量%以上、20質量%以上、あるいは23質量%以上であってもよい。
 共重合体(X)が共重合体(X2)である場合、共重合体(X2)とポリエポキシ化合物(Y)との合計量に対する構造単位(c)の含有率は、50質量%以下であることが好ましい。塗膜の耐候性が向上するためである。この観点から、共重合体(X2)とポリエポキシ化合物(Y)との合計量に対する構造単位(c)の含有率は、40質量%以下であることがより好ましく、35質量%以下であることがさらに好ましい。前記含有率は、33質量%以下、30質量%以下、あるいは28質量%以下であってもよい。
 共重合体(X2)の総量に対する、構造単位(c)の含有率は、5質量%以上であることが好ましく、15質量%以上であることがより好ましく、25質量%以上であることがさらに好ましい。共重合体(X2)の総量に対する、構造単位(c)の含有率は、55質量%以下であることが好ましく、45質量%以下であることがより好ましく、35質量%以下であることがさらに好ましい。
[他の単量体(D)]
 他の単量体(D)は、(メタ)アクリル酸エステル(A)、エチレン性不飽和カルボン酸(B)、及びエチレン性不飽和芳香族化合物(C)のいずれにも該当せず、かつ共重合体(X)の合成に用いられる化合物と共重合が可能なエチレン性不飽和結合を有する化合物である。他の単量体(D)としては、例えば、共役ジエン化合物、マレイミド化合物、ビニルエーテル化合物、アリルエーテル化合物、不飽和ジカルボン酸のジアルキルエステル、シアノ基を有するビニル化合物等が挙げられる。
 前記共役ジエン化合物としては、例えば1,3-ブタジエン、イソプレン(2-メチル-1,3-ブタジエン)、2,3-ジメチル-1,3ブタジエン、クロロプレン(2-クロロ-1,3-ブタジエン)等が挙げられる。これらの共役ジエン化合物は1種のみ用いてもよく、2種以上を併用することもできる。
 前記マレイミド化合物としては、例えば、マレイミド、N-メチルマレイミド、N-イソプロピルマレイミド、N-ブチルマレイミド、N-ドデシルマレイミド、N-フェニルマレイミド、N-(2-メチルフェニル)マレイミド、N-(4-メチルフェニル)マレイミド、N-(2、6-ジメチルフェニル)マレイミド、N-(2、6-ジエチルフェニル)マレイミド、N-(2-メトキシフェニル)マレイミド、N-ベンジルマレイミド、N-(4-ヒドロキシフェニル)マレイミド、N-ナフチルマレイミド、N-シクロヘキシルマレイミド等が挙げられる。これらのマレイミド系化合物は、1種のみ用いてもよく、2種以上を併用することもできる。
 前記ビニルエーテル化合物としては、例えば、メチルビニルエーテルあるいはエチルビニルエーテル等のアルキルビニルエーテル、一部の水素原子が水酸基で置換された水酸基含有アルキルビニルエーテル等が挙げられる。
 前記アリルエーテル化合物としては、例えば、アリルメチルエーテルあるいはアリルエチルエーテル等のアリルアルキルエーテル、一部の水素原子が水酸基で置換された水酸基含有アリルアルキルエーテル、アリルグリシジルエーテル等が挙げられる。
 前記不飽和ジカルボン酸のジアルキルエステルとしては、例えば、マレイン酸、フマル酸、イタコン酸、シトラコン酸、メサコン酸、無水マレイン酸、無水イタコン酸、無水シトラコン酸、無水テトラヒドロフタル酸等の不飽和ジカルボン酸のジアルキルエステルが挙げられる。これらのジアルキルエステルは、1種のみ用いてもよく、2種以上を併用することもできる。これらの不飽和化合物は1種のみ用いてもよく、2種以上を併用することもできる。
 前記シアノ基を有するビニル化合物としては、アクリロニトリル、メタクリロニトリル、α-エチルアクリロニトリル、α-イソプロピルアクリロニトリル、α-クロロアクリロニトリル、及びα-フルオロアクリロニトリル等が挙げられる。これらのシアノ基含有ビニル単量体は、1種のみ用いてもよく、2種以上を併用することもできる。
<1-1-2.ポリエポキシ化合物(Y)>
 ポリエポキシ化合物(Y)は、エチレン性不飽和結合を有さず、かつ1分子中に2個以上のエポキシ基を有する化合物である。
 ポリエポキシ化合物(Y)は、ビスフェノール型エポキシ化合物、水添ビスフェノール型エポキシ化合物、ジグリシジルエーテル、トリグリシジルエーテル、テトラグリシジルエーテル、ジグリシジルエステル、トリグリシジルエステル、及びテトラグリシジルエステルから選ばれる、少なくとも1種であることが好ましい。
 1分子中に2個以上のエポキシ基を有する化合物の例として、ビスフェノールAのジグリシジルエーテル、水添ビスフェノールAのジグリシジルエーテル、ビスフェノールFのジグリシジルエーテル、水添ビスフェノールFのジグリシジルエーテル、グリセリンポリグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、フタル酸のジグリシジルエステル、1,4-シクロヘキサンジメタノールジグリシジルエーテル、1,3-シクロヘキサンジメタノールジグリシジルエーテル、及びヘキサヒドロフタル酸のジグリシジルエステル等が挙げられる。これらの化合物のうち1種類を含むものでもよく2種以上含むものでもよい。
 前記ポリエポキシ化合物(Y)は、ビスフェノール型エポキシ化合物、水添ビスフェノール型エポキシ化合物であることがより好ましく、ビスフェノールA型エポキシ化合物、水添ビスフェノールA型エポキシ化合物であることがさらに好ましく、ビスフェノールA型エポキシ化合物であることがさらに好ましい。硬化後の塗膜の耐水性及び防錆性がより向上するためである。
 ポリエポキシ化合物(Y)の重量平均分子量は特に限定されないが、好ましくは、1000以下であり、より好ましくは800以下であり、更に好ましくは500以下である。ポリエポキシ化合物(Y)の共重合体(X)への相溶性が向上し、分散安定性及び貯蔵安定性に優れたエマルジョンとすることができる。前記分子量の下限値は、任意に選択でき、例えば、200または300であっても良いが、これらに限定されない。
 ポリエポキシ化合物(Y)のエポキシ当量(エポキシ基1mol当たりのポリエポキシ化合物(Y)の質量)は、500g/mol以下であることが好ましく、350g/mol以下であることがより好ましく、250g/mol以下であることがさらに好ましく、200g/mol以下であることが特に好ましい。後述する水性樹脂組成物を硬化させた塗膜の強度が高くなるためである。前記エポキシ当量の下限値は、任意に選択でき、例えば、70g/mol以上であってもよく、120g/mol以上であってもよいが、これらの例に限定されない。
 共重合体(X)とポリエポキシ化合物(Y)との合計量に対する、ポリエポキシ化合物(Y)の含有率は、1質量%以上である。水性樹脂組成物が硬化し、優れた防錆性を有する塗膜が得られるためである。この観点から、共重合体(X)とポリエポキシ化合物(Y)との合計量に対するポリエポキシ化合物(Y)の含有率は、5質量%以上であることが好ましく、8質量%以上であることがより好ましく、10質量%以上であることがさらに好ましい。必要に応じて、12質量%以上、あるいは20質量%以上であっても良い。共重合体(X)とポリエポキシ化合物(Y)との合計量に対するポリエポキシ化合物(Y)の含有率は、40質量%以下である。分散安定性の高い水性樹脂エマルジョン(α)を得るためである。この観点から、共重合体(X)とポリエポキシ化合物(Y)との合計量に対するポリエポキシ化合物(Y)の含有率は、35質量%以下であることが好ましく、30質量%以下であることがより好ましい。
 水性樹脂エマルジョン(α)に含まれるポリエポキシ化合物(Y)の量は、水性樹脂エマルジョン(α)の総量に対して、1質量%以上であることが好ましく、3質量%以上であることがより好ましく、4質量%以上であることがさらに好ましい。水性樹脂エマルジョン(α)に含まれるポリエポキシ化合物(Y)の量は、水性樹脂エマルジョン(α)の総量に対して、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、15質量%以下であることがさらに好ましい。
<1-1-3.水性媒体(Z)>
 水性媒体(Z)としては任意に選択でき、水を用いることが好ましい。しかしながら、共重合体(X)及びポリエポキシ化合物(Y)の分散安定性が損なわれない限り、例えば、水に水溶性の溶媒を添加したものを、水性媒体(Z)として用いてもよい。水に添加する親水性の溶媒としては任意に選択でき、メタノール、エタノール及びN‐メチルピロリドン等が挙げられる。
 水性樹脂エマルジョン(α)中の水性媒体(Z)の量は、必要に応じて選択できるが、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることがさらに好ましい。水性樹脂エマルジョン(α)中の水性媒体(Z)の量は、必要に応じて選択できるが、80質量%以上であることが好ましく、70質量%以上であることがより好ましい。前記濃度は、50~70質量%や、55~65質量%であってもよい。
<1-1-4.水性樹脂エマルジョン(α)の製造方法>
 本実施形態にかかる水性樹脂エマルジョン(α)の製造方法は、ポリエポキシ化合物(Y)の存在下、(メタ)アクリル酸エステル(A)と、エチレン性不飽和カルボン酸(B)とを含むモノマー(すなわち、共重合体(X)を構成するためのモノマー)を、水性媒体(Z)中で、乳化重合することにより行うことができる。この方法を用いる、本実施形態の上記製造方法によれば、生成した共重合体(X)の粒子中にポリエポキシ化合物(Y)が均一に分散した水性樹脂エマルジョン(α)が得られる、と考えられる。ここで、「均一に存在している」とは、必ずしも、共重合体(X)とポリエポキシ化合物(Y)とが相溶している必要はなく、共重合体(X)粒子の中心側及び表面側のいずれにおいても、ポリエポキシ化合物(Y)のドメインが偏りなく存在していればよい。具体的な乳化重合の方法としては、モノマーを含む各成分を一括して仕込む方法、各成分を連続供給しながら重合する方法などを用いることができる。重合反応中は攪拌することが好ましい。
 水性樹脂エマルジョン(α)の製造に用いる原料全体に占める、各原料の含有率は、水性樹脂エマルジョン(α)に占める、原料に由来する構造単位または原料に対応する化合物の含有率と同じである。
 前記重合は、任意に選択される温度、例えば、30~90℃の温度で行うことが好ましく、40~80℃の温度で行うことがより好ましく、40~70℃の温度で行うことがさらに好ましい。モノマーに含まれるカルボキシ基が、ポリエポキシ化合物(Y)に含まれるエポキシ基と反応することを抑制するためである。
 乳化重合に使用する乳化剤は、任意に選択でき、例えば、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルフェノールエーテル、ポリオキシアルキレン脂肪酸エステル、ポリオキシアルキレンソルビタン脂肪酸エステルなどのノニオン性界面活性剤、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキルジフェニルエーテルジスルホン酸塩、ポリオキシアルキレンアルキル硫酸塩、ポリオキシアルキレンアルキルリン酸エステルなどのアニオン性界面活性剤が挙げられる。これらは1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。これらの乳化剤として好ましいのは、アルキルベンゼンスルホン酸塩であり、ドデシルベンゼンスルホン酸ナトリウムを用いることがより好ましい。
 乳化重合においては、重合開始剤を使用することが好ましい。重合開始剤としては、例えば、過酸化物を用いることが好ましい。重合開始剤として用いられる過酸化物として、例えば、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩、過酸化水素等が挙げられる。また、過酸化物と還元剤との併用によるレドックス系開始剤を使用することもできる。還元剤としては、ナトリウムスルホキシレートホルムアルデヒド、アスコルビン酸、亜硫酸塩、酒石酸またはその塩等が挙げられる。また、必要に応じてアルコール、メルカプタン類を連鎖移動剤として用いてもよい。
<1-1-5.水性樹脂エマルジョン(α)の特性>
[水性樹脂エマルジョン(α)のpH]
 水性樹脂エマルジョン(α)のpHは、2~10であることが好ましく、5~9であることがより好ましい。pHがこの範囲であると、水性樹脂エマルジョン(α)の機械的安定性、化学的安定性を向上させることができる。pHは、ガラス電極を標準電極とした水素イオン濃度指示計によるpHメーターを用いて、液温25℃において測定した値である。例えば、乳化重合中または乳化重合終了後に、水性樹脂エマルジョン(α)に塩基性物質を加えることにより、pHを調整できる。pHの調整に使用される塩基性物質の例としては、アンモニア、トリエチルアミン、エタノールアミン、苛性ソーダ等が挙げられる。これらは1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
[水性樹脂エマルジョン(α)の不揮発分濃度]
 水性樹脂エマルジョン(α)の不揮発分濃度は、10~65質量%であることが好ましく、15~60質量%であることがより好ましく、20~55質量%であることがより好ましい。前記濃度は、30~50質量%、あるいは35~45質量%であってもよい。水性樹脂エマルジョン(α)における不揮発分濃度は、後述する水性樹脂エマルジョン(α)と、硬化剤(β)及び硬化促進剤(γ)等との混合工程、あるいは水性樹脂組成物の塗工工程における作業性を考慮して、適宜決定できる。水性樹脂エマルジョン(α)における不揮発分濃度は、水性媒体(Z)の添加量を調整することで、適宜調節可能である。
 なお、水性樹脂エマルジョン(α)の不揮発分濃度は、以下に示す方法により求めた。直径5cmのアルミ皿に、水性樹脂エマルジョン(α)を1g秤量し、大気圧、乾燥器内で、空気を循環させながら105℃で1時間乾燥させた後、得られる残分の質量を測定した。測定された残分の質量の、乾燥前の水性樹脂エマルジョン(α)の質量に対する割合(質量%)を、水性樹脂エマルジョン(α)の不揮発分濃度として求めた。
[水性樹脂エマルジョン(α)の粘度]
 本実施形態において水性樹脂エマルジョン(α)の粘度は、23℃で測定される。水性樹脂エマルジョン(α)の粘度の測定は、B型粘度計を用いて行われ、回転数60rpmで、水性樹脂エマルジョンの粘度に応じたロータを選択して測定された値である。例えば、水性樹脂エマルジョン(α)の粘度が数mPa・s~数百mPa・s程度である場合は、ロータNo.1を用いて測定する。粘度は、例えば、0.1~300mPa・sであってもよく、1~100mPa・sであってもよく、3~50mPa・sであってもよく、5~25mPa・sであってもよい。
[共重合体(X)のガラス転移点]
 共重合体(X)のガラス転移点Tgは、共重合体(X)の合成に用いた各モノマーのホモポリマーのガラス転移点に基づいて算出される。共重合体(X)のガラス転移点Tgの具体的な算出方法は、原料として用いる単量体M(i=1,2,3...,)のホモポリマーのガラス転移点Tgと、全単量体中の単量体iの質量分率X(ΣX(全単量体)=1)とから、下記式(1)によって算出される。式(1)において、Tg及びTgは、いずれも絶対温度(K)の値で計算する。
 1/Tg=Σ(X/Tg)…(1)
 共重合体(X)のガラス転移点Tgは、-30℃(243K)以上であることが好ましい。塗膜の強度が向上するためである。この観点から、共重合体(X)のガラス転移点Tgは-10℃(263K)以上であることがより好ましく。0℃(273K)以上であることがさらに好ましい。このような範囲の場合、硬化後の塗膜の強度が向上するためである。共重合体(X)のガラス転移点Tgは、5℃以上、あるいは10℃以上であってもよい。共重合体(X)のガラス転移点Tgは、100℃(373K)以下であることが好ましく、80℃(353K)以下であることがより好ましい。塗膜の基材への密着性が向上するためである。この観点から、共重合体(X)のガラス転移点Tgは、60℃(333K)以下であることがさらに好ましく、50℃(323K)以下であることが特に好ましい。このような範囲の場合、硬化後の塗膜の柔軟性を向上させることができるためである。共重合体(X)のガラス転移点Tgは、40℃以下、あるいは30℃以下であってもよい。
[水性樹脂エマルジョン(α)中のエポキシ基の含有率]
 水性樹脂エマルジョン(α)中のエポキシ基の含有率は、水性樹脂エマルジョン(α)1g中に含まれるエポキシ基のモル数の割合である。水性樹脂エマルジョン(α)1gあたりに含まれるエポキシ基の量N[mol/g]の求め方は、後述する実施例において説明する通りである。
[共重合体(X)とポリエポキシ化合物(Y)との合計量中におけるエポキシ基の含有率]
 上記のとおり、本実施形態における水性樹脂エマルジョン(α)に含まれるポリエポキシ化合物(Y)には、エポキシ基が含まれる。共重合体(X)とポリエポキシ化合物(Y)との合計量中におけるエポキシ基の含有率は、0.50×10-4mol/g以上であることが好ましく、1.0×10-4mol/g以上であることがより好ましく、4.0×10-4mol/g以上であることがさらに好ましく、6.0×10-4mol/g以上であることがさらに好ましい。硬化後の塗膜の耐水性、防錆性、基材への密着力を高めることができるためである。
 共重合体(X)とポリエポキシ化合物(Y)との合計量中におけるエポキシ基の含有率は、50×10-4mol/g以下であることが好ましく、30×10-4mol/g以下であることがより好ましく、20×10-4mol/g以下であることがさらに好ましい。共重合体(X)とポリエポキシ化合物(Y)との合計量中におけるエポキシ基の含有率は、15×10-4mol/g以下、あるいは10×10-4mol/g以下であってもよい。
[水性樹脂エマルジョン(α)の不揮発分中のエポキシ基の含有率]
 水性樹脂エマルジョン(α)の不揮発分中のエポキシ基の含有率は、0.50×10-4mol/g以上であることが好ましく、3.0×10-4mol/g以上であることがより好ましく、5.0×10-4mol/g以上であることがさらに好ましい。硬化後の塗膜の耐水性、防錆性、基材への密着力を高めることができるためである。水性樹脂エマルジョン(α)の不揮発分中のエポキシ基の含有率は、1.0×10-4mol/g以上、あるいは6.0×10-4mol/g以上であってもよい。
 水性樹脂エマルジョン(α)の不揮発分中のエポキシ基の含有率は、50×10-4mol/g以下であることが好ましく、30×10-4mol/g以下であることがより好ましく、20×10-4mol/g以下であることがさらに好ましい。水性樹脂エマルジョン(α)の不揮発分中のエポキシ基の含有率は、15×10-4mol/g以下、あるいは10×10-4mol/g以下であってもよい。
 水性樹脂エマルジョン中(α)の不揮発分中のエポキシ基の含有率REP[mol/g]は、次のように求められた値である。水性樹脂エマルジョン(α)の不揮発分濃度をC[質量%]、水性樹脂エマルジョン(α)1gあたりに含まれるエポキシ基の量N[mol/g]とすると、エポキシ基の含有率REPは、式(2)のように表される。Nの求め方は、実施例において後述する通りである。
 REP[mol/g]=N/(C/100)…(2)
[水性樹脂エマルジョン(α)中のカルボキシ基の含有率]
 水性樹脂エマルジョン(α)中のカルボキシ基の含有率は、水性樹脂エマルジョン(α)1g中に含まれるカルボキシ基のモル数の割合である。水性樹脂エマルジョン(α)1gあたりに含まれるカルボキシ基のモル数の求め方は、後述する実施例において説明する通りである。
[共重合体(X)とポリエポキシ化合物(Y)との合計量中におけるカルボキシ基の含有率]
 本実施形態においては、水性樹脂エマルジョン(α)に含まれる共重合体(X)とポリエポキシ化合物(Y)の一方または両方が、カルボキシ基を含み、共重合体(X)が、カルボキシ基を含むことが好ましい。共重合体(X)とポリエポキシ化合物(Y)との合計量中におけるカルボキシ基の含有率は0.10×10-4mol/g以上であることが好ましく、0.50×10-4mol/g以上であることがより好ましく、1.0×10-4mol/g以上であることがさらに好ましい。重合中及び重合後の水性樹脂エマルジョン(α)の保管の際に、共重合体(X)の凝集を抑制できるためである。
 共重合体(X)とポリエポキシ化合物(Y)との合計量中におけるカルボキシ基の含有率は、10×10-4mol/g以下であることが好ましく、5.0×10-4mol/g以下であることがより好ましい。3.0×10-4mol/g以下であってもよいし、2.5×10-4mol/g以下、あるいは2.0×10-4mol/g以下であってもよい。
[水性樹脂エマルジョン(α)の不揮発分中のカルボキシ基の含有率]
 水性樹脂エマルジョン(α)の不揮発分中のカルボキシ基の含有率は、0.10×10-4mol/g以上であることが好ましく、0.50×10-4mol/g以上であることがより好ましく、1.0×10-4mol/g以上であることがさらに好ましい。重合中及び重合後の水性樹脂エマルジョン(α)の保管の際に、共重合体(X)の凝集を抑制できるためである。
 水性樹脂エマルジョン(α)の不揮発分中のカルボキシ基の含有率は、10×10-4mol/g以下であることが好ましく、5.0×10-4mol/g以下であることがより好ましい。3.0×10-4mol/g以下であってもよいし、2.5×10-4mol/g以下、あるいは2.0×10-4mol/g以下であってもよい。
 ここで上記カルボキシ基とは、-COOHだけでなく、水素イオン以外の陽イオンと-COOとが結合した構造も含む。水性樹脂エマルジョン(α)の不揮発分中のカルボキシ基の含有量とは、下記の式で示すように、原料中のカルボキシ基の含有量から、原料中のカルボキシ基と反応する官能基の、重合前後での減少量を引いた値から求められる。前記原料とは、水性樹脂エマルジョン(α)の合成に用いた成分のことを指す。また、カルボキシ基と反応する官能基とは、本発明においては、エポキシ基であり、ヒドロキシ基はカルボキシ基と反応する官能基とは考えない。
 以下、水性樹脂エマルジョン(α)の不揮発分中のカルボキシ基の含有率RCX[mol/g]の求め方を、詳しく説明する。原料(開始剤、溶媒、その他添加剤等も含む)中のカルボキシ基の総量をN[mol/g]とし、原料(開始剤、溶媒、その他添加剤等も含む)中のエポキシ基の総量をN[mol/g]とし、水性樹脂エマルジョン(α)1gあたりに含まれるエポキシ基の量をN[mol/g]とする。水性樹脂エマルジョン(α)の不揮発分濃度を、C[質量%]とする。この時、カルボキシ基の含有率RCXは、式(3)のように表される。N及びNの求め方は、実施例において後述する。Nは計算によって得ることができる。
 RCX[mol/g]={N-(N-N)}/(C/100)…(3)
[1-2.硬化剤(β)]
 硬化剤(β)は、エポキシ基に対する反応性を有する官能基(F)を有する化合物からなる。官能基(F)は、無置換のアミノ基(-NH(置換基なし)、1つのみ置換基を有するアミノ基(-NHR(Rは置換基である))、カルボキシ基、メルカプト基からなる群より選択されるいずれかであることが好ましい。
 硬化剤(β)に含まれるエポキシ基に対する反応性を有する官能基(F)の種類は、1種類のみであってもよいし、2種類以上であってもよい。
 無置換または1つのみ置換基を有するアミノ基を有する硬化剤(β)としては、ポリアミンが挙げられる。ポリアミンは、無置換のアミノ基(-NH)および/または1つのみ置換基を有するアミノ基(-NHR(Rは置換基である))を有する化合物であり、例えば、脂肪族ポリアミン、脂環族ポリアミン、芳香族ポリアミンが挙げられる。
 脂肪族ポリアミンとしては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、これらの変性品等が挙げられる。脂環族ポリアミンとしては、例えば、イソホロンジアミン、メンタンジアミン、N-アミノエチルピペラジン、ジアミノジシクロヘキシルメタン、これらの変性品等が挙げられる。芳香族ポリアミンとしては、例えば、m-キシリレンジアミン、ジアミノジフェニルメタン、m-フェニレンジアミン、ジアミノジフェニルスルホンやこれらの変性品等が挙げられる。
 カルボキシ基を有する硬化剤(β)としては、分子内に2個以上のカルボキシ基を有する化合物が好ましい。例えば、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルテトラヒドロフタル酸、メチルヘキサヒドロフタル酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸、1,2,3,4-ブタンテトラカルボン酸が挙げられる。
 メルカプト基を有する硬化剤(β)としては、分子内に2個以上のメルカプト基を有する化合物が好ましい。例えば、チオグリコール酸と多価アルコールとの縮合物、ポリサルファイド等が挙げられる。
 これらの硬化剤(β)は、1種または2種以上組み合わせて用いてもよい。硬化剤(β)としては、ポリアミン系硬化剤を用いることが好ましい。
 硬化剤(β)としては、市販のものを用いてもよい。市販の硬化剤の例としては、アデカハードナーEH-8051(ポリアミン)(株式会社ADEKA製);フジキュアーFXI-919;トーマイドTXH-674-BおよびTXS-53-C(株式会社T&K TOKA社製);リカシッドBTW(新日本理化株式会社製);ならびにカレンズMT BD-1(昭和電工株式会社製)などが挙げられる。
 硬化剤(β)に含まれるエポキシ基に対する反応性を有する官能基(F)の含有量は、水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対して、0.010当量以上であり、0.10当量以上であることが好ましく、0.20当量以上であることがさらに好ましい。硬化後の水性樹脂組成物の防錆性及び金属材料への密着性が向上するためである。ここで、官能基(F)の当量の算出において、官能基(F)が無置換アミンのように活性水素を2個有する場合、官能基(F)の数は2個と数える。
 硬化剤(β)に含まれるエポキシ基に対する反応性を有する官能基(F)の含有量は、水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対して、3.0当量以下であり、2.0当量以下であることが好ましく、1.5当量以下であることがより好ましく、1.0当量以下であることがさらに好ましく、0.80当量以下であることがさらに好ましく、0.50当量以下であることがさらに好ましい。塗膜の強度が向上するためである。
[1-3.硬化促進剤(γ)]
 硬化促進剤(γ)は、水性樹脂組成物の硬化を促進し、皮膜降伏強度の高い皮膜を形成する機能を有する。硬化促進剤(γ)は、エポキシ基に対する反応性を有する官能基を有さない第三級アミンからなる。本実施形態における第三級アミンは、NR(式中、Rは、置換基であり、それぞれ異なっていてもよいし、2つ以上同じものが含まれていてもよい。Rは、互いに結合して環を形成していてもよい。)で示される化合物である。
 硬化促進剤(γ)は、第三級脂肪族アミン、第三級脂環式アミン、第三級ヘテロ芳香族アミン、第三級アミン(NR)の窒素原子に直接結合していないフェニル基を有する第三級芳香族アミンからなる群より選択される少なくとも1つの化合物であることが好ましい。硬化促進剤(γ)の求核性を高め、効率的に硬化反応を進めるためである。
 第三級脂肪族アミンとしては、例えば、トリエチルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、トリ-n-ブチルアミン、トリ-sec-ブチルアミン、トリ-n-ヘキシルアミンなどが挙げられる。
 第三級脂環式アミンとしては、例えば、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、などが挙げられる。
 第三級ヘテロ芳香族アミンとしては、イミダゾール骨格を有する化合物を用いることが好ましく、具体的には、例えば、イミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾールなどが挙げられる。
 第三級アミン(NR)の窒素原子に直接結合していないフェニル基を有する第三級芳香族アミンとしては、ジメチルベンジルアミン、ジエチルベンジルアミン、トリベンジルアミン、2,4,6-トリスジメチルアミノメチルフェノール、2-フェニルイミダゾールなどが挙げられる。
 これらの硬化促進剤(γ)の中でも特に、下記(i)および/または(ii)の化合物を用いることが好ましい。
(i)エポキシ基に対する反応性を有する官能基(F)を有さず、アミノ基の3つの置換基によって、2つの窒素原子同士が結合された飽和環構造を有する第三級脂環式アミン。(ii)エポキシ基に対する反応性を有する官能基(F)を有さず、2つ以上の窒素原子を含むヘテロ芳香環構造を有する第三級ヘテロ芳香族アミン。
 (i)第三級脂環式アミンとしては、例えば、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)が挙げられる。(ii)第三級ヘテロ芳香族アミンとしては、例えば、イミダゾールが挙げられる。
 硬化促進剤(γ)は、1種または2種以上組み合わせて用いてもよい。
 硬化促進剤(γ)の含有量は、水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対して、0.0070mol以上であり、0.070mol以上であることが好ましく、0.18mol以上であることがより好ましく、0.30mol以上であることがさらに好ましい。皮膜降伏強度の高い硬化物が得られるためである。
 硬化促進剤(γ)の含有量は、水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対して、1.5mol以下であり、1.0mol以下であることが好ましく、0.70mol以下であることがより好ましく、0.44mol以下であることがさらに好ましく、0.40mol以下であることがさらに好ましく、0.38mol以下であることが特に好ましい。水性樹脂組成物の短時間でのゲル化を抑制できるためである。また、防錆性の良好な硬化物が得られるためである。
[1-4.その他の成分]
 本実施形態にかかる水性樹脂組成物は、顔料を含んでもよい。顔料としては、例えば酸化チタン、タルク、硫酸バリウム、カーボンブラック、ベンガラ、炭酸カルシウム、酸化珪素、タルク、マイカ、カオリン、クレー、フェライト、珪砂等が挙げられる。顔料は1種類の化合物のみを含んでもよく、2種類以上の化合物を含んでもよい。顔料は、水性樹脂組成物中に0.1~50質量%含まれることが好ましく、1~40質量%含まれることがより好ましい。塗膜の隠蔽性を向上させるためである。それぞれ必要に応じて、顔料は、0.1~3質量%や、3~6質量%や、6~10質量%や、10~20質量%や、20~35質量%や、35~50質量%等の量で、水性樹脂組成物に含まれてもよい。
 水性樹脂組成物は、充填剤、有機質または無機質の中空バルーン、分散剤(例えば、アミノアルコール、ポリカルボキシラート等)、界面活性剤、カップリング剤(例えばシランカップリング剤等)、脱泡剤、防腐剤(例えば、殺生物剤、殺カビ剤、殺真菌剤、殺藻剤、及びこれらの組み合わせ等)、流動剤、レベリング剤、中和剤(例えば、水酸化物、アミン、アンモニア、炭酸塩等)等の添加剤を含んでもよい。
 カップリング剤としては、シランカップリング剤を用いることが好ましい。シランカップリング剤としては、エポキシシラン化合物が挙げられる。具体的な例としては、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシ)エチルトリメトキシシラン等が挙げられる。
 シランカップリング剤の添加量は、任意に選択できるが、水性樹脂エマルジョン100質量部に対して0.1~5質量部であることが好ましく、0.3~3質量部であることがより好ましい。硬化後の水性樹脂組成物の防錆性及び金属材料への密着性が向上するためである。
<1-1-6.水性樹脂組成物の製造方法>
 水性樹脂エマルジョン(α)と、硬化剤(β)と、硬化促進剤(γ)と、必要に応じて含有されるその他の成分とを混合する。混合工程については、例えば、実施例にて後述する方法があるがこれに限られない。
<2.皮膜の形成方法>
 次に、本実施形態の水性樹脂組成物の硬化物からなる皮膜の形成方法について、詳細に説明する。
 本実施形態の皮膜の形成方法では、まず、水性樹脂エマルジョン(α)と、硬化剤(β)と、硬化促進剤(γ)と、必要に応じて含有されるその他の成分とを混合する。このことにより、本実施形態の水性樹脂組成物を調製する(混合工程)。次に、混合工程により得られた水性樹脂組成物を、被塗装面に塗布する(塗布工程)。
 混合工程では、水性樹脂エマルジョン(α)と硬化剤(β)と硬化促進剤(γ)と必要に応じて含有されるその他の成分とを混合し、攪拌する。このことにより、各成分が分散された水性樹脂組成物が得られる。混合工程における攪拌は、任意の方法や装置で行うことができ、例えば、ロボミクス(プライミクス株式会社製)などの装置により行うことができる。各成分を十分に分散させるために、混合工程における攪拌は、5分以上行うことが好ましい。また、樹脂成分が硬化することを抑制するため、攪拌時間は1時間以内とすることが好ましい。
 塗布工程では、水性樹脂組成物を被塗物の被塗装面に塗布する。被塗装面を形成している材料としては、任意に選択できるが、例えば金属材料が挙げられる。被塗装面には、プライマー、下塗り等の表面処理が予め施されていてもよい。水性樹脂組成物を塗布する方法としては、刷毛、ローラー等を用いる方法が挙げられるがこれに限られない。また、塗布工程が完了する前に樹脂成分が硬化することを抑制するために、塗布工程は、混合工程の終了後1時間以内に完了することが好ましい。
 本実施形態の皮膜の形成方法では、塗布工程の後、被塗装面に塗布することにより得られた塗膜を硬化させる硬化工程を行うことが好ましい。
 硬化工程では、例えば、水性樹脂組成物が塗布された被塗物の被塗装面を、乾燥し、養生することにより、水性樹脂組成物に含まれる樹脂成分を硬化させることができる。養生する時間は、養生する雰囲気の温度によって異なる。例えば、20℃では5時間以上であることが好ましく、40℃では1時間以上であることが好ましく、60℃では5分以上であることが好ましい。硬化したかどうかは、例えば、指で触る等によって判断してもよい。
<3.皮膜>
 本実施形態の皮膜は、本実施形態の水性樹脂組成物の硬化物からなる。本実施形態の皮膜は、上述した皮膜の形成方法により形成できる。
 本実施形態の皮膜は、必要に応じて、本発明の水性樹脂組成物の硬化物からなる皮膜の下層に設けられた下塗り層、および/または上層に設けられた上塗り層などからなる皮膜と、積層して設けられていてもよい。
 本実施形態の水性樹脂組成物は、水性樹脂エマルジョン(α)と、硬化剤(β)と、硬化促進剤(γ)とを含む。このため、高い皮膜降伏強度を有する硬化物が得られる。
 また、本実施形態の皮膜の形成方法では、水性樹脂エマルジョン(α)と、硬化剤(β)と、硬化促進剤(γ)とを混合することにより水性樹脂組成物を調製し、これを被塗装面に塗布する。このことにより、高い皮膜降伏強度を有する硬化物からなる本実施形態の皮膜が得られる。
<4.適用分野>
 本発明の水性樹脂組成物は、様々な分野において有用であり、特に金属製品の表面に塗布される塗料としての用途に好適である。本発明の水性樹脂組成物の硬化物からなる皮膜が形成される物品、すなわち本発明の水性樹脂組成物の被塗物とされる適用対象物は、任意に選択できる。適用対象物としては、具体的には、例えば、様々な家庭用品、冷蔵庫などの家電製品、遊園地・公園などに設置される遊具、スポーツ用品、建築物(インテリア、エクステリアなど)、輸送機械・工作機械を含む様々な工業用品およびその部品、自動車のボディーおよびシャシー、鉄道車両の車体および床下機器、船舶、海上コンテナ、航空機などが挙げられる。
 以下、実施例を用いて本発明を詳細に説明する。なお、下記の実施例は、本発明の全てを制限するものではなく、本記載の内容を逸脱しない範囲で実施したものは、全て本発明の技術範囲に含まれる。
<1.水性樹脂エマルジョン(α)の合成>
(水性樹脂エマルジョン(α-1))
 冷却管、温度計、攪拌機、滴下ロートを有するセパラブルフラスコに、イオン交換水158部を仕込み、60℃に昇温した。セパラブルフラスコの内容物に窒素ガスを吹き込み、脱酸素した。ここに表1に示す量(質量部)のメチルメタクリレート、2-エチルヘキシルアクリレート、メタクリル酸、水添ビスフェノールA型エポキシ、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム、およびイオン交換水356質量部からなる乳化物を、3時間かけて滴下した。乳化物と同時に、酸化剤として過硫酸カリウム1.2質量部をイオン交換水41質量部に溶解したものと、還元剤として亜硫酸水素ナトリウム0.4質量部をイオン交換水21質量部に溶解したものを、3.3時間かけて、60℃で滴下し、重合した。滴下終了後、1.5時間熟成した。その後、冷却し、塩基性物質としてのアンモニア水0.8質量部を添加し、水性樹脂エマルジョン(α-1)を得た。
 水性樹脂エマルジョン(α-1)の合成に用いた各材料の使用量(質量部)を、表1に示す。表1に示す「イオン交換水」の数値は、合成された水性樹脂エマルジョン(α-1)中に含まれるイオン交換水の含有量を示す。また、表1中における共重合体(X)およびポリエポキシ化合物(Y)の使用量における括弧内の数値は、共重合体(X)とポリエポキシ化合物(Y)との合計量(100%)に対する各材料の割合(質量%)を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すポリエポキシ化合物(Y)としては、下記のものを用いた。
水添ビスフェノールA型エポキシ(エポキシ当量215g/mol;共栄化学株式会社製;エポライト4000)
ビスフェノールA型エポキシ(エポキシ当量190g/mol;三菱ケミカル株式会社製;JER828)
グリセリンポリグリシジルエーテル(エポキシ当量143g/mol;坂本薬品工業株式会社製;SR-GLG)
1,6-ヘキサンジオールジグリシジルエーテル(エポキシ当量160g/mol;共栄化学株式会社製;エポライト1600)
(水性樹脂エマルジョン(α-2)~(α-7))
 表1に示す各材料を表1に示す使用量(質量部)で使用したこと以外は、水性樹脂エマルジョン(α-1)と同様にして、水性樹脂エマルジョン(α-2)~(α-7)を合成した。なお、水性樹脂エマルジョン(α-2)~(α-7)においても、表1に示す「イオン交換水」の数値は、合成された水性樹脂エマルジョン(α-1)と同様に、合成された水性樹脂エマルジョン(α-2)~(α-7)中に含まれるイオン交換水の含有量を示す。
<2.水性樹脂エマルジョン(α)の評価>
 水性樹脂エマルジョン(α-1)~(α-7)について、それぞれ以下の項目の評価を行った。その結果を表2に示す。なお、水性樹脂エマルジョン(α-7)については、合成中に凝集したため、評価していない。
 以下の説明において、水性樹脂エマルジョン(α-1)~(α-7)を総称する場合、水性樹脂エマルジョン(α)と記載する場合がある。
<2-1.不揮発分濃度>
 直径5cmのアルミ皿に、水性樹脂エマルジョン(α)を1g秤量し、大気圧、乾燥器内で、空気を循環させながら105℃で1時間乾燥させた。乾燥後に得られた残分の質量を測定し、乾燥前の水性樹脂エマルジョン(α)の質量に対する、乾燥後の質量の割合(質量%)を求めた。
<2-2.エポキシ基の残存率>
 水性樹脂エマルジョン(α)のエポキシ基の残存率は、合成後の水性樹脂エマルジョン(α)に含まれるエポキシ基の量N[mol/g]の、水性樹脂エマルジョン(α)の合成に用いた成分(原料、開始剤、溶媒、その他添加剤等も含む)に含まれるエポキシ基の総量N[mol/g]に対する割合である。
 合成後の水性樹脂エマルジョン(α)のエポキシ基の量N[mol/g]の測定は、以下に示す方法により行った。水性樹脂エマルジョン(α)の合成に用いた成分(原料)に含まれるエポキシ基の総量に対して、過剰の塩化水素を加えてエポキシ基と反応させた。次に、未反応の塩化水素を水酸化カリウムで滴定することで、残った塩化水素の量を確認した。このとき水性樹脂エマルジョン(α)中に含まれるカルボン酸をはじめとする酸性成分との反応により、水酸化カリウムが消費される。このため、予め塩化水素を用いない空測定によって酸性成分の量を滴定し、本測定の結果を補正した。具体的な測定手順は以下の(i)~(ii)の通りである。
(i)空測定(酸性成分量の確認)
 水性樹脂エマルジョン(α)をW[g](本実施例及び比較例では5g)の量で、100mL三角フラスコに量り取り、テトラヒドロフラン(THF)25gを加えてマグネチックスターラーで撹拌し、均一な溶液とした。この溶液に指示薬として0.1質量%のクレゾールレッド水溶液を0.15mL加えた。0.1Mの水酸化カリウム/エタノール溶液で、前記溶液を攪拌しながら、滴定した。水酸化カリウム/エタノール溶液の滴下後、紫色が30秒間持続する点を当量点とした。ここで滴定に用いた水酸化カリウム/エタノール溶液の量をVKOH1[mL]とする。
(ii)本測定
 水性樹脂エマルジョン(α)をW[g](本実施例及び比較例では5g)の量で、100mL三角フラスコに量り取り、THF25gを加えてマグネチックスターラーで撹拌し溶解させた。これに0.2Mの塩化水素/ジオキサン溶液を加え、1時間撹拌し均一な溶液とした。ここで加えられた塩化水素/ジオキサン溶液の量をVHCl[mL](本実施例及び比較例では25mL)とする。この溶液に指示薬として0.1質量%のクレゾールレッド水溶液を0.15mL加えた。0.1Mの水酸化カリウム/エタノール溶液で、溶液を攪拌しながら滴定した。水酸化カリウム/エタノール溶液の滴下後、紫色が30秒間持続する点を当量点とした。ここで滴定に用いた水酸化カリウム/エタノール溶液の量をVKOH2[mL]とする。
 (i)及び(ii)で得られた各々の数値から、水性樹脂エマルジョン(α)1gあたりのエポキシ基の量N[mol/g]を、以下の式(4)によって算出した。
 N=(0.2×VHCl/1000-0.1×VKOH2/1000)/W+(0.1×VKOH1/1000)/W …(4)
 水性樹脂エマルジョン(α)の合成に用いた成分(原料)に含まれるエポキシ基の総量N[mol/g]は、各成分の質量m[質量部](i=1,2,3,・・・)と、エポキシ当量EP[g/mol]とから、以下の式(5)によって求められる。ここで水性樹脂エマルジョン(α)の合成に用いた成分とは、表1に水性樹脂エマルジョン(α)の原料として記載されているすべての成分を意味する。
 N=Σ(m/EP)/Σm…(5)
 なお、メチルメタクリレート、イオン交換水等のエポキシ基を含まない化合物については、1/EP=0となる。
 このように求められたエポキシ基の量から、水性樹脂エマルジョン(α)のエポキシ基の残存率は、100×N/N[mol%]で表される。
<2-3.不揮発分中のエポキシ基の含有率、成分(X)+(Y)中のエポキシ基の含有率>
 上記の方法で求めた、不揮発分濃度C[質量%]、水性樹脂エマルジョン(α)中のエポキシ基含有量N、原料中のエポキシ基の総量Nから、水性樹脂エマルジョン(α)の不揮発分中のエポキシ基の含有率REP[mol/g]を、上記で説明した式(2)に基づいて求めた。
EP=N/(C/100)…(2)
 また、上記の方法で求めた水性樹脂エマルジョン(α)中のエポキシ基含有量Nと、水性樹脂エマルジョン(α)の合成に用いた全成分(原料)の合計質量α[g]、共重合体(X)に用いた原料の質量X[g]、ポリエポキシ化合物(Y)に用いた原料の質量Y[g]を用い、以下の式に基づいて成分(X)+(Y)中のエポキシ基の含有率REP[mol/g]を算出した。
(X)+(Y)中のREP=N/{(X+Y)/α}
<2-4.不揮発分中のカルボキシ基の含有率、成分(X)+(Y)中のカルボキシ基の含有率>
 水性樹脂エマルジョン(α)の合成に用いた成分(原料)に含まれるカルボキシ基の総量N[mol/g]は、各成分の質量m[質量部](i=1,2,3,・・・)と、カルボキシ当量CX[g/mol]とから、以下の式(6)によって求められる。ここで水性樹脂エマルジョン(α)の合成に用いた成分とは、表1に水性樹脂エマルジョン(α)の原料として記載されているすべての成分を意味する。
 N=Σ(m/CX)/Σm…(6)
 ここで求めたNから、水性樹脂エマルジョン(α)の不揮発分中のカルボキシ基の含有率RCX[mol/g]を、上記で説明した式(3)に基づいて求めた。
CX={N-(N-N)}/(C/100)…(3)
 また、上記の方法で求めた水性樹脂エマルジョン(α)中のエポキシ基含有量N、原料中のエポキシ基の総量N、水性樹脂エマルジョン(α)の合成に用いた成分(原料)に含まれるカルボキシ基の総量Nと、水性樹脂エマルジョン(α)の合成に用いた全成分(原料)の合計質量α[g]、共重合体(X)に用いた原料の質量X[g]、ポリエポキシ化合物(Y)に用いた原料の質量Y[g]を用いて、以下の式に基づいて成分(X)+(Y)中のカルボキシ基の含有率RCX[mol/g]を算出した。
(X)+(Y)中のRCX={N-(N-N)}/{(X+Y)/α}
<2-5.pH>
 pHメーター(東亜ディーケーケー株式会社製 ガラス電極式水素イオン濃度指示計HM-30G)を用いて測定した。
<2-6.粘度>
 水性樹脂エマルジョン(α)の粘度を以下の条件及び装置で測定した。
 温度:23℃
 測定機器:B型粘度計
 ロータ:No.1
 回転数:60rpm
<2-7.ガラス転移点>
 共重合体(X)のガラス転移点Tgは、上記の式(1)によって算出した値である。
<2-8.分散安定性>
 合成直後の水性樹脂エマルジョン(α)の状態を目視にて観察し、下記の基準により評価した。
 ○(可):凝集、沈殿、分離、及びゲル化のいずれも見られなかった。
 ×(不可):凝集、沈殿、分離、及びゲル化のうち少なくともいずれかが見られた。
<2-9.高温安定性>
 次の通り水性樹脂エマルジョン(α)の高温安定性を評価した。まず、70mlのガラス瓶に水性樹脂エマルジョン(α)を投入して密栓し、60℃で7日間静置した。その後、ガラス瓶中の水性樹脂エマルジョン(α)の状態を目視にて観察し、下記の基準により評価した。
 ○(可):凝集、増粘、沈殿、分離、及びゲル化のいずれも見られなかった。
 ×(不可):凝集、増粘、沈殿、分離、及びゲル化のうち少なくともいずれかが見られた。
Figure JPOXMLDOC01-appb-T000002
<2-10.評価結果>
 表2に示すように、水性樹脂エマルジョン(α-1)~(α-6)は、いずれも高温安定性が良好であった。
 以上のことから、モノマーとポリエポキシ化合物(Y)との合計量に対する(メタ)アクリル酸エステル(A)の添加量が20~98質量%であり、モノマーとポリエポキシ化合物(Y)との合計量に対するエチレン性不飽和カルボン酸(B)の添加量が0.1~10質量%であり、モノマーとポリエポキシ化合物(Y)との合計量に対するポリエポキシ化合物(Y)の添加量が1~40質量%である水性樹脂エマルジョン(α)は、高温安定性に優れることが分かった。
 これに対して、ポリエポキシ化合物(Y)の添加量が過剰である水性樹脂エマルジョン(α-7)は、重合体が分散せずに凝集した。
<3.実施例1~17及び比較例1~2(水性樹脂組成物の作製)>
 表3及び表4に示される水性樹脂エマルジョン(α)100質量部(不揮発分40質量%のもの)に、イオン交換水60質量部と、表3及び表4に示される硬化剤(β)と硬化促進剤(γ)とを、表3及び表4に示される量(質量部)で添加して10分間撹拌し、実施例1~17及び比較例1~2の水性樹脂組成物を作製した。
 表3及び表4において、各硬化剤(β)における「エポキシ基に対する当量」は、水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対する、硬化剤(β)に含まれるエポキシ基に対する反応性を有する官能基(F)の当量を示す数値である。
 各硬化促進剤(γ)における「エポキシ基に対する当量」は、水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対する、硬化促進剤(γ)のmol数を示す数値である。
 表3及び表4に示す、ポリアミンとしては、アデカハードナーEH-8051(株式会社ADEKA製)を用いた。硬化剤(β)として用いたポリアミンのアミン当量は、187g/molである。1,2,3,4-ブタンテトラカルボン酸のカルボキシ基当量は、58.5g/molである。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
<4.皮膜(塗膜)の評価>
 実施例1~17及び比較例1~2の水性樹脂組成物をそれぞれ用いて、以下に示す方法により皮膜(塗膜)を形成し、以下の項目について評価した。その結果を表3および表4に示す。
<4-1.皮膜降伏強度の測定方法>
 水性樹脂組成物を、水平に置いた縦90mm、横190mmの長方形のポリエチレンフィルムからなる平板上の全体に行き渡るように、流涎することにより塗布した。これを23℃で72時間乾燥した後、50℃で24時間養生することにより硬化した塗膜(硬化物)を作製した。得られた塗膜を平板から剥離した。剥離した塗膜を幅10mm、長さ30mmの長方形に切り出し、試験片とした。
 この試験片の長手方向を引張方向として以下の試験を行った。試験片の厚さは、株式会社ミツトヨ製 クイックマイクロ(登録商標) MDQ-MXを用いて測定した。測定は、各試験片について3か所ずつ行い、3か所の測定結果の平均値を試験片の厚さt[mm]とした。
 皮膜降伏強度の試験は、オートグラフAG-X(島津製作所製)を用いて以下に示す方法により行った。チャック間距離を10mmとして、試験片の長手方向の両側をチャックで掴んだ。温度23℃、相対湿度(RH)50%の雰囲気下、100mm/minの速度で、試験片を引っ張った。
 チャック間距離をL[mm]、試験片の長さの変化(試験中のチャック間の距離と、試験前のチャック間の距離との差)をΔL[mm]とすると、ひずみSは、100×ΔL/L[%]で算出される。また、試験片にかかった荷重(測定された荷重)をF[N]とし、試験片の破断に至るまでの荷重の最大値をFmax[N]とし、試験開始から最初に以下の条件を満たした点を降伏点Y(S,F)とする。
(降伏点の条件)
 ひずみSが2%以上(S≧2%)である。
 ひずみSの増加に伴う荷重Fの変化量が、増加から減少に転ずる。
 F=F-0.01Fmaxとなるまでの間、dF/dS<0が続く。
 S≦S+0.05%において、F>Fとなる点が存在しない。
 降伏点Yにおいて試験片にかかる応力σである皮膜降伏強度は、以下に示す式により算出される。
 σ[N/mm]=F/(W×t)
(式中のWは試験片の幅[mm]であり、tは試験片の厚さ[mm]である。)
<4-2.耐水膨潤率>
 上記降伏点の測定と同様にして、ポリエチレンフィルムからなる平板上に塗膜を形成した。得られた塗膜を平板から剥離した。剥離した塗膜を縦10mm、横10mmの正方形に切り出した。
 切り出した塗膜を秤量した後、23℃で24時間、イオン交換水に浸漬した。浸漬した塗膜をイオン交換水から取り出し、その直後に塗膜を秤量し、これを乾燥前の塗膜の質量とした。その後、塗膜を105℃で3時間乾燥させて再度塗膜を秤量し、これを乾燥後の塗膜の質量とした。乾燥前の塗膜の質量と乾燥後の塗膜の質量から、下記式(4)で求められる値を耐水膨潤率とした。
 耐水膨潤率(%)={(乾燥前の塗膜の質量-乾燥後の塗膜の質量)/乾燥後の塗膜の質量}×100      …(4)
<4-3.防錆性>
 水性樹脂組成物を、冷間圧延鋼板(以下、「基材」とする)に刷毛を用いて、目付量が50g/mとなるように塗布した。塗布後の基材を、60℃の恒温槽内で10分間乾燥させることにより、基材表面に塗膜を形成した。
 基材表面に形成した塗膜上の縦30mm、横45mmの長方形の領域を試験領域とした。試験領域を形成している長方形の対角線をなすように、2本の交差する直線からなる(すなわちX字状の)切れ込みを塗膜に形成し、試験体とした。切れ込みは、カッターナイフを用いて、塗膜上から基材まで達するように形成した。切れ込みが形成された試験体に対して、JIS Z-2371(2000)に基づいて中性塩水噴霧試験(4.2.1項)を行った。
 中性塩水噴霧試験後の試験体における、試験領域中の塗膜の膨れの占める面積[面積%]、膨れの大きさ[mm]、及び切れ込みからの流れ錆のサイズ[mm]を測定した。膨れの大きさは、1個の独立した膨れが占める領域において、最も長い寸法とした。また、流れ錆のサイズは、クロスカットした部分を中心とした錆の幅の最大値とした。
<4-4.金属材料に対する塗膜の密着性>
 上記防錆性の評価と同様にして、冷間圧延鋼板の表面に塗膜を形成した。JIS K-5400(1990)「8.5.2項 碁盤目テープ法」に準じ、塗膜の形成された鋼板を試験片として、塗膜を貫通するようにカッターで1mm間隔の碁盤目の切れ込み(100マス)を入れ、セロテープ(登録商標)を貼合した。1時間後にセロテープ(登録商標)を剥離して、塗膜が鋼板から剥離せずに残ったマスの数を数えることで金属材料に対する塗膜の密着性を評価した。
<4-5.評価結果>
 表3及び表4に示すように、水性樹脂エマルジョン(α-1)~(α-6)と、ポリアミンまたは1,2,3,4-ブタンテトラカルボン酸である硬化剤(β)と、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)またはイミダゾールである硬化促進剤(γ)とを含む実施例1~17の水性樹脂組成物の硬化物は、皮膜降伏強度が10[N/mm]以上であり、皮膜降伏強度が高いものであった。また、実施例1~17の水性樹脂組成物の硬化物は、耐水膨潤率が低く、耐水性が良好であり、金属材料に対する密着性も良好であった。また、実施例1~4、6~9、11~17の水性樹脂組成物の硬化物は、膨れが少なく防錆性が良好であった。
 これに対し、硬化促進剤(γ)を含まない比較例1および比較例2の水性樹脂組成物の硬化物は、実施例1~17の水性樹脂組成物の硬化物と比較して、皮膜降伏強度が劣るものであった。
 本発明によれば、皮膜降伏強度が高く、耐水性および金属材料に対する密着性の高い硬化物の得られる水性樹脂組成物を提供できる。

Claims (14)

  1.  水性樹脂エマルジョン(α)と、硬化剤(β)と、硬化促進剤(γ)とを含み、
     前記水性樹脂エマルジョン(α)は、
     共重合体(X)と、
     エチレン性不飽和結合を有さず1分子中に2個以上のエポキシ基を有するポリエポキシ化合物(Y)と、
     水性媒体(Z)と、
    を含み、
     前記共重合体(X)と前記ポリエポキシ化合物(Y)との合計量に対する、前記ポリエポキシ化合物(Y)の含有率は、1~40質量%であり、
     前記共重合体(X)は、
     (メタ)アクリル酸エステル(A)由来の構造単位と、
     エチレン性不飽和カルボン酸(B)由来の構造単位と、を含み、
     前記共重合体(X)と前記ポリエポキシ化合物(Y)との合計量に対する、前記(メタ)アクリル酸エステル(A)由来の構造単位の含有率は、20~98質量%であり、
     前記共重合体(X)と前記ポリエポキシ化合物(Y)との合計量に対する、前記エチレン性不飽和カルボン酸(B)由来の構造単位の含有率は、0.1~10質量%であり、
     前記(メタ)アクリル酸エステル(A)由来の構造単位は、アルコール由来の部分の炭素原子数が2以下である親水性(メタ)アクリル酸エステル(A1)由来の構造単位を含み、
     前記共重合体(X)と前記ポリエポキシ化合物(Y)との合計量に対する、前記親水性(メタ)アクリル酸エステル(A1)由来の構造単位の含有率は、15~98質量%であり、
     前記共重合体(X)と前記ポリエポキシ化合物(Y)の一方または両方が、カルボキシ基を含み、
     前記硬化剤(β)は、エポキシ基に対する反応性を有する官能基(F)を有する化合物からなり、
     前記硬化剤(β)に含まれる前記官能基(F)の含有量は、前記水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対して、0.010当量以上3.0当量以下であり、
     前記硬化促進剤(γ)は、エポキシ基に対する反応性を有する官能基を有さない第三級アミンからなり、
     前記硬化促進剤(γ)の含有量は、前記水性樹脂エマルジョン(α)に含まれるエポキシ基1当量に対して、0.0070mol以上1.5mol以下である、水性樹脂組成物。
  2.  前記(メタ)アクリル酸エステル(A)は、(メタ)アクリル酸アルキルエステルからなる、請求項1に記載の水性樹脂組成物。
  3.  前記エチレン性不飽和カルボン酸(B)は、α,β-不飽和モノカルボン酸、α,β-不飽和ジカルボン酸、及びカルボキシ基を含有するビニル化合物からなる群のうち、少なくとも1種を含む、請求項1または請求項2に記載の水性樹脂組成物。
  4.  前記ポリエポキシ化合物(Y)は、ビスフェノール型エポキシ化合物、水添ビスフェノール型エポキシ化合物、ジグリシジルエーテル、トリグリシジルエーテル、テトラグリシジルエーテル、ジグリシジルエステル、トリグリシジルエステル、及びテトラグリシジルエステルから選ばれる少なくとも1種である、請求項1~請求項3のいずれか1項に記載の水性樹脂組成物。
  5.  前記共重合体(X)は、前記(メタ)アクリル酸エステル(A)由来の構造単位及び前記エチレン性不飽和カルボン酸(B)由来の構造単位からなる、請求項1~請求項4のいずれか1項に記載の水性樹脂組成物。
  6.  前記共重合体(X)は、ベンゼン環及びエチレン性不飽和結合を有するエチレン性不飽和芳香族化合物(C)由来の構造単位を含む、請求項1~請求項4のいずれか1項に記載の水性樹脂組成物。
  7.  前記エチレン性不飽和芳香族化合物(C)は、芳香族ビニル化合物である請求項6に記載の水性樹脂組成物。
  8.  前記硬化剤(β)は、無置換または1つのみ置換基を有するアミノ基、カルボキシ基、メルカプト基からなる群より選択される少なくともいずれかを含む、請求項1~請求項7のいずれか1項に記載の水性樹脂組成物。
  9.  前記硬化促進剤(γ)は、第三級脂肪族アミン、第三級脂環式アミン、第三級ヘテロ芳香族アミンからなる群より選択される少なくとも1つの化合物である、請求項1~請求項8のいずれか1項に記載の水性樹脂組成物。
  10.  前記水性樹脂エマルジョン(α)は、前記水性媒体(Z)中で、前記共重合体(X)の構造単位となるモノマーが、前記ポリエポキシ化合物(Y)の存在下で、乳化重合されたエマルジョンである、請求項1~請求項9のいずれか1項に記載の水性樹脂組成物。
  11.  前記共重合体(X)と前記ポリエポキシ化合物(Y)との合計量中におけるカルボキシ基の含有率が、0.10×10-4mol/g以上である請求項1~請求項10のいずれか1項に記載の水性樹脂組成物。
  12.  前記共重合体(X)と前記ポリエポキシ化合物(Y)との合計量中におけるエポキシ基の含有率が、0.50×10-4mol/g以上である請求項1~請求項11のいずれか1項に記載の水性樹脂組成物。
  13.  請求項1~請求項12のいずれか1項に記載の水性樹脂組成物の硬化物からなる、皮膜。
  14.  請求項1~請求項12のいずれか1項に記載の水性樹脂組成物を、被塗装面に塗布する塗布工程と、
     前記塗布された水性樹脂組成物を硬化させる硬化工程と、
    を含む、皮膜の形成方法。
PCT/JP2020/044536 2019-12-02 2020-11-30 水性樹脂組成物、皮膜および皮膜の形成方法 WO2021112042A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227014417A KR20220072867A (ko) 2019-12-02 2020-11-30 수성 수지 조성물, 피막 및 피막의 형성 방법
CN202080082528.1A CN114746458A (zh) 2019-12-02 2020-11-30 水性树脂组合物、皮膜及皮膜的形成方法
JP2021562637A JP7380709B2 (ja) 2019-12-02 2020-11-30 水性樹脂組成物、皮膜および皮膜の形成方法
JP2023136642A JP2023166452A (ja) 2019-12-02 2023-08-24 水性樹脂組成物、皮膜および皮膜の形成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-218183 2019-12-02
JP2019218183 2019-12-02

Publications (1)

Publication Number Publication Date
WO2021112042A1 true WO2021112042A1 (ja) 2021-06-10

Family

ID=76222304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044536 WO2021112042A1 (ja) 2019-12-02 2020-11-30 水性樹脂組成物、皮膜および皮膜の形成方法

Country Status (5)

Country Link
JP (2) JP7380709B2 (ja)
KR (1) KR20220072867A (ja)
CN (1) CN114746458A (ja)
TW (1) TW202134358A (ja)
WO (1) WO2021112042A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145228A1 (ja) * 2020-12-28 2022-07-07 昭和電工株式会社 水性樹脂組成物、皮膜、塗膜の製造方法、水性樹脂組成物セット、および金属の保護方法
WO2022145227A1 (ja) * 2020-12-28 2022-07-07 昭和電工株式会社 水性樹脂組成物、皮膜、塗膜の製造方法、水性樹脂組成物セット、および金属の保護方法
WO2022255272A1 (ja) * 2021-06-02 2022-12-08 昭和電工株式会社 水性樹脂組成物、塗膜、塗膜の製造方法、水性樹脂組成物セット

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106586A (ja) * 1973-02-08 1974-10-09
JPH08188605A (ja) * 1995-01-11 1996-07-23 Asahi Chem Ind Co Ltd 水性樹脂分散体の製造法
JPH08231616A (ja) * 1994-12-27 1996-09-10 Asahi Chem Ind Co Ltd 硬化性水性樹脂組成物
JPH09169832A (ja) * 1995-12-19 1997-06-30 Asahi Chem Ind Co Ltd 水性樹脂分散体組成物
JPH09194686A (ja) * 1996-01-12 1997-07-29 Asahi Chem Ind Co Ltd 水性樹脂組成物
JPH09286841A (ja) * 1996-04-18 1997-11-04 Asahi Chem Ind Co Ltd 水性の樹脂組成物
JP2000230146A (ja) * 1999-02-15 2000-08-22 Asahi Chem Ind Co Ltd 制振塗料用水性樹脂組成物
JP2000230141A (ja) * 1999-02-15 2000-08-22 Asahi Chem Ind Co Ltd チッピング塗料用水性樹脂組成物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840817A (en) * 1995-12-29 1998-11-24 Samsung Display Devices Co., Ltd. Polymer for photo-conductive layer and preparation method thereof
JP2001302876A (ja) * 2000-04-24 2001-10-31 Toyo Ink Mfg Co Ltd ガラス瓶着色用水性樹脂組成物、水性塗料組成物、それを用いた着色ガラス瓶
JP3342696B2 (ja) * 2000-12-26 2002-11-11 日本エヌエスシー株式会社 エポキシ樹脂水分散体の製造方法及びそれを用いて製造されるエポキシ樹脂水分散体
JP5333152B2 (ja) 2009-10-26 2013-11-06 東亞合成株式会社 厚塗り用塗料組成物
JP5695823B2 (ja) * 2009-11-25 2015-04-08 株式会社日本触媒 シーラー用塗料組成物
JP5443526B2 (ja) 2011-03-01 2014-03-19 ローム アンド ハース カンパニー エポキシ樹脂吸収ポリマー粒子
WO2015093299A1 (ja) * 2013-12-20 2015-06-25 Dic株式会社 コーティング剤及び積層体
BR112018011417B1 (pt) 2015-12-22 2022-09-20 Dow Global Technologies Llc Composição adesiva de laminação, método e método para formar um laminado curado
CN110382572A (zh) * 2017-02-27 2019-10-25 昭和电工株式会社 固化型水系树脂乳液组合物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106586A (ja) * 1973-02-08 1974-10-09
JPH08231616A (ja) * 1994-12-27 1996-09-10 Asahi Chem Ind Co Ltd 硬化性水性樹脂組成物
JPH08188605A (ja) * 1995-01-11 1996-07-23 Asahi Chem Ind Co Ltd 水性樹脂分散体の製造法
JPH09169832A (ja) * 1995-12-19 1997-06-30 Asahi Chem Ind Co Ltd 水性樹脂分散体組成物
JPH09194686A (ja) * 1996-01-12 1997-07-29 Asahi Chem Ind Co Ltd 水性樹脂組成物
JPH09286841A (ja) * 1996-04-18 1997-11-04 Asahi Chem Ind Co Ltd 水性の樹脂組成物
JP2000230146A (ja) * 1999-02-15 2000-08-22 Asahi Chem Ind Co Ltd 制振塗料用水性樹脂組成物
JP2000230141A (ja) * 1999-02-15 2000-08-22 Asahi Chem Ind Co Ltd チッピング塗料用水性樹脂組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145228A1 (ja) * 2020-12-28 2022-07-07 昭和電工株式会社 水性樹脂組成物、皮膜、塗膜の製造方法、水性樹脂組成物セット、および金属の保護方法
WO2022145227A1 (ja) * 2020-12-28 2022-07-07 昭和電工株式会社 水性樹脂組成物、皮膜、塗膜の製造方法、水性樹脂組成物セット、および金属の保護方法
WO2022255272A1 (ja) * 2021-06-02 2022-12-08 昭和電工株式会社 水性樹脂組成物、塗膜、塗膜の製造方法、水性樹脂組成物セット

Also Published As

Publication number Publication date
JP7380709B2 (ja) 2023-11-15
JPWO2021112042A1 (ja) 2021-06-10
TW202134358A (zh) 2021-09-16
KR20220072867A (ko) 2022-06-02
CN114746458A (zh) 2022-07-12
JP2023166452A (ja) 2023-11-21

Similar Documents

Publication Publication Date Title
JP6937942B2 (ja) 水性樹脂エマルジョン及びその製造方法、並びに水性樹脂組成物
JP7380709B2 (ja) 水性樹脂組成物、皮膜および皮膜の形成方法
EP2495281B2 (en) Epoxy resin imbibed polymer particles
US8658742B2 (en) Epoxy resin imbibed polymer particles
EP2966135B1 (en) Anticorrosive coating composition, anticorrosive coating film, and method for preventing corrosion of base material
TW201224047A (en) Curable resin composition
CN109983090A (zh) 涂料组合物
JP5428700B2 (ja) 一液硬化型エマルション組成物及びその製造方法
WO2022255272A1 (ja) 水性樹脂組成物、塗膜、塗膜の製造方法、水性樹脂組成物セット
WO2022145228A1 (ja) 水性樹脂組成物、皮膜、塗膜の製造方法、水性樹脂組成物セット、および金属の保護方法
WO2022145227A1 (ja) 水性樹脂組成物、皮膜、塗膜の製造方法、水性樹脂組成物セット、および金属の保護方法
WO2023119850A1 (ja) 水性樹脂組成物、塗膜の製造方法、水性樹脂組成物セット
CN115552069B (zh) 纤维处理剂、纤维处理组合物、纤维加工品及纤维处理剂的制造方法
JPS60118756A (ja) 耐熱水性被覆組成物
JPS63301264A (ja) 塗料組成物
JP2000290348A (ja) 硬化性樹脂組成物
JPS6284145A (ja) 水性樹脂分散体
JP2021055062A (ja) 水性被覆材
JPH03103423A (ja) 構造用接着剤用一液性エポキシ樹脂組成物
JPH04202478A (ja) 1液型硬化組成物
JP2000219843A (ja) 防食塗料組成物
US20040180992A1 (en) Epoxy resin compositions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897328

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562637

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227014417

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20897328

Country of ref document: EP

Kind code of ref document: A1